WO2023125263A1 - 铝合金改性用复合稀土合金及其制备方法 - Google Patents

铝合金改性用复合稀土合金及其制备方法 Download PDF

Info

Publication number
WO2023125263A1
WO2023125263A1 PCT/CN2022/141281 CN2022141281W WO2023125263A1 WO 2023125263 A1 WO2023125263 A1 WO 2023125263A1 CN 2022141281 W CN2022141281 W CN 2022141281W WO 2023125263 A1 WO2023125263 A1 WO 2023125263A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
melt
aluminum
alloy
refining
Prior art date
Application number
PCT/CN2022/141281
Other languages
English (en)
French (fr)
Inventor
彭珞洲
答建成
Original Assignee
上海耀鸿科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海耀鸿科技股份有限公司 filed Critical 上海耀鸿科技股份有限公司
Publication of WO2023125263A1 publication Critical patent/WO2023125263A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • the invention relates to the technical field of alloy materials and preparation, in particular to a composite rare earth alloy for aluminum alloy modification and a preparation method thereof.
  • Aluminum alloy has excellent comprehensive properties such as light weight, wear resistance, low thermal expansion coefficient, good casting performance and the best matching relationship between product mechanical properties (optimum strength and plasticity), mainly composed of ⁇ -Al dendrites, eutectic silicon And Mg2Si equilibrium phase composition.
  • product mechanical properties mainly composed of ⁇ -Al dendrites, eutectic silicon And Mg2Si equilibrium phase composition.
  • coarse ⁇ -Al dendrites and flaky and bulk eutectic silicon seriously deteriorate its mechanical properties, especially the plasticity and tensile strength, which limits its application in actual industrial production.
  • the present invention provides a composite rare earth alloy for aluminum alloy modification that can further improve the mechanical properties of cast aluminum alloy, and improve the effect of modification and refinement, and a preparation method thereof.
  • Step S1 providing aluminum melt
  • Step S2 providing a modifier, a refiner, and a rare earth aluminum alloy, wherein the rare earth metal in the rare earth aluminum alloy is one or more selected from lanthanum, cerium, and yttrium;
  • step S3 under an inert gas atmosphere, the modification agent, the refiner, and the rare earth aluminum alloy are added to the aluminum melt and smelted to obtain the composite rare earth alloy for modifying the aluminum alloy.
  • the step S1 includes:
  • Step S11 providing aluminum ingots
  • Step S12 removing the oxide skin layer on the surface of the aluminum ingot
  • Step S13 cleaning and drying the aluminum ingot from which the scale layer has been removed
  • Step S14 melting the dried aluminum ingot to obtain an initial melt
  • Step S15 refining the initial melt to obtain the aluminum melt.
  • the preparation of the rare earth aluminum alloy includes the following steps:
  • the rare earth aluminum alloy is obtained by standing for a predetermined time and pouring.
  • the modifier is an aluminum-strontium master alloy
  • the refiner is an aluminum-titanium master alloy or an aluminum-titanium-boron master alloy.
  • the aluminum melt accounts for 86-88wt%
  • the aluminum-strontium master alloy accounts for 5.5-6.5wt%
  • the aluminum-titanium or aluminum-titanium The boron master alloy accounts for 0.1-0.2 wt%
  • the rare earth aluminum alloy (such as Al-10La, Al-20La, Al-10Ce, Al-20Ce, Al-10Y or Al-20Y) accounts for 6.5-7.5 wt%.
  • modification agent and/or the refining agent and/or the rare earth aluminum alloy are respectively subjected to descaling, ultrasonic cleaning, and refining treatment in sequence.
  • the modification agent and the refiner are added at intervals, and the rare earth aluminum alloy is added before the modification agent and the refiner, or together with the first addition , or added between the modification agent and the refiner.
  • the step S3 includes:
  • Step S301 adding the rare earth aluminum alloy into the aluminum melt and melting to obtain a first homogeneously mixed melt
  • Step S302 adding the modifying agent into the first homogeneously mixed melt and continuing smelting to obtain a second homogeneously mixed melt;
  • Step S303 adding the refining agent into the second homogeneously mixed melt and continuing to smelt to obtain the complex rare earth alloy.
  • step S301 includes:
  • the step S3 includes:
  • Step S311 adding the rare earth aluminum alloy and the modifier to the aluminum melt at the same time and continuing to melt to obtain a third homogeneously mixed melt;
  • Step S312 adding the refining agent into the third homogeneously mixed melt and continuing to smelt to obtain the complex rare earth alloy.
  • the refining agent is added after refining.
  • the step S3 includes:
  • Step S321 adding the modifier to the aluminum melt and continuing to melt to obtain the fourth homogeneously mixed melt
  • Step S322 adding the rare earth aluminum alloy into the fourth homogeneously mixed melt and continuing to smelt to obtain a fifth homogeneously mixed melt;
  • Step S323 adding the refining agent into the fifth homogeneously mixed melt and continuing to smelt to obtain the complex rare earth alloy.
  • the refining includes:
  • the added amount of the refining agent accounts for 0.1-0.3% of the added melt mass
  • the added amount of the slag remover accounts for 0.1-0.3% of the added melt mass
  • the components of the refining agent contain by mass:
  • the components of the slag remover contain by mass:
  • test the density of the melt when the density of the melt is less than 2.65g/ cm3 , then carry out the refining treatment; when the density of the melt is greater than or equal to 2.65g/ cm3 , that is, the refining process is not performed or the refining process is terminated.
  • the composite rare earth alloy for aluminum alloy modification according to the embodiment of the second aspect of the present invention contains strontium, titanium or titanium boron, and a rare earth metal, wherein, in the composite rare earth alloy, the rare earth metal: strontium: titanium or titanium
  • the mass ratio of the total amount of boron is 1:(0.1-1.2):(0.1-1.2)
  • the rare earth metal is one or more selected from lanthanum, cerium and yttrium.
  • the mutual poisoning effect between the modifier and the refiner is greatly overcome by introducing the rare earth metal, and the addition of the modifier and the refiner can be improved. quantity, while improving the effect of metamorphism and refinement;
  • the present invention rationally adjusts the process so that the modifier and the refiner are added at intervals, and the rare earth metal is added before the latter, which can further effectively avoid the mutual poisoning between the modifier and the refiner, which is beneficial to further Improve the effect of metamorphism and refinement;
  • Fig. 1 is the metallographic structure image of aluminum alloy before modification
  • Fig. 2 is an image of the metallographic structure of the aluminum alloy modified by using the composite rare earth alloy prepared in Example 1 of the present invention.
  • Step S1 providing aluminum melt.
  • first the aluminum melt is prepared.
  • Purification treatment may include the following steps, for example:
  • Step S11 providing aluminum ingots
  • Step S12 removing the oxide skin layer on the surface of the aluminum ingot
  • Step S13 cleaning and drying the aluminum ingot from which the scale layer has been removed
  • Step S14 melting the dried aluminum ingot to obtain an initial melt
  • Step S15 refining the initial melt to obtain the aluminum melt.
  • the oxide scale layer on its surface is first removed, then cleaned to remove surface scum, dried and then smelted, and the melt is refined.
  • the specific refining process will be described in detail later.
  • undesired impurities such as Fe, oxides, etc. can be removed. It is beneficial to further improve the modification and refinement of the composite rare earth alloy.
  • Fe and its oxides can be removed by adding manganese or aluminum-manganese alloy to form surface scum, for example.
  • Step S2 providing a modifier, a refiner, and a rare earth aluminum alloy, wherein the rare earth metal in the rare earth aluminum alloy is one or more selected from lanthanum, cerium, and yttrium.
  • the modifier may be, for example, an aluminum-strontium master alloy
  • the refiner may be, for example, an aluminum-titanium master alloy or an aluminum-titanium-boron master alloy. That is, conventional modifiers and refiners can be used.
  • the modifier and/or the refiner commercially available materials can be used, such as commercially available aluminum-strontium master alloys, aluminum-titanium master alloys, aluminum-titanium-boron master alloys, etc.; It is prepared by taking the corresponding metal strontium, titanium, titanium & boron, and melting them in aluminum melt to form a uniform alloy.
  • the dosage of the modifier and the refiner can be designed in combination with the amount of rare earth to be introduced and the specific composition of the aluminum alloy to be modified.
  • the design is carried out according to the mass ratio of rare earth metal: strontium: titanium or the total amount of titanium boron is 1: (0.1-1.2): (0.1-1.2).
  • the rare earth metal in the rare earth aluminum alloy considering the strontium in the modifier and the titanium and boron in the refiner, it is possible to select a group IIIB element with an intermediate electronic structure.
  • a group IIIB element with an intermediate electronic structure.
  • resources, etc. preferably, one or more of yttrium, lanthanum in lanthanide metals, and cerium are used.
  • the rare earth aluminum alloy therein for example, it can be prepared by the following method:
  • the rare earth aluminum alloy is obtained by standing for a predetermined time and pouring.
  • the alloy containing the rare earth metal for example, one or more of commercially available Al-10Ce, Al-20Ce, Al-20La, Al-10La, Al-20Y, and Al-10Y can be used.
  • aluminum-strontium master alloys aluminum-titanium master alloys or aluminum-titanium-boron master alloys, and rare-earth aluminum alloys
  • descaling, ultrasonic cleaning, and refining can be performed sequentially, respectively.
  • unwanted impurities and oxides can be further removed, which is beneficial to improving the refinement and modification of the composite rare earth alloy as a product.
  • step S3 under an inert gas atmosphere, the modification agent, the refiner, and the rare earth aluminum alloy are added to the aluminum melt and smelted to obtain the composite rare earth alloy for modifying the aluminum alloy.
