WO2022068624A1 - 一种解调参考信号的发送方法、接收方法及通信装置 - Google Patents

一种解调参考信号的发送方法、接收方法及通信装置 Download PDF

Info

Publication number
WO2022068624A1
WO2022068624A1 PCT/CN2021/119275 CN2021119275W WO2022068624A1 WO 2022068624 A1 WO2022068624 A1 WO 2022068624A1 CN 2021119275 W CN2021119275 W CN 2021119275W WO 2022068624 A1 WO2022068624 A1 WO 2022068624A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs port
dmrs
delay segment
signal
signals
Prior art date
Application number
PCT/CN2021/119275
Other languages
English (en)
French (fr)
Inventor
金黄平
王潇涵
韩玮
葛士斌
任翔
刘永
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21874285.6A priority Critical patent/EP4207623A4/en
Publication of WO2022068624A1 publication Critical patent/WO2022068624A1/zh
Priority to US18/191,350 priority patent/US20230239111A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • H04L25/0246Channel estimation channel estimation algorithms using matrix methods with factorisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/025Channel estimation channel estimation algorithms using least-mean-square [LMS] method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Definitions

  • the present application relates to the field of antenna technologies, and in particular, to a method for sending a demodulation reference signal, a method for receiving the signal, and a communication device.
  • multiple input and multiple output (multiple input and multiple output, MIMO) technology is introduced.
  • MIMO technology when the base station sends data to the terminal, it needs to perform signal precoding according to downlink channel state information (Channel State Information, CSI).
  • CSI Downlink Channel State Information
  • TDD time division duplexing
  • the uplink channel and the downlink channel use the same bandwidth, the uplink channel and the downlink channel are reciprocal, and the base station side can use the reciprocity of the uplink channel and the downlink channel,
  • the CSI of the downlink channel is obtained through the uplink channel, and then the signal precoding is performed.
  • the base station will calculate the precoding required for sending data according to the uplink reference signal.
  • the base station sends a demodulation reference signal (DMRS) together with the data.
  • DMRS demodulation reference signal
  • the DMRS can be used by the terminal to estimate the equivalent channel after precoding.
  • the DMRS and the data undergo the same precoding process, so that the terminal can estimate the equivalent channel of the corresponding DMRS port according to the reference signal of the DMRS port predefined by the protocol on the time-frequency resource where the DMRS port is located.
  • the base station transmits a small number of DMRS port signals on the same time-frequency resource, so that the terminal obtains fewer streams and the accuracy of the channel estimation result is low.
  • the present application provides a DMRS sending method, receiving method and communication device, which can ensure better channel estimation performance and higher channel estimation accuracy.
  • an embodiment of the present application provides a method for receiving a demodulation reference signal.
  • the method can be executed by a first communication device, and the first communication device can be a communication device (for example, a terminal-side device) or can support a communication device to implement the method.
  • a device such as a chip or a system-on-a-chip, for the desired function of the method.
  • the method includes:
  • the delay segment positions corresponding to at least two DMRS port signals are different, and the number of multiplexed DMRS ports can be increased on the same time-frequency resource, that is, the network device sends more multiplexed DMRS ports on the same time-frequency resource.
  • DMRS port signal Since more DMRS ports can be multiplexed on the same time-frequency resource, the network device can send more streams without increasing the pilot overhead. For the terminal, since more streams are obtained, more accurate channel estimation results can be obtained.
  • an embodiment of the present application provides a method for sending a DMRS, and the method can be executed by a second communication device, and the second communication device can be a communication device (for example, a network device) or capable of supporting the communication device to implement the method required by the method.
  • a functional device such as a chip or a system of chips. The method includes:
  • M is an integer greater than or equal to 2.
  • the network device may increase the number of multiplexed DMRS ports on the same time-frequency resource according to the different positions of the delay segments corresponding to the at least two DMRS port signals, that is, the network device sends the signal on the same time-frequency resource. More DMRS port signals. Since more DMRS ports can be multiplexed on the same time-frequency resource, the network device can send more streams without increasing the pilot overhead. For the terminal, since more streams are obtained, more accurate channel estimation results can be obtained.
  • the method further includes: receiving indication information, where the indication information is used to indicate respective delay segment positions corresponding to the M DMRS port signals.
  • the method further includes: sending indication information, where the indication information is used to indicate respective delay segment positions corresponding to the M DMRS port signals.
  • the network side may notify the terminal of the respective delay segment positions corresponding to the M DMRS port signals in the first signal, so that the terminal can distinguish each DMRS port signal from the first signal according to the delay segment positions.
  • the M DMRS ports corresponding to the M DMRS port signals and the delay segment positions have a first correspondence. It can be understood that the first corresponding relationship may be preset. Since the DMRS port signal is sent through the DMRS port, the time delay segment position corresponding to a certain DMRS port is also the time delay segment position corresponding to the DMRS port signal sent by the DMRS port.
  • the M DMRS ports corresponding to the M DMRS port signals have a first correspondence with the time-delay segment positions, then the terminal is based on the M DMRS ports corresponding to the M DMRS port signals superimposed into the first signal, and
  • the first correspondence can determine the respective delay segment positions corresponding to the M DMRS port signals, and does not require additional indication of the delay segment positions by the network side, thereby saving signaling overhead.
  • the M DMRS ports corresponding to the M DMRS port signals have at least one DMRS port, and for any one DMRS port in the at least one DMRS port, the The positions of the delay segments corresponding to all physical resource groups (PRGs) associated with the DMRS ports are the same; or,
  • the M DMRS ports corresponding to the M DMRS port signals have at least one DMRS port, and for any one DMRS port in the at least one DMRS port, the delay segment corresponding to at least two PRGs in all PRGs associated with the DMRS port Location is different.
  • the network side may determine the indication information based on the same or different positions of delay segments corresponding to all PRGs associated with any one of the above at least one DMRS port.
  • the delay segment positions corresponding to all PRGs associated with at least one DMRS port are the same, the number of bits of the indication information does not depend on the PRG, and the overhead of the number of bits of the indication information is relatively small.
  • it can be ensured that the number of bits of the indication information is known by the network side and the terminal, so that the terminal can receive the DMRS port signal at the correct time delay segment position.
  • the time delay segment positions corresponding to at least two PRGs in all PRGs associated with at least one DMRS port are different, and different PRGs can correspond to different time delay segment locations, and it is more flexible for the network side to send the DMRS port signal.
  • the size of the PRG associated with any DMRS port has a second correspondence with the number of delay segment positions corresponding to the DMRS port.
  • the number of delay segment positions corresponding to the DMRS ports corresponding to different sizes of the PRGs associated with the DMRS ports may be different, so the overhead of the indication information is also different.
  • the corresponding relationship between the size of the PRG associated with the DMRS port and the number of delay segment positions corresponding to the DMRS port that is, the second corresponding relationship, may be specified.
  • the network side and the terminal know the overhead of the indication information, thereby ensuring that the terminal correctly decodes the indication information and receives the DMRS port signal at the correct time delay segment position.
  • the size of the PRG associated with any DMRS port has a third corresponding relationship with the frequency domain reference signal density of the DMRS port.
  • the corresponding relationship between the size of the PRG associated with the DMRS port and the frequency domain reference signal density of the DMRS port may be specified, that is, the third corresponding relationship.
  • the frequency domain reference signal density of the DMRS port is directly determined by the PRB bundling size, that is, a method for determining the frequency domain reference signal density of the DMRS port is provided.
  • the indication information occupies L bits, where the L bits are used to jointly indicate M delay segment positions, and L is greater than or equal to An integer of 1; or, the L bits are used to respectively indicate M delay segment positions, where L is equal to M.
  • the indication information may independently indicate M delay segment positions, or may jointly indicate M delay segment positions, so as to reduce signaling overhead as much as possible.
  • an embodiment of the present application provides a communication device, where the communication device has a function of implementing the behavior in the method embodiment of the first aspect.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes a transceiver module and a processing module, wherein the transceiver module is configured to receive a first signal on a first time-frequency resource, where the first signal is formed by superimposing M DMRS port signals, the The delay segment positions corresponding to at least two DMRS port signals among the M DMRS port signals are different, and M is an integer greater than or equal to 2; the processing module is configured to determine from the first signal according to the delay segment positions the M DMRS port signals.
  • an embodiment of the present application provides a communication device, where the communication device has a function of implementing the behavior in the method embodiment of the second aspect.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes a transceiver module and a processing module, wherein the processing module is configured to generate a first signal, where the first signal is formed by superimposing M DMRS port signals, among the M DMRS port signals The positions of the delay segments corresponding to the at least two DMRS port signals are different, and M is an integer greater than or equal to 2; the transceiver module is configured to send the first signal on the first time-frequency resource.
  • the transceiver module is further configured to receive indication information, where the indication information is used to indicate respective delay segment positions corresponding to the M DMRS port signals.
  • the transceiver module is further configured to send indication information, where the indication information is used to indicate respective delay segment positions corresponding to the M DMRS port signals.
  • the M DMRS ports corresponding to the M DMRS port signals and the delay segment positions have a first correspondence.
  • the M DMRS ports corresponding to the M DMRS port signals have at least one DMRS port, and for any DMRS port in the at least one DMRS port, the The delay segment positions corresponding to all PRGs associated with the DMRS port are the same; or,
  • the M DMRS ports corresponding to the M DMRS port signals have at least one DMRS port, and for any one DMRS port in the at least one DMRS port, the delay segment corresponding to at least two PRGs in all PRGs associated with the DMRS port Location is different.
  • the size of the PRG associated with any DMRS port has a second correspondence with the number of delay segment positions corresponding to the DMRS port.
  • the size of the PRG associated with any DMRS port has a third corresponding relationship with the frequency domain reference signal density of the DMRS port.
  • the indication information occupies L bits, wherein,
  • the L bits are used to jointly indicate M delay segment positions, and L is an integer greater than or equal to 1; or,
  • the L bits are used to respectively indicate M delay segment positions, where L is equal to M.
  • an embodiment of the present application provides a communication apparatus, including at least one processor.
  • the processor can be used to execute a computer program to implement the method in any one of the possible implementations of the first aspect above.
  • the communication device further includes a communication interface to which the processor is coupled, and the communication interface is used for inputting and/or outputting information, the information including at least one of computer programs, instructions and data.
  • the communication device further includes a memory for storing at least one of computer programs, instructions and data, and the processor is coupled to the memory.
  • the communication apparatus is a terminal device or a network device.
  • the communication interface may be a transceiver, or an input and/or output interface.
  • the transceiver may be a transceiver circuit, and may also be implemented by an antenna, a feeder, a codec, etc. in a terminal device or a network device.
  • the input and/or output interface may be an input and/or output circuit.
  • the communication apparatus is a chip or a chip system configured in a terminal device or a network device.
  • the communication interface may be an input and/or output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, and the like.
  • the processor may also be a processing circuit or a logic circuit.
  • an embodiment of the present application provides a chip system, where the chip system includes at least one processor, and may further include a communication interface, for implementing the method performed by the communication apparatus in the third aspect or the fourth aspect.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, where the communication system includes the communication device described in the third aspect and the communication device described in the fourth aspect.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, any one of the above-mentioned first aspect and the second aspect may be realized. method in method.
  • a computer program product comprising: computer program code, when the computer program code is executed, enables any one of the possible implementations of the first aspect and the second aspect above to be implemented. Methods.
  • FIG. 1 is a flowchart of a multipath transmission of a signal provided by an embodiment of the present application
  • FIG. 2 is a basic flowchart of CSI measurement performed by a network device and a terminal device according to an embodiment of the present application;
  • 3 is a pattern of a DMRS in one RB provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the architecture of a suitable communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for sending and receiving a DMRS according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a principle of sending DMRS according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another principle of sending a DMRS provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • Network side equipment also known as network equipment, is an entity on the network side that transmits or receives signals, and is a device in the communication system that connects the terminal side equipment to the wireless network.
  • fiber optic cables are connected to the core network, such as a new generation of base stations (generation Node B, gNodeB).
  • the network-side device may be responsible for receiving data from the core network and forwarding it to the wireless backhaul device, or receiving data from the wireless backhaul device and forwarding it to the core network.
  • a network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (AP) in wireless local area networks (WLAN), an evolved base station (evolutional Node B, eNB or eNodeB) in long term evolution (LTE), Or it can also include next generation node B (gNB) in new radio (NR) system, or relay station or access point, or in-vehicle device, wearable device and network device in future 5G network Or the network equipment in the future evolved public land mobile network (Public Land Mobile Network, PLMN) network, or the gNodeB/gNB in the NR system.
  • the network side device is a gNB as an example.
  • the gNB may include an antenna, a base band unit (BBU) and a remote radio unit (RRU).
  • the BBU may be connected to the RRU through a common public radio interface (CPRI) or enhanced CPRI (enhance CPRI, eCPRI), and the RRU may be connected to the antenna through a feeder.
  • CPRI common public radio interface
  • eCPRI enhanced CPRI
  • the antenna can be a passive antenna, which is separated from the RRU and can be connected through a cable.
  • the antenna can be an active antenna unit (active antenna unit, AAU), that is, the antenna unit of the AAU and the RRU are integrated into one piece.
  • AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • a gNB may include a centralized unit (CU) and a distributed unit (DU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the DU can be used to transmit and receive radio frequency signals, convert radio frequency signals to baseband signals, and perform part of baseband processing.
  • the CU can be used to perform baseband processing, control the base station, and so on.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions of radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, medium access control (MAC) layer, and physical (PHY) layer. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, therefore, in this architecture, the higher-layer signaling, such as the RRC layer signaling, can also be considered to be sent by the DU. , or, sent by DU and AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • Terminal-side equipment also known as terminal equipment or terminal
  • the terminal-side device may communicate with one or more core networks or the Internet via a radio access network (eg, radio access network, RAN), and exchange voice and/or data with the RAN.
  • the terminal-side equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device (device-to-device, D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication (machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) ), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device), etc.
  • IoT Internet of things
  • terminals may include mobile telephones (or "cellular" telephones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, computer-embedded mobile devices, and the like.
  • the terminal may include a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control (industrial control), and a wireless terminal in self driving (self driving).
  • VR virtual reality
  • AR augmented reality
  • wireless terminal in remote medical surgery wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, smart home home), terminal equipment in the public land mobile network (PLMN), or vehicle equipment in vehicle to everything (V2X), customer premises equipment (customer premises) equipment, CPE) and so on.
  • V2X vehicle equipment in vehicle to everything
  • CPE customer premises equipment
  • the terminal may include a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant ( personal digital assistant, PDA), etc.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal may also include limited devices, such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, and the like.
  • it includes information sensing devices such as barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. Wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as on-board terminal equipment.
  • the on-board terminal equipment is also called on-board unit (OBU). ).
  • network devices and terminals can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; and they can also be deployed on aircraft, balloons, and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of network devices and terminals.
  • the time delay domain refers to the time delay space formed by the multipath delay of the signal, and can also be understood as the change domain of the frequency domain signal.
  • Wireless signal transmission will experience multipath effect, that is, the signal will experience multiple transmission paths when it is sent to the receiving end. It should be understood that, due to the existence of time delay in the signal transmission process, the time delay of different paths may be different, and then the time for the signal to reach the receiving end due to the time delay may be different after passing through multiple paths. Due to the phase difference caused by the different time delays of the multipath, after the multipath signals are combined, some signals are strong and some are weak in frequency. That is, if the transmission delays corresponding to the transmission paths are different, the frequency-selective fading of the frequency-domain signal will be caused.
  • FIG. 1 illustrates the process of sending a signal through multipath.
  • Figure 1 takes the example of signal transmission through two paths (path 1 and path 2). Signals on the base station side are transmitted to the terminal via Path 1 and Path 2. Due to the time delay between Path 1 and Path 2, the time for the signal to reach the terminal side through Path 1 and Path 2 may be different. Taking absolute time t as the reference time node, corresponding to path 1 and path 2, the time for the signal to reach the terminal via path 1 of the channel is t1, and the time for the signal to arrive at the terminal via path 2 of the channel is t2, and t1 is not equal to t2.
  • ⁇ in formula (1) and formula (2) is a frequency variable, and the phase rotation corresponding to different frequencies is different.
  • g( ⁇ ) ⁇ 1 we can get Due to the phase difference caused by the different time delays of the multipath, after the multipath signals are superimposed, the signal strength may be strong or weak in frequency.
  • the position of the delay segment which can be used to indicate the position in the delay domain of the signal delay of the signal reaching the receiving end through multiple paths on the channel.
  • the position corresponds to an interval on the delay domain, and the interval can be considered as the position of the delay segment.
  • PRB bundling size is used to indicate that a certain number of physical resource blocks (physical resource blocks, PRBs) are bound.
  • a physical resource block group (PRG) refers to a combination of multiple physical resource blocks (PRBs).
  • PRG can correspond to one PRB bundling size, or can correspond to two PRB bundling sizes, which is not limited in this application.
  • the network device adopts the same precoding, and the terminal side performs channel estimation in units of PRGs.
  • the precoding used by multiple PRBs in the PRG may be the same or different, and the terminal side still performs channel estimation in units of PRGs.
  • PRG and PRB bundling size are interchangeable, that is, the solution applicable to PRG is also applicable to PRB bundling size.
  • MOMO technology is introduced. Due to the introduction of the MIMO technology, when the network device sends data to the terminal device, it needs to perform modulation coding and signal precoding based on the downlink channel information obtained by the base station. To facilitate understanding of the embodiments of the present application, the following briefly describes terms involved in the embodiments of the present application.
  • the uplink channel and the downlink channel are reciprocal, and the base station side can use the reciprocity of the uplink channel and the downlink channel , obtain the CSI of the downlink channel through the uplink channel, and then perform signal precoding.
  • the frequency division duplexing (FDD) system due to the different frequency points used by the uplink channel and the downlink channel, the uplink channel and the downlink channel do not have reciprocity, and naturally the base station side cannot use the uplink channel to obtain the CSI of the downlink channel. .
  • the terminal side needs to feed back the CSI of the downlink channel to the base station side.
  • "for indicating” may include direct indicating and indirect indicating.
  • the indication information may directly indicate I or indirectly indicate I, but it does not mean that the indication information must carry I.
  • the information indicated by the indication information is called the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated itself or the information to be indicated. Indicating the index of information, etc.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be implemented by means of a pre-agreed (for example, a protocol stipulated) arrangement order of various information, so as to reduce the indication overhead to a certain extent.
  • the common part of each piece of information can also be identified and indicated uniformly, so as to reduce the indication overhead caused by indicating the same information separately.
  • FIG. 2 it is a basic flowchart for network equipment and terminal equipment to perform CSI measurement based on FDD.
  • the network device first sends the configuration signaling for channel measurement to the terminal device, notifying the terminal device to perform channel measurement, wherein the signaling indicates the time when the terminal device is to perform channel measurement, and then the network device sends a reference signal (reference signal) to the terminal device.
  • a reference signal reference signal
  • the concept includes reference signal) for channel measurement; the terminal device measures according to the reference signal sent by the network device, and calculates to obtain the final CSI; the terminal device feeds back a CSI report to the network device, and the CSI includes the channel that can be used to describe the communication link property information.
  • the CSI report may include, but is not limited to, a precoding matrix indicator (PMI), a rank indicator (RI), a channel quality indicator (CQI), and a channel state information reference signal (channel state information reference signal). , CSI-RS) resource indicator (CSI-RS resource indicator, CRI) and layer indicator (layer indicator, LI) and so on.
  • the network device then sends data according to the CSI report fed back by the terminal device.
  • the network device determines the number of streams to transmit data to the terminal device according to the RI included in the CSI report fed back by the terminal device; the network device determines the modulation order for transmitting data to the terminal device according to the CQI included in the CSI report fed back by the terminal device, and the channel coding Code rate; the network device determines the precoding of data transmitted to the terminal device according to the PMI included in the CSI report fed back by the terminal device.
  • the CSI may include one or more of the above-listed items, and may also include other information used to characterize the CSI in addition to the above-listed items, which is not limited in this embodiment of the present application.
  • the network device will calculate the precoding required for sending the data according to the acquired CSI.
  • the network device will send DMRS along with the data.
  • the DMRS can be used by the terminal equipment to estimate the equivalent channel after precoding.
  • the DMRS and data undergo the same precoding process, so that the terminal device can estimate the equivalent channel of the corresponding DMRS port according to the reference signal of the DMRS port predefined by the protocol on the time-frequency resource where the DMRS port is located.
  • FIG. 3 is a pattern diagram of a DMRS in a resource block (resource block, RB).
  • one RB includes 14 symbols in the time domain and 12 REs (ie, RE0, RE1, . . . , RE11 ) in the frequency domain.
  • the DMRS reference signal occupies 6 REs in one RB.
  • FIG. 3 takes DMRS port 1 and DMRS port 2 multiplexing 6 REs, and DMRS port 3 and DMRS port 4 multiplexing 6 REs as an example.
  • DMRS port 3 and DMRS port 4 can multiplex RE1, RE3, RE5, RE7, RE9 and RE11, these 6 REs can be considered as adjacent REs; DMRS port 1 and DMRS port 2 can multiplex RE0, RE2, RE4, RE6, RE8 and RE10, these 6 REs are also adjacent REs. That is, two adjacent REs refer to two adjacent REs in the above-mentioned adjacent REs, for example, the two adjacent REs may be RE1 and RE3, or RE3 and RE5, or RE2 and RE4, and so on.
  • the channel estimation on the RE by the terminal device includes the following three steps.
  • the estimation of the DMRS of port 1 is taken as an example.
  • Step 1) despreading, that is, distinguishing the signals sent respectively by two adjacent REs in the frequency domain (see the above explanation for the definition, for example, RE1 and RE3, or RE2 and RE4, etc.).
  • 1 RE can be multiplexed to transmit 2 DMRS ports, that is, each RE carries two DMRS port signals.
  • each RE carries two DMRS port signals.
  • the above-mentioned corresponding 6 REs are sent on each RE The superimposed signal of DMRS port 1 and DMRS port 2.
  • the terminal device needs to know the DMRS signals sent by the network device on each RE through the DMRS port 1 and the DMRS port 2 respectively.
  • y f1 is the signal sent by one RE among the two adjacent REs
  • y f2 is the signal sent by the other RE among the two adjacent REs
  • y p1 is the signal sent by DMRS port 1
