WO2023134222A1 - 动力传动***及车辆 - Google Patents

动力传动***及车辆 Download PDF

Info

Publication number
WO2023134222A1
WO2023134222A1 PCT/CN2022/121669 CN2022121669W WO2023134222A1 WO 2023134222 A1 WO2023134222 A1 WO 2023134222A1 CN 2022121669 W CN2022121669 W CN 2022121669W WO 2023134222 A1 WO2023134222 A1 WO 2023134222A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
shaft
input
output
power
Prior art date
Application number
PCT/CN2022/121669
Other languages
English (en)
French (fr)
Inventor
贾军风
唐子威
董利杰
Original Assignee
如果科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 如果科技有限公司 filed Critical 如果科技有限公司
Publication of WO2023134222A1 publication Critical patent/WO2023134222A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application relates to the technical field of vehicles, in particular to a power transmission system and a vehicle.
  • hybrid technology In related technologies, with the development of hybrid technology, the fields that hybrid technology can be applied to are gradually increasing. Although the hybrid technology applied to cars is relatively mature, the load of cars is light, so it can be applied to cars. The gears of the transmission system cannot be adapted to heavy-duty vehicles. In particular, hybrid power transmission systems applied to commercial vehicles have power interruptions when shifting gears. Power interruptions in heavy-duty vehicles will seriously affect the performance of the vehicle. Driving performance and safety. Therefore, under the background of gasoline-electric hybrid technology, how to develop a vehicle suitable for heavy loads and how to solve the power interruption during the shifting process has become a technical problem in this field.
  • the power-split hybrid drive system using a planetary gear and dual-motor coupling architecture is widely used in the field of passenger vehicles, but is limited by the driving capability of single-gear power-split.
  • single-gear input power-split hybrid The powertrain system has great limitations, and it is necessary to greatly increase the power and torque parameter matching of the dual motors to improve the traction capacity of the vehicle, which inevitably increases the cost of the assembly system.
  • the single-speed power split hybrid powertrain system will increase the fuel consumption of the vehicle and deteriorate the fuel economy of the vehicle.
  • hybrid power is mainly based on the single-motor P2 parallel hybrid architecture, and the fuel-saving effect of the P2 hybrid system in urban conditions is significantly lower than that of dual-motor power split and series-parallel hybrid systems , but the continuous climbing dynamics of the P2 hybrid system and the fuel economy at high speeds are better.
  • One of the objectives of the embodiments of the present application is to provide a power transmission system and a vehicle.
  • a power transmission system including:
  • a planetary gear system the planetary gear system includes: a sun gear, a planet carrier and a ring gear, the engine is connected to the planet carrier through a first power input shaft, and the first motor generator is connected to the planet carrier through a second power input shaft The sun gear is connected;
  • the third power input shaft is connected to the second motor generator
  • ring gear connecting shaft is connected with the ring gear
  • the first intermediate shaft is linked with the third power input shaft, and selectively linked with the ring gear connection shaft;
  • the second intermediate shaft is linked with the ring gear connection shaft
  • An output shaft, the output shaft is selectively linked with at least one of the first intermediate shaft, the second intermediate shaft, and the ring gear connection shaft.
  • the power transmission system further includes:
  • the reverse gear shaft is arranged between the first intermediate shaft and the ring gear connecting shaft, and the ring gear connecting shaft can be selectively connected to the first intermediate shaft through the reverse gear shaft linkage.
  • the first intermediate shaft is provided with a first input gear of the first intermediate shaft and a second input gear of the first intermediate shaft
  • the connecting shaft of the ring gear is vacantly sleeved with the second input gear of the first intermediate shaft.
  • the ring gear linked with the two input gears is connected to the reverse gear output gear
  • the third power input shaft is provided with a first input driving gear meshing with the first input gear of the first intermediate shaft.
  • the reverse gear shaft is provided with a reverse gear idler gear, and the reverse gear idler gear meshes with the second input gear of the first intermediate shaft and the reverse gear output gear of the ring gear connection shaft respectively.
  • the power transmission system further includes a first shifting device, which can selectively connect the third power input shaft or the ring gear connection shaft with the reverse output gear and the tooth The ring connecting shaft is engaged.
  • the ring gear connection shaft is provided with a second input drive gear
  • the second countershaft is provided with a second countershaft input gear
  • the second countershaft input gear is connected to the second countershaft input gear.
  • Input drive gear meshes.
  • the power transmission system further includes a second shifting device, and the second shifting device selectively couples the output shaft with the second intermediate shaft or the ring gear connection shaft.
  • the first input gear of the output shaft is vacantly sleeved on the output shaft, and the second intermediate shaft output gear meshing with the first input gear of the output shaft is arranged on the second intermediate shaft;
  • a second shifting device selectively couples the output shaft first input gear with the output shaft.
  • the first intermediate shaft is linked with the output shaft through multiple pairs of gear sets with different speed ratios; the first intermediate shaft can be selectively output through one pair of the gear sets.
  • the second input gear of the output shaft and the third input gear of the output shaft are vacantly sleeved on the output shaft, and a first intermediate gear meshing with the second input gear of the output shaft is provided on the first intermediate shaft.
  • the first output gear of the shaft and the second output gear of the first countershaft meshed with the third input gear of the output shaft;
  • a shaft second input gear or an output shaft third input gear engages the output shaft.
  • the engine, the first motor-generator and the second motor-generator are coaxially arranged, and the second power input shaft of the first motor-generator is spaced from the engine ( 1) the outer circumference of the first power input shaft;
  • the output shafts of the engine, the first motor generator and the second motor generator are parallel.
  • a plurality of the first intermediate shaft and the second intermediate shaft are provided, and the plurality of the first intermediate shafts and the plurality of the second intermediate shafts are arranged on the ring gear connection the outer circumference of the shaft.
  • a vehicle including the power transmission system described in any one of the first aspects.
  • the stepless speed regulation power shunting between the engine and the first motor-generator is realized by using the planetary gear train, and then the second motor-generator is assisted to realize the torque amplification, which improves the connection shaft of the ring gear. While outputting torque, the heat loss generated by the traditional hydraulic torque converter is avoided, and the transmission efficiency is high.
  • the beneficial effect of the second aspect provided by the embodiment of the present application is the same as the beneficial effect of the first aspect above, please refer to the beneficial effect of the first aspect above.
  • FIG. 1 is a schematic structural view of a coaxially arranged four-speed power transmission system according to an embodiment of the present application
  • Fig. 2 is a schematic structural view of a four-speed power transmission system arranged in parallel according to an embodiment of the present application;
  • FIG. 3 is a schematic structural view of a coaxially arranged four-speed power transmission system according to another embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a four-speed power transmission system arranged in parallel according to another embodiment of the present application.
  • Fig. 5 is a schematic structural view of a six-speed power transmission system arranged coaxially according to an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a six-speed power transmission system arranged in parallel according to an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a six-speed power transmission system arranged coaxially according to another embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a six-speed power transmission system arranged in parallel according to another embodiment of the present application.
  • hybrid technology In related technologies, with the development of hybrid technology, the fields that hybrid technology can be applied to are gradually increasing. Although the hybrid technology applied to cars is relatively mature, the load of cars is light, so it can be applied to cars. The gears of the transmission system cannot be adapted to heavy-duty vehicles. In particular, hybrid power transmission systems applied to commercial vehicles have power interruptions when shifting gears. Power interruptions in heavy-duty vehicles will seriously affect the performance of the vehicle. Driving performance and safety. Therefore, under the background of gasoline-electric hybrid technology, how to develop a vehicle suitable for heavy loads and how to solve the power interruption during the shifting process has become a technical problem in this field.
  • the power-split hybrid drive system using a planetary gear and dual-motor coupling architecture is widely used in the field of passenger vehicles, but is limited by the driving capability of single-gear power-split.
  • single-gear input power-split hybrid The powertrain system has great limitations, and it is necessary to greatly increase the power and torque parameter matching of the dual motors to improve the traction capacity of the vehicle, which inevitably increases the cost of the assembly system.
  • the single-speed power split hybrid powertrain system will increase the fuel consumption of the vehicle and deteriorate the fuel economy of the vehicle.
  • hybrid power is mainly based on the single-motor P2 parallel hybrid architecture, and the fuel-saving effect of the P2 hybrid system in urban conditions is significantly lower than that of dual-motor power split and series-parallel hybrid systems , but the continuous climbing dynamics of the P2 hybrid system and the fuel economy at high speeds are better.
  • FIGS. 1-8 A power transmission system according to an embodiment of the present application will be described below with reference to FIGS. 1-8 .
  • the power transmission system includes: an engine 1, a first motor-generator 2 and a second motor-generator 3, the engine 1, the first motor-generator 2 and the second motor-generator 3 are located on the same axis, and the first motor-generator
  • the second power input shaft 20 of the generator 2 is sleeved on the outer periphery of the first power input shaft 10 of the engine 1;
  • the planetary gear system 4, the planetary gear system 4 includes: the sun gear 41, the planet carrier 42 and the ring gear 43, the engine 1
  • the first power input shaft 10 is connected to the planet carrier 42, the first motor generator 2 is connected to the sun gear 41 through the second power input shaft 20;
  • the third power input shaft 30, the third power input shaft 30 is connected to the second motor generator
  • the machine 3 is connected;
  • the ring gear connecting shaft 40, the ring gear connecting shaft 40 is connected with the ring gear 43;
  • the first intermediate shaft 50, the first intermediate shaft 50 is linked with the third power input shaft 30, and can be
  • This application uses the planetary gear train 4 to couple the power of the engine 1 and the first motor generator 2, the first motor generator 2 is used as a speed-regulating motor, and when the engine 1 outputs power, the first motor-generator 2 can regulate the speed To generate electricity to improve the output efficiency of the motor, the ring gear 43 is finally output through the ring gear connection shaft 40 .
  • the vehicle can be in the continuously variable speed mode.
  • the first motor-generator 2 is used as a speed-regulating motor, the power output by the ring gear 43 can work under different speed conditions.
  • the second The motor generator 3 is used as an electric motor to output together with the engine 1, so as to increase the output power of the power transmission system and improve the ability of the vehicle to get out of trouble.
  • a reverse gear shaft 80 is also provided.
  • the reverse gear shaft 80 is arranged between the ring gear connecting shaft 40 and the first intermediate shaft 50.
  • the power is transmitted to the reverse gear shaft 80 through the ring gear connecting shaft 40 , and then transmitted to the output shaft 70 through the reverse gear shaft 80 and the first intermediate shaft 50 to realize the reverse gear output of the vehicle.
  • the stepless speed regulation power distribution between the engine 1 and the first motor generator 2 is realized by using the planetary gear train 4, and then realized by the power assist of the second motor generator 3 Torque amplification, while increasing the output torque of the ring gear connecting shaft 40, avoids the heat loss generated by the traditional torque converter, and has high transmission efficiency;
