WO2023125125A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2023125125A1
WO2023125125A1 PCT/CN2022/140220 CN2022140220W WO2023125125A1 WO 2023125125 A1 WO2023125125 A1 WO 2023125125A1 CN 2022140220 W CN2022140220 W CN 2022140220W WO 2023125125 A1 WO2023125125 A1 WO 2023125125A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
sets
uplink
rbs
terminal device
Prior art date
Application number
PCT/CN2022/140220
Other languages
English (en)
French (fr)
Inventor
徐军
金黄平
王瀚庆
王潇涵
庞继勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023125125A1 publication Critical patent/WO2023125125A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of wireless technologies, and in particular to a communication method and a communication device.
  • uplink precoding plays a crucial role in system capacity and spectrum efficiency. Wherein, after the network device determines the uplink precoding information of the terminal device, it needs to indicate the uplink precoding information to the corresponding terminal device.
  • the uplink bandwidth used by the terminal device includes multiple continuous frequency domain resources corresponding to the uplink bandwidth part (BWP); correspondingly, the network device indicates the same uplink precoding for the multiple continuous frequency domain resources information. That is, the uplink precoding information indication sent by the network device is used to indicate a certain type of uplink precoding information, so that the terminal device sends uplink information on the multiple continuous frequency domain resources based on the uplink precoding information.
  • BWP uplink bandwidth part
  • the transmission channels corresponding to different frequency domain resources are different.
  • the use of the same uplink precoding information by a terminal device on multiple consecutive frequency domain resources may easily lead to performance loss. affect communication efficiency.
  • the network device may schedule part or all of the frequency domain resources in the uplink BWP as available uplink resources of the terminal device; in other words, the scheduling bandwidth used by the terminal device may not be fixed.
  • the uplink precoding used on each frequency domain resource in the scheduling bandwidth used by the terminal device should be adjusted according to its channel. Therefore, the optimal precoding on different frequency domain resources may be different.
  • the uplink precoding information sent by the network device may The amount of information is not fixed, which will cause the terminal device to perform blind detection based on the received information, resulting in high energy consumption of the terminal device.
  • the present application provides a communication method and a communication device, which are used to enable a network device to indicate to a terminal device different uplink precoding information on different resource block (resource block, RB) sets, which can avoid performance loss to a certain extent, to improve communication efficiency.
  • the terminal device may determine the second indication information in the DCI based on the number of bits indicated by the first indication information, so that the terminal device can obtain the DCI without blind detection The indication of the uplink precoding information in , so as to reduce the energy consumption of the terminal equipment.
  • DCI downlink control information
  • the first aspect of the present application provides a communication method, the method is executed by a terminal device, or the method is executed by some components in the terminal device (such as a processor, a chip or a chip system, etc.), or the method can also be executed by A logic module or software implementation that realizes all or part of the functions of a terminal device.
  • the communication method is executed by a terminal device as an example for description.
  • the terminal device receives first indication information, the first indication information is used to indicate the number of bits occupied by the second indication information, and the second indication information is used to indicate the uplink precoding information of P RB sets; where , each resource block RB set in the P RB sets includes one or more RBs; the uplink precoding information corresponding to different RB sets in the P RB sets is different; P is greater than or equal to 2; the terminal device receives DCI; The terminal device determines the second indication information in the DCI based on the number of bits; the terminal device sends uplink information based on uplink precoding information of P RB sets.
  • the terminal device determines the second indication information in the DCI based on the number of bits.
  • the first indication information is used to indicate the number of bits occupied by the second indication information
  • the second indication information is used to indicate the uplink precoding information of P RB sets; wherein, P is greater than or equal to 2 and P RB sets Different uplink precoding information corresponding to different RB sets in .
  • the network device may indicate two or more types of uplink precoding information to the terminal device based on the second indication information in the DCI.
  • the network device can indicate different uplink precoding information on different RB sets to the terminal device, which can avoid performance loss to a certain extent and improve communication. efficiency.
  • the first indication information received by the terminal device is used to indicate the number of bits occupied by the second indication information, that is, the terminal device can explicitly indicate the number of bits of the uplink precoding information of the P RB sets based on the first indication information. 2 indicates the number of bits occupied by the information.
  • the terminal device can determine the second indication information in the DCI based on the number of bits indicated by the first indication information, so that the terminal device can obtain the indication of the uplink precoding information in the DCI without blind detection , to reduce the energy consumption of terminal equipment.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the network device can configure the same uplink precoding indication for the different RBs, and
  • the different RBs are configured in the same RB set.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the uplink information is carried on some or all of the RBs in the P RB sets.
  • the network device can schedule some or all of the RBs included in the P RB sets for the terminal device.
  • the uplink resources carried by the uplink information sent by the terminal device can include the P RB sets Some or all of the RBs.
  • the terminal device receives indication information from the network device for indicating the uplink resource scheduled for the terminal device, so that the terminal device can be based on the indication information indicated for the The uplink resource scheduled by the terminal device sends uplink information.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device.
  • the RBs included in the P RB sets indicated by the second indication information are the RBs corresponding to the uplink resources scheduled for the terminal device, that is, the uplink precoding indication sent by the network device to the terminal device (that is, the second Indication information) is used to indicate the uplink precoding information corresponding to the uplink resource scheduled for the terminal device.
  • the terminal device sending the uplink information based on the uplink precoding information of the P RB sets includes: the terminal device uses the uplink resources scheduled for the terminal device based on the uplink precoding information of the P RB sets (that is, the P RB sets Send uplink information on all the RBs included.
  • the network device does not need to indicate to the terminal device the uplink precoding information corresponding to the uplink resource that is not scheduled for the terminal device, and the terminal device does not need to read the uplink precoding information corresponding to the uplink resource that is not scheduled for the terminal device. Save signaling overhead and save energy consumption of terminal equipment.
  • the method further includes: the terminal device receiving third indication information, where the third indication information is used to indicate that each RB set in the P RB sets includes the One or more RBs in the uplink resource scheduled by the device.
  • the third indication information is used to indicate the association relationship between the RBs in the P RB sets and the RBs in the uplink resource scheduled for the terminal device.
  • the terminal device can determine the uplink precoding information corresponding to the uplink resource scheduled for the terminal device based on the association relationship and the second indication information, and further send uplink information on the uplink resource scheduled for the terminal device.
  • the third indication information includes a value of P or the number of RBs included in each RB set of the P RB sets.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device, that is, when the RBs in the P RB sets are all located in the uplink resources scheduled for the terminal device,
  • the number of RBs contained in different RB sets in the P RB sets may be the same.
  • the third indication information sent by the network device may include the value of P, so that the terminal device determines the RBs included in each of the P RB sets based on the value of P; or, the network device sends
  • the third indication information may include the number of RBs included in each of the P RB sets, so that the terminal device determines each of the P RB sets based on the number of RBs included in each of the P RB sets Included RB. Therefore, the terminal device can send uplink information based on the RBs contained in each of the determined P RB sets and corresponding uplink precoding information.
  • the RBs included in the P RB sets are frequency domain resources corresponding to an uplink bandwidth part (bandwidth part, BWP) of the terminal device.
  • BWP bandwidth part
  • the RBs contained in the P RB sets indicated by the second indication information are frequency domain resources corresponding to the uplink BWP of the terminal device, that is, the uplink precoding indication sent by the network device to the terminal device (that is, the second Indication information) is used to indicate the uplink precoding information of the frequency domain resource corresponding to the uplink BWP of the terminal device.
  • the terminal device sending the uplink information based on the uplink precoding information of the P RB sets includes: after the terminal device determines the uplink precoding information corresponding to the uplink resources scheduled for the terminal device based on the uplink precoding information of the P RB sets , and then based on the uplink precoding information corresponding to the uplink resources scheduled for the terminal device, the uplink information is sent on the uplink resources scheduled for the terminal device (ie, some RBs included in the P RB sets). Therefore, the network device can indicate to the terminal device different uplink precoding information on different RB sets in the uplink BWP, which can avoid performance loss to a certain extent and improve communication efficiency.
  • the method further includes: the terminal device receiving fourth indication information, where the fourth indication information is used to indicate that each of the P RB sets includes the terminal device's One or more RBs in the frequency domain resource corresponding to the uplink BWP.
  • the fourth indication information is used to indicate the association relationship between the RBs in the P RB sets and the RBs in the frequency domain resource corresponding to the uplink BWP. So that the terminal device can determine, based on the association relationship and the second indication information, the uplink precoding information corresponding to the uplink resource scheduled for the terminal device in the frequency domain resources corresponding to the uplink BWP, and further in the scheduled uplink precoding information for the terminal device
  • the uplink resource sends uplink information.
  • the fourth indication information includes a value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are the frequency domain resources corresponding to the uplink BWP, that is, when the RBs in the P RB sets are all located in the frequency domain resources corresponding to the uplink BWP,
  • the number of RBs contained in different RB sets in the P RB sets may be the same.
  • the fourth indication information sent by the network device may include the value of P, so that the terminal device determines the RBs included in each of the P RB sets based on the value of P; or, the network device sends
  • the fourth indication information may include the number of RBs contained in each of the P RB sets, so that the terminal device determines the number of RBs contained in each of the P RB sets based on the number of RBs contained in each of the P RB sets. Included RB. Therefore, the terminal device may send uplink information based on the RBs contained in each of the determined P RB sets and the uplink precoding information of the uplink resources scheduled for the terminal device.
  • the uplink precoding information of the P RB sets is determined based on a first codebook, where the first codebook is any of the following:
  • DFT discrete Fourier transform
  • the terminal device can determine the uplink precoding information of the P RB sets based on the second indication information in the first codebook, wherein the first codebook can be determined based on the above-mentioned various methods, and the improved scheme Achieved flexibility.
  • the uplink precoding information of the P RB sets is determined based on the first codebook; the method further includes: the terminal device receives fifth indication information, and the fifth indication information uses When indicating that the first codebook is any of the following:
  • the codebook corresponding to the DFT oversampling matrix generated based on the value of P.
  • the terminal device may also specify that the first codebook used to determine the uplink precoding information of the P RB sets is one of multiple implementations based on the fifth indication information sent by the network device determined by the method, and further specify the uplink precoding information in the P RB sets.
  • the terminal device may determine the uplink precoding information of the P RB sets based on the second indication information in the preconfigured codebook.
  • the terminal device may determine a certain codebook in at least two codebooks based on the value of P and further determining the uplink precoding information of the P RB sets in the determined codebook based on the second indication information.
  • the terminal device may determine the DFT oversampling matrix after generating the DFT oversampling matrix based on the value of P.
  • the codebook corresponding to the sampling matrix further determines the uplink precoding information of the P RB sets in the codebook corresponding to the DFT oversampling matrix based on the second indication information.
  • the RB indexes of the multiple RBs are continuous.
  • the RBs included in the P RB sets are the uplink resources scheduled for the terminal device, that is, when the RBs in the P RB sets are all located in the uplink resources scheduled for the terminal device
  • the uplink resources scheduled by the terminal device may not be consecutive uplink resources in the frequency domain, that is, the RB indexes on the uplink BWP of the RBs corresponding to the uplink resources scheduled for the terminal device may be discontinuous.
  • the RB indices of the multiple RBs may be discontinuous on the uplink BWP.
  • the terminal device may reorder the RBs contained in the uplink resources scheduled by the terminal device to obtain ascending or descending RB indexes, so that when there are RB sets including multiple RBs in the P RB sets,
  • the RB indices of the plurality of RBs are consecutive in the ascending or descending order of the RB indices.
  • the RBs included in the P RB sets are the frequency domain resources corresponding to the uplink BWP, that is, when the RBs in the P RB sets are all located in the frequency domain resources corresponding to the uplink BWP, in The RB indexes of the RBs included in any one of the P RB sets are continuous in the frequency domain resource corresponding to the uplink BWP.
  • the RB indices of the multiple RBs are continuous on the uplink BWP.
  • each RB set in the P RB sets includes the same number of RBs.
  • the second indication information includes P pieces of information, and the P pieces of information are respectively used to indicate the uplink precoding information of the P RB sets, where different information in the P pieces of information is in the The number of bits occupied in DCI is the same.
  • the terminal device can equally divide the number of bits occupied by the second indication information into P pieces of information for interpretation, so as to determine the number of bits occupied by the second indication information.
  • the terminal device can determine the uplink precoding information of different RB sets in the same codebook based on the second indication information, which is easy to implement.
  • the second indication information includes P pieces of information, and the P pieces of information are respectively used to indicate the uplink precoding information of the P RB sets, wherein at least two of the P pieces of information are The number of bits occupied in this DCI varies.
  • the terminal device may divide the number of bits occupied by the second indication information into P bits based on the number of bits occupied by different information in the P pieces of information.
  • the information is interpreted to determine the P pieces of information included in the second indication information, and the uplink precoding information corresponding to the uplink resource carrying the uplink information is determined based on part or all of the P pieces of information.
  • the terminal device can determine the uplink precoding information of different RB sets in the P RB sets in at least two different codebooks, so that the network device can flexibly select different codebooks for Indicates uplink precoding information of P RB sets.
  • the network device can realize the indication of uplink precoding information without selecting the same codebook. Therefore, when the network device has configured the number of bits occupied by the second indication information through the first indication information, that is, if the number of bits occupied by the second indication information remains unchanged, if the network device selects a certain uplink A codebook with a small number of precoding information indexes can indicate the uplink precoding information of a certain RB set with a small number of bits; correspondingly, if the network device selects a certain uplink precoding information with a large number of indexes The codebook can indicate the uplink precoding information corresponding to more uplink precoding information indexes through a larger number of bits.
  • the second aspect of the present application provides a communication method, the method is executed by a network device, or the method is executed by some components in the network device (such as a processor, a chip or a chip system, etc.), or the method can also be executed by A logic module or software implementation that realizes all or part of network device functions.
  • the communication method is executed by a network device as an example for description.
  • the network device determines first indication information, the first indication information is used to indicate the number of bits occupied by the second indication information, and the second indication information is used to indicate the uplink precoding information of P RB sets; wherein , each resource block RB set in the P RB sets includes one or more RBs; the uplink precoding information corresponding to different RB sets in the P RB sets is different; P is greater than or equal to 2; the network device sends the first Indication information; the network device sends DCI, and the DCI includes the second indication information; the network device receives uplink information based on uplink precoding information of P RB sets.
  • the terminal device may determine the second indication information in the DCI based on the number of bits.
  • the first indication information is used to indicate the number of bits occupied by the second indication information
  • the second indication information is used to indicate the uplink precoding information of P RB sets; wherein, P is greater than or equal to 2 and P RB sets Different uplink precoding information corresponding to different RB sets in .
  • the network device can indicate two or more types of uplink precoding information to the terminal device based on the second indication information in the DCI.
  • the network device can indicate different uplink precoding information on different RB sets to the terminal device, which can avoid performance loss to a certain extent and improve communication. efficiency.
  • the first indication information sent by the network device is used to indicate the number of bits occupied by the second indication information, that is, the terminal device can explicitly use the first indication information to indicate the number of bits of the uplink precoding information of the P RB sets based on the first indication information. 2 indicates the number of bits occupied by the information.
  • the terminal device can determine the second indication information in the DCI based on the number of bits indicated by the first indication information, so that the terminal device can obtain the indication of the uplink precoding information in the DCI without blind detection , to reduce the energy consumption of terminal equipment.
  • the network device receiving the uplink information based on the uplink precoding information of the P RB sets includes: the network device receiving the uplink information, the uplink information is obtained by precoding the signal to be transmitted based on the uplink precoding information of the P RB sets get the information.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the network device can configure the same uplink precoding indication for the different RBs, and
  • the different RBs are configured in the same RB set.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the uplink information is carried on some or all of the RBs in the P RB sets.
  • the network device can schedule some or all of the RBs included in the P RB sets for the terminal device.
  • the uplink resources carried by the uplink information sent by the terminal device can include the P RB sets Some or all of the RBs.
  • the network device sends to the terminal device indication information for indicating the uplink resources scheduled for the terminal device, so that the terminal device can schedule resources for the terminal device based on the indication information indicated uplink resource to send uplink information.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device.
  • the RBs included in the P RB sets indicated by the second indication information are the RBs corresponding to the uplink resources scheduled for the terminal device, that is, the uplink precoding indication sent by the network device to the terminal device (that is, the second Indication information) is used to indicate the uplink precoding information corresponding to the uplink resource scheduled for the terminal device.
  • the terminal device sending the uplink information based on the uplink precoding information of the P RB sets includes: the terminal device uses the uplink resources scheduled for the terminal device based on the uplink precoding information of the P RB sets (that is, the P RB sets Send uplink information on all the RBs included.
  • the network device does not need to indicate to the terminal device the uplink precoding information corresponding to the uplink resource that is not scheduled for the terminal device, and the terminal device does not need to read the uplink precoding information corresponding to the uplink resource that is not scheduled for the terminal device. Save signaling overhead and save energy consumption of terminal equipment.
  • the method further includes: the network device sending third indication information, where the third indication information is used to indicate that each RB set in the P RB sets includes the One or more RBs in the uplink resource scheduled by the device.
  • the third indication information is used to indicate the association relationship between the RBs in the P RB sets and the RBs in the uplink resource scheduled for the terminal device.
  • the terminal device can determine the uplink precoding information corresponding to the uplink resource scheduled for the terminal device based on the association relationship and the second indication information, and further send uplink information on the uplink resource scheduled for the terminal device.
  • the third indication information includes a value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device, that is, when the RBs in the P RB sets are all located in the uplink resources scheduled for the terminal device,
  • the number of RBs contained in different RB sets in the P RB sets may be the same.
  • the third indication information sent by the network device may include the value of P, so that the terminal device determines the RBs included in each of the P RB sets based on the value of P; or, the network device sends
  • the third indication information may include the number of RBs included in each of the P RB sets, so that the terminal device determines each of the P RB sets based on the number of RBs included in each of the P RB sets Included RB. Therefore, the terminal device can send uplink information based on the RBs contained in each of the determined P RB sets and corresponding uplink precoding information.
  • the RBs included in the P RB sets are frequency domain resources corresponding to the uplink BWP of the terminal device.
  • the RBs contained in the P RB sets indicated by the second indication information are frequency domain resources corresponding to the uplink BWP of the terminal device, that is, the uplink precoding indication sent by the network device to the terminal device (that is, the second Indication information) is used to indicate the uplink precoding information of the frequency domain resource corresponding to the uplink BWP of the terminal device.
  • the terminal device sending the uplink information based on the uplink precoding information of the P RB sets includes: after the terminal device determines the uplink precoding information corresponding to the uplink resources scheduled for the terminal device based on the uplink precoding information of the P RB sets , and then based on the uplink precoding information corresponding to the uplink resources scheduled for the terminal device, the uplink information is sent on the uplink resources scheduled for the terminal device (ie, some RBs included in the P RB sets). Therefore, the network device can indicate to the terminal device different uplink precoding information on different RB sets in the uplink BWP, which can avoid performance loss to a certain extent and improve communication efficiency.
  • the method further includes: the network device sending fourth indication information, where the fourth indication information is used to indicate that each of the P RB sets includes the terminal device's One or more RBs in the frequency domain resource corresponding to the uplink BWP.
  • the third indication information is used to indicate the association relationship between the RBs in the P RB sets and the RBs in the frequency domain resource corresponding to the uplink BWP. So that the terminal device can determine, based on the association relationship and the second indication information, the uplink precoding information corresponding to the uplink resource scheduled for the terminal device in the frequency domain resources corresponding to the uplink BWP, and further in the scheduled uplink precoding information for the terminal device
  • the uplink resource sends uplink information.
  • the fourth indication information includes the value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are the frequency domain resources corresponding to the uplink BWP, that is, when the RBs in the P RB sets are all located in the frequency domain resources corresponding to the uplink BWP,
  • the number of RBs contained in different RB sets in the P RB sets may be the same.
  • the fourth indication information sent by the network device may include the value of P, so that the terminal device determines the RBs included in each of the P RB sets based on the value of P; or, the network device sends
  • the fourth indication information may include the number of RBs contained in each of the P RB sets, so that the terminal device determines the number of RBs contained in each of the P RB sets based on the number of RBs contained in each of the P RB sets. Included RB. Therefore, the terminal device may send uplink information based on the RBs contained in each of the determined P RB sets and the uplink precoding information of the uplink resources scheduled for the terminal device.
  • the uplink precoding information of the P RB sets is determined based on the first codebook
  • the method also includes:
  • the network device sends fifth indication information, where the fifth indication is used to indicate that the first codebook is any of the following:
  • the codebook corresponding to the DFT oversampling matrix generated based on the value of P.
  • the terminal device may further specify the first codebook used to determine the uplink precoding information of the P RB sets based on the fifth indication information sent by the network device as The uplink precoding information in the P RB sets is determined by one of the multiple implementation manners and further specified.
  • the terminal device may determine the uplink precoding information of the P RB sets based on the second indication information in the preconfigured codebook.
  • the terminal device may determine a certain codebook in at least two codebooks based on the value of P and further determining the uplink precoding information of the P RB sets in the determined codebook based on the second indication information.
  • the terminal device may determine the DFT oversampling matrix after generating the DFT oversampling matrix based on the value of P.
  • the codebook corresponding to the sampling matrix further determines the uplink precoding information of the P RB sets in the codebook corresponding to the DFT oversampling matrix based on the second indication information.
  • the RB indexes of the multiple RBs are continuous.
  • the RBs included in the P RB sets are the uplink resources scheduled for the terminal device, that is, when the RBs in the P RB sets are all located in the uplink resources scheduled for the terminal device
  • the uplink resources scheduled by the terminal device may not be consecutive uplink resources in the frequency domain, that is, the RB indexes on the uplink BWP of the RBs corresponding to the uplink resources scheduled for the terminal device may be discontinuous.
  • the RB indices of the multiple RBs may be discontinuous on the uplink BWP.
  • the terminal device may reorder the RBs contained in the uplink resources scheduled by the terminal device to obtain ascending or descending RB indexes, so that when there are RB sets including multiple RBs in the P RB sets,
  • the RB indices of the plurality of RBs are consecutive in the ascending or descending order of the RB indices.
  • the RBs included in the P RB sets are the frequency domain resources corresponding to the uplink BWP, that is, when the RBs in the P RB sets are all located in the frequency domain resources corresponding to the uplink BWP, in The RB indexes of the RBs included in any one of the P RB sets are continuous in the frequency domain resource corresponding to the uplink BWP.
  • the RB indices of the multiple RBs are continuous on the uplink BWP.
  • each RB set in the P RB sets includes the same number of RBs.
  • the second indication information includes P pieces of information, and the P pieces of information are respectively used to indicate uplink precoding information of P sets of RBs, where different information in the P pieces of information is in The number of bits occupied in the DCI is the same.
  • the terminal device can equally divide the number of bits occupied by the second indication information into P pieces of information for interpretation, so as to determine the number of bits occupied by the second indication information.
  • the terminal device can determine the uplink precoding information of different RB sets in the same codebook based on the second indication information, which is easy to implement.
  • the second indication information includes P pieces of information, and the P pieces of information are respectively used to indicate the uplink precoding information of the P RB sets, wherein at least two of the P pieces of information The number of bits that information occupies in the DCI varies.
  • the terminal device can divide the number of bits occupied by the second indication information into Interpreting the P pieces of information to determine the P pieces of information included in the second indication information, and determining the uplink precoding information corresponding to the uplink resource carrying the uplink information based on part or all of the P pieces of information.
  • the terminal device can determine the uplink precoding information of different RB sets in the P RB sets in at least two different codebooks, so that the network device can flexibly select different codebooks for Indicates uplink precoding information of P RB sets.
  • the network device can realize the indication of uplink precoding information without selecting the same codebook. Therefore, when the network device has configured the number of bits occupied by the second indication information through the first indication information, that is, if the number of bits occupied by the second indication information remains unchanged, if the network device selects a certain uplink A codebook with a small number of precoding information indexes can indicate the uplink precoding information of a certain RB set with a small number of bits; correspondingly, if the network device selects a certain uplink precoding information with a large number of indexes The codebook can indicate the uplink precoding information corresponding to more uplink precoding information indexes through a larger number of bits.
  • the third aspect of the present application provides a communication method, the method is executed by a terminal device, or the method is executed by some components in the terminal device (such as a processor, a chip or a chip system, etc.), or the method can also be executed by A logic module or software implementation that realizes all or part of the functions of a terminal device.
  • the communication method is executed by a terminal device as an example for description.
  • the terminal device receives sixth indication information, and the sixth indication information is used to indicate the resource element (resource element) occupied by the beamforming channel state information-reference signal (channel state information, reference Signal, CSI-RS) , RE); the terminal device receives the CSI-RS based on the sixth indication information; the terminal device performs channel measurement based on the CSI-RS, and obtains uplink precoding information of P RB sets; wherein, the P RB sets Each RB set includes one or more RBs; the uplink precoding information corresponding to different RB sets in the P RB sets is different; P is greater than or equal to 2; the terminal device sends uplink based on the uplink precoding information of the P RB sets information.
  • the sixth indication information is used to indicate the resource element (resource element) occupied by the beamforming channel state information-reference signal (channel state information, reference Signal, CSI-RS) , RE); the terminal device receives the CSI-RS based on the sixth indication information; the terminal device performs channel measurement based
  • the terminal device receives the sixth indication information used to indicate the RE occupied by the beamformed CSI-RS
  • the RS performs channel measurement to obtain uplink precoding information of P RB sets.
  • P is greater than or equal to 2 and uplink precoding information corresponding to different RB sets in the P RB sets is different.
  • the network device can indicate two or more types of uplink precoding information to the terminal device, so as to realize high-precision uplink precoding indication.
  • the network device can indicate different uplink precoding information on different RB sets to the terminal device, which can avoid performance loss to a certain extent and improve communication. efficiency.
  • the sixth indication information received by the terminal device is used to indicate the REs occupied by the beamformed CSI-RS, that is, the terminal device can explicitly indicate the uplink precoding information of the P RB sets based on the sixth indication information RE occupied by CSI-RS.
  • the terminal device is made to receive the CSI-RS based on the sixth indication information, so as to prevent the terminal device from obtaining wrong uplink precoding information.
  • the sixth indication information used to indicate the REs occupied by the beamformed CSI-RS includes: the sixth indication information is used to indicate the number of REs occupied by the beamformed CSI-RS, and/or the sixth indication information uses is used to indicate the RE position occupied by the CSI-RS for beamforming.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the network device can configure the same uplink precoding indication for the different RBs, and
  • the different RBs are configured in the same RB set.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the uplink information is carried on some or all of the RBs in the P RB sets.
  • the network device can schedule some or all of the RBs included in the P RB sets for the terminal device.
  • the uplink resources carried by the uplink information sent by the terminal device can include the P RB sets Some or all of the RBs.
  • the terminal device receives indication information from the network device for indicating the uplink resource scheduled for the terminal device, so that the terminal device can be based on the indication information indicated for the The uplink resource scheduled by the terminal device sends uplink information.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device.
  • the RBs contained in the P RB sets are the RBs corresponding to the uplink resources scheduled for the terminal device, that is, the uplink precoding indication sent by the network device to the terminal device (that is, the information carried by the CSI-RS) It is used to indicate the uplink precoding information corresponding to the uplink resource scheduled for the terminal device.
  • the terminal device sending the uplink information based on the uplink precoding information of the P RB sets includes: the terminal device uses the uplink resources scheduled for the terminal device based on the uplink precoding information of the P RB sets (that is, the P RB sets Send uplink information on all the RBs included).
  • the network device does not need to indicate to the terminal device the uplink precoding information corresponding to the uplink resource that is not scheduled for the terminal device, and the terminal device does not need to read the uplink precoding information corresponding to the uplink resource that is not scheduled for the terminal device. Save signaling overhead and save energy consumption of terminal equipment.
  • the method further includes: the terminal device receiving seventh indication information, where the seventh indication information is used to indicate that each RB set in the P RB sets includes the One or more RBs in the uplink resource scheduled by the device.
  • the seventh indication information is used to indicate the association relationship between the RBs in the P RB sets and the RBs in the uplink resource scheduled for the terminal device.
  • the terminal device can determine the uplink precoding information corresponding to the uplink resources scheduled for the terminal device based on the association relationship and the P sets of uplink precoding information, and further send uplink information on the uplink resources scheduled for the terminal device.
  • the seventh indication information includes a value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device, that is, when the RBs in the P RB sets are all located in the uplink resources scheduled for the terminal device,
  • the number of RBs contained in different RB sets in the P RB sets may be the same.
  • the seventh indication information sent by the network device may include the value of P, so that the terminal device determines the RBs included in each of the P RB sets based on the value of P; or, the network device sends
  • the seventh indication information may include the number of RBs contained in each of the P RB sets, so that the terminal device determines the number of RBs contained in each of the P RB sets based on the number of RBs contained in each of the P RB sets. Included RB. Therefore, the terminal device can send uplink information based on the RBs contained in each of the determined P RB sets and corresponding uplink precoding information.
  • the RBs included in the P RB sets are frequency domain resources corresponding to the uplink BWP of the terminal device.
  • the RBs included in the P RB sets are the frequency domain resources corresponding to the uplink BWP of the terminal device, that is, the uplink precoding indication sent by the network device to the terminal device (that is, the information carried by the CSI-RS) It is used to indicate the uplink precoding information of the frequency domain resource corresponding to the uplink BWP of the terminal device.
  • the terminal device sending the uplink information based on the uplink precoding information of the P RB sets includes: after the terminal device determines the uplink precoding information corresponding to the uplink resources scheduled for the terminal device based on the uplink precoding information of the P RB sets , and then based on the uplink precoding information corresponding to the uplink resources scheduled for the terminal device, the uplink information is sent on the uplink resources scheduled for the terminal device (ie, some RBs included in the P RB sets). Therefore, the network device can indicate to the terminal device different uplink precoding information on different RB sets in the uplink BWP, which can avoid performance loss to a certain extent and improve communication efficiency.
  • the method further includes: the terminal device receiving eighth indication information, where the eighth indication information is used to indicate that each of the P RB sets includes the terminal device's One or more RBs in the frequency domain resource corresponding to the uplink BWP.
  • the eighth indication information is used to indicate the association relationship between the RBs in the P RB sets and the RBs in the frequency domain resource corresponding to the uplink BWP. So that the terminal device can determine, based on the association relationship and the uplink precoding information of the P RB sets, the uplink precoding information corresponding to the uplink resource scheduled for the terminal device in the frequency domain resource corresponding to the uplink BWP, and further for The uplink resource scheduled by the terminal device sends uplink information.
  • the eighth indication information includes a value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are the frequency domain resources corresponding to the uplink BWP, that is, when the RBs in the P RB sets are all located in the frequency domain resources corresponding to the uplink BWP,
  • the number of RBs contained in different RB sets in the P RB sets may be the same.
  • the eighth indication information sent by the network device may include the value of P, so that the terminal device determines the RBs included in each of the P RB sets based on the value of P; or, the network device sends
  • the eighth indication information may include the number of RBs contained in each of the P RB sets, so that the terminal device determines the number of RBs contained in each of the P RB sets based on the number of RBs contained in each of the P RB sets.
  • the RB indexes of the multiple RBs are continuous.
  • the RBs included in the P RB sets are the uplink resources scheduled for the terminal device, that is, when the RBs in the P RB sets are all located in the uplink resources scheduled for the terminal device
  • the uplink resources scheduled by the terminal device may not be consecutive uplink resources in the frequency domain, that is, the RB indexes on the uplink BWP of the RBs corresponding to the uplink resources scheduled for the terminal device may be discontinuous.
  • the RB indices of the multiple RBs may be discontinuous on the uplink BWP.
  • the terminal device may reorder the RBs contained in the uplink resources scheduled by the terminal device to obtain ascending or descending RB indexes, so that when there are RB sets including multiple RBs in the P RB sets,
  • the RB indices of the plurality of RBs are consecutive in the ascending or descending order of the RB indices.
  • the RBs included in the P RB sets are the frequency domain resources corresponding to the uplink BWP, that is, when the RBs in the P RB sets are all located in the frequency domain resources corresponding to the uplink BWP, in The RB indexes of the RBs included in any one of the P RB sets are continuous in the frequency domain resource corresponding to the uplink BWP.
  • the RB indices of the multiple RBs are continuous on the uplink BWP.
  • each RB set in the P RB sets includes the same number of RBs.
  • the resource unit REs occupied by the beamformed CSI-RS include P groups of REs, and the P groups of REs are respectively used to determine the uplink precoding information of P RB sets, wherein, Different groups of P groups of REs occupy the same number of REs.
  • the terminal device can equally divide the REs occupied by the CSI-RS into P groups of REs, and based on the information carried by some or all REs of the P group of REs, The information carried by the RE determines the uplink precoding information corresponding to the uplink resource carrying the uplink information.
  • the resource unit REs occupied by the beamformed CSI-RS include P groups of REs, and the P groups of REs are respectively used to determine the uplink precoding information of P RB sets, wherein, In the P group of REs, at least two groups of REs occupy different numbers of REs.
  • the terminal device can divide the REs occupied by the CSI-RS into P groups of REs by the number of REs in different groups in the P group of REs, and based on the number of REs in the P group of REs, The information carried by some REs or the information carried by all REs determines the uplink precoding information corresponding to the uplink resource carrying the uplink information.
  • the fourth aspect of the present application provides a communication method, the method is executed by a network device, or the method is executed by some components in the network device (such as a processor, a chip or a chip system, etc.), or the method can also be executed by A logic module or software implementation that realizes all or part of network device functions.
  • the communication method is executed by a network device as an example for description.
  • the network device sends sixth indication information, where the sixth indication information is used to indicate the resource element RE occupied by the beamformed CSI-RS; the network device sends the CSI-RS, where the CSI-RS uses For performing channel measurement, the uplink precoding information of P RB sets is obtained; wherein, each RB set in the P RB sets includes one or more RBs; the uplink precoding information corresponding to different RB sets in the P RB sets The information is different; P is greater than or equal to 2; the network device receives the uplink information based on the uplink precoding information of P RB sets.
  • the terminal device receives the sixth indication information, and receives the sixth indication information based on the sixth indication information.
  • CSI-RS enabling the terminal device to perform channel measurement based on the CSI-RS, so as to obtain uplink precoding information of P RB sets.
  • P is greater than or equal to 2 and uplink precoding information corresponding to different RB sets in the P RB sets is different.
  • the network device can indicate two or more types of uplink precoding information to the terminal device, so as to realize high-precision uplink precoding indication.
  • the network device can indicate different uplink precoding information on different RB sets to the terminal device, which can avoid performance loss to a certain extent and improve communication. efficiency.
  • the sixth indication information received by the terminal device is used to indicate the REs occupied by the beamformed CSI-RS, that is, the terminal device can explicitly indicate the uplink precoding information of the P RB sets based on the sixth indication information RE occupied by CSI-RS.
  • the terminal device is made to receive the CSI-RS based on the sixth indication information, so as to prevent the terminal device from obtaining wrong uplink precoding information.
  • the sixth indication information used to indicate the REs occupied by the beamformed CSI-RS includes: the sixth indication information is used to indicate the number of REs occupied by the beamformed CSI-RS, and/or the sixth indication information uses is used to indicate the RE position occupied by the CSI-RS for beamforming.
  • the network device receiving the uplink information based on the uplink precoding information of the P RB sets includes: the network device receiving the uplink information, the uplink information is obtained by precoding the signal to be transmitted based on the uplink precoding information of the P RB sets get the information.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the network device can configure the same uplink precoding indication for the different RBs, and
  • the different RBs are configured in the same RB set.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the uplink information is carried on some or all of the RBs in the P RB sets.
  • the network device can schedule some or all of the RBs included in the P RB sets for the terminal device.
  • the uplink resources carried by the uplink information sent by the terminal device can include the P RB sets Some or all of the RBs.
  • the network device sends to the terminal device indication information for indicating the uplink resources scheduled for the terminal device, so that the terminal device can schedule resources for the terminal device based on the indication information indicated uplink resource to send uplink information.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device.
  • the RBs contained in the P RB sets are the RBs corresponding to the uplink resources scheduled for the terminal device, that is, the uplink precoding indication sent by the network device to the terminal device (that is, the information carried by the CSI-RS) It is used to indicate the uplink precoding information corresponding to the uplink resource scheduled for the terminal device.
  • the terminal device sending the uplink information based on the uplink precoding information of the P RB sets includes: the terminal device uses the uplink resources scheduled for the terminal device based on the uplink precoding information of the P RB sets (that is, the P RB sets Send uplink information on all the RBs included).
  • the network device does not need to indicate to the terminal device the uplink precoding information corresponding to the uplink resource that is not scheduled for the terminal device, and the terminal device does not need to read the uplink precoding information corresponding to the uplink resource that is not scheduled for the terminal device. Save signaling overhead and save energy consumption of terminal equipment.
  • the method further includes: the network device sending seventh indication information, where the seventh indication information is used to indicate that each RB set in the P RB sets includes the One or more RBs in the uplink resource scheduled by the device.
  • the seventh indication information is used to indicate the association relationship between the RBs in the P RB sets and the RBs in the uplink resource scheduled for the terminal device.
  • the terminal device can determine the uplink precoding information corresponding to the uplink resources scheduled for the terminal device based on the association relationship and the P sets of uplink precoding information, and further send uplink information on the uplink resources scheduled for the terminal device.
