WO2023125644A1 - 磁能传动的换极机构 - Google Patents

磁能传动的换极机构 Download PDF

Info

Publication number
WO2023125644A1
WO2023125644A1 PCT/CN2022/142743 CN2022142743W WO2023125644A1 WO 2023125644 A1 WO2023125644 A1 WO 2023125644A1 CN 2022142743 W CN2022142743 W CN 2022142743W WO 2023125644 A1 WO2023125644 A1 WO 2023125644A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
passive
group
actuating
magnetic force
Prior art date
Application number
PCT/CN2022/142743
Other languages
English (en)
French (fr)
Inventor
张力
Original Assignee
张力
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张力 filed Critical 张力
Publication of WO2023125644A1 publication Critical patent/WO2023125644A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • H02K7/075Means for converting reciprocating motion into rotary motion or vice versa using crankshafts or eccentrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • H01F7/0242Magnetic drives, magnetic coupling devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/102Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact

Definitions

  • the present invention relates to a technical field of using magnetic energy to convert kinetic energy, in particular to a pole-changing mechanism for magnetic energy transmission with labor-saving effect, so as to reduce the loss of driving magnetic energy and improve the switching efficiency of moving magnetic force. Speed and certainty, so as to achieve the effect of saving energy and labor, and then can improve the efficiency of energy conversion.
  • this type of magnetic energy transmission device mainly defines at least two magnetic groups that can produce magnetic forces (ie magnetic repulsion and magnetic attraction) relatively as a magnetic force actuating unit and a magnetic force passive unit respectively, and through the magnetic force.
  • Taiwan Patent Publication No. I325923 it still has the following deficiencies: firstly, it uses the current direction to excite the magnet to generate magnetic force, which consumes electric energy. Secondly, the magnetic action direction and the displacement direction are not in the same direction but perpendicular to each other, which will offset some magnetic action force, resulting in insufficient magnetic action force and lower power output efficiency.
  • the response rate of the magnetic repulsion force at the shortest distance is higher than that of the magnetic attraction force at the farthest distance, so how to effectively control the magnetic repulsion force has become a major issue.
  • Lenz's law a change in a magnetic field generates an induced current, and the magnetic field caused by the induced current will form a force that resists the change in the magnetic field. Therefore, when the magnetic force actuator of the aforementioned magnetic energy transmission device switches the magnetic pole, it will generate resistance moment invisibly, so it must be completed with a large force, which is not only extremely energy-consuming and labor-intensive in operation, but also affects the The speed of changing poles.
  • the main purpose of the present invention is to provide a pole-changing mechanism for magnetic energy transmission, so as to effectively control the synchronous switching of magnetic poles, and use the pulling force and thrust generated by the alternating reciprocating action of magnetic attraction force and magnetic repulsion force to convert them into available output. motivation.
  • the main purpose of the present invention is to provide a pole changing mechanism for magnetic energy transmission, which can save energy and labor when switching the magnetic force, so as to improve the smoothness of its operation, and make the magnetic repulsion force and magnetic attraction force The ratio of the force difference increases, thereby improving the efficiency of its energy conversion.
  • the present invention mainly realizes aforementioned purpose and effect thereof through the following technical means:
  • a pole-changing mechanism for magnetic energy transmission characterized in that it includes:
  • At least one magnetic passive unit is arranged on the base, the base has a passive part, and the two ends of the passive part are respectively provided with a first magnetic passive part and a second magnetic passive part, the first magnetic passive part,
  • the second magnetic passive part can be driven by a magnetic force to linearly move between a first magnetic action point and a second magnetic action point, so as to drive the passive part synchronously and in the same direction to generate an output kinetic energy;
  • a magnetic force switching unit which is arranged on the base, the magnetic force switching unit has a first magnetic force actuating group, a second magnetic force actuating group, a driving group and an energy storage group, wherein the first magnetic force actuating The first magnetic force actuation group and the second magnetic force actuation group are respectively arranged at the opposite ends of the first magnetic passive part and the second magnetic passive part of the magnetic force passive unit.
  • At least one first actuating magnetic part and at least one second actuating magnetic part are arranged at intervals, and the first actuating magnetic part and the second actuating magnetic part of the first magnetic force actuating group and the second magnetic force actuating group
  • the moving magnetic parts are set opposite to each other in the same position, the total number of the first actuating magnetic part and the second actuating magnetic part is the number of magnetic passive units plus one, and the first magnetic actuating group, the second magnetic actuating group
  • the moving group can be synchronously operated by the driving group, corresponding to the displacement between a first point of action and a second point of action of the first magnetic passive part and the second magnetic passive part, so that the first magnetic force actuating group and the second magnetic force
  • the first actuating magnetic part and the second actuating magnetic part of the actuating group can synchronously generate magnetic repulsion or magnetic attraction force in the same direction with the opposite first magnetic passive part and the second magnetic passive part to drive the aforementioned passive parts
  • the energy storage group is provided
  • the second actuating magnetic part produces a range of resistance to changes in the magnetic field relative to the first magnetic passive part and the second magnetic passive part;
  • a power output unit is connected with the passive part of the magnetic force actuation unit, and the power output unit can receive the output kinetic energy of applying the passive part.
  • the pole-changing mechanism for magnetic energy transmission wherein: the first magnetically driven part and the second magnetically driven part of the magnetically driven unit are of the same polarity, and the first magnetically actuated group and the second magnetically driven part of the magnetically switched unit are The adjacent first actuating magnetic parts and the second actuating magnetic parts of the moving group are arranged with different polarities.
  • the magnetic energy transmission pole changing mechanism wherein: the first magnetic passive part and the second magnetic passive part of the magnetic passive unit have a sliding seat respectively, and the sliding seats of the first magnetic passive part and the second magnetic passive part A first passive magnetic element and a second passive magnetic element are respectively provided on different end surfaces.
  • the pole-changing mechanism of magnetic energy transmission wherein: the base has at least two equidistant and opposite side plates, and a magnetic passive unit is respectively installed one by one between adjacent side plates, and the two sides of the slide seat are connected to the opposite side plates.
  • a linear guide-sliding mechanism between them, which can form a guide block on both sides of the sliding seat of the first magnetic passive part and the second magnetic passive part, and the linear guide-sliding mechanism is respectively formed with a A long guide groove for the guide block to slide, so that the first magnetic passive part and the second magnetic passive part can be restricted to move linearly and reciprocally on the same axis.
  • the magnetic energy transmission pole changing mechanism wherein: the base has a bottom plate and a cover plate, and there are at least two equidistant and opposite side plates between the bottom plate and the cover plate, and a magnetic force is installed between adjacent side plates.
  • the passive unit, the sliding seats of the first magnetic passive part and the second magnetic passive part of the magnetic passive unit respectively have a linear guide and slide mechanism, which can move up and down the sliding seats of the first magnetic passive part and the second magnetic passive part.
  • a guide wheel is respectively provided on the edge, and the linear guide-sliding mechanism is respectively formed with a long guide rail for the guide wheel to roll at the opposite position of the bottom plate and the cover plate, so that the first magnetic passive part and the second magnetic passive part can be limited to the same Linear reciprocal movement on the axis.
  • the pole-changing mechanism of magnetic energy transmission wherein: the passive part of the magnetic passive unit can drive the power output unit in a rotational motion, the passive part has one or two crankshafts, and the crankshafts respectively have a output shaft, and the crankshaft utilizes an eccentric rod to jointly pivot a first swing arm and a second swing arm of equal length, and the first swing arm and the second swing arm are respectively pivotally connected to the first magnetic passive part,
  • the second magnetic passive part, and the power output unit has a coupling connected with the output shaft of the crankshaft.
  • the magnetic energy transmission pole changing mechanism wherein: the first energy storage element and the second energy storage element of the energy storage group are compression springs, and one end of the first energy storage element and the second energy storage element is fixed on the base The other end is not connected with the first magnetic force actuation group and the second magnetic force actuation group.
  • the magnetic energy transmission pole-changing mechanism wherein: the driving group of the magnetic force switching unit has a linkage rod and a servo motor arranged between the first magnetic force actuation set and the second magnetic force actuation set, and the linkage There is a cam link on the rod, and the servo motor has an output wheel, and the output wheel has a cam flange on which the end of the cam link is connected, and the cam flange is used to control the rotation of the output wheel through the servo motor.
  • Drive the cam connecting rod to drive the connecting rod to drive the first magnetic force actuation group and the second magnetic force actuation group to move synchronously.
