WO2023132116A1 - Mold release film - Google Patents

Mold release film Download PDF

Info

Publication number
WO2023132116A1
WO2023132116A1 PCT/JP2022/039587 JP2022039587W WO2023132116A1 WO 2023132116 A1 WO2023132116 A1 WO 2023132116A1 JP 2022039587 W JP2022039587 W JP 2022039587W WO 2023132116 A1 WO2023132116 A1 WO 2023132116A1
Authority
WO
WIPO (PCT)
Prior art keywords
release film
film
polybutylene terephthalate
mold release
release
Prior art date
Application number
PCT/JP2022/039587
Other languages
French (fr)
Japanese (ja)
Inventor
里帆 鬼木
誠 石川
Original Assignee
興人フィルム&ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興人フィルム&ケミカルズ株式会社 filed Critical 興人フィルム&ケミカルズ株式会社
Publication of WO2023132116A1 publication Critical patent/WO2023132116A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a release film having excellent peelability suitable for use in pressure molding a film or sheet-like laminate using an adhesive, and more particularly, an electronic
  • the present invention relates to a release film used when a coverlay film is press-bonded with an adhesive to a body such as a flexible printed wiring board on which an electric circuit is formed for use in equipment and electrical equipment.
  • Release films used for such applications are required to have properties such as heat resistance that can withstand hot pressing and releasability from printed wiring boards after pressing.
  • a release film comprising a laminate comprising a polyolefin layer as an intermediate layer and crystalline polymethylpentene layers formed on both inner and outer surfaces thereof (Patent Document 2).
  • a resin having a polar group in the main chain is used as a release film that does not substantially generate toxic gas during disposal incineration after use and does not involve the migration of low molecular weight substances on at least one surface.
  • a release film characterized by having a layer made of a resin composition having a matrix and a halogen content of 5% by weight or less (Patent Document 3) and a release film made of a stretched polybutylene terephthalate film (Patent Reference 4) has also been reported.
  • the film using the fluororesin proposed in Patent Document 1 has the problem of being difficult to burn and generating toxic gas in the waste incineration process after use.
  • the film using polymethylpentene proposed in Patent Document 2 has a problem that the migration of low-molecular-weight substances contained in the component contaminates the printed wiring board, resulting in a decrease in yield.
  • the release film proposed in Patent Document 3 has various problems such as exhibiting shrinkage anisotropy during hot pressing and impairing conformability.
  • An object of the present invention is to provide a release film that has excellent release properties, low outgassing properties, and shrinkage isotropy.
  • the ratio of the maximum shrinkage rate to the minimum shrinkage rate is 2.5 or less, that is, the biaxially stretched polybutylene terephthalate film having excellent shrinkage isotropy is suitable as a release film.
  • the present invention relates to a release film made of biaxially stretched polybutylene terephthalate, and the following release films [1] to [4] can be one aspect or one aspect of the present invention.
  • release film according to [1] wherein the release film is a release film for printed wiring boards, a release film for flexible printed wiring boards, or a release film for multilayer printed wiring boards.
  • the release film of the present invention Since the release film of the present invention has a pure water contact angle as large as 70° or more on its surface, it has excellent releasability. In addition, the release film of the present invention has a low outgassing amount of 2,000 mg/m 2 or less and a low outgassing amount from the film, that is, it has excellent low outgassing properties. Furthermore, the release film of the present invention has followability and heat resistance. Therefore, the release film of the present invention has excellent releasability and low outgassing properties, and has followability and heat resistance, so it is It can be preferably used in a hot press process.
  • FIG. 1 is a photograph showing the results of a followability evaluation test.
  • FIG. 2 is a schematic diagram showing a follow-up evaluation test method.
  • the present invention is a release film made of a biaxially stretched polybutylene terephthalate film, which is treated at 170 ° C. and 5 MPa for 30 minutes in four directions (0 ° (MD), 45 °, 90 °, 135 ° (TD)), the ratio of the maximum shrinkage rate to the minimum shrinkage rate is 2.5 or less.
  • the polybutylene terephthalate used in the polybutylene terephthalate film constituting the release film of the present invention is not particularly limited as long as it is a polyester having butylene terephthalate as a main repeating unit. ) as 1,4-butanediol or its ester-forming derivative and terephthalic acid as the dibasic acid component or its ester-forming derivative as the main component, and a homopolymer type polyester obtained by condensing them (poly butylene terephthalate), or copolymer type polyester.
  • the polybutylene terephthalate has a melting point of 200 to 250° C. and an intrinsic viscosity (IV value) of 0.90 dl/g to 1.35 dl/g in order to impart optimum mechanical strength properties. and more preferably those having a melting point of 215 to 225° C. and an intrinsic viscosity (IV value) of 1.15 dl/g to 1.30 dl/g.
  • the intrinsic viscosity (IV value) of polybutylene terephthalate is the solution viscosity measured at 30° C. using a mixed solvent of phenol/tetrachloroethane (mass ratio 1/1).
  • the above-mentioned copolymer type polyester (copolyester) mainly composed of polybutylene terephthalate includes a part of the terephthalic acid component as a dibasic acid component, such as isophthalic acid, phthalic acid, adipic acid, and sebacic acid. and/or a part of the 1,4-butanediol component as a diol (glycol) component, such as ethylene glycol, diethylene glycol, propylene glycol, neopentyl glycol, cyclohexane It is a polyester obtained by condensing other diol (glycol) components such as dimethanol.
  • the above copolyester one having a butylene terephthalate unit content of 70% or more can be preferably used.
  • the polybutylene terephthalate used in the present invention includes other polyesters such as polyethylene terephthalate, polyethylene naphthalate, polyhexamethylene terephthalate, and poly(ethylene terephthalate/ethylene isophthalate), as long as the physical properties are not affected.
  • other polyesters such as polyethylene terephthalate, polyethylene naphthalate, polyhexamethylene terephthalate, and poly(ethylene terephthalate/ethylene isophthalate)
  • the stretching process described below may be performed.
  • the polybutylene terephthalate and the other resin may be laminated and stretched. Two or more kinds of the above other polyesters and other resins may be used.
  • the polybutylene terephthalate (or other resins as described above) used in the present invention may optionally contain a lubricant, an antiblocking agent, an inorganic extender, an antioxidant, an ultraviolet absorber, an antistatic agent, Additives such as flame retardants, plasticizers, colorants, crystallization inhibitors and crystallization accelerators may be added.
  • the polybutylene terephthalate pellets used for film production preferably have a water content of 0.05% by mass or less, more preferably 0%, before heating and melting. It is preferable to use it after sufficiently pre-drying so that it becomes 0.02% by mass or less.
  • the release film made of the biaxially stretched polybutylene terephthalate film of the present invention is obtained by forming the polybutylene terephthalate into a film with an extruder and then stretching the resulting film.
  • An example of the method for producing the release film of the present invention is shown below.
  • Polybutylene terephthalate is melt-kneaded by an extruder set at a predetermined temperature (for example, 210 to 280°C).
  • a predetermined temperature for example, 210 to 280°C
  • the sheet-like molten resin is immersed in a water tank to directly water-cool both the inside and the outside.
  • a molten tubular thin film is formed by extruding downward through an annular die attached downward to an extruder.
  • a cooling mandrel connected to an annular die, and cooling water introduced from each nozzle of the cooling mandrel directly contacts the inside of the molten tubular thin film to cool it.
  • cooling water is also flowed from an external cooling bath used in combination with the cooling mandrel to directly contact the outside of the molten tubular film to cool the molten tubular film.
  • the temperature of the internal water and the external water is preferably 30° C. or lower, and particularly preferably 20° C. or lower from the viewpoint of rapid cooling film formation. If the temperature is higher than 30° C., whitening of the unstretched film and poor appearance of the unstretched film due to boiling of cooling water may occur, and stretching may gradually become difficult.
  • the cooling rate of the unstretched film is an important factor in cooling the crystallization temperature region of polybutylene terephthalate at a certain rate or higher.
  • the cooling rate of the unstretched film is 200° C./second or higher, preferably 250° C./second or higher, and particularly preferably 350° C./second or higher. If the cooling rate is less than 200° C./sec, the resulting unstretched film may have high crystallinity and poor stretchability.
  • the film forming method for the unstretched film is not particularly limited as long as it is a method that satisfies the cooling rate of the unstretched film, but from the viewpoint of rapid film formation, the above-described internal and external direct water cooling method is particularly preferable. .
  • the method for biaxially stretching an unstretched film is not particularly limited, and for example, a simultaneous biaxial stretching method in which longitudinal stretching and lateral stretching are performed simultaneously by a tubular method or a tenter method, or a sequential method in which longitudinal stretching and lateral stretching are performed sequentially. It is appropriately selected from a biaxial stretching method and the like.
  • a simultaneous biaxial stretching method using a tubular system is particularly preferable from the viewpoint of the strength balance in the longitudinal and lateral directions of the biaxially stretched polybutylene terephthalate film to be obtained.
  • the draw ratio is preferably in the range of 2.7 to 4.0 in each of the machine direction (hereinafter also referred to as "MD") and the width direction (hereinafter also referred to as "TD").
  • the obtained biaxially stretched polybutylene terephthalate film may have insufficient tensile strength and impact strength, which is not preferable.
  • the ratio is more than 4.0 times, excessive distortion of the molecular chain occurs due to stretching, so that breakage or puncture frequently occurs during the stretching process, and there is a possibility that stable production cannot be performed.
  • the stretching temperature is preferably in the range of 40 to 80°C, particularly preferably 45 to 65°C. Since the unstretched film produced at the high cooling rate has low crystallinity, it can be stably stretched at a stretching temperature in a relatively low range.
  • the obtained biaxially stretched polybutylene terephthalate film is put into a heat treatment facility of a hot roll system, a tenter system, or a combination thereof for an arbitrary time, and heat treatment is performed at, for example, 180 to 240°C, particularly preferably 190 to 210°C.
  • heat treatment is performed at, for example, 180 to 240°C, particularly preferably 190 to 210°C.
  • a biaxially stretched polybutylene terephthalate film having excellent thermal dimensional stability can be obtained.
  • the heat treatment temperature is higher than 240° C., there is a possibility that the bowing phenomenon becomes too large and the anisotropy in the width direction increases.
  • the heat treatment temperature is lower than 180° C., the thermal dimensional stability of the film is greatly reduced, which may cause problems in the hot press process.
  • the thickness of the release film of the present invention is not particularly limited, it is usually 10-50 ⁇ m, preferably 15-25 ⁇ m.
  • the release film of the present invention has a dimensional change rate in four directions (0° (MD), 45°, 90°, 135° (TD)) before and after treatment at 170°C and 5 MPa for 30 minutes.
  • the ratio of maximum shrinkage to minimum shrinkage is 2.5 or less, preferably 2.2 or less, more preferably 2.0 or less.
  • the ratio between the maximum shrinkage rate and the minimum shrinkage rate is preferably 1.5 or more, 1.2 or more, or 1.0 or more.
  • the dimensional change rate in four directions (0° (MD), 45°, 90°, 135° (TD)) before and after treatment when treated at 170 ° C. and 5 MPa for 30 minutes is independent. is preferably 0.0 to 4.0%, more preferably 0.0 to 3.0%, even more preferably 0.5 to 2.0%. If the dimensional change rate exceeds 4.0%, there is a risk that the shrinkage stress of the release film may deform the substrate in the process of pressure molding and peeling off the release film in the production of flexible printed wiring boards and the like. .
  • the release film of the present invention has a maximum dimensional change rate in four directions (0° (MD), 45°, 90°, 135° (TD)) before and after treatment at 170°C and 5 MPa for 30 minutes.
  • the absolute value of the difference between the shrinkage rate and the maximum shrinkage rate is preferably 0.5 to 1.0.
  • the release film of the present invention preferably has an outgassing amount of 2,000 mg/m 2 or less, more preferably 1,500 mg/m 2 or less when heated at 170°C for 30 minutes. It is more preferably 400 mg/m 2 or less.
  • the outgassing amount is obtained by the method described in the examples.
  • the term “low outgassing” means that the film does not generate outgassing, or if it does generate a small amount, it is preferably 2,000 mg/m 2 or less, and more preferably 1,500 mg/m 2 . m 2 or less, more preferably 1,400 mg/m 2 or less.
  • the release film of the present invention preferably has a pure water contact angle of 70° or more, more preferably 75° or more, and even more preferably 80° or more. In addition, in the present invention, the pure water contact angle is obtained based on JIS R3257.
  • the release film of the present invention has excellent releasability and low outgassing properties, and also has heat resistance and followability. It can be suitably used as a release film for flexible printed wiring boards and a release film for multilayer printed wiring boards.
  • the release film of the present invention can be used as a single layer film, but can also be used as a laminated film laminated with other films.
  • Such other films include polyolefin-based films and the like.
  • Methods for laminating the release film of the present invention and another film include a coextrusion method and a lamination method.
  • the unstretched film formed under the above conditions was conveyed to low-speed nip rolls in an atmosphere of 20° C. and subjected to simultaneous longitudinal and transverse biaxial stretching by a tubular method.
  • the draw ratio was 3.1 times in MD and 3.2 times in TD, and the drawing temperature was 60°C.
  • this biaxially stretched film was put into a hot roll type heat treatment facility and then into a tenter type heat treatment facility, and subjected to heat treatment at 210° C. to obtain a biaxially stretched polybutylene terephthalate film (release film).
  • the final film thickness was 25 ⁇ m.
  • Example 2 A biaxially stretched polybutylene terephthalate film (release film) having a thickness of 25 ⁇ m was obtained in the same manner as in Example 1, except that the stretching ratio was changed to 2.9 times for MD and 3.2 times for TD.
  • Example 1 A biaxially stretched polybutylene terephthalate film (release film) having a thickness of 25 ⁇ m was obtained in the same manner as in Example 1, except that the draw ratio was changed to 2.6 times in MD and 3.0 times in TD.
  • Example 2 The pretreatment and extrusion temperature of the polybutylene terephthalate pellets were the same as in Example 1, and the polybutylene terephthalate was extruded through a T-die and cooled to obtain an unstretched polybutylene terephthalate film. Next, a sequential biaxially stretched film having an MD of 3.0 times and a TD of 2.8 times was obtained using rolls and a tenter, and heat treatment was performed at the same temperature as in Example 1 to obtain a biaxially stretched polyester film having a thickness of 25 ⁇ m. A butylene terephthalate film (release film) was obtained.
  • Example 3 The pretreatment and extrusion temperature of the polybutylene terephthalate pellets were the same as in Example 1, and the polybutylene terephthalate was extruded through a T-die and cooled to obtain an unstretched polybutylene terephthalate film. Then, a sequential biaxially stretched film having an MD of 3.0 times and a TD of 3.3 times was obtained using a roll and a tenter, and heat-treated at the same temperature as in Example 1 to obtain a biaxially stretched poly film having a thickness of 25 ⁇ m. A butylene terephthalate film (release film) was obtained.
  • the release film of the present invention having a ratio of the maximum shrinkage rate to the minimum shrinkage rate of 2.5 or less generated a small amount of outgassing and had a large pure water contact angle, so excellent low outgassing and It is clear that releasability is exhibited (Examples 1 and 2).
  • the release film made of the unstretched polybutylene terephthalate film generated a large amount of outgassing and had a small contact angle with pure water as compared with the release film of the present invention.
  • the release film made of the unstretched polymethylpentene film had a large pure water contact angle and exhibited excellent release properties, but the amount of outgas generated was about 31 times that of the release film of the present invention.
  • the low outgassing property was inferior (Comparative Example 5).
  • a metal film holding jig 5 of 100 mm ⁇ 100 mm having an opening of 40 mm ⁇ 40 mm in the center is prepared, and a rubber rubber 4 is applied to the frame surface (surface other than the opening) of the metal film holding jig 5. installed.
  • a female mold 1, a release film 3 cut into a size of 100 mm ⁇ 100 mm, and a metal film holding jig 5 are placed in order, and the female mold 1 and the metal film holding jig 5 are placed. was fixed with screws 6.
  • a male mold 7 (504 g in weight) having a surface in contact with the release film 3 of 38 mm ⁇ 38 mm and a height of 45 mm (the angle R between the surface in contact with the film and the side surface is 5 mm) is fixed to the female mold 1. It was then placed on the release film 3, and heated in a constant temperature bath (TKC-R2-T manufactured by Orientec Co., Ltd.) set at 170° C. for 10 minutes. After heating, the female mold 1 is removed from the constant temperature bath while the male mold 7 is placed on the release film 3, and immediately a hydraulic press (MCA10-150 manufactured by Masada Manufacturing Co., Ltd.) is used to press the male mold.
  • TKC-R2-T manufactured by Orientec Co., Ltd.
  • the mold 7 is pushed down at a speed of 1 cm/sec until the surface of the male mold 7 in contact with the release film 3 contacts the bottom surface of the recess of the female mold 1 through the release film 3. rice field. After the contact, the pressure was released, the release film 3 was removed from the female mold 1, and the release film 3 was visually evaluated according to the following evaluation criteria. ⁇ Evaluation Criteria> A: No tear occurred in the release film. B: The release film was torn.
  • a release film used in a hot press process which has excellent releasability and low outgassing properties, as well as followability and heat resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

[Problem] To provide a mold release film which has excellent mold release properties, low outgassing, and shrinkage isotropy. [Solution] A mold release film which comprises a biaxially stretched polybutylene terephthalate film, wherein the ratio of the largest shrinkage rate to the smallest shrinkage rate, from among the rates of dimensional change in four directions (0°(MD), 45°, 90°, 135°(TD)) before and after processing when processing at 170°C and 5MPa for 30 minutes, is 2.5 or less. This mold release film can be favorably used as a mold release film for a printed circuit board, a mold release film for a flexible printed circuit board, or a mold release film for a multilayer printed circuit board.