  • the modifier, refiner, and rare earth aluminum alloy are prepared, the modifier, refiner, and rare earth aluminum alloy are added to the aluminum melt for further smelting under an inert gas atmosphere , to obtain a composite rare earth aluminum alloy.
  • the mutual poisoning effect between the modifier and the refiner is greatly overcome by introducing the rare earth metal, and the addition of the modifier and the refiner can be improved. volume, while improving the effect of metamorphism and refinement.
  • the inventors of the present invention have found through repeated research that by adjusting the order of adding the modifier, the refiner, and the rare earth aluminum alloy, the mutual poisoning between the modifier and the refiner can be further effectively avoided, which is beneficial to further Improves the effect of metamorphism and refinement.
  • the modifying agent and the refining agent are added at intervals, and the rare earth aluminum alloy is added before the modifying agent and the refining agent, or the one added first Add together, or add between the addition of the modifier and the refiner.
  • the poisoning effect of strontium and boron/titanium can be effectively overcome, which is beneficial to further improving the effect of modification and refinement.
  • step S3 can adopt the following three specific implementation modes:
  • the step S3 includes:
  • Step S301 adding the rare earth aluminum alloy into the aluminum melt and melting to obtain a first homogeneously mixed melt
  • Step S302 adding the modifying agent into the first homogeneously mixed melt and continuing smelting to obtain a second homogeneously mixed melt;
  • Step S303 adding the refining agent into the second homogeneously mixed melt and continuing to smelt to obtain the complex rare earth alloy.
  • the rare earth aluminum alloy is added first, and thereafter, the modifier and the refiner are sequentially added.
  • step S301 includes:
  • the step S3 includes:
  • Step S311 adding the rare earth aluminum alloy and the modifier to the aluminum melt at the same time and continuing to melt to obtain a third homogeneously mixed melt;
  • Step S312 adding the refining agent into the third homogeneously mixed melt and continuing to smelt to obtain the complex rare earth alloy.
  • the rare earth aluminum alloy and the aluminum-strontium master alloy as a modifier are added together, and after it is completely melted and homogenized, the refiner is added therein.
  • the refining agent is added after refining.
  • the step S3 includes:
  • Step S321 adding the modifier to the aluminum melt and continuing to melt to obtain the fourth homogeneously mixed melt
  • Step S322 adding the rare earth aluminum alloy into the fourth homogeneously mixed melt and continuing to smelt to obtain a fifth homogeneously mixed melt;
  • Step S323 adding the refining agent into the fifth homogeneously mixed melt and continuing to smelt to obtain the complex rare earth alloy.
  • the modificator is firstly added, and after being completely melted and homogenized, the rare earth aluminum alloy is added, and after being further completely melted and homogenized, the aluminum-titanium intermediate as the refiner is finally added. Alloy/Al-Ti-B Master Alloy.
  • the refining in any of the above steps that is, the refining in the process of purifying the aluminum melt, the refining in the process of preparing the rare earth aluminum alloy, and the refining of each melt in step S3, can be carried out in the following manner:
  • the refining includes:
  • the added amount of the refining agent accounts for 0.1-0.3% of the mass of the added melt
  • the added amount of the slag remover accounts for 0.1-0.3% of the added mass of the melt
  • the components of the refining agent contain by mass:
  • the components of the slag remover contain by mass:
  • test the density of the melt when the density of the melt is less than 2.65g/ cm3 , then carry out the refining treatment; when the density of the melt is greater than or equal to 2.65g/ cm3 , that is, the refining process is not performed or the refining process is terminated.
  • the hydrogen content is estimated by testing the density of the melt. It is generally believed that the higher the density, the less the hydrogen content. As a standard, when the density reaches 2.65g/cm 3 , it can be considered that the hydrogen content is up to the standard, no need further refining. Of course, due to higher quality requirements, the density standard can also be set to 2.67g/cm 3 or higher.
  • the composite rare earth alloy for aluminum alloy modification according to the embodiment of the second aspect of the present invention contains strontium, titanium or titanium boron, and a rare earth metal, wherein, 1:(0.1-1.2):(0.1-1.2), the rare earth metal One or more selected from lanthanum, cerium, and yttrium.
  • Raw material high-purity aluminum ingot (purchased from Chinalco, composition: Al (99.99%), Fe ⁇ 0.1%, impurity ⁇ 0.05%)
  • Pretreatment Use a grinder to clean the scale and surface of the high-purity aluminum surface.
  • Ultrasonic cleaning Put the pretreated high-purity aluminum ingot into the cleaning agent for ultrasonic treatment.
  • Drying Put the high-purity aluminum ingot after ultrasonic cleaning into an oven and bake at 60-100°C for 30-60 minutes.
  • Refining treatment is performed after the high-purity aluminum is melted. Specifically: Refining the molten high-purity aluminum through the Ar+graphite automatic degassing stirring rod. Refining by blowing Ar at 740-760°C for 5-10 minutes, the amount of refining being blown in is 0.1-0.3% of the melt, and kept for 3-5 minutes. After that, let it stand for 10-20 minutes, put 0.1-0.3% scum remover in it to make it evenly disperse, and remove the scum on the surface.
  • Rare earth alloy melting and treatment adjust the temperature of the high-purity aluminum obtained in the above 1) to 780-820°C, and after heating and melting completely, add rare earth to the rare earth aluminum alloy with a lanthanum content of 0.2 ⁇ 0.02wt% according to the set mass percentage Aluminum-lanthanum alloy (purchased from Baotou Rare Earth Research Institute, composition: Al-10La, Fe ⁇ 0.05, impurity content ⁇ 0.15). Under the protection of argon atmosphere, heat it at 780-820°C to make it melt completely.
  • Refining treatment The whole process is under the protection of argon atmosphere, and the refining treatment is performed after the rare earth aluminum-lanthanum alloy is melted. Feed the Ar+graphite automatic degassing stirring rod to refine the melted one. In 5-10 minutes at 760-780°C, use Ar to blow into the refining agent, the refining dosage is 0.3wt% of the melt, and there should be no boiling bubbles on the upper surface of the aluminum liquid during the refining process. Removal of scum on the surface of the melt: After refining for 15-20 minutes, add 0.2wt% slag remover to evenly disperse and remove the scum on the surface.
  • Casting Quickly cast the above melt into the mold to ensure uniform composition of each part. This process uses full water cooling to cool it down.
  • Aluminum-strontium master alloy obtained from Nantong Angshen Metal Material Co., Ltd., composition: Al-10Sr, Fe ⁇ 0.05, impurity content ⁇ 0.15.
  • Pretreatment Use a grinder to clean the scale and surface of the Al-Sr master alloy.
  • Ultrasonic cleaning put the pretreated aluminum-strontium master alloy into an ultrasonic cleaning tank for ultrasonic treatment.
  • Drying put the cleaned aluminum-strontium master alloy into an oven and bake at 60-100°C for 30-60 minutes.
  • Refining treatment After the aluminum-strontium master alloy is melted, it is refined. The molten high-purity aluminum is refined by feeding the Ar+graphite automatic degassing stirring rod. Refining with Ar blowing at 730-750°C for 5-10 minutes, the amount of refining being blown in is 0.1-0.3% of the melt, and kept at 3-5 minutes. During the refining process, there should be no boiling bubbles on the upper surface of the aluminum liquid.
  • Al-Ti-B master alloy purchased from Nantong Angshen Metal Materials Co., Ltd. (composition and content: Ti: 5%, B: 1%, the rest: Al)
  • the aluminum melt, the rare earth aluminum alloy, the aluminum strontium master alloy, and the aluminum titanium boron master alloy are respectively prepared, and then mixed and smelted to obtain a composite rare earth alloy as a product.
  • the rare earth aluminum alloy is firstly added to the aluminum melt, then the aluminum strontium alloy is added, and finally the aluminum titanium alloy is added. details as follows:
  • Step 1 Ingredients: Preheat the high-purity aluminum, aluminum-titanium-boron master alloy, aluminum-strontium master alloy, and rare earth aluminum alloy obtained above according to the required mass percentage.
  • high-purity aluminum 4.8 parts
  • aluminum-titanium-boron master alloy 0.2 parts
  • aluminum-strontium master alloy 60 parts
  • rare earth aluminum alloy 35 parts
  • Step 2 Add and melt the rare earth aluminum alloy: for the above aluminum melt, first heat the rare earth aluminum alloy to 780-820°C to soften before melting, then control the overall temperature of the aluminum melt at 760-780°C, and put the rare earth Aluminum alloy is added to the aluminum melt for heat preservation.
  • the whole process adopts the protection of argon atmosphere and melts the rare earth aluminum alloy.
  • Step 3 After the rare earth aluminum alloy is completely melted, the temperature is controlled at 750-770° C. and stirred for 5-10 minutes.
  • the whole process is protected by an argon atmosphere, and the stirring rod is made of graphite material and preheated to 400-500°C before stirring.
  • Step 4 heat-preserve the melted melt at 740-760° C. and control the heat-retaining time within 5-20 minutes. In this stage, an alloying reaction occurs.
  • Step 5 After the heat preservation is completed, refining, degassing and slag removal are carried out. 0.3% refining agent is blown into the melt by argon, and the aeration time is controlled at 3 to 8 minutes; after that, further add 0.2% slag remover, stir for 5 minutes and let stand to remove the slag and impurities on the surface of the melt . The whole process is protected by argon atmosphere.
  • the aluminum melt is sampled before and during refining and its density is determined to estimate the hydrogen content.