  • the magnetic energy transmission pole changing mechanism wherein: the base is provided with a sliding mechanism corresponding to the first magnetic force actuation group and the second magnetic force actuation group of the magnetic force switching unit, and the sliding mechanism is located at both ends of the side plate of the base
  • the upper and lower edges are respectively provided with guide wheels on the upper and lower edges of the first magnetic force actuation group and the second magnetic force actuation group corresponding to the magnetic force switching unit, so that the first magnetic force actuation group and the second magnetic force actuation group Glides smoother.
  • the pole changing mechanism for magnetic energy transmission wherein: the base is provided with more than two magnetic passive units arranged in a matrix.
  • the present invention can utilize the first and second magnetic force actuating groups of the magnetic force switching unit to perform cyclic magnetic pole switching on the first and second magnetic passive parts of the magnetic force passive unit, so that the magnetic force
  • the first and second magnetically passive parts of the passive unit can undergo reciprocating motion due to magnetic effects such as magnetic repulsion and magnetic attraction, and generate a rotational or linear output kinetic energy, and through the magnetic force switching unit, the energy storage group is in two positions of the magnetic pole switching displacement.
  • the end is divided into a first energy storage element and a second energy storage element, so that the present invention can use a small load and a small current to drive the magnetic passive unit to generate a large output, and has the benefit of improving its energy conversion efficiency, thereby increasing the additional value of the product value and enhance its economic efficiency.
  • Fig. 1 is a schematic view of the appearance of the first preferred embodiment of the magnetic energy transmission pole changing mechanism of the present invention.
  • Fig. 2 is a three-dimensional exploded schematic view of the first preferred embodiment of the pole-changing mechanism for magnetic energy transmission according to the present invention, for illustrating the appearance and relative relationship of each component.
  • Fig. 3 is a three-dimensional action schematic diagram of the first preferred embodiment of the pole-changing mechanism for magnetic energy transmission according to the present invention, for explaining its first motion state.
  • Fig. 4 is another three-dimensional action schematic diagram of the first preferred embodiment of the magnetic energy transmission pole-changing mechanism of the present invention, for illustrating the second movement state of the reverse return stroke.
  • Fig. 5 is a schematic perspective view of the second preferred embodiment of the magnetic energy transmission pole changing mechanism of the present invention.
  • Fig. 6 is an exploded perspective view of a second preferred embodiment of the magnetic energy transmission pole changing mechanism of the present invention.
  • Fig. 7 is a top plan view of a third preferred embodiment of the magnetic energy transmission pole changing mechanism of the present invention.
  • Fig. 8 is a partial side plan view of the second preferred embodiment of the magnetic energy transmission pole changing mechanism of the present invention.
  • the present invention is a pole-changing mechanism for magnetic energy transmission.
  • all about front and rear, left and right, top and bottom, upper and lower, and horizontal and vertical References are made for convenience of description only, and are not intended to limit the invention, nor limit its components to any position or spatial orientation.
  • the dimensions specified in the drawings and description can be changed according to the design and requirements of the present invention without departing from the claims of the present invention.
  • the pole changing mechanism of this magnetic energy transmission is made up of a base 10, at least one magnetic force passive unit 20 and a magnetic force switching unit 40, to generate a kinetic energy and output it to a Linear or rotary power output unit 80 (such as piston, power generation system or gearbox, etc.) for use;
  • a Linear or rotary power output unit 80 such as piston, power generation system or gearbox, etc.
  • the base 10 has at least two equidistant and opposite side plates 11 for forming at least one installation space 110 extending along the moving direction of the magnetic passive units 20 for installing the magnetic passive units 20 one by one;
  • the magnetic passive units 20 have a passive element 23 located in the installation space 110 opposite to the base 10, and the two ends of the passive element 23 are respectively provided with a first magnetic passive part 21 and a first magnetic passive part 21 which can be driven by magnetic force.
  • Two magnetic passive parts 22, the first and second magnetic passive parts 21, 22 can move linearly reciprocally between a first magnetic action point and a second magnetic action point, for passing through the first and second magnetic passive parts 21, 22
  • the linear reciprocating displacement of 22 synchronously drives the passive part 23 to generate linear displacement or rotational movement
  • the first and second magnetic passive parts 21, 22 have a sliding seat 210, 220, and the first and second magnetic passive parts 21, 22
  • the different end surfaces of the sliding seats 210, 220 are respectively provided with a first and second passive magnetic parts 211, 221 (both can be of the same polarity or different polarity), and the first and second magnetic passive parts 21, 22
  • a linear guide and slide mechanism 30 is respectively provided, and a guide block 31 can be formed on both sides of the slide seats 210 and
  • the passive members 23 that can generate rotational motion are composed of one or two crankshafts 24, and the present invention is mainly based on two relative crankshafts 24 Embodiment, and these crankshafts 24 respectively have an output shaft 240, and these crankshafts 24 and utilize output shaft 240 to be pivoted on a pivot portion 13 opposite to side plate 11 of this base 10 two sides, and these crankshafts 24 And utilize an eccentric rod 25 to be jointly pivoted with a first swing arm 26 and a second swing arm 27 of equal length, and the first and second swing arms 26 and 27 can be respectively pivotally connected to the first and second magnets.
  • the passive parts 21 and 22 are used to drive the crankshafts 24 to rotate through the first and second swing arms 26 and 27 when the first and second magnetic passive parts 21 and 22 move back and forth, and the output of the crankshafts 24
  • the shaft 240 outputs rotational kinetic energy.
  • these passive elements 23 are also directly actuated by the first and second magnetic passive parts 21, 22 to generate linear displacements, and these passive elements 23 can be extended upward or downward and connected to a linear A moving power output unit such as a connecting rod of a piston (not shown in the figure) to drive the power output unit to generate linear motion;
  • the magnetic switching unit 40 has a first magnetic actuation group 41, a second magnetic actuation group 42, a driving group 44 and an energy storage group 47, wherein the first and second magnetic actuation groups 41, 42 It is movably arranged in parallel with the opposite ends of the first and second magnetic passive parts 21 and 22 of the magnetic passive unit 20, and the first and second magnetic actuation groups 41 and 42 can be used to correspond to the first and second
  • the displacement between a first action point and a second action point of the magnetic passive parts 21, 22 allows the first and second magnetic force actuating groups 41, 42 to be co-located with respect to the first and second magnetic passive parts 21, 22 respectively to generate
  • the magnetic repulsion force and magnetic attraction force in the same direction are used to drive the first and second magnetic passive parts 21, 22 to linearly displace in the same direction, and the first and second magnetic force actuating groups 41, 42 are tied to a frame body 410, 420 to set
  • the total number of the actuating magnetic parts 411, 421 and the second actuating magnetic parts 412, 422 is 2, and the first actuating magnetic parts 411, 421 and the second actuating magnetic parts 412, 422 are in the first,
  • the same position in the frame body 410, 420 of the two magnetic force actuation groups 41, 42 can be the same polarity or different polarity, where the first, second magnetic passive part 21, 22 of the aforementioned magnetic force passive unit 20, The two passive magnetic parts 211, 221 have the same polarity, then the first actuating magnetic parts 411, 421 and the second actuating magnetic parts 412, 422 of the first and second magnetic force actuating groups 41, 42 have different polarities, On the contrary, if the first and second passive magnetic parts 211 and 221 of the first and second magnetic passive parts 21 and 22 of the aforementioned magnetic force passive unit 20 are of different polarities, then the first and second magnetic force actuation groups 41 and 42 An actuating magnetic part 411, 421
  • the first and second magnetically passive parts 21 and 22 produce magnetic repulsion and magnetic attraction in the same direction
  • the present invention uses the first and second passive magnetic parts 211 and 221 of the first and second magnetic passive parts 21 and 22 to have the same polarity
  • the main embodiment is that the first actuating magnetic parts 411, 421 and the second actuating magnetic parts 412, 422 in the same position in the first and second magnetic actuating groups 41, 42 have different polarities;
  • the driving group 44 of the magnetic force switching unit 40 can actuate the first and second magnetic force actuating groups 41, 42 to move in the same direction synchronously between the first and second action points, and the driving group 44 is tied to the first and second magnetic force
  • a linkage rod 45 is straddled between one end of the frame bodies 410, 420 of the actuation groups 41, 42, and the linkage rod 45 has a lead screw cylinder 450, and the linkage rod 45 has a controllable forward and reverse rotation.
  • the servo motor 46, and the servo motor 46 has an output screw 460 screwed on the lead screw barrel 450, for the forward and reverse rotation of the output screw 460 to be controlled by the servo motor 46 to actuate the front and rear of the linkage rod 45 Then linearly displace, and further drive the first and second magnetic actuation groups 41 and 42 to switch between magnetic repulsion and magnetic attraction relative to the first and second magnetic passive parts 21 and 22 of the aforementioned magnetic passive unit 20 . Also according to some embodiments, as shown in Fig. 5 and Fig.
