WO2023130624A1 - 双卷扬液压控制***、作业机械及控制方法 - Google Patents

双卷扬液压控制***、作业机械及控制方法 Download PDF

Info

Publication number
WO2023130624A1
WO2023130624A1 PCT/CN2022/089207 CN2022089207W WO2023130624A1 WO 2023130624 A1 WO2023130624 A1 WO 2023130624A1 CN 2022089207 W CN2022089207 W CN 2022089207W WO 2023130624 A1 WO2023130624 A1 WO 2023130624A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
valve
reversing valve
wire rope
force value
Prior art date
Application number
PCT/CN2022/089207
Other languages
English (en)
French (fr)
Inventor
隋燃
张领
王文鑫
Original Assignee
北京三一智造科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202220055573.4U external-priority patent/CN217055742U/zh
Priority claimed from CN202210015967.1A external-priority patent/CN114476995B/zh
Application filed by 北京三一智造科技有限公司 filed Critical 北京三一智造科技有限公司
Publication of WO2023130624A1 publication Critical patent/WO2023130624A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/02Driving gear
    • B66D1/08Driving gear incorporating fluid motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/48Control devices automatic
    • B66D1/50Control devices automatic for maintaining predetermined rope, cable, or chain tension, e.g. in ropes or cables for towing craft, in chains for anchors; Warping or mooring winch-cable tension control
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/46Dredgers; Soil-shifting machines mechanically-driven with reciprocating digging or scraping elements moved by cables or hoisting ropes ; Drives or control devices therefor
    • E02F3/47Dredgers; Soil-shifting machines mechanically-driven with reciprocating digging or scraping elements moved by cables or hoisting ropes ; Drives or control devices therefor with grab buckets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/02Dredgers or soil-shifting machines for special purposes for digging trenches or ditches
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps

Definitions

  • the present application relates to the technical field of hoist control, in particular to a double hoist hydraulic control system, working machine and control method.
  • the double-hoisting diaphragm wall grab needs to use the self-weight of the working device to continuously impact the formation during the troughing process to achieve rock and soil crushing; then the grab The oil cylinder pushes the bucket petals to close to realize shearing and grasping of rock and soil.
  • the working device After touching the ground, the working device will have a certain deflection, and the winch is in a relaxed state; when the bucket flaps are closed to grab the rock and soil, the rock and soil will give the bucket body a reaction force to push the bucket body up, and the working device will also produce a certain amount of vibration. skewed.
  • the operator needs to constantly adjust the posture of the working device to ensure the quality of the groove. This phenomenon leads to the quality of groove formation heavily dependent on the operator's personal experience, and affects the construction efficiency.
  • the application provides a double hoist hydraulic control system, operating machinery and control method, which are used to solve the deflection of the working device during the working process in the prior art, the difficulty of adjustment, and the defects that affect the work efficiency, and realize the first steel wire rope. Comparing the first force value with the second force value of the second wire rope, the first motor is controlled to tension the first wire rope, or the second motor is controlled to tension the second wire rope so as to automatically adjust the deflection of the working device.
  • This application provides a double winch hydraulic control system, including:
  • the first force detection part is used to detect the first force value of the first steel wire rope
  • the second force detection part is used to detect the second force value of the second steel wire rope
  • the first motor is connected to the first wire rope
  • the second motor is connected to the second wire rope
  • the double winch hydraulic control system provided according to the application also includes a first control loop and a second control loop;
  • the first control loop is connected to the first motor, and is used to drive the first motor when the first force value is smaller than the second force value;
  • the second control loop is connected with the second motor and used to drive the second motor when the first force value is greater than the second force value.
  • the first control circuit includes a first hydraulic pump, a first reversing valve and a first balance valve, and the first hydraulic pump is connected to the first reversing valve , the first reversing valve is connected to the first balance valve, the first balance valve is connected to the first motor,
  • the first reversing valve controls the forward and reverse rotation of the first motor through reversing
  • the first balance valve is connected such that when controlling the reverse rotation of the first motor to tension the first wire rope, the oil provided by the first hydraulic pump passes through the first reversing valve and the first reversing valve in sequence.
  • the one-way valve part of the balance valve enters the first motor, and when the first motor is controlled to rotate forward to lower the first wire rope, the oil enters the pilot port of the first balance valve to open the valve core, The return oil of the first motor is made to flow out through the first balancing valve.
  • the second control circuit includes a second hydraulic pump, a second reversing valve and a second balance valve, and the second hydraulic pump is connected to the second reversing valve , the second reversing valve is connected with the second balance valve, and the second balance valve is connected with the second motor,
  • the second reversing valve controls the forward and reverse rotation of the second motor through reversing
  • the second balance valve is connected so that when controlling the reverse rotation of the second motor to tension the second wire rope, the oil provided by the second hydraulic pump passes through the second reversing valve and the second reversing valve in sequence.
  • the one-way valve part of the balance valve enters the second motor, and when the second motor is controlled to rotate forward to lower the second wire rope, the oil enters the pilot port of the second balance valve to open the valve core, The return oil of the second motor flows out through the second balance valve.
  • the double winch hydraulic control system provided according to the present application further includes a first brake actuator and a second brake actuator;
  • the first brake actuator is used to control the rotation and stop of the first motor
  • the second brake actuator is used to control the rotation and stop of the second motor.
  • the double winch hydraulic control system includes a first brake circuit, the first brake circuit includes a third hydraulic pump and a third reversing valve, and the third hydraulic pump is connected to the third reversing valve. connected to the reversing valve, the third reversing valve is connected to the pilot port of the first reversing valve and the pilot port of the second reversing valve;
  • first reversing valve is connected with the first brake actuator to provide hydraulic oil to the first brake actuator to control the first brake actuator
  • second reversing valve is connected with the first brake actuator.
  • the second brake actuator is connected to provide hydraulic oil to the second brake actuator to control the second brake actuator.
  • the first brake circuit further includes a first brake valve group and a second brake valve group;
  • the first reversing valve is connected with the first brake valve group, and the first brake valve group is connected with the first brake actuator, and the hydraulic pressure flowing out from the first reversing valve The oil is decompressed by the first brake valve group and then supplied to the first brake actuator;
  • the second reversing valve is connected to the second brake valve group, the second brake valve group is connected to the second brake actuator, and the hydraulic oil flowing out from the second reversing valve passes through The second brake valve group is depressurized and supplied to the second brake actuator.
  • the present application also provides a double winch hydraulic control system, the double winch hydraulic control system includes:
  • the first motor is used to connect with the first steel wire rope to lower and rewind the first steel wire rope;
  • the second motor is used to connect with the second steel wire rope to lower and rewind the second steel wire rope;
  • a first control loop the first control loop is used to control the first motor, the difference between the first force value on the first steel wire rope and the second force value on the second steel wire rope is within the first When within a preset range, the first control loop controls the first motor to reverse to wind up the first steel wire rope;
  • a second control loop the second control loop is used to control the forward and reverse rotation of the second motor, the difference between the first force value on the first steel wire rope and the second force value on the second steel wire rope
  • the second control loop controls the second motor to reverse to wind up the second steel wire rope
  • the first control circuit includes a first hydraulic pump, a first reversing valve and a first balance valve, and the first hydraulic pump is connected to the first reversing valve , the first reversing valve is connected to the first balance valve, and the first balance valve is connected to the first motor; wherein, the first reversing valve controls the first motor by reversing Forward and reverse;
  • the first balance valve is connected such that when controlling the reverse rotation of the first motor to tension the first wire rope, the oil provided by the first hydraulic pump passes through the first reversing valve and the first reversing valve in sequence.
  • the one-way valve part of the balance valve enters the first motor, and when the first motor is controlled to rotate forward to lower the first wire rope, the oil enters the pilot port of the first balance valve to open the valve core, The return oil of the first motor is made to flow out through the first balance valve.
  • the second control circuit includes a second hydraulic pump, a second reversing valve and a second balance valve, and the second hydraulic pump is connected to the second reversing valve , the second reversing valve is connected with the second balance valve, and the second balance valve is connected with the second motor, wherein the second reversing valve controls the operation of the second motor through reversing Forward and reverse;
  • the second balance valve is connected so that when controlling the reverse rotation of the second motor to tension the second wire rope, the oil provided by the second hydraulic pump passes through the second reversing valve and the second reversing valve in sequence.
  • the one-way valve part of the balance valve enters the second motor, and when the second motor is controlled to rotate forward to lower the second wire rope, the oil enters the pilot port of the second balance valve to open the valve core, The return oil of the second motor flows out through the second balance valve.
  • the first hydraulic pump and the second hydraulic pump are controlled by the same engine.
  • the double hoist hydraulic control system further includes a first brake actuator and a second brake actuator;
  • the first brake actuator is used to control the rotation and stop of the first motor
  • the second brake actuator is used to control the rotation and stop of the second motor.
  • the double winch hydraulic control system further includes a first brake circuit, the first brake circuit includes a third hydraulic pump and a third reversing valve, and the first brake circuit includes a third hydraulic pump and a third reversing valve.
  • the three hydraulic pumps are connected with the third reversing valve, and the third reversing valve is connected with the pilot port of the first reversing valve and the pilot port of the second reversing valve, so as to input oil to the pilot port
  • the liquid causes the first reversing valve to switch to control the reverse rotation of the first motor, and causes the second reversing valve to switch to control the second motor to reverse;
  • the first reversing valve is connected with the first brake actuator, and when the first reversing valve is reversing to control the reverse rotation of the first motor, the first reversing valve will oil supply to the first brake actuator so that the first brake actuator controls the rotation of the first motor;
  • the second reversing valve is connected to the second brake actuator, and when the second reversing valve is reversing to control the reverse rotation of the second motor, the second reversing valve Oil is supplied to the second brake actuator so that the second brake actuator controls the rotation of the second motor.
  • the first brake circuit further includes a first brake valve group and a second brake valve group;
  • the first reversing valve is connected with the first brake valve group, and the first brake valve group is connected with the first brake actuator, and the hydraulic pressure flowing out from the first reversing valve The oil is decompressed by the first brake valve group and then supplied to the first brake actuator;
  • the second reversing valve is connected to the second brake valve group, the second brake valve group is connected to the second brake actuator, and the hydraulic oil flowing out from the second reversing valve passes through The second brake valve group is depressurized and supplied to the second brake actuator.
  • the first brake circuit further includes a seventh reversing valve, the oil inlet of the seventh reversing valve is connected with the third hydraulic pump, and the first The oil outlet of the seven reversing valve is connected with the other pilot port of the first reversing valve and the other pilot port of the second reversing valve, so as to input oil to the other pilot port so that the The first reversing valve is switched to control the first motor to rotate forward, and the second reversing valve is switched to control the second motor to rotate forward.
  • the double-winch hydraulic control system further includes a third control circuit, and the third control circuit is respectively connected to the first motor and the second motor;
  • the third control loop controls the first motor to reverse to tension the first wire rope
  • the third control loop controls the second motor to reverse to tension the second wire rope
  • the reverse speed of the first motor and the second motor controlled by the third control loop is smaller than the reverse speed of the first motor controlled by the first control loop, and is smaller than the reverse speed of the second control loop.
  • the reverse speed of the second motor controlled by the loop is smaller than the reverse speed of the first motor controlled by the first control loop, and is smaller than the reverse speed of the second control loop.
  • the third control circuit includes a fourth hydraulic pump, an eighth reversing valve and an overflow valve;
  • the fourth hydraulic pump supplies hydraulic oil to the first motor and the second motor through the eighth reversing valve, and the relief valve is connected to control the fourth hydraulic pump to supply hydraulic oil to the first motor. and the oil supply pressure of the second motor.
  • the present application also provides a working machine, including the above-mentioned double winch hydraulic control system.
  • the application also provides a double winch hydraulic control method, including:
  • the double hoist hydraulic control method before the judging the magnitude of the first force value and the second force value, it also includes:
  • the double winch hydraulic control system obtaineds the first force value and the second force value by setting the first force detection part and the second force detection part on the first steel wire rope and the second steel wire rope, based on the first force value By comparing the data with the second force value, the first motor is controlled to tension the first steel wire rope, or the second motor is controlled to tension the second steel wire rope, thereby automatically adjusting the deflection of the working device and improving work efficiency.
  • Fig. 1 is a hydraulic schematic diagram of a double winch hydraulic control system provided according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of the state of the continuous wall grab impacting the bottom of the tank according to an embodiment of the present application
  • Fig. 3 is a schematic diagram of a state of excavating rocks with a diaphragm wall grab according to an embodiment of the present application
  • Fig. 4 is a flowchart of a hydraulic control method for double winches provided according to an embodiment of the present application.
  • 100 winch; 101: first force detection part; 102: second force detection part; 103: first steel wire rope; 104: second steel wire rope; 105: working device;
  • 200 the first motor; 201: the first hydraulic pump; 202: the first reversing valve; 203: the first balance valve;
  • 300 second motor; 301: second hydraulic pump; 302: second reversing valve; 303: second balance valve;
  • 400 the third hydraulic pump; 401: the third reversing valve; 402: the seventh reversing valve; 403: the sixth reversing valve; 404: the first shuttle valve; 405: the first brake valve group; 406: the first Second shuttle valve; 407: third shuttle valve; 408: fourth shuttle valve; 409: second brake valve group; 410: first brake cylinder; 411: fourth reversing valve; 412: second brake cylinder ; 413: the fifth reversing valve;
  • 500 the fourth hydraulic pump
  • 501 the eighth reversing valve
  • 502 the relief valve.
  • connection and “connected” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, Or integrated connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, Or integrated connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary.
  • Embodiments of the present application are described below with reference to FIG. 1 to FIG. 4 . It should be understood that the following descriptions are only exemplary implementations of the application, and do not limit the application.
  • the present application provides a double winch hydraulic control system, including:
  • the first force detection part 101 and the second force detection part 102 the first force detection part 101 is used to detect the first force value of the first steel wire rope 103; the second force detection part 102 is used to detect the second force of the second steel wire rope 104 value.
  • the first force detection part 101 and the second force detection part 102 can be installed on the pulley frame of the winch 100, for example, can be tension sensors, force gauges or tension devices, etc. pull.
  • the first steel wire rope 103 and the second steel wire rope 104 are two steel wire ropes of the winch 100, and these two steel wire ropes are used for connecting the working device 105, and the working device 105 can be, for example, a continuous wall grab or other working devices.
  • the first motor 200 and the second motor 300 the first motor 200 is connected with the first wire rope 103 ; the second motor 300 is connected with the second wire rope 104 .
  • the first motor 200 and the second motor 300 can rotate forward and reversely. For example, in actual use, when the first motor 200 and the second motor 300 rotate forward, the pulling force of the first wire rope 103 and the second wire rope 104 becomes Small, when the first motor 200 and the second motor 300 reverse, the pulling force of the first wire rope 103 and the second wire rope 104 becomes larger.
  • the first motor 200 is controlled to tension the first steel wire rope 103
  • the second motor 300 is controlled to tension the second steel wire rope 104 . That is to say, based on the magnitude of the first force value and the second force value, the first motor 200 and the second motor 300 are controlled so that only one motor can output, for example, when the first force value is greater than the second force value ( At this time, the second steel rope 104 is looser than the first steel rope 103 so that the working device is deflected), and the second motor 300 is controlled to reverse to wind up the second steel rope 104, so that the second steel rope 104 is tensioned; when the first force value is less than the first At the second force value (at this time, the first steel wire rope 103 is looser than the second steel wire rope 104 so that the working device is deflected), the first motor 200 is controlled to reverse to wind up the first steel wire rope 103, so that the first steel wire rope 103 is tensioned.
  • the first motor or the second motor is controlled to reverse, so that the first steel wire rope 103 or the second The tension of the wire rope 104 can adjust the deflection state of the working device 105 .
  • the double winch hydraulic control system further includes a first control loop and a second control loop; the first control loop is connected with the first motor 200, and is used for when the first force value is smaller than the second force value When the first force value is greater than the second force value, the first motor 200 is driven to reverse; the second control loop is connected to the second motor 300 for driving the second motor 300 to reverse when the first force value is greater than the second force value.
  • a first threshold F is preset.
  • the absolute value of the difference between the first force value a1 and the second force value a2 is greater than the first threshold F, and the first force value a1 is smaller than the second force value a2.
  • the first motor 200 reverses at a high speed, and the first steel wire rope 103 quickly generates a pre-tightening force, for example, the grab bucket is quickly lowered to impact the bottom of the tank. That is to say, under the first comparison data, the working device 105 is tilted, and the first wire rope 103 is looser than the second wire rope 104 .
  • the deviation between the first steel wire rope 103 and the second steel wire rope 104 is relatively large, and the first motor 200 can be quickly driven in reverse to quickly tighten the first steel wire rope 103 .
  • the second motor 300 reverses at a high speed, and the second steel wire rope 104 quickly generates a pre-tightening force, for example, the grab bucket is quickly lowered to impact the bottom of the groove. That is to say, under the second comparison data, the working device 105 is tilted, and the second wire rope 104 is looser than the first wire rope 103 . Moreover, the deviation between the first steel wire rope 103 and the second steel wire rope 104 is relatively large, and the second motor 300 can be quickly driven to reverse to quickly tighten the second steel wire rope 104 .
  • the double winch hydraulic control system further includes a third control loop, and the third control loop is respectively connected to the first motor 200 and the second motor 300; under the third comparison data, The third control loop drives the first motor 200 to rotate, or under the fourth comparison data, the third control loop drives to rotate.