Description

離型フィルムrelease film
 本発明は接着剤を用いてフィルムまたはシート状の積層物を加圧成形する際などに使用するのに好適な、優れた剥離性を有する離型フィルムに関するものであり、より詳細には、電子機器、電気機器に用いられる電気回路を形成したフレキシブルプリント配線基板などの本体に、接着剤によってカバーレイフィルムを加圧接着する際に使用される離型フィルムに関する。 The present invention relates to a release film having excellent peelability suitable for use in pressure molding a film or sheet-like laminate using an adhesive, and more particularly, an electronic The present invention relates to a release film used when a coverlay film is press-bonded with an adhesive to a body such as a flexible printed wiring board on which an electric circuit is formed for use in equipment and electrical equipment.
技術背景technical background
 フレキシブルプリント配線基板などの製造工程において、銅張積層板又は銅箔を熱プレス接着する際には、意図しない箇所への接着剤の染み出し防止や、プレス熱板とカバーレイフィルムとが接着するのを防止するために、離型フィルムが用いられている。 In the manufacturing process of flexible printed wiring boards, etc., when hot press bonding copper clad laminates or copper foils, it is necessary to prevent the adhesive from seeping out to unintended places and to bond the hot press plate and the coverlay film. In order to prevent this, a release film is used.
 かかる用途に用いられる離型フィルムには、熱プレスに耐え得る耐熱性やプレス後のプリント配線基板に対する離型性等の性質が求められ、フッ素樹脂フィルムであるテフロンフィルム(特許文献1)、軟質ポリオレフィンの層を中間層とし、その内外両面に結晶性ポリメチルペンテンの層を形成せしめたことを特徴とする積層体からなる離型フィルム(特許文献2)などが提案されている。 Release films used for such applications are required to have properties such as heat resistance that can withstand hot pressing and releasability from printed wiring boards after pressing. There has been proposed a release film comprising a laminate comprising a polyolefin layer as an intermediate layer and crystalline polymethylpentene layers formed on both inner and outer surfaces thereof (Patent Document 2).
 また、使用後の廃棄焼却処理時に有毒ガスを実質的に発生することがなく、低分子量体の移行を伴わない離型フィルムとして、少なくとも一方の面に、極性基を主鎖中に有する樹脂をマトリックスとし、かつハロゲンの含有率が5重量%以下である樹脂組成物からなる層を有することを特徴とする離型フィルム(特許文献3)や、ポリブチレンテレフタレート延伸フィルムからなる離型フィルム(特許文献4)も報告されている。 In addition, a resin having a polar group in the main chain is used as a release film that does not substantially generate toxic gas during disposal incineration after use and does not involve the migration of low molecular weight substances on at least one surface. A release film characterized by having a layer made of a resin composition having a matrix and a halogen content of 5% by weight or less (Patent Document 3) and a release film made of a stretched polybutylene terephthalate film (Patent Reference 4) has also been reported.
特開平5-283862号公報JP-A-5-283862 特開平2-175247号公報JP-A-2-175247 国際公開第2005/066246号WO2005/066246 特開2015-058690号公報JP 2015-058690 A
 しかしながら、特許文献1で提案されたフッ素樹脂を用いたフィルムは使用後の廃棄焼却処理において、燃焼しにくく、有毒ガスを発生するという問題があった。また、特許文献2で提案されたポリメチルペンテンを用いたフィルムはその構成成分に含まれる低分子量体の移行により、プリント配線基板を汚染し、歩留まりが低下するという問題があった。さらに、特許文献3で提案された離型フィルムは熱プレス時に収縮異方性を発現し、追従性を損なう等の種々の問題があった。 However, the film using the fluororesin proposed in Patent Document 1 has the problem of being difficult to burn and generating toxic gas in the waste incineration process after use. Moreover, the film using polymethylpentene proposed in Patent Document 2 has a problem that the migration of low-molecular-weight substances contained in the component contaminates the printed wiring board, resulting in a decrease in yield. Furthermore, the release film proposed in Patent Document 3 has various problems such as exhibiting shrinkage anisotropy during hot pressing and impairing conformability.
 本発明は、優れた離型性及び低アウトガス性を有し、且つ収縮等方性を有する離型フィルムを提供することを目的とする。 An object of the present invention is to provide a release film that has excellent release properties, low outgassing properties, and shrinkage isotropy.
 本発明者らは上記課題を解決すべく鋭意検討した結果、170℃及び5MPaで30分間処理した際の処理前後における4方向(0°(MD)、45°、90°、135°(TD))の寸法変化率のうち、最大収縮率と最小収縮率との比が2.5以下である、すなわち優れた収縮等方性を有する二軸延伸ポリブチレンテレフタレートフィルムが、離型フィルムとして好適に使用できることを見出し、本発明を完成した。 As a result of intensive studies by the present inventors to solve the above problems, four directions (0 ° (MD), 45 °, 90 °, 135 ° (TD) before and after treatment when treated at 170 ° C. and 5 MPa for 30 minutes ), the ratio of the maximum shrinkage rate to the minimum shrinkage rate is 2.5 or less, that is, the biaxially stretched polybutylene terephthalate film having excellent shrinkage isotropy is suitable as a release film. We found that it can be used, and completed the present invention.
 すなわち、本発明は、二軸延伸ポリブチレンテレフタレートからなる離型フィルムに関するものであり、下記[1]乃至[4]の離型フィルムは本発明の一形態又は一様態であり得る。
[1]二軸延伸ポリブチレンテレフタレートフィルムからなる離型フィルムであって、170℃及び5MPaで30分間処理した際の処理前後における4方向(0°(MD)、45°、90°、135°(TD))の寸法変化率のうち、最大収縮率と最小収縮率との比が2.5以下である、離型フィルム。
[2]前記離型フィルムは170℃で30分間加熱した時のアウトガス発生量が2,000mg/m以下のフィルムである、[1]に記載の離型フィルム。
[3]前記離型フィルムはその表面の純水接触角が70°以上のフィルムである、[1]又は[2]に記載の離型フィルム。
[4]前記離型フィルムはプリント配線基板用離型フィルム、フレキシブルプリント配線基板用離型フィルム又は多層プリント配線基板用離型フィルムである、[1]に記載の離型フィルム。
That is, the present invention relates to a release film made of biaxially stretched polybutylene terephthalate, and the following release films [1] to [4] can be one aspect or one aspect of the present invention.
[1] A release film made of a biaxially stretched polybutylene terephthalate film, which is treated at 170 ° C. and 5 MPa for 30 minutes in four directions (0 ° (MD), 45 °, 90 °, 135 ° (TD)), wherein the ratio of the maximum shrinkage rate to the minimum shrinkage rate is 2.5 or less.
[2] The release film according to [1], wherein the release film generates an outgassing amount of 2,000 mg/m 2 or less when heated at 170°C for 30 minutes.
[3] The release film according to [1] or [2], wherein the release film has a surface contact angle with pure water of 70° or more.
[4] The release film according to [1], wherein the release film is a release film for printed wiring boards, a release film for flexible printed wiring boards, or a release film for multilayer printed wiring boards.
 本発明の離型フィルムは、その表面の純水接触角が70°以上と大きいことから、優れた離型性を有する。また、本発明の離型フィルムは、アウトガス量が2,000mg/m以下と低く、フィルムからのアウトガス発生量が少ない、すなわち優れた低アウトガス性を有する。さらに、本発明の離型フィルムは追従性及び耐熱性を有する。
 よって、本発明の離型フィルムは、優れた離型性及び低アウトガス性を有し、かつ追従性及び耐熱性を有するので、プリント配線基板、フレキシブルプリント配線基板及び多層プリント配線基板などの製造における熱プレス工程で好適に使用され得る。
Since the release film of the present invention has a pure water contact angle as large as 70° or more on its surface, it has excellent releasability. In addition, the release film of the present invention has a low outgassing amount of 2,000 mg/m 2 or less and a low outgassing amount from the film, that is, it has excellent low outgassing properties. Furthermore, the release film of the present invention has followability and heat resistance.
Therefore, the release film of the present invention has excellent releasability and low outgassing properties, and has followability and heat resistance, so it is It can be preferably used in a hot press process.
図1は追従性の評価試験の結果を示す写真である。FIG. 1 is a photograph showing the results of a followability evaluation test. 図2は追従性の評価試験の方法を示す模式図である。FIG. 2 is a schematic diagram showing a follow-up evaluation test method.
 本発明は、二軸延伸ポリブチレンテレフタレートフィルムからなる離型フィルムであって、170℃及び5MPaで30分間処理した際の処理前後における4方向(0°(MD)、45°、90°、135°(TD))の寸法変化率のうち、最大収縮率と最小収縮率との比が2.5以下である、離型フィルムに関するものである。 The present invention is a release film made of a biaxially stretched polybutylene terephthalate film, which is treated at 170 ° C. and 5 MPa for 30 minutes in four directions (0 ° (MD), 45 °, 90 °, 135 ° (TD)), the ratio of the maximum shrinkage rate to the minimum shrinkage rate is 2.5 or less.