  • y p2 is the DMRS Signal sent by port 2.
  • y p1 and y p2 can be calculated by formula (3) and formula (4).
  • the embodiment of the present application does not limit the despreading algorithm, for example, does not limit the number of REs for obtaining channel estimation values. Three adjacent REs get three channel estimates.
  • Step 2 For a certain port, perform least squares (LS) estimation according to the signal received by the RE corresponding to the port and the reference signal specified in the protocol, and obtain the channel estimation value H LS on the corresponding RE. It should be noted that the embodiments of the present application do not limit the method for obtaining the signal estimation value H LS according to the received signal.
  • Step 3) Obtain the channel estimation value after filtering and measurement, that is, the final channel estimation value, according to the HLS .
  • a filter matrix is generated in a physical resource block (physical resource block, PRB) bundling size (bundling size), for example, X RBs.
  • the REs in the X RBs are filtered through the filter matrix to obtain the final channel estimation value.
  • the REs in the X RBs here include REs with reference signals and REs without reference signals.
  • X is an integer greater than or equal to 2.
  • the final channel estimation value can be obtained by the following formula (5).
  • H LS is the channel estimation value (also called the channel sampling value) obtained in step 2
  • the channel correlation matrix is the autocorrelation matrix of the channel sampled values
  • I LS is the identity matrix, that is, the matrix with only one diagonal element.
  • the channel correlation matrix is used to indicate the channel relationship between different REs, and can be used to estimate the channel estimation value corresponding to the unknown RE from the channel estimation value corresponding to the known RE. That is, any 2 different REs in the 12 REs.
  • the channel correlation matrix can refer to the channel relationship between the REs multiplexed by DMRS port 1 and DMRS port 2 and the REs multiplexed by DMRS port 3 and DMRS port 4 in the frequency domain.
  • the channel correlation matrix can be used to estimate the two different REs.
  • the DMRS and the data undergo the same precoding process, so that the terminal can estimate the equivalent channel of the corresponding DMRS port according to the reference signal of the DMRS port predefined by the protocol on the time-frequency resource where the DMRS port is located.
  • the base station transmits a small number of DMRS port signals on the same time-frequency resource, so that the terminal obtains fewer streams and the accuracy of the channel estimation result is low.
  • an embodiment of the present application provides a method for sending DMRS.
  • a network device can increase the number of multiplexed DMRS ports on the same time-frequency resource, that is, the network device can send more DMRS ports on the same time-frequency resource.
  • DMRS port signal Since more DMRS ports can be multiplexed on the same time-frequency resource, the network device can send more streams without increasing the reference signal overhead. For the terminal, since more streams are obtained, more accurate channel estimation results can be obtained.
  • the technical solutions provided in the embodiments of this application may be applied to a 5G system, or to a future communication system or other similar communication systems.
  • the technical solutions provided in the embodiments of the present application may be applied to cellular links, PLMN networks, machine to machine (M2M) networks, Internet of things (Internet of things, IoT) networks, or other networks. It can also be applied to links between devices, such as device-to-device (D2D) links.
  • the D2D link may also be referred to as a sidelink (sidelink), wherein the sidelink may also be referred to as a side link or a secondary link.
  • sidelink sidelink
  • the above terms all refer to links established between devices of the same type, and have the same meaning.
  • the so-called equipment of the same type can be a link between a terminal device and a terminal device, a link between a base station and a base station, or a link between a relay node and a relay node.
  • the embodiment does not limit this.
  • D2D links defined by the version (Rel)-12/13 of the third generation partnership project (3GPP), and there are also vehicles defined by 3GPP for the Internet of Vehicles.
  • FIG. 4 is an application scenario applied by the embodiment of the present application, or a network architecture applied by the embodiment of the present application.
  • FIG. 4 includes network devices and 6 terminals. It should be understood that the number of terminals in FIG. 4 is only an example, and may be more or less.
  • the network architecture may also include other network devices, such as wireless The relay device and wireless backhaul device are not shown in FIG. 4 .
  • the network device is an access device through which the terminal accesses the network wirelessly, and may be a base station.
  • network equipment corresponds to different equipment in different systems, for example, in the fourth-generation mobile communication technology (4th-generation, 4G) system, it can correspond to eNB, and in 5G system, it can correspond to gNB; these six terminals can be cellular phones, Smartphones, laptops, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable device for communicating over a wireless communication system can all be connected to the network device.
  • 4G fourth-generation mobile communication technology
  • gNB wireless communication technology
  • these six terminals can be cellular phones, Smartphones, laptops, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable device for communicating over a wireless communication system can all be connected to the network device.
  • the embodiments of the present application may be applicable to uplink signal transmission, may also be applicable to downlink signal transmission, and may also be applicable to D2D signal transmission.
  • the sending device is a network device, and the corresponding receiving device is a terminal;
  • the sending device is a terminal, and the corresponding receiving device is a network device;
  • D2D signal transmission the sending device is a terminal, and the receiving device is also terminal.
  • the three terminals shown in the dotted line area in FIG. 4 may be suitable for D2D signal transmission, and the embodiment of the present application does not limit the direction of signal transmission.
  • the method is applied to the communication system shown in FIG. 4 as an example. Additionally, the method may be performed by two communication devices, eg, a first communication device and a second communication device.
  • the first communication device may be a network device or a communication device capable of supporting the functions required by the network device to realize the method, or the first communication device may be a terminal device or a communication device capable of supporting the functions required by the terminal to realize the method, Of course, it can also be other communication devices, such as a chip system.
  • the second communication device may be a network device or a communication device capable of supporting the functions required by the network device to implement the method, or the second communication device may be a terminal or a communication device capable of supporting the terminal to implement the method.
  • the functional communication device may also be other communication devices, such as a chip system.
  • the first communication device may be a network device
  • the second communication device may be a terminal, or both the first communication device and the second communication device may be terminals.
  • the first communication device is a network device
  • the second communication device is a communication device capable of supporting the functions required by the terminal to implement the method, and so on.
  • the method is performed by a network device and a terminal as an example, that is, the first communication device is a terminal and the second communication device is a network device as an example.
  • the terminal in the following may be any one of the six terminals in FIG. 4
  • the network device in the following may be the network device in FIG. 4 .
  • the embodiments of the present application only take the execution by the base station and the terminal as an example, and are not limited to this scenario.
  • FIG. 5 is a schematic flowchart of a method for sending a DMRS according to an embodiment of the present application. The specific flow of the method is described as follows.
  • a network device generates a first signal.
  • the first signal is formed by superimposing M DMRS port signals, where at least two DMRS port signals in the M DMRS port signals correspond to different time delay segment positions, where M is an integer greater than or equal to 2.
  • the network device sends a first signal on the first time-frequency resource, and the corresponding terminal receives the first signal.
  • the network device will send DMRS along with the data. Since the DMRS is sent through the DMRS port, in some embodiments, the DMRS sent by the network device may be referred to as a DMRS port signal. It should be understood that the DMRS ports are in one-to-one correspondence with the DMRS port signals, that is, one DMRS port corresponds to one DMRS port signal.
  • the network device may increase the number of multiplexed DMRS ports on the same time-frequency resource, that is, the network device sends multiple DMRS port signals on the same time-frequency resource. Since more DMRS ports can be multiplexed on the same time-frequency resource, the network device can send more streams without increasing the reference signal overhead. For the terminal, since more streams are obtained, more accurate channel estimation results can be obtained.
  • the network device may filter the precoding before sending the DMRS port signal used by the terminal to estimate the equivalent channel after the precoding.
  • a possible precoding filtering method is to perform phase rotation on REs corresponding to DMRS signals in multiple RBs in the PRB bundling size, and the frequency domain granularity of phase rotation is 1RE, that is, each RE signal is multiplied by a Complex number with phase. It can be understood that some RE signals can be multiplied by 1, and no actual phase rotation occurs in the end.
  • the channels of the N frequency domain units are respectively H 1 ?? H N
  • the precoding corresponding to the channels of the N frequency domain units are respectively P 1 ?? P N .
  • P 1 . . . PN are in the same precoding unit.
  • the subscript F represents the norm, It can be considered as the expression of optimization criteria, the purpose is to optimize ⁇ , which can be considered as the optimal ⁇ such that value is maximum. according to The rotational phase of the N REs can be determined.
  • the symbol ⁇ is the Khatri-Rao product, for example, a i is the ith column of A, is the Kronecker product, b i is the ith column of B, and i is an integer greater than or equal to 0.
  • the rotation phase of the N REs can be obtained by solving or approximately simplifying the solution for max ⁇ ⁇ H C ⁇ .
  • the network device performs phase rotation according to the rotation phase of REs with DMRS signals in multiple RBs in the PRB bundling size, that is, multiplying each RE in the frequency domain by a complex signal whose phase changes linearly, so that the corresponding time delay domain The signal is shifted. Therefore, the network device performs phase rotation on the frequency domain unit, so that the corresponding time delay segment positions of at least two DMRS port signals among the multiple DMRS port signals sent by the network device can be different, and the terminal receives the corresponding time delay segment positions at different time delay segment positions.
  • DMRS signal
  • FIG. 6 is a schematic diagram of a principle of sending a DMRS according to an embodiment of the present application.
  • FIG. 6 shows a schematic diagram of multiple RBs, and the embodiment of the present application does not limit the number of RBs.
  • Figure 6 takes the superposition of two DMRS port signals as an example.
  • the shaded parts of FIG. 6 respectively represent REs carrying DMRS signals, one shaded part corresponds to a signal of one DMRS port (this paper takes the first DMRS port signal as an example), and another shaded part corresponds to a signal of another DMRS port ( This paper takes the second DMRS port signal as an example). It is assumed that the delay offset of the first DMRS port signal is 0.
  • the network device may multiply each RE in the frequency domain of the second DMRS port signal by a complex signal whose phase changes linearly. As shown in FIG. 6 , there is a uniform phase difference between REs in the frequency domain on the second DMRS port signal, so that the second DMRS port signal is displaced in the corresponding delay domain, that is, the second DMRS port signal is in the delay domain. Moving, as shown in FIG. 7 , the starting position of the second DMRS port signal in the time delay domain is moved from the position P1 to the P2. In this way, the time delay segment positions of the first DMRS port signal and the second DMRS port signal are different, as shown in FIG. 7 .
  • FIG. 7 is a schematic diagram of a time delay domain corresponding to the first signal of FIG. 6 . It can be seen from FIG. 7 that the time delay segment positions of the first DMRS port signal and the second DMRS port signal are different.
  • the network device can move signals of different DMRS ports to different positions on the time delay domain, so that the M DMRS ports can reuse the same time-frequency resources.
  • M is an integer greater than or equal to 2 as an example.
  • the network device can move signals of different DMRS ports to different positions on the time delay domain, so that the M DMRS ports can reuse the same time-frequency resources.
  • some DMRS ports or all DMRS ports in the M DMRS port signals may be moved to different positions in the delay domain.
  • the network device can send M DMRS port signals on the same time-frequency resource (for example, the first time-frequency resource), and actually superimpose the M DMRS port signals moved in the delay domain to generate the first signal, and the network device The first signal is sent on the first time-frequency resource.
  • the network device can move signals of different DMRS ports to different positions on the time delay domain, so that more DMRS ports can reuse the same time-frequency resource position. Since the delay offsets of the at least two DMRS port signals in the first signal are different, the delay segment positions of the at least two DMRS port signals in the delay domain are also different.
  • the terminal After receiving the first signal, the terminal can distinguish each DMRS port signal from the first signal according to the respective time delay segment positions corresponding to each DMRS port signal. In other words, the terminal can receive the corresponding DMRS port signal at the time delay segment position corresponding to each DMRS port signal. Afterwards, the terminal device may perform time-domain filtering on the delay segment corresponding to each DMRS port signal to obtain a receive channel corresponding to the DMRS port, and then perform channel estimation on the receive channel.
  • the positions of the time delay segments corresponding to different DMRS port signals are different.
  • M DMRS port signals are in one-to-one correspondence with M delay segment positions, and any two adjacent delay segment positions in the M delay segment positions do not overlap, which can reduce the mutual interference of each DMRS port signal. interference.
  • the time delay segment positions corresponding to different DMRS port signals may partially overlap, so as to achieve the effect of increasing the number of reusable DMRS ports within the allowable range of interference.
  • the network device can adjust the time delay segment position corresponding to each DMRS port according to the algorithm. If the terminal does not know the corresponding time delay segment position of each DMRS port signal, the terminal cannot distinguish each DMRS port signal from the first signal. , that is, the corresponding DMRS port signal cannot be received at the time delay segment position corresponding to each DMRS port signal. Therefore, the terminal may obtain the delay segment positions based on the preset relationship, or the network device may notify the terminal of the respective delay segment positions corresponding to the M DMRS port signals in the first signal. It can be understood that the method in the embodiment of FIG. 5 may further include:
  • the network device sends first indication information to the terminal, and accordingly, the terminal receives the first indication information, where the first indication information is used to indicate the respective delay segment positions corresponding to the M DMRS port signals.
  • the terminal determines each MDRS port signal from the first signal according to the time delay segment position.
  • the network device may generate first indication information, where the first indication information may be used to indicate the positions of the M delay segments.
  • the network device sends the first indication information to the terminal to inform the terminal of the respective delay segment positions corresponding to the M DMRS port signals.
  • the first indication information may be carried in one or more fields of the existing signaling, which facilitates compatibility with the existing signaling.
  • the first indication information is carried in radio resource control (radio resource control, RRC) signaling, media access control element (media access control control element, MAC CE) signaling, downlink control information (downlink control information, DCI) signaling, etc. one or more of.
  • RRC radio resource control
  • MAC CE media access control element
  • DCI downlink control information
  • the above-mentioned one or more fields may be fields defined in RRC signaling, fields defined in MAC CE signaling, or fields defined in DCI signaling, or may be newly defined RRC fields, MAC CE fields, or DCI fields.
  • the embodiments of the present application are not limited.
  • the first indication information may also be carried in newly defined signaling.
  • the first indication information may directly indicate the respective delay segment positions corresponding to the M DMRS port signals.
  • the first indication information includes position information of M delay segments.
  • the first indication information may also indirectly indicate the respective delay segment positions corresponding to the M DMRS port signals.
  • the first indication information may include information related to the M delay segment positions, and the M delay segment positions may be indirectly indicated by the relevant information. Delay segment location to reduce indication overhead to a certain extent.
  • the network device may indicate multiple delay segment positions through multiple fields in the first indication information, and each field independently indicates one delay segment position.
  • the first indication information includes M fields, and each of the M fields is used to indicate a delay segment location, that is, the M fields indicate M delay segment locations.
  • the position of the delay segment corresponding to each DMRS port may be predefined.
  • N delay segment positions may be pre-defined, and the N delay segment positions may be sorted.
  • Each of the M fields may be used to indicate one of the N delay segment positions.
  • the value of N is not limited in this embodiment of the present application, and N and M may be the same or different.
  • N may be determined according to the delay distribution of the terminal and the guard interval conforming to orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM).
  • each of the M fields may occupy N bits, and the M fields occupy M*N bits in total.
  • the first indication information may include two fields, which are called the first field and the second field respectively. The first field may occupy 8 bits, and the second field may occupy 8 bits.
  • each field clearly indicates which delay segment position of the N delay segment positions, which is straightforward. It should be noted that, in this example, the value of each bit is “0”, indicating that the corresponding delay segment position is selected, and the value of this bit is "1", indicating that the corresponding delay segment position is not selected. In other examples, it is also possible to specify that the value of each bit is "1”, indicating that the corresponding delay segment position is selected, and the value of this bit is "0", indicating that the corresponding delay segment position is not selected. .
  • each of the M fields may occupy log 2 N bits, and the M fields occupy M*log 2 N bits in total.
  • the log 2 Nbit of each field corresponds to a delay segment position, and the value of each field is used for which delay segment position among the N delay segment positions the corresponding delay segment position is.
  • the first indication information may include two fields, and the two fields are called the first field and the second field respectively.
  • the first field may occupy 3 bits, and the second field may occupy 3 bits. If the value carried by the first field is "101", and the value carried by the second field is "011", it means that the 2 delay segment positions are the sixth and fourth among the 8 delay segment positions Delay segment location.
  • This indication method is more direct and saves signaling overhead.
  • the network device may jointly indicate the respective delay segment positions corresponding to the M DMRS port signals through one or more fields of the first indication information.
  • the first indication information may include a field (for example, a first field), and the first field is used to indicate the positions of the delay segments corresponding to the M DMRS port signals, that is, the first field may indicate M Delay segment location.
  • a field for example, a first field
  • N delay segment positions may be predefined, and the N delay segment positions may be sorted.
  • the first field may occupy N bits, each bit corresponds to a delay segment position, and the value of each bit is used to indicate whether the corresponding delay segment position is selected.
  • the value of each bit can be defined as "0", indicating that the corresponding delay segment position is selected; on the contrary, the value of this bit is "1", indicating that the corresponding delay segment position is not selected.
  • the signaling overhead can be further saved by using the first field to indicate the M delay segment positions.
  • the first field can directly indicate M delay segment positions among the N delay segment positions, which is straightforward.
  • N delay segment positions may be predefined, and the N delay segment positions may be sorted.
  • the first field may indicate M delay segment locations selected from N delay segment locations. It should be understood that, selecting M delay segment positions from N delay segment positions, there are kind of combination. The first field may indicate this one of the combinations, thereby indirectly indicating the M delay segment positions.
  • the first field may occupy 5 bits, and the value of the first field indicates which combination in the 28 groups, that is, which 2 delay segment positions among the 8 delay segment positions.
  • the value carried by 5 bits of the first field is "00111", that is, the first field indicates two delay segment positions included in the 8th combination in the 28 combinations. In this way, the number of bits occupied by the first field can be That is, the number of bits occupied by the first field is less, which can further save signaling overhead.
  • One or more fields of the first indication information jointly indicate M delay segment positions.
  • the terminal can determine M delay segment positions according to the first indication information, the terminal does not know the M delay segment positions. How to correspond to M DMRS port signals. Therefore, the correspondence between the DMRS ports included in the network device and the N delay segment positions (hereinafter referred to as the first correspondence) may be predefined.
  • the time delay segment positions corresponding to different DMRS ports may be the same, that is, multiple DMRS ports may correspond to one time delay segment location. Since the DMRS port signals are in one-to-one correspondence with the DMRS ports, the time delay segment position corresponding to a certain DMRS port is also the time delay segment position corresponding to the DMRS port signal corresponding to the DMRS port.
  • the N delay segment positions may be sorted in advance, for example, the N delay segment positions are respectively numbered and sorted in descending order (or from large to small).
  • the terminal receives the first indication information and obtains the M delay segment positions, it can determine the respective delay segment positions corresponding to each DMRS port signal according to the first correspondence relationship, and then compare the corresponding delay segment positions at the corresponding delay segment positions.
  • the received DMRS port signal is filtered for channel estimation.
  • the M delay segment positions may be indicated implicitly (indirectly) by the port number of the DMRS port. Since the M DMRS port signals have a one-to-one correspondence with the M DMRS ports, and the M DMRS port signals also have a one-to-one correspondence with the M delay segment positions, the M delay segment positions are in a one-to-one correspondence with the M DMRS ports. , the position of the delay segment can be indirectly indicated by the port number of the DMRS port. In this manner, the network device does not need to send the first indication information to the terminal, which further saves signaling overhead. Therefore, S503 is not essential, that is, an optional step, which is indicated by a dotted line in FIG. 5 .
  • the system may predefine respective delay segment positions corresponding to each DMRS port of the network device.
  • the port numbers of the DMRS ports corresponding to different delay segment positions can be pre-defined, that is, the correspondence between the port numbers of each DMRS port and the delay segment positions can be pre-defined, that is, the first correspondence, as shown in Table 2 shown.
  • the network device can assign a port number to each DMRS port, the network device can indicate the port number to the terminal, and the terminal uses the DMRS port corresponding to the port number indicated by the network device to receive the M DMRS port signals. Since the terminal knows which DMRS ports to receive signals from, the terminal can determine the respective time delay segment positions corresponding to the M DMRS port signals according to the port number indicated by the network device and the first correspondence.
  • Port number of the DMRS port The sequence number of the delay segment position 0 0 1 1 ... ... N N
  • Table 2 is only an example, and the embodiment of the present application does not limit the specific mapping relationship between the sequence number of the delay segment position and the port number of the DMRS port.
  • the first indication information may indicate the M delay segment positions corresponding to the M DMRS port signals for one terminal.
  • a DMRS port can be used by any terminal.
  • the position of the delay segment corresponding to the DMRS port may or may not be the same. If it is pre-agreed that the delay segment positions corresponding to the same DMRS port of multiple terminals are the same, that is, one DMRS port corresponds to one delay segment position.
  • the foregoing implicit indication manner or the first indication information may be used to indicate the M delay segment positions for the terminal.
  • the network device may inform the terminal or agree whether the delay segment position corresponding to any DMRS port is the same for all terminals, or inform each terminal of its corresponding delay segment position , so that the terminal can accurately perform filtering at the corresponding time delay segment position.
  • multiple RBs can be uniformly filtered, that is, multiple RBs are bound into a PRG group, and the PRG group is filtered to achieve noise reduction. , to improve the effect of channel estimation.
  • the positions of the delay segments corresponding to different PRGs may be the same or may be different.
  • the positions of the delay segments corresponding to all PRGs associated with the DMRS port are allowed to be the same. If all PRGs associated with one DMRS port have the same time delay segment position, that is, all PRGs associated with one DMRS port correspond to one time delay segment location.
  • the above-mentioned first indication information is applicable to all PRGs, and the network device can use the above-mentioned first indication information to indicate M delay segment positions for the terminal, that is, the time corresponding to one DMRS port can be indicated by one signaling. Extending the segment location, the signaling overhead is small. The terminal does not need to pay attention to the size of the PRG, and only needs to distinguish each DMRS port signal from the first signal according to the first indication information.
  • the delay segment positions corresponding to at least two PRGs among all PRGs associated with the DMRS port are allowed to be different. If there are different PRGs in all PRGs associated with a DMRS port and the corresponding delay segment positions are different, the terminal needs to know which PRG corresponds to the M delay segment positions. In this case, it is necessary to additionally indicate which PRG corresponds to the M delay segment positions.
  • the delay segment positions corresponding to all PRGs associated with one DMRS port are different. Then, among all the PRGs associated with a DMRS port, the PRGs corresponding to the same delay segment position can be regarded as a group, and the delay segment positions corresponding to different groups of PRGs are different.