  • a second threshold f is preset, and the first threshold F is greater than the second threshold f. Based on the control precision, the values selected for the first threshold F and the second threshold f are different.
  • the absolute value of the difference between the first force value a1 and the second force value a2 is smaller than the first threshold F and greater than the second threshold f, and the first force value a1 is smaller than the second force value a2.
  • the first motor 200 reverses at a low speed to precisely adjust the tension of the first wire rope 103 , for example, when the grab bucket is excavating rock and soil in a tilted state. That is to say, under the third comparison data, the working device 105 is tilted, and the first wire rope 103 is looser than the second wire rope 104 . Moreover, the deviation between the first steel wire rope 103 and the second steel wire rope 104 is small, and the first motor 200 can be driven in reverse at a slow speed to slowly tighten the first steel wire rope 103 .
  • the absolute value of the difference between the first force value a1 and the second force value a2 is less than the first threshold F and greater than the second threshold f, and the first force value a1 is greater than the second force value a2 .
  • the second motor 300 reverses at a low speed to precisely adjust the tension of the second wire rope 104 , for example, when the grab bucket is excavating rock and soil, the state of inclination is generated. That is to say, under the fourth comparison data, the working device 105 is tilted, and the second wire rope 104 is looser than the first wire rope 103 . Moreover, the deviation between the first steel wire rope 103 and the second steel wire rope 104 is small, and the second motor 300 can be driven in reverse at a slow speed, so that the second steel wire rope 104 can be tensioned slowly.
  • the first control circuit includes a first hydraulic pump 201 , a first reversing valve 202 and a first balance valve 203 , and the first hydraulic pump 201 and the first reversing valve
  • the valve 202 is connected, the first reversing valve 202 is connected with the first balance valve 203, and the first balance valve 203 is connected with the first motor 200, wherein the first reversing valve 202 controls the forward and reverse rotation of the first motor 200 through reversing .
  • the first balance valve 203 is connected so that when the first motor 200 is controlled to reverse to tension the first wire rope 103 , the oil provided by the first hydraulic pump 201 passes through the first reversing valve 202 and the first balance valve 203 in turn.
  • the valve part enters the first motor 200, and when the first motor 200 is controlled to rotate forward to lower the first wire rope 103, the oil enters the pilot port of the first balance valve 203 and opens the valve core, so that the oil return of the first motor 200 It flows out through the first balancing valve 203.
  • the second control circuit includes a second hydraulic pump 301 , a second reversing valve 302 and a second balance valve 303 , and the second hydraulic pump 301 is connected to the second reversing valve 302 , the second reversing valve 302 is connected with the second balancing valve 303 , and the second balancing valve 303 is connected with the second motor 300 , wherein the second reversing valve 302 controls the forward and reverse rotation of the second motor 300 .
  • the second balance valve 303 is connected so that when the second motor 300 is controlled to reverse to tension the second wire rope 104, the oil provided by the second hydraulic pump 301 passes through the single valve of the second reversing valve 302 and the second balance valve 303 in sequence.
  • the valve part enters the second motor 300, and when the second motor 300 is controlled to rotate forward to lower the second wire rope 104, the oil enters the pilot port of the second balance valve 303 and opens the valve core, so that the oil return of the second motor 300 It flows out through the second balance valve 303.
  • the return oil is set to pass through the second balance valve 303, so that the lowering speed of the second wire rope 104 can be effectively controlled to avoid its overspeed descent.
  • first balance valve 203 and the second balance valve 303 are one-way balance valves
  • first reversing valve 202 and the second reversing valve 302 are three-position six-way reversing valves
  • the reversing valve 302 may be an electromagnetic reversing valve, or a hydraulic control reversing valve.
  • the double winch hydraulic control system further includes a first brake actuator and a second brake actuator; the first brake actuator is used to control the rotation of the first motor 200 and stop; the second brake actuator is used to control the rotation and stop of the second motor 300 .
  • the first brake actuator controls the output torque of the first motor 200, so that the first steel wire rope 103 is tensioned, between the first force value a1 and the second force value a2
  • the first brake actuator controls the first motor 200 to stop rotating.
  • the second actuator controls the output torque of the second motor 300 to make the second wire rope 104 tense, and the absolute value of the difference between the first force value a1 and the second force value a2 is smaller than the first force value a1
  • the second brake actuator controls the second motor 300 to stop rotating.
  • first hydraulic pump 201 and the second hydraulic pump 301 can be driven by an engine, that is, the first hydraulic pump 201 and the second hydraulic pump 301 are connected in parallel, and when the first motor 200 and the second motor 300 rotate forward, that is, When simultaneously controlling the first wire rope 103 and the second wire rope 104 to be lowered, an engine can be used to simultaneously control the first motor 200 and the second motor 300 to achieve the synchronization of lowering the first wire rope 103 and the second wire rope 104 to ensure that the working device 105 is stable.
  • the working device 105 is adjusted by individually controlling the single output state of the first motor 200 and the second motor 300 through the first brake actuator and the second brake actuator.
  • the double winch hydraulic control system includes a first brake circuit
  • the first brake circuit includes a third hydraulic pump 400 and a third reversing valve 401
  • the third reversing valve 401 is connected to the pilot port of the first reversing valve 202 and the pilot port of the second reversing valve 302, so as to input oil to the pilot port so that the first reversing valve 202 reversing To control the reverse rotation of the first motor 200, and make the second reversing valve 302 reversible to control the reverse rotation of the second motor 300;
  • the first reversing valve 202 is connected with the first brake actuator to A brake actuator provides hydraulic oil to control the first brake actuator
  • the second reversing valve 302 is connected to the second brake actuator to provide hydraulic oil to the second brake actuator to control the first brake actuator.
  • the third reversing valve 401 is switched, and the output oil of the third hydraulic pump 400 is used as the pilot oil to control the reversing of the first reversing valve 202 and the second reversing valve 302.
  • the second reversing valve 302 controls the reverse rotation of the first motor 200 and the second motor 300
  • a part of the hydraulic oil flowing out from the first reversing valve 202 and the second reversing valve 302 enters the first motor 200 and the second motor 300, and the other Part of it enters the first brake actuator and the second brake actuator, and controls the opening and closing of the first brake actuator and the second brake actuator, thereby realizing the torque output to the first motor 200 and the second motor 300 .
  • the first brake actuator includes a fourth reversing valve 411 and a first brake cylinder 410
  • the second brake actuator includes a fifth reversing valve 413 and a second brake cylinder 412 .
  • the hydraulic oil flowing out from the first reversing valve 202 enters the fourth reversing valve 411 , and after the fourth reversing valve 411 reversing, the first brake cylinder 410 releases the braking of the first motor 200 .
  • the hydraulic oil flowing out from the second reversing valve 302 enters the fifth reversing valve 413 , and after the reversing of the fifth reversing valve 413 , the first brake cylinder 410 releases the brake on the second motor 300 .
  • the fourth reversing valve 411 and the fifth reversing valve 413 are independently switched during the reverse rotation process of the first motor 200 and the second motor 300 .
  • the first brake circuit further includes a first brake valve group 405 and a second brake valve group 409; wherein, the first reversing valve 202 and the first The brake valve group 405 is connected, the oil outlet of the first brake valve group 405 is connected with the first brake actuator, the hydraulic oil flowing out from the first reversing valve 202 is decompressed by the first brake valve group 405 and then supplied The first brake actuator; the second reversing valve 302 is connected with the second brake valve group 409, and the oil outlet of the second brake valve group 409 is connected with the second brake actuator, from the second reversing valve 302 The outflow hydraulic oil is decompressed by the second brake valve group 409 and then supplied to the second brake actuator.
  • the first brake valve group 405 and the second brake valve group 409 can supply oil to the fourth reversing valve 411 and the fifth reversing valve 413 after the pressure is reduced by a sequence valve and a pressure reducing valve.
  • a first shuttle valve 404 and a fourth shuttle valve 408 are provided at the oil inlets of the first brake valve group 405 and the second brake valve group 409, and the first oil inlet of the first shuttle valve 404 is connected to the first On the oil path between the balance valve 203 and the first reversing valve 202, the second oil inlet port of the first shuttle valve 404 is connected to the oil path between the first oil port of the first motor 200 and the first reversing valve 202 , wherein the first balancing valve 203 is arranged on the oil passage between the second oil port of the first motor 200 and the first reversing valve 202 .
  • the fourth shuttle valve 408 which will not be repeated here.
  • the second brake circuit includes a sixth reversing valve 403, the third hydraulic pump 400 is connected to the sixth reversing valve 403; the sixth reversing The valve 403 is respectively connected with the first brake actuator and the second brake actuator.
  • the first brake circuit also includes a seventh reversing valve 402, the oil inlet of the seventh reversing valve 402 is connected with the third hydraulic pump 400, and the oil outlet of the seventh reversing valve 402 is connected with the first reversing valve 402.
  • the other pilot port of the reversing valve 202 and the second reversing valve 302 is connected, and the reversing of the seventh reversing valve 402 realizes that the first reversing valve 202 and the second reversing valve 302 control the first motor 200 and the second motor 300 at the same time Forward.
  • oil is supplied to the first brake actuator and the second brake actuator through the first brake valve group 405 and the second brake valve group 409, and at the same time, the fourth reversing valve 411 and the fifth reversing valve 413 are switched. , releasing the braking effect of the first brake cylinder 410 and the second brake cylinder 412 .
  • the double winch hydraulic control system further includes a second shuttle valve 406 and a third shuttle valve 407, wherein the first oil inlet of the second shuttle valve 406 is connected to the oil outlet of the first brake valve group 405, The second oil inlet of the second shuttle valve 406 is connected with the first oil inlet of the third shuttle valve 407 , and the oil outlet of the second shuttle valve 406 is connected with the fourth reversing valve 411 .
  • the second oil inlet of the third shuttle valve 407 is connected to the second brake valve group 409 , and the oil outlet of the third shuttle valve 407 is connected to the fifth reversing valve 413 .
  • the second oil inlet of the second shuttle valve 406 and the first oil inlet of the third shuttle valve 407 are connected with the sixth selector valve 403.
  • the first brake actuator and the second brake actuator are controlled by opening the second brake loop.
  • the third control loop includes a fourth hydraulic pump 500 , an eighth reversing valve 501 and a relief valve 502 , and the fourth hydraulic pump 500 provides hydraulic pressure to the first motor 200 and the second motor 300 through the eighth reversing valve 501 .
  • the overflow valve 502 is connected to control the oil supply pressure of the fourth hydraulic pump 500 to the first motor 200 and the second motor 300 .
  • the fourth hydraulic pump 500 is connected to the eighth reversing valve 501
  • the eighth reversing valve 501 is connected to the first motor 200 and the second motor 300
  • the relief valve 502 is connected to the eighth reversing valve.
  • the pressure of the circuit is precisely adjusted to the oil inlet port of the valve 501, thereby realizing precise adjustment of the pretightening force of the winch 100.
  • the relief valve 502 may be a proportional relief valve, which controls the circuit pressure through the input of current.
  • the relief valve 502 may be connected to the first force detection member 101 and the second force detection member 102, and based on the first force value and the second force value, the opening of the relief valve 502 is adjusted by the controller, In this way, the output pressure of the fourth hydraulic pump 500 is adjusted to realize precise adjustment of the reverse speeds of the first motor 200 and the second motor 300 .
  • the eighth reversing valve 501 switches to supply oil to the first motor 200 and the second motor 300 .
  • the sixth reversing valve 403 reversing, supplies oil to the fourth reversing valve 411 and the fifth reversing valve 413, and realizes Turn on the first motor 200 or the second motor 300 to adjust the tension.
  • the present application also provides a double winch hydraulic control system, the double winch hydraulic control system includes:
  • the first motor 200 the first motor 200 is used to connect with the first wire rope 103, and is used to lift and lower the first wire rope 103;
  • the second motor 300, the second motor 300 is used to connect with the second wire rope 104, and is used to lift and lower the second wire rope 104;
  • the first control loop the first control loop is connected with the first motor 200 so that the difference between the first force value a1 on the first steel wire rope 103 and the second force value a2 on the second steel rope 104 is within a first preset range Control the reverse rotation of the first motor 200 to tension the first steel wire rope 103 when inside;
  • the second control loop the second control loop is connected with the second motor 300 so that the difference between the first force value a1 on the first steel wire rope 103 and the second force value a2 on the second steel rope 104 is within a second preset range
  • the second motor 300 is controlled to reverse to tension the second wire rope 104 .
  • the first preset range means that the absolute value of the difference between the first force value a1 and the second force value a2 is greater than the first threshold F, and the first force value a1 is smaller than the second force value a2, and the second preset The range means that the absolute value of the difference between the first force value a1 and the second force value a2 is greater than the first threshold F, and the first force value a1 is greater than the second force value a2.
  • the double-winch hydraulic control system further includes a third control loop, and the third control loop is connected to the first motor 200 and the second motor 300 respectively;
  • the third control loop controls the first motor 200 to reverse to tension The first wire rope 103;
  • the third control loop controls the second motor 300 to reverse to tension the second wire rope 104;
  • the third preset range means that the absolute value of the difference between the first force value a1 and the second force value a2 is smaller than the first threshold F and greater than the second threshold f, and the first force value a1 is smaller than the second force value a2.
  • the fourth preset range means that the absolute value of the difference between the first force value a1 and the second force value a2 is smaller than the first threshold F and greater than the second threshold f, and the first force value a1 is greater than the second force value a2.
  • the first threshold F is greater than the second threshold f.
  • the reverse speeds of the first motor 200 and the second motor 300 controlled by the third control loop are smaller than the reverse speeds of the first motor 200 controlled by the first control loop, and are smaller than the reverse speeds of the first motor 300 controlled by the second control loop.
  • the reverse speed of the second motor 300 is smaller than the reverse speeds of the first motor 200 controlled by the first control loop, and are smaller than the reverse speeds of the first motor 300 controlled by the second control loop.
  • the first motor 200 or the second motor 300 (under the control of the second control loop) reverses at a high speed, and the first steel wire rope 200 or the third steel wire rope 104 quickly generates a pre-tightening force .
  • the first motor 200 or the second motor 300 By controlling the first motor 200 or the second motor 300 to achieve rapid reversal, the loose first wire rope 103 can be Or the second steel wire rope 104 is quickly tightened to ensure the quality of the groove.
  • the first motor 200 or the second motor 300 reverses at a low speed to precisely adjust the tension of the first wire rope 103 or the second wire rope 104 .
  • the working device 105 grabs the rock and soil, and the rock and soil will push the working device 105 upwards with a reaction force to the working device 105, and the working device 105 will produce a small deflection, and the first motor 200 or the second motor 300 is controlled to slowly
  • the fast reverse is fine-tuning, so that the working device 105 is aligned, and then the quality of the groove is guaranteed.
  • the setting manner of the first control loop, the second control loop and the third control loop may be the same as that of the above-mentioned embodiment, of course, loops that can realize the same function are also available.
  • the double winch hydraulic control system further includes a first brake actuator and a second brake actuator; the first brake actuator is used to control the rotation and stop of the first motor 200; the second The brake actuator is used to control the rotation and stop of the second motor 300 .
  • the double winch hydraulic control system may also include a first brake circuit and a second brake circuit.
  • the settings of the first brake actuator, the second brake actuator, and the first brake circuit and the second brake circuit can be the same as those in the above-mentioned embodiment, and will not be repeated here.
  • the present application also provides a work machine, including the double winch hydraulic control system of the above embodiment.
  • the operating machine can be a diaphragm wall grab, and when the diaphragm wall grab is deflected due to impact on the bottom of the tank or when the rock is excavated, the first wire rope 103 can be adjusted to And the tension size of the second steel wire rope 104, realizes the straightening of continuous wall grab bucket.
  • the present application also provides a double winch hydraulic control method, including:
  • the rotational speeds of the first motor 200 and the second motor 300 in the first working mode are different from the rotational speeds of the first motor 200 and the second motor 300 in the second working mode.
  • the first force value is measured by the first force detection member 101 of the first steel wire rope 103 in the above embodiment
  • the second force value is measured by the second force detection member 102 of the second steel wire rope 104 in the above embodiment. have to.
  • the first force value and the second force value are compared and judged by the controller, and then the signals are fed back to the first control loop, the second control loop and the third control loop controlling the first motor 200 and the second motor 300 .
  • the first control loop and the second control loop control the first motor 200 and the second motor 300 to reverse, that is, the first working mode, the first motor 200 and the second motor 300 achieve rapid reverse rotation.
  • the third control loop controls the first motor 200 and the second motor 300 to reverse, that is, the second working mode, the first motor 200 and the second motor 300 realize slow and high-precision reverse rotation. And then realize the staged control.
  • the double winch hydraulic control system obtaineds the first force value and the second force value by setting the first force detection part and the second force detection part on the first steel wire rope and the second steel wire rope, based on the first force value By comparing the data with the second force value, the first motor is controlled to tension the first steel wire rope, or the second motor is controlled to tension the second steel wire rope, thereby automatically adjusting the deflection of the working device and improving work efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