  • the driving group 44 is provided with a cam link 451 on the linkage rod 45, and the servo motor 46 has an output wheel 461, and the output wheel 461 has a cam flange 462 for connecting the end of the cam connecting rod 451, for controlling the rotation of the output wheel 461 through the servo motor 46 to use the cam flange 462 to drive the cam connecting rod 451 to drive the linkage rod 45. Then linearly displace, and further drive the first and second magnetic actuation groups 41 and 42 to switch between magnetic repulsion and magnetic attraction relative to the first and second magnetic passive parts 21 and 22 of the aforementioned magnetic passive unit 20 .
  • the energy storage group 47 is respectively provided with at least one first energy storage element 48 and at least one second energy storage element 48 and at least one second energy storage element 48 which can generate a restoring pre-force after being acted on at the two ends of the displacement of the first and second magnetic force actuation groups 41 and 42 respectively.
  • first and second energy storage elements 48,49 can be elastic members such as compression springs, elastic pressure rods, etc.
  • the first and second energy storage elements 48,49 of the present invention are positioned at the first and second magnetic forces
  • the compression springs at both ends of the frame bodies 410, 420 of the actuating groups 41, 42 are the main embodiment, and one end of the first and second energy storage elements 48, 49 is fixed on the base 10, and the other end is not connected to the frame body 410, 420 connection, used to produce the energy storage effect of restoring the pre-force after the first and second energy storage elements 48, 49 are compressed by the frames 410, 420, and the energy storage of the first and second energy storage elements 48, 49 recovers
  • the strokes are respectively located at the two ends of the first and second magnetic actuation groups 41 and 42.
  • the first actuating magnetic parts 411 and 421 and the second actuating magnetic parts 412 and 422 are opposite to the first and second magnetic passive parts. 21, 22 produce a range that resists changes in the magnetic field, so that the driving group 44 of the magnetic switching unit 40 actuates the first and second magnetic actuating groups 41, 42 relative to the first and second magnetic passive parts 21, 22 can produce labor-saving effect when switching magnetic poles, so that the design of the present invention can use the driving group 44 of small load, so the servo motor 46 can be started with a small current, so that the first and second magnetic actuating groups of the magnetic switching unit 40 41 , 42 produce large output relative to the magnetic force of the first and second magnetic passive parts 21 , 22 of the magnetic passive unit 20 , which has the benefit of improving its energy conversion efficiency.
  • the first and second magnetic force actuating groups 41, 42 of the magnetic force switching unit 40 can reduce the kinetic energy loss of their movement through a sliding mechanism 50, and the sliding mechanism 50 is tied on the top of the two ends of the base 10.
  • At least one guide wheel 51 is pivotally provided on the lower edge, and these guide wheels 51 can be attached to and supported on the upper and lower edges of the frames 410, 420 of the first and second magnetic force actuating groups 41, 42, so that The movement of the first and second magnetic actuation groups 41, 42 can be smoother, and can reduce the friction force when the first and second magnetic actuation groups 41, 42 move, so as to reduce their kinetic energy loss;
  • the magnetic switching unit 40 can use the energy storage group 47 and the servo motor 46 with a small load to actuate the first and second magnetic actuating groups 41 and 42 on both sides to switch the magnetic poles synchronously, so as to correspond to the second magnetic pole of the magnetic passive unit 20.
  • the second magnetically driven parts 21 and 22 generate magnetic repulsion and magnetic attraction acting in the same direction to generate a kinetic energy for utilization, thereby forming an energy-saving and labor-saving pole-changing mechanism with simple switching of magnetic energy transmission.
  • the magnetic switching unit 40 can be made from the first actuating magnetic member 411 of the first magnetic actuating group 41 and the second actuating magnetic member 42 of the second magnetic actuating group 42.
  • the actuating magnetic parts 422 respectively correspond to the states of the first and second magnetic passive parts 21 and 22 of the magnetic passive unit 20, and are switched to be activated by the second actuating magnetic parts 412 and the second magnetic force of the first magnetic actuating group 41.
  • the first actuating magnetic member 421 of the actuating group 42 corresponds to the states of the first and second magnetic passive parts 21 and 22 of the magnetic passive unit 20 respectively, so that the first magnetic actuating group 41 is opposite to the first magnetic passive part 21 Generate magnetic attraction force, and the second magnetic force actuating group 42 produces magnetic repulsion force in the same direction relative to the second magnetic passive part 22, and then make the first and second magnetic passive parts 21, 22 of the magnetic force passive unit 20 generate the first and second magnetic passive parts 21, 22 The linear displacement in the same direction from the magnetic action point to the second magnetic action point makes the driven part 23 use the first and second swing arms 26 and 27 to actuate the crankshaft 24 to generate a half-turn rotation.
  • the first energy storage element 48 of the energy storage group 44 can be compressed, and
  • the aforementioned first energy storage element 48 can use its restoring pre-force to generate a force that resists changes in the magnetic field due to the disappearance of the pressure, which can be used for Reduce the applied force of the servo motor 46 to produce a labor-saving effect, and when the first and second magnetic force actuation groups 41 and 42 move to the second energy storage element 49 at the second point of action, the first and second magnetic force actuation
  • the groups 41 and 42 can compress the second energy storage element 49 to form an energy storage shape with a restoring pre-force, so as to generate a restoring pre-force in the next cycle.
  • the magnetic force switching unit can be made 40.
  • the second actuating magnetic part 412 of the first magnetic actuating group 41 and the first actuating magnetic part 421 of the second magnetic actuating group 42 respectively correspond to the first and second magnetic passive parts 21 of the magnetic passive unit 20.
  • Part 22 generates magnetic attraction force in the same direction, and then makes the first and second magnetic passive parts 21, 22 of the magnetic force passive unit 20 produce linear displacement in the same direction from the second magnetic action point to the first magnetic action point, and makes the passive
  • the member 23 utilizes the first and second swing arms 26 and 27 to actuate the crankshaft 24 to generate another half circle of rotation, so that the reciprocal displacement of the first and second magnetic actuating groups 41 and 42 of the magnetic switching unit 40 can make
  • the crankshaft 24 of the driven element 23 rotates in the same direction, so that the crankshaft 24 can use the output shaft 240 to drive the power output unit 80 to rotate through the coupling 82 to form a continuously rotating kinetic energy output.
  • first and second magnetic actuation groups 41 and 42 of the magnetic switching unit 40 move in reverse to the second action point (as shown in FIG. 4 ), they can compress the second accumulator of the energy storage group 44 .
  • energy element 49 and when the first and second magnetic force actuation groups 41, 42 move to the first point of action, the aforementioned second energy storage element 49 can use its restoring force to produce the effect of resisting the change of the magnetic field due to the disappearance of pressure Force can be used to reduce the applied force of the servo motor 46, which can also produce labor-saving effect.
  • first and second magnetic force actuating groups 41, 42 move to the first energy storage element 48 of the first point of action again, Then the first and second magnetic force actuating groups 41 and 42 can compress the first energy storage element 48 again to form an energy storage state with restoring pre-force, so as to generate restoring pre-force in the next cycle.
  • the pole-changing mechanism of the magnetic energy transmission of the present invention can be arranged in a longitudinal array, and it can be provided with two or More than two magnetic passive units 20 arranged in a matrix
  • the characteristic of this embodiment is that the base 10 is composed of a bottom plate 15 for these magnetic passive units 20 and the magnetic switching unit 40 and a cover on these magnetic passive units 20 and the cover plate 18 above the magnetic switching unit 40, and the two sides of the magnetic passive units 20 are respectively provided with side plates 11 parallel to the displacement direction of the first and second magnetic passive parts 21, 22, and the first 1.
  • a linear guide and slide mechanism 30 that can maintain linear reciprocal movement.
  • At least one guide wheel 35 is provided on the upper and lower edges of both sides of the seat 210, 220, and these linear guide mechanisms 30 are respectively formed on the bottom plate 15 and the cover plate 18 of the base 10. 1.
  • the passive part 23 of the magnetic force passive unit 20 is formed with at least one hollow groove 16, 19, which can be used to reduce the weight of the base 10, and can reduce the interference of parts in the passive part 23 such as the crankshaft 24, and can effectively reduce the size of the body. Volume.
  • the magnetic energy transmission pole changing mechanism of the present invention can utilize the first and second magnetic actuation groups 41, 42 of the magnetic switching unit 40 to the first and second magnetic passives of the magnetic passive unit 20 Parts 21, 22 perform cyclic magnetic action, so that the first and second magnetic passive parts 21, 22 of the magnetic passive unit 20 can undergo reciprocating motion by magnetic repulsion and magnetic attraction to generate a rotational or linear output kinetic energy, and through the
  • the energy storage group 47 of the magnetic switching unit 40 is separately provided with the design of the first energy storage element 48 and the second energy storage element 49 at the two ends of the magnetic pole switching, so that the present invention can use the driving group 44 with small load and small current to make the
  • the magnetic passive unit 20 produces a large output, and has the benefit of improving its energy conversion efficiency, and cooperates with the linear guide slide mechanism 30 and the sliding mechanism 50 on the first and second magnetic passive parts 21, 22 of the magnetic passive unit 20, which can Reduce its friction, make the first and second magnetic passive parts 21, 22 of the magnetic passive unit 20 slide more smoothly