  • the measurement method adopts the density method (compared with the theoretical value of aluminum of 2.70g/cm 3 ), the closer the measured sample is to 2.7g/cm 3 , the lower the internal hydrogen content of aluminum. Generally, it cannot reach 2.7g/cm 3 normally; the density test of the sample is approximately equal to 2.65g/cm 3 to estimate the hydrogen content. During the process, it must be vacuumized. If the hydrogen content is unqualified, further refining, that is, adding refining agent repeatedly , The deslagging agent is refined again.
  • Step 6 Stand still: put the melt that has been added with the rare earth aluminum alloy and refined for 3-5 minutes, and the temperature is controlled at 740-760 degrees.
  • Step 7 Adding and melting the aluminum-strontium master alloy: adding the above-mentioned refined aluminum-strontium master alloy into the melt in step 6, and controlling the temperature at 780-820° C. to completely melt the aluminum-strontium master alloy. The whole process is protected by argon atmosphere, and the aluminum-strontium master alloy is melted.
  • Step 8 After the aluminum-strontium master alloy is melted, control the temperature at 740-760° C. and stir for 3-8 minutes to achieve homogenization. The whole process is protected by an argon atmosphere, and the stirring rod is made of graphite material, which is preheated to 400-500°C before stirring.
  • Step 9 heat preservation treatment is carried out at 725-750°C.
  • the heat preservation time is controlled at 15-30 minutes.
  • Step 10 Refining, degassing and slag removal: After the heat preservation of the melt is completed, blow in 0.3% of the refining agent into the aluminum-rare-earth composite melt after argon gas is introduced, and the ventilation time is controlled at 5 to 10 minutes; put in 0.2% of Put the slag removal agent into the aluminum melt, stir for 5 minutes and remove the slag and impurities on the surface of the aluminum-rare-earth composite melt. The whole process is protected by argon atmosphere.
  • the aluminum melt is sampled before and during refining to determine the hydrogen content. (Hydrogen content requirement: greater than or equal to 2.65g/cm 3 ;) During the hydrogen measurement process, it must be vacuumized. If the hydrogen content is unqualified, then further refining, that is, adding refining agents and slag removers to refine again.
  • Step 11 Add Al-Ti-B master alloy: Add Al-Ti-B master alloy to the melt treated in Step 10 above, heat to melt completely, and stir evenly for 3-5 minutes to homogenize.
  • Step 12 heat preservation: after stirring, heat the melt for 8-12 minutes, and control the temperature at 715-725°C.
  • Step 13 Refining, degassing and slag removal: After the heat preservation of the melt is completed, blow in 0.3% of the refining agent into the aluminum-rare-earth composite melt after argon gas is introduced, and the ventilation time is controlled at 5 to 10 minutes; put in 0.2% of Put the slag removal agent into the aluminum melt, stir for 5 minutes and remove the slag and impurities on the surface of the aluminum-rare-earth composite melt. The whole process is protected by argon atmosphere.
  • the aluminum melt is sampled before and during refining to determine the hydrogen content. (Hydrogen content requirement: greater than or equal to 2.65g/cm 3 ;) Vacuum treatment must be performed during the hydrogen measurement process. If the hydrogen content is unqualified, further refining is carried out, that is, refining agents and slag removers are added repeatedly until it is qualified.
  • Step 14 casting: the mold is preheated at 300-400°C.
  • the temperature of the composite rare earth alloy melt obtained in step 13 above is controlled at 715-725° C. for casting.
  • the oxides on the surface of the aluminum-rare-earth composite melt are filtered through a glass fiber filter; before each casting, the surface of the aluminum-rare-earth composite melt is filtered before casting.
  • the cooling control of the casting mold adopts a water cooling method to cool the aluminum-rare-earth composite melt cast into the mold.
  • the solidification speed of the aluminum melt is controlled at 50-100°C/s, and the solidification method is sequential solidification.
  • the mass ratio of the rare earth metal:strontium:titanium or titanium boron weight is 1:(0.1-1.2):(0.1-1.2). That is to say, the content of modificator and refiner can be increased, and they can fully function.
  • FIG. 1 shows the metallographic structure of the aluminum alloy before modification
  • FIG. 2 shows the metallographic structure after modification.
  • Figure 1 and Figure 2 shows the metallographic structure of the aluminum alloy before modification
  • Figure 1 and Figure 2 shows the metallographic structure of the aluminum alloy before modification
  • Figure 1 and Figure 2 shows that the metallographic structure of the aluminum alloy before modification (Figure 1) can be seen that the coarse primary ⁇ -Al phase presents the structure of dendrites, and the diameter and length of the secondary dendrites and dendrites The crystal spacing is relatively large.
  • a large number of rose-like ⁇ -Al phases and rounder spherical ⁇ -Al phases also increased, the primary ⁇ -Al phase was significantly refined, and the number of dendrites decreased. . That is to say, after modification, the grains are sufficiently refined and the microstructure is uniform.
  • Example 1 the mechanical properties of the modified A356 aluminum alloy were evaluated using the composite rare earth aluminum alloy obtained in this example.
  • the evaluation results (referred to as Example 1) are shown in Table 1 below.
  • the test results of the unmodified A356 aluminum alloy (recorded as before modification) are given at the same time.
  • the test results of A356 aluminum alloy modified by adding modifier and refiner in exactly the same proportion instead of the composite rare earth aluminum alloy of this embodiment are also listed (referred to as comparative example 1).
  • Step 1 Ingredients: Preheat the high-purity aluminum, aluminum-titanium-boron master alloy, aluminum-strontium master alloy, and rare earth aluminum alloy obtained above according to the required mass percentage.
  • high-purity aluminum 4.8 parts
  • aluminum-titanium-boron master alloy 0.2 parts
  • aluminum-strontium master alloy 60 parts
  • rare earth aluminum alloy 35 parts
  • Step 2 Adding and melting the rare earth aluminum alloy & aluminum strontium master alloy: In the above aluminum melt, control the temperature at 760-780°C, and add the rare earth alloy material & aluminum strontium master alloy into the aluminum melt together.
  • the whole process is protected by an argon atmosphere, and the rare earth aluminum alloy is melted when the temperature is controlled at 780-820°C.
  • Step 3 After the rare earth aluminum alloy & aluminum-strontium intermediate alloy are completely melted, the temperature is controlled at 750-770° C. and stirred for 10 minutes. The whole process is protected by an argon atmosphere, and the stirring rod is made of graphite material, which is preheated to 450°C before stirring.
  • Step 4 heat-preserve the melted melt at 740-760° C. and control the heat-retaining time to 10 minutes.
  • Step 5 After the heat preservation is completed, refining, degassing and slag removal are carried out. 0.3wt% refining agent is blown into the melt by argon, and the aeration time is controlled at 5 minutes; thereafter, 0.2wt% slag remover is further added, stirred for 5 minutes, and the slag and impurities on the surface of the melt are removed. The whole process is protected by argon atmosphere.
  • the aluminum melt is sampled before and during refining to estimate the hydrogen content. (Requirement for melt density: greater than or equal to 2.65g/cm 3 .) During the hydrogen measurement process, it must be vacuumized. If the hydrogen content is unqualified, further refining is carried out, that is, refining agent and slag removal agent are added repeatedly for further refining.
  • Step 6 Stand still: put the melt that has been added with the rare earth aluminum alloy and refined for 3-5 minutes, and the temperature is controlled at 740-760 degrees.
  • the aluminum-titanium-boron master alloy is further added for smelting.
  • the experimental results show that the composite rare earth aluminum alloy obtained according to this embodiment can also effectively improve the mechanical strength of the aluminum alloy and achieve better refinement and modification effects.
  • the detailed data thereof are omitted here.
  • Step 1 Adding and melting the aluminum-strontium master alloy: adding the above-mentioned refined aluminum-strontium master alloy into the aluminum melt, and controlling the temperature at 780-820° C. to completely melt the aluminum-strontium master alloy. The whole process is protected by argon atmosphere, and the aluminum-strontium master alloy is melted.
  • Step 2 After the aluminum-strontium master alloy is melted, control the temperature at 740-760° C. and stir for 3-8 minutes to achieve homogenization. The whole process is protected by argon atmosphere, the stirring rod is made of graphite material, and it is preheated to 400-500°C before stirring.
  • Step 3 heat preservation treatment is carried out at 725-750°C.
  • the heat preservation time is controlled at 15-30 minutes.
  • Step 4 refining, degassing and slag removal: After the heat preservation of the melt is completed, 0.3wt% of refining agent is blown into the aluminum-rare-earth composite melt after passing through argon, and the ventilation time is controlled at 10 minutes; put in 0.2wt% Put the slag remover into the aluminum melt, stir for 5 minutes and salvage the slag and impurities on the surface of the aluminum-rare-earth composite melt. The whole process is protected by argon atmosphere.
  • the aluminum melt is sampled before and during refining to determine the hydrogen content. (Hydrogen content requirement: greater than or equal to 2.65g/cm 3 ;) During the hydrogen measurement process, it must be vacuumized. If the hydrogen content is unqualified, then further refining, that is, adding refining agents and slag removers to refine again.
  • Step 5 Adding and melting the rare earth aluminum alloy: the temperature of the melt in the above step 4 is controlled at 760-780° C., and the rare earth alloy material is added into the melt.
  • the whole process is protected by an argon atmosphere, and the rare earth aluminum alloy is melted when the temperature is controlled at 780-820°C.
  • Step 6 After the rare earth aluminum alloy is completely melted, control the temperature at 750-770° C. and stir for 10 minutes. The whole process is protected by argon atmosphere, the stirring rod is made of graphite material, and it is preheated to 400-500°C before stirring.
  • Step 7 heat preservation treatment is performed on the melted melt at 740-760° C. and the heat preservation time is controlled at 10 minutes.
