WO2023125014A1 - 微通道换热器及换热*** - Google Patents

微通道换热器及换热*** Download PDF

Info

Publication number
WO2023125014A1
WO2023125014A1 PCT/CN2022/139073 CN2022139073W WO2023125014A1 WO 2023125014 A1 WO2023125014 A1 WO 2023125014A1 CN 2022139073 W CN2022139073 W CN 2022139073W WO 2023125014 A1 WO2023125014 A1 WO 2023125014A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
wall
cavity
heat exchange
holes
Prior art date
Application number
PCT/CN2022/139073
Other languages
English (en)
French (fr)
Inventor
赵登基
张月
蒋建龙
高强
Original Assignee
杭州三花微通道换热器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111669294.3A external-priority patent/CN116412695A/zh
Priority claimed from CN202123453248.8U external-priority patent/CN216668363U/zh
Application filed by 杭州三花微通道换热器有限公司 filed Critical 杭州三花微通道换热器有限公司
Publication of WO2023125014A1 publication Critical patent/WO2023125014A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present application relates to the technical field of heat exchange, in particular to a microchannel heat exchanger and a heat exchange system.
  • Microchannel heat exchangers are gradually applied to refrigeration systems such as automotive air conditioners and household air conditioners due to their advantages such as high heat exchange efficiency, small size, and light weight.
  • Collectors are arranged at both ends of the microchannel flat tubes for distributing and collecting heat exchange media.
  • the refrigerant entering the microchannel heat exchanger for heat exchange is in a two-phase flow state, and the refrigerant in the two-phase flow is distributed in each microchannel flat tube and each microchannel of the flat tube, which is not conducive to The state of the heat exchange performance requires the design of distribution components to adjust the distribution of the two-phase flow refrigerant, so as to avoid the two-phase flow refrigerant directly entering the header space for distribution and affecting the performance of the heat exchanger.
  • the present application provides a microchannel heat exchanger and a heat exchange system with the microchannel heat exchanger, which increases the flow length of the heat exchanger and facilitates the adjustment of the distribution of the heat exchange medium, thereby improving the performance of the heat exchanger.
  • the embodiment of the present application provides a microchannel heat exchanger, including: a first tube, the first tube includes a first tube wall, the first tube has a first cavity, and the wall surrounding the first cavity includes a first tube wall; the second tube, the second tube and the first tube are arranged side by side; the heat exchange tube, the heat exchange tube includes a microchannel heat exchange tube, the microchannel heat exchange tube is directly or indirectly connected to the first tube, and the microchannel heat exchange tube
  • the tube is connected directly or indirectly to the second tube; the first piece, at least part of the first piece, is located within the first cavity, the first piece includes a second tube wall, the first piece has the second cavity, and the wall surrounding the second cavity includes The second tube wall, the second cavity extends along the length direction of the first tube, the second cavity includes a first sub-cavity and a second sub-cavity, the first sub-cavity and the first cavity communicate indirectly, the second sub-cavity and the first cavity Direct communication, the first sub-cavity and the second
  • the second sub-cavity communicates directly with the first chamber, and the first sub-cavity communicates directly or indirectly with the second sub-cavity.
  • the heat exchange medium needs to be injected into the microchannel heat exchanger, the heat exchange medium first flows into the first sub-chamber, then flows into the second sub-chamber due to the pressure difference, and finally flows into the first chamber.
  • the second cavity in one piece is divided into two or more sub-chambers, which lengthens the flow length of the heat exchange medium in the first piece, so that the heat exchange medium is evenly distributed along the length direction of the first piece before flowing into the first piece.
  • the cavity it is beneficial to the distribution of the heat exchange medium in the heat exchange tube; at the same time, because the flow length of the heat exchange medium in the first part is lengthened, it can also make the heat exchange medium flow in the second cavity fully.
  • the mixing makes the temperature distribution of the heat exchange medium uniform along the length direction of the first part, and improves the heat exchange efficiency of the microchannel heat exchanger.
  • the first piece includes a first hole and a second hole, the first hole communicates with the first sub-cavity and the second sub-cavity, and the second hole communicates with the first cavity and the second sub-cavity, At least part of the first channel and at least part of the second channel extend along the length direction of the first tube; in a first plane perpendicular to the length direction of the first tube, the projection of the second tube wall includes at least part of a helical line, the second The projection of the sub-cavity includes multiple rings.
  • Such a structural design makes the heat exchange medium flow along a helical line in the second sub-cavity, thereby lengthening the flow length of the heat exchange medium in the first part, and at the same time making the first part present a coiled cylindrical structure, while There is no need to open additional through holes or slots, which improves production efficiency.
  • the second tube wall includes a first sub-wall and a second sub-wall, the first sub-wall and the second sub-wall extend in the length direction of the first tube, the first sub-wall and the second sub-wall
  • the second sub-wall has a thickness;
  • the first sub-wall includes one or more first through holes, the first through hole runs through the first sub-wall, and the first through hole communicates with the first sub-cavity and the second sub-cavity;
  • the second sub-wall It includes a plurality of second through holes, the second through holes run through the second sub-wall, at least part of the second through holes communicate with the second sub-cavity and the first cavity, and the first through holes communicate indirectly with the second through holes;
  • the projection of the first sub-wall includes a first arc
  • the projection of the second sub-wall includes one or more second arcs
  • the perimeter of at least one second arc is greater than The circumference of the first arc.
  • Such a structural design makes the first piece present a multi-layer casing structure, which simplifies the production process of the first piece, and the second sub-chamber is divided into multiple sub-chambers, thereby lengthening the flow length of the heat exchange medium in the first piece .
  • the second tube wall includes a first sub-wall and a second sub-wall, the first sub-wall and the second sub-wall extend in the length direction of the first tube, the first sub-wall and the second sub-wall
  • the second sub-wall has a thickness;
  • the first sub-wall includes one or more first through holes, the first through hole runs through the first sub-wall, and the first through hole communicates with the first sub-cavity and the second sub-cavity;
  • the second sub-wall It includes a plurality of second through holes, the second through holes run through the second sub-wall, at least part of the second through holes communicate with the second sub-cavity and the first cavity, and the first through holes communicate indirectly with the second through holes;
  • the projection of the first sub-wall includes a first arc
  • the projection of the second sub-wall includes a plurality of second arcs
  • the circumference of at least one of the second arcs is larger than that of the first arc
  • any second arc includes the projection of at least one second through hole.
  • the projection center of the at least one first through hole and the projection center of the at least one second through hole are collinear.
  • Such a structural design makes the heat exchange medium that flows out from the first through hole and is dispersed into two streams flow through the process length of the same length respectively, and then gathers at the second through hole at the same time, further ensuring that the heat exchange medium along the first part After being evenly distributed in the length direction, it flows into the first cavity through the second through hole.
  • the projection of the second sub-wall includes at least three second circular arcs, the second circular arcs include one or more radii, and at least one second circular arc One radius is different from at least one radius of another second circular arc; in the radial direction of the first tube, the maximum difference of the radius values between any two adjacent second circular arcs is the same as that of any one of the second circular arcs
  • the arc is inversely proportional to the distance from the first arc.
  • the number of first through holes in the first sub-wall is less than the number of second through holes in the second sub-wall; and/or, the sum of the flow areas of the first through holes less than the sum of the flow areas of the second through holes.
  • the projection of the second sub-wall includes a second circular arc
  • the second circular arc includes projections of a plurality of second through holes
  • the projection of the second through holes The number is greater than the number of the first through holes.
  • the projection of the second sub-wall includes two second arcs, wherein, in the radial direction of the first tube, one of the arcs closest to the first arc
  • the second circular arc includes projections of a plurality of second through holes, and the number of the second through holes is greater than that of the first through holes, and another second circular arc away from the first circular arc includes the projection of at least one long groove.
  • the groove is beneficial to reduce the resistance of the heat exchange medium in the flow process, reduce the influence on the side pressure of the heat exchange medium, and improve the heat exchange performance; at the same time, because the flow area of the long groove is large, it is also beneficial to reduce the The distribution of heat exchange medium on each heat exchange tube is different.
  • the ratio of the number of the first through holes to the number of the second through holes is less than or equal to 1/2.
  • Such a structural design makes the heat exchange medium evenly distributed along the length direction of the first part and then flows into the first tube, and also helps to reduce the distribution difference of the heat exchange medium on each heat exchange tube.
  • the embodiment of the present application provides a microchannel heat exchanger, including: a heat exchange tube, the heat exchange tube has a plurality of channels extending along its length; a first component, the first component is directly connected to the heat exchange tube Connected or indirectly connected, the first component includes a first tube wall, the first component has a first cavity, the wall surrounding the first cavity includes a first tube wall, the first component also includes a first plate and a second plate, the first plate and the second plate extend along the length direction of the first component, at least part of the first plate and at least part of the second plate are located in the first cavity, the first plate and the second plate are arranged along the width direction or height direction of the first component, the second One plate is connected to the inner wall of the first tube wall, the second plate is connected to the inner wall of the first tube wall, the first cavity includes the first sub-cavity, the second sub-cavity and the third sub-cavity, the third sub-cavity and the heat exchange tube A plurality of channels are directly connected to the first component
  • the first plate and the second plate can divide the first cavity into first sub- chamber, the second subchamber and the third subchamber, when the heat exchange medium needs to be injected into the microchannel heat exchanger, the heat exchange medium first flows into the first subchamber, and then flows into the second subchamber from the first channel due to the pressure difference and flow from the second channel into the third sub-cavity, and finally flow into the multiple channels of the heat exchange tube, lengthening the flow length of the heat exchange medium in the first assembly, so that the heat exchange medium along the length of the first assembly
  • the direction is evenly distributed and then flows into multiple channels of the heat exchange tube, which is beneficial to the distribution of the heat exchange medium in the heat exchange tube; at the same time, because the flow length of the heat exchange medium in the first component is lengthened, the heat exchange The medium is fully mixed during the flow in the first cavity, thereby making the temperature distribution of the heat exchange medium uniform along
  • the sum of the flow areas of the first channels is smaller than the sum of the flow areas of the second channels.
  • Such a structural design can accelerate the flow of the heat exchange medium in the second sub-chamber from the second channel into the third sub-chamber, and finally flow into the multiple channels of the heat exchange tube, thereby avoiding the heat exchange medium in the first component. Accumulation, thereby reducing the charge of the heat exchange medium.
  • the first channel includes a through hole or a long groove; and/or, the second channel includes a through hole or a long groove.
  • a structural design is beneficial to simplify the structure of the first channel and/or the second channel, reduce the difficulty of the production process, and thus improve the production efficiency.
  • an embodiment of the present application provides a heat exchange system, including a compressor, a throttling assembly, and a heat exchanger, where the heat exchanger includes the microchannel heat exchanger described in any one of the above.