  • the reverse gear shaft arranged in between makes the engine power output of the power transmission system in the reverse gear situation further improved, so that the power transmission system according to the application has more excellent ability to get out of trouble and power in the reverse gear state. performance.
  • the first intermediate shaft 50 is provided with a first intermediate shaft first input gear 51 and a first intermediate shaft second input gear 52R.
  • the ring gear linked with the two input gears 52R is connected to the reverse output gear 41R, and the third power input shaft 30 is provided with a first input drive gear 31 meshing with the first input gear 51 of the first intermediate shaft.
  • the ring gear connecting shaft 40 and the first intermediate shaft 50 are linked through the meshing of the input gear of the first intermediate shaft 50 and the first input driving gear 31, so that the power output by the second motor generator 3 can pass through the first intermediate shaft 50 for output.
  • the reverse gear shaft 80 is provided with a reverse gear idler gear 42R, and the reverse gear idler gear 42R meshes with the first intermediate shaft second input gear 52R and the ring gear connection shaft reverse gear output gear 41R respectively. . Therefore, the power output by the ring gear connecting shaft 40 is transmitted to the first intermediate shaft 50 through the reverse gear shaft 80 to be output by the first intermediate shaft 50 .
  • the power transmission system further includes a first shifting device k1, and the first shifting device k1 selectively connects the third power input shaft 30 or the ring gear connection shaft and the reverse output gear 41R with the ring gear
  • the shaft 40 is engaged, and when the third power input shaft 30 is selected to be engaged with the ring gear connecting shaft 40 , the power of the second motor generator 3 and the power output by the ring gear 43 can be coupled together for output.
  • the reverse output gear 41R is selected to engage with the ring gear connecting shaft 40 , the power on the ring gear connecting shaft 40 can be transmitted to the first intermediate shaft 50 through the power on the reverse shaft 80 for output.
  • the ring gear connecting shaft 40 is provided with a second input drive gear 81
  • the second countershaft 60 is provided with a second countershaft input gear 61
  • the second countershaft input gear 61 is connected to the second input The driving gear 81 meshes.
  • the second intermediate shaft 60 sets a transmission path different from that of the first intermediate shaft 50 for the output of the ring gear connecting shaft 40, and the power after the coupling between the engine 1 and the first motor generator 2 can pass through the ring gear connecting shaft 40, the first intermediate shaft The shaft 50 or the second intermediate shaft 60 is transmitted to the output shaft 70.
  • the second motor generator 3 can transmit power through the first intermediate shaft 50 or the second intermediate shaft 60, which can realize the switching process of the power shift Without power interruption, by setting the second intermediate shaft 60, the power transmission system can use two different power sources to transmit power through the first intermediate shaft 50 and the second intermediate shaft 60 during the shifting process, so that During the shifting process of one intermediate shaft, another transmission path is used for power compensation, thereby avoiding power interruption during the shifting process of the power transmission system and improving the comfort of the power transmission system.
  • the power transmission system further includes a second shifting device k2, and the second shifting device k2 can selectively link the output shaft 70 with the second intermediate shaft 60 or the ring gear connecting shaft 40 .
  • the output shaft 70 can be directly connected with the ring gear connecting shaft 40 or connected through the second intermediate shaft 60 for power transmission, which further enriches the power transmission path and makes the power transmission system in the process of switching The power interruption is avoided, the gear setting of the power transmission system is enriched, and the speed regulation range of the power transmission system is improved.
  • the first input gear 72a of the output shaft is sleeved on the output shaft 70, and the second intermediate shaft output gear 62a meshing with the first input gear 72a of the output shaft is arranged on the second intermediate shaft 60;
  • the shifting device k2 selectively couples the output shaft first input gear 72 a with the output shaft 70 .
  • the power transmission between the second countershaft 60 and the output shaft 70 is carried out through the engagement of the output shaft first input gear 72a and the second countershaft output gear 62a, and the second shifting device k2 is used to select the output shaft first input gear 72a Linkage with the output shaft 70.
  • the first intermediate shaft 50 is linked with the output shaft 70 through multiple pairs of gear sets with different speed ratios; the first intermediate shaft 50 can be selectively output through one pair of gear sets.
  • the transmission ratio between the first intermediate shaft 50 and the output shaft 70 is further enriched, so that the power transmission system can have more speed regulation ranges.
  • the second input gear 71b of the output shaft and the third input gear 71a of the output shaft are sheathed on the output shaft 70, and the first intermediate shaft 50 is provided with a first gear that meshes with the second input gear 71b of the output shaft.
  • the first output gear 53b of the countershaft and the second output gear 53a of the first countershaft meshed with the third input gear 71a of the output shaft;
  • the power transmission system also includes: a third shifting device k3, the third shifting device k3 optionally The output shaft second input gear 71 b or the output shaft third input gear 71 a is engaged with the output shaft 70 .
  • the difference between the first countershaft 50 and the output shaft 70 can be selected.
  • the transmission ratio, and the third shifting device k3 can be used to select different transmission ratios and perform shifting operations.
  • the engine 1, the first motor-generator 2 and the second motor-generator 3 are coaxially arranged, and the first motor-generator
  • the second power input shaft 20 of the engine 2 is hollowly sleeved on the outer periphery of the first power input shaft 10 of the engine.
  • the setting of the empty sleeve shaft can make full use of the space in the axial direction of the power transmission system and improve the space utilization rate.
  • the engine 1, the first motor generator 2, and the second motor generator 3 are offset, and their output shafts are parallel to each other, and the first motor generator
  • the engine 1 is connected to the sun gear 41 through a transfer structure 20a that is loosely sleeved on the first power input shaft 10 .
  • the parallel offset arrangement also enables the power transmission system to make full use of the space in the radial direction, while avoiding the structural form of an empty shaft, reducing the cost of components and the maintenance difficulty of the power transmission system.
  • the first intermediate shaft 50 and the second intermediate shaft 60 are configured in multiples and arranged on the outer periphery of the ring gear connecting shaft 40, by arranging multiple The first intermediate shaft 50 and the second intermediate shaft 60 can further increase the power that the power transmission system can transmit.
  • a plurality of second countershaft output gears are provided on the second countershaft 60, including a second countershaft output gear 62a and a second countershaft output gear 62b
  • the power output shaft 70 is covered with a plurality of output shaft first input gears, including the output shaft first input gear 72a and the output shaft first input gear 72b
  • the power output shaft 70 is also provided with a fourth shifting device k4
  • the fourth shifting device k4 is used to select the first input gear 72 b of the output shaft to engage with the output shaft 70 , increasing the transmission ratio between the second intermediate shaft 60 and the output shaft 70 to realize multi-gear power transmission.
  • the power transmission system adopts a single intermediate shaft structure, dual motors are coaxially arranged, and has two-speed engine reverse gear and four-speed power split drive, which is suitable for off-road SUVs, light trucks and high-end performance passenger cars.
  • the power transmission system adopts a single intermediate shaft structure, and the dual motors are set with a first-level offset, the torque demand of the dual motors is reduced, the axial length of the gearbox can be shortened, and it is equipped with two gears, engine reverse gear and four gears Power split drive, suitable for off-road SUVs and light trucks.
  • the power transmission system adopts a double countershaft structure, and the double motors are coaxially arranged. It is equipped with two-speed engine reverse gear and four-speed power split drive, and the driving load capacity is increased. It is suitable for off-road SUVs and medium-sized commercial vehicles. vehicles and construction machinery.
  • the power transmission system adopts a double countershaft structure, dual motor bias settings, with two-speed engine reverse gear and four-speed power split drive, the driving load capacity is increased, suitable for high-end off-road SUVs, medium-sized Commercial vehicles and construction machinery.
  • the power transmission system adopts a single intermediate shaft structure, dual motors are coaxially arranged, and has a third-gear engine reverse gear and a sixth-gear power split drive, which is suitable for high-end off-road SUVs and medium-sized commercial vehicles.
  • the power transmission system adopts a single intermediate shaft structure, and the first-level bias setting of the dual motors reduces the torque demand of the dual motors, reduces the cost of the motors, shortens the axial length of the gearbox, and has a three-speed engine reverse.
  • Gear and six-speed power split drive suitable for high-end off-road SUVs and medium-sized commercial vehicles.
  • the power transmission system adopts a double intermediate shaft structure, and the double motors are coaxially arranged. It is equipped with a third-gear engine reverse gear and a sixth-gear power split drive. It has a strong anti-overload capability and is suitable for high-end off-road SUVs and overloaded medium Commercial vehicles and construction machinery.
  • the power transmission system adopts a double countershaft structure, and the dual motors are set with a first-level bias to reduce the axial length of the gearbox, reduce the torque requirements of the dual motors, and reduce the cost of the motors;
  • Gear and sixth gear power split drive, strong anti-overload capability suitable for high-end off-road SUVs, overloaded medium-sized commercial vehicles and construction machinery applications.
  • the power transmission path of the power transmission system of the present application is described below according to Table 1.
  • Engine first gear first power input shaft 10 ⁇ planetary carrier 42 ⁇ ring gear 43 ⁇ ring gear connecting shaft 40 ⁇ first input drive gear 31 ⁇ first countershaft first input gear 51 ⁇ first countershaft 50 ⁇ First intermediate shaft, second output gear 53 a ⁇ output shaft, third input gear 71 a ⁇ output shaft 70 .
  • Engine second gear first power input shaft 10 ⁇ planetary carrier 42 ⁇ ring gear 43 ⁇ ring gear connecting shaft 40 ⁇ second input driving gear 81 ⁇ second countershaft input gear 61 ⁇ second countershaft 60 ⁇ second Countershaft output gear 62 a ⁇ output shaft first input gear 72 a ⁇ output shaft 70 .
  • Engine third gear first power input shaft 10 ⁇ planetary carrier 42 ⁇ ring gear 43 ⁇ ring gear connecting shaft 40 ⁇ first input drive gear 31 ⁇ first countershaft input gear 51 ⁇ first countershaft 50 ⁇ first Intermediate shaft first output gear 53 b ⁇ output shaft second input gear 71 b ⁇ output shaft 70 .
  • Engine fourth gear first power input shaft 10 ⁇ planetary carrier 42 ⁇ ring gear 43 ⁇ ring gear connecting shaft 40 ⁇ output shaft 70.
  • the power output of the second motor generator has four gears:
  • Second motor generator first gear third power input shaft 30 ⁇ first input driving gear 31 ⁇ first countershaft input gear 51 ⁇ first countershaft 50 ⁇ first countershaft second output gear 53a ⁇ output shaft Third input gear 72 a ⁇ output shaft 70 .
  • Second motor generator second gear third power input shaft 30 ⁇ second input driving gear 81 ⁇ second countershaft input gear 61 ⁇ second countershaft 60 ⁇ second countershaft output gear 62a ⁇ output shaft first Input gear 72 a ⁇ output shaft 70 .
  • Second motor generator third gear third power input shaft 30 ⁇ first input driving gear 31 ⁇ first countershaft input gear 51 ⁇ first countershaft 50 ⁇ first countershaft first output gear 53b ⁇ output shaft Second input gear 71b ⁇ output shaft 70 .
  • the fourth gear of the second motor generator third power input shaft 30 ⁇ planetary carrier 42 ⁇ ring gear 43 ⁇ ring gear connection shaft 40 ⁇ output shaft 70.
  • the power output of the engine 1 and the second motor-generator 3 both have four gears and a neutral gear, and the engine 1 and the second motor-generator 3 share the transmission path of the fourth gear.
  • Table 2 is the powertrain in electric mode.
  • the charging state of the vehicle-mounted power battery is sufficient, the first motor generator 2 and the engine 1 are stopped, the first shifting device k1 and the second shifting device k2 are in neutral, and the third shifting device k3 is in the first gear (the third shifting device k3 will