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Transmission Devices (AREA)

Abstract

本发明提供一种磁能传动的换极机构,其由一基座、至少一磁力被动单元及一磁力切换单元所组成,该磁力切换单元具有一第一磁力致动组及一第二磁力致动组,而利用线性切换使该第一、二磁力致动组可相对该磁力被动单元两端产生循环的同向磁斥力及磁吸力,使这些磁力被动单元可通过一线性往复运动生成一线性或旋转的动能输出,且在该第一、二磁力致动组位移的两端分别设有第一、二蓄能元件,以产生抗拒磁场变化的作用力,可达到省力的目的,且使其磁极切换动作更顺畅,进而提高其能源转换效益。

Description

磁能传动的换极机构 技术领域
本发明涉及一种利用磁能来转换动能的技术领域,具体而言系指一种具省力功效的磁能传动的换极机构,借以减少驱动磁能的耗损,并能提高其作动磁作用力切换的速度及确实性,而达到节能省力之效,进而可以提升能源转换效率。
背景技术
传统动力装置以马达或内燃机为主,用以将电能或燃烧能转换取得机械动能,其中如大马力的感应马达结构需要绕设大额定激磁电流线圈,其除了必须绕设体积较大的额定激磁线圈与转子外,更必须耗费较高的电能,于此激磁线圈方能驱使体积笨重的转子运转,若要降低其启动电流负荷,必需经过数级的Y-△限流启动,其控制元件及控制电路的材料成本极高。再者,马达在传动过程中并可能因导电的电线损失、转子的铁心损失,以及摩擦导致的机械损失,再加上前述原因可能产生损失累积,而造成整体输出动能效率不彰。由此可见,习知动力装置无论是在耗能、制造成本以及动力输出效能上皆有再改善的进步空间。
而为了解决前述动力装置耗能及动力输出效能不足的问题,目前市面上有多种磁能传动装置来辅助或取代前述动力装置,如中国台湾专利公告第I325923号、第M502288号、第M560542号及第I640149号等,这类磁能传动装置主要系将至少两可相对产生磁性作用力(即磁斥力及磁吸力)的磁组分别定义为一磁力致动单元及一磁力被动单元,而通过磁力致动单元与磁力被动单元之间磁作用力的切换,即通过磁力致动件的磁极切换,使两者间产生磁斥力与磁吸力的反复交错作用,而令该磁力被动单元能相对磁力致动单元产生往复运动,进而生成一动能并输出至一动力输出单元(如发电***、齿轮箱等),以供利用。然以其中中国台湾专利公告第I325923号为例,其仍有以下的缺失:首先其系利用电流方向来激磁产生磁作用力,需耗费电能。其次磁作用方向与位移方向非为同向而是垂直,会抵消一些磁作用力,造成磁作用力不足而降低动力输出效能。
再者,由于在磁作用力范围内,控制最近距离时的磁斥力比控制最远距离 时的磁吸力反应速率更高,因此如何有效控制磁斥力成为主要课题。而根据楞次定律,一磁场改变产生感应电流,此感应电流造成的磁场会形成一股抗拒磁场变化的力。因此对于前述磁能传动装置的磁力致动件在进行磁极切换时,无形间就会产生抗矩,因此必需施以较大的作用力来完成,不仅操作上极为耗能、且费力,也影响到换极的速度。
换言之,如何有效控制磁极切换,使磁斥力与磁吸力的作用力差的比值增大,达到节能省力之效,即能提高其能源转换效率,是业界及使用者所期待的,也是本发明所欲探讨的。
有鉴于上述缺失弊端及需求,本发明人认为具有改正的必要,遂以从事相关技术以及产品设计制造的多年经验,秉持优良设计理念,针对以上不良处加以研究在经过不断的努力后,终于成功的开发出一种磁能传动的换极机构,借以克服现有磁能传动的换极费力所衍生的困扰与不便。
发明内容
因此,本发明的主要目的是在提供一种磁能传动的换极机构,借以能有效控制磁极同步切换,而利用磁吸力与磁斥力交替往复作用所产生的拉力及推力,来转换成可供输出的动力。
再者,本发明的主要目的是在提供一种磁能传动的换极机构,其能在切换磁作用力时具有节能省力之效,以增进其运转的顺畅性,并使磁斥力与磁吸力的作用力差的比值增大,从而能提高其能源转换的效率。
基于此,本发明主要是通过下列的技术手段,来实现前述的目的及其功效:
一种磁能传动的换极机构,其特征在于,包括有:
一基座;
至少一磁力被动单元,其设于该基座上,该基座具有一被动件,且该被动件两端分设有一第一磁被动部及一第二磁被动部,该第一磁被动部、第二磁被动部能够被一磁作用力驱动在一第一磁作用点及一第二磁作用点间线性往复位移,供同步同向驱动该被动件产生一输出动能;
一磁力切换单元,其设于该基座上,该磁力切换单元具有一第一磁力致动组、一第二磁力致动组、一驱动组及一蓄能组,其中该第一磁力致动组、第二磁力致动组分别设于该磁力被动单元的第一磁被动部、第二磁被动部的相对端部,该第一磁力致动组、第二磁力致动组沿位移方向等距、且间隔排列有至少 一第一致动磁性件及至少一第二致动磁性件,而该第一磁力致动组、第二磁力致动组的第一致动磁性件、第二致动磁性件呈同位相对设置,该第一致动磁性件与该第二致动磁性件的相加总数量为磁力被动单元的数量加一,且该第一磁力致动组、第二磁力致动组能够被该驱动组同步作动对应该第一磁被动部、第二磁被动部的一第一作用点与一第二作用点间位移,使得该第一磁力致动组、第二磁力致动组的第一致动磁性件、第二致动磁性件能够同步与相对的第一磁被动部、第二磁被动部产生同向的磁斥力或磁吸力,以驱动前述的被动件,而该蓄能组于第一磁力致动组、第二磁力致动组位移的两端分别设有被作用后可产生回复预力的至少一第一蓄能元件及至少一第二蓄能元件,且该第一蓄能元件、第二蓄能元件的蓄能回复行程分别位于该第一磁力致动组、第二磁力致动组两端在切换时该第一致动磁性件与该第二致动磁性件相对该第一磁被动部、第二磁被动部产生抗拒磁场变化的范围;
一动力输出单元,其与该磁力致动单元的被动件连接,该动力输出单元能够接收应用该被动件的输出动能。
所述的磁能传动的换极机构,其中:该磁力被动单元的第一磁被动部、第二磁被动部为相同极性,而该磁力切换单元的第一磁力致动组、第二磁力致动组的相邻第一致动磁性件、第二致动磁性件为相异极性排列。
所述的磁能传动的换极机构,其中:该磁力被动单元的第一磁被动部、第二磁被动部分别具有一滑座,且该第一磁被动部、第二磁被动部的滑座相异端面分别设有一第一被动磁性件、第二被动磁性件。