  • the heat exchange medium is evenly distributed along the length direction of the first part or the first component. Therefore, the heat exchange system using the microchannel heat exchanger can reduce the distribution difference of the heat exchange medium on multiple heat exchange tubes, and improve the heat exchange efficiency of the heat exchange system.
  • Fig. 1 is a schematic structural diagram of a microchannel heat exchanger provided in an embodiment of the present application.
  • Fig. 2 is a structural schematic diagram of a first part and a first tube in the microchannel heat exchanger shown in Fig. 1 .
  • Fig. 3 is a cross-sectional view of the first part and the first tube along line A-A in the microchannel heat exchanger shown in Fig. 1 .
  • Fig. 4 is a schematic structural view of the first part of the microchannel heat exchanger shown in Fig. 3 .
  • Fig. 5 is a schematic structural view of another first member and first tube in the microchannel heat exchanger shown in Fig. 1 .
  • Fig. 6 is another cross-sectional view along line A-A of the first part and the first tube in the microchannel heat exchanger shown in Fig. 1 .
  • Fig. 7 is a schematic structural view of the first part of the microchannel heat exchanger shown in Fig. 6 .
  • Fig. 8 is another structural schematic view of the first part of the microchannel heat exchanger shown in Fig. 6 .
  • Fig. 9 is another structural schematic diagram of the first part of the microchannel heat exchanger shown in Fig. 6 .
  • Fig. 10 is another structural schematic view of the first part of the microchannel heat exchanger shown in Fig. 6 .
  • Fig. 11 is a structural schematic diagram of another first part and first tube in the microchannel heat exchanger shown in Fig. 1 .
  • Fig. 12 is a structural schematic diagram of another first member and first tube in the microchannel heat exchanger shown in Fig. 1 .
  • Fig. 13 is a structural schematic diagram of another first member and first tube in the microchannel heat exchanger shown in Fig. 1 .
  • Fig. 14 is another structural schematic diagram of the microchannel heat exchanger provided by the embodiment of the present application.
  • Fig. 15 is a cross-sectional view along line B-B of the first component in the microchannel heat exchanger shown in Fig. 14 .
  • Fig. 16 is another cross-sectional view along line B-B of the first component in the microchannel heat exchanger shown in Fig. 14 .
  • Fig. 17 is another cross-sectional view along line B-B of the first component in the microchannel heat exchanger shown in Fig. 14 .
  • Fig. 18 is a schematic structural view of the first channel provided on the first plate in the micro-channel heat exchanger shown in Fig. 17 .
  • Fig. 19 is another structural schematic diagram of the first channel provided on the first plate in the micro-channel heat exchanger shown in Fig. 17 .
  • Existing microchannel heat exchangers generally include microchannel flat tubes, cooling fins and headers. Collectors are arranged at both ends of the microchannel flat tubes for distributing and collecting heat exchange media. Corrugated or louver-shaped cooling fins are arranged between two adjacent microchannel flat tubes to enhance the heat exchange efficiency between the heat exchanger and the air side.
  • the refrigerant that enters the microchannel heat exchanger for heat exchange is usually in a two-phase flow state, and the two-phase flow refrigerant is distributed in each microchannel flat tube and each microchannel in the flat tube, which will In a state that is not conducive to heat exchange performance, it is necessary to design distribution components to adjust the distribution of the two-phase flow refrigerant, so as to prevent the two-phase flow refrigerant from directly entering the header space for distribution and affecting the performance of the heat exchanger.
  • a metal guide tube is usually inserted into the header as a distribution part, and the outer peripheral wall of the distribution part is provided with through holes or grooves at intervals along its length direction.
  • the refrigerant can be evenly distributed into the microchannel flat tubes through these through holes or through grooves, and then circulated.
  • the size, quantity and position of the through holes or through grooves provided on the peripheral wall of the existing distribution parts will be tested and adjusted according to the different sizes and specifications of the microchannel heat exchanger, thereby increasing the size of the distribution pipe. Difficulty in production and increased economic and time costs.
  • the embodiment of the present application provides a microchannel heat exchanger, which increases the flow length of the heat exchanger and facilitates the adjustment of the distribution of the heat exchange medium, thereby improving the performance of the heat exchanger.
  • the microchannel heat exchanger 100 includes a first tube 1 , a second tube 5 , a heat exchange tube and a first piece 2 .
  • the first tube 1 comprises a first tube wall 11, the first tube 1 has a first cavity 12, and the wall surrounding the first cavity 12 comprises the first tube wall 11; the second tube 5 is arranged side by side with the first tube 1, and the first tube 1
  • the heat exchange tube includes one or more microchannel heat exchange tubes, the microchannel heat exchange tube is directly or indirectly connected to the first tube 1, and the microchannel heat exchange tube directly or indirectly connected to the second tube 5; at least part of the first piece 2 is located in the first cavity 12, the first piece 2 includes a second tube wall 21, the first piece 2 has a second cavity 22, and surrounds the second cavity 22
  • the walls include the second pipe wall 21.
  • a direct connection means that a pipe is connected to another pipe without an intermediate pipe, that is, there is no intermediate pipe
  • the second cavity 22 extends along the length direction of the first tube 1, the second cavity 22 includes a first sub-cavity 221 and a second sub-cavity 222, the first sub-cavity 221 communicates indirectly with the first cavity 12, the second sub-cavity 222 and the second sub-cavity 222
  • the first cavity 12 communicates directly, and the first sub-cavity 221 and the second sub-cavity 222 communicate directly or indirectly.
  • direct communication means that the liquid or gas flows out of the outlet of one chamber and directly flows into another chamber;
  • indirect communication means that the liquid or gas flows out of the outlet of one chamber and needs to flow through other chambers or pipelines and other structures. Then flow into another chamber.
  • the microchannel heat exchanger 100 also includes an inlet and outlet pipe 6 .
  • the inlet and outlet pipes 6 are directly or indirectly connected to the first pipe 1 ; and/or, the inlet and outlet pipes 6 are directly or indirectly connected to the second pipe 5 .
  • the inlet and outlet pipe 6 has an inlet and outlet channel directly or indirectly connected with the first sub-cavity 221 .
  • the inlet and outlet pipes 6 are used to inject the heat exchange medium into the microchannel heat exchanger 100.
  • the heat exchange medium passes through the inlet and outlet channels, the first sub-cavity 221, The second sub-chamber 222 , the first chamber 12 and the multiple channels on the micro-channel heat exchange tube realize the heat exchange between the heat exchange medium and the external medium (such as air).
  • the flow length of the heat exchange medium in the first part 2 is lengthened, so that the heat exchange medium flows along the first part 2. 2 is evenly distributed in the length direction and then flows into the first chamber 12, which is beneficial to the distribution of the heat exchange medium in the heat exchange tube; at the same time, because the flow length of the heat exchange medium in the first piece 2 is lengthened, it can also make the heat exchange medium
  • the heat medium is fully mixed during the flow in the second chamber 22 , so that the temperature distribution of the heat exchange medium along the length direction of the first part 2 is uniform, and the heat exchange efficiency of the microchannel heat exchanger 100 is improved.
  • it can also effectively reduce the production difficulty of the existing distribution part, and reduce the economic and time costs.
  • the first member 2 includes a first hole 23 and a second hole 24.
  • the first hole 23 communicates with the first sub-cavity 221 and the second sub-cavity 222.
  • the second hole 24 communicates with the first cavity 12 and the second sub-cavity 222, and at least part of the first channel 23 and at least part of the second channel 24 extend along the length direction of the first pipe 1 (ie, the first direction D1).
  • the projection of the second tube wall 21 includes at least part of a helical line
  • the projection of the second sub-cavity 222 includes a plurality of rings.
  • the heat exchange medium can flow along a helical line in the second sub-chamber 222, thereby prolonging the flow length of the heat exchange medium in the first part 2. 2 is more evenly distributed along the length direction.
  • the first piece 2 can be a hollow cylindrical structure formed by winding a sheet material along the circumferential direction, without additional through-holes or through-grooves, which improves production efficiency.
  • the hollow channel in the middle of the hollow cylinder structure forms a first subcavity 221, and the gap that is spiral around the axis of the hollow cylinder structure forms a second subcavity 222.
  • the first subcavity 221 and the second subcavity 222 are directly connected to each other. connected.
  • the second tube wall 21 includes a first sub-wall 211 and a second sub-wall 212. Extending in the length direction, the first sub-wall 211 and the second sub-wall 212 have a thickness.
  • the first sub-wall 211 has a first channel 25 , and the first channel 25 communicates with the first sub-cavity 221 and the second sub-cavity 222 .
  • the second sub-wall 212 has a second channel 26 , and the second channel 26 communicates with the second sub-cavity 222 and the first cavity 12 .
  • the projection of the first sub-wall 211 includes a first arc
  • the projection of the second sub-wall 212 includes a plurality of second arcs
  • at least one second circle The perimeter of the arc is greater than the perimeter of the first circular arc
  • any second circular arc includes at least one projection of the second channel 26 .
  • the second sub-wall 212 is sleeved on the outer periphery of the first sub-wall 211 along its radial direction, and the second sub-wall 212 includes a plurality of third sub-walls 2121 distributed along the radial direction of the first part 2, Any one of the third sub-walls 2121 is provided with a second channel.
  • the third sub-wall 2121 located on the outermost side surrounds the second sub-cavity 222, while the remaining third sub-walls 2121
  • the sub-walls 2121 respectively surround and form third sub-cavities 223
  • the first sub-cavity 221 communicates with the second sub-cavity 222 through one or more third sub-cavities 223 .
  • the heat exchange medium flows through the first sub-chamber 221 , the third sub-chamber 223 , the second sub-chamber 222 and the first chamber 12 in sequence, thereby lengthening the flow length of the heat exchange medium in the first piece 2 .
  • the number of the third sub-wall 2121 can be one, two, three or any other number, the more the number of the third sub-wall 2121, the more uniform the heat exchange medium is distributed along the length direction of the first part 2, which is not limited here .
  • the number of the third sub-wall 2121 can be one, and the first sub-cavity 221 is directly connected with the second sub-cavity 222; 223 communicates with the second sub-cavity 222; the number of third sub-cavities 2121 can be three, and the first sub-cavity 221 can communicate with the second sub-cavity 222 through two third sub-cavities 223 in sequence.
  • the first part 2 may exhibit a multi-layer sleeve structure, so that the second sub-cavity 222 is divided into multiple sub-chambers, which simplifies the production process of the first part 2 .
  • the projection of the second sub-wall 212 includes at least three second arcs, the second arcs include one or more radii, at least one radius of one second arc is the same as the radius of another second arc. At least one radius is different.