<二軸延伸ポリブチレンテレフタレートフィルム>
 本発明の離型フィルムを構成するポリブチレンテレフタレートフィルムに使用されるポリブチレンテレフタレートは、ブチレンテレフタレートを主たる繰り返し単位とするポリエステルであれば特に限定されるものではなく、具体的にはジオール(グリコール成分)としての1,4-ブタンジオール、またはそのエステル形成誘導体と、二塩基酸成分としてのテレフタル酸、またはそのエステル形成誘導体を主成分とし、それらを縮合して得られるホモポリマータイプのポリエステル(ポリブチレンテレフタレート)、またはコポリマータイプのポリエステルである。
<Biaxially stretched polybutylene terephthalate film>
The polybutylene terephthalate used in the polybutylene terephthalate film constituting the release film of the present invention is not particularly limited as long as it is a polyester having butylene terephthalate as a main repeating unit. ) as 1,4-butanediol or its ester-forming derivative and terephthalic acid as the dibasic acid component or its ester-forming derivative as the main component, and a homopolymer type polyester obtained by condensing them (poly butylene terephthalate), or copolymer type polyester.
 また、本発明において、最適な機械的強度特性を付与するために、上記のポリブチレンテレフタレートは、融点200~250℃、固有粘度(IV値)0.90dl/g~1.35dl/gの範囲のものが好ましく、融点215~225℃、固有粘度(IV値)1.15dl/g~1.30dl/gの範囲のものがより好ましい。ポリブチレンテレフタレートの固有粘度(IV値)は、フェノール/テトラクロロエタン(質量比1/1)の混合溶媒を用いて、30℃で測定した溶液粘度である。 In the present invention, the polybutylene terephthalate has a melting point of 200 to 250° C. and an intrinsic viscosity (IV value) of 0.90 dl/g to 1.35 dl/g in order to impart optimum mechanical strength properties. and more preferably those having a melting point of 215 to 225° C. and an intrinsic viscosity (IV value) of 1.15 dl/g to 1.30 dl/g. The intrinsic viscosity (IV value) of polybutylene terephthalate is the solution viscosity measured at 30° C. using a mixed solvent of phenol/tetrachloroethane (mass ratio 1/1).
 また、上記に挙げたポリブチレンテレフタレートを主体とするコポリマータイプのポリエステル(コポリエステル)とは、二塩基酸成分としてのテレフタル酸成分の一部を、例えばイソフタル酸、フタル酸、アジピン酸、セバシン酸等の他の二塩基酸成分に置き換えたもの、及び/または、ジオール(グリコール)成分としての1,4-ブタンジオール成分の一部を、例えばエチレングリコール、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール等の他のジオール(グリコール)成分に置き換えたものを縮合させたポリエステルである。上記コポリエステルとしては、ブチレンテレフタレート単位が70%以上のものを好ましく挙げることができる。 Further, the above-mentioned copolymer type polyester (copolyester) mainly composed of polybutylene terephthalate includes a part of the terephthalic acid component as a dibasic acid component, such as isophthalic acid, phthalic acid, adipic acid, and sebacic acid. and/or a part of the 1,4-butanediol component as a diol (glycol) component, such as ethylene glycol, diethylene glycol, propylene glycol, neopentyl glycol, cyclohexane It is a polyester obtained by condensing other diol (glycol) components such as dimethanol. As the above copolyester, one having a butylene terephthalate unit content of 70% or more can be preferably used.
 なお、本発明に使用されるポリブチレンテレフタレートには、物性に支障をきたさない範囲で、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリヘキサメチレンテレフタレート、ポリ(エチレンテレフタレート/エチレンイソフタレート)などの他のポリエステル類や、ポリカーボネート、ポリアミド等の他の樹脂を混合した後、後述する延伸加工をしてもよい。また、前記ポリブチレンテレフタレートと前記他の樹脂とを積層して延伸加工をしてもよい。上記の他のポリエステル類及び他の樹脂は、2種以上使用してもよい。
 さらに、本発明に使用されるポリブチレンテレフタレート(又は場合により、上記他の樹脂)には、必要に応じて滑剤、アンチブロッキング剤、無機増量剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、可塑剤、着色剤、結晶化抑制剤、結晶化促進剤等の添加剤を加えても差し支えない。
 また、フィルム製造に使用されるポリブチレンテレフタレートペレットは加熱溶融時の加水分解による粘度低下を避けるために、加熱溶融前に水分量が0.05質量%以下であることが好ましく、より好ましくは0.02質量%以下になるように十分に予備乾燥を行った上で使用するのが好ましい。
The polybutylene terephthalate used in the present invention includes other polyesters such as polyethylene terephthalate, polyethylene naphthalate, polyhexamethylene terephthalate, and poly(ethylene terephthalate/ethylene isophthalate), as long as the physical properties are not affected. Alternatively, after mixing other resins such as polycarbonate and polyamide, the stretching process described below may be performed. Alternatively, the polybutylene terephthalate and the other resin may be laminated and stretched. Two or more kinds of the above other polyesters and other resins may be used.
Furthermore, the polybutylene terephthalate (or other resins as described above) used in the present invention may optionally contain a lubricant, an antiblocking agent, an inorganic extender, an antioxidant, an ultraviolet absorber, an antistatic agent, Additives such as flame retardants, plasticizers, colorants, crystallization inhibitors and crystallization accelerators may be added.
In order to avoid viscosity reduction due to hydrolysis during heating and melting, the polybutylene terephthalate pellets used for film production preferably have a water content of 0.05% by mass or less, more preferably 0%, before heating and melting. It is preferable to use it after sufficiently pre-drying so that it becomes 0.02% by mass or less.
 本発明の二軸延伸ポリブチレンテレフタレートフィルムからなる離型フィルムは、前記ポリブチレンテレフタレートを押出機にて製膜した後、得られたフィルムを延伸することにより得られる。
 以下、本発明の離型フィルムの製造方法の一例を示す。
 ポリブチレンテレフタレートを所定の温度(例えば、210~280℃)に設定した押出機によって溶融混練する。
 そして、Tダイ製膜の場合は、シート状の溶融樹脂を水槽に浸漬することにより内外とも直接水冷する。
 一方、環状製膜の場合は、押出機に下向きに取り付けた環状ダイより下方に押し出して、溶融管状薄膜を成形する。次に環状ダイに連結されている冷却マンドレルに導き、冷却マンドレルの各ノズルから導入された冷却水が溶融管状薄膜の内側に直接接触して冷却する。同時に、冷却マンドレルと組み合わせて使用される外部冷却槽からも冷却水が流され、溶融管状薄膜の外側にも冷却水が直接接触して、溶融管状薄膜を冷却する。内部水、および外部水の温度は30℃以下が好ましく、急冷製膜の観点から20℃以下が特に好ましい。30℃より高くなると、未延伸フィルムの白化や冷却水の沸騰による未延伸フィルムの外観不良等を招き、延伸も徐々に困難になる場合がある。
The release film made of the biaxially stretched polybutylene terephthalate film of the present invention is obtained by forming the polybutylene terephthalate into a film with an extruder and then stretching the resulting film.
An example of the method for producing the release film of the present invention is shown below.
Polybutylene terephthalate is melt-kneaded by an extruder set at a predetermined temperature (for example, 210 to 280°C).
In the case of T-die film formation, the sheet-like molten resin is immersed in a water tank to directly water-cool both the inside and the outside.
On the other hand, in the case of annular film formation, a molten tubular thin film is formed by extruding downward through an annular die attached downward to an extruder. Next, it is led to a cooling mandrel connected to an annular die, and cooling water introduced from each nozzle of the cooling mandrel directly contacts the inside of the molten tubular thin film to cool it. At the same time, cooling water is also flowed from an external cooling bath used in combination with the cooling mandrel to directly contact the outside of the molten tubular film to cool the molten tubular film. The temperature of the internal water and the external water is preferably 30° C. or lower, and particularly preferably 20° C. or lower from the viewpoint of rapid cooling film formation. If the temperature is higher than 30° C., whitening of the unstretched film and poor appearance of the unstretched film due to boiling of cooling water may occur, and stretching may gradually become difficult.
 二軸延伸ポリブチレンテレフタレートフィルムを安定的に製造するには、延伸前未延伸フィルムの結晶化を極力抑制する必要があり、押出されたポリブチレンテレフタレート溶融体を冷却して製膜する際、該ポリブチレンテレフタレートの結晶化温度領域をある速度以上で冷却する、すなわち未延伸フィルムの冷却速度が重要な因子となる。その未延伸フィルムの冷却速度は200℃/秒以上、好ましくは250℃/秒以上、特に好ましくは350℃/秒以上である。冷却速度が200℃/秒未満では、得られる未延伸フィルムの結晶性が高くなり延伸性が低下する虞がある。
 未延伸フィルムの製膜方式としては、上記未延伸フィルムの冷却速度を満たす方法であれば特に限定されるものではないが、急冷製膜の観点から、上述したような内外直接水冷式が特に好ましい。