一种双卷扬液压控制***,包括:第一力检测件(101),用于检测第一钢丝绳(103)的第一力值;第二力检测件(102),用于检测第二钢丝绳(104)的第二力值;第一马达(200),与第一钢丝绳(103)连接;第二马达(300),与第二钢丝绳(104)连接;基于第一力值和第二力值的比较,控制第一马达(200)张紧第一钢丝绳(103),或者控制第二马达(300)张紧第二钢丝绳(104)。还包括一种作业机械及控制方法。通过张紧第一钢丝绳(103)或者第二钢丝绳(104),从而自动调整工作装置的偏斜,提高工作效率。

Description

双卷扬液压控制***、作业机械及控制方法 技术领域
本申请涉及卷扬控制技术领域,尤其涉及一种双卷扬液压控制***、作业机械及控制方法。
背景技术
在目前的作业机械领域中,例如对于连续墙抓斗而言,双卷扬连续墙抓斗在工作成槽过程中需要利用工作装置自重不断冲击地层,以实现对岩土的破碎;随后抓斗油缸推动斗瓣闭合,实现剪切抓取岩土。接触地层后,工作装置会产生一定的偏斜,卷扬处于松弛状态;斗瓣闭合抓取岩土时,岩土会给斗体一个反作用力推动斗体上移,工作装置也会产生一定的偏斜。操作手需不停的调整工作装置的姿态以保证成槽质量。这一现象导致成槽质量严重依赖操作手个人经验,且影响施工效率。
发明内容
本申请提供一种双卷扬液压控制***、作业机械及控制方法,用以解决现有技术中工作过程中工作装置产生偏斜,调整难度大,影响工作效率的缺陷,实现基于第一钢丝绳的第一力值和第二钢丝绳的第二力值的比较,控制第一马达张紧第一钢丝绳,或者控制第二马达张紧第二钢丝绳从而实现对工作装置偏斜的自动调整。
本申请提供一种双卷扬液压控制***,包括:
第一力检测件,所述第一力检测件用于检测第一钢丝绳的第一力值;
第二力检测件,所述第二力检测件用于检测第二钢丝绳的第二力值;
第一马达,所述第一马达与所述第一钢丝绳连接;
第二马达,所述第二马达与所述第二钢丝绳连接;
其中,当所述第一力值小于所述第二力值时,控制所述第一马达张紧所述第一钢丝绳;当所述第一力值大于所述第二力值时,控制所述第二马达张紧所述第二钢丝绳。
根据本申请提供的双卷扬液压控制***,还包括第一控制回路和第二控制 回路;
所述第一控制回路与所述第一马达连接,用于当所述第一力值小于所述第二力值时驱动所述第一马达;
所述第二控制回路与所述第二马达连接,用于当所述第一力值大于所述第二力值时驱动所述第二马达。
根据本申请提供的双卷扬液压控制***,所述第一控制回路包括第一液压泵、第一换向阀和第一平衡阀,所述第一液压泵与所述第一换向阀连接,所述第一换向阀与所述第一平衡阀连接,所述第一平衡阀与所述第一马达连接,
其中,所述第一换向阀通过换向控制所述第一马达的正反转;
所述第一平衡阀连接为,在控制所述第一马达反转从而张紧所述第一钢丝绳时,所述第一液压泵提供的油液依次经过第一换向阀和所述第一平衡阀的单向阀部分进入所述第一马达,而在控制所述第一马达正转从而下放所述第一钢丝绳时,油液进入所述第一平衡阀的先导口而打开阀芯,使得所述第一马达的回油经过所述第一平衡阀流出。
根据本申请提供的双卷扬液压控制***,所述第二控制回路包括第二液压泵、第二换向阀和第二平衡阀,所述第二液压泵与所述第二换向阀连接,所述第二换向阀与所述第二平衡阀连接,所述第二平衡阀与所述第二马达连接,
其中,所述第二换向阀通过换向控制所述第二马达的正反转;
所述第二平衡阀连接为,在控制所述第二马达反转从而张紧所述第二钢丝绳时,所述第二液压泵提供的油液依次经过第二换向阀和所述第二平衡阀的单向阀部分进入所述第二马达,而在控制所述第二马达正转从而下放所述第二钢丝绳时,油液进入所述第二平衡阀的先导口而打开阀芯,使得所述第二马达的回油经过所述第二平衡阀流出。
根据本申请提供的双卷扬液压控制***,还包括第一制动执行机构和第二制动执行机构;
所述第一制动执行机构用于控制所述第一马达的转动和停止;
所述第二制动执行机构用于控制所述第二马达的转动和停止。
根据本申请提供的双卷扬液压控制***,包括第一制动回路,所述第一制动回路包括第三液压泵和第三换向阀,所述第三液压泵与所述第三换向阀连接,所述第三换向阀与所述第一换向阀的先导口和第二换向阀的先导口连接;
其中,所述第一换向阀与所述第一制动执行机构连接以向所述第一制动执 行机构提供液压油控制所述第一制动执行机构,所述第二换向阀与所述第二制动执行机构连接以向所述第二制动执行机构提供液压油控制所述第二制动执行机构。
根据本申请提供的双卷扬液压控制***,所述第一制动回路还包括第一制动阀组和第二制动阀组;
其中,所述第一换向阀与所述第一制动阀组连接,所述第一制动阀组与所述第一制动执行机构连接,从所述第一换向阀流出的液压油经所述第一制动阀组减压后供给所述第一制动执行机构;
所述第二换向阀与所述第二制动阀组连接,所述第二制动阀组与所述第二制动执行机构连接,从所述第二换向阀流出的液压油经所述第二制动阀组减压后供给所述第二制动执行机构。
本申请还提供一种双卷扬液压控制***,所述双卷扬液压控制***包括:
第一马达,所述第一马达用于与第一钢丝绳连接,以下放和收卷所述第一钢丝绳;
第二马达,所述第二马达用于与第二钢丝绳连接,以下放和收卷所述第二钢丝绳;
第一控制回路,所述第一控制回路用于控制所述第一马达,在所述第一钢丝绳上的第一力值和所述第二钢丝绳上的第二力值的差值在第一预设范围内时所述第一控制回路控制所述第一马达反转以收卷所述第一钢丝绳;
第二控制回路,所述第二控制回路用于控制所述第二马达正反转,在所述第一钢丝绳上的第一力值和所述第二钢丝绳上的第二力值的差值在第二预设范围内时所述第二控制回路控制所述第二马达反转以收卷所述第二钢丝绳。
根据本申请提供的双卷扬液压控制***,所述第一控制回路包括第一液压泵、第一换向阀和第一平衡阀,所述第一液压泵与所述第一换向阀连接,所述第一换向阀与所述第一平衡阀连接,所述第一平衡阀与所述第一马达连接;其中,所述第一换向阀通过换向控制所述第一马达的正反转;
所述第一平衡阀连接为,在控制所述第一马达反转从而张紧所述第一钢丝绳时,所述第一液压泵提供的油液依次经过第一换向阀和所述第一平衡阀的单向阀部分进入所述第一马达,而在控制所述第一马达正转从而下放所述第一钢丝绳时,油液进入所述第一平衡阀的先导口而打开阀芯,使得所述第一马达的回油经过所述第一平衡阀流出。
根据本申请提供的双卷扬液压控制***,所述第二控制回路包括第二液压泵、第二换向阀和第二平衡阀,所述第二液压泵与所述第二换向阀连接,所述第二换向阀与所述第二平衡阀连接,所述第二平衡阀与所述第二马达连接,其中,所述第二换向阀通过换向控制所述第二马达的正反转;
所述第二平衡阀连接为,在控制所述第二马达反转从而张紧所述第二钢丝绳时,所述第二液压泵提供的油液依次经过第二换向阀和所述第二平衡阀的单向阀部分进入所述第二马达,而在控制所述第二马达正转从而下放所述第二钢丝绳时,油液进入所述第二平衡阀的先导口而打开阀芯,使得所述第二马达的回油经过所述第二平衡阀流出。
根据本申请提供的双卷扬液压控制***,所述第一液压泵和所述第二液压泵由同一发动机控制。
根据本申请提供的双卷扬液压控制***,所述双卷扬液压控制***还包括第一制动执行机构和第二制动执行机构;
所述第一制动执行机构用于控制所述第一马达的转动和停止;
所述第二制动执行机构用于控制所述第二马达的转动和停止。
根据本申请提供的双卷扬液压控制***,所述双卷扬液压控制***还包括第一制动回路,所述第一制动回路包括第三液压泵和第三换向阀,所述第三液压泵与所述第三换向阀连接,所述第三换向阀与所述第一换向阀的先导口和第二换向阀的先导口连接,以向所述先导口输入油液使得所述第一换向阀换向至控制所述第一马达反转,以及使得所述第二换向阀换向至控制所述第二马达反转;
其中,所述第一换向阀与所述第一制动执行机构连接,在所述第一换向阀换向至控制所述第一马达反转时,所述第一换向阀向所述第一制动执行机构供油,使得所述第一制动执行机构控制所述第一马达转动;
所述第二换向阀与所述第二制动执行机构连接,在所述第二换向阀换向至控制所述第二马达反转时,所述第二换向阀向所述第二制动执行机构供油,使得所述第二制动执行机构控制所述第二马达转动。
根据本申请提供的双卷扬液压控制***,所述第一制动回路还包括第一制动阀组和第二制动阀组;
其中,所述第一换向阀与所述第一制动阀组连接,所述第一制动阀组与所述第一制动执行机构连接,从所述第一换向阀流出的液压油经所述第一制动阀 组减压后供给所述第一制动执行机构;
所述第二换向阀与所述第二制动阀组连接,所述第二制动阀组与所述第二制动执行机构连接,从所述第二换向阀流出的液压油经所述第二制动阀组减压后供给所述第二制动执行机构。
根据本申请提供的双卷扬液压控制***,所述第一制动回路还包括第七换向阀,所述第七换向阀的进油口与所述第三液压泵连接,所述第七换向阀的出油口与所述第一换向阀的另一先导口连接和所述第二换向阀的另一先导口连接,以向该另一先导口输入油液使得所述第一换向阀换向至控制所述第一马达正转,以及使得所述第二换向阀换向至控制所述第二马达正转。
根据本申请提供的双卷扬液压控制***,所述双卷扬液压控制***还包括第三控制回路,所述第三控制回路分别与所述第一马达和所述第二马达连接;
在所述第一钢丝绳上的第一力值和所述第二钢丝绳上的第二力值的差值在第三预设范围内时,所述第三控制回路控制所述第一马达反转以张紧所述第一钢丝绳;
在所述第一钢丝绳上的第一力值和所述第二钢丝绳上的第二力值的差值在第四预设范围内时,所述第三控制回路控制所述第二马达反转以张紧所述第二钢丝绳;
其中,所述第三控制回路控制的所述第一马达和所述第二马达的反转速度小于所述第一控制回路所控制的第一马达的反转速度,并小于所述第二控制回路所控制的第二马达的反转速度。
根据本申请提供的双卷扬液压控制***,所述第三控制回路包括第四液压泵、第八换向阀和溢流阀;
所述第四液压泵经所述第八换向阀向所述第一马达和所述第二马达提供液压油,所述溢流阀连接为控制所述第四液压泵向所述第一马达和所述第二马达的供油压力。
本申请还提供了一种作业机械,包括上述的双卷扬液压控制***。
本申请还提供了一种双卷扬液压控制方法,包括:
获取第一钢丝绳的第一力值,获取第二钢丝绳的第二力值;
判断所述第一力值和所述第二力值的大小;
控制所述第一钢丝绳所连接的第一马达反转,或者控制所述第二钢丝绳所连接的第二马达反转。
根据本申请提供的双卷扬液压控制方法,所述判断所述第一力值和所述第二力值的大小之前,还包括:
预设第一阈值和第二阈值,所述第一阈值大于所述第二阈值;
当所述第一力值与所述第二力值作差的绝对值大于所述第一阈值时,所述第一马达和所述第二马达在第一工作模式下反转;
当所述第一力值与所述第二力值作差的绝对值小于所述第一阈值,且大于第二阈值时,所述第一马达和所述第二马达在第二工作模式下反转。