所述的磁能传动的换极机构,其中:该基座具有至少两等距、且相对的侧板,相邻侧板间用以分别逐一安装一磁力被动单元,滑座两侧与相对侧板间分别具有一线性导滑机构,其能够在第一磁被动部、第二磁被动部的滑座两侧分别形成有一导块,且该线性导滑机构在两侧侧板相对处分别形成有一道供导块滑动的长导槽,使得该第一磁被动部、第二磁被动部能够被限制于同一轴线上线性往复位移。
所述的磁能传动的换极机构,其中:该基座具有一底板及一盖板,且底板与盖板间具有至少两等距、且相对的侧板,而相邻侧板间安装一磁力被动单元,该磁力被动单元的第一磁被动部、第二磁被动部的滑座分别具有一线性导滑机构,其能够在第一磁被动部、第二磁被动部的滑座上、下缘分别设有一导轮,且该线性导滑机构在底板与盖板相对处分别形成有一道供导轮滚动的长导轨, 使得该第一磁被动部、第二磁被动部能够被限制于同一轴线上线性往复位移。
所述的磁能传动的换极机构,其中:该磁力被动单元的被动件能够以旋转运动驱动该动力输出单元,该被动件具有一或二个曲轴,该曲轴分别具有一枢设于基座的输出轴,而该曲轴利用一偏心杆共同枢设有等长的一第一摆臂及一第二摆臂,该第一摆臂、第二摆臂分别枢设连接该第一磁被动部、第二磁被动部,而该动力输出单元具有一与该曲轴输出轴连结的联轴器。
所述的磁能传动的换极机构,其中:该蓄能组的第一蓄能元件、第二蓄能元件是压缩弹簧,该第一蓄能元件、第二蓄能元件一端固设于基座上,另一端未与第一磁力致动组、第二磁力致动组连结。
所述的磁能传动的换极机构,其中:该磁力切换单元的驱动组具有一设于该第一磁力致动组、第二磁力致动组间的连动杆及一伺服马达,该连动杆上具有一凸轮连杆,而该伺服马达具有一输出轮,且该输出轮上具有一供该凸轮连杆端部连结的凸轮缘,供通过伺服马达控制该输出轮的旋转来利用凸轮缘带动该凸轮连杆去驱动该连动杆,以驱动该第一磁力致动组、第二磁力致动组同步位移。
所述的磁能传动的换极机构,其中:该基座对应该磁力切换单元的第一磁力致动组、第二磁力致动组设有一滑动机构,该滑动机构于基座的侧板两端上、下缘分别设有一对应该磁力切换单元的第一磁力致动组、第二磁力致动组上、下缘的导轮,使该第一磁力致动组、第二磁力致动组的滑动更顺畅。
所述的磁能传动的换极机构,其中:该基座上设有二个以上矩阵排列的磁力被动单元。
借此,通过上述技术手段的具体实现,本发明能利用该磁力切换单元的第一、二磁力致动组对该磁力被动单元的第一、二磁被动部进行循环的磁极切换,使得该磁力被动单元的第一、二磁被动部能受磁斥力及磁吸力等磁作用产生往复运动,而生成一旋转或线性的输出动能,且通过该磁力切换单元上蓄能组于磁极切换位移的两端分设有第一蓄能元件与第二蓄能元件,使得本发明可以使用小负载、小电流来驱动该磁力被动单元产生大输出,而具有提高其能源转换效率的效益,从而增加产品的附加价值,并提升其经济效益。
为使能进一步了解本发明的构成、特征及其他目的,以下乃举本发明的若干较佳实施例,并配合图式详细说明如后,同时让本领域技术人员能够具体实施。
附图说明
图1是本发明磁能传动的换极机构第一较佳实施例的外观示意图。
图2是本发明磁能传动的换极机构第一较佳实施例的立体分解示意图,供说明各构件的态样及相对关系。
图3是本发明磁能传动的换极机构第一较佳实施例的立体动作示意图,供说明其第一运动状态。
图4是本发明磁能传动的换极机构第一较佳实施例的另一立体动作示意图,供说明其反向回程的第二运动状态。
图5是本发明磁能传动的换极机构第二较佳实施例的立体外观示意图。
图6是本发明磁能传动的换极机构第二较佳实施例的立体分解示意图。
图7是本发明磁能传动的换极机构第三较佳实施例的俯视平面示意图。
图8是本发明磁能传动的换极机构第二较佳实施例的局部侧视平面示意图。
附图标记说明:10-基座;11-侧板;110-安装空间;13-枢部;15-底板;16-镂空槽;18-盖板;19-镂空槽;20-磁力被动单元;21-第一磁被动部;210-滑座;211-第一被动磁性件;22-第二磁被动部;220-滑座;221-第二被动磁性件;23-被动件;24-曲轴;240-输出轴;25-偏心杆;26-第一摆臂;27-第二摆臂;30-线性导滑机构;31-导块;32-长导槽;35-导轮;36-长导轨;38-长导轨;40-磁力切换单元;41-第一磁力致动组;410-框体;411-第一致动磁性件;412-第二致动磁性件;42-第二磁力致动组;420-框体;421-第一致动磁性件;422-第二致动磁性件;44-驱动组;45-连动杆;450-导螺筒;451-凸轮连杆;46-伺服马达;460-输出螺杆;461-输出轮;462-凸轮缘;47-蓄能组;48-第一蓄能元件;49-第二蓄能元件;50-滑动机构;51-导轮。
具体实施方式
本发明是一种磁能传动的换极机构,随附图例示的本发明的具体实施例及其构件中,所有关于前与后、左与右、顶部与底部、上部与下部、以及水平与垂直的参考,仅用于方便进行描述,并非用于限制本发明,也非将其构件限制于任何位置或空间方向。图式与说明书中所指定的尺寸,当可在不离开本发明的请求项内,根据本发明的设计与需求而进行变化。
本发明的主要构成如图1、图2所示,该磁能传动的换极机构由一基座10、 至少一磁力被动单元20及一磁力切换单元40所组成,以生成一动能并输出至一线性或转动的动力输出单元80(如活塞、发电***或齿轮箱等),以供利用;
其中基座10具有至少两等距、且相对的侧板11,供形成至少一沿该些磁力被动单元20移动方向延伸的安装空间110,用以分别逐一安装该些磁力被动单元20;
而该些磁力被动单元20具有一设于该基座10相对安装空间110的被动件23,且该被动件23两端分设有可被磁作用力驱动的一第一磁被动部21及一第二磁被动部22,该第一、二磁被动部21、22可于一第一磁作用点及一第二磁作用点之间线性往复位移,供通过该第一、二磁被动部21、22的线性往复位移同步驱动该被动件23产生线性位移或旋转运动,又该第一、二磁被动部21、22具有一滑座210、220,且该第一、二磁被动部21、22的滑座210、220相异端面分别设有一第一、二被动磁性件211、221(两者可为相同极性或相异极性),又该第一、二磁被动部21、22上分别设有一线性导滑机构30,其可于第一、二磁被动部21、22的滑座210、220两侧分别形成有一导块31,且该些线性导滑机构30并于该基座10两侧侧板11相对处分别形成有一道沿着第一、二磁被动部21、22线性位移方向延伸的长导槽32上,使得该第一、二磁被动部21、22可被限制于同一轴线上线性往复位移;