In order to stably produce a biaxially stretched polybutylene terephthalate film, it is necessary to suppress crystallization of the unstretched film before stretching as much as possible. The cooling rate of the unstretched film is an important factor in cooling the crystallization temperature region of polybutylene terephthalate at a certain rate or higher. The cooling rate of the unstretched film is 200° C./second or higher, preferably 250° C./second or higher, and particularly preferably 350° C./second or higher. If the cooling rate is less than 200° C./sec, the resulting unstretched film may have high crystallinity and poor stretchability.
The film forming method for the unstretched film is not particularly limited as long as it is a method that satisfies the cooling rate of the unstretched film, but from the viewpoint of rapid film formation, the above-described internal and external direct water cooling method is particularly preferable. .
 未延伸フィルムを二軸延伸する方法としては特に限定されず、例えばチューブラー方式若しくはテンター方式で縦延伸と横延伸とを同時に行う同時二軸延伸法、又は縦延伸と横延伸とを順次行う逐次二軸延伸法等から適宜選択される。得られる二軸延伸ポリブチレンテレフタレートフィルムの縦横の強度バランスの観点から、チューブラー方式による同時二軸延伸法が特に好ましい。
 延伸倍率は、流れ方向(以下、「MD」とも記載する。)、および幅方向(以下、「TD」とも記載する。)それぞれ2.7~4.0倍の範囲であることが好ましい。延伸倍率が2.7倍未満である場合、得られる二軸延伸ポリブチレンテレフタレートフィルムの引張強度や衝撃強度が不十分となる虞があり、好ましくない。また4.0倍超の場合、延伸により過度な分子鎖のひずみが発生するため、延伸加工時に破断やパンクが頻繁に発生し、安定的に生産出来ない虞がある。
 延伸温度は、40~80℃の範囲が好ましく、特に好ましくは45~65℃である。前記の高い冷却速度で製造した未延伸フィルムは、結晶性が低いため、比較的低温域の延伸温度で安定して延伸可能である。80℃を超える高温延伸では、延伸バブルの揺れが激しくなり、大きな延伸ムラが発生して厚み精度の良好なフィルムが得られない虞がある。一方、40℃未満の延伸温度では、低温延伸による過度な延伸配向結晶化が発生し、フィルムの白化等を招き、場合によって延伸バブルが破裂し延伸継続困難となる虞がある。
 このような二軸延伸加工を施すことにより、異方性が少ない二軸延伸ポリブチレンテレフタレートフィルムを得ることが出来る。
The method for biaxially stretching an unstretched film is not particularly limited, and for example, a simultaneous biaxial stretching method in which longitudinal stretching and lateral stretching are performed simultaneously by a tubular method or a tenter method, or a sequential method in which longitudinal stretching and lateral stretching are performed sequentially. It is appropriately selected from a biaxial stretching method and the like. A simultaneous biaxial stretching method using a tubular system is particularly preferable from the viewpoint of the strength balance in the longitudinal and lateral directions of the biaxially stretched polybutylene terephthalate film to be obtained.
The draw ratio is preferably in the range of 2.7 to 4.0 in each of the machine direction (hereinafter also referred to as "MD") and the width direction (hereinafter also referred to as "TD"). If the draw ratio is less than 2.7 times, the obtained biaxially stretched polybutylene terephthalate film may have insufficient tensile strength and impact strength, which is not preferable. On the other hand, if the ratio is more than 4.0 times, excessive distortion of the molecular chain occurs due to stretching, so that breakage or puncture frequently occurs during the stretching process, and there is a possibility that stable production cannot be performed.
The stretching temperature is preferably in the range of 40 to 80°C, particularly preferably 45 to 65°C. Since the unstretched film produced at the high cooling rate has low crystallinity, it can be stably stretched at a stretching temperature in a relatively low range. In the high-temperature stretching exceeding 80° C., the stretching bubbles sway violently, and there is a possibility that a film with good thickness accuracy cannot be obtained due to the occurrence of large stretching unevenness. On the other hand, if the stretching temperature is less than 40° C., excessive stretching orientation crystallization occurs due to low-temperature stretching, causing whitening of the film or the like.
A biaxially stretched polybutylene terephthalate film with less anisotropy can be obtained by subjecting the film to such biaxial stretching.
 得られた二軸延伸ポリブチレンテレフタレートフィルムを熱ロール方式またはテンター方式、あるいはそれらを組み合わせた熱処理設備に任意の時間投入し、例えば、180~240℃、特に好ましくは190~210℃で熱処理を行うことにより、熱寸法安定性に優れた二軸延伸ポリブチレンテレフタレートフィルムを得ることができる。熱処理温度が240℃よりも高い場合は、ボーイング現象が大きくなり過ぎて幅方向での異方性が増加する可能性がある。一方、熱処理温度が180℃よりも低い場合は、フィルムの熱寸法安定性が大きく低下するため、熱プレス工程で問題が生じる可能性がある。 The obtained biaxially stretched polybutylene terephthalate film is put into a heat treatment facility of a hot roll system, a tenter system, or a combination thereof for an arbitrary time, and heat treatment is performed at, for example, 180 to 240°C, particularly preferably 190 to 210°C. Thereby, a biaxially stretched polybutylene terephthalate film having excellent thermal dimensional stability can be obtained. If the heat treatment temperature is higher than 240° C., there is a possibility that the bowing phenomenon becomes too large and the anisotropy in the width direction increases. On the other hand, if the heat treatment temperature is lower than 180° C., the thermal dimensional stability of the film is greatly reduced, which may cause problems in the hot press process.
 本発明の離型フィルムの厚みは、特に制限されるものではないが、通常、10~50μmであり、好ましくは15~25μmである。 Although the thickness of the release film of the present invention is not particularly limited, it is usually 10-50 μm, preferably 15-25 μm.
 本発明の離型フィルムは、170℃及び5MPaで30分間処理した際の処理前後における4方向(0°(MD)、45°、90°、135°(TD))の寸法変化率のうち、最大収縮率と最小収縮率との比が2.5以下であり、2.2以下であることが好ましく、2.0以下であることがより好ましい。最大収縮率と最小収縮率との比を2.5以下とすることにより、本発明の離型フィルムは優れた収縮等方性を有するので、好適な追従性を発現することができる。一方、最大収縮率と最小収縮率との比は1.5以上、1.2以上又は1.0以上であることが好ましい。
 本発明の離型フィルムは、170℃及び5MPaで30分間処理した際の処理前後における4方向(0°(MD)、45°、90°、135°(TD))の寸法変化率はそれぞれ独立して0.0~4.0%であることが好ましく、0.0~3.0%であることがより好ましく、0.5~2.0%であることがさらに好ましい。寸法変化率が4.0%を超える場合、フレキシブルプリント配線基板などの製造において、加圧成形して、離型フィルムを剥離する工程で、離型フィルムの収縮応力により基板を変形させる虞がある。
 本発明の離型フィルムは、170℃及び5MPaで30分間処理した際の処理前後における4方向(0°(MD)、45°、90°、135°(TD))の寸法変化率において、最大収縮率と最大収縮率との差の絶対値が0.5~1.0であることが好ましい。
 本発明の離型フィルムは、170℃で30分間加熱した時のアウトガス発生量が2,000mg/m以下であることが好ましく、1,500mg/m以下であることがより好ましく、1,400mg/m以下であることがさらに好ましい。なお、本発明において、アウトガス発生量は実施例に記載した方法により、求められる。本明細書において、低アウトガス性とは、フィルムからアウトガスが発生しないか、発生しても少量であることを意味し、好ましくは2,000mg/m以下であり、より好ましくは1,500mg/m以下であり、さらに好ましくは1,400mg/m以下である。
 本発明の離型フィルムは、その表面の純水接触角が70°以上であることが好ましく、75°以上であることがより好ましく、80°以上であることがさらに好ましい。なお、本発明において、純水接触角はJIS R3257に基づいて求められる。
The release film of the present invention has a dimensional change rate in four directions (0° (MD), 45°, 90°, 135° (TD)) before and after treatment at 170°C and 5 MPa for 30 minutes. The ratio of maximum shrinkage to minimum shrinkage is 2.5 or less, preferably 2.2 or less, more preferably 2.0 or less. By setting the ratio of the maximum shrinkage rate to the minimum shrinkage rate to 2.5 or less, the release film of the present invention has excellent shrinkage isotropy, and therefore can exhibit suitable conformability. On the other hand, the ratio between the maximum shrinkage rate and the minimum shrinkage rate is preferably 1.5 or more, 1.2 or more, or 1.0 or more.
In the release film of the present invention, the dimensional change rate in four directions (0° (MD), 45°, 90°, 135° (TD)) before and after treatment when treated at 170 ° C. and 5 MPa for 30 minutes is independent. is preferably 0.0 to 4.0%, more preferably 0.0 to 3.0%, even more preferably 0.5 to 2.0%. If the dimensional change rate exceeds 4.0%, there is a risk that the shrinkage stress of the release film may deform the substrate in the process of pressure molding and peeling off the release film in the production of flexible printed wiring boards and the like. .
The release film of the present invention has a maximum dimensional change rate in four directions (0° (MD), 45°, 90°, 135° (TD)) before and after treatment at 170°C and 5 MPa for 30 minutes. The absolute value of the difference between the shrinkage rate and the maximum shrinkage rate is preferably 0.5 to 1.0.