本申请提供的双卷扬液压控制***,通过在第一钢丝绳和第二钢丝绳上设置第一力检测件和第二力检测件从而获取第一力值和第二力值,基于第一力值和第二力值的比较数据,控制第一马达张紧第一钢丝绳,或者控制第二马达张紧第二钢丝绳,从而自动调整工作装置的偏斜,提高工作效率。
进一步,在本申请提供的作业机械和双卷扬液压控制方法中,由于具备如上所述的双卷扬液压控制***,因此同样具备如上所述的各种优势。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请的一个实施方式提供的双卷扬液压控制***的液压原理图;
图2是根据本申请的一个实施方式提供的连续墙抓斗冲击槽底的状态示意图;
图3是根据本申请的一个实施方式提供的连续墙抓斗挖掘岩石的状态示意图;
图4是根据本申请的一个实施方式提供的双卷扬液压控制方法流程图。
附图标记:
100:卷扬;101:第一力检测件;102:第二力检测件;103:第一钢丝绳;104:第二钢丝绳;105:工作装置;
200:第一马达;201:第一液压泵;202:第一换向阀;203:第一平衡阀;
300:第二马达;301:第二液压泵;302:第二换向阀;303:第二平衡阀;
400:第三液压泵;401:第三换向阀;402:第七换向阀;403:第六换向阀;404:第一梭阀;405:第一制动阀组;406:第二梭阀;407:第三梭阀;408:第四梭阀;409:第二制动阀组;410:第一制动缸;411:第四换向阀;412:第二制动缸;413:第五换向阀;
500:第四液压泵;501:第八换向阀;502:溢流阀。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例的描述中,需要说明的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
下面结合图1至图4,对本申请的实施例进行描述。应当理解的是,以下所述仅是本申请的示意性实施方式,并不对本申请构成限定。
如图1所示,本申请提供了一种双卷扬液压控制***,包括:
第一力检测件101和第二力检测件102,第一力检测件101用于检测第一钢丝绳103的第一力值;第二力检测件102用于检测第二钢丝绳104的第二力值。第一力检测件101和第二力检测件102可以安装在卷扬100的滑轮架上,例如可以是拉力传感器、测力计或拉力器等,用于检测第一钢丝绳103和第二钢丝绳104的拉力。其中,第一钢丝绳103和第二钢丝绳104为卷扬100的两根钢丝绳,该两根钢丝绳用于连接工作装置105,该工作装置105可以为例如连续墙抓斗,也可以为其它工作装置。
以及,第一马达200和第二马达300,第一马达200与第一钢丝绳103连接;第二马达300与第二钢丝绳104连接。其中,第一马达200和第二马达300可以正转和反转,例如,在实际使用过程中,第一马达200和第二马达300正转时,第一钢丝绳103和第二钢丝绳104拉力变小,第一马达200和第二马达300反转时,第一钢丝绳103和第二钢丝绳104拉力变大。
其中,基于第一力值和第二力值的比较,控制第一马达200张紧第一钢丝绳103,或者控制第二马达300张紧第二钢丝绳104。也就是说,基于第一力值和第二力值的大小,对第一马达200和第二马达300进行控制实现只有一个马达可以输出,例如,当第一力值大于第二力值时(此时第二钢丝绳104相比第一钢丝绳103松弛使得工作装置偏斜),控制第二马达300反转以收卷第二钢丝绳104,使得第二钢丝绳104张紧;当第一力值小于第二力值时(此时第一钢丝绳103相比第二钢丝绳104松弛使得工作装置偏斜),控制第一马达200反转以收卷第一钢丝绳103,使得第一钢丝绳103张紧。
本申请提供的技术方案,基于第一钢丝绳103的第一力值和第二钢丝绳104的第二力值的比较,控制第一马达或第二马达反转,从而使得第一钢丝绳103或第二钢丝绳104的张紧,可以调整工作装置105的偏斜状态。
在本申请的一个实施例中,双卷扬液压控制***还包括第一控制回路和第二控制回路;第一控制回路与第一马达200连接,用于当第一力值小于第二力值时驱动第一马达200反转;第二控制回路与第二马达300连接,用于当第一力值大于第二力值时驱动第二马达300反转。
具体来说,预设第一阈值F。
在第一比较数据下,第一力值a1与第二力值a2作差的绝对值大于第一阈值F,并且第一力值a1小于第二力值a2。此时,第一马达200高速反转,第一钢丝绳103迅速产生预紧力,例如,抓斗快速下放冲击槽底的状态。也就是说,在第一比较数据下,工作装置105产生倾斜,第一钢丝绳103比第二钢丝绳104松。并且,第一钢丝绳103与第二钢丝绳104的偏差较大,可以快速的驱动第一马达200反转,对第一钢丝绳103进行快速拉紧。
在第二比较数据下,第一力值a1与第二力值a2作差的绝对值大于第一阈值F,并且第一力值a1大于第二力值a2。此时,第二马达300高速反转,第二钢丝绳104迅速产生预紧力,例如,抓斗快速下放冲击槽底的状态。也就是说,在第二比较数据下,工作装置105产生倾斜,第二钢丝绳104比第一钢丝绳103松。并且,第一钢丝绳103与第二钢丝绳104的偏差较大,可以快速的驱动第二马达300反转,对第二钢丝绳104进行快速拉紧。
进一步地,在本申请的另一个实施例中,双卷扬液压控制***还包括第三控制回路,第三控制回路分别与第一马达200、第二马达300连接;在第三比较数据下,第三控制回路驱动第一马达200转动,或者在第四比较数据下,第三控制回路驱动转动。
具体地,预设第二阈值f,第一阈值F大于第二阈值f。基于控制的精度,第一阈值F和第二阈值f所选取的数值不同。
在第三比较数据下,第一力值a1与第二力值a2作差的绝对值小于第一阈值F,且大于第二阈值f,第一力值a1小于第二力值a2。第一马达200低速反转,精确调节第一钢丝绳103的张紧力,例如,在抓斗挖掘岩土时产生倾斜的状态进行调节。也就是说,在第三比较数据下,工作装置105产生倾斜,第一钢丝绳103比第二钢丝绳104松。并且,第一钢丝绳103与第二钢丝绳104的偏差较小,可以慢速的驱动第一马达200反转,对第一钢丝绳103进行慢速拉紧。
同理,在第四比较数据下,第一力值a1与第二力值a2作差的绝对值小于第一阈值F,且大于第二阈值f,第一力值a1大于第二力值a2。第二马达300低速反转,精确调节第二钢丝绳104的张紧力,例如,在抓斗挖掘岩土时产生倾斜的状态进行调节。也就是说,在第四比较数据下,工作装置105产生倾斜,第二钢丝绳104比第一钢丝绳103松。并且,第一钢丝绳103与第二钢丝绳104的偏差较小,可以慢速的驱动第二马达300反转,对第二钢丝绳104进行慢速 拉紧。
继续参考图1,在本申请的一个可选实施例中,第一控制回路包括第一液压泵201、第一换向阀202和第一平衡阀203,第一液压泵201与第一换向阀202连接,第一换向阀202与第一平衡阀203连接,第一平衡阀203与第一马达200连接,其中,第一换向阀202通过换向控制第一马达200的正反转。
第一平衡阀203连接为,在控制第一马达200反转从而张紧第一钢丝绳103时,第一液压泵201提供的油液依次经过第一换向阀202和第一平衡阀203的单向阀部分进入第一马达200,而在控制第一马达200正转从而下放第一钢丝绳103时,油液进入第一平衡阀203的先导口而打开阀芯,使得第一马达200的回油经过第一平衡阀203流出。通过在第一马达200下放第一钢丝绳103时设置回油经过第一平衡阀203,可以有效控制第一钢丝绳103的下放速度,避免其超速下降。
同理,在本申请的另一个实施例中,第二控制回路包括第二液压泵301、第二换向阀302和第二平衡阀303,第二液压泵301与第二换向阀302连接,第二换向阀302与第二平衡阀303连接,第二平衡阀303与第二马达300连接,其中,第二换向阀302控制第二马达300的正反转。
第二平衡阀303连接为,在控制第二马达300反转从而张紧第二钢丝绳104时,第二液压泵301提供的油液依次经过第二换向阀302和第二平衡阀303的单向阀部分进入第二马达300,而在控制第二马达300正转从而下放第二钢丝绳104时,油液进入第二平衡阀303的先导口而打开阀芯,使得第二马达300的回油经过第二平衡阀303流出。通过在第二马达300下放第二钢丝绳104时,设置回油经过第二平衡阀303,可以有效控制第二钢丝绳104的下放速度,避免其超速下降。
此外,第一平衡阀203和第二平衡阀303为单向平衡阀,第一换向阀202和第二换向阀302为三位六通换向阀,第一换向阀202和第二换向阀302可以为电磁换向阀,或者液控换向阀。
进一步地,在本申请的可选实施例中,双卷扬液压控制***还包括第一制动执行机构和第二制动执行机构;第一制动执行机构用于控制第一马达200的转动和停止;第二制动执行机构用于控制第二马达300的转动和停止。
换句话说,在第一比较数据和第三比较数据下,第一制动执行机构控制第一马达200输出扭矩,使第一钢丝绳103张紧,在第一力值a1与第二力值a2 差的绝对值小于第二阈值f时,第一制动执行机构控制第一马达200停止转动。
在第二比较数据和第四比较数据下,第二执行机构控制第二马达300输出扭矩,使第二钢丝绳104张紧,在第一力值a1与第二力值a2差的绝对值小于第二阈值f时,第二制动执行机构控制第二马达300停止转动。
更进一步地,第一液压泵201和第二液压泵301可以通过一个发动机带动,即第一液压泵201和第二液压泵301并联,在第一马达200和第二马达300正转时,即同时控制第一钢丝绳103和第二钢丝绳104下放时,可以采用一个发动机同时控制第一马达200和第二马达300,达到第一钢丝绳103和第二钢丝绳104下放的同步,保证工作装置105平稳。在工作装置105倾斜状态下,通过第一制动执行机构和第二制动执行机构单独控制第一马达200和第二马达300的单个输出状态,对工作装置105进行调整。
在本申请的其他实施例中,双卷扬液压控制***包括第一制动回路,第一制动回路包括第三液压泵400和第三换向阀401,第三液压泵400与第三换向阀401连接,第三换向阀401与第一换向阀202的先导口和第二换向阀302的先导口连接,以向该先导口输入油液使得第一换向阀202换向至控制第一马达200反转,以及使得第二换向阀302换向至控制第二马达300反转;其中,第一换向阀202与第一制动执行机构连接,以向所述第一制动执行机构提供液压油控制所述第一制动执行机构,第二换向阀302与第二制动执行机构连接,以向所述第二制动执行机构提供液压油控制所述第二制动执行机构。