  • the maximum difference in radius values between two adjacent second circular arcs is inversely proportional to the distance from any one of the second circular arcs to the first circular arc.
  • the second arc can be a regular arc, that is, the third sub-wall 2121 surrounds to form a circular tubular structure; the second arc can also include a plurality of arc segments with different radii, that is, the third sub-wall 2121 surrounds form irregular tubular structures.
  • the maximum width of the gap formed between two adjacent third sub-walls 2121 is the same as the third sub-wall 2121 located on the inside or the third sub-wall 2121 located on the outside.
  • the distance from the sub-wall 2121 to the first sub-wall 211 is inversely proportional. This makes the first piece 2 more adaptable to the state change of the heat exchange medium in the process of flowing, which is beneficial to the improvement of heat exchange performance.
  • the maximum difference in the radius values between any two adjacent second circular arcs may not be proportional to the distance from any one of the second circular arcs to the first circular arc, as long as the distance along the first In the direction in which the radial direction of the member 2 is away from the first sub-wall 211 , the maximum difference in the radius values between two adjacent second circular arcs gradually decreases.
  • the first channel 25 and/or the second channel 26 may include a plurality of through holes arranged at intervals.
  • the first sub-wall 211 includes one or more first through holes 251 , the first through holes 251 pass through the first sub-wall 211 , and the first through holes 251 communicate with the first sub-cavity 221 and the second sub-cavity 222 .
  • the second sub-wall 212 includes a plurality of second through holes, the second through holes pass through the second sub-wall 212, at least part of the second through holes communicate with the second sub-cavity 222 and the first cavity 12, the first through hole 251 and the second through hole The vias communicate indirectly.
  • the first channel 25 includes a plurality of first through holes 251 arranged at intervals on the first sub-wall 211 along the length direction (first direction D1 ) of the first member 2 .
  • the first passage 25 includes at least two rows of through-hole groups arranged in parallel, and any row of through-hole groups includes the through-hole groups arranged at intervals along the length direction of the first piece 2 (the first direction D1).
  • the diameters of the first through holes 251 in two adjacent rows of through hole groups may be the same or different, which is not limited here.
  • the first channel 25 includes a plurality of first through holes 251 spirally disposed on the first sub-wall 211 along the axis L of the first member 2 .
  • the axis L extends along the length direction of the first member 2 (the first direction D1).
  • the second channel 26 also includes a plurality of second through holes arranged at intervals on the second sub-wall 212 along the length direction (first direction D1) of the first member 2; or, the second channel 26 also includes at least two A row of through hole groups arranged in parallel, any one row of through hole groups includes a plurality of second through holes arranged at intervals on the second sub-wall 212 along the length direction (first direction D1) of the first member 2; or, the second The channel 26 also includes a plurality of second through holes arranged helically on the second sub-wall 212 along the axis L of the first member 2 .
  • the projection center of at least one first through hole 251 and the projection center of at least one second through hole are collinear.
  • the angle between the second through hole opened on the innermost third sub-wall 2121 and the first through hole 251 opened on the first sub-wall 211 is set at an angle of 180°, and the adjacent two third sub-walls
  • the second through holes opened on the wall 2121 are also arranged at an angle of 180°.
  • the heat exchange medium flowing out from the first through hole 251 and dispersed into two streams respectively flows through the process length of the same length, and then gathers at the second through hole at the same time, further ensuring that the heat exchange medium flows along the direction of the first member 2. After being evenly distributed in the length direction, it flows into the first cavity 12 through the second through hole.
  • the number of the first through holes 251 that the first sub-wall 211 has is less than the number of the second through holes that the second sub-wall 212 has; and/or, the sum of the flow areas of the first through holes 251 is less than the flow of the second through holes sum of areas.
  • the number of first through holes 251 opened on the first sub-wall 211 is smaller than the number of second through holes opened on the innermost third sub-wall 2121 , and is farther away from the first part along the radial direction of the first part 2 .
  • the direction of the sub-wall 211, the number of second through holes opened on the third sub-wall 2121 located on the inside is less than the number of second through holes opened on the third sub-wall 2121 located on the outside; or, on the first sub-wall 211
  • the sum of the flow areas of the opened first through-holes 251 is smaller than the sum of the flow areas of the second through-holes opened on the innermost third sub-wall 2121 , and is far away from the first sub-wall 211 in the radial direction of the first member 2
  • the sum of the flow areas of the second through holes opened on the inner third sub-wall 2121 is smaller than the sum of the flow areas of the second through holes opened on the outer third sub-wall 2121 .
  • the first channel 25 and/or the second channel 26 can also be long slots arranged along the length direction (first direction D1) of the first piece 2, thereby replacing the opening of the first channel.
  • the hole 251 or the second through hole can simplify the production process of the first part 2, thereby improving production efficiency.
  • the flow area of the first long groove 252 offered on the first sub-wall 211 is smaller than the flow area of the second long groove opened on the innermost third sub-wall 2121 , and is far away from the first part along the radial direction of the first part 2 .
  • the flow area of the second long groove opened on the inner third sub-wall 2121 is smaller than the flow area of the second long groove opened on the outer third sub-wall 2121 .
  • first passage 25 opened on the first sub-wall 211 can be the first long groove 252, and part or all of the second passage 26 opened on the third sub-wall 2121 can also be the second long groove; or, The first passage 25 provided on the first sub-wall 211 is a first long groove 252, and the second passage 26 provided on part or all of the third sub-wall 2121 can be a plurality of second through holes; or, the first sub-wall
  • the first channel 25 offered on 211 can be a plurality of first through holes 251, and the second channel 26 offered on part or all of the third sub-wall 2121 can be a second long groove;
  • the first channel 25 may be a plurality of first through holes 251, and part or all of the second channel 26 opened on the third sub-wall 2121 may be a second through hole.
  • the projection of the second sub-wall 212 includes a second arc
  • the second arc includes the projection of a plurality of second through holes 261
  • the second through holes 261 The number of holes 261 is greater than the number of first through holes 251 .
  • the second sub-wall 212 is sheathed on the outer periphery of the first sub-wall 211 in the radial direction, so that the first part 2 presents an inner and outer two-layer sleeve structure, which is beneficial to ensure that the heat exchange medium along the first part 2 After being evenly distributed in the length direction, it is distributed to each heat exchange tube 3 , thereby reducing the difference in distribution of the heat exchange medium on multiple heat exchange tubes 3 .
  • the ratio of the number of the first through holes 251 to the number of the second through holes 261 is less than or equal to 1/2. In this way, the heat exchange medium is evenly distributed along the length direction of the first member 2 and then flows into the first tube 1 , and at the same time, it is also beneficial to reduce the distribution difference of the heat exchange medium on each heat exchange tube 3 .
  • the ratio of the number of the first through holes 251 to the number of the second through holes 261 can be 1/2, 1/3, 1/4, 1/5 and other arbitrary values, as long as the second through holes 261 It only needs to be greater than the number of the first through holes 251 , which is not limited here.
  • the ratio of the number of the first through holes 251 to the number of the second through holes 261 may be 1/2.
  • the projection of the second sub-wall 212 includes two second circular arcs, wherein, in the radial direction of the first tube 1, the A second circular arc of a circular arc includes projections of a plurality of second through holes (not shown in the figure), and the number of the second through holes is greater than the number of the first through holes 251, and the other one away from the first circular arc
  • the second arc includes the projection of at least one elongated slot 262 .
  • the second sub-wall 212 is sleeved on the outer periphery of the first sub-wall 211 in the radial direction thereof, and the second sub-wall 212 includes two third sub-walls 2121 spaced along the radial direction of the first part 2,
  • a plurality of second through holes are opened on the innermost third sub-wall 2121, and at least one long slot is opened on the outermost third sub-wall 262.
  • the second through hole opened on the innermost third sub-wall 2121 and the first through hole 251 opened on the first sub-wall 211 are not only beneficial to ensure that the heat exchange medium is evenly distributed along the length direction of the first part 2 and then
  • the distribution to each heat exchange tube 3 is also conducive to the mixing of the gas-liquid two-phase heat exchange medium, thereby further improving the distribution uniformity of the heat exchange medium in the plurality of heat exchange tubes 3 .
  • the ratio of the number of the first through holes 251 to the number of the second through holes is the same as that in the foregoing embodiments, and will not be repeated here.
  • the third sub-wall 2121 located on the outermost side is provided with a long groove 262, which is beneficial to reduce the resistance of the heat exchange medium in the flow process, reduce the influence on the side pressure of the heat exchange medium, and improve the heat exchange performance; at the same time , because the flow area of the long groove 262 is larger, it is also beneficial to reduce the difference in distribution of the heat exchange medium on the plurality of heat exchange tubes 3 .
  • the embodiment of the present application also provides another micro-channel heat exchanger, which can also effectively reduce the production difficulty of the distribution pipes provided in the existing micro-channel heat exchanger to reduce economic and time costs.
  • the microchannel heat exchanger 100 includes a first assembly 4 and at least one heat exchange tube 3 , and the first assembly 4 is directly or indirectly connected to the heat exchange tube 3 .
  • the heat exchange tube 3 has a plurality of channels extending along its length direction;
  • the first component 4 includes a first tube wall 41, the first component 4 has a first cavity 43, and the walls surrounding the first cavity 43 include a first tube wall 41,
  • the first assembly 4 further includes a first plate 42a and a second plate 42b, the first plate 42a and the second plate 42b extend along the length direction of the first assembly 4, at least part of the first plate 42a and at least part of the second plate 42b Located in the first cavity 43, the first plate 42a and the second plate 42b are arranged along the width direction or the height direction of the first component 4, the first plate 42a is connected with the inner wall of the first tube wall 41, and the second plate 42b is connected with the first The inner wall of the pipe wall 41 is connected.
  • the first cavity 43 includes a first sub-cavity 431 , a second sub-cavity 432 and a third sub-cavity 433 , and the third sub-cavity 433 directly communicates with multiple channels of the heat exchange tube 3 .
  • the first plate 42a includes a first channel 44
  • the second plate 42b includes a second channel 45
  • the first channel 44 communicates with the first sub-cavity 431 and the second sub-cavity 432
  • the second channel 45 communicates with the second sub-cavity 432 and the third sub-cavity.
  • the sub-chamber 433 communicates indirectly with the first channel 44 and the second channel 45 .
  • the microchannel heat exchanger 100 also includes a second component 7 , which is arranged side by side with the first component 4 , and the structure of the second component 7 and the first component 4 may be the same or different.
  • the microchannel heat exchanger 100 also includes an inlet and outlet pipe 8, which is directly or indirectly connected to the first assembly 4, and the inlet and outlet pipe 8 has an inlet and outlet channel directly or indirectly connected to the first sub-chamber 431 and/or, the inlet and outlet pipe 8 is directly or indirectly connected to the second component 7 .