The release film of the present invention preferably has an outgassing amount of 2,000 mg/m 2 or less, more preferably 1,500 mg/m 2 or less when heated at 170°C for 30 minutes. It is more preferably 400 mg/m 2 or less. In addition, in the present invention, the outgassing amount is obtained by the method described in the examples. As used herein, the term “low outgassing” means that the film does not generate outgassing, or if it does generate a small amount, it is preferably 2,000 mg/m 2 or less, and more preferably 1,500 mg/m 2 . m 2 or less, more preferably 1,400 mg/m 2 or less.
The release film of the present invention preferably has a pure water contact angle of 70° or more, more preferably 75° or more, and even more preferably 80° or more. In addition, in the present invention, the pure water contact angle is obtained based on JIS R3257.
 本発明の離型フィルムは、優れた離型性及び低アウトガス性を有し、かつ耐熱性及び追従性を有するので、特に配線基板用離型フィルムとして、例えば、プリント配線基板用離型フィルム、フレキシブルプリント配線基板用離型フィルム及び多層プリント配線基板用離型フィルムとして好適に使用することができる。 The release film of the present invention has excellent releasability and low outgassing properties, and also has heat resistance and followability. It can be suitably used as a release film for flexible printed wiring boards and a release film for multilayer printed wiring boards.
 本発明の離型フィルムは単層フィルムとして使用することできるが、他のフィルムと積層した積層フィルムとして使用することもできる。そのような他のフィルムとしては、ポリオレフィン系フィルムなどが挙げられる。また、本発明の離型フィルムと他のフィルムとを積層させる方法としては、共押出し法及びラミネート法などが挙げられる。 The release film of the present invention can be used as a single layer film, but can also be used as a laminated film laminated with other films. Such other films include polyolefin-based films and the like. Methods for laminating the release film of the present invention and another film include a coextrusion method and a lamination method.
 以下に実施例及び比較例を用いて、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be specifically described below using examples and comparative examples, but the present invention is not limited to the following examples.
<実施例1>
 140℃で5時間熱風乾燥機にて乾燥したポリブチレンテレフタレートペレット(ホモタイプ、融点=224℃、IV値=1.26dl/g)を押出機中、シリンダーおよびダイ温度210~260℃の各条件で溶融混練して溶融管状薄膜を環状ダイより下方に押し出した。引き続き、冷却マンドレルの外径を通しカラプサロールで折り畳んだ後、引取ニップロールにより1.2m/分の速度で製膜引取りを行った。以上の条件で製膜した未延伸フィルムを20℃の雰囲気中で低速ニップロールまで搬送し、チューブラー方式による縦横同時二軸延伸を行った。延伸倍率はMDが3.1倍、TDが3.2倍であり、延伸温度は60℃であった。次に、この二軸延伸フィルムを熱ロール式熱処理設備、次いでテンター式熱処理設備に投入し、210℃で熱処理を施すことにより二軸延伸ポリブチレンテレフタレートフィルム(離型フィルム)を得た。なお、最終的なフィルム厚みは25μmであった。
<Example 1>
Polybutylene terephthalate pellets (homotype, melting point = 224°C, IV value = 1.26 dl/g) dried in a hot air dryer at 140°C for 5 hours are extruded in an extruder at cylinder and die temperatures of 210 to 260°C. After melt-kneading, the molten tubular thin film was extruded downward through an annular die. Subsequently, after passing through the outer diameter of the cooling mandrel and folding with a carapsa roll, the film was taken off at a speed of 1.2 m/min with a take-off nip roll. The unstretched film formed under the above conditions was conveyed to low-speed nip rolls in an atmosphere of 20° C. and subjected to simultaneous longitudinal and transverse biaxial stretching by a tubular method. The draw ratio was 3.1 times in MD and 3.2 times in TD, and the drawing temperature was 60°C. Next, this biaxially stretched film was put into a hot roll type heat treatment facility and then into a tenter type heat treatment facility, and subjected to heat treatment at 210° C. to obtain a biaxially stretched polybutylene terephthalate film (release film). The final film thickness was 25 μm.
<実施例2>
 延伸倍率について、MDを2.9倍、TDを3.2倍に変更した以外は実施例1と同様にして、厚み25μmの二軸延伸ポリブチレンテレフタレートフィルム(離型フィルム)を得た。
<Example 2>
A biaxially stretched polybutylene terephthalate film (release film) having a thickness of 25 μm was obtained in the same manner as in Example 1, except that the stretching ratio was changed to 2.9 times for MD and 3.2 times for TD.
<比較例1>
 延伸倍率について、MDを2.6倍、TDを3.0倍に変更した以外は実施例1と同様にして、厚み25μmの二軸延伸ポリブチレンテレフタレートフィルム(離型フィルム)を得た。
<Comparative Example 1>
A biaxially stretched polybutylene terephthalate film (release film) having a thickness of 25 μm was obtained in the same manner as in Example 1, except that the draw ratio was changed to 2.6 times in MD and 3.0 times in TD.
<比較例2>
 ポリブチレンテレフタレートペレットの前処理及び押出温度は実施例1と同様にして、Tダイスからポリブチレンテレフタレートを押し出し、冷却して未延伸ポリブチレンテレフタレートフィルムを得た。次いで、ロール及びテンターを用いてMDが3.0倍、TDが2.8倍の逐次二軸延伸フィルムを得、実施例1と同様の温度で熱処理を施し、厚さ25μmの二軸延伸ポリブチレンテレフタレートフィルム(離型フィルム)を得た。
<Comparative Example 2>
The pretreatment and extrusion temperature of the polybutylene terephthalate pellets were the same as in Example 1, and the polybutylene terephthalate was extruded through a T-die and cooled to obtain an unstretched polybutylene terephthalate film. Next, a sequential biaxially stretched film having an MD of 3.0 times and a TD of 2.8 times was obtained using rolls and a tenter, and heat treatment was performed at the same temperature as in Example 1 to obtain a biaxially stretched polyester film having a thickness of 25 μm. A butylene terephthalate film (release film) was obtained.
<比較例3>
 ポリブチレンテレフタレートペレットの前処理及び押出温度は実施例1と同様にして、Tダイスからポリブチレンテレフタレートを押し出し、冷却して未延伸ポリブチレンテレフタレートフィルムを得た。次いで、ロール及びテンターを用いてMDが3.0倍、TDが3.3倍の逐次二軸延伸フィルムを得、実施例1と同様の温度で熱処理を施し、厚さ25μmの二軸延伸ポリブチレンテレフタレートフィルム(離型フィルム)を得た。
<Comparative Example 3>
The pretreatment and extrusion temperature of the polybutylene terephthalate pellets were the same as in Example 1, and the polybutylene terephthalate was extruded through a T-die and cooled to obtain an unstretched polybutylene terephthalate film. Then, a sequential biaxially stretched film having an MD of 3.0 times and a TD of 3.3 times was obtained using a roll and a tenter, and heat-treated at the same temperature as in Example 1 to obtain a biaxially stretched poly film having a thickness of 25 μm. A butylene terephthalate film (release film) was obtained.
<比較例4>
 ポリブチレンテレフタレートペレットの前処理及び押出温度は比較例2と同様にして、Tダイスより押出成形して厚さ50μmの未延伸ポリブチレンテレフタレートフィルム(離型フィルム)を得た。
<Comparative Example 4>
The polybutylene terephthalate pellets were pretreated and extruded at the same temperature as in Comparative Example 2, and extruded from a T-die to obtain an unstretched polybutylene terephthalate film (release film) having a thickness of 50 µm.
<比較例5>
 ポリブチレンテレフタレートをポリメチルペンテンに変更した以外は比較例4と同様にして厚さ50μmの未延伸ポリメチルペンテンフィルム(離型フィルム)を得た。
<Comparative Example 5>
An unstretched polymethylpentene film (release film) having a thickness of 50 μm was obtained in the same manner as in Comparative Example 4 except that polybutylene terephthalate was changed to polymethylpentene.
 実施例1~実施例2及び比較例1~比較例5で作製した離型フィルムについて、下記の方法により熱プレス収縮率、アウトガス発生量、純水接触角を測定し、その結果を表1~表3に示した。
<評価項目>
(1)熱プレス収縮率の測定
 離型フィルムの表面に、0°(MD)、45°、90°(TD)、135°の標線をそれぞれ記入し、油圧式熱プレス機を用いて、上下の熱板温度170℃、圧力5MPaで30分加温し、下記式に従って、各方向における寸法変化率を算出した。
Figure JPOXMLDOC01-appb-M000001
(2)アウトガス発生量の測定
 ヘッドスペース法により、170℃、30分の加熱で、フィルムから発生するガスを捕集した。これを、無極性キャピラリーカラムを接続したGC(株式会社島津製作所、QP-2010Plus)を用いて分離し、検出されたピーク総面積のTHF(テトラヒドロフラン)換算量を、評価に用いたフィルム質量より算出した表面積で規格化し、これをアウトガス発生量とした。
(3)純水接触角の測定
 接触角計(協和界面科学株式会社、DMe-211FE)を用いて、JIS R3257に基づいて純水接触角を求めた。
For the release films produced in Examples 1 to 2 and Comparative Examples 1 to 5, the heat press shrinkage rate, outgassing amount, and pure water contact angle were measured by the following methods, and the results are shown in Tables 1 to 1. Table 3 shows.