  • the seventh indication information includes a value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device, that is, when the RBs in the P RB sets are all located in the uplink resources scheduled for the terminal device,
  • the number of RBs contained in different RB sets in the P RB sets may be the same.
  • the seventh indication information sent by the network device may include the value of P, so that the terminal device determines the RBs included in each of the P RB sets based on the value of P; or, the network device sends
  • the seventh indication information may include the number of RBs contained in each of the P RB sets, so that the terminal device determines the number of RBs contained in each of the P RB sets based on the number of RBs contained in each of the P RB sets. Included RB. Therefore, the terminal device can send uplink information based on the RBs contained in each of the determined P RB sets and corresponding uplink precoding information.
  • the RBs included in the P RB sets are frequency domain resources corresponding to the uplink BWP of the terminal device.
  • the RBs included in the P RB sets are the frequency domain resources corresponding to the uplink BWP of the terminal device, that is, the uplink precoding indication sent by the network device to the terminal device (that is, the information carried by the CSI-RS) It is used to indicate the uplink precoding information of the frequency domain resource corresponding to the uplink BWP of the terminal device.
  • the terminal device sending the uplink information based on the uplink precoding information of the P RB sets includes: after the terminal device determines the uplink precoding information corresponding to the uplink resources scheduled for the terminal device based on the uplink precoding information of the P RB sets , and then based on the uplink precoding information corresponding to the uplink resources scheduled for the terminal device, the uplink information is sent on the uplink resources scheduled for the terminal device (ie, some RBs included in the P RB sets). Therefore, the network device can indicate to the terminal device different uplink precoding information on different RB sets in the uplink BWP, which can avoid performance loss to a certain extent and improve communication efficiency.
  • the method further includes: the network device sending eighth indication information, where the eighth indication information is used to indicate that each of the P RB sets includes the terminal device's One or more RBs in the frequency domain resource corresponding to the uplink BWP.
  • the eighth indication information is used to indicate the association relationship between the RBs in the P RB sets and the RBs in the frequency domain resource corresponding to the uplink BWP. So that the terminal device can determine, based on the association relationship and the uplink precoding information of the P RB sets, the uplink precoding information corresponding to the uplink resource scheduled for the terminal device in the frequency domain resource corresponding to the uplink BWP, and further for The uplink resource scheduled by the terminal device sends uplink information.
  • the eighth indication information includes a value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are the frequency domain resources corresponding to the uplink BWP, that is, when the RBs in the P RB sets are all located in the frequency domain resources corresponding to the uplink BWP,
  • the number of RBs contained in different RB sets in the P RB sets may be the same.
  • the eighth indication information sent by the network device may include the value of P, so that the terminal device determines the RBs included in each of the P RB sets based on the value of P; or, the network device sends
  • the eighth indication information may include the number of RBs contained in each of the P RB sets, so that the terminal device determines the number of RBs contained in each of the P RB sets based on the number of RBs contained in each of the P RB sets. Included RB. Therefore, the terminal device may send uplink information based on the RBs contained in each of the determined P RB sets and the uplink precoding information of the uplink resources scheduled for the terminal device.
  • the RB indexes of the multiple RBs are continuous.
  • the RBs included in the P RB sets are the uplink resources scheduled for the terminal device, that is, when the RBs in the P RB sets are all located in the uplink resources scheduled for the terminal device
  • the uplink resources scheduled by the terminal device may not be consecutive uplink resources in the frequency domain, that is, the RB indexes on the uplink BWP of the RBs corresponding to the uplink resources scheduled for the terminal device may be discontinuous.
  • the RB indices of the multiple RBs may be discontinuous on the uplink BWP.
  • the terminal device may reorder the RBs contained in the uplink resources scheduled by the terminal device to obtain ascending or descending RB indexes, so that when there are RB sets including multiple RBs in the P RB sets,
  • the RB indices of the plurality of RBs are consecutive in the ascending or descending order of the RB indices.
  • the RBs included in the P RB sets are the frequency domain resources corresponding to the uplink BWP, that is, when the RBs in the P RB sets are all located in the frequency domain resources corresponding to the uplink BWP, in The RB indexes of the RBs included in any one of the P RB sets are continuous in the frequency domain resource corresponding to the uplink BWP.
  • the RB indices of the multiple RBs are continuous on the uplink BWP.
  • each RB set in the P RB sets includes the same number of RBs.
  • the resource unit REs occupied by the beamformed CSI-RS include P groups of REs, and the P groups of REs are respectively used to determine the uplink precoding information of P RB sets, wherein, Different groups of P groups of REs occupy the same number of REs.
  • the terminal device can equally divide the REs occupied by the CSI-RS into P groups of REs, and based on the information carried by some or all REs of the P group of REs, The information carried by the RE determines the uplink precoding information corresponding to the uplink resource carrying the uplink information.
  • the resource unit REs occupied by the beamformed CSI-RS include P groups of REs, and the P groups of REs are respectively used to determine the uplink precoding information of P RB sets, wherein, In the P group of REs, at least two groups of REs occupy different numbers of REs.
  • the terminal device can divide the REs occupied by the CSI-RS into P groups of REs by the number of REs in different groups in the P group of REs, and based on the number of REs in the P group of REs, The information carried by some REs or the information carried by all REs determines the uplink precoding information corresponding to the uplink resource carrying the uplink information.
  • a fifth aspect of the present application provides a communications device, which can implement the method in the first aspect or any possible implementation manner of the first aspect.
  • the apparatus includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be realized by means of software and/or hardware.
  • the device may be a terminal device, or the device may be a component in the terminal device (such as a processor, a chip or a chip system, etc.), or the device may also be a logic module or logic module capable of realizing all or part of the functions of the terminal device. software.
  • the device includes a transceiver unit and a processing unit;
  • the transceiving unit is configured to receive first indication information, the first indication information is used to indicate the number of bits occupied by the second indication information, and the second indication information is used to indicate uplink precoding information of P RB sets; wherein, Each resource block RB set in the P RB sets includes one or more RBs; the uplink precoding information corresponding to different RB sets in the P RB sets is different; P is greater than or equal to 2;
  • the transceiver unit is also used to receive DCI;
  • the processing unit is configured to determine the second indication information in the DCI based on the number of bits
  • the transceiver unit is further configured to send uplink information based on the uplink precoding information of the P RB sets.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the uplink information is carried on some or all of the RBs in the P RB sets.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device.
  • the transceiving unit is further configured to receive third indication information, where the third indication information is used to indicate that each of the P RB sets includes one or more RBs in the uplink resources scheduled for the terminal device.
  • the third indication information includes the value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are frequency domain resources corresponding to the uplink BWP of the terminal device.
  • the transceiver unit is further configured to receive fourth indication information, where the fourth indication information is used to indicate that each of the P RB sets includes one or more of the frequency domain resources corresponding to the uplink BWP of the terminal device RB.
  • the fourth indication information includes the value of P or the number of RBs included in each RB set.
  • the uplink precoding information of the P RB sets is determined based on a first codebook, where the first codebook is any of the following:
  • the codebook corresponding to the DFT oversampling matrix generated based on the value of P.
  • the uplink precoding information of the P RB sets is determined based on the first codebook
  • the transceiver unit is further configured to receive fifth indication information, where the fifth indication information is used to indicate that the first codebook is any of the following:
  • the codebook corresponding to the DFT oversampling matrix generated based on the value of P.
  • the RB indexes of the multiple RBs are continuous.
  • each RB set in the P RB sets includes the same number of RBs.
  • the second indication information includes P pieces of information, and the P pieces of information are respectively used to indicate the uplink precoding information of the P RB sets, where different pieces of information in the P pieces of information occupy the same number of bits in the DCI;
  • the second indication information includes P pieces of information, and the P pieces of information are respectively used to indicate the uplink precoding information of the P sets of RBs, wherein at least two of the P pieces of information occupy different numbers of bits in the DCI.
  • the components of the communication device can also be used to execute the steps performed in each possible implementation of the first aspect, and achieve corresponding technical effects.
  • the first aspect here No longer.
  • a sixth aspect of the present application provides a communications device, which can implement the method in the second aspect or any possible implementation manner of the second aspect.
  • the apparatus includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be realized by means of software and/or hardware.
  • the device may be a network device, or the device may be a component in the network device (such as a processor, a chip or a chip system, etc.), or the device may also be a logic module or logic module capable of realizing all or part of the functions of the network device. software.
  • the device includes a transceiver unit and a processing unit;
  • the processing unit is configured to determine first indication information, where the first indication information is used to indicate the number of bits occupied by the second indication information, where the second indication information is used to indicate uplink precoding information of P RB sets; wherein, Each resource block RB set in the P RB sets includes one or more RBs; the uplink precoding information corresponding to different RB sets in the P RB sets is different; P is greater than or equal to 2;
  • the transceiving unit is configured to send the first indication information
  • the transceiving unit is further configured to send the DCI, where the DCI includes the second indication information
  • the transceiving unit is further configured to receive uplink information based on the uplink precoding information of the P RB sets.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device.
  • the processing unit is further configured to determine third indication information, where the third indication information is used to indicate that each of the P RB sets includes one or more RBs in the uplink resources scheduled for the terminal device;
  • the transceiving unit is further configured to send third indication information.
  • the third indication information includes the value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are frequency domain resources corresponding to the uplink BWP of the terminal device.
  • the processing unit is further configured to determine fourth indication information, where the fourth indication information is used to indicate that each of the P RB sets includes one or more of the frequency domain resources corresponding to the uplink BWP of the terminal device RB;
  • the transceiving unit is further configured to send fourth indication information.
  • the fourth indication information includes the value of P or the number of RBs included in each RB set.
  • the uplink precoding information of the P RB sets is determined based on the first codebook
  • the processing unit is further configured to determine fifth indication information, where the fifth indication is used to indicate that the first codebook is any of the following:
  • the transceiving unit is further configured to send the fifth indication information.
  • the RB indexes of the multiple RBs are continuous.
  • each RB set in the P RB sets includes the same number of RBs.
  • the second indication information includes P pieces of information, and the P pieces of information are respectively used to indicate the uplink precoding information of the P RB sets, where different pieces of information in the P pieces of information occupy the same number of bits in the DCI;
  • the second indication information includes P pieces of information, and the P pieces of information are respectively used to indicate the uplink precoding information of the P sets of RBs, wherein at least two of the P pieces of information occupy different numbers of bits in the DCI.
  • the components of the communication device can also be used to execute the steps performed in each possible implementation of the second aspect, and achieve corresponding technical effects.
  • the second aspect here No longer.
  • a seventh aspect of the present application provides a communications device, which can implement the method in the above third aspect or any possible implementation manner of the third aspect.
  • the apparatus includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be realized by means of software and/or hardware.
  • the device may be a terminal device, or the device may be a component in the terminal device (such as a processor, a chip or a chip system, etc.), or the device may also be a logic module or logic module capable of realizing all or part of the functions of the terminal device. software.
  • the device includes a processing unit and a transceiver unit;
  • the transceiving unit is configured to receive sixth indication information, where the sixth indication information is used to indicate the resource element RE occupied by the beamformed CSI-RS;
  • the transceiving unit is further configured to receive the CSI-RS based on the sixth indication information
  • the processing unit is configured to perform channel measurement based on the CSI-RS, and obtain uplink precoding information of P RB sets; wherein, each RB set in the P RB sets includes one or more RBs; among the P RB sets The uplink precoding information corresponding to different RB sets of different; P is greater than or equal to 2;
  • the transceiver unit is further configured to send uplink information based on the uplink precoding information of the P RB sets.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the uplink information is carried on some or all of the RBs in the P RB sets.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device.
  • the transceiver unit is further configured to receive seventh indication information, where the seventh indication information is used to indicate that each of the P RB sets includes the One or more RBs in the scheduled uplink resource.
  • the seventh indication information includes the value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are frequency domain resources corresponding to the uplink BWP of the terminal device.
  • the transceiving unit is further configured to receive eighth indication information, where the eighth indication information is used to indicate that each of the P RB sets includes the uplink of the terminal device One or more RBs in the frequency domain resource corresponding to the BWP.
  • the eighth indication information includes the value of P or the number of RBs included in each RB set.
  • the RB indexes of the multiple RBs are continuous.
  • each RB set in the P RB sets includes the same number of RBs.
  • the resource unit REs occupied by the beamformed CSI-RS include P groups of REs, and the P groups of REs are respectively used to determine the uplink precoding information of P RB sets, wherein the number of REs occupied by different groups in the P groups of REs is the same ;
  • the resource unit REs occupied by the beamformed CSI-RS include P groups of REs, and the P groups of REs are respectively used to determine the uplink precoding information of P RB sets, wherein the number of REs occupied by at least two groups of REs in the P group of REs different.
  • the components of the communication device can also be used to execute the steps performed in each possible implementation of the third aspect, and achieve corresponding technical effects.
  • the third aspect here No longer.
  • the eighth aspect of the present application provides a communications device, which can implement the method in the fourth aspect or any possible implementation manner of the fourth aspect.
  • the apparatus includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be realized by software and/or hardware.
  • the device may be a network device, or the device may be a component in the network device (such as a processor, a chip or a chip system, etc.), or the device may also be a logic module or logic module capable of realizing all or part of the functions of the network device. software.
  • the device includes a processing unit and a transceiver unit;
  • the processing unit is configured to determine sixth indication information, where the sixth indication information is used to indicate the resource element RE occupied by the beamformed CSI-RS;
  • the transceiving unit is configured to send the sixth indication information
  • the processing unit is also used to determine the CSI-RS; where the CSI-RS is used for channel measurement to obtain uplink precoding information of P RB sets; where each RB set in the P RB sets includes a or multiple RBs; the uplink precoding information corresponding to different RB sets in the P RB sets is different; P is greater than or equal to 2;
  • the transceiver unit is also used to send the CSI-RS;
  • the transceiving unit is further configured to receive uplink information based on the uplink precoding information of the P RB sets.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the uplink information is carried on some or all of the RBs in the P RB sets.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device.
  • the transceiving unit is further configured to send seventh indication information, where the seventh indication information is used to indicate that each of the P RB sets includes the One or more RBs in the scheduled uplink resources.
  • the seventh indication information includes the value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are frequency domain resources corresponding to the uplink BWP of the terminal device.
  • the transceiving unit is further configured to send eighth indication information, where the eighth indication information is used to indicate that each of the P RB sets includes the uplink of the terminal device One or more RBs in the frequency domain resource corresponding to the BWP.
  • the eighth indication information includes the value of P or the number of RBs included in each RB set.
  • the RB indexes of the multiple RBs are continuous.
  • each RB set in the P RB sets includes the same number of RBs.
  • the resource unit REs occupied by the beamformed CSI-RS include P groups of REs, and the P groups of REs are respectively used to determine the uplink precoding information of P RB sets, wherein the number of REs occupied by different groups in the P groups of REs is the same ;
  • the resource unit REs occupied by the beamformed CSI-RS include P groups of REs, and the P groups of REs are respectively used to determine the uplink precoding information of P RB sets, wherein the number of REs occupied by at least two groups of REs in the P group of REs different.
  • the components of the communication device can also be used to execute the steps performed in each possible implementation of the fourth aspect, and achieve corresponding technical effects.
  • the fourth aspect here No longer.
  • a ninth aspect of the embodiment of the present application provides a communication device, including at least one processor, and the at least one processor is coupled to a memory;
  • the memory is used to store programs or instructions
  • the at least one processor is used to execute the program or instructions, so that the device implements the method described in the first aspect or any possible implementation manner of the first aspect, or enables the device to implement the second aspect or the first aspect
  • the tenth aspect of the embodiment of the present application provides a communication device, including at least one logic circuit and an input and output interface;
  • the input and output interface is used to input the first indication information and DCI;
  • the input and output interface is used to output uplink information
  • the logic circuit is configured to execute the method described in the foregoing first aspect or any possible implementation manner of the first aspect.
  • the eleventh aspect of the embodiment of the present application provides a communication device, including at least one logic circuit and an input and output interface;
  • the input and output interface is used to output first indication information and DCI;
  • the input and output interface is used to input uplink information
  • the logic circuit is configured to execute the method described in the foregoing second aspect or any possible implementation manner of the second aspect.
  • the twelfth aspect of the embodiment of the present application provides a communication device, including at least one logic circuit and an input and output interface;
  • the input and output interface is used to input sixth indication information and CSI-RS;
  • the input and output interface is used to output uplink information
  • the logic circuit is configured to execute the method described in the foregoing third aspect or any possible implementation manner of the third aspect.
  • the thirteenth aspect of the embodiment of the present application provides a communication device, including at least one logic circuit and an input and output interface;
  • the input and output interface is used to output sixth indication information and CSI-RS;
  • the input and output interface is used to input uplink information
  • the logic circuit is configured to execute the method described in the foregoing fourth aspect or any possible implementation manner of the fourth aspect.
  • the fourteenth aspect of the embodiments of the present application provides a computer-readable storage medium, the computer-readable storage medium is used to store one or more computer-executable instructions, and when the computer-executable instructions are executed by a processor, the processor executes the above-mentioned The method described in the first aspect or any possible implementation manner of the first aspect, or, the processor executes the method described in the above second aspect or any possible implementation manner of the second aspect, or, the processing The processor executes the method described in the third aspect or any possible implementation manner of the third aspect, or the processor executes the method described in the fourth aspect or any possible implementation manner of the fourth aspect.
  • the fifteenth aspect of the embodiments of the present application provides a computer program product (or called a computer program).
  • the processor executes the above-mentioned first aspect or any possible implementation manner of the first aspect. or, the processor executes the method of the above second aspect or any possible implementation of the second aspect, or, the processor executes the above third aspect or the method of any possible implementation of the third aspect, or , the processor executes the fourth aspect or the method in any possible implementation manner of the fourth aspect.
  • the sixteenth aspect of the embodiment of the present application provides a chip system, the chip system includes at least one processor, configured to support the communication device to implement the functions involved in the first aspect or any possible implementation of the first aspect , or, used to support the communication device to realize the functions involved in the above-mentioned second aspect or any possible implementation of the second aspect, or, used to support the communication device to realize the above-mentioned third aspect or any one of the possibilities of the third aspect.
  • system-on-a-chip may further include a memory, and the memory is used for storing necessary program instructions and data of the communication device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
  • the seventeenth aspect of the embodiment of the present application provides a communication system, the communication system includes the communication device of the fifth aspect and the communication device of the sixth aspect, and/or, the communication system includes the communication device of the seventh aspect and The communication device of the eighth aspect, and/or, the communication system includes the communication device of the ninth aspect above, and/or, the communication system includes the communication device of the tenth aspect and the communication device of the eleventh aspect, and/or , the communication system includes the communication device of the twelfth aspect and the communication device of the thirteenth aspect.
  • the technical effects brought about by any one of the design methods in the fifth aspect to the seventeenth aspect can refer to the technical effects brought about by the different implementation methods in the above-mentioned first aspect to the fourth aspect, and will not be repeated here.
  • the network device may indicate two or more types of uplink precoding information to the terminal device based on the second indication information in the DCI. Compared with the implementation of the network device based on the same uplink precoding information, the network device can indicate different uplink precoding information on different RB sets to the terminal device, which can avoid performance loss to a certain extent and improve communication. efficiency.
  • the first indication information received by the terminal device is used to indicate the number of bits occupied by the second indication information, that is, the terminal device can explicitly indicate the number of bits of the uplink precoding information of the P RB sets based on the first indication information. 2 indicates the number of bits occupied by the information.
  • the terminal device After receiving the DCI, the terminal device can determine the second indication information in the DCI based on the number of bits indicated by the first indication information, so that the terminal device can obtain the indication of the uplink precoding information in the DCI without blind detection , to reduce the energy consumption of terminal equipment.
  • the network device may indicate two or more types of uplink precoding information to the terminal device based on the CSI-RS. Compared with the implementation of the network device based on the same uplink precoding information, the network device can indicate different uplink precoding information on different RB sets to the terminal device, which can avoid performance loss to a certain extent and improve communication. efficiency.
  • the sixth indication information received by the terminal device is used to indicate the REs occupied by the beamformed CSI-RS, that is, the terminal device can explicitly indicate the uplink precoding information of the P RB sets based on the sixth indication information RE occupied by CSI-RS. The terminal device is made to receive the CSI-RS based on the sixth indication information, so as to prevent the terminal device from obtaining wrong uplink precoding information.
  • Fig. 1 is a schematic diagram of the communication system involved in the present application
  • Fig. 2a is another schematic diagram of the communication system involved in the present application.
  • Fig. 2b is another schematic diagram of the communication system involved in the present application.
  • FIG. 3a is a schematic diagram of uplink resource scheduling involved in the present application.
  • FIG. 3b is a schematic diagram of uplink resource scheduling involved in this application.
  • FIG. 3c is a schematic diagram of uplink resource scheduling involved in this application.
  • Fig. 4 is a schematic diagram of the communication method provided by the present application.
  • FIG. 5 is another schematic diagram of the communication method provided by the present application.
  • Fig. 6a is a schematic diagram of the information bearing method provided by the present application.
  • FIG. 6b is a schematic diagram of the information bearing method provided by the present application.
  • FIG. 7 is a schematic diagram of a communication device provided by the present application.
  • FIG. 8 is another schematic diagram of the communication device provided by the present application.
  • FIG. 9 is another schematic diagram of the communication device provided by the present application.
  • FIG. 10 is another schematic diagram of the communication device provided by the present application.
  • Terminal device it can be a wireless terminal device capable of receiving network device scheduling and instruction information, and the wireless terminal device can be a device that provides voice and/or data connectivity to users, or a handheld device with wireless connection function, or Other processing devices connected to the wireless modem.
  • a terminal device can communicate with one or more core networks or the Internet via a radio access network (RAN), and the terminal device can be a mobile terminal device, such as a mobile phone (or "cellular" phone, mobile phone (mobile phone) phone)), computers and data cards, such as portable, pocket, hand-held, built-in computer or vehicle-mounted mobile devices, which exchange voice and/or data with the radio access network.
  • a mobile terminal device such as a mobile phone (or "cellular" phone, mobile phone (mobile phone) phone)
  • computers and data cards such as portable, pocket, hand-held, built-in computer or vehicle-mounted mobile devices, which exchange voice and/or data with the radio access network.
  • PCS personal communication service
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • Pad tablet Computer
  • the wireless terminal equipment may also be called a system, a subscriber unit (subscriber unit), a subscriber station (subscriber station), a mobile station (mobile station), a mobile station (mobile station, MS), a remote station (remote station), an access point ( access point (AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), subscriber station (subscriber station, SS), user terminal equipment (customer premises equipment, CPE), terminal (terminal), user equipment (user equipment, UE), mobile terminal (mobile terminal, MT), etc.
  • the terminal device may also be a wearable device and a next-generation communication system, for example, a terminal device in a 5G communication system or a terminal device in a future evolved public land mobile network (PLMN).
  • PLMN public land mobile network
  • Network device it can be a device in a wireless network, for example, a network device can be a radio access network (radio access network, RAN) node (or device) that connects a terminal device to a wireless network, and can also be called a base station .
  • RAN radio access network
  • some examples of RAN equipment are: generation Node B (generation Node B, gNodeB), transmission reception point (transmission reception point, TRP), evolved Node B (evolved Node B, eNB) and wireless network in the 5G communication system.
  • the network device may include a centralized unit (centralized unit, CU) node, or a distributed unit (distributed unit, DU) node, or a RAN device including a CU node and a DU node.
  • the network device can send configuration information (for example, carried in a scheduling message and/or an indication message) to the terminal device, and the terminal device further performs network configuration according to the configuration information, so that the network configuration between the network device and the terminal device is aligned; or , through the network configuration preset in the network device and the network configuration preset in the terminal device, the network configurations between the network device and the terminal device are aligned.
  • “alignment” refers to when there is an interaction message between the network device and the terminal device, the carrier frequency of the interaction message sent and received by the two, the determination of the type of the interaction message, the meaning of the field information carried in the interaction message, or The understanding of other configurations of interactive messages is the same.
  • the network equipment may be other devices that provide wireless communication functions for the terminal equipment.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device. For the convenience of description, the embodiment of the present application does not limit it.
  • the network device may also include a core network device, and the core network device includes, for example, an access and mobility management function (access and mobility management function, AMF), a user plane function (user plane function, UPF) or a session management function (session management function, SMF) wait.
  • AMF access and mobility management function
  • UPF user plane function
  • SMF session management function
  • the device for realizing the function of the network device may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described by taking the network device as an example for realizing the function of the network device.
  • Configuration and pre-configuration In this application, both configuration and pre-configuration will be used.
  • Configuration means that network devices such as base stations or servers send some parameter configuration information or parameter values to terminals through messages or signaling, so that terminals can determine communication parameters or transmission resources based on these values or information.
  • Pre-configuration is similar to configuration. It can be a way for network devices such as base stations or servers to send parameter information or values to terminals through communication links or carriers; Specify the value of the parameter), or write the relevant parameter or value into the terminal device in advance, which is not limited in this application. Furthermore, these values and parameters can be changed or updated.
  • the sending device can process the signal to be sent with the help of a precoding matrix that matches the channel before sending it, so that the precoded sending signal matches the channel. Therefore, compared with the process of receiving a non-precoded transmit signal and eliminating the inter-channel influence, the processing process of the receiving device receiving the precoded transmit signal and eliminating the inter-channel influence is less complicated. Therefore, through the precoding processing of the signal to be transmitted, the quality of the received signal (such as signal to interference plus noise ratio (signal to interference plus noise ratio, SINR), etc.) can be improved.
  • SINR signal to interference plus noise ratio
  • precoding technology it is also possible to realize transmission on the same time-frequency resource between the sending device and multiple receiving devices, that is, to realize multiple user multiple input multiple output (MU-MIMO).
  • the sending device may be a terminal device, and the receiving device may be a network device; or, the sending device may be a network device, and the receiving device may be a terminal device; or, the sending device may be a network device, and the receiving device may The device may be a network device; or, the sending device may be a terminal device, and the receiving device may be a terminal device.
  • the sending device may also perform precoding in other ways.
  • the channel information such as but not limited to the channel matrix
  • the pre-set precoding matrix or weighting processing method is used for precoding.
  • the channel information such as but not limited to the channel matrix
  • for indication may include both for direct indication and for indirect indication.
  • certain indication information is used to indicate A, it may be understood that the indication information carries A, indicates A directly, or indicates A indirectly.
  • the information indicated by the indication information is referred to as information to be indicated.
  • the information to be indicated may be directly indicated, such as the information to be indicated itself or an index of the information to be indicated.
  • the information to be indicated may also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be realized by means of a pre-agreed (for example, protocol-specified) arrangement order of each information, thereby reducing the indication overhead to a certain extent.
  • the information to be indicated can be sent together as a whole, or can be divided into multiple sub-information and sent separately, and the sending periods and/or sending timings of these sub-information can be the same or different.
  • the specific sending method is not limited in this application.
  • the sending cycle and/or sending timing of these sub-information may be predefined, for example, pre-defined according to a protocol, or may be configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, for example but not limited to, one or a combination of at least two of radio resource control signaling, media access control (media access control, MAC) layer signaling, and physical layer signaling.
  • the radio resource control signaling includes, for example, radio resource control (RRC) signaling; the MAC layer signaling includes, for example, MAC control elements (control element, CE); the physical layer signaling includes, for example, downlink control information (downlink control) information, DCI).
  • RRC radio resource control
  • CE MAC control elements
  • CE control element
  • DCI downlink control information
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • “At least one” means one or more, and “plurality” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items. For example "at least one of A, B and C” includes A, B, C, AB, AC, BC or ABC. And, unless otherwise specified, ordinal numerals such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects degree.
  • This application can be applied to a long term evolution (long term evolution, LTE) system, a new radio (new radio, NR) system, or other communication systems, wherein the communication system includes network equipment and terminal equipment, and the network equipment is used as a configuration
  • the information sending entity and the terminal device as the configuration information receiving entity.
  • there is an entity in the communication system that sends configuration information to another entity, and sends data to another entity, or receives data sent by another entity; another entity receives configuration information, and sends configuration information to the configuration information according to the configuration information.
  • the entity sends data, or receives data sent by the configuration information sending entity.
  • the present application can be applied to a terminal device in a connected state or an active state (ACTIVE), and can also be applied to a terminal device in an unconnected state (INACTIVE) or an idle state (IDLE).
  • FIG. 1 is a schematic diagram of a communication system in this application.
  • the six terminal devices are terminal device 1, terminal device 2, terminal device 3, terminal device 4, terminal device 5, and terminal device 6, etc.
  • terminal device 1 is a smart teacup
  • terminal device 2 is a smart air conditioner
  • terminal device 3 is a smart fuel dispenser
  • terminal device 4 is a vehicle
  • terminal device 5 is a mobile phone
  • terminal device 6 is a Example for a printer.
  • the transmitting end may be a network device or a terminal device
  • the receiving end may be a network device or a terminal device.
  • the configuration information sending entity can be a network device, wherein, the network device takes a base station (Base Station) and each terminal device as an example for illustration, and the configuration information receiving entity can be UE1-UE6.
  • the base station It forms a communication system with UE1-UE6.
  • UE1-UE6 can send uplink data to network equipment, and the network equipment needs to receive the uplink data sent by UE1-UE6.
  • the network device can send configuration information to UE1-UE6.
  • UE4-UE6 can also form a communication system.
  • the configuration information sending entity and the receiving entity can both be UEs, wherein UE5 is a network device, that is, the configuration information sending entity; UE4 and UE6 As a terminal device, it is the configuration information receiving entity.
  • UE5 sends configuration information to UE4 and UE6 respectively, and receives uplink data sent by UE4 and UE6; correspondingly, UE4 and UE6 receive configuration information sent by UE5, and send uplink data to UE5.
  • FIG. 2a is another schematic diagram of the communication system in this application.
  • the network equipment includes TRP1, TRP2, and the terminal equipment includes UE1-UE5 as an example for illustration, where TRP1, TRP2 and UE1-UE5 can form a communication system to form a communication system.
  • UE1 ⁇ UE5 can send uplink data, and the uplink data sent by UE1 ⁇ UE5 can be received by one of the TRPs (as shown in Figure 2a, the uplink data sent by UE1 and UE2 is received by TRP1, and the uplink data sent by UE5 in Figure 2a is received by TRP1.
  • the sent uplink data is received by TRP2), or it can be jointly received by two TRPs (as shown in Figure 2a, the uplink data sent by UE3 is received by TRP1 and TRP2, and the uplink data sent by UE4 in Figure 2a is received by TRP1 and TRP2 received).
  • network devices such as TRP1 and TRP2 in FIG. 2a
  • terminal devices such as UE1 to UE5 in FIG. 2a ).
  • the number of uplink transmission streams and uplink precoding of terminal devices are calculated by network equipment (such as TRP1 and TRP2 in Figure 2a), and indicated to Terminal Equipment.
  • Network element structure involved in this application is shown in Figure 2b, and both network equipment and terminal equipment have the following modules:
  • Radio resource control (radio resource control, RRC) signaling interaction module a module that network devices and terminal devices can send and receive RRC signaling based on this module.
  • Media access control (media access control, MAC) signaling interaction module a module that network devices and terminal devices can send and receive MAC-CE signaling based on this module.
  • Physical (PHY) signaling and data interaction module network devices and terminal devices can send and receive uplink/downlink control signaling based on this module, for example, the signaling can include physical downlink control channel (PDCCH) signaling carried by a physical uplink control channel (physical uplink control channel, PUCCH) and so on.
  • PDCH physical downlink control channel
  • PUCCH physical uplink control channel
  • network devices and terminal devices can send and receive uplink/downlink data modules based on this module, for example, the data can include data carried by a physical downlink shared channel (physical downlink shared channel, PDSCH), physical uplink data channel (physical uplink shared channel, PUSCH) carried data, etc.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the above-mentioned communication system shown in Figure 1 or Figure 2a can be applied to an uplink multiple user multiple input multiple output (MU MIMO) system.
  • MU MIMO uplink multiple user multiple input multiple output
  • uplink precoding plays an important role in system capacity and spectral efficiency. to a vital role.
  • the network device determines the uplink precoding information of the terminal device, it needs to indicate the uplink precoding information to the corresponding terminal device.
  • the uplink bandwidth used by the terminal device includes a plurality of continuous frequency domain resources corresponding to the uplink BWP, wherein the frequency domain resource can be a resource block (resource block, RB) or a resource block group (resource block group, RBG) .
  • the network device indicates the same uplink precoding information for the multiple continuous frequency domain resources. That is, the uplink precoding information indication sent by the network device is used to indicate a certain type of uplink precoding information, so that the terminal device sends uplink information on the multiple continuous frequency domain resources based on the uplink precoding information.
  • the uplink precoding information indication sent by the network device may be called a transmitted precoding matrix indicator (transmitted precoding matrix indicator, TPMI).
  • TPMI transmitted precoding matrix indicator
  • the frequency domain resource corresponding to the uplink BWP used by the terminal device may be realized through the example shown in Fig. 3a.
  • the frequency domain resource corresponding to the uplink BWP includes 10 consecutive RBs in the frequency domain, that is, RB1 - RB10 in Fig. 3a.
  • the TPMI sent by the network device to the terminal device indicates a certain uplink precoding information used by the terminal device on the 10 RBs. Thereafter, the end device sends uplink information on the 10 RBs based on the uplink precoding information.
  • the transmission channels corresponding to different frequency domain resources are different.
  • the use of the same uplink precoding information by a terminal device on multiple consecutive frequency domain resources may easily lead to performance loss. affect communication efficiency.
  • the network device may need to divide multiple continuous frequency domain resources corresponding to the BWP into frequency domain resources of multiple parts (wherein the multiple parts There may be overlapping frequency domain resources in different parts of the frequency domain resources, or there may be no overlapping frequency domain resources in different parts of the frequency domain resources of the multiple parts, which is not limited here), and the multiple parts Frequency domain resources are scheduled for use by different terminal devices.
  • the channels on each RB are different, from the perspective of optimal performance, the uplink precoding used on each RB should be designed according to its channel, so the optimal precoding on different RBs has May be different.
  • the network device may send a TPMI for each RB in the frequency domain resources scheduled by the terminal device to indicate that each RB of the terminal device on the scheduled frequency domain resources Uplink precoding information corresponding to RBs.
  • the size of the frequency-domain resources scheduled for the terminal device is not fixed, and accordingly, the number of TPMIs sent by the network device to the terminal device may change. This will cause the terminal device to perform blind detection on the information sent by the network device before it can determine the corresponding uplink precoding information.
  • the implementation examples shown in Fig. 3b and Fig. 3c will be described below.
  • the frequency domain resources scheduled by the network device for the terminal device are as shown in FIG. 3b.
  • the frequency domain resources corresponding to the uplink BWP include 10 consecutive RBs in the frequency domain, that is, RB1 - RB10 in FIG. 3b .
  • the RB corresponding to the solid line box shown in Figure 3b is the frequency domain resource scheduled for the terminal device, that is, RB1, RB2, RB3, RB4, RB6, RB8, RB9 in Figure 3b , RB10, a total of eight RBs;
  • the RB corresponding to the dotted box shown in Figure 3b is a frequency domain resource that is not scheduled for the terminal device (or called an unavailable frequency domain resource of the terminal device), that is, in Figure 3b RB5 and RB7, a total of two RBs.
  • the frequency domain resources scheduled by the network device for the terminal device are shown in Fig. 3c.
  • the frequency domain resource corresponding to the uplink BWP still includes 10 consecutive RBs in the frequency domain as an example, that is, RB1-RB10 in FIG. 3c.
  • the RB corresponding to the solid line box shown in Figure 3c is the frequency domain resource scheduled for the terminal device, that is, RB2, RB3, RB8, and RB9 in Figure 3c, a total of four RBs;
  • the RBs corresponding to the dotted box shown in Figure 3c are frequency domain resources that are not scheduled for the terminal device (or called unavailable frequency domain resources of the terminal device), that is, RB1, RB4, RB5, RB6, RB7, RB10, a total of six RBs.
  • the frequency domain resource corresponding to the uplink BWP includes 10 consecutive RBs in the frequency domain for illustration.
  • the frequency domain resource corresponding to the uplink BWP includes a plurality of frequency domain resources continuous in the frequency domain, and the granularity of the "frequency domain resource" can be RE, RB, RBG or other frequency domain granularity.
  • the granularity of the "frequency domain resource” is RB as an example for illustration.
  • the value of "multiple” can be any natural number greater than or equal to 2. In this example, only the value of "multiple” is 10 for illustration. .
  • the uplink precoding indication that the network device needs to send to the terminal device includes "eight TPMI", that is, 48 bits; in the scenario shown in Figure 3c, the network device needs to send the terminal device
  • the uplink precoding indication includes "four TPMIs", that is, 24 bits. It can be seen from this that if the above-mentioned method of using the same precoding indication in multiple continuous frequency domain resources is applied to the scenario shown in Figure 3b or Figure 3c, it will lead to dynamic overhead of the uplink precoding indication (ie TPMI) Changes, thereby greatly increasing the blind detection pressure of terminal equipment.
  • the implementation of the uplink precoding indication provided by the current network equipment only the indication based on the same kind of uplink precoding information can be realized; in addition, if the implementation is directly extended to the use of terminal equipment, it is not fixed
  • the application scenario of scheduling bandwidth will cause the terminal device to perform blind detection based on the received information, resulting in high energy consumption of the terminal device.
