WO2023128106A1 - Electromagnetic wave-shielding material having broadband reflection and absorption and fabricating method therefor - Google Patents

Electromagnetic wave-shielding material having broadband reflection and absorption and fabricating method therefor Download PDF

Info

Publication number
WO2023128106A1
WO2023128106A1 PCT/KR2022/010968 KR2022010968W WO2023128106A1 WO 2023128106 A1 WO2023128106 A1 WO 2023128106A1 KR 2022010968 W KR2022010968 W KR 2022010968W WO 2023128106 A1 WO2023128106 A1 WO 2023128106A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid solution
silver
copper
metal composite
core
Prior art date
Application number
PCT/KR2022/010968
Other languages
French (fr)
Korean (ko)
Inventor
조상욱
이영철
강지숙
Original Assignee
브이메이커(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 브이메이커(주) filed Critical 브이메이커(주)
Publication of WO2023128106A1 publication Critical patent/WO2023128106A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding

Definitions

  • the present invention relates to an electromagnetic wave shielding material and a manufacturing method thereof, and more particularly, to an electromagnetic wave shielding material having a single material structure capable of reflecting and absorbing electromagnetic waves and capable of shielding electromagnetic waves from a megahertz (MHz) band to a gigahertz (GHz) band. and a manufacturing method thereof.
  • MHz megahertz
  • GHz gigahertz
  • Electromagnetic wave shielding means blocking the influence of electromagnetic wave interference or the like incident from the outside. When an electromagnetic wave encounters a material while traveling, it is reflected or absorbed and annihilated, and the degree of this is related to the conductivity of the material.
  • the communication service network (5G frequency band) is a wide band of GHz frequency, and the risk of malfunction due to noise generation and mutual interference due to electromagnetic waves is increasing.
  • the existing shielding technology has been developed in the form of reducing the occurrence of malfunctions in electronic devices by increasing the coating thickness by configuring two methods of reflection and absorption in multiple layers to block electromagnetic waves.
  • the present invention was invented to solve the above requirements, and has the physical properties of a conductive metal material and the physical properties of a ferrite material, while forming a metal composite of a core-shell dual structure to form a conventional metal composite.
  • the purpose of the present invention is to provide an electromagnetic wave shielding material with improved processability and usability and a method for manufacturing the same, which reduces processing cost by realizing corrosion stability of Ag/Cu core shell, improvement of electrical properties, reflection and absorption of electromagnetic wave at the same time.
  • Another object of the present invention is to simultaneously realize the reflection and absorption of electromagnetic waves to provide an effect of blocking a wide band of electromagnetic waves, and unlike the existing method of configuring the electromagnetic wave reflection layer and the absorption layer in multiple layers, it can be formed in a single layer to provide structure.
  • the electromagnetic wave shielding material according to the present invention is a shielding material that simultaneously reflects and absorbs electromagnetic waves by including a metal composite containing silver (Ag) and metal ferrite, and the metal composite is composed of the metal ferrite particles. It has a core-shell structure in which the silver surrounds an outer surface, and the metal composite has a particle size in the range of 200 to 500 nm.
  • the metal composite includes copper ferrite (CuFe 2 O 4 ) powder as a core.
  • the manufacturing method of the electromagnetic wave shielding material according to the present invention in order to achieve the above object is a. preparing a copper-acid solution, an iron-acid solution, and a silver-acid solution by dissolving copper (Cu), iron (Fe), and silver (Ag) in an acid solution, respectively; me. A secondary reduction step of mixing the copper-acid solution, the iron-acid solution, and the silver-acid solution and adding a primary reducing agent to form copper ferrite (CuFe 2 O 4 ) powder and adding a secondary reducing agent generating a metal composite precipitate having a core-shell structure surrounded by silver; all. and drying the metal composite to prepare a metal composite nanopowder.
  • step (a) copper (Cu), iron (Fe), and silver (Ag) are dissolved in an acid solution in a mass percentage ratio of 1.5:7:1.5 to 2.5:5:2.5, respectively, to obtain copper- An acid solution, an iron-acid solution, and a silver-acid solution are prepared, and in step B, the copper-acid solution, the iron-acid solution, and the silver-acid solution prepared in step (a) are mutually mixed, and a fatty acid as a primary reducing agent, A mixture of a reducing agent and distilled water in a mass percentage of 1:2:7 is added, and the secondary reducing agent is applied with hydrazine to prepare a metal complex with a core-shell structure. Heat treatment of the composite at 190 ° C. for 20 minutes to prepare nanopowder, d.
  • the method may further include preparing a paste by adding a dispersive binder and a solvent to the core-shell structured metal composite nanopowder.
  • the electromagnetic wave shielding material and its manufacturing method according to the present invention it is possible to manufacture metal composite nanopowder having a core-shell structure capable of simultaneously reflecting and absorbing electromagnetic waves, and it is possible to manufacture a conventional core-shell structure. It is possible to provide a material with improved stability against corrosion of the inner core copper metal of a core-shell structure, improved electrical properties, reduced process cost due to a single coating layer, and improved processability and usability.
  • FIG. 1 is a process chart showing a manufacturing process of an electromagnetic wave shielding material according to the present invention
  • FIG. 2 is a diagram schematically showing a process of forming a dual structure of the metal composite of FIG. 1;
  • Figure 3 is a result showing the surface characteristics of the core and shell through the metal composite nanopowder of the core-shell structure prepared according to the manufacturing process of the present invention, electron microscope images, component analysis results, and focus-by-focus mapping. ,
  • Figure 4 is SEM pictures of nanopowder according to the reduction process parameters according to the manufacturing process of the present invention.
  • 5 is a graph showing the results of measuring the shielding rate of the electromagnetic wave shielding film manufactured according to the manufacturing process of the present invention.
  • FIG. 1 is a process diagram showing a manufacturing process of an electromagnetic wave shielding material according to the present invention, and will be described with reference to this.
  • the electromagnetic wave shielding material according to the present invention is formed in the form of a paste capable of forming an electromagnetic wave shielding film through a coating process, and is a metal composite formed of copper (Cu), iron (Fe), and silver (Ag), a binder, and a solvent. is formed
  • the metal complex has a core-shell structure in which silver (Ag) surrounds the outer surface of copper ferrite (CuFe 2 O 4 ), and has a particle size of 200 to 500 nm Nanopowder apply