  • the network device may indicate a delay segment location.
  • the first indication information may further include a third field, where the third field is used to indicate the PRG group. The terminal receives the first indication information, and can determine which group of PRGs the M delay segment positions correspond to according to the third field.
  • each PRG associated with a DMRS port may be indicated by the first indication information respectively.
  • the fourth fields included in the different first indication information are used to indicate corresponding different PRGs.
  • the terminal receives the first indication information, and can determine which PRG corresponds to the M delay segment positions according to the fourth field. It should be understood that, according to the difference in the number of delay segment positions corresponding to the DMRS port corresponding to the PRG, the overhead of the fourth field is also different.
  • this embodiment of the present application may define a correspondence between the size of the PRG associated with any DMRS port and the number of delay segment positions corresponding to the DMRS port. It can also be considered that the PRG associated with any DMRS port has a second correspondence with the number of delay segment positions corresponding to the DMRS port. The second correspondence can determine the signaling overhead of the first indication information, so that the terminal can correctly parse the first indication information according to the second correspondence.
  • the delay segment positions corresponding to the same PRB bundling size may be the same or different. If the delay segment positions corresponding to the same PRB bundling size are different, it is necessary to additionally indicate which PRB bundling size corresponds to the M delay segment positions.
  • the first indication information may include a fifth field, where the fifth field is used to indicate the PRB bundling size corresponding to the M delay segment positions. It should be understood that, according to the difference in the number of delay segment positions corresponding to the DMRS port corresponding to the PRB bundling size, the overhead of the fifth field is also different.
  • this embodiment of the present application may define a correspondence between multiple PRB bundling sizes and the number of delay segment positions corresponding to the DMRS ports.
  • the corresponding relationship can determine the signaling overhead of the first indication information, so that the terminal can correctly parse the first indication information according to the corresponding relationship.
  • the terminal distinguishes each DMRS port signal from the first signal, for example, the first DMRS port signal and the second DMRS port signal, and compares the first DMRS port signal within the first delay segment corresponding to the first DMRS port signal. Perform filtering and interpolation processing, and perform filtering and interpolation processing on the second DMRS port signal within the second delay segment corresponding to the second DMRS port signal.
  • This embodiment of the present application may define the correspondence between the size of the PRG associated with any DMRS port and the frequency domain reference signal density of the DMRS port. It can also be considered that the size of the PRG associated with any DMRS port has a third corresponding relationship with the frequency domain reference signal density of the DMRS port.
  • the above-mentioned third corresponding relationship may be predefined, and it is specified that the terminal adopts a preset PRG.
  • the terminal can determine the frequency domain reference signal density of the DMRS port to be selected according to the preset PRG and the third correspondence, and then according to the frequency domain reference signal density of the DMRS port Filter and interpolate the received DMRS port signal.
  • the network device may send second indication information to the terminal, where the second indication information may indicate the PRG to be selected by the terminal.
  • the terminal may determine the frequency domain reference signal density of the DMRS port according to the PRG and the preset third correspondence.
  • the network device may send second indication information to the terminal, where the second indication information may indicate the PRG to be selected by the terminal and the third correspondence.
  • the terminal may determine the frequency domain reference signal density of the DMRS port to be selected according to the second indication information.
  • the embodiments of the present application may define a plurality of correspondences between PRB bundling sizes and frequency-domain reference signal densities, such as a fourth correspondence, to indicate the frequency-domain reference signal density of the DMRS port to be selected by the terminal through the fourth correspondence. .
  • the above-mentioned fourth corresponding relationship and the PRB bundling size used by default can be predefined.
  • the terminal can determine the frequency domain reference signal density of the DMRS port to be selected according to the preset PRB bundling size and the fourth correspondence, and then according to the frequency domain reference signal density of the DMRS port
  • the signal density filters and interpolates the received DMRS port signal.
  • the network device may send third indication information to the terminal, where the third indication information may indicate the PRB bundling size to be selected by the terminal.
  • the terminal can determine the frequency domain reference signal density of the DMRS port according to the PRB bundling size and the preset fourth correspondence. Further, filtering and interpolation processing is performed on the received DMRS port signal according to the frequency domain reference signal density of the DMRS port.
  • the network device may send third indication information to the terminal, where the third indication information may indicate the PRB bundling size to be selected by the terminal and the fourth correspondence. The terminal may determine the frequency domain reference signal density of the DMRS port to be selected according to the third indication information.
  • the second indication information may be carried in one or more fields of the existing signaling.
  • the second indication information is carried in one or more of RRC signaling, MAC CE signaling, and DCI signaling.
  • the above-mentioned one or more fields may be fields defined in RRC signaling, fields defined in MAC CE signaling, or fields defined in DCI signaling, or may be newly defined RRC fields, MAC CE fields, or DCI fields.
  • the embodiments of the present application are not limited.
  • the second indication information may also be carried in newly defined signaling.
  • the third indication information may be carried on one or more fields of the existing signaling.
  • the third indication information is carried in one or more of RRC signaling, MAC CE signaling, and DCI signaling.
  • the above-mentioned one or more fields may be fields defined in RRC signaling, fields defined in MAC CE signaling, or fields defined in DCI signaling, or may be newly defined RRC fields, MAC CE fields, or DCI fields.
  • the embodiments of the present application are not limited.
  • the third indication information may also be carried in newly defined signaling.
  • the network device can increase the number of multiplexed DMRS ports on the same time-frequency resource according to the different positions of the delay segments corresponding to the at least two DMRS port signals, that is, the network device at the same time More DMRS port signals are sent on the frequency resource. Since more DMRS ports can be multiplexed on the same time-frequency resource, the network device can send more streams without increasing the pilot overhead. For the terminal, since more streams are obtained, more accurate channel estimation results can be obtained.
  • the methods provided in the embodiments of the present application are respectively introduced from the perspective of interaction between a terminal and a network device.
  • the terminal and the network device may include hardware structures and/or software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 8 is a schematic block diagram of a communication apparatus 800 according to an embodiment of the present application.
  • the communication apparatus 800 may correspondingly implement the functions or steps implemented by the terminal or the base station in the foregoing method embodiments.
  • the communication apparatus may include a processing module 810 and a transceiver module 820 .
  • a storage unit may also be included, and the storage unit may be used to store instructions (codes or programs) and/or data.
  • the processing module 810 and the transceiver module 820 may be coupled with the storage unit, for example, the processing module 810 may read instructions (codes or programs) and/or data in the storage unit to implement corresponding methods.
  • the above-mentioned units may be set independently, or may be partially or fully integrated.
  • the communication apparatus 800 can correspondingly implement the behaviors and functions of the base station in the foregoing method embodiments.
  • the communication apparatus 800 may be a base station, or may be a component (eg, a chip or a circuit) applied in the base station.
  • the transceiver module 820 may be configured to perform all receiving or transmitting operations performed by the base station in the embodiment shown in FIG. 5 .
  • the processing module 810 is configured to perform all operations performed by the base station in the embodiment shown in FIG. 5 except for the transceiving operation, such as S501 in the embodiment shown in FIG. 5, and/or to support this document other procedures of the described techniques.
  • the processing module 810 is configured to generate a first signal, where the first signal is formed by superimposing M DMRS port signals, and at least two DMRS port signals in the M DMRS port signals correspond to different time delay segment positions , M is an integer greater than or equal to 2; the transceiver module 820 is configured to send the first signal on the first time-frequency resource.
  • the transceiver module 820 is further configured to send indication information, where the indication information is used to indicate respective delay segment positions corresponding to the M DMRS port signals.
  • the M DMRS ports corresponding to the M DMRS port signals and the time delay segment positions have a first correspondence.
  • the M DMRS ports corresponding to the M DMRS port signals have at least one DMRS port, and for any one DMRS port in the at least one DMRS port, the delay corresponding to all PRGs associated with the DMRS port The segment location is the same; or,
  • the M DMRS ports corresponding to the M DMRS port signals have at least one DMRS port, and for any one DMRS port in the at least one DMRS port, the delay segment positions corresponding to at least two PRGs in all PRGs associated with the DMRS port are different .
  • the size of the PRG associated with any DMRS port has a second correspondence with the number of delay segment positions corresponding to the DMRS port.
  • the size of the PRG associated with any DMRS port has a third corresponding relationship with the frequency domain reference signal density of the DMRS port.
  • the indication information occupies L bits, wherein,
  • the L bits are used to jointly indicate M delay segment positions, and L is an integer greater than or equal to 1; or,
  • the L bits are used to respectively indicate M delay segment positions, where L is equal to M.
  • processing module 810 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 820 may be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • the communication apparatus 800 can correspondingly implement the behaviors and functions of the terminal in the foregoing method embodiments.
  • the communication apparatus 800 may be a terminal, and may also be a component (eg, a chip or a circuit) applied in the terminal.
  • the transceiver module 820 may be used to perform all the receiving or sending operations performed by the terminal in the embodiment shown in FIG. 5 .
  • the processing module 810 is configured to perform all operations performed by the terminal in the embodiment shown in FIG. 5 except for the transceiving operation, such as S504 in the embodiment shown in FIG. 5 , and/or to support this document other procedures of the described techniques.
  • the transceiver module 820 is configured to receive a first signal on the first time-frequency resource, where the first signal is formed by superimposing M DMRS port signals, and at least two DMRS port signals of the M DMRS port signals correspond to The positions of the delay segments are different, and M is an integer greater than or equal to 2; the processing module 810 is configured to determine the M DMRS port signals from the first signal according to the delay segment positions.
  • the transceiver module 820 is further configured to receive indication information, where the indication information is used to indicate respective delay segment positions corresponding to the M DMRS port signals.
  • the M DMRS ports corresponding to the M DMRS port signals and the time delay segment positions have a first correspondence.
  • the M DMRS ports corresponding to the M DMRS port signals have at least one DMRS port, and for any one DMRS port in the at least one DMRS port, the delay corresponding to all PRGs associated with the DMRS port The segment location is the same; or,
  • the M DMRS ports corresponding to the M DMRS port signals have at least one DMRS port, and for any one DMRS port in the at least one DMRS port, the delay segment positions corresponding to at least two PRGs in all PRGs associated with the DMRS port are different .
  • the size of the PRG associated with any DMRS port has a second correspondence with the number of delay segment positions corresponding to the DMRS port.
  • the size of the PRG associated with any DMRS port has a third corresponding relationship with the frequency domain reference signal density of the DMRS port.
  • the indication information occupies L bits, wherein,
  • the L bits are used to jointly indicate M delay segment positions, and L is an integer greater than or equal to 1; or,
  • the L bits are used to respectively indicate M delay segment positions, where L is equal to M.
  • processing module 810 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 820 may be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • FIG. 9 shows a communication apparatus 900 provided in this embodiment of the present application, where the communication apparatus 900 may be a terminal capable of implementing the functions of the terminal in the method provided in this embodiment of the present application, or the communication apparatus 900 may be a network device capable of Implement the function of the network device in the method provided by the embodiment of the present application; the communication apparatus 900 may also be a device that can support the terminal to implement the corresponding function in the method provided by the embodiment of the present application, or can support the network device to implement the function provided by the embodiment of the present application.
  • the communication device 900 may be a chip or a chip system. In this embodiment of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the above-mentioned transceiver module 820 may be a transceiver, and the transceiver is integrated in the communication device 900 to form a communication interface 910 .
  • the communication apparatus 900 includes at least one processor 920, which is configured to implement or support the communication apparatus 900 to implement the function of the network device or terminal in the method provided in the embodiments of this application. For details, refer to the detailed description in the method example, which is not repeated here.
  • Communication apparatus 900 may also include at least one memory 930 for storing program instructions and/or data.
  • Memory 930 is coupled to processor 920 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 920 may cooperate with memory 930 .
  • the processor 920 may execute program instructions and/or data stored in the memory 930 to cause the communication device 900 to implement the corresponding method. At least one of the at least one memory may be included in the processor.
  • the communication apparatus 900 may further include a communication interface 910 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 900 may communicate with other devices.
  • a communication interface 910 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 900 may communicate with other devices.
  • the communication device is a terminal
  • the other device is a network device; or, when the communication device is a network device, the other device is a terminal.
  • the processor 920 may use the communication interface 910 to send and receive data.
  • the communication interface 910 may specifically be a transceiver.
  • the specific connection medium between the communication interface 910 , the processor 920 , and the memory 930 is not limited in the embodiments of the present application.
  • the memory 930, the processor 920, and the communication interface 910 are connected through a bus 940 in FIG. 9.
  • the bus is represented by a thick line in FIG. 9.
  • the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • the processor 920 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement Alternatively, each method, step, and logic block diagram disclosed in the embodiments of the present application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 930 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), Such as random-access memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the communication device in the above-mentioned embodiment may be a terminal or a circuit, or may be a chip applied in the terminal or other combined devices or components having the above-mentioned terminal function.
  • the transceiver module may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver module may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver module may be an input/output interface of the chip or the chip system
  • the processing module may be a processor of the chip or the chip system.
  • FIG. 10 shows a schematic structural diagram of a simplified communication device.
  • the communication device is a base station as an example.
  • the base station may be applied to the system shown in FIG. 4 , and may be the network device shown in FIG. 4 , performing the functions of the network device in the foregoing method embodiments.
  • the communication device 1000 may include a transceiver 1010 , a memory 1021 and a processor 1022 .
  • the transceiver 1010 can be used for communication by a communication device, such as for sending or receiving the above-mentioned indication information.
  • the memory 1021 is coupled to the processor 1022 and can be used to store programs and data necessary for the communication device 1000 to implement various functions.
  • the processor 1022 is configured to support the communication device 1000 to perform the corresponding functions in the above-mentioned methods, and the functions can be implemented by calling programs stored in the memory 1021 .
  • the transceiver 1010 may be a wireless transceiver, which may be used to support the communication device 1000 to receive and send signaling and/or data through a wireless air interface.
  • the transceiver 1010 may also be referred to as a transceiver unit or a communication unit, and the transceiver 1010 may include one or more radio frequency units 1012 and one or more antennas 1011, wherein the radio frequency unit is such as a remote radio unit (remote radio unit, RRU) Or an active antenna unit (active antenna unit, AAU), which can be specifically used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals, and the one or more antennas can specifically be used for radiation and reception of radio frequency signals.
  • the transceiver 1010 may only include the above radio frequency unit, and then the communication apparatus 1000 may include the transceiver 1010, the memory 1021, the processor 1022 and the antenna.
  • the memory 1021 and the processor 1022 can be integrated or independent from each other. As shown in FIG. 10 , the memory 1021 and the processor 1022 can be integrated into the control unit 1020 of the communication device 1000 .
  • the control unit 1020 may include a baseband unit (BBU) of an LTE base station, and the baseband unit may also be referred to as a digital unit (DU), or the control unit 1020 may include 5G and future wireless access A distributed unit (DU) and/or a centralized unit (CU) in a base station under the technology.
  • BBU baseband unit
  • DU digital unit
  • CU centralized unit
  • the above-mentioned control unit 1020 may be composed of one or more antenna panels, wherein, multiple antenna panels may jointly support a wireless access network (such as an LTE network) of a single access standard, and multiple antenna panels may also respectively support a wireless access network of different access standards. Radio access network (such as LTE network, 5G network or other network).
  • the memory 1021 and processor 1022 may serve one or more antenna panels. That is, the memory 1021 and the processor 1022 may be separately provided on each antenna panel. It is also possible that multiple antenna panels share the same memory 1021 and processor 1022 .
  • necessary circuits may be provided on each antenna panel, for example, the circuits may be used to realize the coupling between the memory 1021 and the processor 1022 .
  • the above transceiver 1010, processor 1022 and memory 1021 can be connected through a bus structure and/or other connection media.
  • the processor 1022 can perform baseband processing on the data to be sent, and then output the baseband signal to the radio frequency unit, and the radio frequency unit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna. It is sent in the form of electromagnetic waves.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1022, and the processor 1022 converts the baseband signal into data and sends the data to the data. to be processed.
  • the transceiver 1010 can be used to perform the above steps performed by the transceiver module 820 .
  • the processor 1022 may be used to invoke instructions in the memory 1021 to perform the steps performed by the processing module 810 above.
  • FIG. 11 shows a schematic structural diagram of a simplified terminal.
  • the terminal takes a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the vehicle-mounted unit, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 11 only one memory and processor are shown in FIG. 11 . In an actual device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with a transceiver function may be regarded as the transceiver unit of the apparatus, and the processor with the processing function may be regarded as the processing unit of the apparatus.
  • the apparatus includes a transceiver unit 1110 and a processing unit 1120 .
  • the transceiver unit 1110 may also be referred to as a transceiver, a transceiver, a transceiver, or the like.
  • the processing unit 1120 may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 1110 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 1110 may be regarded as a transmitting unit, that is, the transceiver unit 1110 includes a receiving unit and a transmitting unit.
  • the transceiver unit 1110 may also be sometimes referred to as a transceiver, a transceiver, or a transceiver circuit or the like.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • transceiving unit 1110 is configured to perform the sending and receiving operations on the terminal side in the above method embodiments
  • processing unit 1120 is configured to perform other operations on the terminal except the transceiving operations in the above method embodiments.
  • the transceiver unit 1110 may be configured to perform S502, S503 in the embodiment shown in FIG. 5, and/or other processes for supporting the techniques described herein.
  • the processing unit 1120 is used to perform S504 in the embodiment shown in FIG. 5, and/or other processes used to support the techniques described herein.
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and/or a communication interface;
  • the processing unit may be an integrated processor, a microprocessor or an integrated circuit.
  • the embodiment of the present application further provides a communication system, specifically, the communication system includes a network device and a terminal, or may further include more network devices and multiple terminals.
  • the communication system includes a network device and a terminal for implementing the relevant functions of the above embodiment in FIG. 5 .
  • the network devices are respectively used to implement the functions of the base station part of the embodiment of the present application, for example, to implement the functions of the base station part of the embodiment shown in FIG. 5 above.
  • the terminal is used to implement the functions of the relevant terminal part of the embodiment of the present application, for example, used to implement the functions of the relevant terminal of the embodiment shown in FIG. 5 above.
  • the relevant descriptions in the foregoing method embodiments please refer to the relevant descriptions in the foregoing method embodiments, which will not be repeated here.
  • Embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to execute the method executed by the base station in the embodiment of the present application, for example, execute the method executed by the base station in the embodiment shown in FIG. 5 . or when it runs on a computer, it causes the computer to execute the method executed by the terminal in the embodiment of the present application, for example, execute the method executed by the terminal in the embodiment shown in FIG. 5 .
  • the embodiments of the present application also provide a computer program product, including instructions, which, when run on a computer, cause the computer to execute the method executed by the base station in the embodiment of the present application, for example, execute the method executed by the base station in the embodiment shown in FIG. 5 . ; or when it runs on a computer, the computer executes the method executed by the terminal in the embodiment of the present application, for example, executes the method executed by the terminal in the embodiment shown in FIG. 5 .
  • the embodiments of the present application provide a chip system, which includes a processor and may also include a memory, for implementing the functions of the network device or terminal in the foregoing method; or for implementing the functions of the network device and the terminal in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .
  • used for indicating may include direct indicating and indirect indicating.
  • the indication information may directly indicate I or indirectly indicate I, but it does not mean that the indication information must carry I.
  • the information indicated by the indication information is called the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated itself or the information to be indicated. Indicating the index of information, etc.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. Alternatively, it may also be agreed that a certain information carries or does not carry a certain identification as an indication to treat the indication information.
  • the specific indication manner may also be various existing indication manners, such as, but not limited to, the above indication manner and various combinations thereof.
  • the required indication mode can be selected according to specific needs.
  • the selected indication mode is not limited in this embodiment of the present application. In this way, the indication mode involved in the embodiment of the present application should be understood as covering the ability to make the indication to be indicated. Various methods for the party to learn the information to be indicated.
  • the information to be indicated may be sent together as a whole, or may be divided into multiple sub-information and sent separately, and the transmission periods and/or transmission timings of these sub-information may be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and/or sending timing of these sub-information may be predefined, for example, predefined according to a protocol, or configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, for example, but not limited to, radio resource control signaling, such as RRC signaling, MAC layer signaling, such as MAC-CE signaling, and physical layer signaling, such as downlink control information (DCI) one or a combination of at least two.
  • radio resource control signaling such as RRC signaling
  • MAC layer signaling such as MAC-CE signaling
  • DCI downlink control information
  • a time domain concept or a time domain unit may include a frame, a radio frame, a system frame, a subframe, a half frame, a time slot, a mini-slot, a symbol, and the like.
  • At least one (a) of a, b or c can represent: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c Can be single or multiple.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority or priority of multiple objects. Importance.
  • the first information and the second information are only for differentiating different indication information, and do not indicate the difference in priority or importance of the two kinds of information.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the word "exemplary” is used to indicate an example or illustration. Any embodiment or implementation described in this application summary as an “example” should not be construed as preferred over other embodiments or implementations. That is, the use of the word “example” is intended to present concepts in a concrete manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种解调参考信号的发送方法、接收方法及通信装置,该方法包括:网络设备生成第一信号,以及在第一时频资源上发送该第一信号,其中,该第一信号由M个DMRS端口信号叠加形成,所述M个DMRS端口信号中至少两个DMRS端口信号对应的时延分段位置不同。由于第一信号是由M个DMRS端口信号叠加形成,即网络设备在同一时频资源上发送多个DMRS端口信号,可降低参考信号开销。由于网络设备在同一时频资源上发送更多个DMRS端口信号。这样在不增加导频开销的前提下,网络设备可发送更多的流数。对于终端来说,由于获得更多的流数,所以可获得更为准确的信道估计结果。