  • the present application provides a communication method and a communication device, which are used to solve the above-mentioned problems.
  • the communication method and communication device provided by the present application will be described below with reference to more drawings and embodiments.
  • FIG. 4 is a schematic diagram of a communication method provided by this application, and the method includes the following steps.
  • the network device sends first indication information.
  • the network device sends the first indication information in step S401, and correspondingly, the terminal device receives the first indication information in step S401.
  • the first indication information is used to indicate the number of bits occupied by the second indication information
  • the second indication information is used to indicate the uplink precoding information of the P RB sets.
  • the first indication information sent by the network device in step S401 may be carried in an RRC message, a MAC CE message or a physical downlink control channel (physical downlink control channel, PDCCH) message, or in other messages, where No limit.
  • the network device sends DCI.
  • the network device sends the DCI in step S402, and correspondingly, the terminal device receives the DCI in step S402.
  • the DCI includes the second indication information.
  • the present application does not limit the execution order of step S401 and step S402.
  • the network device may perform step S401 first and then step S402. It is generally believed that in this case, the terminal device may first receive the first indication information and then receive the DCI.
  • the network device may perform step S402 first and then step S401. It is generally believed that in this case, the terminal device may first receive the DCI and then receive the first indication information.
  • the terminal device determines second indication information in the DCI.
  • the terminal device determines the second indication information in the DCI based on the first indication information received in step S401.
  • the position of the second indication information in the DCI may be called a TPMI field (field). That is, according to the first indication information, the number of bits occupied by the TPMI field in the DCI can be determined, thereby determining the TPMI field.
  • the second indication information determined by the terminal device in the DCI is used to indicate the uplink precoding information of the P RB sets.
  • Each resource block RB set in the P RB sets includes one or more RBs; the uplink precoding information corresponding to different RB sets in the P RB sets is different, and P is greater than or equal to 2.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the second indication information included in the DCI is used to indicate uplink precoding information of P sets of RBs, and there may be multiple implementation manners for the RBs included in the P sets. The following will be further described in conjunction with some implementation examples.
  • the RBs included in the P RB sets are the uplink resources scheduled for the terminal device.
  • the RBs included in the P RB sets indicated by the second indication information are the RBs corresponding to the uplink resources scheduled for the terminal device, that is, the uplink precoding indication sent by the network device to the terminal device (that is, the second indication information) is used to indicate the uplink precoding information corresponding to the uplink resource scheduled for the terminal device.
  • the terminal device sending the uplink information based on the uplink precoding information of the P RB sets includes: the terminal device uses the uplink resources scheduled for the terminal device based on the uplink precoding information of the P RB sets (that is, the P RB sets Send uplink information on all the RBs included).
  • the network device does not need to indicate to the terminal device the uplink precoding information corresponding to the uplink resource that is not scheduled for the terminal device, and the terminal device does not need to read the uplink precoding information corresponding to the uplink resource that is not scheduled for the terminal device. Save signaling overhead and save energy consumption of terminal equipment.
  • the RBs included in the P RB sets may be uplink resources scheduled for the terminal device.
  • Implementation mode 1 is exemplarily described here in conjunction with the scenario example shown in FIG. 3b or FIG. 3c.
  • the RBs included in the P RB sets may be the RBs scheduled for use by the terminal device among the 10 RBs corresponding to the uplink BWP, that is, the RBs included in the P RB sets are "RB1, RB2, RB3, RB4, RB6, RB8, RB9, RB10, a total of eight RBs", or, the RBs included in the P RB sets are "RB2, RB3, RB8, RB9, a total of four RBs" shown in FIG. 3c.
  • the method further includes: the terminal device receiving third indication information from the network device, where the third indication information is used to indicate that each RB set in the P RB sets includes the One or more RBs in the uplink resource scheduled by the terminal device.
  • the third indication information sent by the network device may be carried in an RRC message, a MAC CE message or a PDCCH message, or in other messages, which is not limited here.
  • the terminal device may receive the third indication information in any process before step S404, for example, the terminal device may receive the third indication information after (or before) step S403, and the terminal device may receive the third indication information in The third indication information is received after (or before) step S402, and the terminal device may receive the third indication information after (or before) step S401, which is not limited here.
  • the first The three indication information are used to indicate the association relationship between the RBs in the P RB sets and the RBs in the uplink resource scheduled for the terminal device.
  • the terminal device can determine the uplink precoding information corresponding to the uplink resource scheduled for the terminal device based on the association relationship and the second indication information, and further send uplink information on the uplink resource scheduled for the terminal device.
  • the third indication information includes the value of P or the number of RBs contained in each RB set in the P RB sets.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device, that is, when the RBs in the P RB sets are all located in the uplink resources scheduled for the terminal device, the P The number of RBs contained in different RB sets in one RB set may be the same.
  • the third indication information sent by the network device may include the value of P, so that the terminal device determines the RBs included in each of the P RB sets based on the value of P; or, the network device sends
  • the third indication information may include the number of RBs included in each of the P RB sets, so that the terminal device determines each of the P RB sets based on the number of RBs included in each of the P RB sets RBs included. Therefore, the terminal device can send uplink information based on the RBs contained in each of the determined P RB sets and corresponding uplink precoding information.
  • the numbers of RBs included in different RB sets in the P RB sets may also be different, that is, the numbers of RBs included in at least two RB sets in the P RB sets are different.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device, that is, the RBs included in the P RB sets are "RB1, RB2, RB3, RB4, RB6, RB8, RB9, RB10, a total of eight RBs".
  • the terminal device determines the RBs included in different RB sets in the P RB sets based on the acquired third indication information.
  • the terminal device determines based on the third indication information: the RBs contained in the first RB set in the P RB sets are one or more RBs in the "eight RBs" shown in FIG. 3b, and the P RBs The RBs contained in the second RB set in the set are one or more RBs in the "eight RBs" shown in Figure 3b...
  • the terminal device can determine P RB sets based on the third indication information RBs contained in different RBs in .
  • the third indication information may indicate to the terminal device the different RB numbers in the P RB sets by way of RB index. RBs included in the RB set.
  • the RB indexes contained in different RB sets in the P RB sets may follow the RB indexes used by the uplink BWP.
  • the indication manner of the third indication information sent by the network device may be as follows:
  • the RBs included in the first RB set are "RB1, RB2";
  • the RBs included in the second RB set are "RB3, RB4";
  • the RBs contained in the third RB set are "RB6, RB8";
  • the RBs included in the fourth RB set are "RB9, RB10".
  • the RBs included in the P RB sets are the uplink resources scheduled for the terminal device, that is, when the RBs in the P RB sets are all located in the uplink resources scheduled for the terminal device
  • the uplink resources scheduled by the terminal device may not be consecutive uplink resources in the frequency domain, that is, the RB indexes on the uplink BWP of the RBs corresponding to the uplink resources scheduled for the terminal device may be discontinuous.
  • the RB indices of the multiple RBs may be discontinuous on the uplink BWP.
  • the terminal device may reorder the RBs contained in the uplink resources scheduled by the terminal device to obtain ascending or descending RB indexes, so that when there are RB sets including multiple RBs in the P RB sets,
  • the RB indices of the plurality of RBs are consecutive in the ascending or descending order of the RB indices.
  • the number of RBs included in each of the P RB sets is 2.
  • the indication manner of the third indication information sent by the network device may be as follows:
  • the RBs included in the first RB set are "RB1, RB2";
  • the RBs included in the second RB set are "RB3, RB4";
  • the RBs included in the third RB set are "RB5, RB6";
  • the RBs included in the fourth RB set are "RB7, RB8".
  • the eight RBs included in the P RB sets are sorted in descending order, then the frequency domain resources "RB1, RB2, RB3" scheduled for the terminal device in the uplink BWP shown in Figure 3b , RB4, RB6, RB8, RB9, RB10, a total of eight RBs" are reordered, and "RB8, RB7, RB6, RB5, RB4, RB3, RB2, RB1, a total of eight RBs" can be obtained.
  • the indication manner of the third indication information sent by the network device may be as follows:
  • the RBs included in the first RB set are "RB8, RB7";
  • the RBs included in the second RB set are "RB6, RB5";
  • the RBs included in the third RB set are "RB4, RB3";
  • the RBs included in the fourth RB set are "RB2, RB1".
  • the third indication information may indicate to the terminal device the RBs contained in different RB sets in the P RB sets by means of RB indexes.
  • each segment of adjacent continuous RBs is used as a different RB in the P RB sets as an example for illustration.
  • the RB indexes contained in different RB sets in the P RB sets may follow the RB indexes used by the uplink BWP.
  • the indication manner of the third indication information sent by the network device may be as follows:
  • the RBs contained in the first RB set are "RB1, RB2, RB3, RB4";
  • the RB included in the second RB set is "RB6";
  • the RBs included in the third RB set are "RB8, RB9, RB10".
  • the RBs included in the P RB sets are the uplink resources scheduled for the terminal device, that is, when the RBs in the P RB sets are all located in the uplink resources scheduled for the terminal device
  • the uplink resources scheduled by the terminal device may not be consecutive uplink resources in the frequency domain, that is, the RB indexes on the uplink BWP of the RBs corresponding to the uplink resources scheduled for the terminal device may be discontinuous.
  • the RB indices of the multiple RBs may be discontinuous on the uplink BWP.
  • the terminal device may reorder the RBs contained in the uplink resources scheduled by the terminal device to obtain ascending or descending RB indexes, so that when there are RB sets including multiple RBs in the P RB sets,
  • the RB indices of the plurality of RBs are consecutive in the ascending or descending order of the RB indices.
  • the number of RBs included in each of the P RB sets is 2.
  • the indication manner of the third indication information sent by the network device may be as follows:
  • the RBs contained in the first RB set are "RB1, RB2, RB3, RB4";
  • the RB included in the second RB set is "RB5";
  • the RBs included in the third RB set are "RB6, RB7, RB8".
  • the eight RBs included in the P RB sets are sorted in descending order, then the frequency domain resources "RB1, RB2, RB3" scheduled for the terminal device in the uplink BWP shown in Figure 3b , RB4, RB6, RB8, RB9, RB10, a total of eight RBs" are reordered, and "RB8, RB7, RB6, RB5, RB4, RB3, RB2, RB1, a total of eight RBs" can be obtained.
  • the indication manner of the third indication information sent by the network device may be as follows:
  • the RBs contained in the first RB set are "RB8, RB7, RB6, RB5";
  • the RB contained in the second RB set is "RB4";
  • the RBs included in the third RB set are "RB3, RB2, RB1".
  • the network device may determine the uplink resources scheduled for the terminal device (such as "RB1, RB2, RB3, RB4, RB6, RB8, RB9, RB10, a total of eight RBs" or "RB2, RB3, RB8, RB9, a total of four RBs" in Figure 3c), RBs with the same or similar channels are used as the same RB set to determine the P RB sets The RBs included in each RB set in , and indicate to the terminal device through the third indication information.
  • the uplink resources scheduled for the terminal device such as "RB1, RB2, RB3, RB4, RB6, RB8, RB9, RB10, a total of eight RBs" or "RB2, RB3, RB8, RB9, a total of four RBs” in Figure 3c
  • RBs with the same or similar channels are used as the same RB set to determine the P RB sets
  • the RBs included in each RB set in and indicate to the terminal device through the third indication information
  • the RBs included in the P RB sets are the frequency domain resources corresponding to the uplink bandwidth part (bandwidth part, BWP) of the terminal device.
  • BWP bandwidth part
  • the RBs included in the P RB sets indicated by the second indication information are the frequency domain resources corresponding to the uplink BWP of the terminal device, that is, the uplink precoding indication sent by the network device to the terminal device (that is, the second indication information) is used to indicate the uplink precoding information of the frequency domain resource corresponding to the uplink BWP of the terminal device.
  • the terminal device sending the uplink information based on the uplink precoding information of the P RB sets includes: after the terminal device determines the uplink precoding information corresponding to the uplink resources scheduled for the terminal device based on the uplink precoding information of the P RB sets , and then based on the uplink precoding information corresponding to the uplink resources scheduled for the terminal device, the uplink information is sent on the uplink resources scheduled for the terminal device (ie, some RBs included in the P RB sets). Therefore, the network device can indicate to the terminal device different uplink precoding information on different RB sets in the uplink BWP, which can avoid performance loss to a certain extent and improve communication efficiency.
  • the RBs included in the P RB sets may be uplink resources scheduled for the terminal device.
  • an exemplary description of the second implementation is given in conjunction with the scenario example shown in FIG. 3b.
  • the RBs included in the P RB sets may be the RBs scheduled for use by the terminal equipment among the 10 RBs corresponding to the uplink BWP, that is, the RBs included in the P RB sets are "RB1-RB10" as shown in FIG.
  • the terminal device may clarify the uplink precoding information of the "eight RBs" based on the second indication information, so as to determine the uplink precoding information corresponding to the uplink information sent in step S504.
  • the terminal device can determine the uplink precoding information corresponding to the "eight RBs" based on the second indication information, without further determining the "two RBs" based on the second indication information
  • the corresponding uplink precoding information can save energy consumption of the terminal equipment.
  • the method further includes: the terminal device receiving fourth indication information, where the fourth indication information is used to indicate that each RB set in the P RB sets includes the uplink BWP of the terminal device.
  • the fourth indication information is used to indicate that each RB set in the P RB sets includes the uplink BWP of the terminal device.
  • One or more RBs in the corresponding frequency domain resources are used to indicate that each RB set in the P RB sets.
  • the fourth indication information sent by the network device may be carried in an RRC message, a MAC CE message or a PDCCH message, or in other messages, which is not limited here.
  • the terminal device may receive the fourth indication information in any process before step S404, for example, the terminal device may receive the fourth indication information after (or before) step S403, and the terminal device may receive the fourth indication information in The fourth indication information is received after (or before) step S402, and the terminal device may receive the fourth indication information after (or before) step S401, which is not limited here.
  • the first The three indication information are used to indicate the association relationship between the RBs in the P RB sets and the RBs in the frequency domain resource corresponding to the uplink BWP. So that the terminal device can determine, based on the association relationship and the second indication information, the uplink precoding information corresponding to the uplink resource scheduled for the terminal device in the frequency domain resources corresponding to the uplink BWP, and further in the scheduled uplink precoding information for the terminal device
  • the uplink resource sends uplink information.
  • the fourth indication information includes the value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are the frequency domain resources corresponding to the uplink BWP, that is, in the case that the RBs in the P RB sets are all located in the frequency domain resources corresponding to the uplink BWP, the P The number of RBs contained in different RB sets in one RB set may be the same.
  • the fourth indication information sent by the network device may include the value of P, so that the terminal device determines the RBs included in each of the P RB sets based on the value of P; or, the network device sends
  • the fourth indication information may include the number of RBs contained in each of the P RB sets, so that the terminal device determines the number of RBs contained in each of the P RB sets based on the number of RBs contained in each of the P RB sets. Included RB. Therefore, the terminal device may send uplink information based on the RBs contained in each of the determined P RB sets and the uplink precoding information of the uplink resources scheduled for the terminal device.
  • the number of RBs included in different RB sets in the P RB sets may not necessarily be the same, that is, the numbers of RBs included in at least two RB sets in the P RB sets are different.
  • the implementation scenario shown in FIG. 3a is taken as an example for further description here.
  • the RBs included in the P RB sets are frequency domain resources corresponding to the uplink BWP, that is, the RBs included in the P RB sets are "RB1-RB10, ten RBs in total" as shown in FIG. 3a.
  • the terminal device determines RBs included in different RB sets in the P RB sets based on the acquired fourth indication information.
  • the terminal device determines based on the fourth indication information: the RBs contained in the first RB set in the P RB sets are one or more RBs in the "ten RBs" shown in FIG. 3a, and the P RBs The RBs contained in the second RB set in the set are one or more RBs in the "ten RBs" shown in Figure 3a...
  • the terminal device can determine P RB sets based on the fourth indication information RBs contained in different RBs in .
  • the fourth indication information may indicate to the terminal device the different RB numbers in the P RB sets by means of RB indexes.
  • RBs included in the RB set when the RBs in the P RB sets are all located in the frequency domain resource corresponding to the uplink BWP, when there is an RB set including multiple RBs in the P RB sets, the RB index of the multiple RBs is the The frequency domain resources corresponding to the uplink BWP are continuous.
  • the terminal device determines the sorting of RBs contained in the frequency domain resources corresponding to the uplink BWP, and obtains RB indexes in ascending or descending order.
  • the RBs of the multiple RBs RB indexes are contiguous in the ascending or descending RB index.
  • the indication manner of the third indication information sent by the network device may be as follows:
  • the RBs included in the first RB set are "RB1, RB2";
  • the RBs included in the second RB set are "RB3, RB4";
  • the RBs included in the third RB set are "RB5, RB6";
  • the RBs included in the fourth RB set are "RB7, RB8";
  • the RBs included in the fifth RB set are "RB9, RB10".
  • the indication manner of the third indication information sent by the network device may be as follows:
  • the RBs included in the first RB set are "RB10, RB9";
  • the RBs included in the second RB set are "RB8, RB7";
  • the RBs included in the third RB set are "RB6, RB5";
  • the RBs contained in the fourth RB set are "RB4, RB3";
  • the RBs included in the fifth RB set are "RB2, RB1".
  • the fourth indication information may indicate to the terminal device the RBs contained in different RB sets in the P RB sets by means of RB indexes.
  • each segment of adjacent continuous RBs is used as a different RB in the P RB sets as an example for illustration.
  • the indication manner of the fourth indication information sent by the network device may be as follows:
  • the RBs included in the first RB set are "RB1, RB2, RB3, RB4, RB5";
  • the RBs included in the second RB set are "RB6, RB7";
  • the RBs included in the third RB set are "RB8, RB9, RB10".
  • the network device can use the frequency domain resources corresponding to the uplink BWP (such as RB1 to RB10 in FIG.
  • the same RB set is used to determine the RBs included in each of the P RB sets, and indicate to the terminal device through the fourth indication information.
  • the uplink precoding information of the P RB sets is determined based on a first codebook, where the first codebook is any of the following:
  • the codebook corresponding to the DFT oversampling matrix generated based on the value of P.
  • the terminal device may determine the uplink precoding information of the P RB sets based on the second indication information in the first codebook, where the first codebook may be determined based on the above-mentioned multiple methods, and the boosting scheme is implemented flexibility.
  • the uplink precoding information of the P RB sets is determined based on the first codebook; the method further includes: the terminal device receives fifth indication information, and the fifth indication information is used to indicate the first codebook
  • a codebook is any of the following:
  • the codebook corresponding to the DFT oversampling matrix generated based on the value of P.
  • the fifth indication information sent by the network device may be carried in an RRC message, a MAC CE message or a PDCCH message, or in other messages, which is not limited here.
  • the terminal device may specify that the first codebook used to determine the uplink precoding information of the P RB sets is determined by one of the multiple implementations. Determine and further specify the uplink precoding information in the P RB sets.
  • the terminal device may determine the uplink precoding information of the P RB sets based on the second indication information in the preconfigured codebook.
  • the pre-configured codebook can be any of the following:
  • the terminal device may determine a certain codebook in at least two codebooks based on the value of P and further determining the uplink precoding information of the P RB sets in the determined codebook based on the second indication information.
  • any two codebooks in the at least two codebooks are different.
  • any two codebooks of the at least two codebooks may be completely different, or may not be completely identical between any two codebooks of the at least two codebooks (that is, the at least two codebooks Any two codebooks in the two codebooks may have partially identical uplink precoding information and partially different uplink precoding information).
  • any two codebooks include the first codebook and the second codebook as an example, wherein the first codebook may include item A uplink precoding information, and the second codebook B items of uplink precoding information may also be included, and both A and B are integers greater than or equal to 1.
  • the above implementation methods include:
  • any item in the A item of uplink precoding information is different from any item in the B item of uplink precoding information ;
  • any two codebooks in the at least two codebooks may not be completely the same, there is at least one item of uplink precoding information in the A item of uplink precoding information and a certain item in the B item of uplink precoding information One item is the same.
  • the terminal device is equipped with four transmitting antennas as an example, if the terminal device determines in the second indication information based on the value of P that the number of bits occupied by one of the P RB sets is x, Then the terminal device can determine the first codebook corresponding to the uplink precoding information corresponding to the RBs in the RB set according to the following implementation manner, as follows:
  • the codebookSubset fullyAndPartialAndNonCoherent column in Table 7.3.1.1.2-2 in R16 protocol 3GPP TS 38.212; or,
  • the codebookSubset nonCoherent column in Table 7.3.1.1.2-2 in R16 protocol 3GPP TS 38.212.
  • the first codebook can be obtained through further similar processing based on "in the codebook whose value of x is 9".
  • the terminal device may determine the DFT oversampling matrix after generating the DFT oversampling matrix based on the value of P.
  • the codebook corresponding to the sampling matrix further determines the uplink precoding information of the P RB sets in the codebook corresponding to the DFT oversampling matrix based on the second indication information.
  • the implementation process includes:
  • Each column of the matrix Q corresponds to a codebook of rank 1;
  • the terminal device determines that the number of bits occupied by one of the P RB sets is x based on the value of P in the second indication information, then the terminal device calculates the required number of codebooks based on "x" (ie 2 ⁇ x) to change the oversampling multiple, and then select the column vector and its combination from the matrix Q as the first codebook.
  • the second indication information includes P pieces of information, and the P pieces of information are respectively used to indicate the uplink precoding information of the P RB sets, where different information in the P pieces of information is contained in the DCI occupy the same number of bits.
  • the terminal device may equally divide the number of bits occupied by the second indication information into P pieces of information for interpretation to determine the second indication information. P pieces of information included in the information, and based on part or all of the P pieces of information, determine the uplink precoding information corresponding to the uplink resource bearing the uplink information.
  • the value of P can be realized based on the method determined based on the aforementioned third indication information, or it can be realized in a way that is pre-configured on the terminal device, for example, the aforementioned network device or other network device communicates before step S403
  • the link or carrier sends the "value of P" to the terminal device, or defines the "value of P” (for example, clearly stipulates the value of the parameter in the standard/protocol), or, It is realized by writing the "value of P" into the terminal device in advance, which is not limited here.
  • the terminal device can determine the uplink precoding information of different RB sets in the same codebook based on the second indication information, which is easy to implement.
  • the number of bits occupied by each of the P pieces of information can be determined through a mathematical operation based on the number of bits occupied by the second indication information.
  • the mathematical operation can include: rounding up, rounding down, Average or other methods are not limited here.
  • the second indication information includes P pieces of information, and the P pieces of information are respectively used to indicate the uplink precoding information of the P RB sets, where at least two of the P pieces of information are in the The number of bits occupied in the DCI varies.
  • the terminal device may divide the bits occupied by the second indication information based on the number of bits occupied by different information among the P pieces of information. Divide the data into P pieces of information to determine the P pieces of information contained in the second indication information, and determine the uplink precoding information corresponding to the uplink resource carrying the uplink information based on part or all of the P pieces of information.
  • the terminal device can determine the uplink precoding information of different RB sets in the P RB sets in at least two different codebooks, so that the network device can flexibly select different codebooks for Indicates uplink precoding information of P RB sets.
  • the network device can realize the indication of uplink precoding information without selecting the same codebook. Therefore, when the network device has configured the number of bits occupied by the second indication information through the first indication information, that is, if the number of bits occupied by the second indication information remains unchanged, if the network device selects a certain uplink A codebook with a small number of precoding information indexes can indicate the uplink precoding information of a certain RB set with a small number of bits; correspondingly, if the network device selects a certain uplink precoding information with a large number of indexes The codebook can indicate the uplink precoding information corresponding to more uplink precoding information indexes through a larger number of bits.
  • the terminal device sends uplink information.
  • the terminal device sends uplink information in step S404, and correspondingly, the network device receives the uplink information in step S404.
  • the terminal device may, in step S404, based on the uplink precoding information of the P RB sets
  • the precoding information sends uplink information.
  • the terminal device may send uplink information based on the uplink precoding information of the P RB sets includes: the terminal device performs precoding processing on the signal to be transmitted based on the uplink precoding information of the P RB sets to obtain the uplink information , and send the uplink information in step S404.
  • the network device may receive uplink information based on the uplink precoding information of the P RB sets in step S404. It should be understood that, in step S404, the network device receives the uplink information based on the uplink precoding information of the P RB sets, including: the network device receives the uplink information, and the uplink information is based on the uplink precoding information of the P RB sets to be sent. Information obtained by precoding processing.
  • the uplink information sent by the terminal device in step S404 is carried by some or all of the RBs in the P RB sets.
  • the network device may schedule some or all of the RBs included in the P RB sets for the terminal device.
  • the uplink resources carried by the uplink information sent by the terminal device may include part of the P RB sets RB or all RBs.
  • the terminal device receives indication information from the network device for indicating the uplink resources scheduled for the terminal device, so that the terminal device can For the scheduled uplink resource of the terminal device, send uplink information in step S404.
  • the terminal device receives the DCI received in step S402 based on the number of bits
  • the second indication information is determined in .
  • the first indication information is used to indicate the number of bits occupied by the second indication information
  • the second indication information is used to indicate the uplink precoding information of P RB sets; wherein, P is greater than or equal to 2 and P RB sets Different uplink precoding information corresponding to different RB sets in .
  • the network device may indicate two or more types of uplink precoding information to the terminal device based on the second indication information in the DCI.
  • the network device can indicate different uplink precoding information on different RB sets to the terminal device, which can avoid performance loss to a certain extent and improve communication. efficiency.
  • the first indication information received by the terminal device in step S401 is used to indicate the number of bits occupied by the second indication information, that is, the terminal device can explicitly indicate the uplink reservation of the P RB sets based on the first indication information.
  • the number of bits occupied by the second indication information of the encoding information After receiving the DCI, the terminal device can determine the second indication information in the DCI based on the number of bits indicated by the first indication information, so that the terminal device can obtain the indication of the uplink precoding information in the DCI without blind detection , to reduce the energy consumption of terminal equipment.
  • FIG. 5 is a schematic diagram of a communication method provided in this application, and the method includes the following steps.
  • the network device sends sixth indication information.
  • the network device sends sixth indication information in step S501, and correspondingly, the terminal device receives the sixth indication information in step S501.
  • the sixth indication information is used to indicate the REs occupied by the beamformed CSI-RS.
  • each resource block RB set in the P RB sets includes one or more RBs; the uplink precoding information corresponding to different RB sets in the P RB sets is different, and P is greater than or equal to 2.
  • the sixth indication information sent by the network device may be carried in an RRC message, a MAC CE message or a PDCCH message, or in other messages, which is not limited here.
  • the network device sends the beamformed CSI-RS.
  • the network device sends the CSI-RS in step S502, and correspondingly, in step S502, the terminal device receives the CSI-RS based on the sixth indication information in step S501.
  • the sixth indication information used to indicate the REs occupied by the beamformed CSI-RS includes: the sixth indication information is used to indicate the number of REs occupied by the beamformed CSI-RS, and/or the sixth indication information uses is used to indicate the RE position occupied by the CSI-RS for beamforming.
  • the CSI-RS sent by the network device in step S502 may be used to bear an indication of uplink precoding information of one or more terminal devices.
  • the sixth indication information sent by the network device in step S501 is used to indicate to bear the CSI -RE for RS.
  • the CSI-RS sent by the network device in step S502 is used to carry indications of uplink precoding information of multiple terminal devices
  • the sixth indication information sent by the network device in step S501 is used to indicate the RE bearing the CSI-RS, and different terminal devices can obtain the same uplink precoding indication based on the CSI-RS.
  • the sixth indication information sent by the network device in step S501 may be sent to Different terminal devices indicate the REs carrying the CSI-RS, and different terminal devices obtain respective uplink precoding indications.
  • the frequency domain resources occupied by the CSI-RS are divided into multiple frequency domain resources, and the multiple frequency domain resources correspond to multiple terminals respectively, and the network device may send different first Six indication information, so that the terminal equipment obtains respective uplink precoding indications based on the sixth indication information in step S502.
  • the implementation will be described below with reference to the examples shown in Fig. 6a and Fig. 6b.
  • the sixth indication information sent by the network device to the terminal device in step S501 indicates 32 REs, where the 32 REs correspond to the time domain index "3-10" and the frequency domain index in the figure.
  • the index is "0-3".
  • the sixth indication information sent by the network device to the terminal device in step S501 indicates 64 REs, where the 64 REs correspond to the time domain index "3-10" and frequency The field index is "0-7".
  • the number of REs indicated by the sixth indication information is multiple, and the multiple REs are continuous in the frequency domain and continuous in the time domain as an example for description.
  • the sixth indication information indicates multiple REs, it may also indicate multiple discontinuous REs, or partially continuous and partially discontinuous REs, which is not limited here.
  • the terminal device performs channel measurement based on the beamformed CSI-RS, and obtains uplink precoding information of P RB sets.
  • step S503 the terminal device performs channel measurement based on the beamformed CSI-RS to obtain uplink precoding information of P RB sets.
  • Each RB set in the P RB sets includes one or more RBs; the uplink precoding information corresponding to different RB sets in the P RB sets is different, and P is greater than or equal to 2.
  • the network device before the network device sends the CSI-RS in step S502, the network device first needs to determine the uplink precoding information of the terminal device on the P RB sets.
  • the CSI-RS sent by the network device in step S502 may be used to carry an indication of uplink precoding information of one or more terminal devices, where the number of one or more terminal devices is k, k is greater than or equal to 1.
  • the uplink precoding vector of its m-th RB set is denoted as Among them, m ⁇ 1,...,P ⁇ , "UL" means uplink.
  • the first indication information indicates the uplink precoding vector of the m-th RB set for the terminal device k
  • the configured RE is RE n
  • the downlink channel information of terminal device k on RE n is denoted as
  • the network device calculates and sends the CSI-RS on RE n to the terminal device k to indicate the uplink precoding vector of the mth RB set
  • the required downlink precoding vector is denoted as satisfy:
  • the network device will calculate the Multiply by CSI-RS to get the beamformed CSI-RS, and then through the downlink channel Send to the terminal device in step S503;
  • step S503 the signal received by terminal device k in step S503 is denoted as y k,m , and y k,m satisfies:
  • N k,m is the receiving noise
  • the terminal device k can be determined based on the received CSI-RS information and the signal y k,m according to formula (2)
  • the uplink precoding information of the mth RB set can be determined further based on the formula (1).
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the terminal device performs channel measurement based on the CSI in step S503 to obtain uplink precoding information of P sets of RBs, and there may be multiple implementations of the RBs included in the P sets. The following will be further described in conjunction with some implementation examples.
  • the RBs included in the P RB sets are the uplink resources scheduled for the terminal device.
  • the RBs included in the P RB sets are the RBs corresponding to the uplink resources scheduled for the terminal device, that is, the uplink precoding indication sent by the network device to the terminal device (that is, the CSI-RS The information carried) is used to indicate the uplink precoding information corresponding to the uplink resource scheduled for the terminal device.
  • the terminal device sending the uplink information based on the uplink precoding information of the P RB sets includes: the terminal device uses the uplink resources scheduled for the terminal device based on the uplink precoding information of the P RB sets (that is, the P RB sets Send uplink information on all the RBs included.
  • the network device does not need to indicate to the terminal device the uplink precoding information corresponding to the uplink resource that is not scheduled for the terminal device, and the terminal device does not need to read the uplink precoding information corresponding to the uplink resource that is not scheduled for the terminal device. Save signaling overhead and save energy consumption of terminal equipment.
  • the RBs included in the P RB sets may be uplink resources scheduled for the terminal device.
  • Implementation mode 1 is exemplarily described here in conjunction with the scenario example shown in FIG. 3b or FIG. 3c.
  • the RBs included in the P RB sets may be the RBs scheduled for use by the terminal device among the 10 RBs corresponding to the uplink BWP, that is, the RBs included in the P RB sets are "RB1, RB2, RB3, RB4, RB6, RB8, RB9, RB10, a total of eight RBs", or, the RBs included in the P RB sets are "RB2, RB3, RB8, RB9, a total of four RBs" shown in FIG. 3c.
  • the method further includes: the terminal device receiving seventh indication information, where the seventh indication information is used to indicate that each of the P RB sets includes the RB scheduled for the terminal device.
  • the seventh indication information is used to indicate that each of the P RB sets includes the RB scheduled for the terminal device.
  • the seventh indication information sent by the network device may be carried in an RRC message, a MAC CE message or a PDCCH message, or in other messages, which is not limited here.
  • the terminal device may receive the seventh indication information in any process before step S504, for example, the terminal device may receive the seventh indication information after (or before) step S503, and the terminal device may receive the seventh indication information in The seventh indication information is received after (or before) step S502, and the terminal device may receive the seventh indication information after (or before) step S501, which is not limited here.
  • the first The seven indication information is used to indicate the association relationship between the RBs in the P RB sets and the RBs in the uplink resource scheduled for the terminal device.
  • the terminal device can determine the uplink precoding information corresponding to the uplink resources scheduled for the terminal device based on the association relationship and the P sets of uplink precoding information, and further send uplink information on the uplink resources scheduled for the terminal device.
  • the seventh indication information includes the value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device, that is, when the RBs in the P RB sets are all located in the uplink resources scheduled for the terminal device, the P The number of RBs contained in different RB sets in one RB set may be the same.
  • the seventh indication information sent by the network device may include the value of P, so that the terminal device determines the RBs included in each of the P RB sets based on the value of P; or, the network device sends
  • the seventh indication information may include the number of RBs contained in each of the P RB sets, so that the terminal device determines the number of RBs contained in each of the P RB sets based on the number of RBs contained in each of the P RB sets. RBs included. Therefore, the terminal device can send uplink information based on the RBs contained in each of the determined P RB sets and corresponding uplink precoding information.
  • the number of RBs included in different RB sets in the P RB sets may not necessarily be the same, that is, the numbers of RBs included in at least two RB sets in the P RB sets are different.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device, that is, the RBs included in the P RB sets are "RB1, RB2, RB3, RB4, RB6, RB8, RB9, RB10, a total of eight RBs".
  • the terminal device determines RBs included in different RB sets in the P RB sets based on the acquired seventh indication information.
  • the terminal device determines based on the seventh indication information: the RBs contained in the first RB set in the P RB sets are one or more RBs in the "eight RBs" shown in Figure 3b, and the P RBs The RBs contained in the second RB set in the set are one or more RBs in the "eight RBs" shown in Figure 3b...
  • the terminal device can determine P RB sets based on the seventh indication information RBs contained in different RBs in .
  • the seventh indication information may indicate to the terminal device the different RB numbers in the P RB sets by means of RB indexes. RBs included in the RB set.
  • the RB indexes contained in different RB sets in the P RB sets may follow the RB indexes used by the uplink BWP.
  • the indication method of the seventh indication information sent by the network device may be as follows:
  • the RBs included in the first RB set are "RB1, RB2";
  • the RBs included in the second RB set are "RB3, RB4";
  • the RBs contained in the third RB set are "RB6, RB8";
  • the RBs included in the fourth RB set are "RB9, RB10".
  • the RBs included in the P RB sets are the uplink resources scheduled for the terminal device, that is, when the RBs in the P RB sets are all located in the uplink resources scheduled for the terminal device
  • the uplink resources scheduled by the terminal device may not be consecutive uplink resources in the frequency domain, that is, the RB indexes on the uplink BWP of the RBs corresponding to the uplink resources scheduled for the terminal device may be discontinuous.
  • the RB indices of the multiple RBs may be discontinuous on the uplink BWP.
  • the terminal device may reorder the RBs contained in the uplink resources scheduled by the terminal device to obtain ascending or descending RB indexes, so that when there are RB sets including multiple RBs in the P RB sets,
  • the RB indices of the plurality of RBs are consecutive in the ascending or descending order of the RB indices.
  • the number of RBs included in each of the P RB sets is 2.
  • the indication manner of the seventh indication information sent by the network device may be as follows:
  • the RBs included in the first RB set are "RB1, RB2";
  • the RBs included in the second RB set are "RB3, RB4";
  • the RBs included in the third RB set are "RB5, RB6";
  • the RBs included in the fourth RB set are "RB7, RB8".
  • the eight RBs included in the P RB sets are sorted in descending order, then the frequency domain resources "RB1, RB2, RB3" scheduled for the terminal device in the uplink BWP shown in Figure 3b , RB4, RB6, RB8, RB9, RB10, a total of eight RBs" are reordered, and "RB8, RB7, RB6, RB5, RB4, RB3, RB2, RB1, a total of eight RBs" can be obtained.
  • the indication manner of the seventh indication information sent by the network device may be as follows:
  • the RBs included in the first RB set are "RB8, RB7";
  • the RBs included in the second RB set are "RB6, RB5";
  • the RBs included in the third RB set are "RB4, RB3";
  • the RBs included in the fourth RB set are "RB2, RB1".
  • the seventh indication information may indicate to the terminal device the RBs contained in different RB sets in the P RB sets by means of RB indexes.
  • each segment of adjacent continuous RBs is used as a different RB in the P RB sets as an example for illustration.
  • the RB indexes contained in different RB sets in the P RB sets may follow the RB indexes used by the uplink BWP.
  • the indication manner of the seventh indication information sent by the network device may be as follows:
  • the RBs contained in the first RB set are "RB1, RB2, RB3, RB4";
  • the RB included in the second RB set is "RB6";
  • the RBs included in the third RB set are "RB8, RB9, RB10".