  • the output shaft 70 is connected to the output shaft third input gear 71a) or the second gear (the third shifting device k3 connects the output shaft 70 to the output shaft second input gear 71b), and the second motor generator 3 is in the first gear EV1 or 2
  • the EV2 pure electric drive can cover the full speed range of the vehicle.
  • the first shifting device k1 and the second shifting device k2 are in neutral, and the engine 1 , the first motor generator 2 , the planetary gear 4 , the second intermediate shaft 60 and the gear train are all at rest without any additional loss.
  • Table 3 shows the 1st gear power split eCVT1 mode.
  • the first shifting device k1 connects the ring gear connecting shaft 40 with the first input driving gear 31, the second shifting device k2 is in neutral, and the third shifting device k1
  • the gear device k3 is in the first gear (the third gear shift device k3 connects the output shaft 70 with the third input gear 71a of the output shaft), and the first motor generator 2 works in the closed-loop speed regulation mode.
  • the rotation speed of the generator 2 can adjust the rotation speed of the engine 1 to any required rotation speed, so as to realize the electronic stepless speed regulation eCVT control of the engine.
  • Engine 1 applies torque, and part of the power of engine 1 is output through the mechanical transmission path of the first gear of the engine.
  • Table 4 shows the 2-speed power split eCVT2 mode, the second shifting device k2 is in the second gear (the second shifting device k2 connects the output shaft 70 with the first input gear 72a of the output shaft), the second shifting device k1 and the second
  • the gear state of the shifting device k3 depends on the desired gear of the second motor-generator 3, the second motor-generator 3 can be freely in the first gear, second gear, third gear or neutral stop; the first motor-generator 2 works In the closed-loop speed regulation split mode, part of the power of the engine 1 is output according to the fixed speed ratio of the second gear.
  • Table 5 shows the 3-speed power split eCVT3 mode, the first shifting device k1 closes the first input driving gear 31, the second shifting device k2 is in neutral, and the third shifting device k3 is in third gear (the third shifting device k3 will output shaft 70 is connected with the second input gear 71b of the output shaft), the engine 1 and the second motor-generator 3 are in the third gear at the same time; the first motor-generator 2 works in the closed-loop speed regulation shunt mode, and the part power of the engine 1 follows the fixed 3 Gear ratio output.
  • Table 6 shows the 4th gear power split eCVT4 mode, the second gear shift device k1 directly connects the ring gear connecting shaft 40 with the output shaft 70; the first motor generator 2 works in the closed-loop speed regulation split mode, and part of the power of the engine 1 is fixed according to 4 gear speed ratio output. The power of the second motor generator 3 is transmitted to the output shaft 70 according to the fixed speed ratio of the third gear or the fourth gear or the neutral gear stops.
  • the speed of the first motor-generator 2 can be adjusted to near zero speed, and the shunt power of the first motor-generator 2 to the engine 1 is close to zero, except for a small amount of loss of the first motor-generator 2 to maintain the shunt balance torque
  • almost all the power of the engine 1 is directly output to the wheel through the mechanical transmission path, so as to realize the efficient output of engine power.
  • the second motor generator 3 can be out of gear and shut down, thereby realizing the high-efficiency direct drive effect of the engine 1 under medium-high speed cruising.
  • Table 7 shows the first reverse power split eCVT1R mode, the first shift device k1 connects the ring gear connecting shaft 40 with the ring gear connecting shaft reverse output gear 41R, the second shift device k2 is in neutral, and the third shift device k3 In the first gear (the third shifting device k3 connects the output shaft 70 with the third input gear 71a of the output shaft), the first motor generator 2 works in the closed-loop speed regulation split mode, and part of the power of the engine 1 passes through the first reverse gear of the engine bit mechanical transfer path output. The engine power is reversed through the reverse gear 42R, and the mechanical path transmission of the torque of the engine 1 is output according to the fixed speed ratio of the first reverse gear.
  • Table 8 shows the second reverse power split eCVT2 mode
  • the first shift device k1 connects the ring gear connecting shaft 40 with the ring gear connecting shaft reverse output gear 41R
  • the second shift device k2 is in neutral
  • the third shift device k3 In the third gear (the third shifting device k3 connects the output shaft 70 with the second input gear 71b of the output shaft)
  • the first motor generator 2 works in the closed-loop speed regulation split mode, and part of the power of the engine 1 passes through the second reverse gear of the engine 1 Gear mechanical transmission path output.
  • the engine power is reversed through the reverse idle gear 42R, and the mechanical path transmission of the torque of the engine 1 is output according to the fixed speed ratio of the second reverse gear.
  • the second motor-generator 3 provides superimposed reverse gear driving assistance in the first gear or the third gear in addition to the driving traction force provided by the engine 1 in the first or second reverse gear, thereby improving the reverse gear traction capacity.
  • the first motor-generator 2 can simultaneously adjust the speed and split the current to generate electricity. Even in the case of the vehicle power battery running out of power, it can still continuously provide the electric energy required by the second motor-generator 3 for reverse gear driving.
  • the engine 1 and the second motor-generator Machine 3 can be continuously driven in common reverse gear to meet the reverse gear function required by medium and high loads. The reverse gear requirement of medium and light loads can be fully realized by the pure electric drive of the second motor generator 3 .
  • the second motor generator 3 works in the first electric EV1 mode, and the first motor generator 2 adjusts the speed to synchronize the speed of the ring gear connecting shaft 40 with the first input driving gear 31; after synchronization, the first motor generator 2 is unloaded Finally, the first shifting device k1 connects the ring gear connecting shaft 40 with the first input driving gear 31; after entering the gear, the first motor generator 2 adjusts the speed and quickly starts the engine 1 to the required speed, and the engine 1 is ignited and loaded, thereby Smoothly realize EV1 switching to power split eCVT1 mode.
  • the second motor generator 3 works in the first electric EV1 mode, and the first motor generator 2 adjusts the speed to synchronize the speed of the output shaft first input gear 72a with the output shaft 70; after synchronization, the first motor generator 2 is unloaded, and the second The second shifting device k2 connects the first input gear 72a of the output shaft with the output shaft 70; after entering the gear, the first motor generator 2 adjusts the speed and quickly starts the engine 1 to the required speed, and the engine is ignited and loaded, thereby smoothly realizing EV1 switching to power-split eCVT2 mode.
  • the second motor-generator 3 can remain in the first gear for boosting power; or when the engine 1 keeps driving the eCVT2, the second motor-generator 3 can smoothly switch to the second gear or third gear or neutral gear to stop.
  • the second motor generator 3 enters the first gear in advance (the first shift device k1 is in neutral, and the third shift device k3 connects the output shaft 70 with the third input gear 71a of the output shaft) , the second motor generator 3 is loaded, the engine 1 is unloaded, the first motor generator 2 exits the speed regulation mode and unloads, and the second shift device k2 is disengaged and enters neutral gear, so as to achieve smooth switching of eCVT2 into EV1 mode.
  • the second motor generator 3 works in the second electric EV2 mode, the first motor generator 2 adjusts the speed, and the speed of the ring gear connecting shaft 40 is synchronized with the first input driving gear 31; after synchronization, the first motor generator 2 is unloaded Finally, the first shifting device k1 connects the ring gear connecting shaft 40 with the first input driving gear 31; after shifting, the first motor generator 2 adjusts the speed and quickly starts the engine 1 to the required speed, and the engine 1 is ignited and loaded, thereby Smoothly realize EV2 switching to power split eCVT3 mode.
  • the second motor generator 3 works in the second electric EV2 mode, and the first motor generator 2 adjusts the speed to synchronize the ring gear connection shaft 40 with the output shaft 70; after synchronization, the first motor generator 2 is unloaded, and the second gear shift
  • the device k2 connects the ring gear connecting shaft 40 with the output shaft 70; after shifting into gear, the first motor-generator 2 adjusts the speed to quickly start the engine 1 to the required speed, and the engine 1 is ignited and loaded, thereby smoothly switching from EV2 to power split eCVT4 model.
  • the second motor-generator 3 can be kept in the third-speed assist mode; or when the engine keeps driving the eCVT4, the second motor-generator 3 can smoothly switch to the fourth-speed power-up mode or neutral gear to stop.
  • the second motor generator 3 enters the third gear in advance (the first shifting device k1 is in neutral, and the third shifting device k3 connects the output shaft 70 with the second input gear 71b of the output shaft) , the second motor generator 3 is loaded, the engine 1 is unloaded, the first motor generator 2 exits the speed regulation mode and unloads, and the second shift device k2 is disengaged and enters neutral gear, so as to achieve smooth switching of the eCVT4 into the EV2 mode.
  • Switching from the 1st gear eCVT1 mode to the eCVT2 mode requires the second motor generator 3 to maintain the 1st gear pure electric drive, the engine 1 and the first motor generator 2 are unloaded, the first gear shift device k1 enters neutral gear, and the first motor generator 2
  • the first input gear 72a and the output shaft 70 are synchronized by speed regulation. After synchronization, the first motor generator 2 is unloaded, and the second shifting device k2 is connected to the first input gear 72a of the output shaft and the output shaft 70.
  • the second shifting device After k2 shifts into gear, the first motor generator 2 adjusts the speed to quickly start the engine 1 to the set optimal speed, the engine 1 loads the output power, and the second motor generator 3 reduces the load to meet the driving demand, thereby smoothly switching from eCVT1 to eCVT2 model.
  • the second motor generator 3 switches into the first gear in advance, providing the drive of the EV1 mode of the second motor generator 3, and realizes the smooth switching of the eCVT2 into the eCVT1 mode.
  • the connection between the engine 1 and the transmission system is simplified, and the clutch of the traditional gearbox is not needed, which greatly improves the reliability of the hybrid system and cancels the after-sales service cost caused by the clutch.
  • Applicable to light commercial vehicles, pickup trucks and off-road SUV models it provides four-speed power split stepless speed regulation control, as long as the speed regulation of the first motor generator 2 is kept near zero speed, four fixed speed ratios can be realized
  • the second motor generator 3 provides pure electric drive with two gears, and the torque demand of the second motor generator 3 is reduced, which is beneficial to reduce the volume and cost of the second motor generator 3 .
  • the second motor-generator 3 can be out of gear and shut down under the power split eCVT2 and eCVT4 modes, and all relevant gear transmission mechanisms linked with the second motor-generator 3 are all static, and only the engine 1, the first motor-generator 2,
  • the planetary gear mechanism 4, the ring gear connecting shaft 40, the second intermediate shaft 60 and the output shaft are linked together, thereby greatly reducing the loss of the transmission system, which is beneficial to the hybrid system to provide efficient engine direct drive functions for medium-speed and high-speed driving .
  • the hybrid system can be applied to urban congestion conditions, and can also be applied to medium and high-speed continuous driving conditions.
  • the traction drive capability can be greatly improved to meet the heavy-duty and off-road drive requirements of the vehicle.
  • Table 1 and Table 9 show the power transmission modes of the power transmission system under different working conditions, wherein Table 1 shows the power transmission system with four gears, and Table 9 shows the power transmission system with six gears.
  • the vehicle according to the present application is provided with the power transmission system described in any one of the above-mentioned embodiments. Since the vehicle according to the present application is provided with the power transmission system of the above-mentioned embodiments, the connection between the engine and the transmission system of the vehicle is simplified, and no The clutch of the traditional gearbox greatly improves the reliability of the hybrid system and cancels the after-sales service cost brought by the clutch. It can be applied to urban congestion conditions, and can also be applied to medium and high-speed continuous driving conditions to greatly improve traction and drive capabilities.
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiments,” “example,” “specific examples,” or “some examples” are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present application.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