Description

一种解调参考信号的发送方法、接收方法及通信装置
相关申请的交叉引用
本申请要求在2020年09月30日提交中国专利局、申请号为202011055509.8、申请名称为“一种解调参考信号的发送方法、接收方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种解调参考信号的发送方法、接收方法及通信装置。
背景技术
为提升***的吞吐量,引入了多输入多输出(multiple input and multiple output,MIMO)技术。采用MIMO技术,基站向终端发送数据时,需要根据下行信道状态信息(Channel State Information,CSI)进行信号预编码。对于时分双工(time division duplexing,TDD)***来说,由于上行信道和下行信道使用相同的带宽,上行信道和下行信道具有互易性,基站侧可以利用上行信道和下行信道的互易性,通过上行信道获取下行信道的CSI,进而进行信号预编码。
基站会根据上行参考信号计算发送数据所需要的预编码。为了辅助数据解调,基站发送数据时会一并发送解调参考信号(demodulation reference signal,DMRS)。该DMRS可用于终端估计经过预编码后的等效信道。通常,DMRS会与数据经过相同的预编码处理,这样终端在某个DMRS端口所在的时频资源上,根据协议预定义的该DMRS端口的参考信号可估计得到对应DMRS端口的等效信道。
目前,基站在同一时频资源上发送DMRS端口信号的数量较少,使得终端获得流数较少,信道估计结果的准确度较低。
发明内容
本申请提供一种DMRS的发送方法、接收方法及通信装置,可保证较好的信道估计性能以及更高的信道估计准确度。
第一方面,本申请实施例提供一种解调参考信号的接收方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备(例如,终端侧设备)或能够支持通信设备实现该方法所需的功能的装置,例如芯片或芯片***。该方法包括:
在第一时频资源上接收第一信号,以及根据时延分段位置从所述第一信号中确定M个DMRS端口信号,其中,该第一信号由所述M个DMRS端口信号叠加形成,所述M个DMRS端口信号中至少两个DMRS端口信号对应的时延分段位置不同,M为大于或等于2的整数。
在本申请实施例中,至少两个DMRS端口信号对应的时延分段位置不同,可在同一时频资源上增加复用的DMRS端口数,即网络设备在同一时频资源上发送更多个DMRS端 口信号。由于在同一时频资源上可复用更多的DMRS端口,这样在不增加导频开销的前提下,网络设备可发送更多的流数。对于终端来说,由于获得更多的流数,所以可获得更为准确的信道估计结果。
第二方面,本申请实施例提供一种DMRS的发送方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备(例如,网络设备)或能够支持通信设备实现该方法所需的功能的装置,例如芯片或芯片***。该方法包括:
生成第一信号,以及在第一时频资源上发送该第一信号,其中,该第一信号由M个DMRS端口信号叠加形成,所述M个DMRS端口信号中至少两个DMRS端口信号对应的时延分段位置不同,M为大于或等于2的整数。
在本申请实施例中,网络设备根据至少两个DMRS端口信号对应的时延分段位置不同,可在同一时频资源上增加复用的DMRS端口数,即网络设备在同一时频资源上发送更多个DMRS端口信号。由于在同一时频资源上可复用更多的DMRS端口,这样在不增加导频开销的前提下,网络设备可发送更多的流数。对于终端来说,由于获得更多的流数,所以可获得更为准确的信道估计结果。
在第一方面的一种可能的实现方式中,所述方法还包括:接收指示信息,该指示信息用于指示所述M个DMRS端口信号分别对应的时延分段位置。
在第二方面的一种可能的实现方式中,所述方法还包括:发送指示信息,该指示信息用于指示所述M个DMRS端口信号分别对应的时延分段位置。
网络侧可通知终端,第一信号中的M个DMRS端口信号分别对应的时延分段位置,这样终端可以根据时延分段位置从第一信号中区分出各个DMRS端口信号。
在第一方面或第二方面的一种可能的实现方式中,所述M个DMRS端口信号对应的M个DMRS端口与时延分段位置具有第一对应关系。可以理解,所述第一对应关系可以是预设的。由于DMRS端口信号是通过DMRS端口发送的,所以与某个DMRS端口对应的时延分段位置也是与该DMRS端口发送的DMRS端口信号对应的时延分段位置。该方案中,M个DMRS端口信号对应的M个DMRS端口与时延分段位置具有第一对应关系,那么终端根据叠加成第一信号的M个DMRS端口信号所对应的M个DMRS端口,以及第一对应关系可确定M个DMRS端口信号分别对应的时延分段位置,不需要网络侧对时延分段位置的另外指示,从而可节约信令的开销。
在第一方面或第二方面的一种可能的实现方式中,所述M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针对至少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有物理资源组(physical resource group,PRG)对应的时延分段位置相同;或者,
所述M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针对至少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有PRG中至少两个PRG对应的时延分段位置不同。
该方案中,网络侧可基于上述至少一个DMRS端口中的任意一个DMRS端口关联的所有PRG对应的时延分段位置相同或者不同来确定指示信息。至少一个DMRS端口关联的所有PRG对应的时延分段位置相同,指示信息的比特数不依赖PRG,指示信息的比特数开销相对较小。而且可保证指示信息的比特数是网络侧和终端共同知道的,可以使得终端在正确的时延分段位置接收DMRS端口信号。至少一个DMRS端口关联的所有PRG中 至少两个PRG对应的时延分段位置不相同,不同的PRG可对应不同的时延分段位置,网络侧发送DMRS端口信号更为灵活。
在第一方面或第二方面的一种可能的实现方式中,任一DMRS端口关联的PRG的大小与该DMRS端口对应的时延分段位置的个数具有第二对应关系。DMRS端口关联的PRG的不同大小对应的DMRS端口对应的时延分段位置的个数可能不同,那么指示信息的开销也有所不同。该方案中,可规定DMRS端口关联的PRG的大小与该DMRS端口对应的时延分段位置的个数的对应关系,即第二对应关系。根据第二对应关系,网络侧和终端知道指示信息的开销,从而保证终端正确解码指示信息,在正确的时延分段位置接收DMRS端口信号。
在第一方面或第二方面的一种可能的实现方式中,任一DMRS端口关联的PRG的大小与该DMRS端口的频域参考信号密度具有第三对应关系。应理解。例如DMRS端口关联的PRG的size越大,DMRS端口的频域参考信号密度越小,可降低参考信号开销。该方案中,可规定DMRS端口关联的PRG的大小与该DMRS端口的频域参考信号密度的对应关系,即第三对应关系。这样DMRS端口的频域参考信号密度由PRB bundling size直接确定,即提供一种明确DMRS端口的频域参考信号密度的确定方式。
在第一方面或第二方面的一种可能的实现方式中,所述指示信息占用L个比特,其中,所述L个比特用于联合指示M个时延分段位置,L为大于或者等于1的整数;或者,所述L个比特用于分别指示M个时延分段位置,其中,L等于M。
该方案中,指示信息可独立指示M个时延分段位置,也可以联合指示M个时延分段位置,以尽量降低信令的开销。
第三方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第一方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
作为一种示例,该通信装置包括收发模块和处理模块,其中,所述收发模块用于在第一时频资源上接收第一信号,该第一信号由M个DMRS端口信号叠加形成,所述M个DMRS端口信号中至少两个DMRS端口信号对应的时延分段位置不同,M为大于或等于2的整数;所述处理模块用于根据时延分段位置从所述第一信号中确定所述M个DMRS端口信号。
第四方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第二方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一些实施例中,该通信装置包括收发模块和处理模块,其中,所述处理模块用于生成第一信号,该第一信号由M个DMRS端口信号叠加形成,所述M个DMRS端口信号中至少两个DMRS端口信号对应的时延分段位置不同,M为大于或等于2的整数;所述收发模块用于在第一时频资源上发送第一信号。
在第三方面的一种可能的实现方式中,所述收发模块还用于接收指示信息,该指示信息用于指示所述M个DMRS端口信号分别对应的时延分段位置。
在第四方面的一种可能的实现方式中,所述收发模块还用于发送指示信息,该指示信息用于指示所述M个DMRS端口信号分别对应的时延分段位置。
在第三方面或第四方面的一种可能的实现方式中,所述M个DMRS端口信号对应的 M个DMRS端口与时延分段位置具有第一对应关系。
在第三方面或第四方面的一种可能的实现方式中,所述M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针对至少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有PRG对应的时延分段位置相同;或者,
所述M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针对至少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有PRG中至少两个PRG对应的时延分段位置不同。
在第三方面或第四方面的一种可能的实现方式中,任一DMRS端口关联的PRG的大小与该DMRS端口对应的时延分段位置的个数具有第二对应关系。
在第三方面或第四方面的一种可能的实现方式中,任一DMRS端口关联的PRG的大小与该DMRS端口的频域参考信号密度具有第三对应关系。
在第三方面或第四方面的一种可能的实现方式中,所述指示信息占用L个比特,其中,
所述L个比特用于联合指示M个时延分段位置,L为大于或等于1的整数;或者,
所述L个比特用于分别指示M个时延分段位置,其中,L等于M。
关于第三方面或第三方面的各种可能的实施方式所带来的技术效果,可参考对于第一方面或第一方面的各种可能的实施方式的技术效果的介绍;第四方面或第四方面的各种可能的实施方式所带来的技术效果,可参考对于第二方面或第二方面的各种可能的实施方式的技术效果的介绍。
第五方面,本申请实施例提供一种通信装置,包括至少一个处理器。该处理器可用于执行计算机程序,以实现上述第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息,所述信息包括计算机程序、指令和数据中的至少一项。可选地,该通信装置还包括存储器,所述存储器用于存储计算机程序、指令和数据中的至少一项,处理器与存储器耦合。
在一种实现方式中,该通信装置为终端设备或网络设备。当该通信装置为终端设备或网络设备时,所述通信接口可以是收发器,或,输入和/或输出接口。可选地,所述收发器可以为收发电路,也可以通过终端设备或网络设备中的天线、馈线和编解码器等实现。可选地,所述输入和/或输出接口可以为输入和/或输出电路。
在另一种实现方式中,该通信装置为配置于终端设备或网络设备中的芯片或芯片***。当该通信装置为配置于终端设备或网络设备中的芯片或芯片***时,所述通信接口可以是输入和/或输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以为处理电路或逻辑电路。
第六方面,本申请实施例提供了一种芯片***,该芯片***包括至少一个处理器,还可以包括通信接口,用于实现第三方面或第四方面中的通信装置执行的方法。在一种可能的实现方式中,所述芯片***还包括存储器,用于保存程序指令和/或数据。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
第七方面,本申请实施例提供了一种通信***,所述通信***包括第三方面所述的通信装置和第四方面所述的通信装置。
第八方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述第一方面和第二方面中任一种可能实现方式中的方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述第一方面和第二方面中任一种可能实现方式中的方法。
上述第五方面至第九方面及其实现方式的有益效果可以参考对第一方面或第二方面的方法及其实现方式的有益效果的描述。
附图说明
图1为本申请实施例提供的信号经过多径发送的流程图;
图2为本申请实施例提供的网络设备和终端设备进行CSI测量的基本流程图;
图3为本申请实施例提供的DMRS在一个RB中的图样;
图4为本申请实施例提供的适用的通信***的架构示意图;
图5为本申请实施例提供的DMRS的发送、接收方法的流程示意图;
图6为本申请实施例提供的发送DMRS的一原理示意图;
图7为本申请实施例提供的发送DMRS的另一原理示意图;
图8为本申请实施例提供的通信装置的一种结构示意图;
图9为本申请实施例提供的通信装置的另一种结构示意图;
图10为本申请实施例提供的一种通信装置的一种结构示意图;
图11为本申请实施例提供的另一种通信装置的一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
为便于本领域技术人员理解本申请实施例提供的技术方案,首先对本申请实施例中的部分用语进行解释说明。
1)网络侧设备,也可称为网络设备,是网络侧中一种用于发射或接收信号的实体,是通信***中将终端侧设备接入到无线网络的设备,一般通过有线链路(例如光纤线缆)连接到核心网,如新一代基站(generation Node B,gNodeB)。网络侧设备可负责接收核心网的数据并转发给无线回传设备,或者接收无线回传设备的数据并转发给核心网。网络设备可以是用于与移动设备通信的设备。网络设备可以是无线局域网(wireless local area networks,WLAN)中的接入点(access point,AP),长期演进(long term evolution,LTE)中的演进型基站(evolutional Node B,eNB或eNodeB),或者也可以包括新无线(new radio,NR)***中的下一代节点B(next generation node B,gNB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的网络设备,或NR***中的gNodeB/gNB等。下面以网络侧设备是gNB为例。
gNB可以包括天线,基带单元(base band unit,BBU)和射频拉远单元(remote radio unit,RRU)。其中,BBU可以通过公共无线接口(common public radio interface,CPRI)或增强的CPRI(enhance CPRI,eCPRI)等与RRU相连,RRU可以通过馈线与天线相连。该天线可以为无源天线,其与RRU是分离的,之间可以通过电缆连接。或者该天线可以 为有源天线单元(active antenna unit,AAU),即AAU的天线单元和RRU是集成在一块的。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和分离单元(distributed unit,DU)。CU实现gNB的部分功能,DU实现gNB的部分功能,例如,DU可用于实现射频信号的收发,射频信号与基带信号的转换,以及部分基带处理。CU可用于进行基带处理,对基站进行控制等。在一些实施例中,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
2)终端侧设备,也可以称为终端设备或者终端,可以是能够接收网络设备调度和指示的无线终端设备,终端侧设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。
终端侧设备可以经无线接入网(如,radio access network,RAN)与一个或多个核心网或者互联网进行通信,与RAN交换语音和/或数据。该终端侧设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,终端可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。又例如,终端可包括虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备、或者车联网(vehicle to everything,V2X)中的车辆设备,客户前置设备(customer premises equipment,CPE)等等。再例如,终端可包括个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。或者终端还可包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位***(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请的实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
在本申请的实施例中,网络设备和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对网络设备和终端的应用场景不做限定。
3)时延域,指信号的多径时延所组成的时延空间,也可以理解为频域信号的变化域。无线信号传输会经历多径效应,即信号发送到接收端会经历多条传输路径。应理解,由于信号传输过程中存在时延,不同径的时延可能不同,那么信号经过多径,由于时延到达接收端的时间可能不同。由于多径的不同时延带来相位差,那么多径的信号合并后在频率上有的信号强,有的信号弱。也就是如果传输路径对应的传输时延不同,会导致频域信号的频率选择性衰落。
为了便于理解,请参见图1,示意了信号经过多径发送的流程。图1以信号经过两条径(径1和径2)发送为例。基站侧信号经过径1和径2传输给终端,由于径1和径2的时延,那么信号经过径1和径2传输到达终端侧的时间可能不同。以绝对时间t为参考时间节点,对应径1和径2,信号经信道的径1到达终端的时间是t1,信号经信道的径2到达终端的时间是t2,t1不等于t2。
以经过径1传输的信号为g(t-t1),假设t1=0,即信号为g(t),以经过径2传输的信号g(t-t2),假设t2=t 0,即信号为g(t-t 0)。
对于信号g(t),该信号经过傅里叶变换到频域上有公式(1):
Figure PCTCN2021119275-appb-000001
对于信号g(t-t 0),该信号经过傅里叶变换到频域上有公式(2):
Figure PCTCN2021119275-appb-000002
其中,公式(1)和公式(2)中的ω为频率变量,不同频率对应的相位旋转不同。令x(t)=g(t)+g(t-t 0),可得到频率变量的函数
Figure PCTCN2021119275-appb-000003
即叠加径1和径2传输的信号。令g(ω)≡1,可以得到
Figure PCTCN2021119275-appb-000004
由于多径的不同时延带来相位差,那么多径的信号叠加后,信号强度在频率上有的强,有的弱。
4)时延分段位置,可用于指示信号经过信道上的多条路径到达接收端的信号时延在时延域上所处的位置。该位置对应时延域上的一个区间,该区间可以认为是时延分段位置。
5)PRB bundling size用于指示将一定数量的物理资源块(physical resource block,PRB)绑定。物理资源块组(physical resource block group,PRG)指的是一个包含多个物理资源 块(physical resource block,PRB)的组合。一个PRG可对应一个PRB bundling size,也可以对应2个PRB bundling size,本申请对此不进行限制。通常在同一个PRG中,网络设备采用相同的预编码,终端侧以PRG为单位进行信道估计。在本申请实施例中,PRG中多个PRB采用的预编码可以相同也可以不同,终端侧仍以PRG为单位进行信道估计。需要说明的是,本申请实施例中,PRG和PRB bundling size可互换,即适用于PRG的方案同样适用于PRB bundling size。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
在新无线(new radio,NR)***中,引入了MOMO技术。由于MIMO技术的引入,网络设备向终端设备发送数据时,需要基于基站获取的下行信道信息进行调制编码及信号预编码。为了便于理解本申请实施例,下面先对本申请实施例中涉及的术语做简单说明。
对于时分双工(time division duplexing,TDD)***来说,由于上行信道和下行信道使用相同的频点,上行信道和下行信道具有互易性,基站侧可以利用上行信道和下行信道的互易性,通过上行信道获取下行信道的CSI,进而进行信号预编码。对于频分双工(frequency division duplexing,FDD)***来说,由于上行信道和下行信道使用频点不同,上行信道和下行信道不具有互易性,自然基站侧无法利用上行信道获取下行信道的CSI。终端侧需要向基站侧反馈下行信道的CSI。