<Evaluation items>
(1) Measurement of heat press shrinkage rate Marked lines of 0° (MD), 45°, 90° (TD), and 135° were drawn on the surface of the release film, and using a hydraulic heat press, The temperature of the upper and lower hot plates was 170° C. and the pressure was 5 MPa for 30 minutes, and the dimensional change rate in each direction was calculated according to the following formula.
Figure JPOXMLDOC01-appb-M000001
(2) Measurement of amount of outgas generated Gas generated from the film was collected by heating at 170°C for 30 minutes by the headspace method. This was separated using GC (Shimadzu Corporation, QP-2010Plus) connected to a nonpolar capillary column, and the total area of the detected peaks in terms of THF (tetrahydrofuran) was calculated from the film mass used for evaluation. It was normalized by the surface area, and this was taken as the amount of outgassing.
(3) Measurement of Pure Water Contact Angle Using a contact angle meter (Kyowa Interface Science Co., Ltd., DMe-211FE), the pure water contact angle was determined according to JIS R3257.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~表3に示した結果より、170℃及び5MPaで30分間処理した際の処理前後における4方向(0°(MD)、45°、90°、135°(TD))の寸法変化率のうち、最大収縮率と最小収縮率との比が2.5以下である本発明の離型フィルムは、アウトガス発生量が少なく、かつ純水接触角が大きかったので、優れた低アウトガス性及び離型性が発現していることが明らかである(実施例1及び実施例2)。
 一方、未延伸ポリブチレンテレフタレートフィルムからなる離型フィルムは、本発明の離型フィルムに比べて、アウトガス発生量が多く、純水接触角が小さかったので、離型性及び低アウトガス性が劣っていた(比較例4)。
 また、未延伸ポリメチルペンテンフィルムからなる離型フィルムは、純水接触角は大きくて、優れた離型性を発現したが、アウトガス発生量が本発明の離型フィルムに比べて約31倍であり、低アウトガス性が劣っていた(比較例5)。
From the results shown in Tables 1 to 3, the dimensional change rate in four directions (0° (MD), 45°, 90°, 135° (TD)) before and after treatment when treated at 170°C and 5 MPa for 30 minutes. Among them, the release film of the present invention having a ratio of the maximum shrinkage rate to the minimum shrinkage rate of 2.5 or less generated a small amount of outgassing and had a large pure water contact angle, so excellent low outgassing and It is clear that releasability is exhibited (Examples 1 and 2).
On the other hand, the release film made of the unstretched polybutylene terephthalate film generated a large amount of outgassing and had a small contact angle with pure water as compared with the release film of the present invention. (Comparative Example 4).
In addition, the release film made of the unstretched polymethylpentene film had a large pure water contact angle and exhibited excellent release properties, but the amount of outgas generated was about 31 times that of the release film of the present invention. The low outgassing property was inferior (Comparative Example 5).
 さらに実施例1~実施例2及び比較例1~比較例3で作製した離型フィルムについては、下記の方法により追従性を評価し、その結果を表4に示した。また、実施例1及び比較例1の離型フィルムの評価結果を図1に示す。
(4)追従性の評価試験
 図2に示した模式図に基いて、追従性の評価試験を説明する。
 中央に40mm×40mm×深さ9mm(凹部側面と額縁面とのなす角Rが5mm)の凹部を有する100mm×100mmの雌型金型1を準備し、該雌型金型1の額縁面(凹部以外の面)に厚さ5mmのゴムラバー2を取付けた。次に、中央に40mm×40mmの開口部を有する100mm×100mmの金属製フィルム抑え治具5を準備し、該金属製フィルム抑え治具5の額縁面(開口部以外の面)にゴムラバー4を取り付けた。
 図2に示すように、雌型金型1、100mm×100mmに切り出した離型フィルム3、及び金属製フィルム抑え治具5を順に載せ、雌型金型1と金属製フィルム抑え治具5とをねじ6で固定した。
 離型フィルム3と接触する面が38mm×38mm、高さが45mm(フィルムと接触する面と側面のなす角Rが5mm)の雄型金型7(重量504g)を雌型金型1に固定された離型フィルム3上に載せ、170℃に設定した恒温槽(株式会社オリエンテック製TKC-R2-T)で10分間加熱した。
 加熱後、恒温槽から離型フィルム3上に雄型金型7を載せたまま雌型金型1を取り出した後、直ちに油圧プレス機(株式会社マサダ製作所製MCA10-150)を用いて、雄型金型7を、雄型金型7の離型フィルム3と接触している面が離型フィルム3を介して雌型金型1の凹部の底面に接触するまで1cm/秒の速度で押し下げた。接触後、圧力を開放して、雌型金型1から離型フィルム3を取り出して、下記の評価基準に従って離型フィルム3を目視で評価した。
<評価基準>
A:離型フィルムに破れが生じなかった。
B:離型フィルムに破れが生じた。
Further, the followability of the release films produced in Examples 1 and 2 and Comparative Examples 1 and 3 was evaluated by the following method, and the results are shown in Table 4. Moreover, the evaluation results of the release films of Example 1 and Comparative Example 1 are shown in FIG.
(4) Followability Evaluation Test A followability evaluation test will be described based on the schematic diagram shown in FIG.
A female mold 1 of 100 mm × 100 mm having a recess of 40 mm × 40 mm × 9 mm deep (the angle R between the side surface of the recess and the frame surface is 5 mm) in the center is prepared, and the frame surface of the female mold 1 ( A rubber 2 having a thickness of 5 mm was attached to the surface other than the recess). Next, a metal film holding jig 5 of 100 mm×100 mm having an opening of 40 mm×40 mm in the center is prepared, and a rubber rubber 4 is applied to the frame surface (surface other than the opening) of the metal film holding jig 5. installed.
As shown in FIG. 2, a female mold 1, a release film 3 cut into a size of 100 mm×100 mm, and a metal film holding jig 5 are placed in order, and the female mold 1 and the metal film holding jig 5 are placed. was fixed with screws 6.
A male mold 7 (504 g in weight) having a surface in contact with the release film 3 of 38 mm×38 mm and a height of 45 mm (the angle R between the surface in contact with the film and the side surface is 5 mm) is fixed to the female mold 1. It was then placed on the release film 3, and heated in a constant temperature bath (TKC-R2-T manufactured by Orientec Co., Ltd.) set at 170° C. for 10 minutes.
After heating, the female mold 1 is removed from the constant temperature bath while the male mold 7 is placed on the release film 3, and immediately a hydraulic press (MCA10-150 manufactured by Masada Manufacturing Co., Ltd.) is used to press the male mold. The mold 7 is pushed down at a speed of 1 cm/sec until the surface of the male mold 7 in contact with the release film 3 contacts the bottom surface of the recess of the female mold 1 through the release film 3. rice field. After the contact, the pressure was released, the release film 3 was removed from the female mold 1, and the release film 3 was visually evaluated according to the following evaluation criteria.
<Evaluation Criteria>
A: No tear occurred in the release film.
B: The release film was torn.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4及び図1に示した結果より、170℃及び5MPaで30分間処理した際の処理前後における4方向(0°(MD)、45°、90°、135°(TD))の寸法変化率のうち、最大収縮率と最小収縮率との比が2.5以下である本発明の離型フィルムは破れず、追従性を有することが明らかである(実施例1及び実施例2)。
 一方、最大収縮率と最小収縮率との比が2.5を超える離型フィルムは破れてしまい、追従性を有さなかった(比較例1~比較例3)。
From the results shown in Table 4 and FIG. 1, the dimensional change rate in four directions (0° (MD), 45°, 90°, 135° (TD)) before and after treatment when treated at 170° C. and 5 MPa for 30 minutes Among them, it is clear that the release film of the present invention having a ratio of the maximum shrinkage rate to the minimum shrinkage rate of 2.5 or less does not break and has followability (Examples 1 and 2).
On the other hand, release films with a ratio of maximum shrinkage to minimum shrinkage exceeding 2.5 were torn and did not have followability (Comparative Examples 1 to 3).
1 雌型金型
2 ゴムラバー
3 離型フィルム
4 ゴムラバー
5 金属性フィルム抑え治具
6 ねじ
7 雄型金型
1 Female mold 2 Rubber rubber 3 Release film 4 Rubber rubber 5 Metal film holding jig 6 Screw 7 Male mold
 本発明によれば、優れた離型性及び低アウトガス性を有し、かつ追従性及び耐熱性を有する、熱プレス工程で使用される離型フィルムを提供することができる。 According to the present invention, it is possible to provide a release film used in a hot press process, which has excellent releasability and low outgassing properties, as well as followability and heat resistance.