  • Step 8 Refining: After the heat preservation is completed, refining, degassing and slag removal are carried out. 0.3wt% refining agent is blown into the melt by argon, and the aeration time is controlled at 5 minutes; after that, further add 0.2wt% slag remover, stir for 5 minutes and let stand to remove slag and impurities on the surface of the melt . The whole process is protected by argon atmosphere.
  • the aluminum melt is sampled before and during refining to estimate the hydrogen content. (Requirement for melt density: greater than or equal to 2.65g/cm 3 .) During the hydrogen measurement process, it must be vacuumized. If the hydrogen content is unqualified, further refining is carried out, that is, refining agent and slag removal agent are added repeatedly for further refining.
  • Step 9 standing still: the melt added with the rare earth aluminum alloy and refined is left standing for 3-5 minutes, and the temperature is controlled at 740-760°C.
  • the aluminum-titanium-boron master alloy is further added for smelting.
  • the experimental results show that the composite rare earth aluminum alloy obtained according to this embodiment can also effectively improve the mechanical strength of the aluminum alloy and achieve better refinement and modification effects.
  • the detailed data thereof are omitted here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提供一种铝合金改性用复合稀土合金及其制备方法。其中,制备方法包括如下步骤:步骤S1,提供铝熔体;步骤S2,提供变质剂、细化剂、以及稀土铝合金,所述稀土铝合金中的稀土金属为选自镧、铈、钇中的一种或多种;步骤S3,在惰性气体气氛下,在所述铝熔体中,加入所述变质剂、细化剂、以及稀土铝合金并熔炼,得到所述铝合金改性用复合稀土合金。根据本发明实施例的铝合金改性用复合稀土合金的制备方法,通过引入稀土金属,极大地克服了变质剂与细化剂之间的相互毒化作用,可以提高变质剂和细化剂的添加量,同时能够提高变质和细化的效果。

Description

铝合金改性用复合稀土合金及其制备方法 技术领域
本发明涉及合金材料及制备技术领域,具体涉及一种铝合金改性用复合稀土合金及其制备方法。
背景技术
现今,市场上常用的铸造铝合金的强度、屈服强度及延伸率等力学性能尚不足够高,这使得铸造铝合金零件减轻和减薄问题有瓶颈。作为航空航天、交通运输工具,要求其零部件必须在减轻整体重量的前提下,具有较高的综合机械性能。
铝合金具有轻质、耐磨、热膨胀系数低、铸造性能好及产品机械性能最佳匹配关系(强度和塑性的最优性)等综合性能优异,主要是由α-Al枝晶、共晶硅及Mg2Si平衡相组成。然而,在铸态条件下,粗大α-Al枝晶和片状及块状共晶硅严重地恶化了其力学性能,尤其是塑性和抗拉强度,限制了其在实际工业生产中的应用。
现有技术中,用铝钛、铝钛硼中间合金系列作为细化剂,结合铝锶中间合金作为变质剂对铝合金做细化和变质处理。然而,含Sr的变质剂与含B细化剂同时使用时,锶与硼之间易发生相互毒化,同时降低变质和细化的效果(参考:廖恒成,孙国雄;铸造Al-Si合金中Sr与B间反应产物的研究;金属学报,2003,39(2):155-158.)。因此,铸造铝合金的机械性能仍然难以满足使用需求。
为此,亟需提供一种能够进一步提高铸造铝合金的机械性能、并改善变质与细化效果的铝合金改性用复合稀土合金及其制备方法。
发明内容
有鉴于此,本发明提供一种能够进一步提高铸造铝合金的机械性能、并改 善变质与细化效果的铝合金改性用复合稀土合金及其制备方法。
为解决上述技术问题,本发明采用以下技术方案:
根据本发明第一方面实施例的铝合金改性用复合稀土合金的制备方法,包括如下步骤:
步骤S1,提供铝熔体;
步骤S2,提供变质剂、细化剂、以及稀土铝合金,所述稀土铝合金中的稀土金属为选自镧、铈、钇中的一种或多种;
步骤S3,在惰性气体气氛下,在所述铝熔体中,加入所述变质剂、细化剂、以及稀土铝合金并熔炼,得到所述铝合金改性用复合稀土合金。
根据本发明的一些实施例,所述步骤S1包括:
步骤S11,提供铝锭;
步骤S12,去除所述铝锭表面的氧化皮层;
步骤S13,对去除所述氧化皮层的铝锭进行清洗,烘干;
步骤S14,将烘干后的所述铝锭进行熔炼,得到初始熔体;
步骤S15,对所述初始熔体进行精炼,得到所述铝熔体。
根据本发明的一些实施例,所述稀土铝合金的制备包括如下步骤:
在惰性气氛下在所述铝熔体其中加入所述稀土金属或含所述稀土金属的中间合金,加热的同时搅拌至完全熔化;
待完全熔化后继续保温10-20分钟使其均质化;
对均质化熔体进行精炼;
精炼后静置预定时间,并进行浇注,得到所述稀土铝合金。
根据本发明的一些实施例,所述变质剂为铝锶中间合金,所述细化剂为铝钛中间合金或铝钛硼中间合金。
其中,相对于所述铝合金改性用复合稀土合金总重量而言,所述铝熔体占86-88wt%,所述铝锶中间合金占5.5-6.5wt%,所述铝钛或铝钛硼中间合金占0.1-0.2wt%,所述稀土铝合金(例如Al-10La、Al-20La、Al-10Ce、Al-20Ce、Al-10Y或Al-20Y)占6.5-7.5wt%。
进一步地,所述变质剂和/或所述细化剂和/或所述稀土铝合金分别依次进行去氧化皮层、超声清洗、精炼处理。
进一步地,所述步骤S3中,所述变质剂与所述细化剂间隔开加入,所述稀土铝合金在所述变质剂与所述细化剂之前加入,或者与首先加入的一方一同加入,或者在所述变质剂与所述细化剂加入间隙加入。
根据本发明的一些实施例,所述步骤S3包括:
步骤S301,在所述铝熔体中加入所述稀土铝合金并进行熔炼,得到第一均匀混合熔体;
步骤S302,在所述第一均匀混合熔体中加入所述变质剂并继续熔炼,得到第二均匀混合熔体;
步骤S303,在所述第二均匀混合熔体中加入所述细化剂并继续熔炼,得到所述复合稀土合金。
进一步地,所述步骤S301包括:
在氩气气氛下,将所述铝熔体加热至780-820℃,加入所述稀土铝合金;
待所述稀土铝合金完全熔化后,继续搅拌5-15分钟进行均质化处理;
在所述均质化处理后,静置保温5-20分钟进行保温处理;
在所述保温处理结束后,进行精炼,得到所述第一均匀混合熔体。
根据本发明的另一些实施例,所述步骤S3包括:
步骤S311,在所述铝熔体中同时加入所述稀土铝合金以及所述变质剂并继续熔炼,得到第三均匀混合熔体;
步骤S312,在所述第三均匀混合熔体中加入所述细化剂并继续熔炼,得到所述复合稀土合金。
进一步地,在得到所述第三均匀混合熔体后,对其进行精炼,精炼后加入所述细化剂。
根据本发明的另一些实施例,所述步骤S3包括:
步骤S321,在所述铝熔体中加入所述变质剂并继续熔炼,得到所述第四均匀混合熔体;
步骤S322,在所述第四均匀混合熔体中加入所述稀土铝合金并继续熔炼,得到第五均匀混合熔体;
步骤S323,在所述第五均匀混合熔体中加入所述细化剂并继续熔炼,得到所述复合稀土合金。
进一步地,分别对所述第四均匀混合熔体、所述第五均匀混合熔体进行精炼,精炼后执行下一步骤。
根据本发明的一些实施例,所述精炼包括:
通过惰性气体吹入精炼剂并保持3-10分钟,此后加入除渣剂并搅拌5-10分钟,并去除表面浮渣。
进一步地,所述精炼剂的加入量占所加入的熔体质量的0.1~0.3%,所述清渣剂的加入量占所加入熔体质量的0.1~0.3%;
所述精炼剂的组分按质量计含有:
氯化钾10-15份,氯化钠15-25份,氟化钙8-15份,碳酸钠15-25份,硫酸钠8-12份,氟铝酸钠10-20份,六氯乙烷8-12份;
所述清渣剂的组分按质量计含有:
氯化钠25-30份,氯化钾25-30份,碳酸钠5-10份,硫酸钠5-10份,氟铝酸钠1-5份,氟硅酸钠5-10份,氟化钙5-10份,硝酸钾1-5份,氟硅酸钾5-10份。