  • This metal complex provides a function of shielding by reflecting and absorbing electromagnetic waves, and has a structure in which silver (Ag) is coated on the surface of copper ferrite (CuFe 2 O 4 ), so it can have high conductivity characteristics of silver (Ag), , Formation of ferrite through copper (Cu) and iron (Fe) may have a characteristic of absorbing electromagnetic waves by securing magnetic force. Accordingly, the metal composite can simultaneously reflect and absorb electromagnetic waves, thereby blocking low-frequency electromagnetic waves to high-frequency electromagnetic waves. In addition, the metal composite has excellent thermal and electrical properties, and can alleviate the specific gravity of silver (Ag) powder for high price.
  • the particle size of core-shell powder coated with silver (Ag) powder on copper ferrite (CuFe 2 O 4 ) is formed to have a range of 200 to 500 nm.
  • Copper (Cu), iron (Fe), and silver (Ag) are dissolved in an acid solution, respectively, to form a copper-acid solution (step 110) and an iron-acid solution (step 120), a silver-acid solution (step 130) is prepared.
  • copper and iron may be added and dissolved in an amount of 5 to 30 wt% in the acid solution
  • silver may be added and dissolved in an amount of 5 to 30 wt% in the silver-acid solution.
  • the acids applied in steps 110 to 130 are water-soluble and acidic substances, such as hydrochloric acid (HCl), nitric acid (HNO 3 ), nitrous acid (HNO 2 ), sulfuric acid (H 2 SO 4 ), hydrogen peroxide (H 2 O 2 ) and hydrazoic acid (HN 3 ) may be at least one selected from the group consisting of, preferably nitric acid (HNO 3 ) is applied.
  • a 100 gram (g) piece cut from a 99.99% pure copper sheet is put into a solution of 500 ml of 60% (w/w) nitric acid and 500 ml of distilled water, and reacted at a temperature of 80 ° for 4 hours to make copper. - Prepare an acid solution.
  • a copper-acid solution, an iron-acid solution, and a silver-acid solution are mutually mixed and stirred at a set ratio (step 140), and a primary reducing agent is added (step 150) to combine copper and iron to form copper oxide powder. proceed as far as possible After 20 minutes of the primary reducing agent reaction, a secondary reducing agent is added based on the time point when the turbidity of the acid solution changes (step 160) to induce a secondary reduction reaction, and silver surrounds the outer surface of the copper iron oxide powder as shown in FIG. A metal composite precipitate of a core-shell structure is produced.
  • the reducing agent is hydrazine (N 2 H 4 ), sodium borohydride (NaBH 4 ), ascorbic acid (C 6 H 8 O 6 ), hydroquinone (Hydroquinone, C 6 H 4 (OH)) 2 ), formaldehyde (HCHO), ethylene glycol (Ethylene glycol, C 2 H 4 (OH) 2 ), and glycerin (C 3 H 8 O 3 ). At least one selected from the group consisting of is applied.
  • the reducing agent is applied with hydrazine (N 2 H 4 ) diluted in distilled water, and added until the hydrogen ion concentration (pH) reaches pH 7.
  • hydrazine N 2 H 4
  • the dilution ratio of fatty acid, reducing agent, and distilled water must be 1:2:7 in terms of mass percent to ensure that the order of metal bonding inside and outside the core-shell Occurs.
  • hydrazine is applied as the secondary reducing agent to prepare a metal complex having a core-shell structure.
  • the metal composite that has undergone filtering of the precipitate is washed and dried (step 170) to complete the preparation of the metal composite nanopowder.
  • the washing process was performed by washing 5 times through a centrifugal separator using distilled water, and drying was performed at 190 ° C. for 20 minutes. The drying temperature is applied so that the copper iron oxide powder is transformed into copper ferrite form to form magnetic force characteristic of ferrite metal.
  • FIG. 4 (d) A photograph taken with a scanning electron microscope (SEM) of the metal composite manufactured through this process is shown in FIG. 4 (d). It was confirmed that the prepared metal composite had a particle size of less than 500 nm.
  • (a), (b), (c), and (d) in FIG. 4 are images of particle size changed by reducing agent ratio and drying temperature.
  • a paste is prepared by adding a dispersed binder and a solvent to the metal composite nanopowder having a core-shell structure.
  • step 210 the change in physical properties of the metal composite core-shell powder is minimized, the adhesion to the coating material is increased, and the binder 1 (201) and the binder 2 (202) are mixed and stirred with the curing agent (203) for curing at a low temperature.
  • thermosetting epoxy binder is applied to the binder 1 (201), and polyester is applied to the binder 2 (202).
  • thermosetting epoxy binder composition includes an oligomer that determines the main properties and physical properties of the binder, a hardener that determines the curing characteristics (curing temperature, etc.), a monomer that serves as a crosslinking agent, a diluent, and other requirements.
  • the curing agent (203) is 80
  • the mixing ratio of the main components of the paste (binder 1 and binder 2) and the curing agent is prepared by mixing at a mass percentage of 1: 0.8 to 1: 0.7.
  • a binder mixture is prepared through 3-roll mixing (step 220), viscosity control (step 230), and mixing and stirring (240).
  • the metal composite powder and the binder mixture are mutually mixed and stirred (step 310), and through a process of 3-roll mixing (step 320), a final electromagnetic wave shielding paste is prepared and coated on the target object (step 330).
  • the metal composite powder is used after washing and naturally drying with one or more solvents selected from the group consisting of methanol, ethanol, isopropanol, n-butanol and isobutanol. Mix the powder and the produced paste, and manufacture after dispersing through the 3-roll process.
  • the mixing ratio of the core-shell metal composite powder and the binder composition for preparing the electromagnetic wave shielding paste is 7:3 to 6.5:3.5 in mass percent.
  • the prepared paste may be coated to be applied to the object to be coated (step 330) to form an electromagnetic wave shielding film.
  • various known methods such as spray coating and spin coating may be applied.
  • the thickness of the shielding film exceeds 30 ⁇ m, the increase in the shielding effect is insignificant, and when the thickness is less than 30 ⁇ m, the shielding effect is reduced, so 30 ⁇ m is applied.
  • the shielding film formed through this process provides shielding performance from a megahertz (MHz) band to a gigahertz (GHz) band.
  • the shielding film marked #D provides shielding performance of 71dB or more on average from 1 GHz to 18 GHz.
  • #A is a conductive Ag + ferrite mixture
  • #B is a conductive Ag mixture
  • #C is a conductive Ag + ferrite multilayer structure
  • #D is a silver (Ag) and metal ferrite metal composite core-shell structure.
  • the low corrosion stability of existing silver and copper core-shells is improved, and the electrical and magnetic properties are simultaneously implemented, so that the reflection and absorption of electromagnetic waves are simultaneously implemented, resulting in improved efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to an electromagnetic wave-shielding material and a fabricating method therefor, wherein the electromagnetic wave-shielding material is a shielding material that comprises a metal composite including silver (Ag) and a metal ferrite and simultaneously allows for reflection and absorption of electromagnetic waves, the metal composite having a core-shell structure in which silver surrounds the outer surfaces of metal ferrite particles and ranging in particle diameter from 200 to 500 nm. According to the electromagnetic wave-shielding material and the fabricating method therefor, metal composite nano-powder in a core-shell structure that has the form of simultaneously enabling reflection and absorption of electromagnetic waves can be fabricated, and a material with stability against corrosion of the inner core copper metal of the existing core-shell structure, improved electrical properties, a reduced process cost due to a single coating layer, and improved processability and usability can be provided.