提供了一种动力传动***及车辆,动力传动***包括发动机(1)、第一电动发电机(2)、第二电动发电机(3);行星轮系(4),包括太阳轮(41)、行星架(42)和齿圈(43),发动机(1)通过第一动力输入轴(10)与行星架(42)连接,第一电动发电机(2)通过第二动力输入轴(20)与太阳轮(41)连接;第三动力输入轴(30),与第二电动发电机(3)连接;齿圈连接轴(40),与齿圈(43)连接;第一中间轴(50),与第三动力输入轴(30)联动,并可选择性地与齿圈连接轴(40)联动;第二中间轴(60),与齿圈连接轴(40)联动;输出轴(70),可选择地与第一中间轴(50)、第二中间轴(60)、齿圈连接轴(40)中的至少一个联动。动力传动***具有传动效率高和动力能力强的特点。

Description

动力传动***及车辆
本申请要求于2022年01月12日在中国专利局提交的、申请号为202210031368.9、发明名称为“动力传动***及车辆”的中国专利申请的优先权。
技术领域
本申请涉及车辆技术领域,具体涉及一种动力传动***及车辆。
背景技术
相关技术中,随着油电混动技术的发展,油电混动技术所能应用的领域逐渐增加,虽然应用于轿车的油电混动技术较为成熟,但轿车的载荷轻,应用于轿车的传动***的挡位无法适应于重载车辆中,特别是,应用于商用车的混合动力传动***,在换挡时存在动力中断的情况方式,在重载车辆中出现动力中断会严重影响车辆的行驶性能以及安全性,因此,在油电混动技术的大背景下,开发一种适用于重载车辆,同时如何解决换挡过程中动力中断成为了本领域中的技术难题。
采用一个行星齿轮与双电机耦合架构的功率分流混合动力驱动***在乘用车领域应用广泛,受限于单挡功率分流的驱动能力,对于载荷需求高的较大车型,单挡输入功率分流混动***有很大的局限性,需要大幅提升双电机的功率及扭矩参数匹配来改善车辆的牵引能力,这样不可避免增加了总成***的成本。对于经常需要重载、甚至超载需求的商用车型,单挡功率分流混动总成***将导致车辆油耗增大,车辆的燃油经济性变差。在轻型商用车、越野SUV等领域,混合动力以单电机的P2并联混动架构为主,P2混动***在城市工况下的节油效果明显低于双电机功率分流及串并混联***,但P2混动***持续的爬坡动力性及高速下的燃油经济性更优。
技术问题
本申请实施例的目的之一在于:提供一种动力传动***及车辆。
技术解决方案
本申请实施例采用的技术方案是:
第一方面,提供了一种动力传动***,包括:
发动机、第一电动发电机和第二电动发电机;
行星轮系,所述行星轮系包括:太阳轮、行星架以及齿圈,所述发动机通过第一动力输入轴与所述行星架连接,所述第一电动发电机通过第二动力输入轴与所述太阳轮连接;
第三动力输入轴,所述第三动力输入轴与所述第二电动发电机连接;
齿圈连接轴,所述齿圈连接轴与所述齿圈连接;
第一中间轴,所述第一中间轴与第三动力输入轴联动,并可选择性地与所述齿圈连接轴联动;
第二中间轴,所述第二中间轴与所述齿圈连接轴联动;
输出轴,所述输出轴可选择地与所述第一中间轴、第二中间轴、齿圈连接轴中的至少一个联动。
在一个实施例中,所述动力传动***还包括:
倒挡轴,所述倒挡轴设置于所述第一中间轴与所述齿圈连接轴之间,所述齿圈连接轴通过所述倒挡轴可选择性地与所述第一中间轴联动。
在一个实施例中,所述第一中间轴上设置有第一中间轴第一输入齿轮和第一中间轴第二输入齿轮,所述齿圈连接轴上空套有与所述第一中间轴第二输入齿轮联动的齿圈连接轴倒挡输出齿轮,所述第三动力输入轴上设置有与所述第一中间轴第一输入齿轮啮合的第一输入主动齿轮。
在一个实施例中,所述倒挡轴上设置有倒挡惰轮,所述倒挡惰轮分别与所述第一中间轴第二输入齿轮和所述齿圈连接轴倒挡输出齿轮啮合。
在一个实施例中,动力传动***还包括第一换挡装置,所述第一换挡装置可选择地将所述第三动力输入轴或所述齿圈连接轴倒挡输出齿轮与所述齿圈连接轴接合。
在一个实施例中,所述齿圈连接轴上设置有第二输入主动齿轮,所述第二中间轴上设置有第二中间轴输入齿轮,所述第二中间轴输入齿轮与所述第二输入主动齿轮啮合。
在一个实施例中,动力传动***还包括第二换挡装置,所述第二换挡装置可选择地将所述输出轴与所述第二中间轴或所述齿圈连接轴联动。
在一个实施例中,所述输出轴上空套有输出轴第一输入齿轮,所述第二中间轴上设置有与所述输出轴第一输入齿轮啮合的第二中间轴输出齿轮;所述第二换挡装置可选择地将所述输出轴第一输入齿轮与所述输出轴结合。
在一个实施例中,所述第一中间轴上与所述输出轴之间通过多对不同速比的齿轮组联动;所述第一中间轴可选择地通过其中一对所述齿轮组输出。
在一个实施例中,所述输出轴上空套有输出轴第二输入齿轮和输出轴第三输入齿轮,所述第一中间轴上设有与所述输出轴第二输入齿轮啮合的第一中间轴第一输出齿轮以及与所述输出轴第三输入齿轮啮合的第一中间轴第二输出齿轮;动力传动***还包括:第三换挡装置,所述第三换挡装置可选择地将输出轴第二输入齿轮或输出轴第三输入齿轮与所述输出轴接合。
在一个实施例中,所述发动机、所述第一电动发电机和所述第二电动发电机同轴布置,且所述第一电动发电机的第二动力输入轴空套于所述发动机(1)的第一动力输入轴的外周;
或者,所述发动机、所述第一电动发电机和所述第二电动发电机的输出轴平行。
在一个实施例中,所述第一中间轴和所述第二中间轴均设有多个,且多个所述第一中间轴和多个所述第二中间轴布置于所述齿圈连接轴的外周。
第二方面,提供了一种车辆,包括第一方面中任一项所述的动力传动***。
有益效果
根据本申请的动力传动***,利用行星轮系实现了发动机与第一电动发电机之间的无级调速动力分流,再通过第二电动发电机助力实现扭矩放大,在提高齿圈连接轴所输出扭矩的同时,避免了传统的液力变矩器所产生的热量损失,传动效率高。
本申请实施例提供的第二方面的有益效果与上述第一方面的有益效果相同,请参照上述第一方面的有益效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是根据本申请的一个实施例的同轴布置四挡动力传动***的结构示意图;
图2是根据本申请的一个实施例的平行布置四挡动力传动***的结构示意图;
图3是根据本申请的另一个实施例的同轴布置四挡动力传动***的结构示意图;
图4是根据本申请的另一个实施例的平行布置四挡动力传动***的结构示意图;
图5是根据本申请的一个实施例的同轴布置六挡动力传动***的结构示意图;
图6是根据本申请的一个实施例的平行布置六挡动力传动***的结构示意图;
图7是根据本申请的另一个实施例的同轴布置六挡动力传动***的结构示意图;
图8是根据本申请的另一个实施例的平行布置六挡动力传动***的结构示意图。
附图标记:
发动机1、第一动力输入轴10、第一电动发电机2、第二动力输入轴20、第二电动发电机3、第三动力输入轴30、第一输入主动齿轮31、行星轮系4、太阳轮41、行星架42、齿圈43、齿圈连接轴40、齿圈连接轴倒挡输出齿轮41R、倒挡惰轮42R、倒挡轴80、第二输入主动齿轮81、第一中间轴50、第一中间轴第一输入齿轮51、第一中间轴第二输入齿轮52R、第一中间轴第一输出齿轮53b、第一中间轴第二输出齿轮53a、第二中间轴60、第二中间轴输入齿轮61、第二中间轴输出齿轮62a、第二中间轴输出齿轮62b、输出轴70、输出轴第一输入齿轮72a、输出轴第一输入齿轮72b,输出轴第二输入齿轮71b、输出轴第三输入齿轮71a、第一换挡装置k1;第二换挡装置k2、第三换挡装置k3、第四换挡装置k4,中转结构20a。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需说明的是,本申请的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本申请的范围在此方面不受限制。本文使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”;术语“一些实施例”表示“至少一些实施例”。其他术语的相关定义将在下文描述中给出。需要注意,本申请中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。
相关技术中,随着油电混动技术的发展,油电混动技术所能应用的领域逐渐增加,虽然应用于轿车的油电混动技术较为成熟,但轿车的载荷轻,应用于轿车的传动***的挡位无法适应于重载车辆中,特别是,应用于商用车的混合动力传动***,在换挡时存在动力中断的情况方式,在重载车辆中出现动力中断会严重影响车辆的行驶性能以及安全性,因此,在油电混动技术的大背景下,开发一种适用于重载车辆,同时如何解决换挡过程中动力中断成为了本领域中的技术难题。
采用一个行星齿轮与双电机耦合架构的功率分流混合动力驱动***在乘用车领域应用广泛,受限于单挡功率分流的驱动能力,对于载荷需求高的较大车型,单挡输入功率分流混动***有很大的局限性,需要大幅提升双电机的功率及扭矩参数匹配来改善车辆的牵引能力,这样不可避免增加了总成***的成本。对于经常需要重载、甚至超载需求的商用车型,单挡功率分流混动总成***将导致车辆油耗增大,车辆的燃油经济性变差。在轻型商用车、越野SUV等领域,混合动力以单电机的P2并联混动架构为主,P2混动***在城市工况下的节油效果明显低于双电机功率分流及串并混联***,但P2混动***持续的爬坡动力性及高速下的燃油经济性更优。
下面参考图1-图8描述根据本申请实施例的动力传动***。
根据本申请的动力传动***包括:发动机1、第一电动发电机2和第二电动发电机3,发动机1、第一电动发电机2和第二电动发电机3位于同一轴线,且第一电动发电机2的第二动力输入轴20空套于发动机1的第一动力输入轴10的外周;行星轮系4,行星轮系4包括:太阳轮41、行星架42以及齿圈43,发动机1通过第一动力输入轴10与行星架42连接,第一电动发电机2通过第二动力输入轴20与太阳轮41连接;第三动力输入轴30,第三动力输入轴30与第二电动发电机3连接;齿圈连接轴40,齿圈连接轴40与齿圈43连接;第一中间轴50,第一中间轴50与第三动力输入轴30联动,且可选择性地与齿圈连接轴40联动;第二中间轴60,第二中间轴60与齿圈连接轴40联动;输出轴70,输出轴70可选择地与第一中间轴50、第二中间轴60、齿圈连接轴40中的至少一个联动;倒挡轴80,倒挡轴80设置于第一中间轴50与齿圈连接轴40之间,齿圈连接轴40通过倒挡轴80可选择地与第一中间轴50联动。