  • the inlet and outlet pipes 8 are used to inject the heat exchange medium into the microchannel heat exchanger 100.
  • the heat exchange medium passes through the inlet and outlet channels, the first sub-cavity 431, The second sub-cavity 432 , the third sub-cavity 433 and multiple passages on the heat exchange tube 3 flow into the heat exchange tube 3 , thereby realizing the heat exchange between the heat exchange medium and the external medium (such as air).
  • the first cavity 43 can be divided into a first sub-cavity 431, a second sub-cavity 432 and a third sub-cavity 433.
  • the length of the process in the first component 4 so that the heat exchange medium is evenly distributed along the length direction of the first component 4 and then flows into the multiple channels of the heat exchange tube 3, which is conducive to the distribution of the heat exchange medium in the heat exchange tube 3
  • the heat exchange medium can also be fully mixed in the process of flowing in the first cavity 43, and then the heat exchange medium can be mixed along the flow of the first assembly 4.
  • the uniform temperature distribution in the length direction improves the heat exchange efficiency of the microchannel heat exchanger 100 .
  • it can also effectively reduce the production difficulty of the existing distribution part, and reduce the economic and time costs.
  • the first pipe wall 41 includes a first sub-wall 411 and a second sub-wall 412 oppositely arranged along the width direction (second direction D2) of the first component 4, and opposite along the height direction (third direction D3) of the first component 4.
  • the third sub-wall 413 and the fourth sub-wall 414 are provided, and the fifth side wall (not shown in the figure) and the sixth side wall (not shown in the figure) are oppositely arranged along the length direction (first direction D1) of the first assembly 4. not shown).
  • the first plate 42a and the second plate 42b are spaced in the first cavity 43 along the height direction (third direction D3) of the first assembly 4, so that the first cavity 43 Along the height direction of the first component 4 (the third direction D3 ), it is divided into a first sub-cavity 431 , a second sub-cavity 432 and a third sub-cavity 433 in sequence.
  • the first plate 42a and the second plate 42b can be respectively connected with any three sub-walls in the first sub-wall 411, the second sub-wall 412, the fifth sub-wall or the sixth sub-wall, the first sub-wall 411,
  • the gap between the sub-wall not connected with the first plate 42a and the first plate 42a in the second sub-wall 412, the fifth sub-wall or the sixth sub-wall forms the first channel 44, the first sub-wall 411, the second sub-wall
  • the second channel 45 is formed in the gap between the sub-wall not connected with the second plate 42 b and the second plate 42 b among the wall 412 , the fifth sub-wall or the sixth sub-wall.
  • At least one third plate 42c is also provided in the first cavity 43, any third plate 42c is located between the first plate 42a and the second plate 42b, so that the second sub-cavity 432 is arranged along the height direction of the first component 4 ( The third direction D3) is divided into a plurality of sub-chambers, and any third plate 42c can be connected with any three sub-walls in the first sub-wall 411, the second sub-wall 412, the fifth sub-wall or the sixth sub-wall, The gap between the first sub-wall 411, the second sub-wall 412, the fifth sub-wall or the sixth sub-wall that is not connected with the third plate 42c and the third plate 42c forms a third channel 46 to communicate with the third plate 42c. Each subchamber in the second subchamber 432 .
  • the number of the third plate 42c can be one, two, three or any other number, the more the number of the third plate 42c, the more sub-chambers formed by separating the second sub-cavity 432, the heat exchange medium in the second The greater the number of roundabout flows in the sub-cavity 432 , the more uniform the distribution of the heat exchange medium along the length direction (first direction D1 ) of the first component 4 is, which is not limited here.
  • the first channel formed between the first plate 42a and the first pipe wall 41 44 does not coincide with the projection of the third passage 46 formed between the third plate 42c and the first pipe wall 41 and is set at an angle of 180°, while the second plate 42b formed between the first pipe wall 41
  • the projection of the second channel 45 is not coincident with the projection of the third channel 46 formed between the third plate 42c and the first tube wall 41 and is arranged at an angle of 180°.
  • the first plate 42a formed between the first pipe wall 41 The projection of the channel 44 does not coincide with the projection of the third channel 46 formed between the lowermost third plate 42c and the first pipe wall 41 and is arranged at an angle of 180°.
  • the projections of the third channel 46 formed between the tube walls 41 do not overlap and are arranged at an angle of 180°, while the projection of the second channel 45 formed between the second plate 42b and the first tube wall 41 is identical to the uppermost channel 45. Projections of the third channel 46 formed between the third plate 42c and the first tube wall 41 do not overlap and are arranged at an angle of 180°.
  • the first plate 42a and the second plate 42b are spaced in the first cavity 43 along the width direction (second direction D2) of the first component 4, so that the first cavity 43 Along the width direction of the first component 4 (the second direction D2 ), it is divided into a first sub-cavity 431 , a second sub-cavity 432 and a third sub-cavity 433 in sequence.
  • the first plate 42a and the second plate 42b can be respectively connected with any three sub-walls in the third sub-wall 413, the fourth sub-wall 414, the fifth sub-wall or the sixth sub-wall, the third sub-wall 413,
  • the gap formed between the sub-wall not connected with the first plate 42a in the fourth sub-wall 414, the fifth sub-wall or the sixth sub-wall and the first plate 42a forms the first channel 44, the third sub-wall 413, the fourth sub-wall
  • the second channel 45 is formed by the gap between the sub-wall 414 , the fifth sub-wall or the sixth sub-wall not connected to the second plate 42 b and the second plate 42 b.
  • At least one third plate 42c is also provided in the first cavity 43, any third plate 42c is located between the first plate 42a and the second plate 42b, so that the second sub-cavity 432 is arranged along the width direction of the first component 4 ( The second direction D2) is divided into a plurality of sub-chambers, and any third plate 42c can be connected with any three sub-walls in the third sub-wall 413, the fourth sub-wall 414, the fifth sub-wall or the sixth sub-wall, The gap between the third sub-wall 413 , the fourth sub-wall 414 , the fifth sub-wall or the sixth sub-wall that is not connected to the third plate 42 c and the third plate 42 c forms the third channel 46 .
  • the number of the third plate 42c can be one, two, three or any other number, the more the number of the third plate 42c, the more sub-chambers formed by separating the second sub-cavity 432, the heat exchange medium in the second The greater the number of roundabout flows in the sub-cavity 432 , the more uniform the distribution of the heat exchange medium along the length direction (first direction D1 ) of the first component 4 is, which is not limited here.
  • the first channel formed between the first plate 42a and the first tube wall 41 44 does not coincide with the projection of the third passage 46 formed between the third plate 42c and the first pipe wall 41 and is set at an angle of 180°, while the second plate 42b formed between the first pipe wall 41
  • the projection of the second channel 45 is not coincident with the projection of the third channel 46 formed between the third plate 42c and the first tube wall 41 and is arranged at an angle of 180°.
  • the first plate 42a and the first tube wall 41 formed between the first The projection of the channel 44 does not coincide with the projection of the third channel 46 formed between the third plate 42c on the far right and the first tube wall 41 and is set at an angle of 180°.
  • the projections of the third passage 46 formed between the first pipe walls 41 do not overlap and are arranged at an angle of 180°, while the projection of the second passage 45 formed between the second plate 42b and the first pipe wall 41 is located on the leftmost side.
  • the projections of the third channel 46 formed between the third plate 42c and the first tube wall 41 do not overlap and are arranged at an angle of 180°.
  • the first plate 42a, the second plate 42b and the third plate 42c are arranged at intervals along the width direction (second direction D2) of the first assembly 4, compared with the first plate 42a, the second plate 42b and the third plate 42c along the As far as the height direction (third direction D3) of the components 4 is arranged at intervals, the height dimension of the first component 4 can be reduced, so that the microchannel heat exchanger 100 can be adapted to a smaller installation space.
  • the first plate 42a and the second plate 42b are spaced in the first cavity 43 along the height direction of the first component 4 (third direction D3), so that the first cavity 43 Along the height direction of the first component 4 (the third direction D3 ), it is divided into a first sub-cavity 431 , a second sub-cavity 432 and a third sub-cavity 433 in sequence.
  • the first plate 42a and the second plate 42b can be respectively connected with the first sub-wall 411, the second sub-wall 412, the fifth sub-wall and the sixth sub-wall.
  • the first channel 44 of the sub-cavity 432 and the second channel 45 communicating with the second sub-cavity 432 and the third sub-cavity 433 are provided on the second plate 42b.
  • At least one third plate 42c is also provided in the first cavity 43, any third plate 42c is located between the first plate 42a and the second plate 42b, so that the second sub-cavity 432 is arranged along the height direction of the first component 4 ( The third direction D3) is divided into a plurality of sub-chambers, and any third plate 42c can be connected with the first sub-wall 411, the second sub-wall 412, the fifth sub-wall and the sixth sub-wall, and the third plate 42c is provided with There is a third channel 46 communicating with each subchamber in the second subchamber 432 .
  • the number of the third plate 42c can be one, two, three or any other number, the more the number of the third plate 42c, the more sub-chambers formed by separating the second sub-cavity 432, the heat exchange medium in the second The greater the number of roundabout flows in the sub-cavity 432 , the more uniform the distribution of the heat exchange medium along the length direction (first direction D1 ) of the first component 4 is, which is not limited here.
  • the projection of the first channel 44 provided on the first plate 42a is the same as that of the third
  • the projection of the third passage 46 provided on the plate 42c does not overlap and is arranged at an angle of 180°, while the projection of the second passage 45 provided on the second plate 42b is also consistent with the third passage provided on the third plate 42c.
  • the projections of 46 are non-coincident and set at an angle of 180°.
  • the projection of the first channel 44 provided on the first plate 42a is the same as that located at
  • the projections of the third channels 46 provided on the lowermost third plate 42c do not overlap and are arranged at an angle of 180°, and the projections of the third channels 46 provided on the two adjacent third plates 42c also do not overlap and merge It is set at an angle of 180°, while the projection of the second channel 45 provided on the second plate 42b does not overlap with the projection of the third channel 46 provided on the uppermost third plate 42c and is set at an angle of 180°.
  • first plate 42a, the second plate 42b and the third plate 42c can also be arranged at intervals along the width direction (second direction D2) of the first assembly 4, and the first plate 42a, the second plate 42b and the third plate
  • the plates 42c can be respectively connected with the third sub-wall 413, the fourth sub-wall 414, the fifth sub-wall and the sixth sub-wall, so as to reduce the height dimension of the first component 4, so that the microchannel heat exchanger 100 is adapted to the height Small installation space.