Description

광대역 반사 및 흡수를 갖는 전자기파 차폐소재 및 그 제조방법Electromagnetic wave shielding material having broadband reflection and absorption and its manufacturing method
본 발명은 전자기파 차폐소재 및 그 제조방법에 관한 것으로서, 상세하게는 전자기파의 반사 및 흡수가 가능한 단일 소재 구조를 가지며 메가헤르츠(MHz) 대역에서 기가헤르츠(GHz) 대역까지 전자기파 차폐가 가능한 전자기파 차폐소재 및 그 제조방법에 관한 것이다.The present invention relates to an electromagnetic wave shielding material and a manufacturing method thereof, and more particularly, to an electromagnetic wave shielding material having a single material structure capable of reflecting and absorbing electromagnetic waves and capable of shielding electromagnetic waves from a megahertz (MHz) band to a gigahertz (GHz) band. and a manufacturing method thereof.
최근 전자기기의 발달로 인류의 생활에 편의성이 크게 향상됨과 동시에 전자기기에서 발생되는 전자기파의 노출에 의한 유해성 문제가 점차 대두되고 있다. 특히, 전자기기의 경량화, 소형화 및 디자인이 다양화됨에 따라 하우징 소재가 금속에서 플라스틱으로 대체되고 있고, 이에 따라 전자기기의 내부에서 발생된 전자기파가 전자기기의 외부로 쉽게 누출되게 된다. 이렇게 누출된 전자기파는 주위의 다른 전자기기에 간섭현상을 일으켜서 간섭받은 전자기기가 오작동 하거나 심지어 인체에 악영향을 미치게 된다. 호르몬 분비체계의 교란이나 면역 체계가 약한 어린이, 임산부, 노인은 특히 더 전자기파에 취약하기 때문에 강한 전자기파에 장시간 노출이 되면 여러 가지 질환을 일으킬 수 있어, 이러한 피해에 대한 해결책이 필요한 실정이다.Recently, with the development of electronic devices, the convenience of human life has greatly improved, and at the same time, the problem of harmfulness due to exposure to electromagnetic waves generated from electronic devices is gradually emerging. In particular, as the weight, size, and design of electronic devices diversify, metal housing materials are being replaced with plastic, and thus electromagnetic waves generated inside the electronic device easily leak to the outside of the electronic device. Electromagnetic waves leaked in this way cause interference with other nearby electronic devices, causing the interfered electronic devices to malfunction or even adversely affect the human body. Children, pregnant women, and the elderly, whose hormone secretion system is disturbed or whose immune system is weak, are particularly vulnerable to electromagnetic waves, so exposure to strong electromagnetic waves for a long time can cause various diseases, and a solution to these damages is needed.
전자기파 차폐란, 외부에서 입사되는 전자기파의 간섭 등의 영향을 차단하는 것을 의미한다. 전자기파는 진행 중에 물질을 만나면 반사 혹은 흡수되어 소멸되는데, 그 정도는 물질의 전도도와 관계가 있다.Electromagnetic wave shielding means blocking the influence of electromagnetic wave interference or the like incident from the outside. When an electromagnetic wave encounters a material while traveling, it is reflected or absorbed and annihilated, and the degree of this is related to the conductivity of the material.
지금까지 많은 전자기파 차폐제는 두 가지 형태로 연구되어 왔다. 대표적으로 전도성 소재인 실버(Ag), 그래핀 등을 활용한 반사형 차폐제와 자력을 가지는 페라이트 재료를 활용한 흡수형 차폐 소재가 보고되었다. 이러한 연구의 대부분은 주파수 대역에 따라 반사형 또는 흡수형 단일 기능으로 활용되었으며, 최근 전자기기 및 다양한 전자부품의 전자기파 주파수 대역이 넓어지고 높은 GHz 대역이 발생하고 있어 이들 소재의 산업적 활용이 제한적이다.Until now, many electromagnetic wave shielding agents have been studied in two types. Representatively, reflective shielding materials using silver (Ag), graphene, etc., which are conductive materials, and absorption-type shielding materials using ferrite materials having magnetic force have been reported. Most of these studies have been used as a reflective or absorbing single function depending on the frequency band, and recently, the electromagnetic wave frequency band of electronic devices and various electronic parts is widening and a high GHz band is occurring, limiting the industrial use of these materials.
최근 다양한 전자기기 및 전자 부품이 무선 통신 서비스망과 결합됨에 따라, 통신 서비스망(5G 주파수 대역)은 GHz 주파수의 넓은 대역으로 전자기파에 의한 노이즈 발생과 상호간 간섭에 의한 오작동 발생 위험이 증가되고 있다.Recently, as various electronic devices and electronic components are combined with a wireless communication service network, the communication service network (5G frequency band) is a wide band of GHz frequency, and the risk of malfunction due to noise generation and mutual interference due to electromagnetic waves is increasing.
또한, 기존 차폐기술은 전자기파 차단을 위해 반사 및 흡수 두 가지 방법을 다층으로 구성하여 코팅 두께를 증가시켜 전자 장치의 오작동 발생을 감소시키는 형태로 개발이 진행되었으나, 집적도가 높고, 경박 단소화 되고 있는 전자기기의 높은 전자기파 차폐 효율을 구현하기 어려운 문제가 있다.In addition, the existing shielding technology has been developed in the form of reducing the occurrence of malfunctions in electronic devices by increasing the coating thickness by configuring two methods of reflection and absorption in multiple layers to block electromagnetic waves. There is a problem in implementing high electromagnetic wave shielding efficiency of electronic devices.
본 발명은 상기와 같은 요구사항을 해결하기 위하여 창안된 것으로서, 전도성 금속 소재가 가지고 있는 물리적 특성 및 페라이트 소재가 가지는 물리적 특성을 갖으면서 코어쉘(Core-Shell) 이중구조의 금속복합체를 형성하여 기존 Ag/Cu 코어쉘의 부식 안정성, 전기적 특성 향상, 전자기파의 반사 및 흡수를 동시에 구현하여 공정비용 감소, 가공성 및 활용성이 향상된 전자기파 차폐소재 및 그 제조방법을 제공하는데 그 목적이 있다.The present invention was invented to solve the above requirements, and has the physical properties of a conductive metal material and the physical properties of a ferrite material, while forming a metal composite of a core-shell dual structure to form a conventional metal composite. The purpose of the present invention is to provide an electromagnetic wave shielding material with improved processability and usability and a method for manufacturing the same, which reduces processing cost by realizing corrosion stability of Ag/Cu core shell, improvement of electrical properties, reflection and absorption of electromagnetic wave at the same time.
본 발명의 또 다른 목적은 전자기파의 반사와 흡수를 동시에 구현하여 전자기파의 넓은 대역을 차단하는 효과를 제공하며, 기존의 전자기파 반사층 및 흡수층을 다층으로 구성하는 방식과는 다르게 단일 층으로 형성할 수 있는 구조를 제공하는 것이다.Another object of the present invention is to simultaneously realize the reflection and absorption of electromagnetic waves to provide an effect of blocking a wide band of electromagnetic waves, and unlike the existing method of configuring the electromagnetic wave reflection layer and the absorption layer in multiple layers, it can be formed in a single layer to provide structure.
상기의 목적을 달성하기 위하여 본 발명에 따른 전자기파 차폐소재는 은(Ag) 및 금속 페라이트를 함유하는 금속복합체를 포함하여 전자기파 반사와 흡수가 동시에 구현되는 차폐 소재로서 상기 금속복합체는 상기 금속 페라이트 입자들의 외면을 상기 은이 둘러싸는 코어-쉘(core-shell) 구조를 가지며, 상기 금속복합체의 입경은 200 내지 500nm 범위를 갖는다.In order to achieve the above object, the electromagnetic wave shielding material according to the present invention is a shielding material that simultaneously reflects and absorbs electromagnetic waves by including a metal composite containing silver (Ag) and metal ferrite, and the metal composite is composed of the metal ferrite particles. It has a core-shell structure in which the silver surrounds an outer surface, and the metal composite has a particle size in the range of 200 to 500 nm.
또한, 상기 금속복합체는 구리페라이트(CuFe2O4) 분말을 코어로 포함한다.In addition, the metal composite includes copper ferrite (CuFe 2 O 4 ) powder as a core.