本申请利用行星轮系4,将发动机1与第一电动发电机2的动力进行耦合,第一电动发电机2作为调速电机,发动机1输出动力时,第一电动发电机2可以进行调速发电,以提高电动机的输出效率,齿圈43最终通过齿圈连接轴40进行输出。同时,车辆可以为无级变速模式,在第一电动发电机2作为调速电机时,齿圈43所输出的动力可以在不同的速率工况下工作,同时,在重载情况下,第二电动发电机3作为电动机与发动机1共同输出,以提高动力传动***所能输出的动力,提高车辆的脱困能力。
本申请中还设置有倒挡轴80,倒挡轴80设置于齿圈连接轴40与第一中间轴50之间,在进行倒挡时,发动机1被第一电动发电机2分流后的部分动力通过齿圈连接轴40传递至倒挡轴80,再经由倒挡轴80、第一中间轴50传递至输出轴70以实现车辆的倒挡输出。相比较于传统的混动车辆中,为保持动力传动***的结构简单,并不设置倒挡轴,而是在电动模式下利用电动机进行反向转动实现倒挡,但这种倒挡模式受限于电动机的功率,发动机1无法参与,最终导致车辆的动力不足,车辆难以进行脱困。
根据本申请的动力传动***,利用行星轮系4实现了所述发动机1与所述第一电动发电机2之间的无级调速动力分流,再通过所述第二电动发电机3助力实现扭矩放大,在提高齿圈连接轴40所输出扭矩的同时,避免了传统的液力变矩器所产生的热量损失,传动效率高;进一步利用在第一中间轴50与齿圈连接轴40之间所设置的倒挡轴,使动力传动***在倒挡情况下的所述发动机动力输出进一步得到了提升,使根据本申请的动力传动***在倒挡状态下具有更有优秀的脱困能力以及动力性能。
根据本申请的一个实施例,第一中间轴50上设置有第一中间轴第一输入齿轮51和第一中间轴第二输入齿轮52R,齿圈连接轴40上空套有与第一中间轴第二输入齿轮52R联动的齿圈连接轴倒挡输出齿轮41R,第三动力输入轴30上设置有与第一中间轴第一输入齿轮51啮合的第一输入主动齿轮31。齿圈连接轴40与第一中间轴50之间通过第一中间轴50输入齿轮与第一输入主动齿轮31的啮合进行联动,以第二电动发电机3所输出的动力可以通过第一中间轴50进行输出。
根据本申请的一个实施例,倒挡轴80上设置有倒挡惰轮42R,倒挡惰轮42R分别与所述第一中间轴第二输入齿轮52R和齿圈连接轴倒挡输出齿轮41R啮合。从而使齿圈连接轴40所输出的动力通过倒挡轴80传递至第一中间轴50,以利用第一中间轴50进行输出。
根据本申请的一个实施例,动力传动***还包括第一换挡装置k1,第一换挡装置k1可选择地将第三动力输入轴30或齿圈连接轴倒挡输出齿轮41R与齿圈连接轴40接合,选择第三动力输入轴30与齿圈连接轴40接合时,可以将第二电动发电机3的动力与齿圈43所输出的动力耦合共同进行输出。而在选择齿圈连接轴倒挡输出齿轮41R与齿圈连接轴40接合时,可以将齿圈连接轴40上的动力通过倒挡轴80上的动力传递至第一中间轴50以进行输出。
根据本申请的一个实施例,齿圈连接轴40上设置有第二输入主动齿轮81,第二中间轴60上设置有第二中间轴输入齿轮61,第二中间轴输入齿轮61与第二输入主动齿轮81啮合。第二中间轴60为齿圈连接轴40的输出设置了不同于第一中间轴50的传动路径,发动机1与第一电动发电机2耦合后的动力可以通过齿圈连接轴40、第一中间轴50或第二中间轴60传输至输出轴70,与此同时,第二电动发电机3可以通过第一中间轴50或第二中间轴60进行动力传输,可以实现在动力换挡切换过程的无动力中断,通过设置第二中间轴60使动力传动***在进行换挡过程中,利用两个不同的动力源并分别经过第一中间轴50和第二中间轴60进行动力传输,以在其中一个中间轴进行换挡的过程中,利用另一个传动路径进行动力补偿,从而避免了动力传动***在换挡过程中出现动力中断,提高了动力传动***的舒适性。
根据本申请的一个实施例,动力传动***还包括第二换挡装置k2,第二换挡装置k2可选择地将输出轴70与第二中间轴60或齿圈连接轴40联动。在动力传动的过程中,输出轴70可以与齿圈连接轴40进行直连或是通过第二中间轴60连接进行动力传递,进一步丰富了动力的传动路径,使动力传动***在切换的过程中避免动力中断,丰富了动力传动***的挡位设置,提高了动力传动***的调速范围。
根据本申请的一个实施例,输出轴70上空套有输出轴第一输入齿轮72a,第二中间轴60上设置有与输出轴第一输入齿轮72a啮合的第二中间轴输出齿轮62a;第二换挡装置k2可选择地将输出轴第一输入齿轮72a与输出轴70结合。第二中间轴60与输出轴70之间通过输出轴第一输入齿轮72a与第二中间轴输出齿轮62a的啮合进行动力传递,而第二换挡装置k2用于选择输出轴第一输入齿轮72a与输出轴70之间的联动。
根据本申请的一个实施例,第一中间轴50上与输出轴70之间通过多对不同速比的齿轮组联动;第一中间轴50可选择地通过其中一对齿轮组输出。通过设置多对不同速比的齿轮组,以进一步丰富了第一中间轴50与输出轴70之间的传动比,以令动力传动***可以具有更多的调速范围。
根据本申请的一个实施例,输出轴70上空套有输出轴第二输入齿轮71b和输出轴第三输入齿轮71a,第一中间轴50上设有与输出轴第二输入齿轮71b啮合的第一中间轴第一输出齿轮53b以及与输出轴第三输入齿轮71a啮合的第一中间轴第二输出齿轮53a;动力传动***还包括:第三换挡装置k3,第三换挡装置k3可选择地将输出轴第二输入齿轮71b或输出轴第三输入齿轮71a与输出轴70接合。在一些实施例中,通过在第一中间轴50上分别设置第一中间轴第一输出齿轮53b和第一中间轴第二输出齿轮53a,以选择第一中间轴50与输出轴70之间不同的传动比,而第三换挡装置k3可以用于选择不同的传动比,执行换挡操作。
如图1、3、5、7所示,在本申请的一些实施例中,所述发动机1、第一电动发电机2和所述第二电动发电机3同轴布置,且第一电动发电机2的第二动力输入轴20空套于所述发动机的第一动力输入轴10的外周。采用空套轴的设置可以充分利用动力传动***轴向上的空间,提高空间利用率。
如图2、4、6、8所示,根据本申请的一个实施例,发动机1、第一电动发电机2以及第二电动发电机3偏置设置,彼此的输出轴平行,第一电动发电机1与太阳轮41之间通过设置空套于第一动力输入轴10的中转结构20a连接。采用平行偏置的布置方式,也使动力传动***充分利用径向上的空间,同时避免了空套轴的结构形式,降低了零部件的成本以及动力传动***的维护难度。
如图3、4、7、8所示,根据本申请的一个实施例,第一中间轴50及第二中间轴60构造为多个且布置于齿圈连接轴40的外周,通过布置多个第一中间轴50及第二中间轴60可以进一步提高动力传动***所能传输的动力。
如图7和图8所示,根据本申请一个实施例,第二中间轴60上设置有多个第二中间轴输出齿轮,其中包括第二中间轴输出齿轮62a和第二中间轴输出齿轮62b,动力输出轴70上空套有多个输出轴第一输入齿轮,其中包括输出轴第一输入齿轮72a和输出轴第一输入齿轮72b,动力输出轴70上还设置有第四换挡装置k4,第四换挡装置k4用于选择输出轴第一输入齿轮72b与输出轴70接合,增加了第二中间轴60与输出轴70之间的传动比,实现多挡位的动力传动。
如图1所示的实施例中,动力传动***采用单中间轴结构,双电机同轴设置,具备两挡发动机倒挡及四挡功率分流驱动,适合越野SUV、轻卡及高端性能乘用车。
如图2所示的实施例中,动力传动***采用单中间轴结构,双电机一级偏置设置,双电机扭矩需求降低,变速箱轴向长度可缩短,具备两挡发动机倒挡及四挡功率分流驱动,适合越野SUV及轻卡。
如图3所示的实施例中,动力传动***采用双中间轴结构,双电机同轴设置,具备两挡发动机倒挡及四挡功率分流驱动,驱动载荷能力加大,适合越野SUV、中型商用车及工程机械。
如图4所示的实施例中,动力传动***采用双中间轴结构,双电机偏置设置,具备两挡发动机倒挡及四挡功率分流驱动,驱动载荷能力加大,适合高端越野SUV、中型商用车及工程机械。
如图5所示的实施例中,动力传动***采用单中间轴结构,双电机同轴设置,具备三挡发动机倒挡及六挡功率分流驱动,适合高端越野SUV及中型商用车。
如图6所示的实施例中,动力传动***采用单中间轴结构,双电机一级偏置设置,双电机扭矩需求降低,电机成本降低,变速箱轴向长度可缩短,具备三挡发动机倒挡及六挡功率分流驱动,适合高端越野SUV、中型商用车。
如图7所示的实施例中,动力传动***采用双中间轴结构,双电机同轴设置,具备三挡发动机倒挡及六挡功率分流驱动,抗超载能力强大,适合高端越野SUV、超载中型商用车及工程机械。
如图8所示的实施例中,动力传动***采用双中间轴结构,双电机一级偏置设置,减小变速箱轴向长度,降低双电机扭矩需求,电机成本降低;具备三挡发动机倒挡及六挡功率分流驱动,抗超载能力强大,适合高端越野SUV、超载中型商用车及工程机械应用。
根据本申请的动力传动***的挡位变化情况如下表所示。
表1
下面根据表1描述本申请的动力传动***的动力传递路径。
发动机动力输出的四个挡位:
发动机第一挡位:第一动力输入轴10→行星架42→齿圈43→齿圈连接轴40→第一输入主动齿轮31→第一中间轴第一输入齿轮51→第一中间轴50→第一中间轴第二输出齿轮53a→输出轴第三输入齿轮71a→输出轴70。
发动机第二挡位:第一动力输入轴10→行星架42→齿圈43→齿圈连接轴40→第二输入主动齿轮81→第二中间轴输入齿轮61→第二中间轴60→第二中间轴输出齿轮62a→输出轴第一输入齿轮72a→输出轴70。
发动机第三挡位:第一动力输入轴10→行星架42→齿圈43→齿圈连接轴40→第一输入主动齿轮31→第一中间轴输入齿轮51→第一中间轴50→第一中间轴第一输出齿轮53b→输出轴第二输入齿轮71b→输出轴70。
发动机第四挡位:第一动力输入轴10→行星架42→齿圈43→齿圈连接轴40→输出轴70。
发动机动力输出的两个倒挡位:
发动机第一倒挡位:第一动力输入轴10→行星架42→齿圈43→齿圈连接轴40→齿圈连接轴倒挡输出齿轮41R→倒挡惰轮42R→第一中间轴第二输入齿轮52R→第一中间轴50→第一中间轴第二输出齿轮53a→输出轴第三输入齿轮71a→输出轴70。
发动机第二倒挡位:第一动力输入轴10→行星架42→齿圈43→齿圈连接轴40→齿圈连接轴倒挡输出齿轮41R→倒挡惰轮42R→第一中间轴第二输入齿轮52R→第一中间轴50→第一中间轴第一输出齿轮53b→输出轴第二输入齿轮71b→输出轴70。
第二电动发电机动力输出四个挡位:
第二电动发电机第一挡位:第三动力输入轴30→第一输入主动齿轮31→第一中间轴输入齿轮51→第一中间轴50→第一中间轴第二输出齿轮53a→输出轴第三输入齿轮72a→输出轴70。
第二电动发电机第二挡位:第三动力输入轴30→第二输入主动齿轮81→第二中间轴输入齿轮61→第二中间轴60→第二中间轴输出齿轮62a→输出轴第一输入齿轮72a→输出轴70。