Claims (4)

  1.  二軸延伸ポリブチレンテレフタレートフィルムからなる離型フィルムであって、
     170℃及び5MPaで30分間処理した際の処理前後における4方向(0°(MD)、45°、90°、135°(TD))の寸法変化率のうち、最大収縮率と最小収縮率との比が2.5以下である、離型フィルム。
    A release film made of a biaxially stretched polybutylene terephthalate film,
    Among the dimensional change rates in four directions (0° (MD), 45°, 90°, 135° (TD)) before and after treatment at 170°C and 5 MPa for 30 minutes, the maximum shrinkage rate and the minimum shrinkage rate ratio of 2.5 or less.
  2.  前記離型フィルムは170℃で30分間加熱した時のアウトガス発生量が2,000mg/m以下のフィルムである、請求項1に記載の離型フィルム。 The release film according to claim 1, wherein the release film generates an outgassing amount of 2,000 mg/ m2 or less when heated at 170°C for 30 minutes.
  3.  前記離型フィルムはその表面の純水接触角が70°以上のフィルムである、請求項1又は請求項2に記載の離型フィルム。 The release film according to claim 1 or claim 2, wherein the release film has a surface contact angle with pure water of 70° or more.
  4.  前記離型フィルムはプリント配線基板用離型フィルム、フレキシブルプリント配線基板用離型フィルム又は多層プリント配線基板用離型フィルムである、請求項1に記載の離型フィルム。
     