在本申请的描述中,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在本申请实施例中,“用于指示”可以包括用于直接指示和用于间接指示。例如,当描述某一指示信息用于指示信息I时,可以包括该指示信息直接指示I或间接指示I,而并不代表该指示信息中一定携带有I。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。如图2所示,为网络设备和终端设备基于FDD进行CSI测量的基本流程图。网络设备先向终端设备发送用于信道测量的配置的信令,通知终端设备进行信道测量,其中该信令指示终端设备要进行信道测量的时间,之后网络设备向终端设备发送参考信号(参考信号的概念包括参考信号)用于信道测量;终端设备根据网络设备发送的参考信号进行测量,进行计算得到最终的CSI;终端设备向网络设备反馈CSI报告,该CSI包括可用于描述通信链路的信道属性的信息。CSI报告可包括但不限于预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank Indicator,RI)、信道质量指示(channel quality indicator,CQI)、信道状态信息参考信号(channel state information reference signal,CSI-RS)资源指示(CSI-RS resource indicator,CRI)以及层指示(layer indicator,LI)等。网络设备再根据终端设备反馈的CSI报告进行数据发送。例如网络设备根据终端设备反馈的CSI报告包括的RI确定给终端设备传输数据的流数;网络设备根据终端设备反馈的CSI报告包括的 CQI确定给终端设备传输数据的调制阶数,及信道编码的码率;网络设备根据终端设备反馈的CSI报告包括的PMI确定给终端设备传输数据的预编码。应理解,以上列举的CSI的具体内容仅为示例性说明,不应对本申请实施例构成任何限定。CSI可以包括上文所列举的一项或多项,也可以包括除上述列举之外的其他用于表征CSI的信息,本申请实施例对此不作限定。
另外,网络设备会根据获取的CSI计算发送数据所需要的预编码。为了辅助数据解调,网络设备发送数据时会一并发送DMRS。该DMRS可用于终端设备估计经过预编码后的等效信道。通常,DMRS会与数据经过相同的预编码处理,这样终端设备在某个DMRS端口所在的时频资源上,根据协议预定义的该DMRS端口的参考信号可估计得到对应DMRS端口的等效信道。
作为一种示例,请参见图3,为DMRS在一个资源块(resource block,RB)中的图样图。如图3所示,一个RB在时域上包括14个符号,在频域上包括12个RE(即RE0,RE1,…,RE11)。DMRS参考信号在一个RB中占用了6个RE。图3以DMRS端口1和DMRS端口2复用6个RE,DMRS端口3和DMRS端口4复用6个RE为例。其中,DMRS端口3和DMRS端口4可复用RE1、RE3、RE5、RE7、RE9和RE11,这6个RE可以认为是相邻的RE;DMRS端口1和DMRS端口2可复用RE0、RE2、RE4、RE6、RE8和RE10,这6个RE也是相邻的RE。即相邻的两个RE指的是上述相邻的RE中相邻的两个RE,例如相邻的两个RE可以是RE1和RE3,或者RE3和RE5,或者RE2和RE4,等等。
通常终端设备进行RE上的信道估计包括如下3个步骤,在下文的介绍中,以估计端口1的DMRS为例。
步骤1)、解扩,也就是区分频域上相邻的两个RE(定义参见上文解释,例如RE1和RE3,或者RE2和RE4等)分别发送的信号。
理论上,可复用1个RE传输2个DMRS端口,也就是,每个RE承载两个DMRS端口信号,例如对于DMRS端口1和DMRS端口2,上述对应的6个RE中每个RE上发送DMRS端口1和DMRS端口2叠加在一起的信号。而终端设备需要知道每个RE上网络设备通过DMRS端口1和DMRS端口2分别发送的DMRS信号。
具体来讲,假设每个DMRS端口在所述相邻的两个RE位置上的等效信道相同,可定义相邻的两个RE中的一个RE上的信号满足公式(3),另一个RE上的信号满足公式(4):
Figure PCTCN2021119275-appb-000005
Figure PCTCN2021119275-appb-000006
其中,y f1为相邻的两个RE中的一个RE发送的信号,y f2为相邻的两个RE中另一个RE发送的信号,y p1为DMRS端口1发送的信号,y p2为DMRS端口2发送的信号。通过公式(3)和公式(4)可计算得到y p1和y p2
需要说明的是,本申请实施例不限制解扩的算法,例如不限定获取信道估计值的RE个数,例如不一定要求两两RE为一组获取信道估计值的中间结果,也可通过4个相邻RE得到三个信道估计值。
步骤2)、针对某个端口,根据该端口对应的RE接收的信号,以及协议规定的参考信号进行最小二乘(least square,LS)估计,获得对应RE上的信道估计值H LS。需要说明的 是,本申请实施例不限制根据接收信号得到信号估计值H LS的方法。
步骤3)、根据H LS获得滤波测量后的信道估计值,即最终的信道估计值。
具体来讲,在物理资源块(physical resource block,PRB)绑定长度(bundling size),例如X个RB里,生成滤波矩阵。通过该滤波矩阵对X个RB内的RE进行滤波处理,可获得最终的信道估计值。需要说明的是,这里X个RB内的RE包括有参考信号的RE和无参考信号的RE。X为大于或等于2的整数。
示例性的,可通过如下公式(5)获得最终的信道估计值。
Figure PCTCN2021119275-appb-000007
在公式(5)中,
Figure PCTCN2021119275-appb-000008
为最终的信道估计值,H LS为步骤2获得的信道估计值(也称为信道采样值),
Figure PCTCN2021119275-appb-000009
为信道相关矩阵,
Figure PCTCN2021119275-appb-000010
为信道采样值自相关矩阵,I LS为单位阵,即只有对角元素为1的矩阵。其中,信道相关矩阵用于指示不同RE之间的信道关系,可用于从已知RE对应的信道估计值估算未知RE对应的信道估计值。也就是12个RE中任意2个不同的RE,例如信道相关矩阵可指频域上DMRS端口1和DMRS端口2复用的RE与DMRS端口3和DMRS端口4复用的RE之间的信道关系,例如图3中的RE0和RE1之间的相关矩阵,如果已知这12个RE中任意2个不同RE中的一个RE对应的信道估计,那么通过该信道相关矩阵可估算出这2个不同RE中的另一个RE对应的信道估计。
以X=4为例,对于DMRS端口1和2,或者DMRS端口3和4,那么1个RB有6个相邻的RE,共24个相邻的RE,因此H LS的维度是(24,1),I LS的维度是(24,24);
Figure PCTCN2021119275-appb-000011
的维度是(24,24),即
Figure PCTCN2021119275-appb-000012
包括24行和24列的信道采样值;以X=4为例,那么1个RB有12个RE,共48个RE,所以
Figure PCTCN2021119275-appb-000013
的维度是(48,24),即
Figure PCTCN2021119275-appb-000014
包括48行和24列的元素;
Figure PCTCN2021119275-appb-000015
的维度是(48,1)。
通常,DMRS会与数据经过相同的预编码处理,这样终端在某个DMRS端口所在的时频资源上,根据协议预定义的该DMRS端口的参考信号可估计得到对应DMRS端口的等效信道。目前基站在同一时频资源上发送DMRS端口信号的数量较少,使得终端获得流数较少,信道估计结果的准确度较低。
鉴于此,本申请实施例提供了一种DMRS的发送方法,该方法中,网络设备可在同一时频资源上增加复用的DMRS端口数,即网络设备在同一时频资源上发送更多个DMRS端口信号。由于在同一时频资源上可复用更多的DMRS端口,这样在不增加参考信号开销的前提下,网络设备可发送更多的流数。对于终端来说,由于获得更多的流数,所以可获得更为准确的信道估计结果。
本申请实施例提供的技术方案可以应用于5G***,或者应用于未来的通信***或其他类似的通信***。另外,本申请实施例提供的技术方案可以应用于蜂窝链路、PLMN网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。也可以应用于设备间的链路,例如设备到设备(device to device,D2D)链路。D2D链路,也可以称为侧行链路(sidelink),其中侧行链路也可以称为边链路或副链路等。在本申请实施例中,上述的术语都是指相同类型的设备之间建立的链路,其含义相同。所谓相同类型的设备,可以是终端设备到终端设备之间的链路,也可以是基站到基站之间的链路,还可以是中继节点到中继节点之间的链路等,本申请实施例对此不做限定。对于终端设备和终端设备之间的链路,有第三代合作伙伴计划(third generation partnership project,3GPP)的版本(Rel)-12/13定义的D2D链路,也有3GPP为车联网定义的车到车、车到手机、或车到任何实体的V2X链路,包括Rel-14/15,还包括目前3GPP正在研究的 Rel-16及后续版本的基于NR***的V2X链路等。
请参考图4,为本申请实施例所应用的一种应用场景,或者说是本申请实施例应用的一种网络架构。在图4中包括网络设备和6个终端,应理解,图4中的终端的数量仅是举例,还可以更多或者更少,该网络架构还可以包括其他网络设备,如还可以包括无线中继设备和无线回传设备,在图4中未示出。网络设备是终端通过无线接入网络的接入设备,可以是基站。其中,网络设备在不同的***对应不同的设备,例如在***移动通信技术(4th-generation,4G)***中可以对应eNB,在5G***中对应gNB;这6个终端可以是蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位***、PDA和/或用于在无线通信***上通信的任意其它适合设备,且均可以与网络设备连接。
本申请实施例可以适用于上行信号传输,也可以适用于下行信号传输,还可以适用于D2D的信号传输。对于下行信号传输,发送设备是网络设备,对应的接收设备是终端;对于上行信号传输,发送设备是终端,对应的接收设备是网络设备;对于D2D的信号传输,发送设备是终端,接收设备也是终端。例如如图4虚线区域示意的3个终端可以适用于D2D的信号传输,本申请实施例对信号传输的方向不作限制。
为了便于理解本申请实施例,下面结合附图对本申请实施例提供的DMRS信号的发送方法以及接收方法进行详细介绍。在下文的介绍过程中,以该方法应用于图4所示的通信***为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置。其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第一通信装置可以是终端设备或能够支持终端实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片***。对于第二通信装置也是同样,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第二通信装置可以是终端或能够支持终端实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片***。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置可以是网络设备,第二通信装置是终端,或者第一通信装置和第二通信装置都是终端,或者第一通信装置是网络设备,第二通信装置是能够支持终端实现该方法所需的功能的通信装置,等等。
为了便于介绍,在下文中,以该方法由网络设备和终端执行为例,也就是,以第一通信装置是终端、第二通信装置是网络设备为例。例如,下文中终端可以是图4中的6个终端中的任意一个终端,下文中网络设备可以是图4中的网络设备。需要说明的是,本申请实施例只是以通过基站和终端执行为例,并不限制于这种场景。
请参见图5,为本申请实施例提供的DMRS的发送方法的流程示意图。该方法的具体流程描述如下。
S501、网络设备生成第一信号。
该第一信号由M个DMRS端口信号叠加形成,这M个DMRS端口信号中至少两个DMRS端口信号对应的时延分段位置不同,所述M为大于或等于2的整数。
S502、网络设备在第一时频资源上发送第一信号,相应的终端接收该第一信号。
通常来说,为了辅助数据解调,网络设备发送数据时会一并发送DMRS。由于DMRS是通过DMRS端口发送的,所以在一些实施例中,可将网络设备发送的DMRS称为DMRS端口信号。应理解,DMRS端口与DMRS端口信号一一对应,即一个DMRS端口对应一 个DMRS端口信号。
在本申请实施例中,网络设备可在同一时频资源上增加复用的DMRS端口数,即网络设备在同一时频资源上发送多个DMRS端口信号。由于在同一时频资源上可复用更多的DMRS端口,这样在不增加参考信号开销的前提下,网络设备可发送更多的流数。对于终端来说,由于获得更多的流数,所以可获得更为准确的信道估计结果。
一种可能的实现方式中,网络设备在发送用于终端估计经过预编码后的等效信道的DMRS端口信号之前,可对预编码进行滤波。可能的一种预编码滤波的方式,即对PRB bundling size内的多个RB中的对应有DMRS信号的RE做相位旋转,相位旋转的频域颗粒度为1RE,即每个RE信号乘以一个带相位的复数。可以理解,有的RE信号可以乘以1,最终并未发生实际的相位旋转。
例如,PRB bundling size内包含4个RB,那么网络设备需要对N=48个RE做相位旋转。假设这N个频域单元的信道分别是H 1……H N,与这N个频域单元的信道一一对应的预编码分别是P 1……P N。其中P 1……P N中处于同一个预编码单元。这N个频域单元的相位旋转分别是
Figure PCTCN2021119275-appb-000016
经过相位旋转以后,终端接收的等效信道为HΘ,其中,H=[H 1P 1……H NP N],
Figure PCTCN2021119275-appb-000017
作为一种示例,终端的接收天线的个数为4,网络设备对PRB bundling size内的4个RB进行相位旋转,每个RE做相位旋转,终端的接收天线个数为4,由于N=48,所以H的维度为4*48,Θ的维度为48*48。应理解,终端接收的等效信道在频域上较平滑,与维纳滤波系数达到某种匹配关系时,终端的信道估计最佳。因此可根据最佳信道估计确定N个频域的那样的旋转相位。
令平滑的准则为
Figure PCTCN2021119275-appb-000018
其中F=[α 1f 1…α Mf M],f M为离散傅里叶变化(discrete fourier transform,DFT)基向量,[α 1…α M]为这个DFT基向量的加权系数,根据滤波系数决定,M为预设的时延抽头个数。其中,
Figure PCTCN2021119275-appb-000019
下标F表示范数,
Figure PCTCN2021119275-appb-000020
可以认为是优化的准则表达,目的是优化θ,可认为最优的θ使得
Figure PCTCN2021119275-appb-000021
的值最大。根据
Figure PCTCN2021119275-appb-000022
可确定N个RE的旋转相位。
作为一种替换方案,可令平滑准则为max θθ HCθ,其中,C=(F T⊙H) H(F T⊙H),
Figure PCTCN2021119275-appb-000023
F T表示矩阵F的转置,(F T⊙H) H表示F T⊙H的共轭转置。符号⊙为Khatri-Rao积,举例来说,
Figure PCTCN2021119275-appb-000024
a i是A的第i个列,
Figure PCTCN2021119275-appb-000025
是克罗内克积,b i是B的第i个列,i为大于或等于0的整数。对max θθ HCθ进行求解或近似简化求解可以得到N个RE的旋转相位。
作为另一种示例,终端的接收天线的个数为4,网络设备对PRB bundling size内的4个RB联合进行相位旋转,每个RE做相位旋转,M=3,H的维度为4*48,Θ的维度为48*48,F的维度为48*3,F T⊙H的维度为12*48,C的维度为48*48。
特别的,
Figure PCTCN2021119275-appb-000026
只取了直流分量,上述平滑准则可简化为max θθ HCθ,其中C=H HH,可直接对矩阵C做奇异值分解(singular value decomposition,SVD),设最大特征值对应的特征向量是v,θ取v对应位置元素的相位,可获得N个频域单元的旋转相位。
网络设备根据PRB bundling size内的多个RB中有DMRS信号的RE的旋转相位作相位旋转,即在频域上的每个RE乘上相位线性变化的复数信号,可使得对应时延域上的信号发生了位移。所以网络设备对频域单元作相位旋转,可使得网络设备发送的多个DMRS端口信号中至少两个DMRS端口信号对应的时延分段位置可不相同,终端在不同时延分段位置接收对应的DMRS信号。
请参见图6,为本申请实施例提供的发送DMRS的一种原理示意图。图6给出了多个RB的示意,本申请实施例不限制RB的个数。图6以叠加两个DMRS端口信号为例。其中,图6的阴影部分分别示意承载DMRS信号的RE,一种阴影部分对应一个DMRS端口的信号(本文以第一DMRS端口信号为例),另一种阴影部分对应另一个DMRS端口的信号(本文以第二DMRS端口信号为例)。假设第一DMRS端口信号的时延偏移量为0。网络设备在发送第二DMRS端口信号之前,可对第二DMRS端口信号在频域上的每个RE乘上相位线性变化的复数信号。如图6所示,第二DMRS端口信号上频域上RE之间存在均匀相位差,使得第二DMRS端口信号在对应时延域上发生位移,即使得第二DMRS端口信号在时延域上进行搬移,如图7所示,第二DMRS端口信号在时延域上的起始位置从位置P1搬移到P2。这样第一DMRS端口信号和第二DMRS端口信号的时延分段位置不同,如图7所示。图7为对应图6的第一信号的时延域示意图。从图7中可看出第一DMRS端口信号和第二DMRS端口信号的时延分段位置不同。
以网络设备发送M个DMRS端口信号,M为大于或等于2的整数为例。通过图6所示的方法,网络设备可以将不同DMRS端口信号搬移到时延域上的不同位置,这样M个DMRS端口可复用相同的时频资源。当然网络设备发送M个DMRS端口信号,可将这M个DMRS端口信号中的部分DMRS端口或全部DMRS端口搬移到时延域上的不同位置。网络设备可在同一时频资源(例如第一时频资源)上发送M个DMRS端口信号,实际上将在时延域上搬移后的M个DMRS端口信号进行叠加,生成第一信号,网络设备在第一时频资源上发送该第一信号。即网络设备可以将不同DMRS端口的信号搬移到时延域上的不同位置,以使得更多个DMRS端口复用相同的时频资源位置。由于第一信号中至少两个DMRS端口信号的时延偏移量不同,所以这至少两个DMRS端口信号在时延域上的时延分段位置也不同。终端接收到第一信号,可根据各个DMRS端口信号分别对应的时延分段位置从第一信号中区分出各个DMRS端口信号。换句话说,终端可在与各个DMRS端口信号分别对应的时延分段位置上接收对应的DMRS端口信号。之后,终端设备在每个DMRS端口信号对应的时延分段可进行时域滤波,得到对应DMRS端口的接收信道,继而对该接收信道进行信道估计。
需要说明的是,在本申请实施例中,不同DMRS端口信号对应的时延分段位置不同。例如M个DMRS端口信号与M个时延分段位置一一对应,这M个时延分段位置中任意相邻的两个时延分段位置不重叠,这样可降低各个DMRS端口信号的互相干扰。或者,不同DMRS端口信号对应的时延分段位置可以部分重叠,在干扰在允许的范围内,达到增加 可复用的DMRS端口数的效果。
应理解,网络设备可以根据算法调整每个DMRS端口对应的时延分段位置,如果终端不知道各个DMRS端口信号对应的时延分段位置,终端无法从第一信号中区分出各个DMRS端口信号,即无法在各个DMRS端口信号对应的时延分段位置接收相应的DMRS端口信号。因此,终端可基于预设关系获得时延分段位置,或者网络设备可通知终端,第一信号中的M个DMRS端口信号分别对应的时延分段位置。可以理解,图5实施例中的方法还可以包括:
S503、网络设备向终端发送第一指示信息,相应的,终端接收该第一指示信息,该第一指示信息用于指示M个DMRS端口信号分别对应的时延分段位置。
S504、终端根据时延分段位置从第一信号中确定各个MDRS端口信号。
网络设备在确定M个DMRS端口信号对应的时延分段位置后,可生成第一指示信息,该第一指示信息可用于指示M个时延分段位置。网络设备向终端发送第一指示信息以告知终端,M个DMRS端口信号分别对应的时延分段位置。
该第一指示信息可以承载在现有信令的一个或多个字段上,这样有利于兼容现有的信令。例如第一指示信息承载在无线资源控制(radio resource control,RRC)信令,媒体访问控制元素(media access control control element,MAC CE)信令,下行控制信息(downlink control information,DCI)信令等中的一种或多种中。上述一个或多个字段可以是RRC信令已定义的字段、MAC CE信令已定义的字段或者DCI信令已定义的字段,也可以是新定义的RRC字段、MAC CE字段或DCI字段。对此,本申请实施例不作限制。例如在一些实施例中,该第一指示信息也可以承载在新定义的信令。
在本申请实施例中,第一指示信息可直接指示M个DMRS端口信号分别对应的时延分段位置。例如第一指示信息包括M个时延分段位置信息。第一指示信息也可以间接指示M个DMRS端口信号分别对应的时延分段位置,例如第一指示信息可包括与M个时延分段位置的相关信息,通过该相关信息可间接指示M个时延分段位置,以一定程度上降低指示开销。下面介绍第一指示信息的几种可能的实现方式。