第二电动发电机第三挡位:第三动力输入轴30→第一输入主动齿轮31→第一中间轴输入齿轮51→第一中间轴50→第一中间轴第一输出齿轮53b→输出轴第二输入齿轮71b→输出轴70。
第二电动发电机第四挡位:第三动力输入轴30→行星架42→齿圈43→齿圈连接轴40→输出轴70。
其中发动机1及第二电动发电机3动力输出都具备4个挡位及空挡,发动机1与第二电动发电机3共享四挡传输路径。
表2
表2为动力传动***在电动模式。车载动力电池充电状态充足,第一电动发电机2及发动机1停机,第一换挡装置k1及第二换挡装置k2空挡,第三换挡装置k3处于1挡(第三换挡装置k3将输出轴70与输出轴第三输入齿轮71a连接)或2挡(第三换挡装置k3将输出轴70与输出轴第二输入齿轮71b连接),第二电动发电机3在1挡EV1或2挡EV2纯电驱动,可以覆盖整车全速范围。第一换挡装置k1及第二换挡装置k2空挡,发动机1、第一电动发电机2、行星齿轮4及第二中间轴60及齿轮系都处于静止停机,不产生任何额外损耗。
表3
表3为1挡功率分流eCVT1模式,1挡功率分流eCVT1模式下,第一换挡装置k1将齿圈连接轴40与第一输入主动齿轮31连接,第二换挡装置k2空挡,第三换挡装置k3处于一挡(第三换挡装置k3将输出轴70与输出轴第三输入齿轮71a连接),第一电动发电机2工作在闭环调速模式下,根据车速,通过调节第一电动发电机2转速,可以将发动机1转速调节到任何一个需要的转速,从而实现及发动机的电子无级调速eCVT控制。发动机1施加扭矩,发动机1部分动力通过发动机第一挡位机械传输路径输出,发动机=扭矩的机械路径传输按照1挡固定速比输出。
表4
表4为2挡功率分流eCVT2模式,第二换挡装置k2处于二挡(第二换挡装置k2将输出轴70与输出轴第一输入齿轮72a连接), 第二换挡装置k1及第二换挡装置k3的挡位状态取决于期望的第二电动发电机3的挡位,第二电动发电机3可自由处于一挡、二挡、三挡或空挡停机;第一电动发电机2工作在闭环调速分流模式,发动机1的部分动力按照固定的2挡速比输出。
表5
表5为3挡功率分流eCVT3模式,第一换挡装置k1闭合第一输入主动齿轮31,第二换挡装置k2空挡,第三换挡装置k3处于三挡(第三换挡装置k3将输出轴70与输出轴第二输入齿轮71b连接),发动机1及第二电动发电机3同时处于三挡;第一电动发电机2工作在闭环调速分流模式,发动机1的部分动力按照固定的3挡速比输出。
表6
表6为4挡功率分流eCVT4模式,第二换挡装置k1将齿圈连接轴40与输出轴70直接相连;第一电动发电机2工作在闭环调速分流模式,发动机1的部分动力按照固定的4挡速比输出。第二电动发电机3动力按照三挡或四挡固定速比传递到输出轴70或空挡停机。高速巡航模式下,第一电动发电机2可调速至零转速附近,第一电动发电机2对发动机1的分流动力接近为零,除了第一电动发电机2为维持分流平衡扭矩的少量损耗外,发动机1的动力几乎全部直接通过机械传输路径输出到轮边,实现发动机动力的高效输出。而且第二电动发电机3可以脱挡停机,从而实现了发动机1在中高速巡航下的高效直驱效果。
表7
表7为第一倒挡功率分流eCVT1R模式,第一换挡装置k1将齿圈连接轴40与齿圈连接轴倒挡输出齿轮41R连接,第二换挡装置k2空挡,第三换挡装置k3处于一挡(第三换挡装置k3将输出轴70与输出轴第三输入齿轮71a连接),第一电动发电机2工作在闭环调速分流模式,发动机1部分动力通过发动机第一倒挡挡位机械传输路径输出。发动机动力通过倒挡惰轮42R实现输出反向,发动机1扭矩的机械路径传输按照第一倒挡固定速比输出。
表8
表8为第二倒挡功率分流eCVT2模式,第一换挡装置k1将齿圈连接轴40与齿圈连接轴倒挡输出齿轮41R连接,第二换挡装置k2空挡,第三换挡装置k3处于三挡(第三换挡装置k3将输出轴70与输出轴第二输入齿轮71b连接),第一电动发电机2工作在闭环调速分流模式,发动机1部分动力通过发动机1第二倒挡挡位机械传输路径输出。发动机动力通过倒挡惰轮42R实现输出反向,发动机1扭矩的机械路径传输按照第二倒挡固定速比输出。
由于除了发动机1在第一或第二倒挡挡位提供驱动牵引力以外,第二电动发电机3在一挡或三挡提供叠加的倒挡驱动助力,从而提升倒挡牵引能力。此外第一电动发电机2同时可调速分流发电,即便是在车载动力电池亏电的情况下,依然可以持续提供第二电动发电机3倒挡驱动需要的电能,发动机1及第二电动发电机3可持续共同倒挡驱动,以满足中高载荷需求的倒挡功能。中轻载荷的倒挡需求,完全可以由第二电动发电机3的纯电驱动来实现。
下面根据关于不同挡位之间的切换过程。
纯电驱动模式与功率分流eCVT模式间的切换:
第二电动发电机3工作在第一电动EV1模式下,第一电动发电机2调速,将齿圈连接轴40转速与第一输入主动齿轮31同步;同步后,第一电动发电机2卸载后,第一换挡装置k1将齿圈连接轴40与第一输入主动齿轮31连接;进挡后,第一电动发电机2调速快速启动发动机1至所需转速,发动机1点火加载,从而平顺地实现EV1切换到功率分流eCVT1模式。反之,发动机1工作在eCVT1驱动模式下,发动机1卸载,第二电动发电机3加载保持驱动,第一电动发电机2退出调速模式卸载,第一换挡装置k1脱挡进入空挡,从而实现eCVT1切换进入EV1模式。
第一电动EV1模式↔第二动力分流模式eCVT2的切换:
第二电动发电机3工作在第一电动EV1模式下,第一电动发电机2调速将输出轴第一输入齿轮72a转速与输出轴70同步;同步后,第一电动发电机2卸载,第二换挡装置k2将输出轴第一输入齿轮72a与输出轴70连接;进挡后,第一电动发电机2调速快速启动发动机1至所需转速,发动机点火加载,从而平顺地实现EV1切换到功率分流eCVT2模式。发动机1在eCVT2模式下,第二电动发电机3可保留在一挡助力;或在发动机1保持eCVT2驱动下,第二电动发电机3可平顺切换进入二挡或三挡或空挡停机。
反之,发动机1工作在eCVT2驱动模式下,第二电动发电机3提前进入一挡(第一换挡装置k1空挡,第三换挡装置k3将输出轴70与输出轴第三输入齿轮71a连接),第二电动发电机3加载,发动机1卸载,第一电动发电机2退出调速模式卸载,第二换挡装置k2脱挡进入空挡,从而实现eCVT2平顺切换进入EV1模式。
第二电动EV2模式↔第三动力分流模式eCVT3的切换:
第二电动发电机3工作在第二电动EV2模式下,第一电动发电机2调速,将齿圈连接轴40转速与第一输入主动齿轮31同步;同步后,第一电动发电机2卸载后,第一换挡装置k1将齿圈连接轴40与第一输入主动齿轮31连接;进挡后,第一电动发电机2调速快速启动发动机1至所需转速,发动机1点火加载,从而平顺地实现EV2切换到功率分流eCVT3模式。反之,发动机1工作在eCVT3驱动模式下,发动机1卸载,第二电动发电机3加载保持驱动,第一电动发电机2退出调速模式卸载,第一换挡装置k1脱挡进入空挡,从而实现eCVT3切换进入EV2模式。
第二电动EV2模式↔第四动力分流模式eCVT4的切换:
第二电动发电机3工作在第二电动EV2模式下,第一电动发电机2调速将齿圈连接轴40与输出轴70同步;同步后,第一电动发电机2卸载,第二换挡装置k2将齿圈连接轴40与输出轴70连接;进挡后,第一电动发电机2调速快速启动发动机1至所需转速,发动机1点火加载,从而平顺地实现EV2切换到功率分流eCVT4模式。发动机1在eCVT4模式下,第二电动发电机3可保留在三挡助力;或在发动机保持eCVT4驱动下,第二电动发电机3可平顺切换进入四挡助力或空挡停机。
反之,发动机1工作在eCVT4驱动模式下,第二电动发电机3提前进入三挡(第一换挡装置k1空挡,第三换挡装置k3将输出轴70与输出轴第二输入齿轮71b连接),第二电动发电机3加载,发动机1卸载,第一电动发电机2退出调速模式卸载,第二换挡装置k2脱挡进入空挡,从而实现eCVT4平顺切换进入EV2模式。
功率分流eCVT模式间无动力中断的平顺切换:
从1挡eCVT1模式切换进入eCVT2模式,需要第二电动发电机3保持1挡纯电驱动,发动机1及第一电动发电机2卸载,第一换挡装置k1进入空挡,第一电动发电机2调速同步输出轴第一输入齿轮72a与输出轴70转速,同步后第一电动发电机2卸载,第二换挡装置k2连接输出轴第一输入齿轮72a与输出轴70,第二换挡装置k2进挡后,第一电动发电机2调速快速启动发动机1至设定的优化转速,发动机1加载输出动力,第二电动发电机3降载以满足驱动需求,从而平顺实现eCVT1切换到eCVT2模式。
反之,在eCVT2模式下,第二电动发电机3提前切换进入一挡,提供第二电动发电机3的EV1模式的驱动,实现eCVT2平顺切换进入eCVT1模式。
同样地,通过保持第二电动发电机3的第二电动模式EV2,可以平顺实现eCVT2与eCVT3,eCVT3与eCVT4的相互顺利切换。
根据本申请的上述实施例,发动机1与传动***的连接简化,无需传统变速箱的离合器,大大提升混动***的可靠性,取消了离合器带来的售后服务成本。可适用于轻型商用车、皮卡及越野SUV车型,提供四个挡位的功率分流无级调速控制,只要保持第一电动发电机2调速在零转速附近,即可实现四个固定速比的发动机直驱虚拟挡位驱动。
第二电动发电机3提供两个挡位的纯电驱动,第二电动发电机3扭矩需求降低,有利于降低第二电动发电机3的体积及成本。并且,第二电动发电机3在功率分流eCVT2及eCVT4模式下,可脱挡停机,与第二电动发电机3联动的相关所有齿轮传动机构全部静止,只有发动机1、第一电动发电机2、行星齿轮机构4、齿圈连接轴40、第二中间轴60轴齿机构及输出轴联动,从而大降低了传动***损耗,有利于混动***提供高效的中速及高速驾驶的发动机直驱功能。该混动***即可适用于城市拥堵工况,还可适用于中高速持续驾驶工况。特别地,由于4个挡位的eCVT驱动模式,可大幅提升牵引驱动能力,以便满足车辆的重载及越野驱动需求。
表9
上述表1与表9为动力传动***在不同工况下的动力传动模式,其中,表1为具有四挡的动力传动***,表9为具有六挡的动力传动***。
下面简单描述根据本申请的车辆。
根据本申请的车辆设置有上述实施例中任意一项所述的动力传动***,由于根据本申请的车辆设置有上述实施例的动力传动***,因此该车辆的发动机与传动***的连接简化,无需传统变速箱的离合器,大大提升混动***的可靠性,取消了离合器带来的售后服务成本,可适用于城市拥堵工况,还可适用于中高速持续驾驶工况大幅提升牵引驱动能力。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (14)