进一步地,所述精炼之前以及在精炼过程中,测试熔体的密度,当熔体的密度不足2.65g/cm 3时,则进行所述精炼处理;当熔体密度大于等于2.65g/cm 3,即不进行所述精炼处理或终止所述精炼处理。
根据本发明第二方面实施例的铝合金改性用复合稀土合金,含有锶、钛或钛硼、以及稀土金属,其中,,所述复合稀土合金中,所述稀土金属:锶:钛或钛硼总量的质量比为1:(0.1-1.2):(0.1-1.2),所述稀土金属为选自镧、铈、钇中的一种或多种。
本发明的上述技术方案至少具有如下有益效果之一:
根据本发明实施例的铝合金改性用复合稀土合金的制备方法,通过引入稀土金属,极大地克服了变质剂与细化剂之间的相互毒化作用,可以提高变质剂和细化剂的添加量,同时能够提高变质和细化的效果;
进一步地,本发明通过合理调整工艺,使得变质剂和细化剂间隔开添加,并且稀土金属在后者加入之前加入,能够进一步有效避免变质剂与细化剂之间的相互毒化,有利于进一步提高变质和细化的效果;
进一步地,通过对各阶段熔体进行精制,去除其中的杂质,有利于进一步 提高最终铝合金制品的力学性能。
附图说明
图1为改性前铝合金的金相组织图像;
图2为利用本发明实施例1制备的复合稀土合金进行铝合金改性后的金相组织图像。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,本发明中使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。
下面首先结合具体描述根据本发明实施例的铝合金改性用复合稀土合金的制备方法。
根据本发明实施例的铝合金改性用复合稀土合金的制备方法,包括如下步骤:
步骤S1,提供铝熔体。
也就是说,首先准备铝熔体。
在此,需要说明的是,可以采用市售的高纯铝锭直接加热熔化制备铝熔体,也可以对铝锭进行进一步纯化。纯化处理例如可以包括如下步骤:
步骤S11,提供铝锭;
步骤S12,去除所述铝锭表面的氧化皮层;
步骤S13,对去除所述氧化皮层的铝锭进行清洗,烘干;
步骤S14,将烘干后的所述铝锭进行熔炼,得到初始熔体;
步骤S15,对所述初始熔体进行精炼,得到所述铝熔体。
也就是说,对于铝锭,首先去除其表面的氧化皮层,此后进行清洗以去除表面浮屑,烘干后进行熔炼,并对熔体进行精炼。关于具体的精炼处理过程后面进行详细述说。
经过上述纯化处理后,能够去除掉其中不希望存在的杂质,例如Fe、氧化物、等等。有利于进一步提高复合稀土合金的变质与细化作用。
在此需要补充说明的是,关于其中的Fe及其氧化物,例如可以通过添加锰或铝锰合金,以形成表面浮渣来去除。
步骤S2,提供变质剂、细化剂、以及稀土铝合金,所述稀土铝合金中的稀土金属为选自镧、铈、钇中的一种或多种。
其中,所述变质剂例如可以为铝锶中间合金,所述细化例如可以为铝钛中间合金或铝钛硼中间合金。也就是说,可以使用常规的变质剂和细化剂。
进一步地,对于所述变质剂和/或所述细化剂,可以采用市售的材料,例如市售的铝锶中间合金、铝钛中间合金、铝钛硼中间合金等;也可以通过分别称取相应的金属锶、钛、钛&硼,将其熔化在铝熔体中形成均匀的合金制备得到。关于变质剂与细化剂的用量,可以结合所要引入的稀土的量、所要改性的铝合金的具体组成进行相应设计。优选地,按照稀土金属:锶:钛或钛硼总量的质量比为1:(0.1-1.2):(0.1-1.2)进行设计。
另外,作为稀土铝合金中的稀土金属,考虑到变质剂中的锶以及细化剂中的钛、硼,可以选择电子结构介于其间的IIIB族元素。综合考虑其稳定性、资源等,优选地,采用钇、镧系金属中的镧、铈中的一种或多种。
另外,作为其中的稀土铝合金,例如可以采用下述方法制备得到:
在惰性气氛下在所述铝熔体其中加入所述稀土金属或含所述稀土金属的中间合金,加热的同时搅拌至完全熔化;
待完全熔化后继续保温10-20分钟使其均质化;
对均质化熔体进行精炼;
精炼后静置预定时间,并进行浇注,得到所述稀土铝合金。
其中,作为含所述稀土金属的合金,例如可以采用市售的Al-10Ce、Al-20Ce、Al-20La、Al-10La、Al-20Y、Al-10Y中一种或多种。
此外,对于市售的铝锶中间合金,铝钛中间合金或铝钛硼中间合金,稀土铝合金,可以分别依次进行去氧化皮层、超声清洗、精炼处理。由此,能够进一步去除其中不希望的杂质、氧化物,有利于提高作为产品的复合稀土合金的细化和变质作用。
步骤S3,在惰性气体气氛下,在所述铝熔体中,加入所述变质剂、细化剂、以及稀土铝合金并熔炼,得到所述铝合金改性用复合稀土合金。
也就是说,在准备好铝熔体、变质剂、细化剂、以及稀土铝合金之后,在惰性气体气氛下,将变质剂、细化剂、以及稀土铝合金加入到铝熔体中进一步熔炼,得到复合稀土铝合金。
根据本发明实施例的铝合金改性用复合稀土合金的制备方法,通过引入稀土金属,极大地克服了变质剂与细化剂之间的相互毒化作用,可以提高变质剂和细化剂的添加量,同时能够提高变质和细化的效果。
另外,本发明的发明人等经反复研究发现,通过调整加入变质剂、细化剂、以及稀土铝合金的加入顺序,能够进一步有效避免变质剂与细化剂之间的相互毒化,有利于进一步提高变质和细化的效果。
具体而言,所述步骤S3中,使得所述变质剂与所述细化剂间隔开加入,所述稀土铝合金在所述变质剂与所述细化剂之前加入,或者与首先加入的一方一同加入,或者在所述变质剂与所述细化剂加入间隙加入。由此,能够有效克服锶和硼/钛的毒化效果,有利于进一步提高变质以及细化效果。
优选地,步骤S3可以采用如下三种具体实施方式:
实施方式一:
根据本发明的一些实施例,所述步骤S3包括:
步骤S301,在所述铝熔体中加入所述稀土铝合金并进行熔炼,得到第一均匀混合熔体;
步骤S302,在所述第一均匀混合熔体中加入所述变质剂并继续熔炼,得到第二均匀混合熔体;
步骤S303,在所述第二均匀混合熔体中加入所述细化剂并继续熔炼,得到所述复合稀土合金。
也就是说,本实施方式中,首先加入稀土铝合金,此后,依次加入变质剂 以及细化剂。
进一步地,所述步骤S301包括:
在氩气气氛下,将所述铝熔体加热至780-820℃,加入所述稀土铝合金;
待所述稀土铝合金完全熔化后,继续搅拌5-15分钟进行均质化处理;
在所述均质化处理后,静置保温5-20分钟进行保温处理;
在所述保温处理结束后,进行精炼,得到所述第一均匀混合熔体。
实施方式二:
根据本发明的另一些实施例,所述步骤S3包括:
步骤S311,在所述铝熔体中同时加入所述稀土铝合金以及所述变质剂并继续熔炼,得到第三均匀混合熔体;
步骤S312,在所述第三均匀混合熔体中加入所述细化剂并继续熔炼,得到所述复合稀土合金。
也就是说,本实施方式中,首先,稀土铝合金和作为变质剂的铝锶中间合金一同加入,待其完全熔化并均质化之后,再在其中加入细化剂。
进一步地,在得到所述第三均匀混合熔体后,对其进行精炼,精炼后加入所述细化剂。
实施方式三:
根据本发明的另一些实施例,所述步骤S3包括:
步骤S321,在所述铝熔体中加入所述变质剂并继续熔炼,得到所述第四均匀混合熔体;
步骤S322,在所述第四均匀混合熔体中加入所述稀土铝合金并继续熔炼,得到第五均匀混合熔体;
步骤S323,在所述第五均匀混合熔体中加入所述细化剂并继续熔炼,得到所述复合稀土合金。
也就是说,本实施方式中,首先加入变质剂,待完全熔化并均质化之后,加入稀土铝合金,待进一步完全熔化并实现均质化之后,最后再加入作为细化剂的铝钛中间合金/铝钛硼中间合金。
进一步地,分别对所述第四均匀混合熔体、所述第五均匀混合熔体进行精炼,精炼后执行下一步骤。
进一步地,上述任一步骤中的精炼,即铝熔体纯化过程中的精炼、稀土铝合金制备过程中的精炼、以及步骤S3中的各熔体的精炼,均可以采用如下方式进行:
所述精炼包括:
通过惰性气体吹入精炼剂并保持3-10分钟,此后加入除渣剂并搅拌5-10分钟,并去除表面浮渣。
进一步地,所述精炼剂的加入量占所加入的熔体质量的0.1~0.3%,所述清渣剂的加入量占所加入熔体质量的0.1~0.3%;
所述精炼剂的组分按质量计含有:
氯化钾10-15份,氯化钠15-25份,氟化钙8-15份,碳酸钠15-25份,硫酸钠8-12份,氟铝酸钠10-20份,六氯乙烷8-12份;
所述清渣剂的组分按质量计含有:
氯化钠25-30份,氯化钾25-30份,碳酸钠5-10份,硫酸钠5-10份,氟铝酸钠1-5份,氟硅酸钠5-10份,氟化钙5-10份,硝酸钾1-5份,氟硅酸钾5-10份。
进一步地,所述精炼之前以及在精炼过程中,测试熔体的密度,当熔体的密度不足2.65g/cm 3时,则进行所述精炼处理;当熔体密度大于等于2.65g/cm 3,即不进行所述精炼处理或终止所述精炼处理。
实际上,是通过测试熔体的密度来估算其中的氢气含量,通常认为,密度越高其中氢气含量越少,作为标准当密度达到2.65g/cm 3,则可以认为其中的氢含量达标,无需进一步进行精炼。当然,出于更高的品质要求,也可以将密度标准设置为2.67g/cm 3或更高。
根据本发明第二方面实施例的铝合金改性用复合稀土合金,含有锶、钛或钛硼、以及稀土金属,其中,1:(0.1-1.2):(0.1-1.2),所述稀土金属为选自镧、铈、钇中的一种或多种。
下面,通过具体实施例进一步详细说明根据本发明的制备方法。
实施例1
1)铝熔体的制备
原料:高纯铝锭(购自中铝集团,成分:Al(99.99%),Fe<0.1%,杂质 <0.05%)
精炼剂:
成分:氯化钾15份,氯化钠20份,CaF2 10份,Na2CO3 20份,Na2SO4 10
份,Na3AlF6 15份,C2Cl6 10份
除渣剂:
成分:氯化钠25份,氯化钾25份,碳酸钠5份,硫酸钠5份,氟铝酸钠5份,氟硅酸钠10份,氟化钙10份,硝酸钾5份,氟硅酸钾10份
预处理:用砂轮机将高纯铝表面的氧化皮和表层处理干净。
超声清洗:将预处理后的高纯铝锭放入清洗剂中进行超声处理。
烘干:将超声清洗后的高纯铝锭中放入烘箱炉保持60-100℃烘烤30-60分钟。
熔炼:将烘干后高纯铝放入到预热的坩埚中,在760-800℃加热熔化。
精炼处理:待高纯铝熔化后做精炼处理。具体:通过Ar+石墨自动除气搅拌棒对熔化的高纯铝做精炼处理。在5-10分钟740-760℃时用Ar吹入精炼,吹入精炼剂量在0.1~0.3%熔体,并保持3-5分钟。此后,静置10-20分钟,在其中放入0.1~0.3%的除渣剂使其均匀散开,清除表面浮渣。
静置:扒渣后静置8-15分钟在740-760℃。
2)制备高纯度的稀土铝合金
稀土合金熔化及处理:将上述1)得到的高纯铝温度调至780-820℃,加热完全熔化后,按设定的质量百分比即在稀土铝合金中镧含量为0.2±0.02wt%加入稀土铝镧合金(购自包头稀土研究院,成分:Al-10La,Fe<0.05,杂质含量≤0.15)。在氩气气氛保护下在780-820℃下加热使其完全熔化。
搅拌和保温:对熔化后的熔体搅拌3-5分钟使其均匀化,在760-780℃时对熔体保温10-20分钟。
精炼处理:整体过程在氩气气氛保护下,待稀土铝镧合金熔化后做精炼处理。通入Ar+石墨自动除气搅拌棒对熔化的其做精炼处理。在5-10分钟760-780℃时用Ar吹入精炼剂,精炼剂量在0.3wt%熔体,精炼过程中铝液上表面不能有沸腾气泡。对熔体表面浮渣清除:精炼15-20分钟后加入0.2wt%的除渣剂均匀散开,清除表面浮渣。
静置:扒渣后静置10-15分钟在720-730℃时。
浇铸:将上述熔体快速浇铸在模具中,保证各部分成分均匀。这个过程采用全水冷对其降温处理。
3)铝锶中间合金、铝钛硼中间合金的精炼处理
3.1)铝锶中间合金:够自南通昂申金属材料有限公司,成分:Al-10Sr,Fe<0.05,杂质含量≤0.15。
预处理:用砂轮机将铝锶中间合金的氧化皮和表层处理干净。
超声清洗:将预处理后的铝锶中间合金放入超声清洗槽中进行超声处理。
烘干:将清洗后的铝锶中间合金放入烘箱炉保持60-100℃烘烤30-60分钟。
熔炼:将铝锶中间合金放入到预热的坩埚中在760-780℃熔化处理。
精炼处理:待铝锶中间合金熔化后做精炼处理。通入Ar+石墨自动除气搅拌棒对熔化的高纯铝做精炼处理。在5-10分钟730-750℃时用Ar吹入精炼,吹入精炼剂量在0.1~0.3%熔体,保持在3-5分钟,精炼过程中铝液上表面不能有沸腾气泡。
表面浮渣清除:在15-20分钟时放入在0.1~0.3%的除渣剂均匀散开,清除表面浮渣。
静置:扒渣后静置8-15分钟在740-760℃时。
3.2)铝钛硼中间合金:购自南通昂申金属材料有限公司(成分和含量:Ti:5%,B:1%,其余为:Al)
作为细化剂的铝钛硼中间合金,参考上述进行相同处理。
4)复合稀土合金的制备
经过上述1)-3)分别准备了铝熔体、稀土铝合金、铝锶中间合金、以及铝钛硼中间合金,接下来,对其进行混合熔炼,以得到作为产品的复合稀土合金。
本实施中,作为添加顺序,首先在铝熔体中添加稀土铝合金,接着添加铝锶合金,最终添加铝钛合金。具体如下:
步骤1、配料:将上述得到的高纯铝、铝钛硼中间合金、铝锶中间合金、稀土铝合金按要求的质量百分比称量后预热。
以总重量100份计,高纯铝:4.8份、铝钛硼中间合金:0.2份、铝锶中间 合金:60份、稀土铝合金:35份
步骤2、加入并熔化稀土铝合金:对于上述铝熔体,首先将稀土铝合金加热至780~820℃使其在熔化前软化,此后将铝熔体整体温度控制在760~780℃,将稀土铝合金加入铝熔体中进行保温。
整体过程采用氩气氛围保护,熔化稀土铝合金。
步骤3、待稀土铝合金完全熔化后,将温度控制在750~770℃时,进行搅拌5-10分钟。
整体过程采用氩气氛围保护,搅拌棒采用石墨材料并使其在搅拌前预热到400-500℃。
也就是说,在稀土铝合金完全熔化后,稍稍降低温度,可以防止过热引起后续晶粒粗化等。
步骤4、对熔化后的熔体在740~760℃下,保温时间控制在5-20分钟进行保温处理。该阶段中,发生合金化反应。
步骤5、精炼:保温结束后,进行精炼、除气除渣。在熔体中通过氩气吹入0.3%的精炼剂,通气时间控制在3~8分钟;此后,进一步加入0.2%的除渣剂中,搅拌5分钟静置并去除熔体表层的渣及杂质。整体过程采用氩气氛围保护。
在精炼前以及精炼过程中铝熔体取样,测定其密度以估算氢含量。测量方法采用密度法(以铝的理论值2.70g/cm 3做对比),测量的样品越是接近2.7g/cm 3,表示铝的内部氢含量越低。一般正常达不到2.7g/cm 3;样品的密度测试大约等于2.65g/cm 3即可估算氢含量过程中必须抽真空处理,若氢含量不合格,则进一步进行精炼,即重复加入精炼剂、除渣剂再一次精炼。
步骤6、静置:将加入稀土铝合金并精炼后的熔体静置3-5分钟,温度控制在740-760度下。
步骤7、加入并熔化铝锶中间合金:将上述精炼后的铝锶中间合金加入步骤6的熔体中,将温度控制在780~820℃,使得铝锶中间合金完全熔化。整体过程采用氩气氛围保护,熔化铝锶中间合金。
步骤8、待铝锶中间合金熔化后,将温度控制在740~760℃,搅拌3-8分钟,实现均质化。整体过程采用氩气氛围保护,搅拌棒采用石墨材料,搅拌前 预热到400-500℃。
步骤9、接下来,在725~750℃下,进行保温处理。保温时间控制在15-30分钟。
步骤10、精炼、除气除渣:待熔体保温结束后,通入氩气后吹入精炼剂0.3%到铝稀土复合熔体中,通气时间控制在5~10分钟;放入0.2%的扒渣剂到铝熔体中,搅拌5分钟并打捞铝稀土复合熔体表层的渣及杂质。整体过程采用氩气氛围保护。
在精炼前以及精炼过程中铝熔体取样,测定氢含量。(氢气含量要求:大于等于2.65g/cm 3;)测氢过程中必须抽真空处理,若氢含量不合格,则进一步进行精炼,即重复加入精炼剂、除渣剂再一次精炼。
步骤11、加铝钛硼中间合金:在上述步骤10处理后的熔体中,加入铝钛硼中间合金,加热使其完全熔化,并均匀搅拌3-5分钟使其均质化。
步骤12、保温:搅拌后,将熔体保温8-12分钟,温度控制在715-725℃下。
步骤13、精炼、除气除渣:待熔体保温结束后,通入氩气后吹入精炼剂0.3%到铝稀土复合熔体中,通气时间控制在5~10分钟;放入0.2%的扒渣剂到铝熔体中,搅拌5分钟并打捞铝稀土复合熔体表层的渣及杂质。整体过程采用氩气氛围保护。
在精炼前以及精炼过程中铝熔体取样,测定氢含量。(氢气含量要求:大于等于2.65g/cm 3;)测氢过程中必须抽真空处理,若氢含量不合格,则进一步进行精炼,即重复加入精炼剂、除渣剂再一次精炼,直至合格。
步骤14、浇铸:模具预热在300-400℃。将上述步骤13得到的复合稀土合金熔体温度控制在715~725℃浇铸即可。
优选地,浇铸时,铝稀土复合熔体表层的氧化物采用玻璃纤维的过滤网过滤干净;每次浇铸前对铝稀土复合熔体表层做过滤处理后浇铸。
优选地,浇铸的模具冷却控制,对浇铸到模具中铝稀土复合熔体采用水冷方式冷却,冷却过程中,采用以50-100℃/s控制铝熔体凝固速度,凝固方式用顺序凝固。
上述实施例得到的复合稀土铝合金,通过加入稀土铝合金、调节添加顺序, 根据本发明的一些实施例,所述复合稀土合金中,所述稀土金属:锶:钛或钛硼重量的质量比为1:(0.1-1.2):(0.1-1.2)。也就是说,可以提高变质剂、细化剂的含量,并能够使其充分发挥作用。
此外,利用本实施例得到的复合稀土铝合金对铝合金进行改性。图1示出了改性前的铝合金的金相结构,图2示出了改性后的金相结构。由图1和图2可知,改性前的铝合金(图1)的金相组织,可看出粗大的初生α-Al相呈现树枝晶的组织形态,二次枝晶的直径和长度及枝晶间距都是呈现比较大。而改善后的铝合金的金相组织,出现了大量蔷薇状α-Al相和较圆整的球形α-Al相也随之增加,初生α-Al相显著地细化,树枝晶的数量减少。也就是说,改性后,晶粒得到充分细化,且微观结构均匀。
另外,使用本实施例得到的复合稀土铝合金对A356铝合金进行改性后的机械性能进行了评价。评价结果(记作实施例1)示于下述表1。为了进行对比,同时给出了未改性的A356铝合金的测试结果(记作改性前)。同时,还列出了代替本实施例的复合稀土铝合金,以完全相同配比添加了变质剂、细化剂所改性后的A356铝合金的测试结果(记作对比例1)。
表1 A356铝合金以及改性后的机械性能测试结果
机械性能 改性前 对比例1 实施例1
抗拉强度(MPa) 125-145 175-190 205-210
屈服强度(MPa) 65-80 85-95 100-115
延伸率(%) 3-5 6-8 10-12
由表1可知,通过使用本实施例的复合稀土铝合金,大幅提高了延伸率、屈服强度、以及抗拉强度,极大地提高了综合机械性能。
实施例2
本实施例中,与上述实施例1相比,除了铝锶中间合金与稀土铝合金一同加入这一点不同之外,其余均相同。
下面,仅针对复合稀土合金的制备中涉及不同的部分进行描述如下:
4)复合稀土合金的制备
步骤1、配料:将上述得到的高纯铝、铝钛硼中间合金、铝锶中间合金、稀土铝合金按要求的质量百分比称量后预热。
以100份为例,高纯铝:4.8份、铝钛硼中间合金:0.2份、铝锶中间合金:60份、稀土铝合金:35份
步骤2、加入并熔化稀土铝合金&铝锶中间合金:在上述铝熔体,将温度控制在760~780℃,将稀土合金材料&铝锶中间合金一同加入铝熔体中。