  • the RBs included in the P RB sets are the uplink resources scheduled for the terminal device, that is, when the RBs in the P RB sets are all located in the uplink resources scheduled for the terminal device
  • the uplink resources scheduled by the terminal device may not be consecutive uplink resources in the frequency domain, that is, the RB indexes on the uplink BWP of the RBs corresponding to the uplink resources scheduled for the terminal device may be discontinuous.
  • the RB indices of the multiple RBs may be discontinuous on the uplink BWP.
  • the terminal device may reorder the RBs contained in the uplink resources scheduled by the terminal device to obtain ascending or descending RB indexes, so that when there are RB sets including multiple RBs in the P RB sets,
  • the RB indices of the plurality of RBs are consecutive in the ascending or descending order of the RB indices.
  • the number of RBs included in each of the P RB sets is 2.
  • the indication manner of the seventh indication information sent by the network device may be as follows:
  • the RBs contained in the first RB set are "RB1, RB2, RB3, RB4";
  • the RB included in the second RB set is "RB5";
  • the RBs included in the third RB set are "RB6, RB7, RB8".
  • the eight RBs included in the P RB sets are sorted in descending order, then the frequency domain resources "RB1, RB2, RB3" scheduled for the terminal device in the uplink BWP shown in Figure 3b , RB4, RB6, RB8, RB9, RB10, a total of eight RBs" are reordered, and "RB8, RB7, RB6, RB5, RB4, RB3, RB2, RB1, a total of eight RBs" can be obtained.
  • the indication manner of the seventh indication information sent by the network device may be as follows:
  • the RBs contained in the first RB set are "RB8, RB7, RB6, RB5";
  • the RB contained in the second RB set is "RB4";
  • the RBs included in the third RB set are "RB3, RB2, RB1".
  • the network device may determine the uplink resources scheduled for the terminal device (such as "RB1, RB2, RB3, RB4, RB6, RB8, RB9, RB10, a total of eight RBs" or "RB2, RB3, RB8, RB9, a total of four RBs" in Figure 3c), RBs with the same or similar channels are used as the same RB set to determine the P RB sets
  • the RBs included in each RB set in the RB are indicated to the terminal device through the seventh indication information.
  • the RBs included in the P RB sets are the frequency domain resources corresponding to the uplink bandwidth part (bandwidth part, BWP) of the terminal device.
  • BWP bandwidth part
  • the RBs included in the P RB sets are the frequency domain resources corresponding to the uplink BWP of the terminal device, that is, the uplink precoding indication sent by the network device to the terminal device (that is, the CSI-RS The information carried) is used to indicate the uplink precoding information of the frequency domain resource corresponding to the uplink BWP of the terminal device.
  • the terminal device sending the uplink information based on the uplink precoding information of the P RB sets includes: after the terminal device determines the uplink precoding information corresponding to the uplink resources scheduled for the terminal device based on the uplink precoding information of the P RB sets , and then based on the uplink precoding information corresponding to the uplink resources scheduled for the terminal device, the uplink information is sent on the uplink resources scheduled for the terminal device (ie, some RBs included in the P RB sets). Therefore, the network device can indicate to the terminal device different uplink precoding information on different RB sets in the uplink BWP, which can avoid performance loss to a certain extent and improve communication efficiency.
  • the RBs included in the P RB sets may be uplink resources scheduled for the terminal device.
  • an exemplary description of the second implementation is given in conjunction with the scenario example shown in FIG. 3a.
  • the RBs contained in the P RB sets may be the RBs scheduled for use by the terminal equipment among the 10 RBs corresponding to the uplink BWP, that is, the RBs contained in the P RB sets are "RB1-RB10" as shown in Fig. 3a , a total of ten RBs".
  • the method may further include: the terminal device receiving eighth indication information, where the eighth indication information is used to indicate that each of the P RB sets includes the uplink One or more RBs in the frequency domain resource corresponding to the BWP.
  • the eighth indication information sent by the network device may be carried in an RRC message, a MAC CE message or a PDCCH message, or in other messages, which is not limited here.
  • the terminal device may receive the eighth indication information in any process before step S504, for example, the terminal device may receive the eighth indication information after (or before) step S503, and the terminal device may receive the eighth indication information in The eighth indication information is received after (or before) step S502, and the terminal device may receive the eighth indication information after (or before) step S501, which is not limited here.
  • the first The eight indication information is used to indicate the association relationship between the RBs in the P RB sets and the RBs in the frequency domain resource corresponding to the uplink BWP. So that the terminal device can determine, based on the association relationship and the uplink precoding information of the P RB sets, the uplink precoding information corresponding to the uplink resource scheduled for the terminal device in the frequency domain resource corresponding to the uplink BWP, and further for The uplink resource scheduled by the terminal device sends uplink information.
  • the eighth indication information includes the value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are the frequency domain resources corresponding to the uplink BWP, that is, in the case that the RBs in the P RB sets are all located in the frequency domain resources corresponding to the uplink BWP, the P The number of RBs contained in different RB sets in one RB set may be the same.
  • the eighth indication information sent by the network device may include the value of P, so that the terminal device determines the RBs included in each of the P RB sets based on the value of P; or, the network device sends
  • the eighth indication information may include the number of RBs contained in each of the P RB sets, so that the terminal device determines the number of RBs contained in each of the P RB sets based on the number of RBs contained in each of the P RB sets. RBs included. Therefore, the terminal device can send uplink information based on the RBs contained in each of the determined P RB sets and the uplink precoding information of the uplink resources scheduled for the terminal device.
  • the number of RBs included in different RB sets in the P RB sets may not necessarily be the same, that is, the numbers of RBs included in at least two RB sets in the P RB sets are different.
  • the implementation scenario shown in FIG. 3a is taken as an example for further description here.
  • the RBs included in the P RB sets are frequency domain resources corresponding to the uplink BWP, that is, the RBs included in the P RB sets are "RB1-RB10, ten RBs in total" as shown in FIG. 3a.
  • the terminal device determines RBs included in different RB sets in the P RB sets based on the acquired fourth indication information.
  • the terminal device determines based on the fourth indication information: the RBs contained in the first RB set in the P RB sets are one or more RBs in the "ten RBs" shown in FIG. 3a, and the P RBs The RBs contained in the second RB set in the set are one or more RBs in the "ten RBs" shown in Figure 3a...
  • the terminal device can determine P RB sets based on the fourth indication information RBs contained in different RBs in .
  • the fourth indication information may indicate to the terminal device the different RB numbers in the P RB sets by means of RB indexes.
  • RBs included in the RB set when the RBs in the P RB sets are all located in the frequency domain resource corresponding to the uplink BWP, when there is an RB set including multiple RBs in the P RB sets, the RB index of the multiple RBs is the The frequency domain resources corresponding to the uplink BWP are continuous.
  • the terminal device determines the sorting of RBs contained in the frequency domain resources corresponding to the uplink BWP, and obtains RB indexes in ascending or descending order.
  • the RBs of the multiple RBs RB indexes are contiguous in the ascending or descending RB index.
  • the indication manner of the third indication information sent by the network device may be as follows:
  • the RBs included in the first RB set are "RB1, RB2";
  • the RBs included in the second RB set are "RB3, RB4";
  • the RBs included in the third RB set are "RB5, RB6";
  • the RBs included in the fourth RB set are "RB7, RB8";
  • the RBs included in the fifth RB set are "RB9, RB10".
  • the indication manner of the third indication information sent by the network device may be as follows:
  • the RBs included in the first RB set are "RB10, RB9";
  • the RBs included in the second RB set are "RB8, RB7";
  • the RBs included in the third RB set are "RB6, RB5";
  • the RBs contained in the fourth RB set are "RB4, RB3";
  • the RBs included in the fifth RB set are "RB2, RB1".
  • the fourth indication information may indicate to the terminal device the RBs contained in different RB sets in the P RB sets by means of RB indexes.
  • each segment of adjacent continuous RBs is used as a different RB in the P RB sets as an example for illustration.
  • the indication manner of the fourth indication information sent by the network device may be as follows:
  • the RBs included in the first RB set are "RB1, RB2, RB3, RB4, RB5";
  • the RBs included in the second RB set are "RB6, RB7";
  • the RBs included in the third RB set are "RB8, RB9, RB10".
  • the network device can use the frequency domain resources corresponding to the uplink BWP (such as RB1 to RB10 in FIG.
  • the same RB set is used to determine the RBs included in each of the P RB sets, and indicate to the terminal device through the fourth indication information.
  • the resource unit REs occupied by the beamformed CSI-RS include P groups of REs, and the P groups of REs are respectively used to determine the uplink precoding information of P sets of RBs, wherein, among the P groups of REs The different groups of different groups occupy the same number of REs.
  • the terminal device may equally divide the REs occupied by the CSI-RS into P groups of REs, and based on the information carried by some REs of the P group of REs or all REs The information carried determines the uplink precoding information corresponding to the uplink resource carrying the uplink information.
  • the resource unit REs occupied by the beamformed CSI-RS include P groups of REs, and the P groups of REs are respectively used to determine the uplink precoding information of P sets of RBs, wherein, among the P groups of REs The number of REs occupied by at least two groups of REs is different.
  • the terminal device can divide the REs occupied by the CSI-RS into P groups of REs by the number of REs in different groups in the P group of REs, and based on the partial REs of the P group of REs The information carried or the information carried by all REs determines the uplink precoding information corresponding to the uplink resource carrying the uplink information.
  • the terminal device sends uplink information.
  • the terminal device sends uplink information in step S504, and correspondingly, the network device receives the uplink information in step S504.
  • the terminal device may send the uplink information based on the uplink precoding information of the P RB sets in step S504.
  • the terminal device sending uplink information based on the uplink precoding information of the P RB sets in step S504 includes: the terminal device performs precoding processing on the signal to be transmitted based on the uplink precoding information of the P RB sets to obtain the uplink information, And send the uplink information in step S504.
  • the network device may receive uplink information based on the uplink precoding information of the P RB sets in step S504. It should be understood that, in step S504, the network device receives the uplink information based on the uplink precoding information of the P RB sets, including: the network device receives the uplink information, and the uplink information is based on the uplink precoding information of the P RB sets to be sent. Information obtained by precoding processing.
  • the uplink information is carried on some or all of the RBs in the P RB sets.
  • the network device can schedule some or all of the RBs included in the P RB sets for the terminal device.
  • the uplink resources carried by the uplink information sent by the terminal device can include the P RB sets Some or all of the RBs.
  • the terminal device receives indication information from the network device for indicating the uplink resources scheduled for the terminal device, so that the terminal device can The uplink resource scheduled for the terminal device is used to send uplink information in step S504.
  • the terminal device receives the sixth indication information used to indicate the RE occupied by the beamformed CSI-RS in step S501, receives the CSI-RS in step S502 based on the sixth indication information; The terminal device then performs channel measurement in step S503 based on the CSI-RS to obtain uplink precoding information of P RB sets.
  • P is greater than or equal to 2 and uplink precoding information corresponding to different RB sets in the P RB sets is different.
  • the network device can indicate two or more types of uplink precoding information to the terminal device, so as to realize high-precision uplink precoding indication.
  • the network device can indicate different uplink precoding information on different RB sets to the terminal device, which can avoid performance loss to a certain extent and improve communication. efficiency.
  • the sixth indication information received by the terminal device is used to indicate the REs occupied by the beamformed CSI-RS, that is, the terminal device can explicitly indicate the uplink precoding information of the P RB sets based on the sixth indication information RE occupied by CSI-RS.
  • the terminal device is made to receive the CSI-RS based on the sixth indication information, so as to prevent the terminal device from obtaining wrong uplink precoding information.
  • an embodiment of the present application provides a communication device.
  • the communication device 700 can realize the functions of the terminal device in the above method embodiment, and thus can also realize the beneficial effects of the above method embodiment.
  • the processing unit 701 and the transceiver unit 702 included in the communication device 700 are used to perform the following implementation process.
  • the transceiving unit 702 is configured to receive first indication information, the first indication information is used to indicate the number of bits occupied by the second indication information, and the second indication information is used to indicate uplink precoding information of P RB sets; wherein , each resource block RB set in the P RB sets includes one or more RBs; the uplink precoding information corresponding to different RB sets in the P RB sets is different; P is greater than or equal to 2;
  • the transceiver unit 702 is also configured to receive DCI;
  • the processing unit 701 is configured to determine the second indication information in the DCI based on the bit number
  • the transceiving unit 702 is further configured to send uplink information based on the uplink precoding information of the P RB sets.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the uplink information is carried on some or all of the RBs in the P RB sets.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device.
  • the transceiving unit 702 is further configured to receive third indication information, where the third indication information is used to indicate that each of the P RB sets includes one or more RBs in the uplink resources scheduled for the terminal device.
  • the third indication information includes the value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are frequency domain resources corresponding to the uplink BWP of the terminal device.
  • the transceiving unit 702 is further configured to receive fourth indication information, where the fourth indication information is used to indicate that each of the P RB sets includes one or more frequency domain resources corresponding to the uplink BWP of the terminal device. RB.
  • the fourth indication information includes the value of P or the number of RBs included in each RB set.
  • the uplink precoding information of the P RB sets is determined based on a first codebook, where the first codebook is any of the following:
  • the codebook corresponding to the DFT oversampling matrix generated based on the value of P.
  • the uplink precoding information of the P RB sets is determined based on the first codebook
  • the transceiving unit 702 is further configured to receive fifth indication information, where the fifth indication information is used to indicate that the first codebook is any of the following:
  • the codebook corresponding to the DFT oversampling matrix generated based on the value of P.
  • the RB indexes of the multiple RBs are continuous.
  • each RB set in the P RB sets includes the same number of RBs.
  • the second indication information includes P pieces of information, and the P pieces of information are respectively used to indicate the uplink precoding information of the P RB sets, where different pieces of information in the P pieces of information occupy the same number of bits in the DCI;
  • the second indication information includes P pieces of information, and the P pieces of information are respectively used to indicate the uplink precoding information of the P sets of RBs, wherein at least two of the P pieces of information occupy different numbers of bits in the DCI.
  • the processing unit 701 and the transceiver unit 702 included in the communication device 700 are used to perform the following implementation process.
  • the transceiving unit 702 is configured to receive sixth indication information, where the sixth indication information is used to indicate the resource element RE occupied by the beamformed CSI-RS;
  • the transceiving unit 702 is further configured to receive the CSI-RS based on the sixth indication information
  • the processing unit 701 is configured to perform channel measurement based on the CSI-RS to obtain uplink precoding information of P RB sets; wherein, each RB set in the P RB sets includes one or more RBs; the P RB sets The uplink precoding information corresponding to different RB sets in is different; P is greater than or equal to 2;
  • the transceiving unit 702 is further configured to send uplink information based on the uplink precoding information of the P RB sets.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the uplink information is carried on some or all of the RBs in the P RB sets.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device.
  • the transceiving unit 702 is further configured to receive seventh indication information, where the seventh indication information is used to indicate that each of the P RB sets includes the uplink scheduled for the terminal device. One or more RBs in the resource.
  • the seventh indication information includes the value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are frequency domain resources corresponding to the uplink BWP of the terminal device.
  • the transceiving unit 702 is further configured to receive eighth indication information, where the eighth indication information is used to indicate that each of the P RB sets includes the uplink BWP corresponding to the terminal device's uplink BWP.
  • the eighth indication information is used to indicate that each of the P RB sets includes the uplink BWP corresponding to the terminal device's uplink BWP.
  • the eighth indication information includes the value of P or the number of RBs included in each RB set.
  • the RB indexes of the multiple RBs are continuous.
  • each RB set in the P RB sets includes the same number of RBs.
  • the resource unit REs occupied by the beamformed CSI-RS include P groups of REs, and the P groups of REs are respectively used to determine the uplink precoding information of P RB sets, wherein the number of REs occupied by different groups in the P groups of REs is the same ;
  • the resource unit REs occupied by the beamformed CSI-RS include P groups of REs, and the P groups of REs are respectively used to determine the uplink precoding information of P RB sets, wherein the number of REs occupied by at least two groups of REs in the P group of REs different.
  • an embodiment of the present application provides a communication device.
  • the communication device 800 can implement the functions of the network device in the above method embodiments, and thus can also realize the beneficial effects of the above method embodiments.
  • the processing unit 801 and the transceiver unit 802 included in the communication device 800 are used to perform the following implementation process.
  • the processing unit 801 is configured to determine first indication information, where the first indication information is used to indicate the number of bits occupied by the second indication information, where the second indication information is used to indicate uplink precoding information of P RB sets; wherein , each resource block RB set in the P RB sets includes one or more RBs; the uplink precoding information corresponding to different RB sets in the P RB sets is different; P is greater than or equal to 2;
  • the transceiving unit 802 is configured to send the first indication information
  • the transceiving unit is further configured to send the DCI, where the DCI includes the second indication information
  • the transceiving unit 802 is further configured to receive uplink information based on the uplink precoding information of the P RB sets.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device.
  • the processing unit 801 is further configured to determine third indication information, where the third indication information is used to indicate that each RB set in the P RB sets includes one or more RBs in the uplink resources scheduled for the terminal device;
  • the transceiving unit 802 is further configured to send third indication information.
  • the third indication information includes the value of P or the number of RBs included in each RB set.
  • the processing unit 801 is further configured to determine fourth indication information, where the fourth indication information is used to indicate that each of the P RB sets includes one or more frequency domain resources corresponding to the uplink BWP of the terminal device. RB;
  • the transceiving unit 802 is further configured to send fourth indication information.
  • the fourth indication information includes the value of P or the number of RBs included in each RB set.
  • the uplink precoding information of the P RB sets is determined based on the first codebook
  • the processing unit 801 is further configured to determine fifth indication information, where the fifth indication is used to indicate that the first codebook is any of the following:
  • the transceiving unit 802 is further configured to send the fifth indication information.
  • the RB indexes of the multiple RBs are continuous.
  • each RB set in the P RB sets includes the same number of RBs.
  • the second indication information includes P pieces of information, and the P pieces of information are respectively used to indicate the uplink precoding information of the P RB sets, where different pieces of information in the P pieces of information occupy the same number of bits in the DCI;
  • the second indication information includes P pieces of information, and the P pieces of information are respectively used to indicate the uplink precoding information of the P sets of RBs, wherein at least two of the P pieces of information occupy different numbers of bits in the DCI.
  • the processing unit 801 and the transceiver unit 802 included in the communication device 800 are used to perform the following implementation process.
  • the processing unit 801 is configured to determine sixth indication information, where the sixth indication information is used to indicate the resource element RE occupied by the beamformed CSI-RS;
  • the transceiving unit 802 is configured to send the sixth indication information
  • the processing unit 801 is further configured to determine the CSI-RS; where the CSI-RS is used for channel measurement to obtain uplink precoding information of P RB sets; where each RB set in the P RB sets includes One or more RBs; the uplink precoding information corresponding to different RB sets in the P RB sets is different; P is greater than or equal to 2;
  • the transceiver unit 802 is also configured to send the CSI-RS;
  • the transceiving unit 802 is further configured to receive uplink information based on the uplink precoding information of the P RB sets.
  • the uplink precoding information of the multiple RBs in the RB set is the same.
  • the uplink information is carried on some or all of the RBs in the P RB sets.
  • the RBs included in the P RB sets are uplink resources scheduled for the terminal device.
  • the transceiving unit 802 is further configured to send seventh indication information, where the seventh indication information is used to indicate that each of the P RB sets includes the uplink scheduled for the terminal device.
  • the seventh indication information is used to indicate that each of the P RB sets includes the uplink scheduled for the terminal device.
  • One or more RBs in the resource are used to indicate that each of the P RB sets includes the uplink scheduled for the terminal device.
  • the seventh indication information includes the value of P or the number of RBs included in each RB set.
  • the RBs included in the P RB sets are frequency domain resources corresponding to the uplink BWP of the terminal device.
  • the transceiving unit 802 is further configured to send eighth indication information, where the eighth indication information is used to indicate that each of the P RB sets includes the uplink BWP corresponding to the terminal device's uplink BWP.
  • the eighth indication information is used to indicate that each of the P RB sets includes the uplink BWP corresponding to the terminal device's uplink BWP.
  • the eighth indication information includes the value of P or the number of RBs included in each RB set.
  • the RB indexes of the multiple RBs are continuous.
  • each RB set in the P RB sets includes the same number of RBs.
  • the resource unit REs occupied by the beamformed CSI-RS include P groups of REs, and the P groups of REs are respectively used to determine the uplink precoding information of P RB sets, wherein the number of REs occupied by different groups in the P groups of REs is the same ;
  • the resource unit REs occupied by the beamformed CSI-RS include P groups of REs, and the P groups of REs are respectively used to determine the uplink precoding information of P RB sets, wherein the number of REs occupied by at least two groups of REs in the P group of REs different.
  • FIG. 9 provides the communication device involved in the above-mentioned embodiment for the embodiment of the present application.
  • the communication device may specifically be the terminal device in the above-mentioned embodiment, wherein, a possible logical structure of the communication device 900 Schematically, the communication device 900 may include but not limited to at least one processor 901 and a communication port 902 . Further optionally, the device may further include at least one of a memory 903 and a bus 904. In the embodiment of the present application, the at least one processor 901 is configured to control and process actions of the communication device 900.
  • the processor 901 may be a central processing unit, a general processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination that realizes computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • the communication device shown in FIG. 9 can be specifically used to implement other steps implemented by the terminal device in the foregoing corresponding method embodiments, and realize the technical effect corresponding to the terminal device.
  • the specific implementation of the communication device shown in FIG. 9 is as follows: Reference can be made to the descriptions in the foregoing method embodiments, and details will not be repeated here.
  • FIG. 10 is a schematic structural diagram of the communication device involved in the above-mentioned embodiment provided by the embodiment of the present application.
  • the communication device may specifically be the network device in the above-mentioned embodiment. 10 shows the structure.
  • the communication device includes at least one processor 1011 and at least one network interface 1014 . Further optionally, the communication device further includes at least one memory 1012 , at least one transceiver 1013 and one or more antennas 1015 .
  • the processor 1011, memory 1012, transceiver 1013 and network interface 1014 are connected, for example, through a bus. In this embodiment of the application, the connection may include various interfaces, transmission lines or buses, which are not limited in this embodiment.
  • the antenna 1015 is connected to the transceiver 1013 .
  • the network interface 1014 is used to enable the communication device to communicate with other communication devices through a communication link.
  • the network interface 1014 may include a network interface between the communication device and a core network device, such as an S1 interface, and the network interface may include a network interface between the communication device and other communication devices (such as other network devices or core network devices), such as X2 Or Xn interface.
  • a core network device such as an S1 interface
  • the network interface may include a network interface between the communication device and other communication devices (such as other network devices or core network devices), such as X2 Or Xn interface.
  • the processor 1011 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs, for example, to support the communication device to execute the actions described in the embodiments.
  • the communication device may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processor is mainly used to control the entire terminal equipment, execute software programs, and process data of the software programs.
  • the processor 1011 in FIG. 10 can integrate the functions of the baseband processor and the central processing unit. Those skilled in the art can understand that the baseband processor and the central processing unit can also be independent processors, interconnected through technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • Memory is primarily used to store software programs and data.
  • the memory 1012 may exist independently and be connected to the processor 1011.
  • the memory 1012 may be integrated with the processor 1011, for example, integrated into one chip.
  • the memory 1012 can store program codes for executing the technical solutions of the embodiments of the present application, and the execution is controlled by the processor 1011 , and various types of computer program codes to be executed can also be regarded as drivers for the processor 1011 .
  • Figure 10 shows only one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • a memory may also be called a storage medium or a storage device.
  • the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in this embodiment of the present application.
  • the transceiver 1013 may be used to support receiving or sending radio frequency signals between the communication device and the terminal, and the transceiver 1013 may be connected to the antenna 1015 .
  • the transceiver 1013 includes a transmitter Tx and a receiver Rx.
  • one or more antennas 1015 can receive radio frequency signals
  • the receiver Rx of the transceiver 1013 is used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital baseband
  • the signal or the digital intermediate frequency signal is provided to the processor 1011, so that the processor 1011 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 1013 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 1011, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass a One or more antennas 1015 transmit the radio frequency signal.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
  • the order of the down-mixing processing and analog-to-digital conversion processing The order is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal.
  • the up-mixing processing and digital-to-analog conversion processing The sequence is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • a transceiver may also be called a transceiver unit, a transceiver, a transceiver device, and the like.
  • the device used to realize the receiving function in the transceiver unit can be regarded as a receiving unit
  • the device used to realize the sending function in the transceiver unit can be regarded as a sending unit, that is, the transceiver unit includes a receiving unit and a sending unit, and the receiving unit also It can be called receiver, input port, receiving circuit, etc., and the sending unit can be called transmitter, transmitter, or transmitting circuit, etc.
  • the communication device shown in FIG. 10 can specifically be used to implement the steps implemented by the network device in the foregoing method embodiments, and realize the corresponding technical effects of the network device.
  • the specific implementation manner of the communication device shown in FIG. 10 can be Reference is made to the descriptions in the foregoing method embodiments, and details are not repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium, which is used to store one or more computer-executable instructions.
  • the processor executes the computer-readable storage medium as described in the foregoing embodiments.
  • the method described in a possible implementation manner of a communication device (when implemented by a terminal device).
  • the embodiment of the present application also provides a computer-readable storage medium, which is used to store one or more computer-executable instructions.
  • the processor executes the computer-readable storage medium as described in the foregoing embodiments.
  • the method described in a possible implementation manner of a communication device (when implemented by a network device).
  • An embodiment of the present application also provides a computer program product (or called a computer program).
  • the processor executes the method in the possible implementation manner of the above-mentioned communication device (when implemented by a terminal device).
  • An embodiment of the present application also provides a computer program product (or called a computer program).
  • the processor executes the method in the possible implementation manner of the above-mentioned communication device (when implemented by a network device).
  • An embodiment of the present application also provides a system-on-a-chip, including at least one processor, configured to support a terminal device in implementing the functions involved in the possible implementation manners of the communication apparatus (when implemented by the terminal device).
  • the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
  • the system-on-a-chip may further include a memory, and the memory is used for storing necessary program instructions and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • An embodiment of the present application also provides a system-on-a-chip, including at least one processor, configured to support a network device to implement the functions involved in the possible implementation manners of the communication apparatus (when implemented by the network device).
  • the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
  • the chip system may further include a memory, and the memory is used for storing necessary program instructions and data of the network device.
  • the system-on-a-chip may consist of a chip, or may include a chip and other discrete devices, wherein the network device may specifically be the network device in the aforementioned method embodiments.