也就是说,切换第三换向阀401,通过第三液压泵400的输出油作为先导油控制第一换向阀202和第二换向阀302换向,在第一换向阀202和第二换向阀302控制第一马达200和第二马达300反转时,从第一换向阀202和第二换向阀302流出的液压油一部分进入第一马达200和第二马达300,另一部分进入第一制动执行机构和第二制动执行机构,控制第一制动执行机构和第二制动执行机构的开启和关闭,进而实现对第一马达200和第二马达300的扭矩输出。
例如,第一制动执行机构包括第四换向阀411和第一制动缸410,第二制动执行机构包括第五换向阀413和第二制动缸412。从第一换向阀202流出的液压油进入第四换向阀411中,在第四换向阀411换向后,第一制动缸410解除对第一马达200的制动。
同理,从第二换向阀302流出的液压油进入第五换向阀413中,在第五换向阀413换向后,第一制动缸410解除对第二马达300的制动。第四换向阀411 和第五换向阀413在第一马达200和第二马达300反转的过程中,单独切换。
继续参考图1,在本申请的其他可选实施例中,第一制动回路还包括第一制动阀组405和第二制动阀组409;其中,第一换向阀202与第一制动阀组405连接,第一制动阀组405的出油口与第一制动执行机构连接,从第一换向阀202流出的液压油经第一制动阀组405减压后供给第一制动执行机构;第二换向阀302与第二制动阀组409连接,第二制动阀组409的出油口与第二制动执行机构连接,从第二换向阀302流出的液压油经第二制动阀组409减压后供给第二制动执行机构。
其中,第一制动阀组405和第二制动阀组409可以采用顺序阀和减压阀降低压力后给第四换向阀411和第五换向阀413供油。
在第一制动阀组405和第二制动阀组409的进油口处设置有第一梭阀404和第四梭阀408,第一梭阀404的第一进油口连接在第一平衡阀203和第一换向阀202之间的油路上,第一梭阀404的第二进油口连接在第一马达200的第一油口和第一换向阀202之间的油路上,其中,第一平衡阀203设置在第一马达200的第二油口和第一换向阀202之间的油路上。第四梭阀408同理,在此不进行赘述。
此外,在本申请的具体实施例中,还包括第二制动回路,第二制动回路包括第六换向阀403,第三液压泵400与第六换向阀403连接;第六换向阀403分别与第一制动执行机构、第二制动制动执行机构连接。
更进一步地,第一制动回路还包括第七换向阀402,第七换向阀402的进油口与第三液压泵400连接,第七换向阀402的出油口与第一换向阀202和第二换向阀302的另一个先导口连接,第七换向阀402换向实现第一换向阀202和第二换向阀302控制第一马达200和第二马达300同时正转。并且,通过第一制动阀组405和第二制动阀组409给第一制动执行机构和第二制动执行机构供油,同时切换第四换向阀411和第五换向阀413,解除第一制动缸410和第二制动缸412的制动效果。
具体来说,双卷扬液压控制***还包括第二梭阀406和第三梭阀407,其中第二梭阀406的第一进油口与第一制动阀组405的出油口连接,第二梭阀406的第二进油口与第三梭阀407的第一进油口连接,第二梭阀406的出油口与第四换向阀411连接。第三梭阀407的第二进油口与第二制动阀组409连接,第三梭阀407的出油口与第五换向阀413连接。第二梭阀406的第二进油口和第 三梭阀407的第一进油口与第六换向阀403连接。
在第三控制回路工作的状态下,通过开启第二制动回路对第一制动执行机构和第二制动执行机构进行控制。
具体地,第三控制回路包括第四液压泵500、第八换向阀501和溢流阀502,第四液压泵500经第八换向阀501向第一马达200和第二马达300提供液压油,所述溢流阀502连接为控制第四液压泵500向第一马达200和第二马达300的供油压力。
具体的,如图1所示,第四液压泵500与第八换向阀501连接,第八换向阀501与第一马达200和第二马达300连接,溢流阀502连接在第八换向阀501的进油口精确调节回路压力,进而实现卷扬100预紧力精确调节。进一步地,溢流阀502可以为比例溢流阀,通过电流的输入控制回路压力。可选地,溢流阀502可以与第一力检测件101和第二力检测件102连接,基于第一力值和第二力值,通过控制器对溢流阀502的开度进行调整,从而对第四液压泵500的输出压力进行调整,实现对第一马达200和第二马达300反转速度的精确调整。
在第三比较数据和第四比较数据下,第八换向阀501换向,从而给第一马达200和第二马达300供油。第六换向阀403换向,给第四换向阀411和第五换向阀413供油,通过控制第四换向阀411、第五换向阀413切换中的一个换向,从而实现开启第一马达200或第二马达300进行张紧力的调节。
本申请还提供一种双卷扬液压控制***,所述双卷扬液压控制***包括:
第一马达200,第一马达200用于与第一钢丝绳103连接,用于提升和下放所述第一钢丝绳103;
第二马达300,第二马达300用于与第二钢丝绳104连接,用于提升和下放第二钢丝绳104;
第一控制回路,第一控制回路与第一马达200连接,以在第一钢丝绳103上的第一力值a1和第二钢丝绳104上的第二力值a2的差值在第一预设范围内时控制第一马达200反转以张紧第一钢丝绳103;
第二控制回路,第二控制回路与第二马达300连接,以在第一钢丝绳103上的第一力值a1和第二钢丝绳104上的第二力值a2的差值在第二预设范围内时控制第二马达300反转以张紧第二钢丝绳104。
其中,所述第一预设范围是指第一力值a1与第二力值a2作差的绝对值大于第一阈值F,并且第一力值a1小于第二力值a2,第二预设范围是指第一力值 a1与第二力值a2作差的绝对值大于第一阈值F,并且第一力值a1大于第二力值a2。
在一个实施方式中,所述双卷扬液压控制***还包括第三控制回路,第三控制回路分别与第一马达200和第二马达300连接;
在第一钢丝绳103上的第一力值a1和第二钢丝绳104上的第二力值a2的差值在第三预设范围内时,第三控制回路控制第一马达200反转以张紧第一钢丝绳103;
在第一钢丝绳103上的第一力值a1和第二钢丝绳104上的第二力值a2的差值在第四预设范围内时,第三控制回路控制第二马达300反转以张紧第二钢丝绳104;
所述第三预设范围是指第一力值a1与第二力值a2作差的绝对值小于第一阈值F,且大于第二阈值f,第一力值a1小于第二力值a2。
所述第四预设范围是指第一力值a1与第二力值a2作差的绝对值小于第一阈值F,且大于第二阈值f,第一力值a1大于第二力值a2。其中,第一阈值F大于第二阈值f。
其中,所述第三控制回路控制的第一马达200和第二马达300的反转速度小于第一控制回路所控制的第一马达200的反转速度,且小于第二控制回路所控制的第二马达300的反转速度。
也就是说,当|a1-a2|>F时,第一马达200或第二马达300(在第二控制回路控制下)高速反转,第一钢丝绳200或第三钢丝绳104迅速产生预紧力。例如,在连续墙抓斗中,工作装置105下放接触地层,会发生大幅度的偏斜,通过对第一马达200或第二马达300进行控制实现快速反转,可以使松弛的第一钢丝绳103或第二钢丝绳104迅速拉紧保证成槽质量。
当F>|a1-a2|>f时,通过第三控制回路控制,第一马达200或第二马达300低速反转,精确调节第一钢丝绳103或第二钢丝绳104的张紧力。例如,工作装置105抓取岩土,岩土会给工作装置105反作用力推动工作装置105上移,工作装置105会产生小幅度的偏斜,通过控制第一马达200或第二马达300进行慢速反转即微调,使工作装置105摆正,进而保证成槽质量。
当|a1-a2|<f时,第一马达200和第二马达300停止转动,调节完成。
其中,所述第一控制回路、第二控制回路和第三控制回路的设置方式可以与上述实施方式相同,当然能够实现相同功能的回路也可。
在一个实施例中,所述双卷扬液压控制***还包括第一制动执行机构和第二制动执行机构;第一制动执行机构用于控制第一马达200的转动和停止;第二制动执行机构用于控制第二马达300的转动和停止。
所述双卷扬液压控制***还可包括第一制动回路和第二制动回路。所述第一制动执行机构、第二制动执行机构以及第一制动回路和第二制动回路的设置可以与上述实施方式相同,在此不再赘述。
本申请还提供了一种作业机械,包括上述实施例的双卷扬液压控制***。
如图2和图3所示,其中,作业机械可以为连续墙抓斗,在连续墙抓斗因冲击槽底后产生偏斜或挖掘岩石时产生偏斜的状态下,通过调整第一钢丝绳103和第二钢丝绳104的张力大小,实现连续墙抓斗的摆正。
如图4所示,本申请还提供了一种双卷扬液压控制方法,包括:
S1:获取第一钢丝绳103的第一力值,获取第二钢丝绳104的第二力值;
S2:判断第一力值和第二力值的大小;
S3:控制第一钢丝绳103所连接的第一马达200反转,或者控制第二钢丝绳104所连接的第二马达300反转。
进一步地,在本申请的一个可选实施例中,判断第一力值和第二力值的大小之前,还包括:
S11:预设第一阈值F和第二阈值f,第一阈值F大于第二阈值f;
S12:当第一力值与第二力值作差的绝对值大于第一阈值F时,第一马达200和第二马达300在第一工作模式下反转;
当第一力值与第二力值作差的绝对值小于第一阈值F,且大于第二阈值f时,第一马达200和第二马达300在第二工作模式下反转。
其中,第一工作模式下第一马达200和第二马达300的转速不同于第二工作模式下第一马达200和第二马达300的转速。
具体地,例如,第一力值是上述实施例中第一钢丝绳103的第一力检测件101测得,第二力值是上述实施例中的第二钢丝绳104的第二力检测件102测得。第一力值和第二力值通过控制器进行比较判断,进而将信号反馈给控制第一马达200和第二马达300的第一控制回路、第二控制回路以及第三控制回路。
其中,当第一力值与第二力值作差的绝对值大于第一阈值F时,第一控制回路、第二控制回路控制第一马达200和第二马达300反转,即第一工作模式,第一马达200和第二马达300实现快速反转。当第一力值与第二力值作差的绝 对值小于第一阈值F,且大于第二阈值f时,第三控制回路控制第一马达200和第二马达300反转,即第二工作模式,第一马达200和第二马达300实现慢速高精度反转。进而实现分阶段控制。
本申请提供的双卷扬液压控制***,通过在第一钢丝绳和第二钢丝绳上设置第一力检测件和第二力检测件从而获取第一力值和第二力值,基于第一力值和第二力值的比较数据,控制第一马达张紧第一钢丝绳,或者控制第二马达张紧第二钢丝绳,从而自动调整工作装置的偏斜,提高工作效率。
进一步,在本申请提供的作业机械和双卷扬液压控制方法中,由于具备如上所述的双卷扬液压控制***,因此同样具备如上所述的各种优势。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种双卷扬液压控制***,其特征在于,包括:
    第一力检测件,所述第一力检测件用于检测第一钢丝绳的第一力值;