整体过程采用氩气氛围保护,将温度控制在780~820℃时,熔化稀土铝合金。
步骤3、待稀土铝合金&铝锶中间合金完全熔化后,将温度控制在750~770℃时,进行搅拌10分钟。整体过程采用氩气氛围保护,搅拌棒采用石墨材料,搅拌前预热到450℃。
步骤4、对熔化后的熔体在740~760℃下,保温时间控制在10分钟进行保温处理。
步骤5、精炼:保温结束后,进行精炼、除气除渣。在熔体中通过氩气吹入0.3wt%的精炼剂,通气时间控制在5分钟;此后,进一步加入0.2wt%的除渣剂,搅拌5分钟静置并去除熔体表层的渣及杂质。整体过程采用氩气氛围保护。
在精炼前以及精炼过程中铝熔体取样,估算氢含量。(熔体密度要求:大于等于2.65g/cm 3。)测氢过程中必须抽真空处理,若氢含量不合格,则进一步进行精炼,即重复加入精炼剂、除渣剂再一次精炼。
步骤6、静置:将加入稀土铝合金并精炼后的熔体静置3-5分钟,温度控制在740-760度下。
此后,进一步加入铝钛硼中间合金进行熔炼。具体步骤可以参考实施例1,在此省略其详细说明。
此外,根据本实施例得到的复合稀土铝合金,经实验结果显示,同样可以有效提高铝合金的机械强度、实现更好的细化、改性效果。在此省略其详细数据。
实施例3
本实施例中,与上述实施例1相比,除了稀土铝合金在铝锶合金之后加入这一点不同之外,其余均相同。
下面,仅针对复合稀土合金的制备中涉及不同的部分进行描述如下:
4)复合稀土合金的制备
步骤1、加入并熔化铝锶中间合金:将上述精炼后的铝锶中间合金加入铝熔体中,将温度控制在780~820℃,使得铝锶中间合金完全熔化。整体过程采用氩气氛围保护,熔化铝锶中间合金。
步骤2、待铝锶中间合金熔化后,将温度控制在740~760℃,搅拌3-8分钟,实现均质化。整体过程采用氩气氛围保护,搅拌棒采用石墨材料,搅拌前预热到400-500℃。
步骤3、接下来,在725~750℃下,进行保温处理。保温时间控制在15-30分钟。
步骤4、精炼、除气除渣:待熔体保温结束后,通入氩气后吹入精炼剂0.3wt%到铝稀土复合熔体中,通气时间控制在10分钟;放入0.2wt%的除渣剂到铝熔体中,搅拌5分钟并打捞铝稀土复合熔体表层的渣及杂质。整体过程采用氩气氛围保护。
在精炼前以及精炼过程中铝熔体取样,测定氢含量。(氢气含量要求:大于等于2.65g/cm 3;)测氢过程中必须抽真空处理,若氢含量不合格,则进一步进行精炼,即重复加入精炼剂、除渣剂再一次精炼。
步骤5、加入并熔化稀土铝合金:上述步骤4的熔体,将温度控制在760~780℃,将稀土合金材料加入熔体中。
整体过程采用氩气氛围保护,将温度控制在780~820℃时,熔化稀土铝合金。
步骤6、待稀土铝合金完全熔化后,将温度控制在750~770℃时,进行搅拌10分钟。整体过程采用氩气氛围保护,搅拌棒采用石墨材料,搅拌前预热到400-500℃。
步骤7、对熔化后的熔体在740~760℃下,保温时间控制在10分钟进行保温处理。
步骤8、精炼:保温结束后,进行精炼、除气除渣。在熔体中通过氩气吹 入0.3wt%的精炼剂,通气时间控制在5分钟;此后,进一步加入0.2wt%的除渣剂中,搅拌5分钟静置并去除熔体表层的渣及杂质。整体过程采用氩气氛围保护。
在精炼前以及精炼过程中铝熔体取样,估算氢含量。(熔体密度要求:大于等于2.65g/cm 3。)测氢过程中必须抽真空处理,若氢含量不合格,则进一步进行精炼,即重复加入精炼剂、除渣剂再一次精炼。
步骤9、静置:将加入稀土铝合金并精炼后的熔体静置3-5分钟,温度控制在740-760℃下。
此后,进一步加入铝钛硼中间合金进行熔炼。具体步骤可以参考实施例1,在此省略其详细说明。
此外,根据本实施例得到的复合稀土铝合金,经实验结果显示,同样可以有效提高铝合金的机械强度、实现更好的细化、改性效果。在此省略其详细数据。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (16)

  1. 一种铝合金改性用复合稀土合金的制备方法,其特征在于,包括如下步骤:
    步骤S1,提供铝熔体;
    步骤S2,提供变质剂、细化剂、以及稀土铝合金,所述稀土铝合金中的稀土金属为选自镧、铈、钇中的一种或多种;
    步骤S3,在惰性气体气氛下,在所述铝熔体中,加入所述变质剂、细化剂、以及稀土铝合金并熔炼,得到所述铝合金改性用复合稀土合金。
  2. 根据权利要求1所述的制备方法,其特征在于,所述步骤S1包括:
    步骤S11,提供铝锭;
    步骤S12,去除所述铝锭表面的氧化皮层;
    步骤S13,对去除所述氧化皮层的铝锭进行清洗,烘干;
    步骤S14,将烘干后的所述铝锭进行熔炼,得到初始熔体;
    步骤S15,对所述初始熔体进行精炼,得到所述铝熔体。
  3. 根据权利要求1所述的制备方法,其特征在于,所述稀土铝合金的制备包括如下步骤:
    在惰性气氛下在所述铝熔体中加入所述稀土金属或含所述稀土金属的中间合金,加热的同时搅拌至完全熔化;
    待完全熔化后继续保温10-20分钟使其均质化;
    对均质化熔体进行精炼;
    精炼后静置预定时间,并进行浇注,得到所述稀土铝合金。
  4. 根据权利要求1所述的制备方法,其特征在于,所述变质剂为铝锶中间合金,所述细化剂为铝钛中间合金或铝钛硼中间合金。
  5. 根据权利要求4所述的制备方法,其特征在于,所述变质剂和/或所述细化剂和/或所述稀土铝合金分别依次进行去氧化皮层、超声清洗、精炼处理。
  6. 根据权利要求4所述的制备方法,其特征在于,所述步骤S3中,所述变质剂与所述细化剂间隔开加入,所述稀土铝合金在所述变质剂与所述细化剂之前加入,或者与首先加入的一方一同加入,或者在所述变质剂与所述细化剂 加入间隙加入。
  7. 根据权利要求6所述的制备方法,其特征在于,所述步骤S3包括:
    步骤S301,在所述铝熔体中加入所述稀土铝合金并进行熔炼,得到第一均匀混合熔体;
    步骤S302,在所述第一均匀混合熔体中加入所述变质剂并继续熔炼,得到第二均匀混合熔体;
    步骤S303,在所述第二均匀混合熔体中加入所述细化剂并继续熔炼,得到所述复合稀土合金。
  8. 根据权利要求7所述的制备方法,其特征在于,所述步骤S301包括:
    在氩气气氛下,将所述铝熔体加热至780-820℃,加入所述稀土铝合金;
    待所述稀土铝合金完全熔化后,继续搅拌5-15分钟进行均质化处理;
    在所述均质化处理后,静置保温5-20分钟进行保温处理;
    在所述保温处理结束后,进行精炼,得到所述第一均匀混合熔体。
  9. 根据权利要求6所述的制备方法,其特征在于,所述步骤S3包括:
    步骤S311,在所述铝熔体中同时加入所述稀土铝合金以及所述变质剂并继续熔炼,得到第三均匀混合熔体;
    步骤S312,在所述第三均匀混合熔体中加入所述细化剂并继续熔炼,得到所述复合稀土合金。
  10. 根据权利要求9所述的制备方法,其特征在于,在得到所述第三均匀混合熔体后,对其进行精炼,精炼后加入所述细化剂。
  11. 根据权利要求6所述的制备方法,其特征在于,所述步骤S3包括:
    步骤S321,在所述铝熔体中加入所述变质剂并继续熔炼,得到所述第四均匀混合熔体;
    步骤S322,在所述第四均匀混合熔体中加入所述稀土铝合金并继续熔炼,得到第五均匀混合熔体;
    步骤S323,在所述第五均匀混合熔体中加入所述细化剂并继续熔炼,得到所述复合稀土合金。
  12. 根据权利要求11所述的制备方法,其特征在于,分别对所述第四均匀混合熔体、所述第五均匀混合熔体进行精炼,精炼后执行下一步骤。
  13. 根据权利要求2、3、5、8、10、12任一项所述的制备方法,其特征在于,所述精炼包括:
    通过惰性气体吹入精炼剂并保持3-10分钟,此后加入除渣剂并搅拌5-10分钟,并去除表面浮渣。
  14. 根据权利要求13所述的制备方法,其特征在于,所述精炼剂的加入量占所加入的熔体质量的0.1~0.3%,所述清渣剂的加入量占所加入熔体质量的0.1~0.3%;
    所述精炼剂的组分按质量计含有:
    氯化钾10-15份,氯化钠15-25份,氟化钙8-15份,碳酸钠15-25份,硫酸钠8-12份,氟铝酸钠10-20份,六氯乙烷8-12份;
    所述清渣剂的组分按质量计含有:
    氯化钠25-30份,氯化钾25-30份,碳酸钠5-10份,硫酸钠5-10份,氟铝酸钠1-5份,氟硅酸钠5-10份,氟化钙5-10份,硝酸钾1-5份,氟硅酸钾5-10份。
  15. 根据权利要求14所述的制备方法,其特征在于,所述精炼之前以及在精炼过程中,测试熔体的密度,当熔体的密度不足2.65g/cm 3时,则进行所述精炼处理;
    当熔体密度大于等于2.65g/cm 3,即不进行所述精炼处理或终止所述精炼处理。
  16. 一种铝合金改性用复合稀土合金,其特征在于,含有锶、钛或钛硼、以及稀土金属,其中,所述稀土金属:锶:钛或钛硼总量的质量比为1:(0.1-1.2):(0.1-1.2),所述稀土金属为选自镧、铈、钇中的一种或多种。
PCT/CN2022/141281 2021-12-27 2022-12-23 铝合金改性用复合稀土合金及其制备方法 WO2023125263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111615720.5 2021-12-27