再者当该被动件23系以旋转运动驱动该动力输出单元80时,该些可以产生旋转运动的被动件23具有一或二个曲轴24所组成,本发明以二个相对的曲轴24为主要实施例,而该些曲轴24分别具有一输出轴240,又该些曲轴24并利用输出轴240枢设于该基座10两侧侧板11相对的一枢部13上,而该些曲轴24并利用一偏心杆25共同枢设有等长的一第一摆臂26及一第二摆臂27,再者该第一、二摆臂26、27可分别枢设连接该第一、二磁被动部21、22,用以当该第一、二磁被动部21、22往复位移时可通过该第一、二摆臂26、27驱动该些曲轴24转动,且由该些曲轴24的输出轴240输出旋转动能。又根据某些实施例,该些被动件23也受该第一、二磁被动部21、22直接作动产生线性位移,该些被动件23可以是一向上或向下延伸、且连接一线性运动的动力输出单元如活塞的连动杆(图中未示),以驱动该动力输出单元产生线性运动;
至于,该磁力切换单元40具有一第一磁力致动组41、一第二磁力致动组42、一驱动组44及一蓄能组47,其中该第一、二磁力致动组41、42系以可移动方式平行分设于该磁力被动单元20的第一、二磁被动部21、22的相对端部, 且该第一、二磁力致动组41、42可于对应该第一、二磁被动部21、22的一第一作用点与一第二作用点间位移,供该第一、二磁力致动组41、42可同位相对该第一、二磁被动部21、22分别产生同向的磁斥力及磁吸力,以驱动该第一、二磁被动部21、22同向线性位移,又该第一、二磁力致动组41、42系于一框体410、420上设有沿位移方向等距、且间隔排列的至少一第一致动磁性件411、421及至少一第二致动磁性件412、422,其中该第一致动磁性件411、421与该第二致动磁性件412、422的相加总数量为磁力被动单元20的数量加一,例如本实施例为一组磁力被动单元20、则该第一、二磁力致动组41、42的第一致动磁性件411、421与第二致动磁性件412、422相加总数量为2,且该第一致动磁性件411、421与第二致动磁性件412、422于该第一、二磁力致动组41、42的框体410、420中相同位置可以是相同极性或相异极性,其中如前述磁力被动单元20的第一、二磁被动部21、22的第一、二被动磁性件211、221为相同极性、则第一、二磁力致动组41、42的第一致动磁性件411、421与第二致动磁性件412、422为相异极性,反的如前述磁力被动单元20的第一、二磁被动部21、22的第一、二被动磁性件211、221为相异极性、则第一、二磁力致动组41、42的第一致动磁性件411、421与第二致动磁性件412、422为相同极性,供该磁力切换单元40的第一、二磁力致动组41、42可同位相对该磁力被动单元20的第一、二磁被动部21、22产生同向磁斥力及磁吸力,而本发明系以第一、二磁被动部21、22的第一、二被动磁性件211、221为相同极性、而第一、二磁力致动组41、42中同位的第一致动磁性件411、421与第二致动磁性件412、422为相异极性为主要实施例;
又该磁力切换单元40的驱动组44可以作动该第一、二磁力致动组41、42于第一、二作用点间同步同向位移,该驱动组44系于该第一、二磁力致动组41、42的框体410、420一端间跨设有一连动杆45,且该连动杆45上具有一导螺筒450,又该连动杆45具有一可控制正、反转的伺服马达46,且该伺服马达46具有一螺设于该导螺筒450的输出螺杆460,供通过伺服马达46控制该输出螺杆460的正、反转来作动该连动杆45前、后线性位移,且进一步带动该第一、二磁力致动组41、42相对前述磁力被动单元20的第一、二磁被动部21、22进行磁斥力与磁吸力的切换。又根据某些实施例,如图5、图6所示,该驱动组44系于该连动杆45上具有一凸轮连杆451,而该伺服马达46具有一输出轮461,且该输出轮461上具有一供该凸轮连杆451端部连结的凸轮缘462,供通过伺服 马达46控制该输出轮461的旋转来利用凸轮缘462带动该凸轮连杆451去驱动该连动杆45前、后线性位移,且进一步带动该第一、二磁力致动组41、42相对前述磁力被动单元20的第一、二磁被动部21、22进行磁斥力与磁吸力的切换。再者该蓄能组47分别于前述第一、二磁力致动组41、42位移的两端分别设有被作用后可产生回复预力的至少一第一蓄能元件48及至少一第二蓄能元件49,其中该第一、二蓄能元件48、49可以是弹性件如压缩弹簧、弹性压杆等,本发明的第一、二蓄能元件48、49以位于第一、二磁力致动组41、42框体410、420两端的压缩弹簧为主要实施例,且该第一、二蓄能元件48、49一端固设于基座10上、且另一端未与框体410、420连结,用以当第一、二蓄能元件48、49被框体410、420所压缩后产生回复预力的蓄能作用,且该第一、二蓄能元件48、49的蓄能回复行程分别位于该第一、二磁力致动组41、42两端于切换时该第一致动磁性件411、421与该第二致动磁性件412、422相对该第一、二磁被动部21、22产生抗拒磁场变化的范围,使得该磁力切换单元40的驱动组44作动该第一、二磁力致动组41、42相对该磁力被动单元20的第一、二磁被动部21、22于切换磁极时能产生省力之效,使得本发明设计可以使用小负载的驱动组44,故可以小电流进行启动伺服马达46,从而通过该磁力切换单元40的第一、二磁力致动组41、42相对该磁力被动单元20的第一、二磁被动部21、22的磁作用力产生大输出,而具有提高其能源转换效率的效益。又根据某些实施,该磁力切换单元40的第一、二磁力致动组41、42能通过一滑动机构50来降低其移动的动能损耗,该滑动机构50系于该基座10两端的上、下缘分别枢设有至少一导轮51,且该些导轮51可供贴靠及支撑于该第一、二磁力致动组41、42的框体410、420上、下缘,使得该第一、二磁力致动组41、42的动作可以更为滑顺,且能减少该第一、二磁力致动组41、42移动时的摩擦力,以降低其动能损耗;