    第二力检测件,所述第二力检测件用于检测第二钢丝绳的第二力值;
    第一马达,所述第一马达与所述第一钢丝绳连接;
    第二马达,所述第二马达与所述第二钢丝绳连接;
    其中,当所述第一力值小于所述第二力值时,控制所述第一马达张紧所述第一钢丝绳;当所述第一力值大于所述第二力值时,控制所述第二马达张紧所述第二钢丝绳。
  2. 根据权利要求1所述的双卷扬液压控制***,其特征在于,还包括第一控制回路和第二控制回路;
    所述第一控制回路与所述第一马达连接,用于当所述第一力值小于所述第二力值时驱动所述第一马达;
    所述第二控制回路与所述第二马达连接,用于当所述第一力值大于所述第二力值时驱动所述第二马达。
  3. 根据权利要求2所述的双卷扬液压控制***,其特征在于,所述第一控制回路包括第一液压泵、第一换向阀和第一平衡阀,所述第一液压泵与所述第一换向阀连接,所述第一换向阀与所述第一平衡阀连接,所述第一平衡阀与所述第一马达连接,
    其中,所述第一换向阀通过换向控制所述第一马达的正反转;
    所述第一平衡阀连接为,在控制所述第一马达反转从而张紧所述第一钢丝绳时,所述第一液压泵提供的油液依次经过第一换向阀和所述第一平衡阀的单向阀部分进入所述第一马达,而在控制所述第一马达正转从而下放所述第一钢丝绳时,油液进入所述第一平衡阀的先导口而打开阀芯,使得所述第一马达的回油经过所述第一平衡阀流出。
  4. 根据权利要求3所述的双卷扬液压控制***,其特征在于,所述第二控制回路包括第二液压泵、第二换向阀和第二平衡阀,所述第二液压泵与所述第二换向阀连接,所述第二换向阀与所述第二平衡阀连接,所述第二平衡阀与所述第二马达连接,
    其中,所述第二换向阀通过换向控制所述第二马达的正反转;
    所述第二平衡阀连接为,在控制所述第二马达反转从而张紧所述第二钢丝绳时,所述第二液压泵提供的油液依次经过第二换向阀和所述第二平衡阀的单向阀部分进入所述第二马达,而在控制所述第二马达正转从而下放所述第二钢丝绳时,油液进入所述第二平衡阀的先导口而打开阀芯,使得所述第二马达的回油经过所述第二平衡阀流出。
  5. 根据权利要求4所述的双卷扬液压控制***,其特征在于,还包括第一制动执行机构和第二制动执行机构;
    所述第一制动执行机构用于控制所述第一马达的转动和停止;
    所述第二制动执行机构用于控制所述第二马达的转动和停止。
  6. 根据权利要求5所述的双卷扬液压控制***,其特征在于,包括第一制动回路,所述第一制动回路包括第三液压泵和第三换向阀,所述第三液压泵与所述第三换向阀连接,所述第三换向阀与所述第一换向阀的先导口和第二换向阀的先导口连接;
    其中,所述第一换向阀与所述第一制动执行机构连接以向所述第一制动执行机构提供液压油控制所述第一制动执行机构,所述第二换向阀与所述第二制动执行机构连接以向所述第二制动执行机构提供液压油控制所述第二制动执行机构。
  7. 根据权利要求6所述的双卷扬液压控制***,其特征在于,所述第一制动回路还包括第一制动阀组和第二制动阀组;
    其中,所述第一换向阀与所述第一制动阀组连接,所述第一制动阀组与所述第一制动执行机构连接,从所述第一换向阀流出的液压油经所述第一制动阀组减压后供给所述第一制动执行机构;
    所述第二换向阀与所述第二制动阀组连接,所述第二制动阀组与所述第二制动执行机构连接,从所述第二换向阀流出的液压油经所述第二制动阀组减压后供给所述第二制动执行机构。
  8. 一种双卷扬液压控制***,其特征在于,所述双卷扬液压控制***包括:
    第一马达,所述第一马达用于与第一钢丝绳连接,以下放和收卷所述第一钢丝绳;
    第二马达,所述第二马达用于与第二钢丝绳连接,以下放和收卷所述第二钢丝绳;
    第一控制回路,所述第一控制回路用于控制所述第一马达,在所述第一钢 丝绳上的第一力值和所述第二钢丝绳上的第二力值的差值在第一预设范围内时所述第一控制回路控制所述第一马达反转以收卷所述第一钢丝绳;
    第二控制回路,所述第二控制回路用于控制所述第二马达正反转,在所述第一钢丝绳上的第一力值和所述第二钢丝绳上的第二力值的差值在第二预设范围内时所述第二控制回路控制所述第二马达反转以收卷所述第二钢丝绳。
  9. 根据权利要求8所述的双卷扬液压控制***,其特征在于,所述第一控制回路包括第一液压泵、第一换向阀和第一平衡阀,所述第一液压泵与所述第一换向阀连接,所述第一换向阀与所述第一平衡阀连接,所述第一平衡阀与所述第一马达连接;其中,所述第一换向阀通过换向控制所述第一马达的正反转;
    所述第一平衡阀连接为,在控制所述第一马达反转从而张紧所述第一钢丝绳时,所述第一液压泵提供的油液依次经过第一换向阀和所述第一平衡阀的单向阀部分进入所述第一马达,而在控制所述第一马达正转从而下放所述第一钢丝绳时,油液进入所述第一平衡阀的先导口而打开阀芯,使得所述第一马达的回油经过所述第一平衡阀流出。
  10. 根据权利要求9所述的双卷扬液压控制***,其特征在于,所述第二控制回路包括第二液压泵、第二换向阀和第二平衡阀,所述第二液压泵与所述第二换向阀连接,所述第二换向阀与所述第二平衡阀连接,所述第二平衡阀与所述第二马达连接,其中,所述第二换向阀通过换向控制所述第二马达的正反转;
    所述第二平衡阀连接为,在控制所述第二马达反转从而张紧所述第二钢丝绳时,所述第二液压泵提供的油液依次经过第二换向阀和所述第二平衡阀的单向阀部分进入所述第二马达,而在控制所述第二马达正转从而下放所述第二钢丝绳时,油液进入所述第二平衡阀的先导口而打开阀芯,使得所述第二马达的回油经过所述第二平衡阀流出。
  11. 根据权利要求10所述的双卷扬液压控制***,其特征在于,所述第一液压泵和所述第二液压泵由同一发动机控制。
  12. 根据权利要求10所述的双卷扬液压控制***,其特征在于,所述双卷扬液压控制***还包括第一制动执行机构和第二制动执行机构;
    所述第一制动执行机构用于控制所述第一马达的转动和停止;
    所述第二制动执行机构用于控制所述第二马达的转动和停止。
  13. 根据权利要求12所述的双卷扬液压控制***,其特征在于,所述双卷 扬液压控制***还包括第一制动回路,所述第一制动回路包括第三液压泵和第三换向阀,所述第三液压泵与所述第三换向阀连接,所述第三换向阀与所述第一换向阀的先导口和第二换向阀的先导口连接,以向所述先导口输入油液使得所述第一换向阀换向至控制所述第一马达反转,以及使得所述第二换向阀换向至控制所述第二马达反转;
    其中,所述第一换向阀与所述第一制动执行机构连接,在所述第一换向阀换向至控制所述第一马达反转时,所述第一换向阀向所述第一制动执行机构供油,使得所述第一制动执行机构控制所述第一马达转动;
    所述第二换向阀与所述第二制动执行机构连接,在所述第二换向阀换向至控制所述第二马达反转时,所述第二换向阀向所述第二制动执行机构供油,使得所述第二制动执行机构控制所述第二马达转动。
  14. 根据权利要求13所述的双卷扬液压控制***,其特征在于,所述第一制动回路还包括第一制动阀组和第二制动阀组;
    其中,所述第一换向阀与所述第一制动阀组连接,所述第一制动阀组与所述第一制动执行机构连接,从所述第一换向阀流出的液压油经所述第一制动阀组减压后供给所述第一制动执行机构;
    所述第二换向阀与所述第二制动阀组连接,所述第二制动阀组与所述第二制动执行机构连接,从所述第二换向阀流出的液压油经所述第二制动阀组减压后供给所述第二制动执行机构。
  15. 根据权利要求13所述的双卷扬液压控制***,其特征在于,所述第一制动回路还包括第七换向阀,所述第七换向阀的进油口与所述第三液压泵连接,所述第七换向阀的出油口与所述第一换向阀的另一先导口连接和所述第二换向阀的另一先导口连接,以向该另一先导口输入油液使得所述第一换向阀换向至控制所述第一马达正转,以及使得所述第二换向阀换向至控制所述第二马达正转。
  16. 根据权利要求8-15中任意一项所述的双卷扬液压控制***,其特征在于,所述双卷扬液压控制***还包括第三控制回路,所述第三控制回路分别与所述第一马达和所述第二马达连接;
    在所述第一钢丝绳上的第一力值和所述第二钢丝绳上的第二力值的差值在第三预设范围内时,所述第三控制回路控制所述第一马达反转以张紧所述第一钢丝绳;
    在所述第一钢丝绳上的第一力值和所述第二钢丝绳上的第二力值的差值在第四预设范围内时,所述第三控制回路控制所述第二马达反转以张紧所述第二钢丝绳;
    其中,所述第三控制回路控制的所述第一马达和所述第二马达的反转速度小于所述第一控制回路所控制的第一马达的反转速度,并小于所述第二控制回路所控制的第二马达的反转速度。
  17. 根据权利要求16所述的双卷扬液压控制***,其特征在于,所述第三控制回路包括第四液压泵、第八换向阀和溢流阀;
    所述第四液压泵经所述第八换向阀向所述第一马达和所述第二马达提供液压油,所述溢流阀连接为控制所述第四液压泵向所述第一马达和所述第二马达的供油压力。
  18. 一种作业机械,其特征在于,包括权利要求1至17中任一项所述的双卷扬液压控制***。
  19. 一种双卷扬液压控制方法,其特征在于,包括:
    获取第一钢丝绳的第一力值,获取第二钢丝绳的第二力值;
    判断所述第一力值和所述第二力值的大小;
    控制所述第一钢丝绳所连接的第一马达反转,或者控制所述第二钢丝绳所连接的第二马达反转。
  20. 根据权利要求19所述的双卷扬液压控制方法,其特征在于,所述判断所述第一力值和所述第二力值的大小之前,还包括:
    预设第一阈值和第二阈值,所述第一阈值大于所述第二阈值;
    当所述第一力值与所述第二力值作差的绝对值大于所述第一阈值时,所述第一马达和所述第二马达在第一工作模式下反转;
    当所述第一力值与所述第二力值作差的绝对值小于所述第一阈值,且大于第二阈值时,所述第一马达和所述第二马达在第二工作模式下反转。
PCT/CN2022/089207 2022-01-07 2022-04-26 双卷扬液压控制***、作业机械及控制方法 WO2023130624A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202220055573.4 2022-01-07
CN202220055573.4U CN217055742U (zh) 2022-01-07 2022-01-07 卷扬液压控制***及作业机械
CN202210015967.1A CN114476995B (zh) 2022-01-07 2022-01-07 双卷扬液压控制***、作业机械及控制方法
CN202210015967.1 2022-01-07