CN202111615720.5A CN114277272A (zh) 2021-12-27 2021-12-27 铝合金改性用复合稀土合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2023125263A1 true WO2023125263A1 (zh) 2023-07-06

Family

ID=80876336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141281 WO2023125263A1 (zh) 2021-12-27 2022-12-23 铝合金改性用复合稀土合金及其制备方法

Country Status (2)

Country Link
CN (1) CN114277272A (zh)
WO (1) WO2023125263A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115896508A (zh) * 2022-12-09 2023-04-04 北京机科国创轻量化科学研究院有限公司 一种适于亚共晶铝硅合金的高效细化变质方法及压铸件
CN117987678A (zh) * 2024-03-01 2024-05-07 徐州思源铝业有限公司 一种铝合金变质剂及铝合金变质处理方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214534A (zh) * 2021-12-27 2022-03-22 上海耀鸿科技股份有限公司 改性铝合金及其制备方法
CN114277272A (zh) * 2021-12-27 2022-04-05 上海耀鸿科技股份有限公司 铝合金改性用复合稀土合金及其制备方法
CN114959369B (zh) * 2022-06-09 2023-05-12 江苏宏德特种部件股份有限公司 一种熵工程共晶型铝稀土铸造合金及其制备方法
CN115133012A (zh) * 2022-07-22 2022-09-30 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 锂离子电池负极用珊瑚状纳米硅粉、负极材料及制备方法
CN116083762B (zh) * 2022-12-29 2023-11-14 华劲新材料研究院(广州)有限公司 一种适合一体化压铸铝合金材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217141A (ja) * 1985-07-15 1987-01-26 Sumitomo Light Metal Ind Ltd Al−Si系合金における共晶Siの微細化方法
CN101591746A (zh) * 2009-03-26 2009-12-02 广州钢铁企业集团有限公司 一种铝、铝合金用晶粒细化变质中间合金及其制备方法
CN103146944A (zh) * 2013-03-19 2013-06-12 新昌县国威铝制品辅助材料有限公司 一种铝或铝合金熔液清渣剂
CN108130443A (zh) * 2017-11-21 2018-06-08 包头稀土研究院 稀土铝钛硼合金及其制备方法
CN109234553A (zh) * 2018-09-25 2019-01-18 全球能源互联网研究院有限公司 一种Al-Zr-Sc-B耐热合金单丝及其制备方法
CN111349822A (zh) * 2020-03-20 2020-06-30 永城金联星铝合金有限公司 一种铝-钛-硼-锶-稀土合金线材及制备方法
CN114277272A (zh) * 2021-12-27 2022-04-05 上海耀鸿科技股份有限公司 铝合金改性用复合稀土合金及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108103363B (zh) * 2017-12-11 2019-10-29 南昌大学 一种用于亚共晶铝硅铸造合金的细化-变质剂及其制备方法和应用
WO2020002813A1 (fr) * 2018-06-25 2020-01-02 C-Tec Constellium Technology Center Procede de fabrication d'une piece en alliage d'aluminium
CN109439976B (zh) * 2019-01-09 2019-12-24 广东省材料与加工研究所 一种铸造铝硅合金的复合变质方法
CN112143945B (zh) * 2020-09-23 2021-12-17 上海耀鸿科技股份有限公司 一种多种复合稀土元素的高强韧性铸造铝硅合金及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217141A (ja) * 1985-07-15 1987-01-26 Sumitomo Light Metal Ind Ltd Al−Si系合金における共晶Siの微細化方法
CN101591746A (zh) * 2009-03-26 2009-12-02 广州钢铁企业集团有限公司 一种铝、铝合金用晶粒细化变质中间合金及其制备方法
CN103146944A (zh) * 2013-03-19 2013-06-12 新昌县国威铝制品辅助材料有限公司 一种铝或铝合金熔液清渣剂
CN108130443A (zh) * 2017-11-21 2018-06-08 包头稀土研究院 稀土铝钛硼合金及其制备方法
CN109234553A (zh) * 2018-09-25 2019-01-18 全球能源互联网研究院有限公司 一种Al-Zr-Sc-B耐热合金单丝及其制备方法
CN111349822A (zh) * 2020-03-20 2020-06-30 永城金联星铝合金有限公司 一种铝-钛-硼-锶-稀土合金线材及制备方法
CN114277272A (zh) * 2021-12-27 2022-04-05 上海耀鸿科技股份有限公司 铝合金改性用复合稀土合金及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115896508A (zh) * 2022-12-09 2023-04-04 北京机科国创轻量化科学研究院有限公司 一种适于亚共晶铝硅合金的高效细化变质方法及压铸件
CN115896508B (zh) * 2022-12-09 2023-10-10 北京机科国创轻量化科学研究院有限公司 一种适于亚共晶铝硅合金的高效细化变质方法及压铸件
CN117987678A (zh) * 2024-03-01 2024-05-07 徐州思源铝业有限公司 一种铝合金变质剂及铝合金变质处理方法

Also Published As

Publication number Publication date
CN114277272A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2023125263A1 (zh) 铝合金改性用复合稀土合金及其制备方法
WO2023125262A1 (zh) 改性铝合金及其制备方法
CN108425050B (zh) 一种高强高韧铝锂合金及其制备方法
CN112143945B (zh) 一种多种复合稀土元素的高强韧性铸造铝硅合金及其制备方法
WO2023125282A1 (zh) 高塑性复合改性铝合金制件及其制备方法
CN112680615B (zh) 高强韧压铸铝合金材料的制备方法、热处理方法和压铸方法
CN115418537B (zh) 一种免热处理压铸铝合金及其制备方法和应用
CN106480344B (zh) 一种真空泵转子用含稀土铝合金及其制备方法
CN112430767B (zh) 一种大规格空心铸锭及铸锭方法
CN102965553A (zh) 用于汽车保险杠的铝合金铸锭及其生产工艺
WO2023125265A1 (zh) 高强度复合改性铝合金制件及其制备方法
CN106978557A (zh) 一种镁锂合金及其制备方法
WO2023125264A1 (zh) 高强度铝合金制件及其制备方法
CN112522557B (zh) 一种高强韧压铸铝合金材料
WO2023125266A1 (zh) 高塑性铝合金制件及其制备方法
WO2018099272A1 (zh) 半固态压铸铝合金及制备半固态压铸铝合金铸件的方法
CN112921212A (zh) 一种高强度可阳极氧化着色的压铸铝合金及其制备方法
CN115141947B (zh) 高比例添加废料的5000系铝合金扁锭及其制备方法、铝材
CN107699747A (zh) 一种高Cu含量Al‑Si‑Li‑Cu铸造合金及其制备方法
CN111155003A (zh) 一种高强韧性高镁铝合金及其制备方法
WO2023015608A1 (zh) 高强高导抗晶间腐蚀铝合金及其制备方法
CN114032425A (zh) 一种zl114a合金复合变质的方法及其所得产品
CN111996419A (zh) 一种含铁亚共晶铝硅合金及其制备方法
CN111074118A (zh) 一种细晶粒6063铝合金棒
CN115976375B (zh) 一种太阳能电池板边框用铝合金及其型材生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914517

Country of ref document: EP

Kind code of ref document: A1