  1. 一种动力传动***,其特征在于,包括:
    发动机(1)、第一电动发电机(2)和第二电动发电机(3);
    行星轮系(4),所述行星轮系(4)包括:太阳轮(41)、行星架(42)以及齿圈(43),所述发动机(1)通过第一动力输入轴(10)与所述行星架(42)连接,所述第一电动发电机(2)通过第二动力输入轴(20)与所述太阳轮(41)连接;
    第三动力输入轴(30),所述第三动力输入轴(30)与所述第二电动发电机(3)连接;
    齿圈连接轴(40),所述齿圈连接轴(40)与所述齿圈(43)连接;
    第一中间轴(50),所述第一中间轴(50)与第三动力输入轴(30)联动,并可选择性地与所述齿圈连接轴(40)联动;
    第二中间轴(60),所述第二中间轴(60)与所述齿圈连接轴(40)联动;
    输出轴(70),所述输出轴(70)可选择地与所述第一中间轴(50)、第二中间轴(60)、齿圈连接轴(40)中的至少一个联动。
  2. 根据权利要求1所述的动力传动***,其特征在于,所述动力传动***还包括倒挡轴(80),所述倒挡轴(80)设置于所述第一中间轴(50)与所述齿圈连接轴(40)之间,所述齿圈连接轴(40)通过所述倒挡轴(80)可选择性地与所述第一中间轴(50)联动。
  3. 根据权利要求2所述的动力传动***,其特征在于,所述第一中间轴(50)上设置有第一中间轴第一输入齿轮(51)和第一中间轴第二输入齿轮(52R),所述齿圈连接轴(40)上空套有与所述第一中间轴第二输入齿轮(52R)联动的齿圈连接轴倒挡输出齿轮(41R),所述第三动力输入轴(30)上设置有与所述第一中间轴第一输入齿轮(51)啮合的第一输入主动齿轮(31)。
  4. 根据权利要求3所述的动力传动***,其特征在于,所述倒挡轴(80)上设置有倒挡惰轮(42R),所述倒挡惰轮(42R)分别与所述第一中间轴第二输入齿轮(52R)和所述齿圈连接轴倒挡输出齿轮(41R)啮合。
  5. 根据权利要求4所述的动力传动***,其特征在于,所述动力传动***还包括第一换挡装置(k1),所述第一换挡装置(k1)可选择地将所述第三动力输入轴(30)与所述齿圈连接轴(40)接合,或将所述齿圈连接轴倒挡输出齿轮(41R)与所述齿圈连接轴(40)接合。
  6. 根据权利要求5所述的动力传动***,其特征在于,所述齿圈连接轴(40)上设置有第二输入主动齿轮(81),所述第二中间轴(60)上设置有第二中间轴输入齿轮(61),所述第二中间轴输入齿轮(61)与所述第二输入主动齿轮(81)啮合。
  7. 根据权利要求6所述的动力传动***,其特征在于,所述动力传动***还包括第二换挡装置(k2),所述第二换挡装置(k2)可选择地将所述输出轴(70)与所述第二中间轴(60)联动,或将所述输出轴(70)与所述齿圈连接轴(40)联动。
  8. 根据权利要求7所述的动力传动***,其特征在于,所述输出轴(70)上空套有输出轴第一输入齿轮(72a),所述第二中间轴(60)上设置有与所述输出轴第一输入齿轮(72a)啮合的第二中间轴输出齿轮(62a);所述第二换挡装置(k2)可选择地将所述输出轴第一输入齿轮(72a)与所述输出轴(70)结合。
  9. 根据权利要求8所述的动力传动***,其特征在于,所述第一中间轴(50)上与所述输出轴(70)之间通过多对不同速比的齿轮组联动;所述第一中间轴(50)可选择地通过其中一对所述齿轮组输出。
  10. 根据权利要求7所述的动力传动***,其特征在于,所述输出轴(70)上空套有输出轴第二输入齿轮(71b)和输出轴第三输入齿轮(71a),所述第一中间轴(50)上设有与所述输出轴第二输入齿轮(71b)啮合的第一中间轴第一输出齿轮(53b)以及与所述输出轴第三输入齿轮(71a)啮合的第一中间轴第二输出齿轮(53a)。
  11. 根据权利要求10所述的动力传动***,其特征在于,所述动力传动***还包括第三换挡装置(k3),所述第三换挡装置(k3)可选择地将所述输出轴第二输入齿轮(71b)与所述输出轴(70)接合,或将所述输出轴第三输入齿轮(71a)与所述输出轴(70)接合。
  12. 根据权利要求1所述的动力传动***,其特征在于,所述发动机(1)、所述第一电动发电机(2)和所述第二电动发电机(3)同轴布置,且所述第一电动发电机(2)的第二动力输入轴(20)空套于所述发动机(1)的第一动力输入轴(10)的外周;
    或者,所述发动机(1)、所述第一电动发电机(2)和所述第二电动发电机(3)的输出轴平行。
  13. 根据权利要求1所述的动力传动***,其特征在于,所述第一中间轴(50)和所述第二中间轴(60)均设有多个,且多个所述第一中间轴(50)和多个所述第二中间轴(60)布置于所述齿圈连接轴(40)的外周。
  14. 一种车辆,其特征在于,包括权利要求1-13中任意一项所述的动力传动***。
PCT/CN2022/121669 2022-01-12 2022-09-27 动力传动***及车辆 WO2023134222A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210031368.9A CN114407637B (zh) 2022-01-12 2022-01-12 动力传动***及车辆
CN202210031368.9 2022-01-12