또한, 상기의 목적을 달성하기 위하여 본 발명에 따른 전자기파 차폐 소재의 제조방법은 가. 구리(Cu), 철(Fe), 은(Ag)을 각각 산(acid) 용액에 용해하여 구리-산 용액, 철-산 용액, 은-산 용액을 제조하는 단계와; 나. 상기 구리-산 용액, 상기 철-산 용액, 상기 은-산 용액을 상호 혼합하고 1차 환원제를 첨가하여 구리페라이트(CuFe2O4) 분말을 형성하고, 2차 환원제를 첨가하는 2차 환원공정을 통해 은이 둘러싸는 코어-쉘(core-shell) 구조의 금속복합체 침전물을 생성하는 단계와; 다. 상기 금속복합체를 건조하여 금속복합체 나노 분말을 제조하는 단계;를 포함한다.In addition, the manufacturing method of the electromagnetic wave shielding material according to the present invention in order to achieve the above object is a. preparing a copper-acid solution, an iron-acid solution, and a silver-acid solution by dissolving copper (Cu), iron (Fe), and silver (Ag) in an acid solution, respectively; me. A secondary reduction step of mixing the copper-acid solution, the iron-acid solution, and the silver-acid solution and adding a primary reducing agent to form copper ferrite (CuFe 2 O 4 ) powder and adding a secondary reducing agent generating a metal composite precipitate having a core-shell structure surrounded by silver; all. and drying the metal composite to prepare a metal composite nanopowder.
또한, 상기 가 단계는 구리(Cu), 철(Fe), 은(Ag)을 각각 질량 퍼센트로 1.5:7:1.5 내지 2.5:5:2.5의 비율로 각각 산(acid) 용액에 용해하여 구리-산 용액, 철-산 용액, 은-산 용액을 제조하고, 상기 나 단계는 상기 가단계에서 제조한 구리-산 용액, 철-산 용액, 은-산 용액을 상호 혼합하고 1차 환원제로서 지방산, 환원제, 증류수가 질량 퍼센트로 1:2:7로 혼합된 것을 첨가하고, 상기 2차 환원제는 하이드라진을 적용하여 코어-쉘(core-shell) 구조의 금속복합체를 제조하고, 상기 다 단계는 상기 금속복합체를 190℃에서 20분 열처리하여 나노 분말을 제조하며, 라. 상기 코어-쉘(core-shell) 구조의 금속복합체 나노분말을 분산형 바인더 및 용제를 첨가하여 페이스트를 제조하는 단계;를 더 포함할 수 있다.In addition, in the step (a), copper (Cu), iron (Fe), and silver (Ag) are dissolved in an acid solution in a mass percentage ratio of 1.5:7:1.5 to 2.5:5:2.5, respectively, to obtain copper- An acid solution, an iron-acid solution, and a silver-acid solution are prepared, and in step B, the copper-acid solution, the iron-acid solution, and the silver-acid solution prepared in step (a) are mutually mixed, and a fatty acid as a primary reducing agent, A mixture of a reducing agent and distilled water in a mass percentage of 1:2:7 is added, and the secondary reducing agent is applied with hydrazine to prepare a metal complex with a core-shell structure. Heat treatment of the composite at 190 ° C. for 20 minutes to prepare nanopowder, d. The method may further include preparing a paste by adding a dispersive binder and a solvent to the core-shell structured metal composite nanopowder.
본 발명에 따른 전자기파 차폐소재 및 그 제조방법에 의하면, 전자기파의 반사 및 흡수가 동시 구현이 가능한 형태의 코어-쉘(core-shell) 구조의 금속복합체 나노분말 제작이 가능하며, 기존의 코어-쉘(core-shell) 구조의 내부 코어 구리 금속의 부식 형상에 대한 안정성, 전기적 특성 향상, 단일 코팅층으로 인한 공정비용 감소, 가공성 및 활용성이 향상된 소재를 제공할 수 있다.According to the electromagnetic wave shielding material and its manufacturing method according to the present invention, it is possible to manufacture metal composite nanopowder having a core-shell structure capable of simultaneously reflecting and absorbing electromagnetic waves, and it is possible to manufacture a conventional core-shell structure. It is possible to provide a material with improved stability against corrosion of the inner core copper metal of a core-shell structure, improved electrical properties, reduced process cost due to a single coating layer, and improved processability and usability.
도 1은 본 발명에 따른 전자기파 차폐소재 제조과정을 나타내 보인 공정도이고,1 is a process chart showing a manufacturing process of an electromagnetic wave shielding material according to the present invention;
도 2는 도 1의 금속복합체의 이중 구조 형성 과정을 도식적으로 나타내 보인 도면이고,2 is a diagram schematically showing a process of forming a dual structure of the metal composite of FIG. 1;
도 3은 본 발명의 제조과정을 따라 제조된 코어-쉘(core-shell) 구조의 금속복합체 나노분말, 전자현미경 이미지, 성분 분석 결과, 초점별 맵핑을 통한 코어 및 쉘의 표면 특성을 보인 결과이고,Figure 3 is a result showing the surface characteristics of the core and shell through the metal composite nanopowder of the core-shell structure prepared according to the manufacturing process of the present invention, electron microscope images, component analysis results, and focus-by-focus mapping. ,
도 4는 본 발명의 제조과정을 따라 환원 공정 변수에 따른 나노 분말의 SEM 사진들이고,Figure 4 is SEM pictures of nanopowder according to the reduction process parameters according to the manufacturing process of the present invention,
도 5는 본 발명의 제조과정을 따라 제조된 전자기파 차폐막의 차폐율을 측정한 결과를 나타내 보인 그래프이다.5 is a graph showing the results of measuring the shielding rate of the electromagnetic wave shielding film manufactured according to the manufacturing process of the present invention.
이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예에 따른 전자기파 차폐소재 및 그 제조방법을 더욱 상세하게 설명한다.Hereinafter, an electromagnetic wave shielding material and a manufacturing method thereof according to a preferred embodiment of the present invention will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 전자기파 차폐소재 제조과정을 나타내 보인 공정도이고, 이를 참조하여 설명한다.1 is a process diagram showing a manufacturing process of an electromagnetic wave shielding material according to the present invention, and will be described with reference to this.
먼저, 본 발명에 따른 전자기파 차폐소재는 코팅과정을 거쳐 전자기파 차폐막을 형성할 수 있는 페이스트 형태로 형성되며 구리(Cu), 철(Fe), 은(Ag)으로 형성되는 금속복합체 및 바인더와 용제로 형성된다.First, the electromagnetic wave shielding material according to the present invention is formed in the form of a paste capable of forming an electromagnetic wave shielding film through a coating process, and is a metal composite formed of copper (Cu), iron (Fe), and silver (Ag), a binder, and a solvent. is formed
금속복합체는 도 2에 도시된 바와 같이 구리페라이트(CuFe2O4)의 외면을 은(Ag)이 둘러싸는 코어-쉘(core-shell) 구조를 가지며, 입경이 200 내지 500nm 범위를 갖는 나노 분말을 적용한다. 이러한 금속복합체는 전자기파를 반사 및 흡수하여 차폐하는 기능을 제공하며, 구리페라이트(CuFe2O4)의 표면에 은(Ag)이 코팅되는 구조로 되어 은(Ag)의 높은 전도성 특성을 가질 수 있으며, 구리(Cu)와 철(Fe)을 통한 페라이트 형성은 자력을 확보하여 전자파를 흡수하는 특성을 가질 수 있다. 따라서 금속복합체는 전자기파의 반사 및 흡수를 동시에 구현하여 낮은 주파수의 전자기파에서부터 높은 주파수의 전자기파까지 차단이 가능하다. 또한 금속복합체는 우수한 열적 및 전기적 특성을 모두 지니고 있으며, 은(Ag) 분말의 고가격에 대한 비중을 완화시킬 수 있다.As shown in FIG. 2, the metal complex has a core-shell structure in which silver (Ag) surrounds the outer surface of copper ferrite (CuFe 2 O 4 ), and has a particle size of 200 to 500 nm Nanopowder apply This metal complex provides a function of shielding by reflecting and absorbing electromagnetic waves, and has a structure in which silver (Ag) is coated on the surface of copper ferrite (CuFe 2 O 4 ), so it can have high conductivity characteristics of silver (Ag), , Formation of ferrite through copper (Cu) and iron (Fe) may have a characteristic of absorbing electromagnetic waves by securing magnetic force. Accordingly, the metal composite can simultaneously reflect and absorb electromagnetic waves, thereby blocking low-frequency electromagnetic waves to high-frequency electromagnetic waves. In addition, the metal composite has excellent thermal and electrical properties, and can alleviate the specific gravity of silver (Ag) powder for high price.