Publications (1)

Publication Number Publication Date
WO2023130624A1 true WO2023130624A1 (zh) 2023-07-13

Family

ID=87073017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089207 WO2023130624A1 (zh) 2022-01-07 2022-04-26 双卷扬液压控制***、作业机械及控制方法

Country Status (1)

Country Link
WO (1) WO2023130624A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09158254A (ja) * 1995-12-05 1997-06-17 Sumitomo Constr Mach Co Ltd 掘削機の掘削制御装置
JPH10291782A (ja) * 1997-04-16 1998-11-04 Hitachi Constr Mach Co Ltd 作業機のウインチ装置
US6012707A (en) * 1995-05-19 2000-01-11 Tamrock Oy Arrangement for controlling tension in a winch cable connected to rock drilling equipment
JP2007254055A (ja) * 2006-03-20 2007-10-04 Kobelco Cranes Co Ltd クレーン用ウインチの油圧回路
CN102153027A (zh) * 2011-04-12 2011-08-17 武汉船用机械有限责任公司 一种液压绞车无级调节恒张力装置
CN102691325A (zh) * 2012-06-12 2012-09-26 中联重科股份有限公司 抓斗停绳控制器、控制***和控制方法及连续墙抓斗
CN202612232U (zh) * 2012-06-05 2012-12-19 郑州正弘桩工机械制造有限公司 液压马达驱动装置及具有该驱动装置的长螺旋钻机主卷扬
CN205012396U (zh) * 2015-04-28 2016-02-03 徐州徐工基础工程机械有限公司 连续墙液压抓斗双卷扬***同步控制装置
CN106241633A (zh) * 2016-08-23 2016-12-21 三峡大学 一种船用拖曳绞车液压控制***及传动装置和控制方法
CN205892594U (zh) * 2016-07-28 2017-01-18 都兰金辉矿业有限公司 一种矿用卷扬机同步联动液压控制***
CN106978830A (zh) * 2015-09-16 2017-07-25 三宝E&C株式会社 连续墙挖掘装置
CN109132909A (zh) * 2018-10-10 2019-01-04 三汽车起重机械有限公司 卷扬液压控制***及起重机
CN208793342U (zh) * 2018-08-09 2019-04-26 徐州徐工基础工程机械有限公司 一种卷扬平衡阀组及液压***
CN110817719A (zh) * 2019-12-08 2020-02-21 怀化学院 一种主卷扬平衡阀组

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6012707A (en) * 1995-05-19 2000-01-11 Tamrock Oy Arrangement for controlling tension in a winch cable connected to rock drilling equipment
JPH09158254A (ja) * 1995-12-05 1997-06-17 Sumitomo Constr Mach Co Ltd 掘削機の掘削制御装置
JPH10291782A (ja) * 1997-04-16 1998-11-04 Hitachi Constr Mach Co Ltd 作業機のウインチ装置
JP2007254055A (ja) * 2006-03-20 2007-10-04 Kobelco Cranes Co Ltd クレーン用ウインチの油圧回路
CN102153027A (zh) * 2011-04-12 2011-08-17 武汉船用机械有限责任公司 一种液压绞车无级调节恒张力装置
CN202612232U (zh) * 2012-06-05 2012-12-19 郑州正弘桩工机械制造有限公司 液压马达驱动装置及具有该驱动装置的长螺旋钻机主卷扬
CN102691325A (zh) * 2012-06-12 2012-09-26 中联重科股份有限公司 抓斗停绳控制器、控制***和控制方法及连续墙抓斗
CN205012396U (zh) * 2015-04-28 2016-02-03 徐州徐工基础工程机械有限公司 连续墙液压抓斗双卷扬***同步控制装置
CN106978830A (zh) * 2015-09-16 2017-07-25 三宝E&C株式会社 连续墙挖掘装置
CN205892594U (zh) * 2016-07-28 2017-01-18 都兰金辉矿业有限公司 一种矿用卷扬机同步联动液压控制***
CN106241633A (zh) * 2016-08-23 2016-12-21 三峡大学 一种船用拖曳绞车液压控制***及传动装置和控制方法
CN208793342U (zh) * 2018-08-09 2019-04-26 徐州徐工基础工程机械有限公司 一种卷扬平衡阀组及液压***
CN109132909A (zh) * 2018-10-10 2019-01-04 三汽车起重机械有限公司 卷扬液压控制***及起重机
CN110817719A (zh) * 2019-12-08 2020-02-21 怀化学院 一种主卷扬平衡阀组

Similar Documents

Publication Publication Date Title
EP2241530B1 (en) Slewing stop control apparatus and method for slewing type working machine
US9187297B2 (en) Hydraulic driving apparatus for working machine
CN113879995A (zh) 一种主卷扬变载荷下放控制方法及旋挖钻机
JP2009126613A (ja) 杭打機
WO2023130624A1 (zh) 双卷扬液压控制***、作业机械及控制方法
JP7103104B2 (ja) ウインチ制御装置
CN114476995B (zh) 双卷扬液压控制***、作业机械及控制方法
CN217055742U (zh) 卷扬液压控制***及作业机械
JP2019014591A (ja) 作業機械
JPH0717688A (ja) 油圧ウインチの駆動制御装置
JPH06280814A (ja) 流体圧アクチュエータの駆動制御装置
JP2001199676A (ja) 建設機械の操作系油圧回路
JP4797916B2 (ja) 可変容量型油圧モータの制御装置
JP2713696B2 (ja) 油圧式ウインチ装置
JP2019002558A (ja) 旋回駆動装置、およびこれを備えた作業機械
JPH0725591A (ja) 油圧ウインチの駆動制御装置
JP2018184299A (ja) 旋回駆動装置、およびこれを備えた作業機械
WO1996028377A1 (fr) Procede et systeme pour controler la vitesse d'un treuil
JP2713695B2 (ja) 油圧式ウインチ装置
JPH0781880A (ja) クレーンにおけるバケット駆動制御装置
JP7443120B2 (ja) クレーン
JP3658327B2 (ja) ウインチ制御装置
JP2023023811A (ja) 建設機械におけるバケット制御装置
WO2023077344A1 (zh) 基于液压的控制***、方法、起重设备和履带式行走设备
JP2872442B2 (ja) 主巻および補巻ウインチの同負荷制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918088

Country of ref document: EP

Kind code of ref document: A1