指示方式一,网络设备可通过第一指示信息中的多个字段指示多个时延分段位置,每个字段独立指示一个时延分段位置。具体来讲,第一指示信息包含M个字段,这M个字段中的每个字段用于指示一个时延分段位置,即M个字段指示M个时延分段位置。
作为一种示例,可预先定义各个DMRS端口对应的时延分段位置。例如可预先定义N个时延分段位置,并为N个时延分段位置进行排序。M个字段中的每个字段可用于指示N个时延分段位置中的一个时延分段位置。需要说明的是,本申请实施例对N的取值不作限制,N与M可以相同,也可以不相同。可选的,N可根据终端的时延分布和正交频分复用(orthogonal frequency division multiplexing,OFDM)符合的保护间隔确定。
示例性的,M个字段中的每个字段可占用N个bit,M个字段共占用M*N个bit。每个字段的Nbit对应一个时延分段位置,每个字段的取值用于对应的时延分段位置是N个时延分段位置中的哪个时延分段位置。举例来说,以N=8,M=2为例,可定义每个bit的取值为“0”,表示选择对应的时延分段位置;相反,该bit的取值为“1”,表示没有选择对应的时延分段位置。第一指示信息可包含2个字段,这2个字段分别称为第一字段和第二字段。第一字段可占用8bit,第二字段可占用8bit。如果第一字段承载的取值为“11110111”,第二字段承载的取值为“11111011”,表示2个时延分段位置为8个时延分段位置中的第五 个和第六个时延分段位置。可见,通过这种指示方式,每个字段明确指示N个时延分段位置的哪个时延分段位置,直接明了。需要说明的是,本示例以每个bit的取值为“0”,表示选择对应的时延分段位置,该bit的取值为“1”,表示没有选择对应的时延分段位置。在另一些示例中,也可规定每个bit的取值为“1”,表示选择对应的时延分段位置,该bit的取值为“0”,表示没有选择对应的时延分段位置。
示例性的,这M个字段中的每个字段可占用log 2N个bit,M个字段共占用M*log 2N个bit。每个字段的log 2Nbit对应一个时延分段位置,每个字段的取值用于对应的时延分段位置是N个时延分段位置中的哪个时延分段位置。举例来说,以N=8,M=2为例,第一指示信息可包含2个字段,这2个字段分别称为第一字段和第二字段。第一字段可占用3bit,第二字段可占用3bit。如果第一字段承载的取值为“101”,第二字段承载的取值为“011”,表示2个时延分段位置为8个时延分段位置中的第六个和第四个时延分段位置。该指示方式较为直接,且更加节约信令的开销。
指示方式二,网络设备可通过第一指示信息的一个或多个字段联合指示这M个DMRS端口信号分别对应的时延分段位置。
作为一种示例,第一指示信息可包含一个字段(例如第一字段),该第一字段用于指示这M个DMRS端口信号分别对应的时延分段位置,即第一字段可指示M个时延分段位置。
示例性的,可预先定义N个时延分段位置,并对这N个时延分段位置进行排序。第一字段可占用N个bit,每个bit对应一个时延分段位置,每个bit的取值用于指示是否选中对应的时延分段位置。例如,可定义每个bit的取值为“0”,表示选择对应的时延分段位置;相反,该bit的取值为“1”,表示没有选择对应的时延分段位置。第一字段的取值同样可指示M个时延分段位置。举例来说,以N=8,M=2为例,如果第一字段的取值为“11110011”,表示2个时延分段位置为8个时延分段位置中的第五个和第六个时延分段位置。可见,相较于多个字段指示M个时延分段位置的方式来说,通过第一字段指示M个时延分段位置,可进一步节约信令的开销。且第一字段可直接指示N个时延分段位置中的M个时延分段位置,直接明了。
示例性的,可预先定义N个时延分段位置,并对这N个时延分段位置进行排序。第一字段可指示从N个时延分段位置中选择的M个时延分段位置。应理解,从N个时延分段位置中选择M个时延分段位置,存在
Figure PCTCN2021119275-appb-000027
种组合。第一字段可指示这
Figure PCTCN2021119275-appb-000028
种组合中的一种组合,从而间接指示M个时延分段位置。
举例来说,以N=8,M=2为例,从8个时延分段位置中选择2个时延分段位置,存在28种可能的组合,如表1所示。第一字段可占用5bits,第一字段的取值表示28组中的哪一个组合,也就是8个时延分段位置中的哪2个时延分段位置。例如,第一字段的5bits承载的值为“00111”,即第一字段指示28个组合中的第8个组合包括的2个时延分段位置。这种方式下,第一字段占用的比特数可为
Figure PCTCN2021119275-appb-000029
即第一字段占用的比特数更少,可进一步节约信令的开销。
表1
比特的取值 组合 组合的序号
00000 时延分段位置1和时延分段位置2 0
00001 时延分段位置1和时延分段位置3 2
11011 时延分段位置8和时延分段位置7 27
11111 预留 预留
第一指示信息的一个或多个字段联合指示M个时延分段位置,尽管终端根据第一指示信息可确定M个时延分段位置,但是终端并不知道这M个时延分段位置如何与M个DMRS端口信号对应。因此,可预先定义网络设备包括的DMRS端口与N个时延分段位置的对应关系(下文中称为第一对应关系)。其中,不同的DMRS端口对应的时延分段位置可以相同,即多个DMRS端口可对应一个时延分段位置。由于DMRS端口信号与DMRS端口一一对应,所以与某个DMRS端口对应的时延分段位置也是与该DMRS端口对应的DMRS端口信号对应的时延分段位置。可预先为N个时延分段位置进行排序,例如分别为N个时延分段位置编号并按照编号从小到大(或者从大到小)的顺序排序。这样终端接收第一指示信息,获得M个时延分段位置后,可根据第一对应关系,确定各个DMRS端口信号分别对应的时延分段位置,进而在对应的时延分段位置上对接收的DMRS端口信号进行信道估计滤波。
指示方式三,可通过与DMRS端口的端口号隐式(间接)指示M个时延分段位置。由于M个DMRS端口信号与M个DMRS端口一一对应,M个DMRS端口信号与M个时延分段位置也一一对应,因此,M个时延分段位置与M个DMRS端口一一对应,通过DMRS端口的端口号可间接指示时延分段位置。这种方式网络设备不需要向终端发送第一指示信息,更加节约信令的开销。因此,S503不是必不可少的,即是可选的步骤,在图5中用虚线进行示意。
作为一种示例,***可预定义网络设备的各个DMRS端口分别对应的时延分段位置。例如可预先定义不同的时延分段位置分别对应的DMRS端口的端口号,也就是可预先定义各个DMRS端口的端口号与时延分段位置的对应关系,即第一对应关系,如表2所示。网络设备可为每个DMRS端口分配端口号,网络设备可为终端指示端口号,终端采用网络设备指示的端口号对应的DMRS端口接收M个DMRS端口信号。由于终端知道从哪些DMRS端口接收信号,所以终端根据网络设备指示的端口号,以及第一对应关系,可确定M个DMRS端口信号分别对应的时延分段位置。
表2第一对应关系
DMRS端口的端口号 时延分段位置的序号
0 0
1 1
N N
需要说明的是,表2仅是示例,本申请实施例不限制时延分段位置的序号和DMRS端口的端口号的具体映射关系。
在如上的技术方案中,第一指示信息可为一个终端指示与M个DMRS端口信号对应的M个时延分段位置。而一个DMRS端口可被任意一个终端使用。对应不同的终端,该DMRS端口对应的时延分段位置可能相同,也可能不相同。如果预先约定多个终端的同一DMRS端口对应的时延分段位置相同,即一个DMRS端口对应一个时延分段位置。这种情况下,可选的,可沿用前述的隐式指示方式或者第一指示信息为终端指示M个时延分段位置。
对于多个终端,如果同一DMRS端口对应的时延分段位置不相同,终端并不知道该DMRS端口对应的时延分段位置,这就导致终端无法准确地在对应的时延分段位置进行滤波。为此,在本申请实施例中,可选的,网络设备可告知终端或者约定任一DMRS端口对应的时延分段位置对于所有终端是否相同,或告知各终端其对应的时延分段位置,以使得终端准确地在对应的时延分段位置进行滤波。
应理解,为了降低导频开销,终端在进行DMRS信道估计时,可将多个RB统一进行滤波处理,即将多个RB绑定成一个PRG组,对该PRG组进行滤波处理,以达到降噪,提升信道估计的效果。在本申请实施例中,不同的PRG对应的时延分段位置可能相同,也可能不同。
例如,在一些实施例中,针对M个DMRS端口中的至少一个DMRS端口中的任意一个DMRS端口,允许该DMRS端口关联的所有PRG对应的时延分段位置相同。如果一个DMRS端口关联的所有PRG对应的时延分段位置相同,即一个DMRS端口关联的所有PRG对应一个时延分段位置。这种情况下,上述的第一指示信息适用于所有PRG,网络设备可采用上述第一指示信息为终端指示M个时延分段位置,即通过一条信令就可指示一个DMRS端口对应的时延分段位置,信令开销较小。终端不需要关注PRG的大小,只需要根据第一指示信息就可从第一信号中区分各个DMRS端口信号。
在另一些实施例中,针对M个DMRS端口中的至少一个DMRS端口中的任意一个DMRS端口,允许该DMRS端口关联的所有PRG中至少两个PRG对应的时延分段位置不同。如果一个DMRS端口关联的所有PRG中存在不同的PRG对应的时延分段位置不同,那么终端需要知道M个时延分段位置对应的是哪个PRG。这种情况下,需要另外指示M个时延分段位置对应的PRG是哪个。
作为一种示例,一个DMRS端口关联的所有PRG对应的时延分段位置中至少两个PRG对应的时延分段位置不同。那么可将一个DMRS端口关联的所有PRG中,对应时延分段位置相同的PRG看作一组,不同组的PRG对应的时延分段位置不同。针对每个PRG组,网络设备可指示一个时延分段位置。示例性的,第一指示信息还可包含第三字段,该第三字段用于指示PRG组。终端接收第一指示信息,可根据第三字段确定M个时延分段位置对应哪组PRG。
应理解,如果一个DMRS端口关联的所有PRG中,不同的PRG对应的时延分段位置不同,那么针对一个DMRS端口关联的每个PRG,可分别通过第一指示信息来指示。不同的第一指示信息包含的第四字段用于指示对应不同的PRG。终端接收第一指示信息,可根据第四字段确定M个时延分段位置对应哪个PRG。应理解,根据PRG对应的DMRS端口对应的时延分段位置个数的不同,该第四字段的开销也有所不同。为了保证终端正确解析第一指示信息,本申请实施例可定义任一DMRS端口关联的PRG的大小与该DMRS端口对应的时延分段位置的个数的对应关系。也可以认为任一DMRS端口关联的PRG与该DMRS端口对应的时延分段位置的个数具有第二对应关系。该第二对应关系可确定第一指示信息的信令开销,从而终端根据第二对应关系可正确解析第一指示信息。
同理,同一PRB bundling size对应的时延分段位置可能相同,也可能不同。如果同一PRB bundling size对应的时延分段位置不同,那么需要另外指示M个时延分段位置对应的PRB bundling size是哪个。示例性的,第一指示信息可包含第五字段,该第五字段用于指示M个时延分段位置对应的PRB bundling size。应理解,根据PRB bundling size对应的 DMRS端口对应的时延分段位置个数的不同,该第五字段的开销也有所不同。为了保证终端正确解析第一指示信息,本申请实施例可定义多个PRB bundling size与DMRS端口对应的时延分段位置的个数的对应关系。该对应关系可确定第一指示信息的信令开销,从而终端根据该对应关系可正确解析第一指示信息。
应理解,终端从第一信号中区分出各个DMRS端口信号,例如第一DMRS端口信号和第二DMRS端口信号,在第一DMRS端口信号对应的第一时延分段内对第一DMRS端口信号进行滤波和插值处理,在第二DMRS端口信号对应的第二时延分段内对第二DMRS端口信号进行滤波和插值处理。
通常来说,PRG越大,DMRS端口的频域参考信号在频域的密度越低。本申请实施例可定义任一DMRS端口关联的PRG的大小与该DMRS端口的频域参考信号密度的对应关系。也可以认为,任一DMRS端口关联的PRG的大小与该DMRS端口的频域参考信号密度具有第三对应关系。
作为一种示例,可预定义上述的第三对应关系,以及规定终端采用预设的PRG。这种情况下,不需要网络设备的指示,终端根据预设的PRG,以及该第三对应关系可确定需要选择的DMRS端口的频域参考信号密度,进而按照该DMRS端口的频域参考信号密度对接收的DMRS端口信号进行滤波和插值处理。
或者,网络设备可向终端发送第二指示信息,该第二指示信息可指示终端要选择的PRG。终端根据该PRG以及预设的第三对应关系可确定DMRS端口的频域参考信号密度。又或者,网络设备可向终端发送第二指示信息,该第二指示信息可指示终端要选择的PRG和第三对应关系。终端根据第二指示信息可确定需要选择的DMRS端口的频域参考信号密度。
同理,本申请实施例可定义多个PRB bundling size与频域参考信号密度的对应关系,例如第四对应关系,以通过该第四对应关系指示终端要选择的DMRS端口的频域参考信号密度。
例如,可预定义上述的第四对应关系,以及预设使用的PRB bundling size。这种情况下,不需要网络设备的指示,终端根据预设的PRB bundling size,以及该第四对应关系可确定需要选择的DMRS端口的频域参考信号密度,进而按照该DMRS端口的频域参考信号密度对接收的DMRS端口信号进行滤波和插值处理。
或者,网络设备可向终端发送第三指示信息,该第三指示信息可指示终端要选择的PRB bundling size。终端根据该PRB bundling size以及预设的第四对应关系可确定DMRS端口的频域参考信号密度。进而按照该DMRS端口的频域参考信号密度对接收的DMRS端口信号进行滤波和插值处理。或者,网络设备可向终端发送第三指示信息,该第三指示信息可指示终端要选择的PRB bundling size以及第四对应关系。终端根据第三指示信息可确定需要选择的DMRS端口的频域参考信号密度。
需要说明的是,第二指示信息可以承载在现有信令的一个或多个字段上。例如第二指示信息承载在RRC信令,MAC CE信令,DCI信令等中的一种或多种中。上述一个或多个字段可以是RRC信令已定义的字段、MAC CE信令已定义的字段或者DCI信令已定义的字段,也可以是新定义的RRC字段、MAC CE字段或DCI字段。对此,本申请实施例不作限制。例如在一些实施例中,该第二指示信息也可以承载在新定义的信令。
第三指示信息可以承载在现有信令的一个或多个字段上。例如第三指示信息承载在 RRC信令,MAC CE信令,DCI信令等中的一种或多种中。上述一个或多个字段可以是RRC信令已定义的字段、MAC CE信令已定义的字段或者DCI信令已定义的字段,也可以是新定义的RRC字段、MAC CE字段或DCI字段。对此,本申请实施例不作限制。例如在一些实施例中,该第三指示信息也可以承载在新定义的信令。
本申请实施例提供的DMRS的发送方法,网络设备根据至少两个DMRS端口信号对应的时延分段位置不同,可在同一时频资源上增加复用的DMRS端口数,即网络设备在同一时频资源上发送更多个DMRS端口信号。由于在同一时频资源上可复用更多的DMRS端口,这样在不增加导频开销的前提下,网络设备可发送更多的流数。对于终端来说,由于获得更多的流数,所以可获得更为准确的信道估计结果。
上述本申请提供的实施例中,分别从终端和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端和网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图8为本申请实施例提供的通信装置800的示意性框图。该通信装置800可以对应实现上述各个方法实施例中由终端或基站实现的功能或者步骤。该通信装置可以包括处理模块810和收发模块820。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块810和收发模块820可以与该存储单元耦合,例如,处理模块810可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
在一些可能的实施方式中,通信装置800能够对应实现上述方法实施例中基站的行为和功能。例如通信装置800可以为基站,也可以为应用于基站中的部件(例如芯片或者电路)。收发模块820可以用于执行图5所示的实施例中由基站所执行的全部接收或发送操作。例如图5所示的实施例中的S502、S503,和/或用于支持本文所描述的技术的其它过程。其中,处理模块810用于执行如图5所示的实施例中由基站所执行的除了收发操作之外的全部操作,例如图5所示的实施例中的S501,和/或用于支持本文所描述的技术的其它过程。
作为一种示例,处理模块810用于生成第一信号,该第一信号由M个DMRS端口信号叠加形成,所述M个DMRS端口信号中至少两个DMRS端口信号对应的时延分段位置不同,M为大于或等于2的整数;收发模块820用于在第一时频资源上发送第一信号。
作为一种可选的实现方式,收发模块820还用于发送指示信息,该指示信息用于指示所述M个DMRS端口信号分别对应的时延分段位置。
作为一种可选的实现方式,M个DMRS端口信号对应的M个DMRS端口与时延分段位置具有第一对应关系。
作为一种可选的实现方式,M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针对至少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有PRG对应的时延分段位置相同;或者,
M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针对至 少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有PRG中至少两个PRG对应的时延分段位置不同。
作为一种可选的实现方式,任一DMRS端口关联的PRG的大小与该DMRS端口对应的时延分段位置的个数具有第二对应关系。
作为一种可选的实现方式,任一DMRS端口关联的PRG的大小与该DMRS端口的频域参考信号密度具有第三对应关系。
作为一种可选的实现方式,指示信息占用L个比特,其中,
所述L个比特用于联合指示M个时延分段位置,L为大于或等于1的整数;或者,
所述L个比特用于分别指示M个时延分段位置,其中,L等于M。
应理解,本申请实施例中的处理模块810可以由处理器或处理器相关电路组件实现,收发模块820可以由收发器或收发器相关电路组件或者通信接口实现。
在一些可能的实施方式中,通信装置800能够对应实现上述方法实施例中终端的行为和功能。例如通信装置800可以为终端,也可以为应用于终端中的部件(例如芯片或者电路)。收发模块820可以用于执行图5所示的实施例中由终端所执行的全部接收或发送操作。例如图5所示的实施例中的S502、S503,和/或用于支持本文所描述的技术的其它过程。其中,处理模块810用于执行如图5所示的实施例中由终端所执行的除了收发操作之外的全部操作,例如图5所示的实施例中的S504,和/或用于支持本文所描述的技术的其它过程。
作为一种示例,收发模块820用于在第一时频资源上接收第一信号,该第一信号由M个DMRS端口信号叠加形成,所述M个DMRS端口信号中至少两个DMRS端口信号对应的时延分段位置不同,M为大于或等于2的整数;处理模块810用于根据时延分段位置从所述第一信号中确定所述M个DMRS端口信号。
作为一种可选的实现方式,收发模块820还用于接收指示信息,该指示信息用于指示所述M个DMRS端口信号分别对应的时延分段位置。
作为一种可选的实现方式,M个DMRS端口信号对应的M个DMRS端口与时延分段位置具有第一对应关系。
作为一种可选的实现方式,M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针对至少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有PRG对应的时延分段位置相同;或者,
M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针对至少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有PRG中至少两个PRG对应的时延分段位置不同。
作为一种可选的实现方式,任一DMRS端口关联的PRG的大小与该DMRS端口对应的时延分段位置的个数具有第二对应关系。
作为一种可选的实现方式,任一DMRS端口关联的PRG的大小与该DMRS端口的频域参考信号密度具有第三对应关系。
作为一种可选的实现方式,指示信息占用L个比特,其中,
所述L个比特用于联合指示M个时延分段位置,L为大于或等于1的整数;或者,
所述L个比特用于分别指示M个时延分段位置,其中,L等于M。
应理解,本申请实施例中的处理模块810可以由处理器或处理器相关电路组件实现, 收发模块820可以由收发器或收发器相关电路组件或者通信接口实现。
如图9所示为本申请实施例提供的通信装置900,其中,通信装置900可以是终端,能够实现本申请实施例提供的方法中终端的功能,或者,通信装置900可以是网络设备,能够实现本申请实施例提供的方法中网络设备的功能;通信装置900也可以是能够支持终端实现本申请实施例提供的方法中对应的功能的装置,或者能够支持网络设备实现本申请实施例提供的方法中对应的功能的装置。其中,该通信装置900可以为芯片或芯片***。本申请实施例中,芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
在硬件实现上,上述收发模块820可以为收发器,收发器集成在通信装置900中构成通信接口910。
通信装置900包括至少一个处理器920,用于实现或用于支持通信装置900实现本申请实施例提供的方法中网络设备或终端的功能。具体参见方法示例中的详细描述,此处不做赘述。