구리페라이트(CuFe2O4)에 은(Ag) 분말이 코팅되는 코어-쉘(core-shell) 분말의 입경은 200 내지 500nm 범위를 갖게 형성한다.The particle size of core-shell powder coated with silver (Ag) powder on copper ferrite (CuFe 2 O 4 ) is formed to have a range of 200 to 500 nm.
이하에서는 구리페라이트(CuFe2O4)에 은(Ag) 분말이 코팅되는 코어-쉘(core-shell) 구조를 갖는 전자기파 차폐소재의 제조과정에 대하여 설명한다.Hereinafter, a manufacturing process of an electromagnetic wave shielding material having a core-shell structure in which silver (Ag) powder is coated on copper ferrite (CuFe 2 O 4 ) will be described.
먼저, 금속복합체 형성과정에 대해 설명하면, 구리(Cu), 철(Fe), 은(Ag)을 각각 산(acid) 용액에 용해하여 구리-산 용액(단계 110), 철-산 용액(단계 120), 은-산 용액(단계130)을 제조한다. 여기서, 구리 및 철은 산 용액 내에 5 내지 30wt%로 존재하도록 첨가되어 용해될 수 있고, 은은 은-산 용액 내에 5 내지 30wt%로 존재하도록 첨가되어 용해될 수 있다.First, the metal complex formation process is described. Copper (Cu), iron (Fe), and silver (Ag) are dissolved in an acid solution, respectively, to form a copper-acid solution (step 110) and an iron-acid solution (step 120), a silver-acid solution (step 130) is prepared. Here, copper and iron may be added and dissolved in an amount of 5 to 30 wt% in the acid solution, and silver may be added and dissolved in an amount of 5 to 30 wt% in the silver-acid solution.
또한, 단계 110 내지 130에 적용되는 산은 물에 녹아 산성을 띄는 물질로서, 염산(HCl), 질산(HNO3), 아질산(HNO2), 황산(H2SO4), 과산화수소(H2O2) 및 히드라조산(HN3)으로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 질산(HNO3)이 적용된다.In addition, the acids applied in steps 110 to 130 are water-soluble and acidic substances, such as hydrochloric acid (HCl), nitric acid (HNO 3 ), nitrous acid (HNO 2 ), sulfuric acid (H 2 SO 4 ), hydrogen peroxide (H 2 O 2 ) and hydrazoic acid (HN 3 ) may be at least one selected from the group consisting of, preferably nitric acid (HNO 3 ) is applied.
일 예로서, 순도 99.99% 구리 박판을 절단한 100그램(g)의 절편을 농도 60%(w/w) 질산 500ml과, 증류수 500ml이 혼합된 용액에 투입하고 온도 80°에서 4시간 반응시켜 구리-산 용액을 제조한다.As an example, a 100 gram (g) piece cut from a 99.99% pure copper sheet is put into a solution of 500 ml of 60% (w/w) nitric acid and 500 ml of distilled water, and reacted at a temperature of 80 ° for 4 hours to make copper. - Prepare an acid solution.
또한, 순도 99.99% 은 박판을 절단한 100그램(g)의 절편을 농도 60%(w/w) 질산 500ml과, 증류수 500ml이 혼합된 용액에 투입하고 온도 80°에서 4시간 반응시켜 은-산 용액을 제조한다.In addition, a 100-gram (g) piece cut from a thin silver plate of 99.99% purity was put into a mixed solution of 500 ml of 60% (w/w) nitric acid and 500 ml of distilled water, and reacted at a temperature of 80 ° for 4 hours to obtain silver-acid prepare a solution
또한, 순도 99.99% 철 박판을 절단한 100그램(g)의 절편을 농도 60%(w/w) 질산 500ml과, 증류수 500ml이 혼합된 용액에 투입하고 온도 80°에서 4시간 반응시켜 철-산 용액을 제조한다.In addition, a 100-gram (g) piece cut from a 99.99% pure iron sheet was put into a mixture of 500 ml of 60% (w/w) nitric acid and 500 ml of distilled water, and reacted at a temperature of 80° for 4 hours to ferrous-acid. prepare a solution
다음은 구리-산 용액, 철-산 용액, 은-산 용액을 설정된 비율로 상호 혼합 및 교반하고(단계 140), 1차 환원제를 첨가하여(단계150) 구리 및 철이 결합하여 구리산화철 분말이 형성되도록 진행한다. 1차 환원제 반응 20분 후 산용액의 탁도가 변하는 시점을 기준으로 2차 환원제를 첨가하여(단계 160) 2차 환원 반응을 유도하며, 도 2에 도시된 바와 같이 구리산화철 분말 외면을 은이 둘러싸는 코어-쉘(core-shell) 구조의 금속복합체 침전물을 생성한다.Next, a copper-acid solution, an iron-acid solution, and a silver-acid solution are mutually mixed and stirred at a set ratio (step 140), and a primary reducing agent is added (step 150) to combine copper and iron to form copper oxide powder. proceed as far as possible After 20 minutes of the primary reducing agent reaction, a secondary reducing agent is added based on the time point when the turbidity of the acid solution changes (step 160) to induce a secondary reduction reaction, and silver surrounds the outer surface of the copper iron oxide powder as shown in FIG. A metal composite precipitate of a core-shell structure is produced.
여기서, 구리-산 용액, 철-산 용액, 은-산 용액의 질량 퍼센트로 1.5:7:1.5 내지 2.5:5:2.5인 혼합하는 것이 바람직하다. 또한, 환원제는 하이드라진(Hydrazine, N2H4), 수소화붕소나트륨(Sodiumborohydride, NaBH4), 아스코르브산(Ascorbic acid, C6H8O6), 하이드로퀴논(Hydroquinone, C6H4(OH)2), 포름알데하이드(Formaldehyde, HCHO), 에틸렌글리콜(Ethylene glycol, C2H4(OH)2) 및 글리세린(Glycerin, C3H8O3)으로 이루어진 군으로부터 선택된 1종 이상이 적용된다. 바람직하게는 환원제는 증류수에 희석한 하이드라진(hydrazine; N2H4)을 적용하고, 수소이온농도(pH)가 pH 7에 도달할 때까지 첨가한다. 이러한 과정은 금속복합체 침전물이 나노분말형태로 결정성장이 충분히 이루어질 수 있도록 수행된다. 또한 1차 환원시 3가지 산 용액의 혼합과 결합을 위해 지방산, 환원제, 증류수 희석비율은 질량 퍼센트로 1:2:7로 진행되어야 코어-쉘(core-shell) 내부와 외부의 금속 결합 순서가 발생한다. 또한, 2차 환원제는 하이드라진을 적용하여 코어-쉘(core-shell) 구조의 금속복합체를 제조한다.Here, it is preferable to mix the copper-acid solution, the iron-acid solution, and the silver-acid solution in a mass percentage of 1.5:7:1.5 to 2.5:5:2.5. In addition, the reducing agent is hydrazine (N 2 H 4 ), sodium borohydride (NaBH 4 ), ascorbic acid (C 6 H 8 O 6 ), hydroquinone (Hydroquinone, C 6 H 4 (OH)) 2 ), formaldehyde (HCHO), ethylene glycol (Ethylene glycol, C 2 H 4 (OH) 2 ), and glycerin (C 3 H 8 O 3 ). At least one selected from the group consisting of is applied. Preferably, the reducing agent is applied with hydrazine (N 2 H 4 ) diluted in distilled water, and added until the hydrogen ion concentration (pH) reaches pH 7. This process is performed so that crystal growth of the metal composite precipitate in the form of nanopowder can be sufficiently performed. In addition, for the mixing and bonding of the three acid solutions during the first reduction, the dilution ratio of fatty acid, reducing agent, and distilled water must be 1:2:7 in terms of mass percent to ensure that the order of metal bonding inside and outside the core-shell Occurs. In addition, hydrazine is applied as the secondary reducing agent to prepare a metal complex having a core-shell structure.
이후, 침전물에 대해 여과 과정을 거친 금속복합체를 세척 및 건조하는 과정(단계 170)을 거쳐 금속복합체 나노 분말의 제조를 완료한다. 세척과정은 증류수를 사용하여 원심분리기를 통해 5회 세척하고, 건조는 190℃에서 20분 수행한다. 건조 온도는 구리산화철 분말이 구리페라이트 형태로 변형되어 페라이트 금속의 특성인 자력을 형성하도록 적용된다.Thereafter, the metal composite that has undergone filtering of the precipitate is washed and dried (step 170) to complete the preparation of the metal composite nanopowder. The washing process was performed by washing 5 times through a centrifugal separator using distilled water, and drying was performed at 190 ° C. for 20 minutes. The drying temperature is applied so that the copper iron oxide powder is transformed into copper ferrite form to form magnetic force characteristic of ferrite metal.