  • An embodiment of the present application further provides a communication system, where the network system architecture includes the communication device (including terminal equipment and network equipment) in any of the foregoing embodiments.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units. If the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法及通信装置,用于使得网络设备可以向终端设备指示在不同RB集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。在该方法中,终端设备接收第一指示信息,该第一指示信息用于指示第二指示信息所占的比特数,该第二指示信息用于指示P个RB集合的上行预编码信息;其中,P个RB集合中的每个资源块RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同;P大于或等于2;该终端设备接收DCI;该终端设备基于该比特数在该DCI确定该第二指示信息;该终端设备基于P个RB集合的上行预编码信息发送上行信息。

Description

一种通信方法及通信装置
本申请要求于2021年12月30日提交中国国家知识产权局,申请号为202111669034.6,发明名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线技术领域,尤其涉及一种通信方法及通信装置。
背景技术
在上行多用户多输入所输出(multiple user multiple input multiple output,MU MIMO)***中,上行预编码对***的容量和频谱效率起到至关重要的作用。其中,网络设备在确定终端设备的上行预编码信息后,需要将该上行预编码信息指示给相应的终端设备。
目前,终端设备所使用的上行带宽包括上行带宽部分(bandwidth part,BWP)所对应的多个连续的频域资源;相应的,网络设备为该多个连续的频域资源指示相同的上行预编码信息。即网络设备所发送的上行预编码信息指示用于指示某一种上行预编码信息,使得终端设备基于该上行预编码信息在该多个连续的频域资源上发送上行信息。
然而,不同的频域资源所对应的传输信道是不同的,在上述上行预编码信息的指示方式中,终端设备在多个连续的频域资源上使用相同的上行预编码信息容易导致性能损失,影响通信效率。
此外,网络设备有可能将上行BWP中的部分或全部频域资源作为终端设备的可用上行资源进行调度;换言之,终端设备所使用的调度带宽有可能是不固定的。考虑到每个频域资源上的信道是不一样的,从性能最优的角度来说,终端设备所使用的调度带宽中的每个频域资源上采用的上行预编码应该根据其信道去相应地设计,因此不同频域资源上的最优预编码有可能是不一样的。若将上述预编码信息的指示方式直接拓展至终端设备使用不固定的调度带宽的应用场景,由于终端设备所使用的调度带宽有可能是不固定的会使得网络设备所发送的上行预编码信息的信息量大小不固定,将会导致终端设备基于所接收的信息进行盲检,导致终端设备的能耗较大。
发明内容
本申请提供了一种通信方法及通信装置,用于使得网络设备可以向终端设备指示在不同资源块(resource block,RB)集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。并且,终端设备在接收下行控制信息(downlink control information,DCI)之后,可以基于第一指示信息所指示的比特数在该DCI中确定第二指示信息,使得该终端设备无需盲检就可以获得DCI中的上行预编码信息的指示,以降低终端设备的能耗。
本申请第一方面提供了一种通信方法,该方法由终端设备执行,或者,该方法由终端设备中的部分组件(例如处理器、芯片或芯片***等)执行,或者该方法还可以由能实现 全部或部分终端设备功能的逻辑模块或软件实现。在第一方面及其可能的实现方式中,以该通信方法由终端设备执行为例进行描述。在该方法中,终端设备接收第一指示信息,该第一指示信息用于指示第二指示信息所占的比特数,该第二指示信息用于指示P个RB集合的上行预编码信息;其中,P个RB集合中的每个资源块RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同;P大于或等于2;该终端设备接收DCI;该终端设备基于该比特数在该DCI确定该第二指示信息;该终端设备基于P个RB集合的上行预编码信息发送上行信息。
基于上述技术方案,终端设备在接收用于指示第二指示信息所占的比特数的第一指示信息之后,该终端设备基于该比特数在DCI中确定第二指示信息。其中,该第一指示信息用于指示第二指示信息所占的比特数,该第二指示信息用于指示P个RB集合的上行预编码信息;其中,P大于或等于2且P个RB集合中的不同RB集合所对应的上行预编码信息不同。换言之,网络设备基于DCI中的第二指示信息可以向终端设备指示两种或两种以上的上行预编码信息。相比于网络设备基于同一种相同的上行预编码信息的实现方式,使得网络设备可以向终端设备指示在不同RB集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。
此外,终端设备所接收的第一指示信息用于指示第二指示信息所占的比特数,即终端设备可以基于该第一指示信息明确用于指示该P个RB集合的上行预编码信息的第二指示信息所占的比特数。使得终端设备在接收DCI之后,可以基于该第一指示信息所指示的比特数在该DCI中确定该第二指示信息,使得该终端设备无需盲检就可以获得DCI中的上行预编码信息的指示,以降低终端设备的能耗。
在第一方面的一种可能的实现方式中,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
基于上述技术方案,在该P个RB集合所包含的RB中,有可能存在不同的RB所对应的信道信息相同或相近,使得网络设备可以为该不同的RB配置相同的上行预编码指示,并且将该不同的RB配置于同一个RB集合中。换言之,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
在第一方面的一种可能的实现方式中,该上行信息承载于P个RB集合中的部分或全部RB。
基于上述技术方案,网络设备可以为终端设备调度该P个RB集合所包含的部分RB或全部RB,相应的,该终端设备所发送的上行信息所承载的上行资源可以包括该P个RB集合中的部分RB或全部RB。
可选地,终端设备在发送上行信息之前,该终端设备接收来自该网络设备的用于指示为该终端设备调度的上行资源的指示信息,使得该终端设备可以基于该指示信息所指示的为该终端设备调度的上行资源发送上行信息。
在第一方面的一种可能的实现方式中,P个RB集合所包含的RB是为该终端设备调度的上行资源。
基于上述技术方案,第二指示信息所指示的P个RB集合所包含的RB是为该终端设备 调度的上行资源所对应的RB,即网络设备向终端设备发送的上行预编码指示(即第二指示信息)用于指示为该终端设备调度的上行资源所对应的上行预编码信息。换言之,该终端设备基于P个RB集合的上行预编码信息发送上行信息包括:该终端设备基于该P个RB集合的上行预编码信息在为该终端设备调度的上行资源(即P个RB集合所包含的全部RB)上发送上行信息。从而,网络设备无需向终端设备指示没有为该终端设备调度的上行资源所对应的上行预编码信息,终端设备也无需读取没有为该终端设备调度的上行资源所对应的上行预编码信息,以节省信令开销并节省终端设备的能耗。
在第一方面的一种可能的实现方式中,该方法还包括:该终端设备接收第三指示信息,该第三指示信息用于指示P个RB集合中的每个RB集合包括该为该终端设备调度的上行资源中的一个或多个RB。
基于上述技术方案,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,该第三指示信息用于指示P个RB集合中的RB与为该终端设备调度的上行资源中的RB之间的关联关系。使得终端设备可以基于该关联关系和第二指示信息确定为该终端设备调度的上行资源所对应的上行预编码信息,并进一步在为该终端设备调度的上行资源发送上行信息。
在第一方面的一种可能的实现方式中,该第三指示信息包括P的取值或P个RB集合中每个RB集合所包含的RB数量。
基于上述技术方案,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,该P个RB集合中的不同RB集合所包含的RB数量可以是相同的。相应的,网络设备所发送的第三指示信息可以包括P的取值,使得终端设备基于该P的取值确定P个RB集合中每一个RB集合所包含的RB;或,网络设备所发送的第三指示信息可以包括P个RB集合中每个RB集合所包含的RB数量,使得终端设备基于该P个RB集合中每个RB集合所包含的RB数量确定P个RB集合中每一个RB集合所包含的RB。从而,终端设备可以基于所确定的P个RB集合中每一个RB集合所包含的RB以及相应的上行预编码信息发送上行信息。
在第一方面的一种可能的实现方式中,P个RB集合所包含的RB是该终端设备的上行带宽部分(bandwidth part,BWP)所对应的频域资源。
基于上述技术方案,第二指示信息所指示的P个RB集合所包含的RB是该终端设备的上行BWP所对应的频域资源,即网络设备向终端设备发送的上行预编码指示(即第二指示信息)用于指示为该终端设备的上行BWP所对应的频域资源的上行预编码信息。换言之,该终端设备基于P个RB集合的上行预编码信息发送上行信息包括:该终端设备基于该P个RB集合的上行预编码信息确定为该终端设备调度的上行资源对应的上行预编码信息之后,再基于为该终端设备调度的上行资源对应的上行预编码信息在为该终端设备调度的上行资源(即P个RB集合所包含的部分RB)上发送上行信息。从而,网络设备可以向终端设备指示在上行BWP中不同RB集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。
在第一方面的一种可能的实现方式中,该方法还包括:该终端设备接收第四指示信息, 该第四指示信息用于指示P个RB集合中的每个RB集合包括该终端设备的上行BWP所对应的频域资源中的一个或多个RB。
基于上述技术方案,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,该第四指示信息用于指示P个RB集合中的RB与上行BWP所对应的频域资源中的RB之间的关联关系。使得终端设备可以基于该关联关系和第二指示信息确定,在上行BWP所对应的频域资源中为该终端设备调度的上行资源所对应的上行预编码信息,并进一步在为该终端设备调度的上行资源发送上行信息。
在第一方面的一种可能的实现方式中,该第四指示信息包括P的取值或该每个RB集合所包含的RB数量。
基于上述技术方案,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,该P个RB集合中的不同RB集合所包含的RB数量可以是相同的。相应的,网络设备所发送的第四指示信息可以包括P的取值,使得终端设备基于该P的取值确定P个RB集合中每一个RB集合所包含的RB;或,网络设备所发送的第四指示信息可以包括P个RB集合中每个RB集合所包含的RB数量,使得终端设备基于该P个RB集合中每个RB集合所包含的RB数量确定P个RB集合中每一个RB集合所包含的RB。从而,终端设备可以基于所确定的P个RB集合中每一个RB集合所包含的RB,以及,为该终端设备调度的上行资源的上行预编码信息发送上行信息。
在第一方面的一种可能的实现方式中,P个RB集合的上行预编码信息基于第一码本所确定,其中,该第一码本为以下任一项:
预配置的码本;或,
基于P的取值在至少两个码本中所确定的码本;或,
基于P的取值所生成的离散傅里叶变换(discrete fourier transform,DFT)过采样矩阵所对应的码本。
基于上述技术方案,终端设备可以在第一码本中基于该第二指示信息确定该P个RB集合的上行预编码信息,其中,该第一码本可以基于上述多种方式确定,以提升方案实现的灵活性。
在第一方面的一种可能的实现方式中,P个RB集合的上行预编码信息基于第一码本所确定;该方法还包括:该终端设备接收第五指示信息,该第五指示信息用于指示该第一码本为以下任一项:
预配置的码本;或,
基于P的取值在至少两个码本中所确定的码本;或,
基于P的取值所生成的DFT过采样矩阵所对应的码本。
基于上述技术方案,终端设备还可以基于网络设备所发送的第五指示信息,明确用于确定该P个RB集合的上行预编码信息的第一码本为多种实现方式中的某一种实现方式所确定,并进一步明确在P个RB集合的上行预编码信息。
可选地,在第一码本为预配置的码本的情况下,终端设备可以在该预配置的码本中基于第二指示信息确定该P个RB集合的上行预编码信息。
可选地,在第一码本为基于P的取值在至少两个码本中所确定的码本的情况下,终端设备可以基于P的取值在至少两个码本中确定某一个码本,再进一步基于该第二指示信息在所确定的码本中确定P个RB集合的上行预编码信息。
可选地,在第一码本为基于P的取值所生成的DFT过采样矩阵所对应的码本的情况下,终端设备可以基于P的取值生成DFT过采样矩阵之后,确定该DFT过采样矩阵所对应的码本,再进一步基于该第二指示信息在该DFT过采样矩阵所对应的码本中确定P个RB集合的上行预编码信息。
在第一方面的一种可能的实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引为连续的。
可选地,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,为该终端设备调度的上行资源在频域上有可能不是连续的上行资源,即为该终端设备调度的上行资源所对应的RB在上行BWP上的RB索引有可能是不连续的。换言之,在该实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在上行BWP上的RB索引有可能是不连续的。在这种情况下,该终端设备可以为该终端设备调度的上行资源所包含的RB重新排序,得到升序或降序的RB索引,使得在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在该升序或降序的RB索引中为连续的。
可选地,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,在P个RB集合中任意一个RB集合所包含的RB的RB索引在为该上行BWP所对应的频域资源中为连续的。换言之,在该实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在上行BWP上的RB索引是连续的。
在第一方面一种可能的实现方式中,P个RB集合中的每个RB集合所包含的RB数量相同。
可选地,P个RB集合中存在至少两个RB集合所包含的RB数量不同。
在第一方面一种可能的实现方式中,该第二指示信息包括P个信息,P个信息分别用于指示P个RB集合的上行预编码信息,其中,P个信息中的不同信息在该DCI中所占的比特数相同。
基于上述技术方案,使得终端设备在DCI中基于第一指示信息确定第二指示信息之后,该终端设备可以将第二指示信息所占比特数等分成P个信息解读,以确定第二指示信息所包含的P个信息,并基于该P个信息的部分信息或全部信息确定承载该上行信息的上行资源所对应的上行预编码信息。
可选地,在P个信息中的不同信息在该DCI中所占的比特数相同的情况下,即P个信息中的不同信息所指示的上行预编码信息的索引总数是相同的情况下,P个RB集合中不同RB集合的上行预编码信息均可以通过同一个码本所确定。从而,使得终端设备可以基于该 第二指示信息,在同一个码本中确定P个RB集合中不同RB集合的上行预编码信息,易于实现。
在第一方面一种可能的实现方式中,该第二指示信息包括P个信息,P个信息分别用于指示P个RB集合的上行预编码信息,其中,P个信息中的至少两个信息在该DCI中所占的比特数不同。
基于上述技术方案,终端设备在DCI中基于第一指示信息确定第二指示信息之后,该终端设备可以基于P个信息中不同信息所占的比特数,将第二指示信息所占比特数分成P个信息解读,以确定第二指示信息所包含的P个信息,并基于该P个信息的部分信息或全部信息确定承载该上行信息的上行资源所对应的上行预编码信息。
可选地,在P个信息中的至少两个信息在该DCI中所占的比特数不同的情况下,即P个信息中的不同信息所指示的上行预编码信息的索引总数有可能不同的情况下,该至少两个信息对应的至少两个RB集合的上行预编码信息可以通过不同的码本所确定。从而,使得终端设备可以基于该第二指示信息,在至少两个不同的码本中确定P个RB集合中不同RB集合的上行预编码信息,以便于网络设备灵活地选用不同的码本用以指示P个RB集合的上行预编码信息。
此外,在P个信息中的至少两个信息在该DCI中所占的比特数不同的情况下,网络设备无需选用同一码本也可以实现上行预编码信息的指示。从而,在网络设备已通过第一指示信息配置该第二指示信息所占的比特数的情况下,即该第二指示信息所占的比特数不变的情况下,网络设备若选用某个上行预编码信息的索引数量较小的码本,可以通过较少的比特数即可指示某个RB集合的上行预编码信息;相应的,网络设备若选用某个上行预编码信息的索引数量较多的码本,可以通过较多的比特数指示较多的上行预编码信息的索引所对应的上行预编码信息。
本申请第二方面提供了一种通信方法,该方法由网络设备执行,或者,该方法由网络设备中的部分组件(例如处理器、芯片或芯片***等)执行,或者该方法还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。在第二方面及其可能的实现方式中,以该通信方法由网络设备执行为例进行描述。在该方法中,网络设备确定第一指示信息,该第一指示信息用于指示第二指示信息所占的比特数,该第二指示信息用于指示P个RB集合的上行预编码信息;其中,P个RB集合中的每个资源块RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同;P大于或等于2;该网络设备发送该第一指示信息;该网络设备发送DCI,该DCI包括该第二指示信息;该网络设备基于P个RB集合的上行预编码信息接收上行信息。
基于上述技术方案,网络设备在发送用于指示第二指示信息所占的比特数的第一指示信息和DCI之后,该终端设备可以基于该比特数在DCI中确定第二指示信息。其中,该第一指示信息用于指示第二指示信息所占的比特数,该第二指示信息用于指示P个RB集合的上行预编码信息;其中,P大于或等于2且P个RB集合中的不同RB集合所对应的上行预编码信息不同。换言之,网络设备基于DCI中的第二指示信息可以向终端设备指示两种或 两种以上的上行预编码信息。相比于网络设备基于同一种相同的上行预编码信息的实现方式,使得网络设备可以向终端设备指示在不同RB集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。
此外,网络设备所发送的第一指示信息用于指示第二指示信息所占的比特数,即终端设备可以基于该第一指示信息明确用于指示该P个RB集合的上行预编码信息的第二指示信息所占的比特数。使得终端设备在接收DCI之后,可以基于该第一指示信息所指示的比特数在该DCI中确定该第二指示信息,使得该终端设备无需盲检就可以获得DCI中的上行预编码信息的指示,以降低终端设备的能耗。
应理解,网络设备基于P个RB集合的上行预编码信息接收上行信息,包括:该网络设备接收上行信息,该上行信息为基于P个RB集合的上行预编码信息对待发送信号进行预编码处理所得到的信息。
在第二方面的一种可能的实现方式中,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
基于上述技术方案,在该P个RB集合所包含的RB中,有可能存在不同的RB所对应的信道信息相同或相近,使得网络设备可以为该不同的RB配置相同的上行预编码指示,并且将该不同的RB配置于同一个RB集合中。换言之,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
在第二方面的一种可能的实现方式中,该上行信息承载于P个RB集合中的部分或全部RB。
基于上述技术方案,网络设备可以为终端设备调度该P个RB集合所包含的部分RB或全部RB,相应的,该终端设备所发送的上行信息所承载的上行资源可以包括该P个RB集合中的部分RB或全部RB。
可选地,终端设备在发送上行信息之前,网络设备向终端设备发送用于指示为该终端设备调度的上行资源的指示信息,使得该终端设备可以基于该指示信息所指示的为该终端设备调度的上行资源发送上行信息。
在第二方面的一种可能的实现方式中,P个RB集合所包含的RB是为终端设备调度的上行资源。
基于上述技术方案,第二指示信息所指示的P个RB集合所包含的RB是为该终端设备调度的上行资源所对应的RB,即网络设备向终端设备发送的上行预编码指示(即第二指示信息)用于指示为该终端设备调度的上行资源所对应的上行预编码信息。换言之,该终端设备基于P个RB集合的上行预编码信息发送上行信息包括:该终端设备基于该P个RB集合的上行预编码信息在为该终端设备调度的上行资源(即P个RB集合所包含的全部RB)上发送上行信息。从而,网络设备无需向终端设备指示没有为该终端设备调度的上行资源所对应的上行预编码信息,终端设备也无需读取没有为该终端设备调度的上行资源所对应的上行预编码信息,以节省信令开销并节省终端设备的能耗。
在第二方面的一种可能的实现方式中,该方法还包括:该网络设备发送第三指示信息,该第三指示信息用于指示P个RB集合中的每个RB集合包括该为该终端设备调度的上行资 源中的一个或多个RB。
基于上述技术方案,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,该第三指示信息用于指示P个RB集合中的RB与为该终端设备调度的上行资源中的RB之间的关联关系。使得终端设备可以基于该关联关系和第二指示信息确定为该终端设备调度的上行资源所对应的上行预编码信息,并进一步在为该终端设备调度的上行资源发送上行信息。
在第二方面的一种可能的实现方式中,该第三指示信息包括P的取值或该每个RB集合所包含的RB数量。
基于上述技术方案,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,该P个RB集合中的不同RB集合所包含的RB数量可以是相同的。相应的,网络设备所发送的第三指示信息可以包括P的取值,使得终端设备基于该P的取值确定P个RB集合中每一个RB集合所包含的RB;或,网络设备所发送的第三指示信息可以包括P个RB集合中每个RB集合所包含的RB数量,使得终端设备基于该P个RB集合中每个RB集合所包含的RB数量确定P个RB集合中每一个RB集合所包含的RB。从而,终端设备可以基于所确定的P个RB集合中每一个RB集合所包含的RB以及相应的上行预编码信息发送上行信息。
在第二方面的一种可能的实现方式中,P个RB集合所包含的RB是终端设备的上行BWP所对应的频域资源。
基于上述技术方案,第二指示信息所指示的P个RB集合所包含的RB是该终端设备的上行BWP所对应的频域资源,即网络设备向终端设备发送的上行预编码指示(即第二指示信息)用于指示为该终端设备的上行BWP所对应的频域资源的上行预编码信息。换言之,该终端设备基于P个RB集合的上行预编码信息发送上行信息包括:该终端设备基于该P个RB集合的上行预编码信息确定为该终端设备调度的上行资源对应的上行预编码信息之后,再基于为该终端设备调度的上行资源对应的上行预编码信息在为该终端设备调度的上行资源(即P个RB集合所包含的部分RB)上发送上行信息。从而,网络设备可以向终端设备指示在上行BWP中不同RB集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。
在第二方面的一种可能的实现方式中,该方法还包括:该网络设备发送第四指示信息,该第四指示信息用于指示P个RB集合中的每个RB集合包括该终端设备的上行BWP所对应的频域资源中的一个或多个RB。
基于上述技术方案,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,该第三指示信息用于指示P个RB集合中的RB与上行BWP所对应的频域资源中的RB之间的关联关系。使得终端设备可以基于该关联关系和第二指示信息确定,在上行BWP所对应的频域资源中为该终端设备调度的上行资源所对应的上行预编码信息,并进一步在为该终端设备调度的上行资源发送上行信息。
在第二方面的一种可能的实现方式中,该第四指示信息包括P的取值或该每个RB集合 所包含的RB数量。
基于上述技术方案,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,该P个RB集合中的不同RB集合所包含的RB数量可以是相同的。相应的,网络设备所发送的第四指示信息可以包括P的取值,使得终端设备基于该P的取值确定P个RB集合中每一个RB集合所包含的RB;或,网络设备所发送的第四指示信息可以包括P个RB集合中每个RB集合所包含的RB数量,使得终端设备基于该P个RB集合中每个RB集合所包含的RB数量确定P个RB集合中每一个RB集合所包含的RB。从而,终端设备可以基于所确定的P个RB集合中每一个RB集合所包含的RB,以及,为该终端设备调度的上行资源的上行预编码信息发送上行信息。
在第二方面的一种可能的实现方式中,P个RB集合的上行预编码信息基于第一码本所确定;
该方法还包括:
该网络设备发送第五指示信息,该第五指示用于指示该第一码本为以下任一项:
预配置的码本;或,
基于P的取值在至少两个码本中所确定的码本;或,
基于P的取值所生成的DFT过采样矩阵所对应的码本。
基于上述技术方案,网络设备在发送第五指示信息之后,终端设备还可以基于网络设备所发送的第五指示信息,明确用于确定该P个RB集合的上行预编码信息的第一码本为多种实现方式中的某一种实现方式所确定,并进一步明确在P个RB集合的上行预编码信息。
可选地,在第一码本为预配置的码本的情况下,终端设备可以在该预配置的码本中基于第二指示信息确定该P个RB集合的上行预编码信息。
可选地,在第一码本为基于P的取值在至少两个码本中所确定的码本的情况下,终端设备可以基于P的取值在至少两个码本中确定某一个码本,再进一步基于该第二指示信息在所确定的码本中确定P个RB集合的上行预编码信息。
可选地,在第一码本为基于P的取值所生成的DFT过采样矩阵所对应的码本的情况下,终端设备可以基于P的取值生成DFT过采样矩阵之后,确定该DFT过采样矩阵所对应的码本,再进一步基于该第二指示信息在该DFT过采样矩阵所对应的码本中确定P个RB集合的上行预编码信息。
在第二方面的一种可能的实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引为连续的。
可选地,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,为该终端设备调度的上行资源在频域上有可能不是连续的上行资源,即为该终端设备调度的上行资源所对应的RB在上行BWP上的RB索引有可能是不连续的。换言之,在该实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在上行BWP上的RB索引有可能是不连续的。在这种情况下,该终端设备可以为该终端设备调度的上行资源所包含的RB重新排 序,得到升序或降序的RB索引,使得在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在该升序或降序的RB索引中为连续的。
可选地,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,在P个RB集合中任意一个RB集合所包含的RB的RB索引在为该上行BWP所对应的频域资源中为连续的。换言之,在该实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在上行BWP上的RB索引是连续的。
在第二方面的一种可能的实现方式中,P个RB集合中的每个RB集合所包含的RB数量相同。
可选地,P个RB集合中存在至少两个RB集合所包含的RB数量不同。
在第二方面的一种可能的实现方式中,该第二指示信息包括P个信息,P个信息分别用于指示P个RB集合的上行预编码信息,其中,P个信息中的不同信息在该DCI中所占的比特数相同。
基于上述技术方案,使得终端设备在DCI中基于第一指示信息确定第二指示信息之后,该终端设备可以将第二指示信息所占比特数等分成P个信息解读,以确定第二指示信息所包含的P个信息,并基于该P个信息的部分信息或全部信息确定承载该上行信息的上行资源所对应的上行预编码信息。
可选地,在P个信息中的不同信息在该DCI中所占的比特数相同的情况下,即P个信息中的不同信息所指示的上行预编码信息的索引总数是相同的情况下,P个RB集合中不同RB集合的上行预编码信息均可以通过同一个码本所确定。从而,使得终端设备可以基于该第二指示信息,在同一个码本中确定P个RB集合中不同RB集合的上行预编码信息,易于实现。
在第二方面的一种可能的实现方式中,该第二指示信息包括P个信息,P个信息分别用于指示P个RB集合的上行预编码信息,其中,P个信息中的至少两个信息在该DCI中所占的比特数不同。
基于上述技术方案,使得终端设备在DCI中基于第一指示信息确定第二指示信息之后,该终端设备可以基于P个信息中不同信息所占的比特数,将第二指示信息所占比特数分成P个信息解读,以确定第二指示信息所包含的P个信息,并基于该P个信息的部分信息或全部信息确定承载该上行信息的上行资源所对应的上行预编码信息。
可选地,在P个信息中的至少两个信息在该DCI中所占的比特数不同的情况下,即P个信息中的不同信息所指示的上行预编码信息的索引总数有可能不同的情况下,该至少两个信息对应的至少两个RB集合的上行预编码信息可以通过不同的码本所确定。从而,使得终端设备可以基于该第二指示信息,在至少两个不同的码本中确定P个RB集合中不同RB集合的上行预编码信息,以便于网络设备灵活地选用不同的码本用以指示P个RB集合的上行预编码信息。
此外,在P个信息中的至少两个信息在该DCI中所占的比特数不同的情况下,网络设备无需选用同一码本也可以实现上行预编码信息的指示。从而,在网络设备已通过第一指 示信息配置该第二指示信息所占的比特数的情况下,即该第二指示信息所占的比特数不变的情况下,网络设备若选用某个上行预编码信息的索引数量较小的码本,可以通过较少的比特数即可指示某个RB集合的上行预编码信息;相应的,网络设备若选用某个上行预编码信息的索引数量较多的码本,可以通过较多的比特数指示较多的上行预编码信息的索引所对应的上行预编码信息。
本申请第三方面提供了一种通信方法,该方法由终端设备执行,或者,该方法由终端设备中的部分组件(例如处理器、芯片或芯片***等)执行,或者该方法还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。在第一方面及其可能的实现方式中,以该通信方法由终端设备执行为例进行描述。在该方法中,终端设备接收第六指示信息,该第六指示信息用于指示波束成形的信道状态信息-参考信号(channel state information,reference Signal,CSI-RS)所占的资源单元(resource element,RE);该终端设备基于该第六指示信息接收该CSI-RS;该终端设备基于该CSI-RS进行信道测量,得到P个RB集合的上行预编码信息;其中,P个RB集合中的每个RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同;P大于或等于2;该终端设备基于P个RB集合的上行预编码信息发送上行信息。
基于上述技术方案,终端设备在接收用于指示波束成形的CSI-RS所占的RE的第六指示信息之后,该终端设备基于该第六指示信息接收CSI-RS;该终端设备再基于该CSI-RS进行信道测量,以得到P个RB集合的上行预编码信息。其中,P大于或等于2且P个RB集合中的不同RB集合所对应的上行预编码信息不同。换言之,网络设备基于CSI-RS可以向终端设备指示两种或两种以上的上行预编码信息,实现高精度的上行预编码指示。相比于网络设备基于同一种相同的上行预编码信息的实现方式,使得网络设备可以向终端设备指示在不同RB集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。
此外,终端设备所接收的第六指示信息用于指示波束成形的CSI-RS所占的RE,即终端设备可以基于该第六指示信息明确用于指示该P个RB集合的上行预编码信息的CSI-RS所占的RE。使得终端设备基于该第六指示信息接收CSI-RS,避免该终端设备得到错误的上行预编码信息。
应理解,第六指示信息用于指示波束成形的CSI-RS所占的RE包括:第六指示信息用于指示波束成形的CSI-RS所占的RE数,和/或,第六指示信息用于指示波束成形的CSI-RS所占的RE位置。
在第三方面的一种可能的实现方式中,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
基于上述技术方案,在该P个RB集合所包含的RB中,有可能存在不同的RB所对应的信道信息相同或相近,使得网络设备可以为该不同的RB配置相同的上行预编码指示,并且将该不同的RB配置于同一个RB集合中。换言之,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
在第三方面的一种可能的实现方式中,该上行信息承载于P个RB集合中的部分或全部RB。
基于上述技术方案,网络设备可以为终端设备调度该P个RB集合所包含的部分RB或全部RB,相应的,该终端设备所发送的上行信息所承载的上行资源可以包括该P个RB集合中的部分RB或全部RB。
可选地,终端设备在发送上行信息之前,该终端设备接收来自该网络设备的用于指示为该终端设备调度的上行资源的指示信息,使得该终端设备可以基于该指示信息所指示的为该终端设备调度的上行资源发送上行信息。
在第三方面的一种可能的实现方式中,P个RB集合所包含的RB是为终端设备调度的上行资源。
基于上述技术方案,该P个RB集合所包含的RB是为该终端设备调度的上行资源所对应的RB,即网络设备向终端设备发送的上行预编码指示(即CSI-RS所承载的信息)用于指示为该终端设备调度的上行资源所对应的上行预编码信息。换言之,该终端设备基于P个RB集合的上行预编码信息发送上行信息包括:该终端设备基于该P个RB集合的上行预编码信息在为该终端设备调度的上行资源(即P个RB集合所包含的全部RB)上发送上行信息。从而,网络设备无需向终端设备指示没有为该终端设备调度的上行资源所对应的上行预编码信息,终端设备也无需读取没有为该终端设备调度的上行资源所对应的上行预编码信息,以节省信令开销并节省终端设备的能耗。
在第三方面的一种可能的实现方式中,该方法还包括:该终端设备接收第七指示信息,该第七指示信息用于指示P个RB集合中的每个RB集合包括该为该终端设备调度的上行资源中的一个或多个RB。
基于上述技术方案,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,该第七指示信息用于指示P个RB集合中的RB与为该终端设备调度的上行资源中的RB之间的关联关系。使得终端设备可以基于该关联关系和该P个集合的上行预编码信息确定为该终端设备调度的上行资源所对应的上行预编码信息,并进一步在为该终端设备调度的上行资源发送上行信息。
在第三方面的一种可能的实现方式中,该第七指示信息包括P的取值或该每个RB集合所包含的RB数量。
基于上述技术方案,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,该P个RB集合中的不同RB集合所包含的RB数量可以是相同的。相应的,网络设备所发送的第七指示信息可以包括P的取值,使得终端设备基于该P的取值确定P个RB集合中每一个RB集合所包含的RB;或,网络设备所发送的第七指示信息可以包括P个RB集合中每个RB集合所包含的RB数量,使得终端设备基于该P个RB集合中每个RB集合所包含的RB数量确定P个RB集合中每一个RB集合所包含的RB。从而,终端设备可以基于所确定的P个RB集合中每一个RB集合所包含的RB以及相应的上行预编码信息发送上行信息。
在第三方面的一种可能的实现方式中,P个RB集合所包含的RB是该终端设备的上行BWP所对应的频域资源。
基于上述技术方案,该P个RB集合所包含的RB是该终端设备的上行BWP所对应的频域资源,即网络设备向终端设备发送的上行预编码指示(即CSI-RS所承载的信息)用于指示为该终端设备的上行BWP所对应的频域资源的上行预编码信息。换言之,该终端设备基于P个RB集合的上行预编码信息发送上行信息包括:该终端设备基于该P个RB集合的上行预编码信息确定为该终端设备调度的上行资源对应的上行预编码信息之后,再基于为该终端设备调度的上行资源对应的上行预编码信息在为该终端设备调度的上行资源(即P个RB集合所包含的部分RB)上发送上行信息。从而,网络设备可以向终端设备指示在上行BWP中不同RB集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。
在第三方面的一种可能的实现方式中,该方法还包括:该终端设备接收第八指示信息,该第八指示信息用于指示P个RB集合中的每个RB集合包括该终端设备的上行BWP所对应的频域资源中的一个或多个RB。
基于上述技术方案,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,该第八指示信息用于指示P个RB集合中的RB与上行BWP所对应的频域资源中的RB之间的关联关系。使得终端设备可以基于该关联关系和P个RB集合的上行预编码信息确定,在上行BWP所对应的频域资源中为该终端设备调度的上行资源所对应的上行预编码信息,并进一步在为该终端设备调度的上行资源发送上行信息。
在第三方面的一种可能的实现方式中,该第八指示信息包括P的取值或该每个RB集合所包含的RB数量。
基于上述技术方案,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,该P个RB集合中的不同RB集合所包含的RB数量可以是相同的。相应的,网络设备所发送的第八指示信息可以包括P的取值,使得终端设备基于该P的取值确定P个RB集合中每一个RB集合所包含的RB;或,网络设备所发送的第八指示信息可以包括P个RB集合中每个RB集合所包含的RB数量,使得终端设备基于该P个RB集合中每个RB集合所包含的RB数量确定P个RB集合中每一个RB集合所包含的RB。从而,终端设备可以基于所确定的P个RB集合中每一个RB集合所包含的RB,以及,为该终端设备调度的上行资源的上行预编码信息发送上行信息。
在第三方面的一种可能的实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引为连续的。
可选地,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,为该终端设备调度的上行资源在频域上有可能不是连续的上行资源,即为该终端设备调度的上行资源所对应的RB在上行BWP上的RB索引有可能是不连续的。换言之,在该实现方式中,在P个RB集合 中存在包括多个RB的RB集合时,该多个RB的RB索引在上行BWP上的RB索引有可能是不连续的。在这种情况下,该终端设备可以为该终端设备调度的上行资源所包含的RB重新排序,得到升序或降序的RB索引,使得在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在该升序或降序的RB索引中为连续的。
可选地,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,在P个RB集合中任意一个RB集合所包含的RB的RB索引在为该上行BWP所对应的频域资源中为连续的。换言之,在该实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在上行BWP上的RB索引是连续的。
在第三方面的一种可能的实现方式中,P个RB集合中的每个RB集合所包含的RB数量相同。
可选地,P个RB集合中存在至少两个RB集合所包含的RB数量不同。
在第三方面的一种可能的实现方式中,该波束成形的CSI-RS所占的资源单元RE包括P组RE,P组RE分别用于确定P个RB集合的上行预编码信息,其中,P组RE中的不同组所占的RE数相同。
基于上述技术方案,终端设备基于第六指示信息接收CSI-RS之后,该终端设备可以将CSI-RS所占RE等分成P组RE,并基于该P组RE的部分RE所承载的信息或全部RE所承载的信息确定承载该上行信息的上行资源所对应的上行预编码信息。
在第三方面的一种可能的实现方式中,该波束成形的CSI-RS所占的资源单元RE包括P组RE,P组RE分别用于确定P个RB集合的上行预编码信息,其中,P组RE中至少两组RE所占的RE数不同。
基于上述技术方案,终端设备基于第六指示信息接收CSI-RS之后,该终端设备可以P组RE中不同组的RE数将CSI-RS所占RE分成P组RE,并基于该P组RE的部分RE所承载的信息或全部RE所承载的信息确定承载该上行信息的上行资源所对应的上行预编码信息。
本申请第四方面提供了一种通信方法,该方法由网络设备执行,或者,该方法由网络设备中的部分组件(例如处理器、芯片或芯片***等)执行,或者该方法还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。在第二方面及其可能的实现方式中,以该通信方法由网络设备执行为例进行描述。在该方法中,网络设备发送第六指示信息,该第六指示信息用于指示波束成形的CSI-RS所占的资源单元RE;该网络设备发送该CSI-RS,其中,该CSI-RS用于进行信道测量,得到P个RB集合的上行预编码信息;其中,P个RB集合中的每个RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同;P大于或等于2;该网络设备基于P个RB集合的上行预编码信息接收上行信息。
基于上述技术方案,网络设备发送用于指示波束成形的CSI-RS所占的RE的第六指示信息和CSI-RS之后,该终端设备接收该第六指示信息,并基于该第六指示信息接收CSI-RS;使得该终端设备再基于该CSI-RS进行信道测量,以得到P个RB集合的上行预编码信息。 其中,P大于或等于2且P个RB集合中的不同RB集合所对应的上行预编码信息不同。换言之,网络设备基于CSI-RS可以向终端设备指示两种或两种以上的上行预编码信息,实现高精度的上行预编码指示。相比于网络设备基于同一种相同的上行预编码信息的实现方式,使得网络设备可以向终端设备指示在不同RB集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。
此外,终端设备所接收的第六指示信息用于指示波束成形的CSI-RS所占的RE,即终端设备可以基于该第六指示信息明确用于指示该P个RB集合的上行预编码信息的CSI-RS所占的RE。使得终端设备基于该第六指示信息接收CSI-RS,避免该终端设备得到错误的上行预编码信息。
应理解,第六指示信息用于指示波束成形的CSI-RS所占的RE包括:第六指示信息用于指示波束成形的CSI-RS所占的RE数,和/或,第六指示信息用于指示波束成形的CSI-RS所占的RE位置。
应理解,网络设备基于P个RB集合的上行预编码信息接收上行信息,包括:该网络设备接收上行信息,该上行信息为基于P个RB集合的上行预编码信息对待发送信号进行预编码处理所得到的信息。
在第四方面的一种可能的实现方式中P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
基于上述技术方案,在该P个RB集合所包含的RB中,有可能存在不同的RB所对应的信道信息相同或相近,使得网络设备可以为该不同的RB配置相同的上行预编码指示,并且将该不同的RB配置于同一个RB集合中。换言之,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
在第四方面的一种可能的实现方式中,该上行信息承载于P个RB集合中的部分或全部RB。
基于上述技术方案,网络设备可以为终端设备调度该P个RB集合所包含的部分RB或全部RB,相应的,该终端设备所发送的上行信息所承载的上行资源可以包括该P个RB集合中的部分RB或全部RB。
可选地,终端设备在发送上行信息之前,网络设备向终端设备发送用于指示为该终端设备调度的上行资源的指示信息,使得该终端设备可以基于该指示信息所指示的为该终端设备调度的上行资源发送上行信息。
在第四方面的一种可能的实现方式中,P个RB集合所包含的RB是为终端设备调度的上行资源。
基于上述技术方案,该P个RB集合所包含的RB是为该终端设备调度的上行资源所对应的RB,即网络设备向终端设备发送的上行预编码指示(即CSI-RS所承载的信息)用于指示为该终端设备调度的上行资源所对应的上行预编码信息。换言之,该终端设备基于P个RB集合的上行预编码信息发送上行信息包括:该终端设备基于该P个RB集合的上行预编码信息在为该终端设备调度的上行资源(即P个RB集合所包含的全部RB)上发送上行信息。从而,网络设备无需向终端设备指示没有为该终端设备调度的上行资源所对应的上 行预编码信息,终端设备也无需读取没有为该终端设备调度的上行资源所对应的上行预编码信息,以节省信令开销并节省终端设备的能耗。
在第四方面的一种可能的实现方式中,该方法还包括:该网络设备发送第七指示信息,该第七指示信息用于指示P个RB集合中的每个RB集合包括该为该终端设备调度的上行资源中的一个或多个RB。
基于上述技术方案,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,该第七指示信息用于指示P个RB集合中的RB与为该终端设备调度的上行资源中的RB之间的关联关系。使得终端设备可以基于该关联关系和该P个集合的上行预编码信息确定为该终端设备调度的上行资源所对应的上行预编码信息,并进一步在为该终端设备调度的上行资源发送上行信息。