借此,该磁力切换单元40能利用蓄能组47及小负载的伺服马达46来作动两侧第一、二磁力致动组41、42同步切换磁极,以相对该磁力被动单元20的第一、二磁被动部21、22产生同向作用的磁斥力与磁吸力,而生成一动能以供利用,从而组构成一节能省力、且切换简捷的磁能传动的换极机构者。
至于本发明的实际运作,则系如图1、图3及图4所示,当该磁力切换单元40的驱动组44通过伺服马达46作动该磁力被动单元20两端的第一、二磁力致动组41、42向前位移至第一作用点时,可令该磁力切换单元40原由该第一磁 力致动组41的第一致动磁性件411及第二磁力致动组42的第二致动磁性件422分别对应该磁力被动单元20的第一、二磁被动部21、22的状态,而切换成由该第一磁力致动组41的第二致动磁性件412及第二磁力致动组42的第一致动磁性件421分别对应该磁力被动单元20的第一、二磁被动部21、22的状态,使得其中第一磁力致动组41相对该第一磁被动部21产生磁吸力、且该第二磁力致动组42相对该第二磁被动部22产生同向的磁斥力,进而让该磁力被动单元20的第一、二磁被动部21、22产生由第一磁作用点至第二磁作用点的同向线性位移,且令该被动件23利用第一、二摆臂26、27作动该曲轴24产生半圈的旋转运动。同时,该磁力切换单元40的第一、二磁力致动组41、42移动至第一作用点时(如图3所示),可以压缩该蓄能组44的第一蓄能元件48,而当该第一、二磁力致动组41、42反向往第二作用点移动时,则前述第一蓄能元件48因压力消失而能利用其回复预力产生抗拒磁场变化的作用力,可供减少伺服马达46的施力,而产生省力之效,且该第一、二磁力致动组41、42移动至第二作用点的第二蓄能元件49时,该第一、二磁力致动组41、42可压缩第二蓄能元件49呈具回复预力的蓄能状,以供下一循环产生回复预力。
再者,当驱动组44通过伺服马达46反向作动该磁力被动单元20两端的第一、二磁力致动组41、42向后位移至第二作用点时,则可令该磁力切换单元40原由该第一磁力致动组41的第二致动磁性件412及第二磁力致动组42的第一致动磁性件421分别对应该磁力被动单元20的第一、二磁被动部21、22的状态,而再次切换回复成由该第一磁力致动组41的第一致动磁性件411及第二磁力致动组42的第二致动磁性件422分别对应该磁力被动单元20的第一、二磁被动部21、22的状态,使得其中第一磁力致动组41相对该第一磁被动部21产生磁斥力、且该第二磁力致动组42相对该第二磁被动部22产生同向的磁吸力,进而让该磁力被动单元20的第一、二磁被动部21、22产生由第二磁作用点至第一磁作用点的同向线性位移,且令该被动件23利用第一、二摆臂26、27作动该曲轴24产生另一半圈的旋转运动,如此通过该磁力切换单元40的第一、二磁力致动组41、42的往复位移,可使该被动件23的曲轴24产生同向旋转运进,进而让该曲轴24可以利用输出轴240经联轴器82驱动该动力输出单元80转动,而形成不断旋转的动能输出。再者,当该磁力切换单元40的第一、二磁力致动组41、42反向移动至第二作用点时(如图4所示),其可以压缩该蓄能组44的第二蓄能元件49,而当该第一、二磁力致动组41、42往第一作用点移 动时,则前述第二蓄能元件49因压力消失而能利用其回复预力产生抗拒磁场变化的作用力,可供减少伺服马达46的施力,一样能产生省力之效,再者当该第一、二磁力致动组41、42再次移动至第一作用点的第一蓄能元件48时,则该第一、二磁力致动组41、42可再次压缩第一蓄能元件48呈具回复预力的蓄能状,以供下一循环产生回复预力。
另根据某些实施例,如图5、图6、图7及图8所示,本发明的磁能传动的换极机构可以是纵向阵列设置,其可以于该基座10上设有二个或二个以上矩阵排列的磁力被动单元20,本实施例的特色在于该基座10由一供该些磁力被动单元20与该磁力切换单元40设置的底板15及一覆设于该些磁力被动单元20与该磁力切换单元40上方的盖板18所构成,且该些磁力被动单元20两侧分别设有平行该第一、二磁被动部21、22位移方向的侧板11,又该第一、二磁被动部21、22与两侧侧板11间分设有可保持线性往复位移的线性导滑机构30,该线性导滑机构30系于该第一、二磁被动部21、22的滑座210、220两侧上、下缘分别设有至少一导轮35,且该些线性导滑机构30并于该基座10的底板15与盖板18相对处分别形成有一道沿着第一、二磁被动部21、22线性位移方向延伸的长导轨36、38上,使得该第一、二磁被动部21、22可利用该线性导滑机构30的导轮35、长导轨36、38限制于同一轴线上线性往复位移(如图8所示),且能减少其摩擦力,使其更具滑动顺畅性及提升省力效果,再者该基座10的底板15与盖板18于对应磁力被动单元20的被动件23处形成有至少一镂空槽16、19,可用以减轻该基座10重量,且能减少对该被动件23中零件如曲轴24的干涉,可有效缩小体体的材积。
借由上述的具体实施例说明,本发明的磁能传动的换极机构能利用该磁力切换单元40的第一、二磁力致动组41、42对该磁力被动单元20的第一、二磁被动部21、22进行循环的磁作用,使得该磁力被动单元20的第一、二磁被动部21、22能受磁斥力及磁吸力进行往复运动而生成一旋转或线性的输出动能,且通过该磁力切换单元40的蓄能组47于磁极切换的两端分设有第一蓄能元件48与第二蓄能元件49的设计,使得本发明可以使用小负载、小电流的驱动组44来令该磁力被动单元20产生大输出,而具有提高其能源转换效率的效益,并配合该磁力被动单元20的第一、二磁被动部21、22上的线性导滑机构30与滑动机构50,其能减少其摩擦力,使得该磁力被动单元20的第一、二磁被动部21、22的滑动更顺畅性,进而提升其省力效果,同时能让磁力切换单元40的磁 极切换更为灵敏,可进一步加大第一、二磁被动部21、22的作用行程,从而提升其能源转换效率。
以上说明对本发明而言只是说明性的,而非限制性的,本领域普通技术人员理解,在不脱离权利要求所限定的精神和范围的情况下,可作出许多修改、变化或等效,但都将落入本发明的保护范围之内。