이러한 과정을 거쳐 제조된 금속복합체에 대해 전자주사현미경(SEM)으로 촬상한 사진이 도 4에 (d)도시되어 있다. 제조된 금속복합체는 500nm 미만의 입경을 갖는 것이 확인되었다. 도 4에 (a), (b),(c),(d)는 환원제 비율 및 건조 온도에 의해 변경되는 입자 크기 이미지이다.A photograph taken with a scanning electron microscope (SEM) of the metal composite manufactured through this process is shown in FIG. 4 (d). It was confirmed that the prepared metal composite had a particle size of less than 500 nm. (a), (b), (c), and (d) in FIG. 4 are images of particle size changed by reducing agent ratio and drying temperature.
다음으로 제조된 금속복합체의 페이스트 제조 과정에 대해 설명하면, 코어-쉘(core-shell) 구조의 금속복합체 나노분말을 분산형 바인더 및 용제를 첨가하여 페이스트를 제조한다.Next, a process for preparing a paste of the metal composite is described. A paste is prepared by adding a dispersed binder and a solvent to the metal composite nanopowder having a core-shell structure.
이를 위해 먼저, 금속복합체 코어-쉘 분말의 물성 변화를 최소화 하고 코팅소재와의 접착력을 높이며, 낮은 온도에서 경화를 위해 바인더1(201)과 바인더2(202)를 경화제(203)에 혼합 및 교반한다(단계 210).To this end, first, the change in physical properties of the metal composite core-shell powder is minimized, the adhesion to the coating material is increased, and the binder 1 (201) and the binder 2 (202) are mixed and stirred with the curing agent (203) for curing at a low temperature. (step 210).
여기서, 바인더1(201)은 열경화형 에폭시(Epoxy) 바인더가 적용되고, 바인더2(202)는 폴리에스터(Polyester)가 적용되는 것이 바람직하다.Here, it is preferable that a thermosetting epoxy binder is applied to the binder 1 (201), and polyester is applied to the binder 2 (202).
열경화형 에폭시 바인더 조성물은 바인더의 주된 특성과 물성을 결정하는 올리고머(oligomer), 경화특성(경화 온도 등)을 결정하는 경화제(hardener), 가교제·희석제 등의 역할을 하는 모노머(monomer) 및 기타 요구되는 특성에 맞춘 첨가제로 구성하며, Bisphenol A type Epoxy, Bisphenol F type Epoxy, Brominated Epoxy resin, Novolac Epoxy resin, Multi-functional Epoxy resin, Cycloaliphatic Epoxy resin 중 선택된 적어도 하나를 포함하고, 경화제(203)는 80℃ 저온경화를 위해 dicyandiamide(Sub-DICY), 촉진 dicyandiamide(Acc-DICY), trimellitic anhydride(TMA), pyromellitic dianhydride(PMDA), Phenolic curing agent(Ph.C.A.)중 선택된 적어도 하나를 포함하여 조성물을 제작한다. 페이스트의 주제(바인더 1 및 바인더 2)와 경화제의 혼합 비율은 질량 퍼센트로 1: 0.8 내지 1: 0.7로 혼합하여 제작한다.The thermosetting epoxy binder composition includes an oligomer that determines the main properties and physical properties of the binder, a hardener that determines the curing characteristics (curing temperature, etc.), a monomer that serves as a crosslinking agent, a diluent, and other requirements. It is composed of additives tailored to the characteristics to be, and includes at least one selected from Bisphenol A type Epoxy, Bisphenol F type Epoxy, Brominated Epoxy resin, Novolac Epoxy resin, Multi-functional Epoxy resin, and Cycloaliphatic Epoxy resin, and the curing agent (203) is 80 Prepare a composition including at least one selected from dicyandiamide (Sub-DICY), accelerated dicyandiamide (Acc-DICY), trimellitic anhydride (TMA), pyromellitic dianhydride (PMDA), and phenolic curing agent (Ph.C.A.) for low-temperature curing at ° C. do. The mixing ratio of the main components of the paste (binder 1 and binder 2) and the curing agent is prepared by mixing at a mass percentage of 1: 0.8 to 1: 0.7.
이후, 3-roll 혼합(단계 220), 점도조절(단계 230) 및 혼합교반(240)을 거쳐 바인더 혼합물을 제조한다.Thereafter, a binder mixture is prepared through 3-roll mixing (step 220), viscosity control (step 230), and mixing and stirring (240).
다음으로 금속복합체 분말과 바인더 혼합물을 상호 혼합 및 교반(단계 310)하고, 3-roll 혼합(단계 320)하는 과정을 거쳐 최종 전자기파 차폐 페이스트를 제조하고 적용대상체에 코팅한다(단계 330). 금속복합체 분말과 바인더 혼합물의 혼합시 분산성을 향상을 위해 금속복합체 분말을 용제 메탄올, 에탄올, 이소프로판올, n-부탄올 및 이소부탄올로 이루어진 군으로부터 선택된 1종 이상으로 세척 및 자연 건조 후 사용하며, 금속 분말과 제작된 페이스트를 혼합하고, 3-roll 공정을 통해 분산 후 제작한다.Next, the metal composite powder and the binder mixture are mutually mixed and stirred (step 310), and through a process of 3-roll mixing (step 320), a final electromagnetic wave shielding paste is prepared and coated on the target object (step 330). In order to improve the dispersibility when mixing the metal composite powder and the binder mixture, the metal composite powder is used after washing and naturally drying with one or more solvents selected from the group consisting of methanol, ethanol, isopropanol, n-butanol and isobutanol. Mix the powder and the produced paste, and manufacture after dispersing through the 3-roll process.
전자기파 차폐 페이스트 제작을 위한 코어-쉘 금속 복합체분말과 바인더 조성물의 혼합비율은 질량 퍼센트로 7:3 내지 6.5:3.5로 조성된다.The mixing ratio of the core-shell metal composite powder and the binder composition for preparing the electromagnetic wave shielding paste is 7:3 to 6.5:3.5 in mass percent.
이후, 제조된 페이스트를 코팅대상체에 도포되게 코팅 처리하여(단계 330) 전자기파 차폐막을 형성하면 된다. 코팅방식은 스프레이 코팅, 스핀코팅 등 공지된 다양한 방식을 적용하면 된다. 또한, 차폐막을 형성하는 두께는 30㎛를 초과하면 차폐효과 증가폭이 미미하고, 30㎛ 미만에서는 차폐효과가 감소되어 30㎛를 적용한 다. 이러한 과정을 거쳐 형성된 차폐막은 메가헤르츠(MHz) 대역에서 기가헤르츠(GHz) 대역까지 차폐성능을 제공한다.Thereafter, the prepared paste may be coated to be applied to the object to be coated (step 330) to form an electromagnetic wave shielding film. As the coating method, various known methods such as spray coating and spin coating may be applied. In addition, when the thickness of the shielding film exceeds 30 μm, the increase in the shielding effect is insignificant, and when the thickness is less than 30 μm, the shielding effect is reduced, so 30 μm is applied. The shielding film formed through this process provides shielding performance from a megahertz (MHz) band to a gigahertz (GHz) band.
도 5는 두께를 30㎛로 형성한 차폐막에 대한 차폐율을 측정한 결과로서, #D로 표기된 본 차폐막은 1 GHz에서 18GHz 평균 71dB 이상의 차폐성능을 제공함을 확인할 수 있다.5 is a result of measuring the shielding rate for the shielding film formed to have a thickness of 30 μm, and it can be confirmed that the shielding film marked #D provides shielding performance of 71dB or more on average from 1 GHz to 18 GHz.
도 5에서 #A는 전도성 Ag+ 페라이트 혼합, #B는 전도성 Ag 혼합, #C는 전도 성 Ag+ 페라이트 다층구조, #D는 은(Ag) 및 금속 페라이트 금속복합체 코어-쉘(core-shell)구조를 나타낸다.In FIG. 5, #A is a conductive Ag + ferrite mixture, #B is a conductive Ag mixture, #C is a conductive Ag + ferrite multilayer structure, and #D is a silver (Ag) and metal ferrite metal composite core-shell structure. indicate
이상에서 설명된 전자기파 차폐소재 및 그 제조방법에 의하면, 기존 은 및 구리 코어-쉘의 낮은 부식 안정성을 개선하고, 전기적 특성 및 자력 특성이 동시 구현되어 전자파의 반사 및 흡수가 동시에 구현되어 효율이 향상되며, 기존 반사층과 흡수층이 혼합된 다층을 단층으로 공정비용 감소, 가공성 및 활용성이 향상된 소재를 제공할 수 있다.According to the above-described electromagnetic wave shielding material and its manufacturing method, the low corrosion stability of existing silver and copper core-shells is improved, and the electrical and magnetic properties are simultaneously implemented, so that the reflection and absorption of electromagnetic waves are simultaneously implemented, resulting in improved efficiency In addition, it is possible to provide a material with reduced processing cost, improved processability and usability by using a single layer of a multilayer in which an existing reflective layer and an absorbing layer are mixed.