    The release film according to claim 1, wherein the release film is a release film for printed wiring boards, a release film for flexible printed wiring boards, or a release film for multilayer printed wiring boards.
PCT/JP2022/039587 2022-01-06 2022-10-24 Mold release film WO2023132116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-001191 2022-01-06
JP2022001191 2022-01-06

Publications (1)

Publication Number Publication Date
WO2023132116A1 true WO2023132116A1 (en) 2023-07-13

Family

ID=87073427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039587 WO2023132116A1 (en) 2022-01-06 2022-10-24 Mold release film

Country Status (2)

Country Link
TW (1) TW202327854A (en)
WO (1) WO2023132116A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252458A (en) * 2001-02-26 2002-09-06 Mitsubishi Polyester Film Copp Polyester film used for manufacturing multilayer printed wiring board
JP2012146636A (en) * 2010-12-24 2012-08-02 Kohjin Co Ltd Battery case packaging material for cold molding, including biaxially-stretched polybutylene terephthalate film
JP2013139523A (en) * 2012-01-05 2013-07-18 Toray Ind Inc Polybutylene terephthalate film
JP2014098138A (en) * 2012-10-19 2014-05-29 Mitsui Chemicals Tohcello Inc Release film
JP2015058690A (en) * 2013-09-20 2015-03-30 三井化学東セロ株式会社 Release film
JP2019196005A (en) * 2018-05-07 2019-11-14 積水化学工業株式会社 Release film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252458A (en) * 2001-02-26 2002-09-06 Mitsubishi Polyester Film Copp Polyester film used for manufacturing multilayer printed wiring board
JP2012146636A (en) * 2010-12-24 2012-08-02 Kohjin Co Ltd Battery case packaging material for cold molding, including biaxially-stretched polybutylene terephthalate film
JP2013139523A (en) * 2012-01-05 2013-07-18 Toray Ind Inc Polybutylene terephthalate film
JP2014098138A (en) * 2012-10-19 2014-05-29 Mitsui Chemicals Tohcello Inc Release film
JP2015058690A (en) * 2013-09-20 2015-03-30 三井化学東セロ株式会社 Release film
JP2019196005A (en) * 2018-05-07 2019-11-14 積水化学工業株式会社 Release film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Thin film and high strength! "Bobblet" is a PBT film that is resistant to abrasion and bending ", 25 October 2021 (2021-10-25), XP093077940, Retrieved from the Internet <URL:https://www.ipros.jp/product/detail/print/?objectId=2256763&hub=45+yahoo> *

Also Published As

Publication number Publication date
TW202327854A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
KR100786005B1 (en) Multilayered aliphatic polyester film
JPH0623840A (en) Production of surface roughened film and sheet made of poly 4-methyl-1-pentene for producing multilayer printed wiring board
CN109070399B (en) Release film suitable for manufacturing multilayer printed wiring board
JP2006312263A (en) Laminated mat-like polyester film
JP2011088352A (en) Release film
JP2007175885A (en) Mold release film
WO2017170333A1 (en) Laminate for battery packages
JP6032780B2 (en) Biaxially stretched polybutylene terephthalate film
WO2005066246A1 (en) Mold release film
JP2010155451A (en) Release film
JP6588720B2 (en) Easy tear biaxially stretched polybutylene terephthalate film
JP2004002592A (en) Sheet
WO2023132116A1 (en) Mold release film
JP2004002593A (en) Sheet
JP5249796B2 (en) Flexible printed circuit board reinforcing film, flexible printed circuit board reinforcing plate, and flexible printed circuit board laminate
KR101559565B1 (en) Low density heat shrinkable polyester film
CN113056507A (en) Film for coating metal plate and resin-coated metal plate
JP2005146112A (en) Laminated film for paperboard
JP2004202702A (en) Easily tearable laminated polyester film
JP4885419B2 (en) Biaxially stretched polyester film
JP2005111798A (en) Release film
JP4439387B2 (en) Biaxially stretched polyester film
JP2005126559A (en) Film for laser via processing
WO2006016569A1 (en) Biaxially oriented polyester films
JP2005129699A (en) Film for flexible printed circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918705

Country of ref document: EP

Kind code of ref document: A1