  • the first channel 44 includes a through hole or a long groove; and/or, the second channel 45 includes a through hole or a long groove, which is conducive to simplifying the structure of the first channel 44 and/or the second channel 45, and reduces the difficulty of the production process. Thereby improving production efficiency.
  • the first channel 44 and the second channel 45 may include a plurality of through holes arranged at intervals along the length direction of the first component 4 (the first direction D1 ).
  • the number of through holes provided on the first plate 42a is less than the number of through holes provided on the second plate 42b; and/or, the sum of the flow areas of the through holes provided on the first plate 42a is less than that of the second plate 42a The sum of the flow areas of the through holes provided on the second plate 42b.
  • the sum of the flow areas of the first passages 44 is smaller than the sum of the flow areas of the second passages 45, thereby accelerating the flow of the heat exchange medium in the second subchamber 432 from the second passage 45 into the third subchamber 433, And finally flow into multiple channels of the heat exchange tube 3 , thereby avoiding the accumulation of the heat exchange medium in the first assembly 4 , thereby reducing the charging amount of the heat exchange medium.
  • the first channel 44 and the second channel 45 can also be long grooves arranged along the length direction (first direction D1) of the first assembly 4, thereby replacing the through holes opened, which can The production process of the first component 4 is simplified, thereby improving production efficiency.
  • the flow area of the long grooves offered on the first plate 42a is smaller than the flow area of the long grooves set on the second plate 42b, so that when the heat exchange medium flows into the first cavity 43 from the second channel 45, the heat exchange medium can be accelerated.
  • the second channel 45 flows out of the second sub-chamber 432, thereby avoiding the accumulation of the heat exchange medium in the first part, thereby reducing the charging amount of the heat exchange medium.
  • first passage 44 provided on the first plate 42a can be a long groove
  • second passage 45 provided on the second plate 42b can also be a long groove
  • the channel 44 is a long groove
  • the second channel 45 offered on the second plate 42b can be a plurality of through holes; perhaps, the first channel 44 offered on the first plate 42a can be a plurality of through holes, and the second plate 42b offers a plurality of through holes.
  • the second channel 45 can be a long groove; or, the first channel 44 opened on the first plate 42a can be a plurality of through holes, and the second channel 45 opened on the second plate 42b can also be a plurality of through holes.
  • the sum of the flow areas of the first passages 44 is smaller than the sum of the flow areas of the second passages 45 .
  • Such a structural design can accelerate the flow of the heat exchange medium in the second sub-cavity 432 from the second passage 45 into the third sub-chamber 433, and finally flow into the multiple passages of the heat exchange tube 3, thereby avoiding the heat exchange medium in the second passage 45.
  • the accumulation in the component 4 further reduces the charging amount of the heat exchange medium.
  • the third channel 46 can include a plurality of through holes arranged at intervals along the length direction of the first component 4 (first direction D1); or, the third channel 46 can also be along the length direction of the first component 4 (first direction D1). Long slots arranged in direction D1).
  • the flow area of the third channel 46 opened on the upper third plate 42c is larger than The flow area of the third channel 46 offered on the third plate 42c on the lower side, and the flow area of the third channel 46 offered on any third plate 42c is between that of the first channel 44 offered on the first plate 42a Between the flow area and the flow area of the second channel 45 opened on the second plate 42b.
  • the embodiment of the present application also provides a heat exchange system, including a compressor, a throttling component (such as a throttle valve) and a heat exchanger, and the heat exchanger includes the aforementioned microchannel heat exchanger 100,
  • the heat exchange system using the microchannel heat exchanger 100 is beneficial to improve the heat exchange performance of the heat exchange system.
  • the microchannel heat exchanger 100 disclosed in the embodiment of the present application can be used, but not limited to, in heat exchange systems such as vehicle air conditioners, household air conditioners, and industrial air conditioners.
  • the heat exchange medium is evenly distributed along the length direction of the first part 2 or the first component 4 . Therefore, the heat exchange system using the microchannel heat exchanger 100 can reduce the distribution difference of the heat exchange medium on the multiple heat exchange tubes 3 and improve the heat exchange efficiency of the heat exchange system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Micromachines (AREA)