通信装置900还可以包括至少一个存储器930,用于存储程序指令和/或数据。存储器930和处理器920耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器920可能和存储器930协同操作。处理器920可能执行存储器930中存储的程序指令和/或数据,以使得通信装置900实现相应的方法。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置900还可以包括通信接口910,用于通过传输介质和其它设备进行通信,从而用于通信装置900中的装置可以和其它设备进行通信。示例性地,当该通信装置为终端时,该其它设备为网络设备;或者,当该通信装置为网络设备时,该其它设备为终端。处理器920可以利用通信接口910收发数据。通信接口910具体可以是收发器。
本申请实施例中不限定上述通信接口910、处理器920以及存储器930之间的具体连接介质。本申请实施例在图9中以存储器930、处理器920以及通信接口910之间通过总线940连接,总线在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器920可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器930可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
需要说明的是,上述实施例中的通信装置可以是终端也可以是电路,也可以是应用于终端中的芯片或者其他具有上述终端功能的组合器件、部件等。当通信装置是终端时,收 发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理模块(central processing unit,CPU)。当通信装置是具有上述终端功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片或芯片***时,收发模块可以是芯片或芯片***的输入输出接口、处理模块可以是芯片或芯片***的处理器。
图10示出了一种简化的通信装置的结构示意图。便于理解和图示方便,图10中,以通信装置是基站作为例子。该基站可应用于如图4所示的***中,可以为图4中的网络设备,执行上述方法实施例中网络设备的功能。
该通信装置1000可包括收发器1010、存储器1021以及处理器1022。该收发器1010可以用于通信装置进行通信,如用于发送或接收上述指示信息等。该存储器1021与所述处理器1022耦合,可用于保存通信装置1000实现各功能所必要的程序和数据。该处理器1022被配置为支持通信装置1000执行上述方法中相应的功能,所述功能可通过调用存储器1021存储的程序实现。
具体的,该收发器1010可以是无线收发器,可用于支持通信装置1000通过无线空口进行接收和发送信令和/或数据。收发器1010也可被称为收发单元或通信单元,收发器1010可包括一个或多个射频单元1012以及一个或多个天线1011,其中,射频单元如远端射频单元(remote radio unit,RRU)或者有源天线单元(active antenna unit,AAU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线具体可用于进行射频信号的辐射和接收。可选的,收发器1010可以仅包括以上射频单元,则此时通信装置1000可包括收发器1010、存储器1021、处理器1022以及天线。
存储器1021以及处理器1022可集成于一体也可相互独立。如图10所示,可将存储器1021以及处理器1022集成于通信装置1000的控制单元1020。示例性的,控制单元1020可包括LTE基站的基带单元(baseband unit,BBU),基带单元也可称为数字单元(digital unit,DU),或者,该控制单元1020可包括5G和未来无线接入技术下基站中的分布式单元(distribute unit,DU)和/或集中单元(centralized unit,CU)。上述控制单元1020可由一个或多个天线面板构成,其中,多个天线面板可以共同支持单一接入制式的无线接入网(如LTE网络),多个天线面板也可以分别支持不同接入制式的无线接入网(如LTE网络,5G网络或其他网络)。所述存储器1021和处理器1022可以服务于一个或多个天线面板。也就是说,可以每个天线面板上单独设置存储器1021和处理器1022。也可以是多个天线面板共用相同的存储器1021和处理器1022。此外每个天线面板上可以设置有必要的电路,如,该电路可用于实现存储器1021以及处理器1022的耦合。以上收发器1010、处理器1022以及存储器1021之间可通过总线(bus)结构和/或其他连接介质实现连接。
基于图10所示结构,当通信装置1000需要发送数据时,处理器1022可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置1000时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1022,处理器1022将基带信号转换为数据并对该数据进行处理。
基于如图10所示结构,收发器1010可用于执行以上由收发模块820所执行的步骤。和/或,处理器1022可用于调用存储器1021中的指令以执行以上由处理模块810所执行的步骤。
图11示出了一种简化的终端的结构示意图。便于理解和图示方便,图11中,该终端 以手机作为例子。如图11所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对该车载单元进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到该设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图11中仅示出了一个存储器和处理器。在实际的设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为该装置的收发单元,将具有处理功能的处理器视为该装置的处理单元。如图11所示,该装置包括收发单元1110和处理单元1120。收发单元1110也可以称为收发器、收发机、收发装置等。处理单元1120也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1110中用于实现接收功能的器件视为接收单元,将收发单元1110中用于实现发送功能的器件视为发送单元,即收发单元1110包括接收单元和发送单元。收发单元1110有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1110用于执行上述方法实施例中终端侧的发送操作和接收操作,处理单元1120用于执行上述方法实施例中终端上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1110可以用于执行图5所示的实施例中的S502、S503,和/或用于支持本文所描述的技术的其它过程。处理单元1120用于执行图5所示的实施例中的S504,和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信***,具体的,通信***包括网络设备和终端,或者还可以包括更多个网络设备和多个终端。示例性的,通信***包括用于实现上述图5实施例的相关功能的网络设备和终端。
所述网络设备分别用于实现本申请实施例相关基站部分的功能,例如用于实现上述图5所示实施例相关基站部分的功能。所述终端用于实现本申请实施例相关终端部分的功能,例如用于实现上述图5所示实施例相关终端的功能。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行本申请实施例中基站执行的方法,例如执行图5所示实施例中基站执行的方法;或者当其在计算机上运行时,使得计算机执行本申请实施例中终端执行的方法,例如执行图5所示实施例中终端执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行本申请实施例中基站执行的方法,例如执行图5所示实施例中基站执行的方法;或者当其在计算机上运行时,使得计算机执行本申请实施例中终端执行的方法,例如执行图5所示实施例中终端执行的方法。
本申请实施例提供了一种芯片***,该芯片***包括处理器,还可以包括存储器,用于实现前述方法中网络设备或终端的功能;或者用于实现前述方法中网络设备和终端的功能。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,在本申请实施例中,“用于指示”可以包括用于直接指示和用于间接指示。例如,当描述某一指示信息用于指示信息I时,可以包括该指示信息直接指示I或间接指示I,而并不代表该指示信息中一定携带有I。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。或者还可以约定某一信息中携带或不携带某一标识, 作为对待指示信息的指示。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
此外,待指示信息可能存在其他等价形式,本申请实施例提供的技术方案应理解为涵盖各种形式。举例来说,本申请实施例涉及的部分或者全部特性,应理解为涵盖该特性的各种表现形式。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令,例如RRC信令、MAC层信令,例如MAC-CE信令和物理层信令,例如下行控制信息(downlink control information,DCI)中的一种或者至少两种的组合。
本申请实施例中,时域概念或时域单元可以包括帧、无线帧、***帧、子帧、半帧、时隙、迷你时隙、符号等。
应理解,本申请实施例中的术语“***”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信息和第二信息,只是为了区分不同的指示信息,而并不是表示这两种信息的优先级、或者重要程度等的不同。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,在本申请实施例中,“示例性的”一词用于表示例子或说明。本申请实施例汇总被描述为“示例”的任何实施例或实现方案不应被解释为比其他实施例或实现方案更优选。也就是,使用“示例”一词旨在以具体方式呈现概念。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种解调参考信号DMRS的接收方法,其特征在于,包括:
    在第一时频资源上接收第一信号,所述第一信号由M个DMRS端口信号叠加形成,所述M个DMRS端口信号中至少两个DMRS端口信号对应的时延分段位置不同,所述M为大于或等于2的整数;
    根据时延分段位置从所述第一信号中确定所述M个DMRS端口信号。
  2. 权利要求1所述的方法,其特征在于,所述方法还包括:
    接收指示信息,所述指示信息用于指示所述M个DMRS端口信号分别对应的时延分段位置。
  3. 如权利要求1所述的方法,其特征在于,所述M个DMRS端口信号对应的M个DMRS端口与时延分段位置具有第一对应关系。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针对所述至少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有PRG对应的时延分段位置相同;或者,
    所述M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针对所述至少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有PRG中至少两个PRG对应的时延分段位置不同。
  5. 如权利要求1-4任一项所述的方法,其特征在于,任一DMRS端口关联的PRG的大小与该DMRS端口对应的时延分段位置的个数具有第二对应关系。
  6. 如权利要求1-5任一项所述的方法,其特征在于,任一DMRS端口关联的PRG的大小与该DMRS端口的频域参考信号密度具有第三对应关系。
  7. 如权利要求2-6任一项所述的方法,其特征在于,所述指示信息占用L个比特,其中,
    所述L个比特用于联合指示M个时延分段位置,所述L为大于或等于1的整数;
    或者,所述L个比特用于分别指示M个时延分段位置,其中,L等于M。
  8. 一种解调参考信号DMRS的发送方法,其特征在于,包括:
    生成第一信号,所述第一信号由M个DMRS端口信号叠加形成,所述M个DMRS端口信号中至少两个DMRS端口信号对应的时延分段位置不同,所述M为大于或等于2的整数;
    在第一时频资源上发送所述第一信号。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    发送指示信息,所述指示信息用于指示所述M个DMRS端口信号分别对应的时延分段位置。
  10. 如权利要求8所述的方法,其特征在于,所述M个DMRS端口信号对应的M个DMRS端口与时延分段位置具有第一对应关系。
  11. 如权利要求8-10任一项所述的方法,其特征在于,所述M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针对所述至少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有PRG对应的时延分段位置相同;或者,
    所述M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针 对所述至少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有PRG中至少两个PRG对应的时延分段位置不同。
  12. 如权利要求8-11任一项所述的方法,其特征在于,任一DMRS端口关联的PRG的大小与该DMRS端口对应的时延分段位置的个数具有第二对应关系。
  13. 如权利要求8-12任一项所述的方法,其特征在于,任一DMRS端口关联的PRG的大小与该DMRS端口的频域参考信号密度具有第三对应关系。
  14. 如权利要求9-13任一项所述的方法,其特征在于,所述指示信息占用L个比特,其中,
    所述L个比特用于联合指示M个时延分段位置,所述L为大于或等于1的整数;
    或者,所述L个比特用于分别指示M个时延分段位置,其中,L等于M。
  15. 一种通信装置,其特征在于,包括:
    收发模块,用于在第一时频资源上接收第一信号,所述第一信号由M个DMRS端口信号叠加形成,所述M个DMRS端口信号中至少两个DMRS端口信号对应的时延分段位置不同,所述M为大于或等于2的整数;
    处理模块,用于根据时延分段位置从所述第一信号中确定所述M个DMRS端口信号。
  16. 如权利要求15所述的通信装置,其特征在于,所述收发模块还用于:
    接收指示信息,所述指示信息用于指示所述M个DMRS端口信号分别对应的时延分段位置。
  17. 如权利要求15所述的通信装置,其特征在于,所述M个DMRS端口信号对应的M个DMRS端口与时延分段位置具有第一对应关系。
  18. 如权利要求15-17任一项所述的通信装置,其特征在于,所述M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针对所述至少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有PRG对应的时延分段位置相同;或者,
    所述M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针对所述至少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有PRG中至少两个PRG对应的时延分段位置不同。
  19. 如权利要求15-18任一项所述的通信装置,其特征在于,任一DMRS端口关联的PRG的大小与该DMRS端口对应的时延分段位置的个数具有第二对应关系。
  20. 如权利要求15-19任一项所述的通信装置,其特征在于,任一DMRS端口关联的PRG的大小与该DMRS端口的频域参考信号密度具有第三对应关系。
  21. 如权利要求16-20任一项所述的通信装置,其特征在于,所述指示信息占用L个比特,其中,
    所述L个比特用于联合指示M个时延分段位置,所述L为大于或等于1的整数;
    或者,所述L个比特用于分别指示M个时延分段位置,其中,L等于M。
  22. 一种通信装置,其特征在于,包括:
    处理模块,用于生成第一信号,所述第一信号由M个DMRS端口信号叠加形成,所述M个DMRS端口信号中至少两个DMRS端口信号对应的时延分段位置不同,所述M为大于或等于2的整数;
    收发模块,用于在第一时频资源上发送所述第一信号。
  23. 如权利要求22所述的通信装置,其特征在于,所述收发模块还用于:
    发送指示信息,所述指示信息用于指示所述M个DMRS端口信号分别对应的时延分段位置。
  24. 如权利要求22所述的通信装置,其特征在于,所述M个DMRS端口信号对应的M个DMRS端口与时延分段位置具有第一对应关系。
  25. 如权利要求22-24任一项所述的通信装置,其特征在于,所述M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针对所述至少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有PRG对应的时延分段位置相同;或者,
    所述M个DMRS端口信号对应的M个DMRS端口中具有至少一个DMRS端口,针对所述至少一个DMRS端口中的任意一个DMRS端口,该DMRS端口关联的所有PRG中至少两个PRG对应的时延分段位置不同。
  26. 如权利要求22-25任一项所述的通信装置,其特征在于,任一DMRS端口关联的PRG的大小与该DMRS端口对应的时延分段位置的个数具有第二对应关系。
  27. 如权利要求22-26任一项所述的通信装置,其特征在于,任一DMRS端口关联的PRG的大小与该DMRS端口的频域参考信号密度具有第三对应关系。
  28. 如权利要求23-27任一项所述的通信装置,其特征在于,所述指示信息占用L个比特,其中,
    所述L个比特用于联合指示M个时延分段位置,所述L为大于或等于1的整数;
    或者,所述L个比特用于分别指示M个时延分段位置,其中,L等于M。
  29. 如权利要求15-21或22-28任一项所述的通信装置,其特征在于,所述处理模块为处理器,和/或所述收发模块为收发器。
  30. 如权利要求15-21或22-28任一项所述的通信装置,其特征在于,所述通信装置为芯片或芯片***。
  31. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于执行存储在所述存储器上的计算机程序,使得所述装置执行如权利要求1~7或8~14中任一项所述的方法。
  32. 一种通信装置,其特征在于,所述通信装置包括处理器和通信接口,所述通信接口用于输入和/或输出信息,所述处理器用于执行计算机程序,使得所述装置执行如权利要求1~7或8~14中任一项所述的方法。
  33. 根据权利要求32所述的通信装置,其特征在于,所述通信装置为芯片或芯片***。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~7或8~14中任意一项所述的方法。
PCT/CN2021/119275 2020-09-30 2021-09-18 一种解调参考信号的发送方法、接收方法及通信装置 WO2022068624A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21874285.6A EP4207623A4 (en) 2020-09-30 2021-09-18 METHOD FOR TRANSMITTING AND METHOD FOR RECEIVING A DEMODULATION REFERENCE SIGNAL AND COMMUNICATION DEVICE
US18/191,350 US20230239111A1 (en) 2020-09-30 2023-03-28 Method for sending demodulation reference signal, method for receiving demodulation reference signal, and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011055509.8A CN114337748A (zh) 2020-09-30 2020-09-30 一种解调参考信号的发送方法、接收方法及通信装置
CN202011055509.8 2020-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/191,350 Continuation US20230239111A1 (en) 2020-09-30 2023-03-28 Method for sending demodulation reference signal, method for receiving demodulation reference signal, and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022068624A1 true WO2022068624A1 (zh) 2022-04-07