Claims (4)

  1. 은(Ag) 및 금속 페라이트를 함유하는 금속복합체를 포함하여 전자기파 반사와 흡수가 동시에 구현되는 차폐 소재로서,A shielding material that simultaneously reflects and absorbs electromagnetic waves, including a metal complex containing silver (Ag) and metal ferrite,
    상기 금속복합체는 상기 금속 페라이트입자들의 외면을 상기 은이 둘러싸는 코어-쉘(core-shell) 구조를 가지며, 상기 금속복합체의 입경은 200 내지 500nm 범위를 갖는 것을 특징으로 하는 전자기파 차폐 소재.The metal composite has a core-shell structure in which the silver surrounds outer surfaces of the metal ferrite particles, and the metal composite has a particle size in the range of 200 to 500 nm.
  2. 제 1 항에 있어서, According to claim 1,
    상기 금속복합체는,The metal complex,
    구리페라이트(CuFe2O4) 분말을 코어로 포함하는 것을 특징으로 하는 전자기파 차폐 소재.An electromagnetic wave shielding material comprising copper ferrite (CuFe 2 O 4 ) powder as a core.
  3. 가. 구리(Cu), 철(Fe), 은(Ag)을 각각 산(acid) 용액에 용해하여 구리-산 용액, 철-산 용액, 은-산 용액을 제조하는 단계;go. Dissolving copper (Cu), iron (Fe), and silver (Ag) in an acid solution to prepare a copper-acid solution, an iron-acid solution, or a silver-acid solution;
    나. 상기 구리-산 용액, 상기 철-산 용액, 상기 은-산 용액을 상호 혼합하고 1차 환원제를 첨가하여 구리페라이트(CuFe2O4) 분말을 형성하고, 2차 환원제를 첨가하는 2차 환원공정을 통해 은이 둘러싸는 코어-쉘(core-shell) 구조의 금속복합체 침전물을 생성하는 단계; 및me. A secondary reduction step of mixing the copper-acid solution, the iron-acid solution, and the silver-acid solution and adding a primary reducing agent to form copper ferrite (CuFe 2 O 4 ) powder and adding a secondary reducing agent generating a metal composite precipitate having a core-shell structure surrounded by silver; and
    다. 상기 금속복합체를 건조하여 금속복합체 나노 분말을 제조하는 단계;를 포함하는 것을 특징으로 하는 전자기파 차폐 소재의 제조방법.all. Method of manufacturing an electromagnetic wave shielding material comprising the; step of preparing a metal composite nanopowder by drying the metal composite.
  4. 제 3 항에 있어서,According to claim 3,
    상기 가 단계는 구리(Cu), 철(Fe), 은(Ag)을 각각 질량 퍼센트로 1.5:7:1.5 내지 2.5:5:2.5의 비율로 각각 산(acid) 용액에 용해하여 구리-산 용액, 철-산 용액, 은-산 용액을 제조하고,The step (a) is a copper-acid solution by dissolving copper (Cu), iron (Fe), and silver (Ag) in an acid solution at a ratio of 1.5: 7: 1.5 to 2.5: 5: 2.5, respectively, in terms of mass percent. , preparing an iron-acid solution and a silver-acid solution,
    상기 나 단계는 상기 가 단계에서 제조한 구리-산 용액, 철-산 용액, 은-산 용액을 상호 혼합하고 1차 환원제로서 지방산, 환원제, 증류수가 질량 퍼센트로 1:2:7로 혼합된 것을 첨가하고, 상기 2차 환원제는 하이드라진을 적용하여 코어-쉘(core-shell) 구조의 금속복합체를 제조하고,In step B, the copper-acid solution, the iron-acid solution, and the silver-acid solution prepared in step A are mixed with each other, and a fatty acid, a reducing agent, and distilled water as a primary reducing agent are mixed in a mass percentage of 1:2:7 In addition, the secondary reducing agent is prepared by applying hydrazine to prepare a metal complex of a core-shell structure,
    상기 다 단계는 상기 금속복합체를 190℃에서 20분 열처리하여 나노 분말을 제조하며,The multi-step heat treatment of the metal composite at 190 ° C. for 20 minutes to prepare nanopowder,
    라. 상기 코어-쉘(core-shell) 구조의 금속복합체 나노분말을 분산형 바인더 및 용제를 첨가하여 페이스트를 제조하는 단계;를 더 포함하는 것을 특징으로 하는 전자기파 차폐 소재의 제조방법.la. Manufacturing a paste by adding a dispersive binder and a solvent to the core-shell structured metal composite nanopowder.
PCT/KR2022/010968 2021-12-29 2022-07-26 Electromagnetic wave-shielding material having broadband reflection and absorption and fabricating method therefor WO2023128106A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0191040 2021-12-29
KR1020210191040A KR102583310B1 (en) 2021-12-29 2021-12-29 Electromagnetic interference shielding material and method of producing thereof