Abstract

本申请公开了一种微通道换热器及换热***,该微通道换热器包括:第一管,第一管包括第一管壁,第一管具有第一腔,围绕第一腔的壁包括第一管壁;第二管,第二管与第一管并列设置;换热管,换热管包括微通道换热管,微通道换热管分别与第一管和第二管直接连接或间接连接;第一件,至少部分第一件位于第一腔内,第一件包括第二管壁,第一件具有第二腔,围绕第二腔的壁包括第二管壁,第二腔沿第一管的长度方向延伸,第二腔包括第一子腔和第二子腔,第一子腔和第一腔间接连通,第二子腔和第一腔直接连通,第一子腔和第二子腔直接连通或间接连通,加长了换热介质在第一件的流程长度,增加了换热器的流程长度,有利于调节换热介质的分配,从而提高换热器性能。

Description

微通道换热器及换热***
相关申请的交叉引用
本申请要求申请号为202111669294.3且申请日为2021年12月31日的中国专利申请和申请号为202123453248.8且申请日为2021年12月31日的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
技术领域
本申请涉及热交换技术领域,尤其涉及一种微通道换热器及换热***。
背景技术
微通道换热器由于其换热效率高、体积小、重量轻等优势,被逐渐应用到诸如汽车空调、家用空调等制冷***中。在微通道扁管的两端设有集流管,用于分配和汇集换热介质。
在一些应用中,进入微通道换热器进行换热的制冷剂为两相流状态,两相流的制冷剂在各个微通道扁管以及扁管的各个微通道内进行分配,会出现不利于换热性能的状态,需要设计分配部件来调节两相流的制冷剂的分配,以避免两相流的制冷剂直接进入到集流管的空间中进行分配,影响换热器性能。
发明内容
本申请提供了一种微通道换热器及具有该微通道换热器的换热***,增加了换热器的流程长度,有利于调节换热介质的分配,从而提高换热器性能。
第一方面,本申请实施例提供了一种微通道换热器,包括:第一管,第一管包括第一管壁,第一管具有第一腔,围绕第一腔的壁包括第一管壁;第二管,第二管与第一管并列设置;换热管,换热管包括微通道换热管,微通道换热管与第一管直接连接或间接连接,微通道换热管与第二管直接连接或间接连接;第一件,至少部分第一件位于第一腔内,第一件包括第二管壁,第一件具有第二腔,围绕第二腔的壁包括第二管壁,第二腔沿第一管的长度方向延伸,第二腔包括第一子腔和第二子腔,第一子腔和第一腔间接连通,第二子腔和第一腔直接连通,第一子腔和第二子腔直接连通或间接连通。
在本申请实施例提供的微通道换热器中,由于第一子腔和第一腔间接连通、 第二子腔和第一腔直接连通以及第一子腔和第二子腔直接连通或间接连通,当需要向微通道换热器注入换热介质时,换热介质首先流入第一子腔内,然后因压力差而流入第二子腔内,并最终流入第一腔内,通过将第一件中的第二腔分隔为两个或者多个子腔室,加长了换热介质在第一件中的流程长度,从而使得换热介质沿第一件的长度方向分布均匀后再流入第一腔内,有利于换热介质在换热管中的分配;同时,由于加长了换热介质在第一件中的流程长度,还可以使得换热介质在第二腔内流动的过程中得到充分混合,进而使得换热介质沿第一件的长度方向的温度分配均匀,提升了微通道换热器的换热效率。
结合第一方面,在一些实施例中,第一件包括第一孔道和第二孔道,第一孔道连通第一子腔和第二子腔,第二孔道连通第一腔和第二子腔,至少部分第一孔道和至少部分第二孔道沿第一管的长度方向延伸;在垂直于第一管的长度方向的第一平面内,第二管壁的投影包括至少部分螺旋形线,第二子腔的投影包括多个圆环。这样的结构设计使得换热介质在第二子腔内沿螺旋形线流动,从而加长了换热介质在第一件中的流程长度,同时使得第一件呈现卷绕形成的筒体结构,而无需额外开设通孔或通槽,提升了生产效率。
结合第一方面,在一些实施例中,第二管壁包括第一子壁和第二子壁,第一子壁和第二子壁在第一管的长度方向上延伸,第一子壁和第二子壁具有厚度;第一子壁包括一个或多个第一通孔,第一通孔贯穿第一子壁,第一通孔连通第一子腔和第二子腔;第二子壁包括多个第二通孔,第二通孔贯穿第二子壁,至少部分第二通孔连通第二子腔和第一腔,第一通孔与第二通孔间接连通;在垂直于第一管的长度方向上的第一平面内,第一子壁的投影包括第一圆弧,第二子壁的投影包括一个或多个第二圆弧,至少一个第二圆弧的周长大于第一圆弧的周长。这样的结构设计使得第一件呈现多层套管结构,简化了第一件的生产工艺,第二子腔被分隔为多个子腔室,从而加长了换热介质在第一件中的流程长度。
结合第一方面,在一些实施例中,第二管壁包括第一子壁和第二子壁,第一子壁和第二子壁在第一管的长度方向上延伸,第一子壁和第二子壁具有厚度;第一子壁包括一个或多个第一通孔,第一通孔贯穿第一子壁,第一通孔连通第一子腔和第二子腔;第二子壁包括多个第二通孔,第二通孔贯穿第二子壁,至少部分第二通孔连通第二子腔和第一腔,第一通孔与第二通孔间接连通;在垂直于第一管的长度方向上的第 一平面内,第一子壁的投影包括第一圆弧,第二子壁的投影包括多个第二圆弧,至少一个第二圆弧的周长大于第一圆弧的周长,任意一个第二圆弧包括至少一个第二通孔的投影。这样的结构设计使得第一件呈现多层套管结构,简化了第一件的生产工艺,第二子腔被分隔为多个子腔室,从而加长了换热介质在第一件中的流程长度。
结合第一方面,在一些实施例中,在第一平面内,至少一个第一通孔的投影中心和至少一个第二通孔的投影中心共线。这样的结构设计使得自第一通孔流出并分散为两股的换热介质分别流经相同长度的流程长度,然后同时汇集至第二通孔处,进一步地确保换热介质沿第一件的长度方向分布均匀后再经第二通孔流入第一腔内。
结合第一方面,在一些实施例中,在第一平面内,第二子壁的投影包括至少三个第二圆弧,第二圆弧包括一个或者多个半径,一个第二圆弧的至少一个半径与另一个第二圆弧的至少一个半径不同;在第一管的径向方向上,两两相邻的第二圆弧之间的半径数值的最大差值与其中任意一个第二圆弧到第一圆弧的距离成反比。这样的结构设计更适应于换热介质在流动的过程中的状态变化,有利于换热性能的提高。
结合第一方面,在一些实施例中,第一子壁具有的第一通孔的数量小于第二子壁具有的第二通孔的数量;和/或,第一通孔的流通面积之和小于第二通孔的流通面积之和。这样的结构设计使得当换热介质自第二通孔流入第一腔时,不仅可以加速换热介质自第二通孔流出第二子腔,从而避免了换热介质在第一件内的堆积,进而减少了换热介质的充注量,而且还有利于减少位于相邻的两个第二通孔之间的多个换热管上的换热介质分配差异。
结合第一方面,在一些实施例中,在第一平面内,第二子壁的投影包括一个第二圆弧,第二圆弧包括多个第二通孔的投影,且第二通孔的数量大于第一通孔的数量。这样的结构设计使得第一件呈现内外两层套管结构,换热介质依次经第一子腔、第一通孔、第二子腔和第二通孔流入第一腔内,有利于确保换热介质沿第一件的长度方向分布均匀后再分配至各个换热管,从而减少了多个换热管上的换热介质分配差异。
结合第一方面,在一些实施例中,在第一平面内,第二子壁的投影包括两个第二圆弧,其中,在第一管的径向方向上,靠近第一圆弧的一个第二圆弧包括多 个第二通孔的投影,且第二通孔的数量大于第一通孔的数量,远离第一圆弧的另一个第二圆弧包括至少一个长槽的投影。这样的结构设计使得第一件呈现内外三层套管结构,由于远离第一圆弧的第二圆弧包括至少一个长槽的投影,即第二子壁中位于最外侧的壁上开设有长槽,有利于减少换热介质在流动过程中的阻力,减小对换热介质侧压力的影响,有利于提高换热性能;同时,由于长槽的流通面积较大,其还有利于减少多个换热管上的换热介质分配差异。
结合第一方面,在一些实施例中,第一通孔的数量比第二通孔的数量的比值小于或等于1/2。这样的结构设计使得换热介质沿第一件的长度方向分布均匀后流入第一管内,同时还有利于减少各个换热管上的换热介质分配差异。
第二方面,本申请实施例提供了一种微通道换热器,包括:换热管,换热管具有沿其长度方向延伸的多个通道;第一组件,第一组件与换热管直接连接或间接连接,第一组件包括第一管壁,第一组件具有第一腔,围绕第一腔的壁包括第一管壁,第一组件还包括第一板和第二板,第一板和第二板沿第一组件的长度方向延伸,至少部分第一板和至少部分第二板位于第一腔内,第一板和第二板沿第一组件的宽度方向或高度方向设置,第一板与第一管壁的内壁连接,第二板与第一管壁的内壁连接,第一腔包括第一子腔、第二子腔和第三子腔,第三子腔和换热管的多个通道直接连通;第一板包括第一通道,第二板包括第二通道,第一通道连通第一子腔和第二子腔,第二通道连通第二子腔和第三子腔,第一通道与第二通道间接连通。
在本申请实施例提供的微通道换热器中,由于第一组件包括位于第一腔内的第一板和第二板,第一板和第二板可以将第一腔分隔为第一子腔、第二子腔和第三子腔,当需要向微通道换热器注入换热介质时,换热介质首先流入第一子腔内,然后因压力差自第一通道流入第二子腔内以及自第二通道流入第三子腔内,并最终流入换热管的多个通道内,加长了换热介质在第一组件中的流程长度,从而使得换热介质沿第一组件的长度方向分布均匀后再流入换热管的多个通道内,有利于换热介质在换热管中的分配;同时,由于加长了换热介质在第一组件中的流程长度,还可以使得换热介质在第一腔内流动的过程中得到充分混合,进而使得换热介质沿第一组件的长度方向的温度分配均匀,提升了微通道换热器的换热效率。
结合第二方面,在一些实施例中,第一通道的流通面积之和小于第二通道流 通的面积之和。这样的结构设计可以加速第二子腔内的换热介质自第二通道流入第三子腔内,并最终流入换热管的多个通道内,从而避免了换热介质在第一组件内的堆积,进而减少了换热介质的充注量。
结合第二方面,在一些实施例中,第一通道包括通孔或长槽;和/或,第二通道包括通孔或长槽。这样的结构设计有利于简化第一通道和/或第二通道的结构,降低了生产工艺的难度,从而提升了生产效率。
第三方面,本申请实施例提供了一种换热***,包括压缩机、节流组件和换热器,所述换热器包括如上述任一项所述的微通道换热器。
由于微通道换热器的第一件或第一组件可以加长换热介质的流程长度,使得换热介质沿第一件或第一组件的长度方向分布均匀。因此采用该微通道换热器的换热***可以减少换热介质在多个换热管上的分配差异,提升了换热***的换热效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为本申请实施例提供的微通道换热器的一种结构示意图。
图2为图1所示的微通道换热器中一种第一件与第一管的结构示意图。
图3为图1所示的微通道换热器中第一件与第一管沿A-A线的一种剖视图。
图4为图3所示的微通道换热器中第一件的结构示意图。
图5为图1所示的微通道换热器中另一种第一件与第一管的结构示意图。
图6为图1所示的微通道换热器中第一件与第一管的沿A-A线的另一种剖视图。
图7为图6所示的微通道换热器中第一件的一种结构示意图。
图8为图6所示的微通道换热器中第一件的另一种结构示意图。
图9为图6所示的微通道换热器中第一件的又一种结构示意图。
图10为图6所示的微通道换热器中第一件的再一种结构示意图。
图11为图1所示的微通道换热器中又一种第一件与第一管的结构示意图。
图12为图1所示的微通道换热器中再一种第一件与第一管的结构示意图。
图13为图1所示的微通道换热器中又一种第一件与第一管的结构示意图。
图14为本申请实施例提供的微通道换热器的另一种结构示意图。
图15为图14所示的微通道换热器中第一组件沿B-B线的一种剖视图。
图16为图14所示的微通道换热器中第一组件沿B-B线的另一种剖视图。
图17为图14所示的微通道换热器中第一组件沿B-B线的又一种剖视图。
图18为图17所示的微通道换热器中第一板上设有的第一通道的一种结构示意图。
图19为图17所示的微通道换热器中第一板上设有的第一通道的另一种结构示意图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其它含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
现有的微通道换热器一般包括微通道扁管、散热翅片和集流管。在微通道扁管的两端设有集流管,用于分配和汇集换热介质。在相邻的两个微通道扁管之间设有波纹状的或带有百叶窗形的散热翅片,用于强化换热器与空气侧的换热效率。