Publications (1)

Publication Number Publication Date
WO2023134222A1 true WO2023134222A1 (zh) 2023-07-20

Family

ID=81274241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121669 WO2023134222A1 (zh) 2022-01-12 2022-09-27 动力传动***及车辆

Country Status (2)

Country Link
CN (1) CN114407637B (zh)
WO (1) WO2023134222A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113978232A (zh) * 2021-09-30 2022-01-28 如果科技有限公司 一种动力传动***及具有其的车辆
CN114407637B (zh) * 2022-01-12 2024-04-19 如果科技有限公司 动力传动***及车辆
CN115091940A (zh) * 2022-07-28 2022-09-23 湖南行必达网联科技有限公司 七挡混合动力传动***及车辆
CN115465082B (zh) * 2022-07-28 2024-02-27 湖南行必达网联科技有限公司 具有中转轴的双电机混动变速箱及作业机械

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179356A (ja) * 2003-11-06 2008-08-07 Toyota Motor Corp ハイブリッド車の駆動装置
JP2017193320A (ja) * 2016-04-23 2017-10-26 平岩 一美 自動車用駆動装置
US20190202281A1 (en) * 2017-12-28 2019-07-04 Hyundai Motor Company Power transmission apparatus for vehicle
CN112959881A (zh) * 2021-03-24 2021-06-15 广西玉柴机器股份有限公司 一种三档平行轴式可跛行带取力模块双电机单行星排混合动力***
CN113427994A (zh) * 2021-05-31 2021-09-24 广西玉柴机器股份有限公司 一种双电机单行星排混合动力***
CN113879103A (zh) * 2021-09-30 2022-01-04 如果科技有限公司 一种动力传动***及具有其的车辆
CN113879104A (zh) * 2021-09-30 2022-01-04 如果科技有限公司 一种动力传动***及具有其的车辆
CN114407637A (zh) * 2022-01-12 2022-04-29 如果科技有限公司 动力传动***及车辆
CN115091940A (zh) * 2022-07-28 2022-09-23 湖南行必达网联科技有限公司 七挡混合动力传动***及车辆

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204095509U (zh) * 2014-07-31 2015-01-14 比亚迪股份有限公司 动力传动***及具有该动力传动***的车辆
CN104608613B (zh) * 2014-09-10 2015-12-16 比亚迪股份有限公司 用于车辆的动力传动***及具有它的车辆
CN104842772B (zh) * 2015-03-27 2016-04-13 比亚迪股份有限公司 动力传动***以及具有其的车辆
CN106476602B (zh) * 2015-08-31 2019-02-26 比亚迪股份有限公司 动力传动***及具有其的车辆
CN107539103B (zh) * 2016-06-29 2020-07-10 比亚迪股份有限公司 动力驱动***和车辆
CN205806354U (zh) * 2016-07-14 2016-12-14 重庆幻速汽车配件有限公司 一种变速器传动结构
CN106183781B (zh) * 2016-09-21 2018-11-16 奇瑞汽车股份有限公司 一种用于混合动力汽车的传动***
CN210212022U (zh) * 2019-07-24 2020-03-31 长城汽车股份有限公司 用于车辆的动力传动***及车辆
CN210478381U (zh) * 2019-08-21 2020-05-08 长城汽车股份有限公司 用于车辆的动力传动***及车辆
CN113602074A (zh) * 2020-09-30 2021-11-05 蜂巢传动***(江苏)有限公司保定研发分公司 动力驱动***以及车辆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179356A (ja) * 2003-11-06 2008-08-07 Toyota Motor Corp ハイブリッド車の駆動装置
JP2017193320A (ja) * 2016-04-23 2017-10-26 平岩 一美 自動車用駆動装置
US20190202281A1 (en) * 2017-12-28 2019-07-04 Hyundai Motor Company Power transmission apparatus for vehicle
CN112959881A (zh) * 2021-03-24 2021-06-15 广西玉柴机器股份有限公司 一种三档平行轴式可跛行带取力模块双电机单行星排混合动力***
CN113427994A (zh) * 2021-05-31 2021-09-24 广西玉柴机器股份有限公司 一种双电机单行星排混合动力***
CN113879103A (zh) * 2021-09-30 2022-01-04 如果科技有限公司 一种动力传动***及具有其的车辆
CN113879104A (zh) * 2021-09-30 2022-01-04 如果科技有限公司 一种动力传动***及具有其的车辆
CN114407637A (zh) * 2022-01-12 2022-04-29 如果科技有限公司 动力传动***及车辆
CN115091940A (zh) * 2022-07-28 2022-09-23 湖南行必达网联科技有限公司 七挡混合动力传动***及车辆

Also Published As

Publication number Publication date
CN114407637B (zh) 2024-04-19
CN114407637A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2021052239A1 (zh) 用于车辆的混合动力***及其控制方法
WO2023134222A1 (zh) 动力传动***及车辆
CN111976463B (zh) 能实现单电机两档驱动的混合动力车辆驱动***
US20050101426A1 (en) Transmission
CN108116218B (zh) 基于行星轮系的多档位混联驱动***
CN108001194B (zh) 动力传动***以及具有其的车辆
CN108349370B (zh) 用于混合动力车辆的变速器,带有这种变速器的传动系和用于运行该传动系的方法
WO2008029707A1 (fr) Dispositif de production de puissance et véhicule hybride
WO2023051513A1 (zh) 动力传动***及车辆
WO2021052372A1 (zh) 混合动力车辆用动力驱动***
WO2024045549A1 (zh) 双电机混动变速箱及作业机械
WO2019206227A1 (zh) 一种双动力混合***设计方法及控制策略
CN216783253U (zh) 动力传动***及车辆
CN114043866A (zh) 动力传动***及具有其的车辆
WO2020083366A1 (zh) 混合动力驱动***及车辆
WO2024045547A1 (zh) 双电机混合动力传动***及作业机械
JP2001253255A (ja) ハイブリッド電気自動車用動力伝達装置
CN217415460U (zh) 一种混合动力汽车的变速传动***
CN115091940A (zh) 七挡混合动力传动***及车辆
WO2023273005A1 (zh) 车辆混合动力总成、控制方法及车辆
CN214138220U (zh) 一种混联混合动力构型
CN113942383A (zh) 一种多档化双电机混合动力汽车及其传动***
CN212022289U (zh) 一种车用双电机双离合混动变速传动机构
WO2020259518A1 (zh) 一种纯电动汽车及其电驱动动力***
CN216374157U (zh) 动力传动***及具有其的车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919856

Country of ref document: EP

Kind code of ref document: A1