在第四方面的一种可能的实现方式中,该第七指示信息包括P的取值或该每个RB集合所包含的RB数量。
基于上述技术方案,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,该P个RB集合中的不同RB集合所包含的RB数量可以是相同的。相应的,网络设备所发送的第七指示信息可以包括P的取值,使得终端设备基于该P的取值确定P个RB集合中每一个RB集合所包含的RB;或,网络设备所发送的第七指示信息可以包括P个RB集合中每个RB集合所包含的RB数量,使得终端设备基于该P个RB集合中每个RB集合所包含的RB数量确定P个RB集合中每一个RB集合所包含的RB。从而,终端设备可以基于所确定的P个RB集合中每一个RB集合所包含的RB以及相应的上行预编码信息发送上行信息。
在第四方面的一种可能的实现方式中,P个RB集合所包含的RB是该终端设备的上行BWP所对应的频域资源。
基于上述技术方案,该P个RB集合所包含的RB是该终端设备的上行BWP所对应的频域资源,即网络设备向终端设备发送的上行预编码指示(即CSI-RS所承载的信息)用于指示为该终端设备的上行BWP所对应的频域资源的上行预编码信息。换言之,该终端设备基于P个RB集合的上行预编码信息发送上行信息包括:该终端设备基于该P个RB集合的上行预编码信息确定为该终端设备调度的上行资源对应的上行预编码信息之后,再基于为该终端设备调度的上行资源对应的上行预编码信息在为该终端设备调度的上行资源(即P个RB集合所包含的部分RB)上发送上行信息。从而,网络设备可以向终端设备指示在上行BWP中不同RB集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。
在第四方面的一种可能的实现方式中,该方法还包括:该网络设备发送第八指示信息,该第八指示信息用于指示P个RB集合中的每个RB集合包括该终端设备的上行BWP所对应的频域资源中的一个或多个RB。
基于上述技术方案,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,该第八指示信 息用于指示P个RB集合中的RB与上行BWP所对应的频域资源中的RB之间的关联关系。使得终端设备可以基于该关联关系和P个RB集合的上行预编码信息确定,在上行BWP所对应的频域资源中为该终端设备调度的上行资源所对应的上行预编码信息,并进一步在为该终端设备调度的上行资源发送上行信息。
在第四方面的一种可能的实现方式中,该第八指示信息包括P的取值或该每个RB集合所包含的RB数量。
基于上述技术方案,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,该P个RB集合中的不同RB集合所包含的RB数量可以是相同的。相应的,网络设备所发送的第八指示信息可以包括P的取值,使得终端设备基于该P的取值确定P个RB集合中每一个RB集合所包含的RB;或,网络设备所发送的第八指示信息可以包括P个RB集合中每个RB集合所包含的RB数量,使得终端设备基于该P个RB集合中每个RB集合所包含的RB数量确定P个RB集合中每一个RB集合所包含的RB。从而,终端设备可以基于所确定的P个RB集合中每一个RB集合所包含的RB,以及,为该终端设备调度的上行资源的上行预编码信息发送上行信息。
在第四方面的一种可能的实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引为连续的。
可选地,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,为该终端设备调度的上行资源在频域上有可能不是连续的上行资源,即为该终端设备调度的上行资源所对应的RB在上行BWP上的RB索引有可能是不连续的。换言之,在该实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在上行BWP上的RB索引有可能是不连续的。在这种情况下,该终端设备可以为该终端设备调度的上行资源所包含的RB重新排序,得到升序或降序的RB索引,使得在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在该升序或降序的RB索引中为连续的。
可选地,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,在P个RB集合中任意一个RB集合所包含的RB的RB索引在为该上行BWP所对应的频域资源中为连续的。换言之,在该实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在上行BWP上的RB索引是连续的。
在第四方面的一种可能的实现方式中,P个RB集合中的每个RB集合所包含的RB数量相同。
可选地,P个RB集合中存在至少两个RB集合所包含的RB数量不同。
在第四方面的一种可能的实现方式中,该波束成形的CSI-RS所占的资源单元RE包括P组RE,P组RE分别用于确定P个RB集合的上行预编码信息,其中,P组RE中的不同组所占的RE数相同。
基于上述技术方案,终端设备基于第六指示信息接收CSI-RS之后,该终端设备可以将 CSI-RS所占RE等分成P组RE,并基于该P组RE的部分RE所承载的信息或全部RE所承载的信息确定承载该上行信息的上行资源所对应的上行预编码信息。
在第四方面的一种可能的实现方式中,该波束成形的CSI-RS所占的资源单元RE包括P组RE,P组RE分别用于确定P个RB集合的上行预编码信息,其中,P组RE中至少两组RE所占的RE数不同。
基于上述技术方案,终端设备基于第六指示信息接收CSI-RS之后,该终端设备可以P组RE中不同组的RE数将CSI-RS所占RE分成P组RE,并基于该P组RE的部分RE所承载的信息或全部RE所承载的信息确定承载该上行信息的上行资源所对应的上行预编码信息。
本申请第五方面提供了一种通信装置,该装置可以实现上述第一方面或第一方面任一种可能的实现方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。例如,该装置可以为终端设备,或者,该装置可以为终端设备中的组件(例如处理器、芯片或芯片***等),或者该装置还可以为能实现全部或部分终端设备功能的逻辑模块或软件。
其中,该装置包括收发单元和处理单元;
该收发单元,用于接收第一指示信息,该第一指示信息用于指示第二指示信息所占的比特数,该第二指示信息用于指示P个RB集合的上行预编码信息;其中,P个RB集合中的每个资源块RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同;P大于或等于2;
该收发单元,还用于接收DCI;
该处理单元,用于基于该比特数在该DCI确定该第二指示信息;
该收发单元,还用于基于P个RB集合的上行预编码信息发送上行信息。
在第五方面的一种可能的实现方式中,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
在第五方面的一种可能的实现方式中,该上行信息承载于P个RB集合中的部分或全部RB。
在第五方面的一种可能的实现方式中,P个RB集合所包含的RB是为该终端设备调度的上行资源。
在第五方面的一种可能的实现方式中,
该收发单元,还用于接收第三指示信息,该第三指示信息用于指示P个RB集合中的每个RB集合包括该为该终端设备调度的上行资源中的一个或多个RB。
在第五方面的一种可能的实现方式中,
该第三指示信息包括P的取值或该每个RB集合所包含的RB数量。
在第五方面的一种可能的实现方式中,P个RB集合所包含的RB是该终端设备的上行BWP所对应的频域资源。
在第五方面的一种可能的实现方式中,
该收发单元,还用于接收第四指示信息,该第四指示信息用于指示P个RB集合中的每 个RB集合包括该终端设备的上行BWP所对应的频域资源中的一个或多个RB。
在第五方面的一种可能的实现方式中,
该第四指示信息包括P的取值或该每个RB集合所包含的RB数量。
在第五方面的一种可能的实现方式中,P个RB集合的上行预编码信息基于第一码本所确定,其中,该第一码本为以下任一项:
预配置的码本;或,
基于P的取值在至少两个码本中所确定的码本;或,
基于P的取值所生成的DFT过采样矩阵所对应的码本。
在第五方面的一种可能的实现方式中,P个RB集合的上行预编码信息基于第一码本所确定;
该收发单元,还用于接收第五指示信息,该第五指示信息用于指示该第一码本为以下任一项:
预配置的码本;或,
基于P的取值在至少两个码本中所确定的码本;或,
基于P的取值所生成的DFT过采样矩阵所对应的码本。
在第五方面的一种可能的实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引为连续的。
在第五方面的一种可能的实现方式中,P个RB集合中的每个RB集合所包含的RB数量相同。
在第五方面的一种可能的实现方式中,
该第二指示信息包括P个信息,P个信息分别用于指示P个RB集合的上行预编码信息,其中,P个信息中的不同信息在该DCI中所占的比特数相同;
或,
该第二指示信息包括P个信息,P个信息分别用于指示P个RB集合的上行预编码信息,其中,P个信息中的至少两个信息在该DCI中所占的比特数不同。
本申请实施例第五方面中,通信装置的组成模块还可以用于执行第一方面的各个可能实现方式中所执行的步骤,并实现相应的技术效果,具体均可以参阅第一方面,此处不再赘述。
本申请第六方面提供了一种通信装置,该装置可以实现上述第二方面或第二方面任一种可能的实现方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。例如,该装置可以为网络设备,或者,该装置可以为网络设备中的组件(例如处理器、芯片或芯片***等),或者该装置还可以为能实现全部或部分网络设备功能的逻辑模块或软件。
其中,该装置包括收发单元和处理单元;
该处理单元,用于确定第一指示信息,该第一指示信息用于指示第二指示信息所占的比特数,该第二指示信息用于指示P个RB集合的上行预编码信息;其中,P个RB集合中 的每个资源块RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同;P大于或等于2;
该收发单元,用于发送该第一指示信息;
该收发单元,还用于发送该DCI,该DCI包括该第二指示信息;
该收发单元,还用于基于P个RB集合的上行预编码信息接收上行信息。
在第六方面的一种可能的实现方式中,P个RB集合所包含的RB是为终端设备调度的上行资源。
在第六方面的一种可能的实现方式中,
该处理单元,还用于确定第三指示信息,该第三指示信息用于指示P个RB集合中的每个RB集合包括该为该终端设备调度的上行资源中的一个或多个RB;
该收发单元,还用于发送第三指示信息。
在第六方面的一种可能的实现方式中,
该第三指示信息包括P的取值或该每个RB集合所包含的RB数量。
在第六方面的一种可能的实现方式中,P个RB集合所包含的RB是终端设备的上行BWP所对应的频域资源。
在第六方面的一种可能的实现方式中,
该处理单元,还用于确定第四指示信息,该第四指示信息用于指示P个RB集合中的每个RB集合包括该终端设备的上行BWP所对应的频域资源中的一个或多个RB;
该收发单元,还用于发送第四指示信息。
在第六方面的一种可能的实现方式中,
该第四指示信息包括P的取值或该每个RB集合所包含的RB数量。
在第六方面的一种可能的实现方式中,P个RB集合的上行预编码信息基于第一码本所确定;
该处理单元,还用于确定第五指示信息,该第五指示用于指示该第一码本为以下任一项:
预配置的码本;或,
基于P的取值在至少两个码本中所确定的码本;或,
基于P的取值所生成的DFT过采样矩阵所对应的码本;
该收发单元,还用于发送该第五指示信息。
在第六方面的一种可能的实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引为连续的。
在第六方面的一种可能的实现方式中,P个RB集合中的每个RB集合所包含的RB数量相同。
在第六方面的一种可能的实现方式中,
该第二指示信息包括P个信息,P个信息分别用于指示P个RB集合的上行预编码信息,其中,P个信息中的不同信息在该DCI中所占的比特数相同;
或,
该第二指示信息包括P个信息,P个信息分别用于指示P个RB集合的上行预编码信息,其中,P个信息中的至少两个信息在该DCI中所占的比特数不同。
本申请实施例第六方面中,通信装置的组成模块还可以用于执行第二方面的各个可能实现方式中所执行的步骤,并实现相应的技术效果,具体均可以参阅第二方面,此处不再赘述。
本申请第七方面提供了一种通信装置,该装置可以实现上述第三方面或第三方面任一种可能的实现方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。例如,该装置可以为终端设备,或者,该装置可以为终端设备中的组件(例如处理器、芯片或芯片***等),或者该装置还可以为能实现全部或部分终端设备功能的逻辑模块或软件。
其中,该装置包括处理单元和收发单元;
该收发单元,用于接收第六指示信息,该第六指示信息用于指示波束成形的CSI-RS所占的资源单元RE;
该收发单元,还用于基于该第六指示信息接收该CSI-RS;
该处理单元,用于基于该CSI-RS进行信道测量,得到P个RB集合的上行预编码信息;其中,P个RB集合中的每个RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同;P大于或等于2;
该收发单元,还用于基于P个RB集合的上行预编码信息发送上行信息。
在第七方面的一种可能的实现方式中,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
在第七方面的一种可能的实现方式中,该上行信息承载于P个RB集合中的部分或全部RB。
在第七方面的一种可能的实现方式中,P个RB集合所包含的RB是为终端设备调度的上行资源。
在第七方面的一种可能的实现方式中,该收发单元,还用于接收第七指示信息,该第七指示信息用于指示P个RB集合中的每个RB集合包括该为该终端设备调度的上行资源中的一个或多个RB。
在第七方面的一种可能的实现方式中,
该第七指示信息包括P的取值或该每个RB集合所包含的RB数量。
在第七方面的一种可能的实现方式中,P个RB集合所包含的RB是该终端设备的上行BWP所对应的频域资源。
在第七方面的一种可能的实现方式中,该收发单元,还用于接收第八指示信息,该第八指示信息用于指示P个RB集合中的每个RB集合包括该终端设备的上行BWP所对应的频域资源中的一个或多个RB。
在第七方面的一种可能的实现方式中,
该第八指示信息包括P的取值或该每个RB集合所包含的RB数量。
在第七方面的一种可能的实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引为连续的。
在第七方面的一种可能的实现方式中,P个RB集合中的每个RB集合所包含的RB数量相同。
在第七方面的一种可能的实现方式中,
该波束成形的CSI-RS所占的资源单元RE包括P组RE,P组RE分别用于确定P个RB集合的上行预编码信息,其中,P组RE中的不同组所占的RE数相同;
或,
该波束成形的CSI-RS所占的资源单元RE包括P组RE,P组RE分别用于确定P个RB集合的上行预编码信息,其中,P组RE中至少两组RE所占的RE数不同。
本申请实施例第七方面中,通信装置的组成模块还可以用于执行第三方面的各个可能实现方式中所执行的步骤,并实现相应的技术效果,具体均可以参阅第三方面,此处不再赘述。
本申请第八方面提供了一种通信装置,该装置可以实现上述第四方面或第四方面任一种可能的实现方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。例如,该装置可以为网络设备,或者,该装置可以为网络设备中的组件(例如处理器、芯片或芯片***等),或者该装置还可以为能实现全部或部分网络设备功能的逻辑模块或软件。
其中,该装置包括处理单元和收发单元;
该处理单元,用于确定第六指示信息,该第六指示信息用于指示波束成形的CSI-RS所占的资源单元RE;
该收发单元,用于发送该第六指示信息;
该处理单元,还用于确定该CSI-RS;其中,该CSI-RS用于进行信道测量,得到P个RB集合的上行预编码信息;其中,P个RB集合中的每个RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同;P大于或等于2;
该收发单元,还用于发送该CSI-RS;
该收发单元,还用于基于P个RB集合的上行预编码信息接收上行信息。
在第八方面的一种可能的实现方式中,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
在第八方面的一种可能的实现方式中,该上行信息承载于P个RB集合中的部分或全部RB。
在第八方面的一种可能的实现方式中,P个RB集合所包含的RB是为终端设备调度的上行资源。
在第八方面的一种可能的实现方式中,该收发单元,还用于发送第七指示信息,该第七指示信息用于指示P个RB集合中的每个RB集合包括该为该终端设备调度的上行资源中的一个或多个RB。
在第八方面的一种可能的实现方式中,
该第七指示信息包括P的取值或该每个RB集合所包含的RB数量。
在第八方面的一种可能的实现方式中,P个RB集合所包含的RB是该终端设备的上行BWP所对应的频域资源。
在第八方面的一种可能的实现方式中,该收发单元,还用于发送第八指示信息,该第八指示信息用于指示P个RB集合中的每个RB集合包括该终端设备的上行BWP所对应的频域资源中的一个或多个RB。
在第八方面的一种可能的实现方式中,
该第八指示信息包括P的取值或该每个RB集合所包含的RB数量。
在第八方面的一种可能的实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引为连续的。
在第八方面的一种可能的实现方式中,P个RB集合中的每个RB集合所包含的RB数量相同。
在第八方面的一种可能的实现方式中,
该波束成形的CSI-RS所占的资源单元RE包括P组RE,P组RE分别用于确定P个RB集合的上行预编码信息,其中,P组RE中的不同组所占的RE数相同;
或,
该波束成形的CSI-RS所占的资源单元RE包括P组RE,P组RE分别用于确定P个RB集合的上行预编码信息,其中,P组RE中至少两组RE所占的RE数不同。
本申请实施例第八方面中,通信装置的组成模块还可以用于执行第四方面的各个可能实现方式中所执行的步骤,并实现相应的技术效果,具体均可以参阅第四方面,此处不再赘述。
本申请实施例第九方面提供了一种通信装置,包括至少一个处理器,所述至少一个处理器与存储器耦合;
该存储器用于存储程序或指令;
该至少一个处理器用于执行该程序或指令,以使该装置实现前述第一方面或第一方面任意一种可能的实现方式所述的方法,或者,以使该装置实现前述第二方面或第二方面任意一种可能的实现方式所述的方法,或者,以使该装置实现前述第三方面或第三方面任意一种可能的实现方式所述的方法,或者,以使该装置实现前述第四方面或第四方面任意一种可能的实现方式所述的方法。
本申请实施例第十方面提供了一种通信装置,包括至少一个逻辑电路和输入输出接口;
该输入输出接口用于输入第一指示信息和DCI;
该输入输出接口用于输出上行信息;
该逻辑电路用于执行如前述第一方面或第一方面任意一种可能的实现方式所述的方法。
本申请实施例第十一方面提供了一种通信装置,包括至少一个逻辑电路和输入输出接口;
该输入输出接口用于输出第一指示信息和DCI;
该输入输出接口用于输入上行信息;
该逻辑电路用于执行如前述第二方面或第二方面任意一种可能的实现方式所述的方法。
本申请实施例第十二方面提供了一种通信装置,包括至少一个逻辑电路和输入输出接口;
该输入输出接口用于输入第六指示信息和CSI-RS;
该输入输出接口用于输出上行信息;
该逻辑电路用于执行如前述第三方面或第三方面任意一种可能的实现方式所述的方法。
本申请实施例第十三方面提供了一种通信装置,包括至少一个逻辑电路和输入输出接口;
该输入输出接口用于输出第六指示信息和CSI-RS;
该输入输出接口用于输入上行信息;
该逻辑电路用于执行如前述第四方面或第四方面任意一种可能的实现方式所述的方法。
本申请实施例第十四方面提供一种计算机可读存储介质,该计算机可读存储介质用于存储一个或多个计算机执行指令,当计算机执行指令被处理器执行时,该处理器执行如上述第一方面或第一方面任意一种可能的实现方式所述的方法,或,该处理器执行如上述第二方面或第二方面任意一种可能的实现方式所述的方法,或,该处理器执行如上述第三方面或第三方面任意一种可能的实现方式所述的方法,或,该处理器执行如上述第四方面或第四方面任意一种可能的实现方式所述的方法。
本申请实施例第十五方面提供一种计算机程序产品(或称计算机程序),当计算机程序产品被该处理器执行时,该处理器执行上述第一方面或第一方面任意一种可能实现方式的方法,或,该处理器执行上述第二方面或第二方面任意一种可能实现方式的方法,或,该处理器执行上述第三方面或第三方面任意一种可能实现方式的方法,或,该处理器执行上述第四方面或第四方面任意一种可能实现方式的方法。
本申请实施例第十六方面提供了一种芯片***,该芯片***包括至少一个处理器,用于支持通信装置实现上述第一方面或第一方面任意一种可能的实现方式中所涉及的功能,或,用于支持通信装置实现上述第二方面或第二方面任意一种可能的实现方式中所涉及的功能,或,用于支持通信装置实现上述第三方面或第三方面任意一种可能的实现方式中所涉及的功能,或,用于支持通信装置实现上述第四方面或第四方面任意一种可能的实现方式中所涉及的功能。
在一种可能的设计中,该芯片***还可以包括存储器,存储器,用于保存该通信装置必要的程序指令和数据。该芯片***,可以由芯片构成,也可以包含芯片和其他分立器件。可选的,所述芯片***还包括接口电路,所述接口电路为所述至少一个处理器提供程序指令和/或数据。
本申请实施例第十七方面提供了一种通信***,该通信***包括上述第五方面的通信装置和第六方面的通信装置,和/或,该通信***包括上述第七方面的通信装置和第八方面的通信装置,和/或,该通信***包括上述第九方面的通信装置,和/或,该通信***包括 上述第十方面的通信装置和第十一方面的通信装置,和/或,该通信***包括上述第十二方面的通信装置和第十三方面的通信装置。
其中,第五方面至第十七方面中任一种设计方式所带来的技术效果可参见上述第一方面至第四方面中不同实现方式所带来的技术效果,在此不再赘述。
应理解,对于设备中的部件来说,上文所述的“发送”可以称为“输出”,“接收”可以称为“输入”。
从以上技术方案可以看出,本申请实施例包括如下有益效果:
在一些实现方式中,网络设备基于DCI中的第二指示信息可以向终端设备指示两种或两种以上的上行预编码信息。相比于网络设备基于同一种相同的上行预编码信息的实现方式,使得网络设备可以向终端设备指示在不同RB集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。此外,终端设备所接收的第一指示信息用于指示第二指示信息所占的比特数,即终端设备可以基于该第一指示信息明确用于指示该P个RB集合的上行预编码信息的第二指示信息所占的比特数。使得终端设备在接收DCI之后,可以基于该第一指示信息所指示的比特数在该DCI中确定该第二指示信息,使得该终端设备无需盲检就可以获得DCI中的上行预编码信息的指示,以降低终端设备的能耗。
在另一些实现方式中,网络设备基于CSI-RS可以向终端设备指示两种或两种以上的上行预编码信息。相比于网络设备基于同一种相同的上行预编码信息的实现方式,使得网络设备可以向终端设备指示在不同RB集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。此外,终端设备所接收的第六指示信息用于指示波束成形的CSI-RS所占的RE,即终端设备可以基于该第六指示信息明确用于指示该P个RB集合的上行预编码信息的CSI-RS所占的RE。使得终端设备基于该第六指示信息接收CSI-RS,避免该终端设备得到错误的上行预编码信息。
附图说明
图1为本申请涉及的通信***的一个示意图;
图2a为本申请涉及的通信***的另一个示意图;
图2b为本申请涉及的通信***的另一个示意图;
图3a为本申请涉及的上行资源调度的一个示意图;
图3b为本申请涉及的上行资源调度的一个示意图;
图3c为本申请涉及的上行资源调度的一个示意图;
图4为本申请提供的通信方法的一个示意图;
图5为本申请提供的通信方法的另一个示意图;
图6a为本申请提供的信息承载方式的一个示意图;
图6b为本申请提供的信息承载方式的一个示意图;
图7为本申请提供的通信装置的一个示意图;
图8为本申请提供的通信装置的另一个示意图;
图9为本申请提供的通信装置的另一个示意图;
图10为本申请提供的通信装置的另一个示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
首先,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)终端设备:可以是能够接收网络设备调度和指示信息的无线终端设备,无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。
终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网或者互联网进行通信,终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。无线终端设备也可以称为***、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户站(subscriber station,SS)、用户端设备(customer premises equipment,CPE)、终端(terminal)、用户设备(user equipment,UE)、移动终端(mobile terminal,MT)等。终端设备也可以是可穿戴设备以及下一代通信***,例如,5G通信***中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。
(2)网络设备:可以是无线网络中的设备,例如网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN设备的举例为:5G通信***中的新一代基站(generation Node B,gNodeB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。另外,在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
其中,网络设备能够向终端设备发送配置信息(例如承载于调度消息和/或指示消息中),终端设备进一步根据该配置信息进行网络配置,使得网络设备与终端设备之间的网络配置对齐;或者,通过预设于网络设备的网络配置以及预设于终端设备的网络配置,使得网络设备与终端设备之间的网络配置对齐。具体来说,“对齐”是指网络设备与终端设备之间存在交互消息时,两者对于交互消息收发的载波频率、交互消息类型的确定、交互消息中所承载的字段信息的含义、或者是交互消息的其它配置的理解一致。
此外,在其它可能的情况下,网络设备可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请实施例并不限定。
网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)、用户面功能(user plane function,UPF)或会话管理功能(session management function,SMF)等。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片***,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
(3)配置与预配置:在本申请中,会同时用到配置与预配置。配置是指基站或服务器等网络设备通过消息或信令将一些参数的配置信息或参数的取值发送给终端,以便终端根据这些取值或信息来确定通信的参数或传输时的资源。预配置与配置类似,它可以是基站或服务器等网络设备通过通信链路或载波把参数信息或取值发送给终端的方式;也可以是将相应的参数或参数值定义(例如,在标准中明确规定参数的取值)出来,或通过提前将相关的参数或取值写到终端设备中的方式,本申请对此不做限定。进一步地,这些取值和参数,是可以变化或更新的。
(4)预编码技术:发送设备可以在已知信道状态的情况下,借助与信道相匹配的预编码矩阵来对待发送信号进行处理后发送,使得经过预编码的发送信号与信道相适配。从而,相比于接收设备接收未经过预编码的发送信号并消除信道间影响的处理过程,接收设备接收经过预编码的发送信号并消除信道间影响的处理过程的复杂度降低。因此,通过对待发送信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)得以提升。采用预编码技术,还可以实现发送设备与多个接收设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。
可选地,该发送设备可以为终端设备,该接收设备可以为网络设备;或,该发送设备可以为网络设备,该接收设备可以为终端设备;或,该发送设备可以为网络设备,该接收设备可以为网络设备;或,该发送设备可以为终端设备,该接收设备可以为终端设备。
应理解,有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,发送设备还可以通过其他方式进行预编码。例如,在 无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
(5)在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以理解为该指示信息携带A、直接指示A或间接指示A。
本申请中,指示信息所指示的信息,称为待指示信息。在具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令、媒体接入控制(media access control,MAC)层信令和物理层信令中的一种或者至少两种的组合。其中,无线资源控制信令例如包无线资源控制(radio resource control,RRC)信令;MAC层信令例如包括MAC控制元素(control element,CE);物理层信令例如包括下行控制信息(downlink control information,DCI)。
(6)本申请实施例中的术语“***”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本申请可以应用于长期演进(long term evolution,LTE)***、新无线(new radio,NR)***,或者是其它的通信***,其中,该通信***中包括网络设备和终端设备,网络设备作为配置信息发送实体,终端设备作为配置信息接收实体。具体来说,该通信***中存在实体向另一实体发送配置信息,并向另一实体发送数据、或接收另一实体发送的数据;另一个实体接收配置信息,并根据配置信息向配置信息发送实体发送数据、或接收配置信息发送实体发送的数据。其中,本申请可应用于处于连接状态或激活状态(ACTIVE)的终端设备、也可以应用于处于非连接状态(INACTIVE)或空闲态(IDLE)的终端设备。
请参阅图1,为本申请中通信***的一种示意图。图1中,示例性的示出了一个网络设备和6个终端设备,6个终端设备分别为终端设备1、终端设备2、终端设备3、终端设备4、终端设备5以及终端设备6等。在图1所示的示例中,是以终端设备1为智能茶杯,终端设备2为智能空调,终端设备3为智能加油机,终端设备4为交通工具,终端设备5为手机,终端设 备6为为打印机进行举例说明的。其中,发射端可以为网络设备也可以为终端设备,接收端可以为网络设备也可以为终端设备。
如图1所示,配置信息发送实体可以为网络设备,其中,网络设备以基站(Base Station)、各个终端设备为UE为例进行说明,配置信息接收实体可以为UE1-UE6,此时,基站和UE1-UE6组成一个通信***,在该通信***中,UE1-UE6可以发送上行数据给网络设备,网络设备需要接收UE1-UE6发送的上行数据。同时,网络设备可以向UE1-UE6发送配置信息。
示例性的,在图1中,UE4-UE6也可以组成一个通信***,此时,配置信息发送实体和接收实体可以都是UE,其中,UE5作为网络设备,即配置信息发送实体;UE4和UE6作为终端设备,即配置信息接收实体。例如车联网***中,UE5分别向UE4和UE6发送配置信息,并且接收UE4和UE6发送的上行数据;相应的,UE4和UE6接收UE5发送的配置信息,并向UE5发送上行数据。
请参阅图2a,为本申请中通信***的另一个示意图。如图2a所示,以网络设备包括TRP1、TRP2,终端设备包括UE1~UE5为例进行说明,其中,TRP1、TRP2和UE1~UE5可以组成一个通信***组成一个通信***。在该通信***中,UE1~UE5可以发送上行数据,UE1~UE5发送的上行数据可由其中一个TRP接收(如图2a中UE1和UE2所发送的上行数据由TRP1所接收,如图2a中UE5所发送的上行数据由TRP2所接收),也可以由两个TRP联合接收(如图2a中UE3所发送的上行数据由TRP1和TRP2所接收,如图2a中UE4所发送的上行数据由TRP1和TRP2所接收)。此外,网络设备(如图2a中TRP1、TRP2)可以发送下行信息给终端设备(如图2a中的UE1~UE5)。
可选地,本申请中,终端设备(如图2a中的UE1~UE5)的上行传输的流数和上行预编码由网络设备(如图2a中TRP1、TRP2)计算,并通过下行信息指示给终端设备。
示例性的,本申请涉及的网元结构如图2b所示,网络设备和终端设备均具备如下模块:
无线资源控制(radio resource control,RRC)信令交互模块:网络设备和终端设备可以基于该模块发送及接收RRC信令的模块。
媒体接入控制(media access control,MAC)信令交互模块:网络设备和终端设备可以基于该模块发送及接收MAC-CE信令的模块。
物理(physical,PHY)信令及数据交互模块:网络设备和终端设备可以基于该模块发送及接收上/下行控制信令,例如该信令可以包括物理下行控制信道(physical downlink control channel,PDCCH)所承载的信令、物理上行控制信道(physical uplink control channel,PUCCH)所承载的信令等。或者,网络设备和终端设备可以基于该模块发送及接收上/下行数据的模块,例如该数据可以包括物理下行共享信道(physical downlink shared channel,PDSCH)所承载的数据、物理上行数据信道(physical uplink shared channel,PUSCH)所承载的数据等。
应理解,上述内容仅仅为本申请所涉及的通信***的一些示例,本申请提供的通信方法及通信装置所应用的通信***可以包括但不限于上述通信***。
上述图1或图2a所示通信***可以应用于上行多用户多输入所输出(multiple user multiple input multiple output,MU MIMO)***,在MU MIMO***中,上行预编码对系 统的容量和频谱效率起到至关重要的作用。其中,网络设备在确定终端设备的上行预编码信息后,需要将该上行预编码信息指示给相应的终端设备。
目前,终端设备所使用的上行带宽包括上行BWP所对应的多个连续的频域资源,其中,该频域资源可以为资源块(resource block,RB)或资源块组(resource block group,RBG)。相应的,网络设备为该多个连续的频域资源指示相同的上行预编码信息。即网络设备所发送的上行预编码信息指示用于指示某一种上行预编码信息,使得终端设备基于该上行预编码信息在该多个连续的频域资源上发送上行信息。
可选地,网络设备所发送的上行预编码信息指示可以称为发射预编码矩阵指示(transmitted precoding matrix indicator,TPMI)。
示例性的,终端设备所使用的上行BWP所对应的频域资源,可以通过图3a所示示例实现。如图3a所示,以上行BWP所对应的频域资源包括在频域上连续的10个RB为例,即图3a中的RB1~RB10。其中,网络设备向终端设备所发送的TPMI中,指示该终端设备在该10个RB上使用的某一个上行预编码信息。此后,该端设备基于该上行预编码信息在该10个RB上发送上行信息。
然而,不同的频域资源所对应的传输信道是不同的,在上述上行预编码信息的指示方式中,终端设备在多个连续的频域资源上使用相同的上行预编码信息容易导致性能损失,影响通信效率。
此外,在MU MIMO***中,为了实现多用户的资源复用,网络设备有可能需要将BWP所对应的多个连续的频域资源分为多个部分的频域资源(其中,该多个部分的频域资源的不同部分可以存在重叠的频域资源,或,该多个部分的频域资源的不同部分不存在重叠的频域资源,此处不做限定),并将该多个部分的频域资源调度给不同的终端设备使用。考虑到每个RB上的信道是不一样的,从性能最优的角度来说,每个RB上采用的上行预编码应该根据其信道去相应地设计,因此不同RB上的最优预编码有可能是不一样的。网络设备若沿用上述上行预编码信息的指示方式,网络设备有可能为终端设备所调度的频域资源中的每一个RB发送一个TPMI,用以指示该终端设备在调度的频域资源上的每个RB所对应的上行预编码信息。
然而,对于某个终端设备而言,为该终端设备调度的频域资源大小并非固定不变的,相应的,这就导致网络设备向终端设备所发送的TPMI的数量有可能会发生变化,这将导致终端设备需要对网络设备所发送的信息进行盲检,才可以确定对应的上行预编码信息。下面将结合图3b和图3c所示实现示例进行说明。
一种实现方式中,网络设备为终端设备所调度的频域资源如图3b所示。在图3b中,仍以上行BWP所对应的频域资源包括在频域上连续的10个RB为例,即图3b中的RB1~RB10。其中,对于某个终端设备而言,图3b所示的实线框对应的RB是为该终端设备调度的频域资源,即图3b中的RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB;图3b所示的虚线框对应的RB是没有为该终端设备调度的频域资源(或称为该终端设备的不可用的频域资源),即图3b中的RB5、RB7,共计两个RB。
另一种实现方式中,网络设备为终端设备所调度的频域资源如图3c所示。在图3c中,仍以上行BWP所对应的频域资源包括在频域上连续的10个RB为例,即图3c中的RB1~RB10。其中,对于某个终端设备而言,图3c所示的实线框对应的RB是为该终端设备调度的频域资源,即图3c中的RB2、RB3、RB8、RB9,共计四个RB;图3c所示的虚线框对应的RB是没有为该终端设备调度的频域资源(或称为该终端设备的不可用的频域资源),即图3c中的RB1、RB4、RB5、RB6、RB7、RB10,共计六个RB。
应理解,图3b和图3c所示示例中,仅以上行BWP所对应的频域资源包括在频域上连续的10个RB为例进行说明。其中,上行BWP所对应的频域资源包括在频域上连续的多个频域资源,该“频域资源”的粒度可以为RE、RB、RBG或者其它的频域粒度,此处示例中仅以该“频域资源”的粒度为RB作为示例进行说明。此外,该“多个频域资源”中,“多个”的取值可以为大于或等于2的任意自然数,此处示例中仅以该“多个”取值为10为例进行示例性说明。
此处以TPMI所包含的比特数为6比特(bit)为例进行说明。在图3b所示场景中,网络设备需要向该终端设备发送的上行预编码指示包括“八个TPMI”,即48个bit;在图3c所示场景中,网络设备需要向该终端设备发送的上行预编码指示包括“四个TPMI”,即24个bit。由此可得,若将前述多个连续的频域资源中使用相同的预编码指示的方式,应用于图3b或图3c所示场景,将会导致上行预编码指示(即TPMI)的开销动态改变,从而大幅度增加终端设备的盲检压力。
综上所述,当前网络设备所提供的上行预编码指示的实现方式中,仅能实现基于同一种相同的上行预编码信息的指示;此外,若将该实现方式直接拓展至终端设备使用不固定的调度带宽的应用场景,将会导致终端设备基于所接收的信息进行盲检,导致终端设备的能耗较大。
为了解决上述技术问题,本申请提供了一种通信方法及通信装置,用于解决上述问题。下面将结合更多的附图和实施例,对本申请提供的通信方法及通信装置进行说明。
请参阅图4,为本申请提供的一种通信方法的一个示意图,该方法包括如下步骤。
S401.网络设备发送第一指示信息。
本实施例中,网络设备在步骤S401中发送第一指示信息,相应的,终端设备在步骤S401中接收该第一指示信息。其中,该第一指示信息用于指示第二指示信息所占的比特数,该第二指示信息用于指示P个RB集合的上行预编码信息。
可选地,网络设备在步骤S401中所发送的第一指示信息可以承载于RRC消息、MAC CE消息或物理下行控制信道(physical downlink control channel,PDCCH)消息,或者是其他的消息中,此处不做限定。
S402.网络设备发送DCI。
本实施例中,网络设备在步骤S402中发送DCI,相应的,终端设备在步骤S402中接收该DCI。其中,该DCI包括第二指示信息。
需要说明的是,本申请对步骤S401和步骤S402的执行先后顺序不做限定。例如,网络设备可以先执行步骤S401后执行步骤S402,一般认为在这种情况下,终端设备可以先接收第一指示信息后接收DCI。又如,网络设备可以先执行步骤S402后执行步骤S401,一般认为在这种情况下,终端设备可以先接收DCI后接收第一指示信息。
S403.终端设备在DCI中确定第二指示信息。
本实施例中,终端设备在步骤S402中接收DCI之后,该终端设备基于步骤S401所接收的第一指示信息在该DCI中确定第二指示信息。
可选地,第二指示信息在该DCI中的位置可以称为TPMI域(field)。也就是根据第一指示信息,可以确定DCI中TPMI域占用的比特数,从而确定TPMI域。
具体地,在步骤S403,终端设备在DCI中所确定的第二指示信息用于指示P个RB集合的上行预编码信息。其中,P个RB集合中的每个资源块RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同,且P大于或等于2。
在一种可能的实现方式中,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。具体地,在该P个RB集合所包含的RB中,有可能存在不同的RB所对应的信道信息相同或相近,使得网络设备可以为该不同的RB配置相同的上行预编码指示,并且将该不同的RB配置于同一个RB集合中。换言之,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
在一种可能的实现方式中,在DCI所包含的第二指示信息用于指示P个RB集合的上行预编码信息,该P个集合所包含的RB可以存在多种实现方式。下面将结合一些实现示例进一步描述。
实现方式一,P个RB集合所包含的RB是为该终端设备调度的上行资源。
在一种可能的实现方式中,第二指示信息所指示的P个RB集合所包含的RB是为该终端设备调度的上行资源所对应的RB,即网络设备向终端设备发送的上行预编码指示(即第二指示信息)用于指示为该终端设备调度的上行资源所对应的上行预编码信息。换言之,该终端设备基于P个RB集合的上行预编码信息发送上行信息包括:该终端设备基于该P个RB集合的上行预编码信息在为该终端设备调度的上行资源(即P个RB集合所包含的全部RB)上发送上行信息。从而,网络设备无需向终端设备指示没有为该终端设备调度的上行资源所对应的上行预编码信息,终端设备也无需读取没有为该终端设备调度的上行资源所对应的上行预编码信息,以节省信令开销并节省终端设备的能耗。
示例性的,在实现方式一中,该P个RB集合所包含的RB可以是为该终端设备调度的上行资源。此处结合前述图3b或图3c所示场景示例对实现方式一进行示例性描述。其中,该P个RB集合所包含的RB可以是上行BWP所对应的10个RB中调度给终端设备使用的RB,即P个RB集合所包含的RB为图3b所示的“RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB”,或,P个RB集合所包含的RB为图3c所示的“RB2、RB3、RB8、RB9,共计四个RB”。
可选地,在实现方式一中,该方法还包括:该终端设备接收来自网络设备的第三指示信息,该第三指示信息用于指示P个RB集合中的每个RB集合包括该为该终端设备调度的上行资源中的一个或多个RB。
可选地,网络设备所发送的第三指示信息可以承载于RRC消息、MAC CE消息或PDCCH消息,或者是其他的消息中,此处不做限定。
需要说明的是,该终端设备可以在步骤S404之前的任意一个过程接收该第三指示信息,例如,该终端设备可以在步骤S403之后(或之前)接收该第三指示信息,该终端设备可以在步骤S402之后(或之前)接收该第三指示信息,该终端设备可以在步骤S401之后(或之前)接收该第三指示信息,此处不做限定。
具体地,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,该第三指示信息用于指示P个RB集合中的RB与为该终端设备调度的上行资源中的RB之间的关联关系。使得终端设备可以基于该关联关系和第二指示信息确定为该终端设备调度的上行资源所对应的上行预编码信息,并进一步在为该终端设备调度的上行资源发送上行信息。
可选地,该第三指示信息包括P的取值或P个RB集合中每个RB集合所包含的RB数量。具体地,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,该P个RB集合中的不同RB集合所包含的RB数量可以是相同的。相应的,网络设备所发送的第三指示信息可以包括P的取值,使得终端设备基于该P的取值确定P个RB集合中每一个RB集合所包含的RB;或,网络设备所发送的第三指示信息可以包括P个RB集合中每个RB集合所包含的RB数量,使得终端设备基于该P个RB集合中每个RB集合所包含的RB数量确定P个RB集合中每一个RB集合所包含的RB。从而,终端设备可以基于所确定的P个RB集合中每一个RB集合所包含的RB以及相应的上行预编码信息发送上行信息。