Publications (1)

Publication Number Publication Date
WO2023128106A1 true WO2023128106A1 (en) 2023-07-06

Family

ID=86999464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010968 WO2023128106A1 (en) 2021-12-29 2022-07-26 Electromagnetic wave-shielding material having broadband reflection and absorption and fabricating method therefor

Country Status (2)

Country Link
KR (1) KR102583310B1 (en)
WO (1) WO2023128106A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070035832A (en) * 2005-09-28 2007-04-02 엘지전자 주식회사 Interception material of electromagnetic waves
KR20130090241A (en) * 2012-02-03 2013-08-13 엘지전자 주식회사 Core-shell structured nanoparticle having hard-soft magnetic heterostructure, magnet prepared with said nanoparticle, and preparing method thereof
KR20180062790A (en) * 2016-12-01 2018-06-11 율촌화학 주식회사 Composition for complex sheet with emi shields and absorbing and thermal dissipation, and complex sheet comprising the same
KR102051321B1 (en) * 2019-07-15 2019-12-03 파워팩 주식회사 A method for preparing silver-copper mixture powder of core-shell structure using wet process
KR20210129954A (en) * 2020-04-21 2021-10-29 브이메이커(주) Electromagnetic interference shielding material, and Preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101600389A (en) * 2007-01-24 2009-12-09 皇家飞利浦电子股份有限公司 Be used for influencing and/or surveying the use of method, magnetic particle and the magnetic particle of the magnetic particle of the zone of action
EP2842667B1 (en) * 2012-04-23 2017-11-22 LG Chem, Ltd. Method for producing core-shell particles
KR101494438B1 (en) 2013-06-10 2015-02-23 한국세라믹기술원 Method of manufacturing near-field communication ferrite electromagnetic composite sheet
US20190221343A1 (en) * 2018-01-16 2019-07-18 Rogers Corporation Core-shell particles, magneto-dielectric materials, methods of making, and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070035832A (en) * 2005-09-28 2007-04-02 엘지전자 주식회사 Interception material of electromagnetic waves
KR20130090241A (en) * 2012-02-03 2013-08-13 엘지전자 주식회사 Core-shell structured nanoparticle having hard-soft magnetic heterostructure, magnet prepared with said nanoparticle, and preparing method thereof
KR20180062790A (en) * 2016-12-01 2018-06-11 율촌화학 주식회사 Composition for complex sheet with emi shields and absorbing and thermal dissipation, and complex sheet comprising the same
KR102051321B1 (en) * 2019-07-15 2019-12-03 파워팩 주식회사 A method for preparing silver-copper mixture powder of core-shell structure using wet process
KR20210129954A (en) * 2020-04-21 2021-10-29 브이메이커(주) Electromagnetic interference shielding material, and Preparation method thereof

Also Published As

Publication number Publication date
KR102583310B1 (en) 2023-09-26
KR20230101164A (en) 2023-07-06

Similar Documents

Publication Publication Date Title
CN107399735B (en) Preparation method and application of graphene composite aerogel wave-absorbing material
CN108251053B (en) Graphene ferrite polymer ternary nano composite wave-absorbing material and preparation method thereof
Banerjee et al. Lightweight epoxy-based composites for EMI shielding applications
CN101781520B (en) Water-based conducting polymer/metal composite nano-coating for porous wall board and preparation method thereof
CN104861753B (en) A kind of bituminous epoxy coating with electromagnetic wave absorption function and preparation method thereof
CN103725080B (en) Coating type ferrocene polymer magnet-semiconductor complex composite wave-suction material and preparation method
CN112430451A (en) Nitrogen-doped graphene/cobalt-zinc ferrite composite aerogel wave-absorbing material and preparation method thereof
CN107163500A (en) A kind of composite wave-suction material of multi-layer hollow structure
CN105950112A (en) Nano composite absorbing material and preparation method thereof
CN105670560A (en) Preparation method of nano-cobalt oxide/graphene composite wave-absorbing coating
Wang et al. A self-healing and flexible Ag@ carbon fiber/polyurethane composite based on disulfide bonds and application in electromagnetic interference shielding
CN111286252A (en) Radiation-resistant anticorrosive paint and preparation method thereof
Ren et al. Realizing significant dielectric dispersion of composites based on highly conducting silver-coated glass microspheres for wide-band non-magnetic microwave absorbers
KR102009416B1 (en) Composition for complex sheet with emi shields and absorbing and thermal dissipation, and complex sheet comprising the same
WO2023128106A1 (en) Electromagnetic wave-shielding material having broadband reflection and absorption and fabricating method therefor
CN107415336A (en) A kind of multilayer high temperature resistant absorbent structure based on honeycomb
KR102364069B1 (en) Electromagnetic interference shielding material, and Preparation method thereof
KR20050053040A (en) Emi/emc shielding sheet and the method for making it
CN109971300A (en) A kind of microwave absorbing coating and preparation method thereof
WO2021107136A1 (en) Electromagnetic wave blocking material
CN104693690A (en) Polyaniline/epoxy resin wave-absorbing composite material and preparation method thereof
Reis et al. The influence of the transparent layer thickness on the absorption capacity of epoxy/carbon nanotube buckypaper at X‐band
KR20190055648A (en) Metal oxide / polymer composite having electromagnetic wave shielding ability in GHz band and electromagnetic wave shielding material manufactured using the same
CN107459927B (en) Wave-absorbing slurry, wave-absorbing material and preparation method thereof
CN110819044B (en) Preparation method of graphene-ferroferric oxide/polyvinylidene fluoride composite film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916261

Country of ref document: EP

Kind code of ref document: A1