在一些应用中,进入到微通道换热器进行换热的制冷剂通常为两相流状态,两相流的制冷剂在各个微通道扁管以及扁管中的各个微通道内进行分配,会出现不利于换热性能的状态,需要设计分配部件来调节两相流的制冷剂的分配,以避免两相流的制冷剂直接进入到集流管的空间中进行分配,影响换热器性能。
为了保证制冷剂在各个微通道扁管内分配均匀,通常会在集流管内***一根金属导流管作为分配部件,该分配部件的外周壁上沿其长度方向间隔开设有通孔 或通槽,制冷剂可以通过这些通孔或通槽较均匀地分配到各微通道扁管内再流通。但是,现有的分配部件的外周壁上开设的通孔或通槽的大小、数量及位置,将依据微通道换热器的不同尺寸规格而进行测试及调整设置,从而加大了分配管的生产难度,并增加了经济和时间成本。
第一方面,本申请实施例提供了一种微通道换热器,增加了换热器的流程长度,有利于调节换热介质的分配,从而提高换热器性能。
请参照图1至图6,微通道换热器100包括第一管1、第二管5、换热管和第一件2。其中,第一管1包括第一管壁11,第一管1具有第一腔12,围绕第一腔12的壁包括第一管壁11;第二管5与第一管1并列设置,第二管5与第一管1的结构可以相同或不同;换热管包括一个或多个微通道换热管,微通道换热管与第一管1直接连接或间接连接,微通道换热管与第二管5直接连接或间接连接;至少部分第一件2位于第一腔12内,第一件2包括第二管壁21,第一件2具有第二腔22,围绕第二腔22的壁包括第二管壁21。其中,直接连接是指一个管件不通过中间管件与另一个管件连接,即两者之间不存在中间管件,间接连接是指一个管件通过中间管件与另一个管件连接,即两者之间存在并连接有中间管件。
第二腔22沿第一管1的长度方向延伸,第二腔22包括第一子腔221和第二子腔222,第一子腔221和第一腔12间接连通,第二子腔222和第一腔12直接连通,第一子腔221和第二子腔222直接连通或间接连通。其中,直接连通是指液体或气体从一个腔室的出口流出后直接流入另一个腔室内;间接连通是指液体或气体从一个腔室的出口流出后需流经其他腔室或管路等结构后再流入另一个腔室内。
微通道换热器100还包括进出口管6。进出口管6与第一管1直接连接或间接连接;和/或,进出口管6与第二管5直接连接或间接连接。该进出口管6具有与第一子腔221直接连通或间接连通的进出口通道。
该进出口管6用于向微通道换热器100中注入换热介质,当需要向微通道换热器100注入换热介质时,换热介质依次经进出口通道、第一子腔221、第二子腔222、第一腔12和微通道换热管上的多个通道,从而实现换热介质与外界介质(如空气)的热量交换。
通过将第一件2中的第二腔22分隔为第一子腔221和第二子腔222,加长了 换热介质在第一件2中的流程长度,从而使得换热介质沿第一件2的长度方向分布均匀后再流入第一腔12内,有利于换热介质在换热管中的分配;同时,由于加长了换热介质在第一件2中的流程长度,还可以使得换热介质在第二腔22内流动的过程中得到充分混合,进而使得换热介质沿第一件2的长度方向的温度分配均匀,提升了微通道换热器100的换热效率。此外,较现有的分配部件在其外周壁上开设通孔或通槽的方式而言,还可以有效地降低现有的分配部件的生产难度,并降低了经济和时间成本。
请继续参照图2至图4,在一些实施例中,第一件2包括第一孔道23和第二孔道24,第一孔道23连通第一子腔221和第二子腔222,第二孔道24连通第一腔12和第二子腔222,至少部分第一孔道23和至少部分第二孔道24沿第一管1的长度方向(即第一方向D1)延伸。在垂直于第一管1的长度方向(即第一方向D1)的第一平面内,第二管壁21的投影包括至少部分螺旋形线,第二子腔222的投影包括多个圆环。换热介质在第二子腔222内可沿螺旋形线流动,从而加长了换热介质在第一件2中的流程长度,该螺旋线的螺旋圈数越多,换热介质沿第一件2的长度方向分布越均匀。
具体地,第一件2可以为由板材沿圆周方向卷绕形成的中空筒体结构,而无需额外开设通孔或通槽,提升了生产效率。该中空筒体结构位于中部的中空通道形成第一子腔221,沿中空筒体结构围绕其轴线方向呈螺旋状的间隙形成第二子腔222,第一子腔221和第二子腔222直接连通。
请继续参照图5和图6,在一些实施例中,第二管壁21包括第一子壁211和第二子壁212,第一子壁211和第二子壁212在第一管1的长度方向上延伸,第一子壁211和第二子壁212具有厚度。第一子壁211具有第一通道25,第一通道25连通第一子腔221和第二子腔222。第二子壁212具有第二通道26,第二通道26连通第二子腔222和第一腔12。在垂直于第一管1的长度方向上的第一平面内,第一子壁211的投影包括第一圆弧,第二子壁212的投影包括多个第二圆弧,至少一个第二圆弧的周长大于第一圆弧的周长,任意一个第二圆弧包括至少一个第二通道26的投影。
具体地,第二子壁212套设于第一子壁211沿其径向方向的外周,且第二子壁212包括沿第一件2的径向间隔分布的多个第三子壁2121,任意一个第三子壁 2121上设有第二通道。其中,沿第一件2的径向方向,位于最外侧的第三子壁2121(即最靠近第一子壁211的第三子壁2121)围绕形成第二子腔222,而其余的第三子壁2121分别围绕形成第三子腔223,第一子腔221通过一个或多个第三子腔223与第二子腔222连通。换热介质依次流经第一子腔221、第三子腔223、第二子腔222和第一腔12,而加长了换热介质在第一件2中的流程长度。
第三子壁2121的数量可以为一个、两个、三个或其他任意数量,第三子壁2121的数量越多,换热介质沿第一件2的长度方向分布越均匀,在此不作限定。例如,第三子壁2121的数量可以为一个,第一子腔221与第二子腔222直接连通;第三子壁2121的数量可以为两个,第一子腔221通过一个第三子腔223与第二子腔222连通;第三子壁2121的数量可以为三个,第一子腔221可以依次经过两个第三子腔223与第二子腔222连通。
可以理解的是,第一件2可以呈现多层套管结构,从而将第二子腔222被分隔为多个子腔室,简化了第一件2的生产工艺。
在第一平面内,第二子壁212的投影包括至少三个第二圆弧,第二圆弧包括一个或者多个半径,一个第二圆弧的至少一个半径与另一个第二圆弧的至少一个半径不同。在第一管1的径向方向上,两两相邻的第二圆弧之间的半径数值的最大差值与其中任意一个第二圆弧到第一圆弧的距离成反比。
具体地,第二圆弧可以为一个规则的圆弧,即第三子壁2121围绕形成圆管状结构;第二圆弧也可以包括多个不同半径的圆弧段,即第三子壁2121围绕形成不规则的管状结构。沿第一件2的径向远离第一子壁211方向,相邻的两个第三子壁2121之间形成的间隙的最大宽度与其中位于内侧的第三子壁2121或位于外侧的第三子壁2121到第一子壁211的距离成反比。这样就使得第一件2更适应于换热介质在流动的过程中的状态变化,有利于换热性能的提高。
可以理解的是,两两相邻的第二圆弧之间的半径数值的最大差值也可以不与其中任意一个第二圆弧到第一圆弧的距离成比例关系,只要使得沿第一件2的径向远离第一子壁211的方向,两两相邻的第二圆弧之间的半径数值的最大差值逐渐递减即可。
请参照图7至图9,在一些实施例中,第一通道25和/或第二通道26可以包括间隔设置的多个通孔。
具体地,第一子壁211包括一个或多个第一通孔251,第一通孔251贯穿第一子壁211,第一通孔251连通第一子腔221和第二子腔222。第二子壁212包括多个第二通孔,第二通孔贯穿第二子壁212,至少部分第二通孔连通第二子腔222和第一腔12,第一通孔251与第二通孔间接连通。
请继续参照图7,在一些实施例中,第一通道25包括沿第一件2的长度方向(第一方向D1)间隔设置于第一子壁211上的多个第一通孔251。
请继续参照图8,在一些实施例中,第一通道25包括至少两排平行设置的通孔组,任意一排通孔组包括沿第一件2的长度方向(第一方向D1)间隔设置于第一子壁211上的多个第一通孔251。相邻两排通孔组中的第一通孔251的孔径大小可以相同或不同,在此不作限定。
请继续参照图9,在一些实施例中,第一通道25包括沿第一件2的轴线L成螺旋状设置于第一子壁211上的多个第一通孔251。其中,轴线L沿第一件2的长度方向(第一方向D1)延伸。
类似地,第二通道26也包括沿第一件2的长度方向(第一方向D1)间隔设置于第二子壁212上的多个第二通孔;或者,第二通道26也包括至少两排平行设置的通孔组,任意一排通孔组包括沿第一件2的长度方向(第一方向D1)间隔设置于第二子壁212上的多个第二通孔;或者,第二通道26也包括沿第一件2的轴线L成螺旋状设置于第二子壁212上的多个第二通孔。
在第一平面内,至少一个第一通孔251的投影中心和至少一个第二通孔的投影中心共线。
具体地,位于最内侧的第三子壁2121上开设的第二通孔与第一子壁211上开设的第一通孔251之间呈180°角度设置,且相邻的两个第三子壁2121上开设的第二通孔之间也呈180°角度设置。这样就使得自第一通孔251流出并分散为两股的换热介质分别流经相同长度的流程长度,然后同时汇集至第二通孔处,进一步地确保换热介质沿第一件2的长度方向分布均匀后再经第二通孔流入第一腔12内。
第一子壁211具有的第一通孔251的数量小于第二子壁212具有的第二通孔的数量;和/或,第一通孔251的流通面积之和小于第二通孔的流通面积之和。
具体地,第一子壁211上开设的第一通孔251的数量小于位于最内侧的第三子壁2121上开设的第二通孔的数量,且沿第一件2的径向远离第一子壁211的方 向,位于内侧的第三子壁2121上开设的第二通孔的数量小于位于外侧的第三子壁2121上开设的第二通孔的数量;或,第一子壁211上开设的第一通孔251的流通面积之和小于位于最内侧的第三子壁2121上开设的第二通孔的流通面积之和,且沿第一件2的径向远离第一子壁211的方向,位于内侧的第三子壁2121上开设的第二通孔的流通面积之和小于位于外侧的第三子壁2121上开设的第二通孔的流通面积之和。这样就使得当换热介质自第二通孔流入第一腔12时,不仅可以加速换热介质自第二通孔流出第二子腔222,从而避免了换热介质在第一件2内的堆积,进而减少了换热介质的充注量,而且还有利于减少位于相邻的两个第二通孔之间的多个换热管3上的换热介质分配差异。
请参照图10,在一些实施例中,第一通道25和/或第二通道26还可以为沿第一件2的长度方向(第一方向D1)设置的长槽,从而取代开设第一通孔251或第二通孔,可以简化第一件2的生产工艺,进而提升生产效率。
第一子壁211上开设的第一长槽252的流通面积小于位于最内侧的第三子壁2121上开设的第二长槽的流通面积,且沿第一件2的径向远离第一子壁211的方向,位于内侧的第三子壁2121上开设的第二长槽的流通面积小于位于外侧的第三子壁2121上开设的第二长槽的流通面积。这样就使得当换热介质自第二通道26流入第一腔12时,可以加速换热介质自第二通道26流出第二子腔222,从而避免了换热介质在第一件2内的堆积,进而减少了换热介质的充注量。
可以理解的是,第一子壁211上开设的第一通道25可以为第一长槽252,部分或全部第三子壁2121上开设的第二通道26也可以为第二长槽;或者,第一子壁211上开设有的第一通道25为第一长槽252,部分或全部第三子壁2121上开设的第二通道26可以为多个第二通孔;或者,第一子壁211上开设的第一通道25可以为多个第一通孔251,部分或全部第三子壁2121上开设的第二通道26可以为第二长槽;或者,第一子壁211上开设的第一通道25可以为多个第一通孔251,部分或全部第三子壁2121上开设的第二通道26可以为第二通孔。
请参照图11,在一些实施例中,在第一平面内,第二子壁212的投影包括一个第二圆弧,第二圆弧包括多个第二通孔261的投影,且第二通孔261的数量大于第一通孔251的数量。
具体地,第二子壁212套设于第一子壁211沿其径向方向的外周,以使第一 件2呈现内外两层套管结构,有利于确保换热介质沿第一件2的长度方向分布均匀后再分配至各个换热管3,从而减少了多个换热管3上的换热介质分配差异。
第一通孔251的数量比第二通孔261的数量的比值小于或等于1/2。这样使得换热介质沿第一件2的长度方向分布均匀后流入第一管1内,同时还有利于减少各个换热管3上的换热介质分配差异。