Claims (10)

  1. 一种磁能传动的换极机构,其特征在于,包括有:
    一基座;
    至少一磁力被动单元,其设于该基座上,该基座具有一被动件,且该被动件两端分设有一第一磁被动部及一第二磁被动部,该第一磁被动部、第二磁被动部能够被一磁作用力驱动在一第一磁作用点及一第二磁作用点间线性往复位移,供同步同向驱动该被动件产生一输出动能;
    一磁力切换单元,其设于该基座上,该磁力切换单元具有一第一磁力致动组、一第二磁力致动组、一驱动组及一蓄能组,其中该第一磁力致动组、第二磁力致动组分别设于该磁力被动单元的第一磁被动部、第二磁被动部的相对端部,该第一磁力致动组、第二磁力致动组沿位移方向等距、且间隔排列有至少一第一致动磁性件及至少一第二致动磁性件,而该第一磁力致动组、第二磁力致动组的第一致动磁性件、第二致动磁性件呈同位相对设置,该第一致动磁性件与该第二致动磁性件的相加总数量为磁力被动单元的数量加一,且该第一磁力致动组、第二磁力致动组能够被该驱动组同步作动对应该第一磁被动部、第二磁被动部的一第一作用点与一第二作用点间位移,使得该第一磁力致动组、第二磁力致动组的第一致动磁性件、第二致动磁性件能够同步与相对的第一磁被动部、第二磁被动部产生同向的磁斥力或磁吸力,以驱动前述的被动件,而该蓄能组于第一磁力致动组、第二磁力致动组位移的两端分别设有被作用后可产生回复预力的至少一第一蓄能元件及至少一第二蓄能元件,且该第一蓄能元件、第二蓄能元件的蓄能回复行程分别位于该第一磁力致动组、第二磁力致动组两端在切换时该第一致动磁性件与该第二致动磁性件相对该第一磁被动部、第二磁被动部产生抗拒磁场变化的范围;
    一动力输出单元,其与该磁力致动单元的被动件连接,该动力输出单元能够接收应用该被动件的输出动能。
  2. 如权利要求1所述的磁能传动的换极机构,其特征在于:该磁力被动单元的第一磁被动部、第二磁被动部为相同极性,而该磁力切换单元的第一磁力致动组、第二磁力致动组的相邻第一致动磁性件、第二致动磁性件为相异极性排列。
  3. 如权利要求1所述的磁能传动的换极机构,其特征在于:该磁力被动单元的第一磁被动部、第二磁被动部分别具有一滑座,且该第一磁被动部、第二磁 被动部的滑座相异端面分别设有一第一被动磁性件、第二被动磁性件。
  4. 如权利要求3所述的磁能传动的换极机构,其特征在于:该基座具有至少两等距、且相对的侧板,相邻侧板间用以分别逐一安装一磁力被动单元,滑座两侧与相对侧板间分别具有一线性导滑机构,其能够在第一磁被动部、第二磁被动部的滑座两侧分别形成有一导块,且该线性导滑机构在两侧侧板相对处分别形成有一道供导块滑动的长导槽,使得该第一磁被动部、第二磁被动部能够被限制于同一轴线上线性往复位移。
  5. 如权利要求3所述的磁能传动的换极机构,其特征在于:该基座具有一底板及一盖板,且底板与盖板间具有至少两等距、且相对的侧板,而相邻侧板间安装一磁力被动单元,该磁力被动单元的第一磁被动部、第二磁被动部的滑座分别具有一线性导滑机构,其能够在第一磁被动部、第二磁被动部的滑座上、下缘分别设有一导轮,且该线性导滑机构在底板与盖板相对处分别形成有一道供导轮滚动的长导轨,使得该第一磁被动部、第二磁被动部能够被限制于同一轴线上线性往复位移。
  6. 如权利要求1所述的磁能传动的换极机构,其特征在于:该磁力被动单元的被动件能够以旋转运动驱动该动力输出单元,该被动件具有一或二个曲轴,该曲轴分别具有一枢设于基座的输出轴,而该曲轴利用一偏心杆共同枢设有等长的一第一摆臂及一第二摆臂,该第一摆臂、第二摆臂分别枢设连接该第一磁被动部、第二磁被动部,而该动力输出单元具有一与该曲轴输出轴连结的联轴器。
  7. 如权利要求1所述的磁能传动的换极机构,其特征在于:该蓄能组的第一蓄能元件、第二蓄能元件是压缩弹簧,该第一蓄能元件、第二蓄能元件一端固设于基座上,另一端未与第一磁力致动组、第二磁力致动组连结。
  8. 如权利要求1所述的磁能传动的换极机构,其特征在于:该磁力切换单元的驱动组具有一设于该第一磁力致动组、第二磁力致动组间的连动杆及一伺服马达,该连动杆上具有一凸轮连杆,而该伺服马达具有一输出轮,且该输出轮上具有一供该凸轮连杆端部连结的凸轮缘,供通过伺服马达控制该输出轮的旋转来利用凸轮缘带动该凸轮连杆去驱动该连动杆,以驱动该第一磁力致动组、第二磁力致动组同步位移。
  9. 如权利要求4所述的磁能传动的换极机构,其特征在于:该基座对应该磁力切换单元的第一磁力致动组、第二磁力致动组设有一滑动机构,该滑动机构 于基座的侧板两端上、下缘分别设有一对应该磁力切换单元的第一磁力致动组、第二磁力致动组上、下缘的导轮,使该第一磁力致动组、第二磁力致动组的滑动更顺畅。
  10. 如权利要求1所述的磁能传动的换极机构,其特征在于:该基座上设有二个以上矩阵排列的磁力被动单元。
PCT/CN2022/142743 2021-12-30 2022-12-28 磁能传动的换极机构 WO2023125644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111649736.8A CN116418194A (zh) 2021-12-30 2021-12-30 磁能传动的换极机构
CN202111649736.8 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023125644A1 true WO2023125644A1 (zh) 2023-07-06

Family

ID=84887271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142743 WO2023125644A1 (zh) 2021-12-30 2022-12-28 磁能传动的换极机构

Country Status (4)

Country Link
US (1) US20230216369A1 (zh)
EP (1) EP4207221A1 (zh)
CN (1) CN116418194A (zh)
WO (1) WO2023125644A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840636A (zh) * 2012-11-22 2014-06-04 丁金助 磁能传动装置及具有磁能传动装置的发电机
KR101471851B1 (ko) * 2013-10-24 2014-12-12 백성룡 자력을 이용한 회전동력 발생장치 및 그의 제어방법
TWM502288U (zh) * 2014-12-31 2015-06-01 Li Chang 磁動機構
TW201623792A (zh) * 2014-12-24 2016-07-01 張力 磁動機構

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840636A (zh) * 2012-11-22 2014-06-04 丁金助 磁能传动装置及具有磁能传动装置的发电机
KR101471851B1 (ko) * 2013-10-24 2014-12-12 백성룡 자력을 이용한 회전동력 발생장치 및 그의 제어방법
TW201623792A (zh) * 2014-12-24 2016-07-01 張力 磁動機構
TWM502288U (zh) * 2014-12-31 2015-06-01 Li Chang 磁動機構

Also Published As

Publication number Publication date
US20230216369A1 (en) 2023-07-06
EP4207221A1 (en) 2023-07-05
CN116418194A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
EP2094958B1 (en) A reciprocating piston machine with oscillating balancing rotors
TWI766513B (zh) 磁能傳動裝置換極控制機構
WO2023125644A1 (zh) 磁能传动的换极机构
CN102441893A (zh) 一种基于电磁力的肌肉仿生驱动装置
CN110805540A (zh) 一种纯磁驱气体增压机
CN206364682U (zh) 电磁推拉器
WO2009052729A1 (fr) Moteur à énergie magnétique
CN201913644U (zh) 一种基于电磁力的肌肉仿生驱动装置
TW202323699A (zh) 磁能傳動之換極機構
TWM622342U (zh) 磁能傳動裝置換極控制機構
TWI766696B (zh) 磁能裝置換極控制機構
WO2023005923A1 (zh) 磁能传动装置换极控制机构
CN103527315A (zh) 磁力辅助往复式内燃机
CN103184995B (zh) 磁电动能压缩机
CN113809900A (zh) 电磁铁永久磁铁混合吸斥动力机
WO2024017132A1 (zh) 磁力驱动机构
CN107380432A (zh) 一种无人机用驱动器及其工作方法、以及无人机
CN211265352U (zh) 一种基于形状记忆合金的机械逻辑控制双向致动机构
TWI814353B (zh) 磁力驅動機構
CN2824419Y (zh) 新型直线往复式电动机
CN211239662U (zh) 星型磁能电机
TWM587853U (zh) 應用嵌齒能之線性動能產生裝置
WO2009099343A1 (en) A cogeneration system
CN203230555U (zh) 磁电动能压缩机
CN115694122A (zh) 磁能装置换极控制机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914896

Country of ref document: EP

Kind code of ref document: A1