可选地,该P个RB集合中的不同RB集合所包含的RB数量也可以是不都相同的,即该P个RB集合中的至少两个RB集合所包含的RB数量不同。
示例性的,此处仍以前述图3b所示实现场景作为示例进一步说明。其中,P个RB集合所包含的RB是为该终端设备调度的上行资源,即P个RB集合所包含的RB为图3b所示的“RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB”。
在图3b所示示例中,该终端设备基于所获取的第三指示信息确定P个RB集合中的不同RB集合所包含的RB。换言之,该终端设备基于该第三指示信息确定:P个RB集合中的第一个RB集合所包含的RB为图3b所示的“八个RB”中的一个或多个RB,P个RB集合中的第二个RB集合所包含的RB为图3b所示的“八个RB”中的一个或多个RB...以此类推,终端设备可以基于第三指示信息确定P个RB集合中的不同RB所包含的RB。
在一种实现方式中,若该P个RB集合中的不同RB集合所包含的RB数量是相同的情况下,第三指示信息可以通过RB索引的方式向终端设备指示P个RB集合中的不同RB集合所包含的RB。
可选地,该P个RB集合中的不同RB集合所包含的RB索引可以沿用上行BWP所使用的RB索引。在这种情况下,以P个RB集合中的每个RB集合所包含的RB数量为2作为示例,在图3b所示场景中,网络设备所发送的第三指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB1、RB2”;
第二个RB集合所包含的RB为“RB3、RB4”;
第三个RB集合所包含的RB为“RB6、RB8”;
第四个RB集合所包含的RB为“RB9、RB10”。
可选地,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,为该终端设备调度的上行资源在频域上有可能不是连续的上行资源,即为该终端设备调度的上行资源所对应的RB在上行BWP上的RB索引有可能是不连续的。换言之,在该实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在上行BWP上的RB索引有可能是不连续的。在这种情况下,该终端设备可以为该终端设备调度的上行资源所包含的RB重新排序,得到升序或降序的RB索引,使得在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在该升序或降序的RB索引中为连续的。在这种情况下,此处仍以P个RB集合中的每个RB集合所包含的RB数量为2作为示例。
若在图3b所示场景中,对P个RB集合所包含的八个RB按照升序的方式排序,则图3b所示在上行BWP中为该终端设备调度的频域资源“RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB”的RB索引缺了“RB5和RB7”是不连续的,基于对该“八个RB”进行重新排序后,可得“RB1、RB2、RB3、RB4、RB5、RB6、RB7、RB8,共计八个RB”。在这种情况下,网络设备所发送的第三指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB1、RB2”;
第二个RB集合所包含的RB为“RB3、RB4”;
第三个RB集合所包含的RB为“RB5、RB6”;
第四个RB集合所包含的RB为“RB7、RB8”。
若在图3b所示场景中,对P个RB集合所包含的八个RB按照降序的方式排序,则图3b所示在上行BWP中为该终端设备调度的频域资源“RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB”进行重新排序后,可得“RB8、RB7、RB6、RB5、RB4、RB3、RB2、RB1,共计八个RB”。在这种情况下,网络设备所发送的第三指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB8、RB7”;
第二个RB集合所包含的RB为“RB6、RB5”;
第三个RB集合所包含的RB为“RB4、RB3”;
第四个RB集合所包含的RB为“RB2、RB1”。
在另一种实现方式中,若该P个RB集合中的不同RB集合所包含的RB数量不一定相同,即该P个RB集合中的至少两个RB集合所包含的RB数量不同的情况下,第三指示信息可以通过 RB索引的方式向终端设备指示P个RB集合中的不同RB集合所包含的RB。在下述示例中,以相邻的每一段连续的RB作为P个RB集合中的不同RB作为示例进行说明。
可选地,该P个RB集合中的不同RB集合所包含的RB索引可以沿用上行BWP所使用的RB索引。在这种情况下,在图3b所示场景中,网络设备所发送的第三指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB1、RB2、RB3、RB4”;
第二个RB集合所包含的RB为“RB6”;
第三个RB集合所包含的RB为“RB8、RB9、RB10”。
可选地,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,为该终端设备调度的上行资源在频域上有可能不是连续的上行资源,即为该终端设备调度的上行资源所对应的RB在上行BWP上的RB索引有可能是不连续的。换言之,在该实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在上行BWP上的RB索引有可能是不连续的。在这种情况下,该终端设备可以为该终端设备调度的上行资源所包含的RB重新排序,得到升序或降序的RB索引,使得在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在该升序或降序的RB索引中为连续的。在这种情况下,此处仍以P个RB集合中的每个RB集合所包含的RB数量为2作为示例。
若在图3b所示场景中,对P个RB集合所包含的八个RB按照升序的方式排序,则图3b所示在上行BWP中为该终端设备调度的频域资源“RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB”的RB索引缺了“RB5和RB7”是不连续的,基于对该“八个RB”进行重新排序后,可得“RB1、RB2、RB3、RB4、RB5、RB6、RB7、RB8,共计八个RB”。在这种情况下,网络设备所发送的第三指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB1、RB2、RB3、RB4”;
第二个RB集合所包含的RB为“RB5”;
第三个RB集合所包含的RB为“RB6、RB7、RB8”。
若在图3b所示场景中,对P个RB集合所包含的八个RB按照降序的方式排序,则图3b所示在上行BWP中为该终端设备调度的频域资源“RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB”进行重新排序后,可得“RB8、RB7、RB6、RB5、RB4、RB3、RB2、RB1,共计八个RB”。在这种情况下,网络设备所发送的第三指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB8、RB7、RB6、RB5”;
第二个RB集合所包含的RB为“RB4”;
第三个RB集合所包含的RB为“RB3、RB2、RB1”。
需要说明的是,上述示例仅仅为示例性描述,网络设备可以依据实际的信道情况,对为该终端设备调度的上行资源(例如图3b中的“RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB”或图3c中的“RB2、RB3、RB8、RB9,共计四个RB”)中,信道相同或相近的RB作为同一个RB集合,以确定该P个RB集合中每一个RB集合所包含的RB,并通过该第三指示信息中向该终端设备指示。
应理解,上述涉及索引排序的实现示例中,以编号“1”作为索引的起始为例进行说明,在实际应用中,还可以将其他的编号作为索引的起始,例如“0”、“2”或者是其他的取值,此处不做限定。
实现方式二,P个RB集合所包含的RB是该终端设备的上行带宽部分(bandwidth part,BWP)所对应的频域资源。
在一种可能的实现方式中,第二指示信息所指示的P个RB集合所包含的RB是该终端设备的上行BWP所对应的频域资源,即网络设备向终端设备发送的上行预编码指示(即第二指示信息)用于指示为该终端设备的上行BWP所对应的频域资源的上行预编码信息。换言之,该终端设备基于P个RB集合的上行预编码信息发送上行信息包括:该终端设备基于该P个RB集合的上行预编码信息确定为该终端设备调度的上行资源对应的上行预编码信息之后,再基于为该终端设备调度的上行资源对应的上行预编码信息在为该终端设备调度的上行资源(即P个RB集合所包含的部分RB)上发送上行信息。从而,网络设备可以向终端设备指示在上行BWP中不同RB集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。
示例性的,在实现方式二中,该P个RB集合所包含的RB可以是为该终端设备调度的上行资源。此处结合前述图3b所示场景示例对实现方式二进行示例性描述。其中,该P个RB集合所包含的RB可以是上行BWP所对应的10个RB中调度给终端设备使用的RB,即P个RB集合所包含的RB即为图3b所示的“RB1~RB10,共计十个RB”;而图3b所示在上行BWP中为该终端设备调度的频域资源“RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB”。其中,终端设备在接收第二指示信息之后,可以基于第二指示信息明确该“八个RB”的上行预编码信息,以确定在步骤S504中所发送的上行信息所对应的上行预编码信息。
可选地,在上述图3b所示实现示例中,由于存在“RB5和RB7,共计两个RB”没有为该终端设备所调度,即终端设备后续可能无法基于该“两个RB”发送上行信息;相应的,在该实现方式中,终端设备可以基于第二指示信息确定该“八个RB”对应的上行预编码信息即可,而无需进一步基于该第二指示信息确定该“两个RB”对应的上行预编码信息,可以节省该终端设备的能耗。
可选地,在实现方式二中,该方法还包括:该终端设备接收第四指示信息,该第四指示信息用于指示P个RB集合中的每个RB集合包括该终端设备的上行BWP所对应的频域资源中的一个或多个RB。
可选地,网络设备所发送的第四指示信息可以承载于RRC消息、MAC CE消息或PDCCH消息,或者是其他的消息中,此处不做限定。
需要说明的是,该终端设备可以在步骤S404之前的任意一个过程接收该第四指示信息,例如,该终端设备可以在步骤S403之后(或之前)接收该第四指示信息,该终端设备可以在步骤S402之后(或之前)接收该第四指示信息,该终端设备可以在步骤S401之后(或之前)接收该第四指示信息,此处不做限定。
具体地,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,该第三指示信息用于指示P个RB集合中的RB与上行BWP所对应的频域资源中的RB之间的关联关系。使得终端设备可以基于该关联关系和第二指示信息确定,在上行BWP所对应的频域资源中为该终端设备调度的上行资源所对应的上行预编码信息,并进一步在为该终端设备调度的上行资源发送上行信息。
可选地,该第四指示信息包括P的取值或该每个RB集合所包含的RB数量。具体地,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,该P个RB集合中的不同RB集合所包含的RB数量可以是相同的。相应的,网络设备所发送的第四指示信息可以包括P的取值,使得终端设备基于该P的取值确定P个RB集合中每一个RB集合所包含的RB;或,网络设备所发送的第四指示信息可以包括P个RB集合中每个RB集合所包含的RB数量,使得终端设备基于该P个RB集合中每个RB集合所包含的RB数量确定P个RB集合中每一个RB集合所包含的RB。从而,终端设备可以基于所确定的P个RB集合中每一个RB集合所包含的RB,以及,为该终端设备调度的上行资源的上行预编码信息发送上行信息。
可选地,该P个RB集合中的不同RB集合所包含的RB数量也可以是不一定相同的,即该P个RB集合中的至少两个RB集合所包含的RB数量不同。
示例性的,此处仍以前述图3a所示实现场景作为示例进一步说明。其中,P个RB集合所包含的RB是为上行BWP所对应的频域资源,即P个RB集合所包含的RB为图3a所示的“RB1~RB10,共计十个RB”。
在图3a所示示例中,该终端设备基于所获取的第四指示信息确定P个RB集合中的不同RB集合所包含的RB。换言之,该终端设备基于该第四指示信息确定:P个RB集合中的第一个RB集合所包含的RB为图3a所示的“十个RB”中的一个或多个RB,P个RB集合中的第二个RB集合所包含的RB为图3a所示的“十个RB”中的一个或多个RB...以此类推,终端设备可以基于第四指示信息确定P个RB集合中的不同RB所包含的RB。
在一种实现方式中,若该P个RB集合中的不同RB集合所包含的RB数量是相同的情况下,第四指示信息可以通过RB索引的方式向终端设备指示P个RB集合中的不同RB集合所包含的RB。其中,在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在为该上行BWP所对应的频域资源中为连续的。换言之,该终端设备确定上行BWP所对应的频域资源所包含的RB的排序,得到升序或降序的RB索引,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在该升序或降序的RB索引中为连续的。
可选地,在这种情况下,以P个RB集合中的每个RB集合所包含的RB数量为2作为示例,若RB索引在升序的RB索引中为连续的,在图3a所示场景中,网络设备所发送的第三指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB1、RB2”;
第二个RB集合所包含的RB为“RB3、RB4”;
第三个RB集合所包含的RB为“RB5、RB6”;
第四个RB集合所包含的RB为“RB7、RB8”;
第五个RB集合所包含的RB为“RB9、RB10”。
可选地,在这种情况下,以P个RB集合中的每个RB集合所包含的RB数量为2作为示例,若RB索引在降序的RB索引中为连续的,在图3a所示场景中,网络设备所发送的第三指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB10、RB9”;
第二个RB集合所包含的RB为“RB8、RB7”;
第三个RB集合所包含的RB为“RB6、RB5”;
第四个RB集合所包含的RB为“RB4、RB3”;
第五个RB集合所包含的RB为“RB2、RB1”。
在另一种实现方式中,若该P个RB集合中的不同RB集合所包含的RB数量不一定相同,即该P个RB集合中的至少两个RB集合所包含的RB数量不同的情况下,第四指示信息可以通过RB索引的方式向终端设备指示P个RB集合中的不同RB集合所包含的RB。在下述示例中,以相邻的每一段连续的RB作为P个RB集合中的不同RB作为示例进行说明。
可选地,在图3a所示场景中,网络设备所发送的第四指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB1、RB2、RB3、RB4、RB5”;
第二个RB集合所包含的RB为“RB6、RB7”;
第三个RB集合所包含的RB为“RB8、RB9、RB10”。
需要说明的是,上述示例仅仅为示例性描述,网络设备可以依据实际的信道情况,对上行BWP所对应的频域资源(例如图3a中的RB1~RB10)中,信道相同或相近的RB作为同一个RB集合,以确定该P个RB集合中每一个RB集合所包含的RB,并通过该第四指示信息中向该终端设备指示。
应理解,上述涉及索引排序的实现示例中,以编号“1”作为索引的起始为例进行说明,在实际应用中,还可以将其他的编号作为索引的起始,例如“0”、“2”或者是其他的取值,此处不做限定。
在一种可能的实现方式中,P个RB集合的上行预编码信息基于第一码本所确定,其中,该第一码本为以下任一项:
预配置的码本;或,
基于P的取值在至少两个码本中所确定的码本;或,
基于P的取值所生成的DFT过采样矩阵所对应的码本。
具体地,终端设备可以在第一码本中基于该第二指示信息确定该P个RB集合的上行预编码信息,其中,该第一码本可以基于上述多种方式确定,以提升方案实现的灵活性。
在一种可能的实现方式中,P个RB集合的上行预编码信息基于第一码本所确定;该方法还包括:该终端设备接收第五指示信息,该第五指示信息用于指示该第一码本为以下任一项:
预配置的码本;或,
基于P的取值在至少两个码本中所确定的码本;或,
基于P的取值所生成的DFT过采样矩阵所对应的码本。
可选地,网络设备所发送的第五指示信息可以承载于RRC消息、MAC CE消息或PDCCH消息,或者是其他的消息中,此处不做限定。
具体地,终端设备还可以基于网络设备所发送的第五指示信息,明确用于确定该P个RB集合的上行预编码信息的第一码本为多种实现方式中的某一种实现方式所确定,并进一步明确在P个RB集合的上行预编码信息。
可选地,在第一码本为预配置的码本的情况下,终端设备可以在该预配置的码本中基于第二指示信息确定该P个RB集合的上行预编码信息。
示例性的,此处以该终端设备配备四根发射天线为例,该预配置的码本可以为以下任意一项:
全相干码本,即R16协议3GPP TS 38.212中Table 7.3.1.1.2-2中codebookSubset=fullyAndPartialAndNonCoherent列;或,
部分相干码本,即R16协议3GPP TS 38.212中Table 7.3.1.1.2-2中codebookSubset=PartialAndNonCoherent列;
不相干码本,即R16协议3GPP TS 38.212中Table 7.3.1.1.2-2中codebookSubset=nonCoherent列。
可选地,在第一码本为基于P的取值在至少两个码本中所确定的码本的情况下,终端设备可以基于P的取值在至少两个码本中确定某一个码本,再进一步基于该第二指示信息在所确定的码本中确定P个RB集合的上行预编码信息。
进一步可选地,该至少两个码本中的任意两个码本之间是不同的。其中,该至少两个码本中的任意两个码本之间可以是完全不同的,或者,该至少两个码本中的任意两个码本之间可以是不完全相同的(即该至少两个码本中的任意两个码本之间可以是存在部分相同的上行预编码信息且存在部分不相同的上行预编码信息)。
示例性的,此处以该任意两个码本包括第一个码本和第二个码本为例进行说明,其中,第一个码本可以包括A项上行预编码信息,第二个码本也可以包括B项上行预编码信息,且A和B均为大于或等于1的整数。上述实现方式包括:
在该至少两个码本中的任意两个码本之间可以是完全不同的情况下,A项上行预编码信息中的任意一项与B项上行预编码信息中的任意一项均不相同;
在该至少两个码本中的任意两个码本之间可以是不完全相同的情况下,A项上行预编码信息中存在至少一项上行预编码信息与B项上行预编码信息中的某一项相同。
示例性的,此处以该终端设备配备四根发射天线为例,若终端设备在第二指示信息中基于P的取值确定P个RB集合中的某一个RB集合所占的比特数为x,则该终端设备可以依据如下实现方式该RB集合确定该RB集合中的RB对应的上行预编码信息所对应的第一码本如下所示:
若x取值为6,则使用全相干码本作为第一码本,即R16协议3GPP TS 38.212中Table 7.3.1.1.2-2中codebookSubset=fullyAndPartialAndNonCoherent列;或,
若x取值为5,则部分相干码本作为第一码本,即R16协议3GPP TS 38.212中Table 7.3.1.1.2-2中codebookSubset=PartialAndNonCoherent列;
若x取值为4,则使用不相干码本作为第一码本,即R16协议3GPP TS 38.212中Table 7.3.1.1.2-2中codebookSubset=nonCoherent列。
若x取值为3,则使用不相干码本的一部分作为第一码本,即将不相干码本中的rank 1和rank 2分别移除两个码字;
若x取值为2,则使用不相干码本的一部分作为第一码本,即每个rank只保留一个码字;
此外,若x取值为7,则选用4T单流传输28个码字,在每相邻两个码字间***个码字,得到第一码本;
若x取值为8,则在“x取值为7的码本中”每相邻两个码字间***个码字,得到第一码本;
若x取值为9,则在“x取值为8的码本中”每相邻两个码字间***个码字,得到第一码本;
以此类推,当x取值大于9时,可以基于“x取值为9的码本中”进一步经过类似的处理得到第一码本。
可选地,在第一码本为基于P的取值所生成的DFT过采样矩阵所对应的码本的情况下,终端设备可以基于P的取值生成DFT过采样矩阵之后,确定该DFT过采样矩阵所对应的码本,再进一步基于该第二指示信息在该DFT过采样矩阵所对应的码本中确定P个RB集合的上行预编码信息。
示例性的,该实现过程包括:
A)矩阵Q的第(n,m)个元素
Figure PCTCN2022140220-appb-000001
其中N=4,O是过采样倍数,n=0,1,2,3,m=0,1,…,ON-1;
B)矩阵Q的每一列对应一种rank 1的码本;
C)若终端设备在第二指示信息中基于P的取值确定P个RB集合中的某一个RB集合所占的比特数为x,则该终端设备基于“x”计算所需要的码本数目(即2^x)来改变过采样倍数,然后从矩阵Q中挑选列向量以及其组合作为第一码本。
在一种可能的实现方式中,该第二指示信息包括P个信息,P个信息分别用于指示P个RB集合的上行预编码信息,其中,P个信息中的不同信息在该DCI中所占的比特数相同。具体地,终端设备在步骤S403中,在DCI中基于第一指示信息确定第二指示信息之后,该终端设备可以将第二指示信息所占比特数等分成P个信息解读,以确定第二指示信息所包含的P个信息,并基于该P个信息的部分信息或全部信息确定承载该上行信息的上行资源所对应的上行预编码信息。
应理解,“P的取值”可以基于前述第三指示信息所确定的方式实现,也可以为预配置于该终端设备的方式实现,例如前述网络设备或其它的网络设备在步骤S403之前通过通信链路或载波把“P的取值”发送给终端设备的方式实现,或者,将“P的取值”定义(例 如,在标准/协议中明确规定参数的取值)的方式实现,或者,通过提前将“P的取值”写到终端设备中的方式实现,此处不做限定。
可选地,在P个信息中的不同信息在该DCI中所占的比特数相同的情况下,即P个信息中的不同信息所指示的上行预编码信息的索引总数是相同的情况下,P个RB集合中不同RB集合的上行预编码信息均可以通过同一个码本所确定。从而,使得终端设备可以基于该第二指示信息,在同一个码本中确定P个RB集合中不同RB集合的上行预编码信息,易于实现。
示例性的,该P个信息中每一个信息所占的比特数可以通过第二指示信息所占的比特数经过数学运算所确定,例如该数学运算可以包括:向上取整、向下取整、取平均或其它方式,此处不做限定。
在另一种可能的实现方式中,该第二指示信息包括P个信息,P个信息分别用于指示P个RB集合的上行预编码信息,其中,P个信息中的至少两个信息在该DCI中所占的比特数不同。具体地,终端设备在步骤S403中,在DCI中基于第一指示信息确定第二指示信息之后,该终端设备可以基于P个信息中不同信息所占的比特数,将第二指示信息所占比特数分成P个信息,以确定第二指示信息所包含的P个信息,并基于该P个信息的部分信息或全部信息确定承载该上行信息的上行资源所对应的上行预编码信息。
可选地,在P个信息中的至少两个信息在该DCI中所占的比特数不同的情况下,即P个信息中的不同信息所指示的上行预编码信息的索引总数有可能不同的情况下,该至少两个信息对应的至少两个RB集合的上行预编码信息可以通过不同的码本所确定。从而,使得终端设备可以基于该第二指示信息,在至少两个不同的码本中确定P个RB集合中不同RB集合的上行预编码信息,以便于网络设备灵活地选用不同的码本用以指示P个RB集合的上行预编码信息。
此外,在P个信息中的至少两个信息在该DCI中所占的比特数不同的情况下,网络设备无需选用同一码本也可以实现上行预编码信息的指示。从而,在网络设备已通过第一指示信息配置该第二指示信息所占的比特数的情况下,即该第二指示信息所占的比特数不变的情况下,网络设备若选用某个上行预编码信息的索引数量较小的码本,可以通过较少的比特数即可指示某个RB集合的上行预编码信息;相应的,网络设备若选用某个上行预编码信息的索引数量较多的码本,可以通过较多的比特数指示较多的上行预编码信息的索引所对应的上行预编码信息。
S404.终端设备发送上行信息。
本实施例中,终端设备在步骤S404中发送上行信息,相应的,网络设备在步骤S404中接收该上行信息。
具体地,终端设备在步骤S403中获得第二指示信息,并基于该第二指示信息确定P个RB集合的上行预编码信息之后,该终端设备在步骤S404中可以基于该P个RB集合的上行预编码信息发送上行信息。应理解,终端设备在步骤S404中可以基于该P个RB集合的上行预编码信息发送上行信息包括:终端设备基于该P个RB集合的上行预编码信息对待发送信号进行预编码处理得到该上行信息,并在步骤S404中发送该上行信息。
相应的,该网络设备在步骤S404中可以基于该P个RB集合的上行预编码信息接收上行信息。应理解,网络设备在步骤S404中基于P个RB集合的上行预编码信息接收上行信息,包括:该网络设备接收上行信息,该上行信息为基于P个RB集合的上行预编码信息对待发送信息进行预编码处理所得到的信息。
在一种可能的实现方式中,该终端设备在步骤S404所发送的上行信息承载于P个RB集合中的部分或全部RB。具体地,网络设备可以为终端设备调度该P个RB集合所包含的部分RB或全部RB,相应的,该终端设备所发送的上行信息所承载的上行资源可以包括该P个RB集合中的部分RB或全部RB。
可选地,终端设备在步骤S404发送上行信息之前,该终端设备接收来自该网络设备的用于指示为该终端设备调度的上行资源的指示信息,使得该终端设备可以基于该指示信息所指示的为该终端设备调度的上行资源,在步骤S404中发送上行信息。
基于上述技术方案,终端设备在步骤S401中接收用于指示第二指示信息所占的比特数的第一指示信息之后,在步骤S403中,该终端设备基于该比特数在步骤S402所接收的DCI中确定第二指示信息。其中,该第一指示信息用于指示第二指示信息所占的比特数,该第二指示信息用于指示P个RB集合的上行预编码信息;其中,P大于或等于2且P个RB集合中的不同RB集合所对应的上行预编码信息不同。换言之,网络设备基于DCI中的第二指示信息可以向终端设备指示两种或两种以上的上行预编码信息。相比于网络设备基于同一种相同的上行预编码信息的实现方式,使得网络设备可以向终端设备指示在不同RB集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。
此外,终端设备在步骤S401中所接收的第一指示信息用于指示第二指示信息所占的比特数,即终端设备可以基于该第一指示信息明确用于指示该P个RB集合的上行预编码信息的第二指示信息所占的比特数。使得终端设备在接收DCI之后,可以基于该第一指示信息所指示的比特数在该DCI中确定该第二指示信息,使得该终端设备无需盲检就可以获得DCI中的上行预编码信息的指示,以降低终端设备的能耗。
请参阅图5,为本申请提供的一种通信方法的一个示意图,该方法包括如下步骤。
S501.网络设备发送第六指示信息。
本实施例中,网络设备在步骤S501中发送第六指示信息,相应的,终端设备在步骤S501中接收该第六指示信息。其中,该第六指示信息用于指示波束成形的CSI-RS所占的RE。
具体地,P个RB集合中的每个资源块RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同,且P大于或等于2。
可选地,网络设备所发送的第六指示信息可以承载于RRC消息、MAC CE消息或PDCCH消息,或者是其他的消息中,此处不做限定。
S502.网络设备发送波束成形的CSI-RS。
本实施例中,网络设备在步骤S502中发送CSI-RS,相应的,在步骤S502中,终端设备基于步骤S501中的第六指示信息接收该CSI-RS。
应理解,第六指示信息用于指示波束成形的CSI-RS所占的RE包括:第六指示信息用于指示波束成形的CSI-RS所占的RE数,和/或,第六指示信息用于指示波束成形的CSI-RS所占的RE位置。
具体地,网络设备在步骤S502所发送的CSI-RS可以用于承载一个或多个终端设备的上行预编码信息的指示。
例如,当该网络设备在步骤S502所发送的CSI-RS用于承载某一个终端设备的上行预编码指示的情况下,该网络设备在步骤S501所发送的第六指示信息用于指示承载该CSI-RS的RE。
又如,当该网络设备在步骤S502所发送的CSI-RS用于承载多个终端设备的上行预编码信息的指示的情况下,若多个终端设备与该网络设备的通信信道均相同或相近,则该网络设备在步骤S501所发送的第六指示信息用于指示承载该CSI-RS的RE,且不同的终端设备可以基于该CSI-RS获取得到相同的上行预编码指示。
又如,当该网络设备在步骤S502所发送的CSI-RS用于承载多个终端设备的上行预编码信息的指示的情况下,则该网络设备在步骤S501所发送的第六指示信息可以向不同的终端设备指示承载该CSI-RS的RE,且不同的终端设备获取得到各自的上行预编码指示。换言之,该CSI-RS所占的频域资源分为多份频域资源,且多个频域资源分别对应于多个终端,网络设备可以在步骤S501中向不同的终端设备分别发送不同的第六指示信息,以使得终端设备在步骤S502中基于该第六指示信息获取得到各自的上行预编码指示。下面将结合图6a和图6b所示示例对该实现方式进行说明。
例如,如图6a所示,网络设备在步骤S501向终端设备发送的第六指示信息指示32个RE,其中,该32个RE对应于图示中时域索引为“3-10”且频域索引为“0-3”。
又如,如图6b所示,网络设备在步骤S501向终端设备发送的第六指示信息指示64个RE,其中,该64个RE对应于图示中时域索引为“3-10”且频域索引为“0-7”。
应理解,上述实现示例中,以第六指示信息所指示的RE数量为多个,该多个RE在频域上连续且在时域上连续作为示例进行说明。在实际应用中,第六指示信息在指示多个RE时,也可以指示多个不连续的RE,或者部分连续且部分不连续的RE,此处不做限定。
S503.终端设备基于波束成形的CSI-RS进行信道测量,得到P个RB集合的上行预编码信息。
本实施例中,终端设备在步骤S502中接收CSI-RS之后,在步骤S503中,该终端设备基于波束成形的CSI-RS进行信道测量,得到P个RB集合的上行预编码信息。其中,P个RB集合中的每个RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同,且P大于或等于2。
示例性的,网络设备在步骤S502中发送CSI-RS之前,该网络设备首先需要确定该终端设备在P个RB集合上的上行预编码信息。如步骤S502所示,网络设备在步骤S502所发送的CSI-RS可以用于承载一个或多个终端设备的上行预编码信息的指示,此处将一个或多个终端设备的数量即为k,k大于或等于1。对于终端设备k,其第m个RB集合的上行预编码向量记为
Figure PCTCN2022140220-appb-000002
其中,m∈{1,…,P},“UL”表示上行(uplink)。假设第一指示信息指示为该终端 设备k指示第m个RB集合的上行预编码向量
Figure PCTCN2022140220-appb-000003
所配置的RE为RE n,终端设备k在RE n上的下行信道信息记为
Figure PCTCN2022140220-appb-000004
网络设备计算RE n上发送CSI-RS给终端设备k来指示第m个RB集合的上行预编码向量
Figure PCTCN2022140220-appb-000005
所需要的下行预编码向量记为
Figure PCTCN2022140220-appb-000006
满足:
Figure PCTCN2022140220-appb-000007
网络设备将计算出的
Figure PCTCN2022140220-appb-000008
乘以CSI-RS,以得到经过波束成形处理的CSI-RS,然后经过下行信道
Figure PCTCN2022140220-appb-000009
在步骤S503中发送给终端设备;
此后,终端设备k在步骤S503中接收得到的信号记为y k,m,y k,m满足:
Figure PCTCN2022140220-appb-000010
其中,N k,m是接收噪声,终端设备k可以基于接收得到的CSI-RS的信息以及信号y k,m根据公式(2)确定
Figure PCTCN2022140220-appb-000011
并且,进一步基于公式(1)可以确定第m个RB集合的上行预编码信息。
在一种可能的实现方式中,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。具体地,在该P个RB集合所包含的RB中,有可能存在不同的RB所对应的信道信息相同或相近,使得网络设备可以为该不同的RB配置相同的上行预编码指示,并且将该不同的RB配置于同一个RB集合中。换言之,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
在一种可能的实现方式中,终端设备在步骤S503中基于CSI进行信道测量可以得到P个RB集合的上行预编码信息,该P个集合所包含的RB可以存在多种实现方式。下面将结合一些实现示例进一步描述。
实现方式一,P个RB集合所包含的RB是为该终端设备调度的上行资源。
在一种可能的实现方式中,该P个RB集合所包含的RB是为该终端设备调度的上行资源所对应的RB,即网络设备向终端设备发送的上行预编码指示(即CSI-RS所承载的信息)用于指示为该终端设备调度的上行资源所对应的上行预编码信息。换言之,该终端设备基于P个RB集合的上行预编码信息发送上行信息包括:该终端设备基于该P个RB集合的上行预编码信息在为该终端设备调度的上行资源(即P个RB集合所包含的全部RB)上发送上行信息。从而,网络设备无需向终端设备指示没有为该终端设备调度的上行资源所对应的上行预编码信息,终端设备也无需读取没有为该终端设备调度的上行资源所对应的上行预编码信息,以节省信令开销并节省终端设备的能耗。
示例性的,在实现方式一中,该P个RB集合所包含的RB可以是为该终端设备调度的上行资源。此处结合前述图3b或图3c所示场景示例对实现方式一进行示例性描述。其中,该P个RB集合所包含的RB可以是上行BWP所对应的10个RB中调度给终端设备使用的RB,即P个RB集合所包含的RB为图3b所示的“RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB”,或,P个RB集合所包含的RB为图3c所示的“RB2、RB3、RB8、RB9,共计四个RB”。
可选地,在实现方式一中,该方法还包括:该终端设备接收第七指示信息,该第七指示信息用于指示P个RB集合中的每个RB集合包括该为该终端设备调度的上行资源中的一个或多个RB。
可选地,网络设备所发送的第七指示信息可以承载于RRC消息、MAC CE消息或PDCCH消息,或者是其他的消息中,此处不做限定。
需要说明的是,该终端设备可以在步骤S504之前的任意一个过程接收该第七指示信息,例如,该终端设备可以在步骤S503之后(或之前)接收该第七指示信息,该终端设备可以在步骤S502之后(或之前)接收该第七指示信息,该终端设备可以在步骤S501之后(或之前)接收该第七指示信息,此处不做限定。
具体地,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,该第七指示信息用于指示P个RB集合中的RB与为该终端设备调度的上行资源中的RB之间的关联关系。使得终端设备可以基于该关联关系和该P个集合的上行预编码信息确定为该终端设备调度的上行资源所对应的上行预编码信息,并进一步在为该终端设备调度的上行资源发送上行信息。
可选地,该第七指示信息包括P的取值或该每个RB集合所包含的RB数量。具体地,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,该P个RB集合中的不同RB集合所包含的RB数量可以是相同的。相应的,网络设备所发送的第七指示信息可以包括P的取值,使得终端设备基于该P的取值确定P个RB集合中每一个RB集合所包含的RB;或,网络设备所发送的第七指示信息可以包括P个RB集合中每个RB集合所包含的RB数量,使得终端设备基于该P个RB集合中每个RB集合所包含的RB数量确定P个RB集合中每一个RB集合所包含的RB。从而,终端设备可以基于所确定的P个RB集合中每一个RB集合所包含的RB以及相应的上行预编码信息发送上行信息。
可选地,该P个RB集合中的不同RB集合所包含的RB数量也可以是不一定相同的,即该P个RB集合中的至少两个RB集合所包含的RB数量不同。
示例性的,此处仍以前述图3b所示实现场景作为示例进一步说明。其中,P个RB集合所包含的RB是为该终端设备调度的上行资源,即P个RB集合所包含的RB为图3b所示的“RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB”。
在图3b所示示例中,该终端设备基于所获取的第七指示信息确定P个RB集合中的不同RB集合所包含的RB。换言之,该终端设备基于该第七指示信息确定:P个RB集合中的第一个RB集合所包含的RB为图3b所示的“八个RB”中的一个或多个RB,P个RB集合中的第二个RB集合所包含的RB为图3b所示的“八个RB”中的一个或多个RB...以此类推,终端设备可以基于第七指示信息确定P个RB集合中的不同RB所包含的RB。
在一种实现方式中,若该P个RB集合中的不同RB集合所包含的RB数量是相同的情况下,第七指示信息可以通过RB索引的方式向终端设备指示P个RB集合中的不同RB集合所包含的RB。
可选地,该P个RB集合中的不同RB集合所包含的RB索引可以沿用上行BWP所使用的RB索引。在这种情况下,以P个RB集合中的每个RB集合所包含的RB数量为2作为示例,在图3b所示场景中,网络设备所发送的第七指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB1、RB2”;
第二个RB集合所包含的RB为“RB3、RB4”;
第三个RB集合所包含的RB为“RB6、RB8”;
第四个RB集合所包含的RB为“RB9、RB10”。
可选地,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,为该终端设备调度的上行资源在频域上有可能不是连续的上行资源,即为该终端设备调度的上行资源所对应的RB在上行BWP上的RB索引有可能是不连续的。换言之,在该实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在上行BWP上的RB索引有可能是不连续的。在这种情况下,该终端设备可以为该终端设备调度的上行资源所包含的RB重新排序,得到升序或降序的RB索引,使得在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在该升序或降序的RB索引中为连续的。在这种情况下,此处仍以P个RB集合中的每个RB集合所包含的RB数量为2作为示例。
若在图3b所示场景中,对P个RB集合所包含的八个RB按照升序的方式排序,则图3b所示在上行BWP中为该终端设备调度的频域资源“RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB”的RB索引缺了“RB5和RB7”是不连续的,基于对该“八个RB”进行重新排序后,可得“RB1、RB2、RB3、RB4、RB5、RB6、RB7、RB8,共计八个RB”。在这种情况下,网络设备所发送的第七指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB1、RB2”;
第二个RB集合所包含的RB为“RB3、RB4”;
第三个RB集合所包含的RB为“RB5、RB6”;
第四个RB集合所包含的RB为“RB7、RB8”。
若在图3b所示场景中,对P个RB集合所包含的八个RB按照降序的方式排序,则图3b所示在上行BWP中为该终端设备调度的频域资源“RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB”进行重新排序后,可得“RB8、RB7、RB6、RB5、RB4、RB3、RB2、RB1,共计八个RB”。在这种情况下,网络设备所发送的第七指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB8、RB7”;
第二个RB集合所包含的RB为“RB6、RB5”;
第三个RB集合所包含的RB为“RB4、RB3”;
第四个RB集合所包含的RB为“RB2、RB1”。
在另一种实现方式中,若该P个RB集合中的不同RB集合所包含的RB数量不一定相同,即该P个RB集合中的至少两个RB集合所包含的RB数量不同的情况下,第七指示信息可以通过RB索引的方式向终端设备指示P个RB集合中的不同RB集合所包含的RB。在下述示例中,以相邻的每一段连续的RB作为P个RB集合中的不同RB作为示例进行说明。
可选地,该P个RB集合中的不同RB集合所包含的RB索引可以沿用上行BWP所使用的RB索引。在这种情况下,在图3b所示场景中,网络设备所发送的第七指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB1、RB2、RB3、RB4”;
第二个RB集合所包含的RB为“RB6”;
第三个RB集合所包含的RB为“RB8、RB9、RB10”。
可选地,在P个RB集合所包含的RB是为该终端设备调度的上行资源的情况下,即在P个RB集合中的RB均位于为该终端设备调度的上行资源的情况下,为该终端设备调度的上行资源在频域上有可能不是连续的上行资源,即为该终端设备调度的上行资源所对应的RB在上行BWP上的RB索引有可能是不连续的。换言之,在该实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在上行BWP上的RB索引有可能是不连续的。在这种情况下,该终端设备可以为该终端设备调度的上行资源所包含的RB重新排序,得到升序或降序的RB索引,使得在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在该升序或降序的RB索引中为连续的。在这种情况下,此处仍以P个RB集合中的每个RB集合所包含的RB数量为2作为示例。
若在图3b所示场景中,对P个RB集合所包含的八个RB按照升序的方式排序,则图3b所示在上行BWP中为该终端设备调度的频域资源“RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB”的RB索引缺了“RB5和RB7”是不连续的,基于对该“八个RB”进行重新排序后,可得“RB1、RB2、RB3、RB4、RB5、RB6、RB7、RB8,共计八个RB”。在这种情况下,网络设备所发送的第七指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB1、RB2、RB3、RB4”;
第二个RB集合所包含的RB为“RB5”;
第三个RB集合所包含的RB为“RB6、RB7、RB8”。
若在图3b所示场景中,对P个RB集合所包含的八个RB按照降序的方式排序,则图3b所示在上行BWP中为该终端设备调度的频域资源“RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB”进行重新排序后,可得“RB8、RB7、RB6、RB5、RB4、RB3、RB2、RB1,共计八个RB”。在这种情况下,网络设备所发送的第七指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB8、RB7、RB6、RB5”;
第二个RB集合所包含的RB为“RB4”;
第三个RB集合所包含的RB为“RB3、RB2、RB1”。
需要说明的是,上述示例仅仅为示例性描述,网络设备可以依据实际的信道情况,对为该终端设备调度的上行资源(例如图3b中的“RB1、RB2、RB3、RB4、RB6、RB8、RB9、RB10,共计八个RB”或图3c中的“RB2、RB3、RB8、RB9,共计四个RB”)中,信道相同或相近的RB作为同一个RB集合,以确定该P个RB集合中每一个RB集合所包含的RB,并通过该第七指示信息中向该终端设备指示。
应理解,上述涉及索引排序的实现示例中,以编号“1”作为索引的起始为例进行说明,在实际应用中,还可以将其他的编号作为索引的起始,例如“0”、“2”或者是其他的取值,此处不做限定。
实现方式二,P个RB集合所包含的RB是该终端设备的上行带宽部分(bandwidth part,BWP)所对应的频域资源。
在一种可能的实现方式中,该P个RB集合所包含的RB是该终端设备的上行BWP所对应的频域资源,即网络设备向终端设备发送的上行预编码指示(即CSI-RS所承载的信息)用于指示为该终端设备的上行BWP所对应的频域资源的上行预编码信息。换言之,该终端设备基于P个RB集合的上行预编码信息发送上行信息包括:该终端设备基于该P个RB集合的上行预编码信息确定为该终端设备调度的上行资源对应的上行预编码信息之后,再基于为该终端设备调度的上行资源对应的上行预编码信息在为该终端设备调度的上行资源(即P个RB集合所包含的部分RB)上发送上行信息。从而,网络设备可以向终端设备指示在上行BWP中不同RB集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。