Family

ID=80949695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119275 WO2022068624A1 (zh) 2020-09-30 2021-09-18 一种解调参考信号的发送方法、接收方法及通信装置

Country Status (4)

Country Link
US (1) US20230239111A1 (zh)
EP (1) EP4207623A4 (zh)
CN (1) CN114337748A (zh)
WO (1) WO2022068624A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115529630A (zh) * 2022-11-29 2022-12-27 广州世炬网络科技有限公司 复合通信***及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230291612A1 (en) * 2022-03-09 2023-09-14 Qualcomm Incorporated Channel state feedback using demodulation reference signals
CN117156499B (zh) * 2023-10-30 2024-01-02 ***紫金(江苏)创新研究院有限公司 分布式小区频率资源管理方法、装置及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174677A1 (en) * 2017-03-24 2018-09-27 Samsung Electronics Co., Ltd. Method and apparatus for performing data transmission based on multiple transmission time intervals, for transmitting control information, and for transmitting data by employing multiple ports
CN110912666A (zh) * 2018-09-14 2020-03-24 华为技术有限公司 参考信号及序列配置方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102455798B1 (ko) * 2017-08-24 2022-10-19 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 dmrs 포트 그룹핑 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174677A1 (en) * 2017-03-24 2018-09-27 Samsung Electronics Co., Ltd. Method and apparatus for performing data transmission based on multiple transmission time intervals, for transmitting control information, and for transmitting data by employing multiple ports
CN110912666A (zh) * 2018-09-14 2020-03-24 华为技术有限公司 参考信号及序列配置方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUANGDONG OPPO MOBILE TELECOM: "Transmit diversity and DMRS port design for NR PDCCH", 3GPP DRAFT; R1-1704614, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, Washington, USA; 20170403 - 20170407, 2 April 2017 (2017-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051242753 *
LG ELECTRONICS: "Evaluation Result of NR DMRS", 3GPP DRAFT; R1-1700481 LG_DL DMRS DESIGN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170116 - 20170120, 16 January 2017 (2017-01-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051208012 *
See also references of EP4207623A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115529630A (zh) * 2022-11-29 2022-12-27 广州世炬网络科技有限公司 复合通信***及方法

Also Published As

Publication number Publication date
EP4207623A4 (en) 2024-02-28
US20230239111A1 (en) 2023-07-27
CN114337748A (zh) 2022-04-12
EP4207623A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
WO2022068624A1 (zh) 一种解调参考信号的发送方法、接收方法及通信装置
US11456839B2 (en) User equipment and wireless communication method
CN113765830B (zh) 获取信道信息的方法及通信装置
WO2015042855A1 (zh) 通信方法、基站和用户设备
US10178012B2 (en) Systems and methods for a sounding frame in an IEEE 802.11ax compliant network
WO2022048593A1 (zh) 信道测量的方法和装置
CN114846868A (zh) 一种信息发送方法、接收方法和装置
CN111867038A (zh) 一种通信方法及装置
US20230239014A1 (en) Information indication method and apparatus
CN115088224B (zh) 一种信道状态信息反馈方法及通信装置
WO2021179311A1 (zh) 一种信道状态信息csi测量的指示方法和通信装置
CN113872647A (zh) 探测参考信号srs传输方法及通信装置
CN115380493B (zh) 一种发送和接收上行参考信号的方法及通信装置
WO2018127158A1 (zh) 一种数据传输的方法、网络侧设备及终端设备
WO2020211736A1 (zh) 用于无线通信***的电子设备、方法和存储介质
CN117200837A (zh) 一种通信方法及装置
WO2022165668A1 (zh) 一种进行预编码的方法和装置
WO2022041289A1 (zh) 同步信号传输方法及装置
EP4364456A1 (en) Method for csi and beam report enhancement for multi-trp full duplex
CN116057876A (zh) 在不同使用的srs资源集合之间共享srs资源的方法及对应ue
WO2024140774A1 (zh) 一种通信方法及装置
WO2022040931A1 (zh) 一种干扰控制方法及装置
CN112422245B (zh) 发送和接收指示的方法和装置
WO2024140116A1 (zh) 一种通信方法及装置
WO2022155824A1 (zh) 参考信号的传输方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021874285

Country of ref document: EP

Effective date: 20230328

NENP Non-entry into the national phase

Ref country code: DE