示例性的,在实现方式二中,该P个RB集合所包含的RB可以是为该终端设备调度的上行资源。此处结合前述图3a所示场景示例对实现方式二进行示例性描述。其中,该P个RB集合所包含的RB可以是上行BWP所对应的10个RB中调度给终端设备使用的RB,即P个RB集合所包含的RB即为图3a所示的“RB1~RB10,共计十个RB”。
可选地,在实现方式二中,该方法还可以进一步包括:该终端设备接收第八指示信息,该第八指示信息用于指示P个RB集合中的每个RB集合包括该终端设备的上行BWP所对应的频域资源中的一个或多个RB。
可选地,网络设备所发送的第八指示信息可以承载于RRC消息、MAC CE消息或PDCCH消息,或者是其他的消息中,此处不做限定。
需要说明的是,该终端设备可以在步骤S504之前的任意一个过程接收该第八指示信息,例如,该终端设备可以在步骤S503之后(或之前)接收该第八指示信息,该终端设备可以在步骤S502之后(或之前)接收该第八指示信息,该终端设备可以在步骤S501之后(或之前)接收该第八指示信息,此处不做限定。
具体地,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,该第八指示信息用于指示P个RB集合中的RB与上行BWP所对应的频域资源中的RB之间的关联关系。使得终端设备可以基于该关联关系和P个RB集合的上行预编码信息确定,在上行BWP所对应的频域资源中为该终端设备调度的上行资源所对应的上行预编码信息,并进一步在为该终端设备调度的上行资源发送上行信息。
可选地,该第八指示信息包括P的取值或该每个RB集合所包含的RB数量。具体地,在P个RB集合所包含的RB是上行BWP所对应的频域资源的情况下,即在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,该P个RB集合中的不同RB集合所包含的RB数量可以是相同的。相应的,网络设备所发送的第八指示信息可以包括P的取值,使得终端设备基于该P的取值确定P个RB集合中每一个RB集合所包含的RB;或,网络设备所发送的第八指示信息可以包括P个RB集合中每个RB集合所包含的RB数量,使得终端设备基于该P个RB集合中每个RB集合所包含的RB数量确定P个RB集合中每一个RB集合所包含的RB。从而,终端设备可以基 于所确定的P个RB集合中每一个RB集合所包含的RB,以及,为该终端设备调度的上行资源的上行预编码信息发送上行信息。
可选地,该P个RB集合中的不同RB集合所包含的RB数量也可以是不一定相同的,即该P个RB集合中的至少两个RB集合所包含的RB数量不同。
示例性的,此处仍以前述图3a所示实现场景作为示例进一步说明。其中,P个RB集合所包含的RB是为上行BWP所对应的频域资源,即P个RB集合所包含的RB为图3a所示的“RB1~RB10,共计十个RB”。
在图3a所示示例中,该终端设备基于所获取的第四指示信息确定P个RB集合中的不同RB集合所包含的RB。换言之,该终端设备基于该第四指示信息确定:P个RB集合中的第一个RB集合所包含的RB为图3a所示的“十个RB”中的一个或多个RB,P个RB集合中的第二个RB集合所包含的RB为图3a所示的“十个RB”中的一个或多个RB...以此类推,终端设备可以基于第四指示信息确定P个RB集合中的不同RB所包含的RB。
在一种实现方式中,若该P个RB集合中的不同RB集合所包含的RB数量是相同的情况下,第四指示信息可以通过RB索引的方式向终端设备指示P个RB集合中的不同RB集合所包含的RB。其中,在P个RB集合中的RB均位于上行BWP所对应的频域资源的情况下,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在为该上行BWP所对应的频域资源中为连续的。换言之,该终端设备确定上行BWP所对应的频域资源所包含的RB的排序,得到升序或降序的RB索引,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引在该升序或降序的RB索引中为连续的。
可选地,在这种情况下,以P个RB集合中的每个RB集合所包含的RB数量为2作为示例,若RB索引在升序的RB索引中为连续的,在图3a所示场景中,网络设备所发送的第三指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB1、RB2”;
第二个RB集合所包含的RB为“RB3、RB4”;
第三个RB集合所包含的RB为“RB5、RB6”;
第四个RB集合所包含的RB为“RB7、RB8”;
第五个RB集合所包含的RB为“RB9、RB10”。
可选地,在这种情况下,以P个RB集合中的每个RB集合所包含的RB数量为2作为示例,若RB索引在降序的RB索引中为连续的,在图3a所示场景中,网络设备所发送的第三指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB10、RB9”;
第二个RB集合所包含的RB为“RB8、RB7”;
第三个RB集合所包含的RB为“RB6、RB5”;
第四个RB集合所包含的RB为“RB4、RB3”;
第五个RB集合所包含的RB为“RB2、RB1”。
在另一种实现方式中,若该P个RB集合中的不同RB集合所包含的RB数量不一定相同,即该P个RB集合中的至少两个RB集合所包含的RB数量不同的情况下,第四指示信息可以通过 RB索引的方式向终端设备指示P个RB集合中的不同RB集合所包含的RB。在下述示例中,以相邻的每一段连续的RB作为P个RB集合中的不同RB作为示例进行说明。
可选地,在图3a所示场景中,网络设备所发送的第四指示信息的指示方式可以如下:
第一个RB集合所包含的RB为“RB1、RB2、RB3、RB4、RB5”;
第二个RB集合所包含的RB为“RB6、RB7”;
第三个RB集合所包含的RB为“RB8、RB9、RB10”。
需要说明的是,上述示例仅仅为示例性描述,网络设备可以依据实际的信道情况,对上行BWP所对应的频域资源(例如图3a中的RB1~RB10)中,信道相同或相近的RB作为同一个RB集合,以确定该P个RB集合中每一个RB集合所包含的RB,并通过该第四指示信息中向该终端设备指示。
应理解,上述涉及索引排序的实现示例中,以编号“1”作为索引的起始为例进行说明,在实际应用中,还可以将其他的编号作为索引的起始,例如“0”、“2”或者是其他的取值,此处不做限定。
在一种可能的实现方式中,该波束成形的CSI-RS所占的资源单元RE包括P组RE,P组RE分别用于确定P个RB集合的上行预编码信息,其中,P组RE中的不同组所占的RE数相同。具体地,终端设备基于第六指示信息接收CSI-RS之后,该终端设备可以将CSI-RS所占RE等分成P组RE,并基于该P组RE的部分RE所承载的信息或全部RE所承载的信息确定承载该上行信息的上行资源所对应的上行预编码信息。
在一种可能的实现方式中,该波束成形的CSI-RS所占的资源单元RE包括P组RE,P组RE分别用于确定P个RB集合的上行预编码信息,其中,P组RE中至少两组RE所占的RE数不同。具体地,终端设备基于第六指示信息接收CSI-RS之后,该终端设备可以P组RE中不同组的RE数将CSI-RS所占RE分成P组RE,并基于该P组RE的部分RE所承载的信息或全部RE所承载的信息确定承载该上行信息的上行资源所对应的上行预编码信息。
S504.终端设备发送上行信息。
本实施例中,终端设备在步骤S504中发送上行信息,相应的,网络设备在步骤S504中接收该上行信息。
具体地,终端设备在步骤S503中获得P个RB集合的上行预编码信息之后,该终端设备在步骤S504中可以基于该P个RB集合的上行预编码信息发送上行信息。应理解,终端设备在步骤S504中基于该P个RB集合的上行预编码信息发送上行信息包括:终端设备基于该P个RB集合的上行预编码信息对待发送信号进行预编码处理得到该上行信息,并在步骤S504中发送该上行信息。
相应的,该网络设备在步骤S504中可以基于该P个RB集合的上行预编码信息接收上行信息。应理解,网络设备在步骤S504中基于P个RB集合的上行预编码信息接收上行信息,包括:该网络设备接收上行信息,该上行信息为基于P个RB集合的上行预编码信息对待发送信息进行预编码处理所得到的信息。
在一种可能的实现方式中,该上行信息承载于P个RB集合中的部分或全部RB。
基于上述技术方案,网络设备可以为终端设备调度该P个RB集合所包含的部分RB或全部RB,相应的,该终端设备所发送的上行信息所承载的上行资源可以包括该P个RB集合中的部分RB或全部RB。
可选地,终端设备在步骤S504中发送上行信息之前,该终端设备接收来自该网络设备的用于指示为该终端设备调度的上行资源的指示信息,使得该终端设备可以基于该指示信息所指示的为该终端设备调度的上行资源,在步骤S504中发送上行信息。
基于上述技术方案,终端设备在步骤S501中接收用于指示波束成形的CSI-RS所占的RE的第六指示信息之后,该终端设备基于该第六指示信息在步骤S502中接收CSI-RS;该终端设备再基于该CSI-RS在步骤S503中进行信道测量,以得到P个RB集合的上行预编码信息。其中,P大于或等于2且P个RB集合中的不同RB集合所对应的上行预编码信息不同。换言之,网络设备基于CSI-RS可以向终端设备指示两种或两种以上的上行预编码信息,实现高精度的上行预编码指示。相比于网络设备基于同一种相同的上行预编码信息的实现方式,使得网络设备可以向终端设备指示在不同RB集合上的不同上行预编码信息,在一定程度上可以避免性能损失,以提升通信效率。
此外,终端设备所接收的第六指示信息用于指示波束成形的CSI-RS所占的RE,即终端设备可以基于该第六指示信息明确用于指示该P个RB集合的上行预编码信息的CSI-RS所占的RE。使得终端设备基于该第六指示信息接收CSI-RS,避免该终端设备得到错误的上行预编码信息。
请参阅图7,本申请实施例提供了一种通信装置,该通信装置700可以实现上述方法实施例中终端设备的功能,因此也能实现上述方法实施例所具备的有益效果。
当该通信装置700用于实现前述图4所示实施例及其任一可选实施例的情况下,该通信装置700所包含的处理单元701和收发单元702用于执行如下实现过程。
该收发单元702,用于接收第一指示信息,该第一指示信息用于指示第二指示信息所占的比特数,该第二指示信息用于指示P个RB集合的上行预编码信息;其中,P个RB集合中的每个资源块RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同;P大于或等于2;
该收发单元702,还用于接收DCI;
该处理单元701,用于基于该比特数在该DCI确定该第二指示信息;
该收发单元702,还用于基于P个RB集合的上行预编码信息发送上行信息。
在一种可能的实现方式中,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
在一种可能的实现方式中,该上行信息承载于P个RB集合中的部分或全部RB。
在一种可能的实现方式中,P个RB集合所包含的RB是为该终端设备调度的上行资源。
在一种可能的实现方式中,
该收发单元702,还用于接收第三指示信息,该第三指示信息用于指示P个RB集合中的每个RB集合包括该为该终端设备调度的上行资源中的一个或多个RB。
在一种可能的实现方式中,
该第三指示信息包括P的取值或该每个RB集合所包含的RB数量。
在一种可能的实现方式中,P个RB集合所包含的RB是该终端设备的上行BWP所对应的频域资源。
在一种可能的实现方式中,
该收发单元702,还用于接收第四指示信息,该第四指示信息用于指示P个RB集合中的每个RB集合包括该终端设备的上行BWP所对应的频域资源中的一个或多个RB。
在一种可能的实现方式中,
该第四指示信息包括P的取值或该每个RB集合所包含的RB数量。
在一种可能的实现方式中,P个RB集合的上行预编码信息基于第一码本所确定,其中,该第一码本为以下任一项:
预配置的码本;或,
基于P的取值在至少两个码本中所确定的码本;或,
基于P的取值所生成的DFT过采样矩阵所对应的码本。
在一种可能的实现方式中,P个RB集合的上行预编码信息基于第一码本所确定;
该收发单元702,还用于接收第五指示信息,该第五指示信息用于指示该第一码本为以下任一项:
预配置的码本;或,
基于P的取值在至少两个码本中所确定的码本;或,
基于P的取值所生成的DFT过采样矩阵所对应的码本。
在一种可能的实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引为连续的。
在一种可能的实现方式中,P个RB集合中的每个RB集合所包含的RB数量相同。
在一种可能的实现方式中,
该第二指示信息包括P个信息,P个信息分别用于指示P个RB集合的上行预编码信息,其中,P个信息中的不同信息在该DCI中所占的比特数相同;
或,
该第二指示信息包括P个信息,P个信息分别用于指示P个RB集合的上行预编码信息,其中,P个信息中的至少两个信息在该DCI中所占的比特数不同。
当该通信装置700用于实现前述图5所示实施例及其任一可选实施例的情况下,该通信装置700所包含的处理单元701和收发单元702用于执行如下实现过程。
该收发单元702,用于接收第六指示信息,该第六指示信息用于指示波束成形的CSI-RS所占的资源单元RE;
该收发单元702,还用于基于该第六指示信息接收该CSI-RS;
该处理单元701,用于基于该CSI-RS进行信道测量,得到P个RB集合的上行预编码信息;其中,P个RB集合中的每个RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同;P大于或等于2;
该收发单元702,还用于基于P个RB集合的上行预编码信息发送上行信息。
在一种可能的实现方式中,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
在一种可能的实现方式中,该上行信息承载于P个RB集合中的部分或全部RB。
在一种可能的实现方式中,P个RB集合所包含的RB是为终端设备调度的上行资源。
在一种可能的实现方式中,该收发单元702,还用于接收第七指示信息,该第七指示信息用于指示P个RB集合中的每个RB集合包括该为该终端设备调度的上行资源中的一个或多个RB。
在一种可能的实现方式中,
该第七指示信息包括P的取值或该每个RB集合所包含的RB数量。
在一种可能的实现方式中,P个RB集合所包含的RB是该终端设备的上行BWP所对应的频域资源。
在一种可能的实现方式中,该收发单元702,还用于接收第八指示信息,该第八指示信息用于指示P个RB集合中的每个RB集合包括该终端设备的上行BWP所对应的频域资源中的一个或多个RB。
在一种可能的实现方式中,
该第八指示信息包括P的取值或该每个RB集合所包含的RB数量。
在一种可能的实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引为连续的。
在一种可能的实现方式中,P个RB集合中的每个RB集合所包含的RB数量相同。
在一种可能的实现方式中,
该波束成形的CSI-RS所占的资源单元RE包括P组RE,P组RE分别用于确定P个RB集合的上行预编码信息,其中,P组RE中的不同组所占的RE数相同;
或,
该波束成形的CSI-RS所占的资源单元RE包括P组RE,P组RE分别用于确定P个RB集合的上行预编码信息,其中,P组RE中至少两组RE所占的RE数不同。
需要说明的是,上述通信装置700的单元的信息执行过程等内容,具体可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
请参阅图8,本申请实施例提供了一种通信装置,该通信装置800可以实现上述方法实施例中网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。
当该通信装置800用于实现前述图4所示实施例及其任一可选实施例的情况下,该通信装置800所包含的处理单元801和收发单元802用于执行如下实现过程。
该处理单元801,用于确定第一指示信息,该第一指示信息用于指示第二指示信息所占的比特数,该第二指示信息用于指示P个RB集合的上行预编码信息;其中,P个RB集合中的每个资源块RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同;P大于或等于2;
该收发单元802,用于发送该第一指示信息;
该收发单元,还用于发送该DCI,该DCI包括该第二指示信息;
该收发单元802,还用于基于P个RB集合的上行预编码信息接收上行信息。
在一种可能的实现方式中,P个RB集合所包含的RB是为终端设备调度的上行资源。
在一种可能的实现方式中,
该处理单元801,还用于确定第三指示信息,该第三指示信息用于指示P个RB集合中的每个RB集合包括该为该终端设备调度的上行资源中的一个或多个RB;
该收发单元802,还用于发送第三指示信息。
在一种可能的实现方式中,
该第三指示信息包括P的取值或该每个RB集合所包含的RB数量。
在一种可能的实现方式中,P个RB集合所包含的RB是终端设备的上行BWP所对应的频域资源。
在一种可能的实现方式中,
该处理单元801,还用于确定第四指示信息,该第四指示信息用于指示P个RB集合中的每个RB集合包括该终端设备的上行BWP所对应的频域资源中的一个或多个RB;
该收发单元802,还用于发送第四指示信息。
在一种可能的实现方式中,
该第四指示信息包括P的取值或该每个RB集合所包含的RB数量。
在一种可能的实现方式中,P个RB集合的上行预编码信息基于第一码本所确定;
该处理单元801,还用于确定第五指示信息,该第五指示用于指示该第一码本为以下任一项:
预配置的码本;或,
基于P的取值在至少两个码本中所确定的码本;或,
基于P的取值所生成的DFT过采样矩阵所对应的码本;
该收发单元802,还用于发送该第五指示信息。
在一种可能的实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引为连续的。
在一种可能的实现方式中,P个RB集合中的每个RB集合所包含的RB数量相同。
在一种可能的实现方式中,
该第二指示信息包括P个信息,P个信息分别用于指示P个RB集合的上行预编码信息,其中,P个信息中的不同信息在该DCI中所占的比特数相同;
或,
该第二指示信息包括P个信息,P个信息分别用于指示P个RB集合的上行预编码信息,其中,P个信息中的至少两个信息在该DCI中所占的比特数不同。
当该通信装置800用于实现前述图5所示实施例及其任一可选实施例的情况下,该通信装置800所包含的处理单元801和收发单元802用于执行如下实现过程。
该处理单元801,用于确定第六指示信息,该第六指示信息用于指示波束成形的CSI-RS所占的资源单元RE;
该收发单元802,用于发送该第六指示信息;
该处理单元801,还用于确定该CSI-RS;其中,该CSI-RS用于进行信道测量,得到P个RB集合的上行预编码信息;其中,P个RB集合中的每个RB集合包括一个或多个RB;P个RB集合中的不同RB集合所对应的上行预编码信息不同;P大于或等于2;
该收发单元802,还用于发送该CSI-RS;
该收发单元802,还用于基于P个RB集合的上行预编码信息接收上行信息。
在一种可能的实现方式中,P个RB集合中存在包含有多个RB的RB集合时,该RB集合中的多个RB的上行预编码信息相同。
在一种可能的实现方式中,该上行信息承载于P个RB集合中的部分或全部RB。
在一种可能的实现方式中,P个RB集合所包含的RB是为终端设备调度的上行资源。
在一种可能的实现方式中,该收发单元802,还用于发送第七指示信息,该第七指示信息用于指示P个RB集合中的每个RB集合包括该为该终端设备调度的上行资源中的一个或多个RB。
在一种可能的实现方式中,
该第七指示信息包括P的取值或该每个RB集合所包含的RB数量。
在一种可能的实现方式中,P个RB集合所包含的RB是该终端设备的上行BWP所对应的频域资源。
在一种可能的实现方式中,该收发单元802,还用于发送第八指示信息,该第八指示信息用于指示P个RB集合中的每个RB集合包括该终端设备的上行BWP所对应的频域资源中的一个或多个RB。
在一种可能的实现方式中,
该第八指示信息包括P的取值或该每个RB集合所包含的RB数量。
在一种可能的实现方式中,在P个RB集合中存在包括多个RB的RB集合时,该多个RB的RB索引为连续的。
在一种可能的实现方式中,P个RB集合中的每个RB集合所包含的RB数量相同。
在一种可能的实现方式中,
该波束成形的CSI-RS所占的资源单元RE包括P组RE,P组RE分别用于确定P个RB集合的上行预编码信息,其中,P组RE中的不同组所占的RE数相同;
或,
该波束成形的CSI-RS所占的资源单元RE包括P组RE,P组RE分别用于确定P个RB集合的上行预编码信息,其中,P组RE中至少两组RE所占的RE数不同。
需要说明的是,上述通信装置800的单元的信息执行过程等内容,具体可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
请参阅图9,为本申请的实施例提供的上述实施例中所涉及的通信装置,该通信装置具体可以为上述实施例中的终端设备,其中,该通信装置900的一种可能的逻辑结构示意图,该通信装置900可以包括但不限于至少一个处理器901以及通信端口902。进一步可选的,该装置还可以包括存储器903、总线904中的至少一个,在本申请的实施例中,该至少一个处理器901用于对通信装置900的动作进行控制处理。
此外,处理器901可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。该处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
需要说明的是,图9所示通信装置具体可以用于实现前述对应方法实施例中终端设备所实现的其它步骤,并实现终端设备对应的技术效果,图9所示通信装置的具体实现方式,均可以参考前述各个方法实施例中的叙述,此处不再一一赘述。
请参阅图10,为本申请的实施例提供的上述实施例中所涉及的通信装置的结构示意图,该通信装置具体可以为上述实施例中的网络设备,其中,该通信装置的结构可以参考图10所示的结构。
通信装置包括至少一个处理器1011以及至少一个网络接口1014。进一步可选的,该通信装置还包括至少一个存储器1012、至少一个收发器1013和一个或多个天线1015。处理器1011、存储器1012、收发器1013和网络接口1014相连,例如通过总线相连,在本申请实施例中,该连接可包括各类接口、传输线或总线等,本实施例对此不做限定。天线1015与收发器1013相连。网络接口1014用于使得通信装置通过通信链路,与其它通信设备通信。例如网络接口1014可以包括通信装置与核心网设备之间的网络接口,例如S1接口,网络接口可以包括通信装置和其他通信装置(例如其他网络设备或者核心网设备)之间的网络接口,例如X2或者Xn接口。
处理器1011主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据,例如用于支持通信装置执行实施例中所描述的动作。通信装置可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图10中的处理器1011可以集成基带处理器和中央处理器的功能,本领域 技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
存储器主要用于存储软件程序和数据。存储器1012可以是独立存在,与处理器1011相连。可选的,存储器1012可以和处理器1011集成在一起,例如集成在一个芯片之内。其中,存储器1012能够存储执行本申请实施例的技术方案的程序代码,并由处理器1011来控制执行,被执行的各类计算机程序代码也可被视为是处理器1011的驱动程序。
图10仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
收发器1013可以用于支持通信装置与终端之间射频信号的接收或者发送,收发器1013可以与天线1015相连。收发器1013包括发射机Tx和接收机Rx。具体地,一个或多个天线1015可以接收射频信号,该收发器1013的接收机Rx用于从天线接收该射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给该处理器1011,以便处理器1011对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器1013中的发射机Tx还用于从处理器1011接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线1015发送该射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,该下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,该上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
收发器也可以称为收发单元、收发机、收发装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
需要说明的是,图10所示通信装置具体可以用于实现前述方法实施例中网络设备所实现的步骤,并实现网络设备对应的技术效果,图10所示通信装置的具体实现方式,均可以参考前述的各个方法实施例中的叙述,此处不再一一赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质用于存储一个或多个计算机执行指令,当计算机执行指令被处理器执行时,该处理器执行如前述实施例中通信装置(通过终端设备实现时)可能的实现方式所述的方法。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质用于存储一个或多个计算机执行指令,当计算机执行指令被处理器执行时,该处理器执行如前述实施例中通信装置(通过网络设备实现时)可能的实现方式所述的方法。
本申请实施例还提供一种计算机程序产品(或称计算机程序),当计算机程序产品被该处理器执行时,该处理器执行上述通信装置(通过终端设备实现时)可能实现方式的方法。
本申请实施例还提供一种计算机程序产品(或称计算机程序),当计算机程序产品被该处理器执行时,该处理器执行上述通信装置(通过网络设备实现时)可能实现方式的方法。
本申请实施例还提供了一种芯片***,该芯片***包括至少一个处理器,用于支持终端设备实现上述通信装置(通过终端设备实现时)可能的实现方式中所涉及的功能。可选的,所述芯片***还包括接口电路,所述接口电路为所述至少一个处理器提供程序指令和/或数据。在一种可能的设计中,该芯片***还可以包括存储器,存储器,用于保存该终端设备必要的程序指令和数据。该芯片***,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种芯片***,该芯片***包括至少一个处理器,用于支持网络设备实现上述通信装置(通过网络设备实现时)可能的实现方式中所涉及的功能。可选的,所述芯片***还包括接口电路,所述接口电路为所述至少一个处理器提供程序指令和/或数据。在一种可能的设计中,芯片***还可以包括存储器,存储器,用于保存该网络设备必要的程序指令和数据。该芯片***,可以由芯片构成,也可以包含芯片和其他分立器件,其中,该网络设备具体可以为前述前述方法实施例中网络设备。
本申请实施例还提供了一种通信***,该网络***架构包括上述任一实施例中的通信装置(包括终端设备和网络设备)。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既 可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种通信方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息用于指示第二指示信息所占的比特数,所述第二指示信息用于指示P个资源块RB集合的上行预编码信息;其中,所述P个RB集合中的每个RB集合包括一个或多个RB;所述P个RB集合中的不同RB集合所对应的上行预编码信息不同;所述P大于或等于2;
    接收下行控制信息DCI;
    基于所述比特数在所述DCI确定所述第二指示信息;
    基于所述P个RB集合的上行预编码信息发送上行信息。
  2. 根据权利要求1所述的方法,其特征在于,所述P个RB集合所包含的RB是为所述终端设备调度的上行资源。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    接收第三指示信息,所述第三指示信息用于指示所述P个RB集合中的每个RB集合包括所述为所述终端设备调度的上行资源中的一个或多个RB。
  4. 根据权利要求1所述的方法,其特征在于,所述P个RB集合所包含的RB是所述终端设备的上行带宽部分BWP所对应的频域资源。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    接收第四指示信息,所述第四指示信息用于指示所述P个RB集合中的每个RB集合包括所述终端设备的上行BWP所对应的频域资源中的一个或多个RB。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述P个RB集合的上行预编码信息基于第一码本所确定,其中,所述第一码本为以下任一项:
    预配置的码本;或,
    基于所述P的取值在至少两个码本中所确定的码本;或,
    基于所述P的取值所生成的离散傅里叶变换DFT过采样矩阵所对应的码本。
  7. 根据权利要求1至5任一项所述的方法,其特征在于,所述P个RB集合的上行预编码信息基于第一码本所确定;
    所述方法还包括:
    接收第五指示信息,所述第五指示信息用于指示所述第一码本为以下任一项:
    预配置的码本;或,
    基于所述P的取值在至少两个码本中所确定的码本;或,
    基于所述P的取值所生成的DFT过采样矩阵所对应的码本。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,
    所述第二指示信息包括P个信息,所述P个信息分别用于指示P个RB集合的上行预编码信息,其中,所述P个信息中的不同信息在所述DCI中所占的比特数相同;
    或,
    所述第二指示信息包括P个信息,所述P个信息分别用于指示P个RB集合的上行预编码信息,其中,所述P个信息中的至少两个信息在所述DCI中所占的比特数不同。
  9. 一种通信方法,其特征在于,包括:
    确定第一指示信息,所述第一指示信息用于指示第二指示信息所占的比特数,所述第二指示信息用于指示P个RB集合的上行预编码信息;其中,所述P个RB集合中的每个资源块RB集合包括一个或多个RB;所述P个RB集合中的不同RB集合所对应的上行预编码信息不同;所述P大于或等于2;
    发送所述第一指示信息;
    发送下行控制信息DCI,所述DCI包括所述第二指示信息;
    基于所述P个RB集合的上行预编码信息接收上行信息。
  10. 根据权利要求9所述的方法,其特征在于,所述P个RB集合所包含的RB是为终端设备调度的上行资源。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    发送第三指示信息,所述第三指示信息用于指示所述P个RB集合中的每个RB集合包括所述为所述终端设备调度的上行资源中的一个或多个RB。
  12. 根据权利要求9所述的方法,其特征在于,所述P个RB集合所包含的RB是终端设备的上行带宽部分BWP所对应的频域资源。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    发送第四指示信息,所述第四指示信息用于指示所述P个RB集合中的每个RB集合包括所述终端设备的上行BWP所对应的频域资源中的一个或多个RB。
  14. 根据权利要求9至13任一项所述的方法,其特征在于,所述P个RB集合的上行预编码信息基于第一码本所确定;
    所述方法还包括:
    发送第五指示信息,所述第五指示用于指示所述第一码本为以下任一项:
    预配置的码本;或,
    基于所述P的取值在至少两个码本中所确定的码本;或,
    基于所述P的取值所生成的DFT过采样矩阵所对应的码本。
  15. 根据权利要求9至14任一项所述的方法,其特征在于,
    所述第二指示信息包括P个信息,所述P个信息分别用于指示P个RB集合的上行预编码信息,其中,所述P个信息中的不同信息在所述DCI中所占的比特数相同;
    或,
    所述第二指示信息包括P个信息,所述P个信息分别用于指示P个RB集合的上行预编码信息,其中,所述P个信息中的至少两个信息在所述DCI中所占的比特数不同。
  16. 一种通信装置,其特征在于,包括收发单元和处理单元;
    所述收发单元,用于接收第一指示信息,所述第一指示信息用于指示第二指示信息所占的比特数,所述第二指示信息用于指示P个RB集合的上行预编码信息;其中,所述P个RB集合中的每个资源块RB集合包括一个或多个RB;所述P个RB集合中的不同RB集合所对应的上行预编码信息不同;所述P大于或等于2;
    所述收发单元,还用于接收下行控制信息DCI;
    所述处理单元,用于基于所述比特数在所述DCI确定所述第二指示信息;
    所述收发单元,还用于基于所述P个RB集合的上行预编码信息发送上行信息。
  17. 根据权利要求16所述的装置,其特征在于,所述P个RB集合所包含的RB是为所述终端设备调度的上行资源。
  18. 根据权利要求17所述的装置,其特征在于,
    所述收发单元,还用于接收第三指示信息,所述第三指示信息用于指示所述P个RB集合中的每个RB集合包括所述为所述终端设备调度的上行资源中的一个或多个RB。
  19. 根据权利要求16所述的装置,其特征在于,所述P个RB集合所包含的RB是所述终端设备的上行带宽部分BWP所对应的频域资源。
  20. 根据权利要求19所述的装置,其特征在于,
    所述收发单元,还用于接收第四指示信息,所述第四指示信息用于指示所述P个RB集合中的每个RB集合包括所述终端设备的上行BWP所对应的频域资源中的一个或多个RB。
  21. 根据权利要求16至20任一项所述的装置,其特征在于,所述P个RB集合的上行预编码信息基于第一码本所确定,其中,所述第一码本为以下任一项:
    预配置的码本;或,
    基于所述P的取值在至少两个码本中所确定的码本;或,
    基于所述P的取值所生成的DFT过采样矩阵所对应的码本。
  22. 根据权利要求16至20任一项所述的装置,其特征在于,所述P个RB集合的上行预编码信息基于第一码本所确定;
    所述收发单元,还用于接收第五指示信息,所述第五指示信息用于指示所述第一码本为以下任一项:
    预配置的码本;或,
    基于所述P的取值在至少两个码本中所确定的码本;或,
    基于所述P的取值所生成的DFT过采样矩阵所对应的码本。
  23. 根据权利要求16至22任一项所述的装置,其特征在于,
    所述第二指示信息包括P个信息,所述P个信息分别用于指示P个RB集合的上行预编码信息,其中,所述P个信息中的不同信息在所述DCI中所占的比特数相同;
    或,
    所述第二指示信息包括P个信息,所述P个信息分别用于指示P个RB集合的上行预编码信息,其中,所述P个信息中的至少两个信息在所述DCI中所占的比特数不同。
  24. 一种通信装置,其特征在于,包括收发单元和处理单元;
    所述处理单元,用于确定第一指示信息,所述第一指示信息用于指示第二指示信息所占的比特数,所述第二指示信息用于指示P个RB集合的上行预编码信息;其中,所述P个RB集合中的每个资源块RB集合包括一个或多个RB;所述P个RB集合中的不同RB集合所对应的上行预编码信息不同;所述P大于或等于2;
    所述收发单元,用于发送所述第一指示信息;
    所述收发单元,还用于发送所述DCI,所述DCI包括所述第二指示信息;
    所述收发单元,还用于基于所述P个RB集合的上行预编码信息接收上行信息。
  25. 根据权利要求24所述的装置,其特征在于,所述P个RB集合所包含的RB是为终端设备调度的上行资源。
  26. 根据权利要求25所述的装置,其特征在于,
    所述处理单元,还用于确定第三指示信息,所述第三指示信息用于指示所述P个RB集合中的每个RB集合包括所述为所述终端设备调度的上行资源中的一个或多个RB;
    所述收发单元,还用于发送第三指示信息。
  27. 根据权利要求24所述的装置,其特征在于,所述P个RB集合所包含的RB是终端设备的上行带宽部分BWP所对应的频域资源。
  28. 根据权利要求27所述的装置,其特征在于,
    所述处理单元,还用于确定第四指示信息,所述第四指示信息用于指示所述P个RB集合中的每个RB集合包括所述终端设备的上行BWP所对应的频域资源中的一个或多个RB;
    所述收发单元,还用于发送第四指示信息。
  29. 根据权利要求24至28任一项所述的装置,其特征在于,所述P个RB集合的上行预编码信息基于第一码本所确定;
    所述处理单元,还用于确定第五指示信息,所述第五指示用于指示所述第一码本为以下任一项:
    预配置的码本;或,
    基于所述P的取值在至少两个码本中所确定的码本;或,
    基于所述P的取值所生成的DFT过采样矩阵所对应的码本;
    所述收发单元,还用于发送所述第五指示信息。
  30. 根据权利要求24至29任一项所述的装置,其特征在于,
    所述第二指示信息包括P个信息,所述P个信息分别用于指示P个RB集合的上行预编码信息,其中,所述P个信息中的不同信息在所述DCI中所占的比特数相同;
    或,
    所述第二指示信息包括P个信息,所述P个信息分别用于指示P个RB集合的上行预编码信息,其中,所述P个信息中的至少两个信息在所述DCI中所占的比特数不同。
  31. 一种通信装置,其特征在于,包括至少一个逻辑电路和输入输出接口;
    所述输入输出接口用于输入第一指示信息和下行控制信息DCI;
    所述输入输出接口还用于输出上行信息;
    所述逻辑电路用于执行如权利要求1至8中任一项所述的方法。
  32. 一种通信装置,其特征在于,包括至少一个逻辑电路和输入输出接口;
    所述输入输出接口用于输出第一指示信息和下行控制信息DCI;
    所述输入输出接口还用于输入上行信息;
    所述逻辑电路用于执行如权利要求9至15中任一项所述的方法。
  33. 一种通信***,其特征在于,
    所述通信***包括如权利要求16至23中任一项的所述通信装置,以及如权利要求24至30中任一项的所述通信装置;
    或者,
    所述通信***包括权利要求31的所述通信装置和权利要求32的所述通信装置。
  34. 一种计算机可读存储介质,其特征在于,所述介质存储有指令,当所述指令被计算 机执行时,实现权利要求1至15中任一项所述的方法。
  35. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至15中任一项所述的方法。
PCT/CN2022/140220 2021-12-30 2022-12-20 一种通信方法及通信装置 WO2023125125A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111669034.6 2021-12-30
CN202111669034.6A CN116437464A (zh) 2021-12-30 2021-12-30 一种通信方法及通信装置

Publications (1)

Publication Number Publication Date
WO2023125125A1 true WO2023125125A1 (zh) 2023-07-06

Family

ID=86997717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140220 WO2023125125A1 (zh) 2021-12-30 2022-12-20 一种通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN116437464A (zh)
WO (1) WO2023125125A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600838A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 一种上行子带预编码矩阵的指示方法、终端及基站
CN111865490A (zh) * 2017-05-04 2020-10-30 华为技术有限公司 数据传输方法和装置
CN112602269A (zh) * 2018-11-02 2021-04-02 华为技术有限公司 一种上行数据传输的预编码指示方法及相关设备
WO2021163899A1 (zh) * 2020-02-18 2021-08-26 华为技术有限公司 物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片***
CN113824481A (zh) * 2020-06-19 2021-12-21 华为技术有限公司 上行传输方法及相关装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865490A (zh) * 2017-05-04 2020-10-30 华为技术有限公司 数据传输方法和装置
CN109600838A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 一种上行子带预编码矩阵的指示方法、终端及基站
CN112602269A (zh) * 2018-11-02 2021-04-02 华为技术有限公司 一种上行数据传输的预编码指示方法及相关设备
WO2021163899A1 (zh) * 2020-02-18 2021-08-26 华为技术有限公司 物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片***
CN113824481A (zh) * 2020-06-19 2021-12-21 华为技术有限公司 上行传输方法及相关装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC.: "TPMI Indication for Frequency Selective UL Precoding", 3GPP TSG RAN WG1 MEETING #90 R1-1714135, 20 August 2017 (2017-08-20), XP051316924 *

Also Published As

Publication number Publication date
CN116437464A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
US10313073B2 (en) Transmission of reference signals
WO2018228228A9 (zh) 信息传输方法及装置
WO2020155119A1 (zh) 上报信道状态信息的方法和装置
CN109152017B (zh) 一种传输块大小的确定方法和装置
WO2022068624A1 (zh) 一种解调参考信号的发送方法、接收方法及通信装置
WO2022048400A1 (zh) 一种信道反馈方法及装置
US20230239014A1 (en) Information indication method and apparatus
US20230078895A1 (en) Uplink reference signal sending method, uplink reference signal receiving method, and communication apparatus
CN116234030A (zh) 通信的方法、网络设备和终端设备
WO2021179311A1 (zh) 一种信道状态信息csi测量的指示方法和通信装置
US20220329370A1 (en) Methods and devices for enhancement on sounding reference signal (srs) transmission signaling
US20220337362A1 (en) Methods and devices for enhancement on sounding reference signal (srs) transmission signaling
WO2020057375A1 (zh) 一种资源配置方法及通信装置
WO2023030032A1 (zh) 信道状态信息的获取方法和装置
US20190222273A1 (en) Communication Method, Network Device, and Terminal Device
WO2023125125A1 (zh) 一种通信方法及通信装置
WO2017028364A1 (zh) 一种参考信号配置方法及设备
CN116762283A (zh) 一种进行预编码的方法和装置
WO2023160692A1 (zh) 一种通信方法及通信装置
WO2022218198A1 (zh) 一种通信方法及通信装置
WO2023030291A1 (zh) 用于传输参考信号的方法和装置
WO2023226833A1 (zh) 探测参考信号传输的方法和通信装置
WO2024093646A1 (zh) 一种资源配置的方法和装置
WO2024140116A1 (zh) 一种通信方法及装置
WO2024045855A1 (zh) Srs的传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914379

Country of ref document: EP

Kind code of ref document: A1