具体地,第一通孔251的数量比第二通孔261的数量的比值可以为1/2、1/3、1/4、1/5等其他任意数值,只要使得第二通孔261的数量大于第一通孔251的数量即可,在此不作限定。在本申请实施例中,第一通孔251的数量比第二通孔261的数量的比值可以为1/2。
请参照图12和图13,在一些实施例中,在第一平面内,第二子壁212的投影包括两个第二圆弧,其中,在第一管1的径向方向上,靠近第一圆弧的一个第二圆弧包括多个第二通孔(图中未示出)的投影,且第二通孔的数量大于第一通孔251的数量,远离第一圆弧的另一个第二圆弧包括至少一个长槽262的投影。
具体地,第二子壁212套设于第一子壁211沿其径向方向的外周,且第二子壁212包括沿第一件2的径向间隔分布的两个第三子壁2121,以使第一件2呈现内外三层套管结构,其中,位于最内侧的第三子壁2121上开设有多个第二通孔,位于最外侧的第三子壁上开设有至少一个长槽262。
位于最内侧的第三子壁2121上开设的第二通孔及第一子壁211上开设的第一通孔251,不仅有利于确保换热介质沿第一件2的长度方向分布均匀后再分配至各个换热管3,还有利于气液两相换热介质的混合,从而进一步地提高了换热介质在多个换热管3的分配均匀性。第一通孔251的数量比第二通孔的数量的比值与前述实施例中的相同,在此不再赘述。
此外,位于最外侧的第三子壁2121上开设有长槽262,有利于减少换热介质在流动过程中的阻力,减小对换热介质侧压力的影响,有利于提高换热性能;同时,由于长槽262的流通面积较大,其还有利于减少多个换热管3上的换热介质分配差异。
第二方面,本申请实施例还提供了另一种微通道换热器,也能够有效地降低现有的微通道换热器中设置的分配管的生产难度以降低经济和时间成本。
请参照图14至图17,微通道换热器100包括第一组件4和至少一个换热管3, 第一组件4与换热管3直接连接或间接连接。其中,换热管3具有沿其长度方向延伸的多个通道;第一组件4包括第一管壁41,第一组件4具有第一腔43,围绕第一腔43的壁包括第一管壁41,第一组件4还包括第一板42a和第二板42b,第一板42a和第二板42b沿第一组件4的长度方向延伸,至少部分第一板42a和至少部分第二板42b位于第一腔43内,第一板42a和第二板42b沿第一组件4的宽度方向或高度方向设置,第一板42a与第一管壁41的内壁连接,第二板42b与第一管壁41的内壁连接。
第一腔43包括第一子腔431、第二子腔432和第三子腔433,第三子腔433和换热管3的多个通道直接连通。第一板42a包括第一通道44,第二板42b包括第二通道45,第一通道44连通第一子腔431和第二子腔432,第二通道45连通第二子腔432和第三子腔433,第一通道44和第二通道45间接连通。
微通道换热器100还包括第二组件7,第二组件7与第一组件4并列设置,第二组件7与第一组件4的结构可以相同或不同。
微通道换热器100还包括进出口管8,进出口管8与第一组件4直接连接或间接连接,且该进出口管8具有与第一子腔431直接连通或间接连通的进出口通道;和/或,进出口管8与第二组件7直接连接或间接连接。
该进出口管8用于向微通道换热器100中注入换热介质,当需要向微通道换热器100注入换热介质时,换热介质依次经进出口通道、第一子腔431、第二子腔432、第三子腔433和换热管3上的多个通道流入换热管3内,从而实现换热介质与外界介质(如空气)的热量交换。
通过在第一腔43内设置第一板42a和第二板42b,可以将第一腔43分隔为第一子腔431、第二子腔432和第三子腔433,加长了换热介质在第一组件4中的流程长度,从而使得换热介质沿第一组件4的长度方向分布均匀后再流入换热管3的多个通道内,有利于换热介质在换热管3中的分配;同时,由于加长了换热介质在第一组件4中的流程长度,还可以使得换热介质在第一腔43内流动的过程中得到充分混合,进而使得换热介质沿第一组件4的长度方向的温度分配均匀,提升了微通道换热器100的换热效率。此外,较现有的分配部件在其外周壁上开设通孔或通槽的方式而言,还可以有效地降低现有的分配部件的生产难度,并降低了经济和时间成本。
第一管壁41包括沿第一组件4的宽度方向(第二方向D2)相对设置的第一子壁411和第二子壁412、沿第一组件4的高度方向(第三方向D3)相对设置的第三子壁413和第四子壁414、以及沿第一组件4的长度方向(第一方向D1)相对设置的第五侧壁(图中未示出)和第六侧壁(图中未示出)。
请继续参照图15,在一些实施例中,第一板42a和第二板42b沿第一组件4的高度方向(第三方向D3)间隔设于第一腔43内,以将第一腔43沿第一组件4的高度方向(第三方向D3)依次分隔为第一子腔431、第二子腔432和第三子腔433。
具体地,第一板42a和第二板42b分别可以与第一子壁411、第二子壁412、第五子壁或第六子壁中的任意三个子壁连接,第一子壁411、第二子壁412、第五子壁或第六子壁中未与第一板42a连接的子壁与第一板42a之间的间隙形成第一通道44,第一子壁411、第二子壁412、第五子壁或第六子壁中未与第二板42b连接的子壁与第二板42b之间的间隙形成第二通道45。
第一腔43内还设有至少一个第三板42c,任意一个第三板42c位于第一板42a和第二板42b之间,以将第二子腔432沿第一组件4的高度方向(第三方向D3)分隔为多个子腔室,且任意一个第三板42c可以与第一子壁411、第二子壁412、第五子壁或第六子壁中的任意三个子壁连接,第一子壁411、第二子壁412、第五子壁或第六子壁中未与第三板42c连接的子壁与第三板42c之间的间隙形成第三通道46,以连通第二子腔432中的各个子腔室。
第三板42c的数量可以为一个、两个、三个或其他任意数量,第三板42c的数量越多,其分隔第二子腔432形成的子腔室越多,换热介质在第二子腔432内的迂回流动次数越多,使得换热介质沿第一组件4的长度方向(第一方向D1)的分布越均匀,在此不作限定。
当第三板42c的数量为一个时,在垂直于第一组件4的高度方向(第三方向D3)的第二平面内,第一板42a与第一管壁41之间形成的第一通道44的投影与该第三板42c与第一管壁41之间形成的第三通道46的投影不重合并呈180°角度设置,同时第二板42b与第一管壁41之间形成的第二通道45的投影也与该第三板42c与第一管壁41之间形成的第三通道46的投影不重合并呈180°角度设置。
当第三板42c的数量为多个时,在垂直于第一组件4的高度方向(第三方向 D3)的第二平面内,第一板42a与第一管壁41之间形成的第一通道44的投影与位于最下侧的第三板42c与第一管壁41之间形成的第三通道46的投影不重合并呈180°角度设置,相邻的两个第三板42c与第一管壁41之间形成的第三通道46的投影也不重合并呈180°角度设置,同时第二板42b与第一管壁41之间形成的第二通道45的投影与位于最上侧的第三板42c与第一管壁41之间形成的第三通道46的投影不重合并呈180°角度设置。
请继续参照图16,在一些实施例中,第一板42a和第二板42b沿第一组件4的宽度方向(第二方向D2)间隔设于第一腔43内,以将第一腔43沿第一组件4的宽度方向(第二方向D2)依次分隔为第一子腔431、第二子腔432和第三子腔433。
具体地,第一板42a和第二板42b分别可以与第三子壁413、第四子壁414、第五子壁或第六子壁中的任意三个子壁连接,第三子壁413、第四子壁414、第五子壁或第六子壁中未与第一板42a连接的子壁与第一板42a之间形成的间隙形成第一通道44,第三子壁413、第四子壁414、第五子壁或第六子壁中未与第二板42b连接的子壁与第二板42b之间的间隙形成第二通道45。
第一腔43内还设有至少一个第三板42c,任意一个第三板42c位于第一板42a和第二板42b之间,以将第二子腔432沿第一组件4的宽度方向(第二方向D2)分隔为多个子腔室,且任意一个第三板42c可以与第三子壁413、第四子壁414、第五子壁或第六子壁中的任意三个子壁连接,第三子壁413、第四子壁414、第五子壁或第六子壁中未与第三板42c连接的子壁与第三板42c之间的间隙形成第三通道46。
第三板42c的数量可以为一个、两个、三个或其他任意数量,第三板42c的数量越多,其分隔第二子腔432形成的子腔室越多,换热介质在第二子腔432内的迂回流动次数越多,使得换热介质沿第一组件4的长度方向(第一方向D1)的分布越均匀,在此不作限定。
当第三板42c的数量为一个时,在垂直于第一组件4的宽度方向(第二方向D2)的第三平面内,第一板42a与第一管壁41之间形成的第一通道44的投影与该第三板42c与第一管壁41之间形成的第三通道46的投影不重合并呈180°角度设置,同时第二板42b与第一管壁41之间形成的第二通道45的投影也与该第三 板42c与第一管壁41之间形成的第三通道46的投影不重合并呈180°角度设置。
当第三板42c的数量为多个时,在垂直于第一组件4的宽度方向(第二方向D2)的第三平面内,第一板42a与第一管壁41之间形成的第一通道44的投影与位于最右侧的第三板42c与第一管壁41之间形成的第三通道46的投影不重合并呈180°角度设置,相邻的两个第三板42c与第一管壁41之间形成的第三通道46的投影也不重合并呈180°角度设置,同时第二板42b与第一管壁41之间形成的第二通道45的投影与位于最左侧的第三板42c与第一管壁41之间形成的第三通道46的投影不重合并呈180°角度设置。
第一板42a、第二板42b及第三板42c沿第一组件4的宽度方向(第二方向D2)间隔设置,相较于第一板42a、第二板42b及第三板42c沿第一组件4的高度方向(第三方向D3)间隔设置而言,可以减小第一组件4的高度尺寸,从而使得微通道换热器100适应于高度较小的安装空间。
请继续参照图17,在一些实施例中,第一板42a和第二板42b沿第一组件4的高度方向(第三方向D3)间隔设于第一腔43内,以将第一腔43沿第一组件4的高度方向(第三方向D3)依次分隔为第一子腔431、第二子腔432和第三子腔433。第一板42a和第二板42b分别可以第一子壁411、第二子壁412、第五子壁及第六子壁连接,第一板42a上设有连通第一子腔431和第二子腔432的第一通道44,第二板42b上设有连通第二子腔432和第三子腔433的第二通道45。
第一腔43内还设有至少一个第三板42c,任意一个第三板42c位于第一板42a和第二板42b之间,以将第二子腔432沿第一组件4的高度方向(第三方向D3)分隔为多个子腔室,且任意一个第三板42c可以与第一子壁411、第二子壁412、第五子壁及第六子壁连接,第三板42c上设有连通第二子腔432中的各个子腔室的第三通道46。
第三板42c的数量可以为一个、两个、三个或其他任意数量,第三板42c的数量越多,其分隔第二子腔432形成的子腔室越多,换热介质在第二子腔432内的迂回流动次数越多,使得换热介质沿第一组件4的长度方向(第一方向D1)的分布越均匀,在此不作限定。
当第三板42c的数量为一个时,在垂直于第一组件4的高度方向(第三方向D3)的第二平面内,第一板42a上设有的第一通道44的投影与第三板42c上设有 的第三通道46的投影不重合并呈180°角度设置,同时第二板42b上设有的第二通道45的投影也与第三板42c上设有的的第三通道46的投影不重合并呈180°角度设置。
当第三板42c的数量为多个时,在垂直于第一组件4的高度方向(第三方向D3)的第二平面内,第一板42a上设有的第一通道44的投影与位于最下侧的第三板42c上设有的第三通道46的投影不重合并呈180°角度设置,相邻的两个第三板42c上设有的第三通道46的投影也不重合并呈180°角度设置,同时第二板42b上设有的第二通道45的投影与位于最上侧的第三板42c上设有的第三通道46的投影不重合并呈180°角度设置。
可以理解的是,第一板42a、第二板42b及第三板42c也可以沿第一组件4的宽度方向(第二方向D2)间隔设置,第一板42a、第二板42b及第三板42c分别可以第三子壁413、第四子壁414、第五子壁及第六子壁连接,以减小第一组件4的高度尺寸,从而使得微通道换热器100适应于高度较小的安装空间。
第一通道44包括通孔或长槽;和/或,第二通道45包括通孔或长槽,有利于简化第一通道44和/或第二通道45的结构,降低了生产工艺的难度,从而提升了生产效率。
请参照图18,在一些实施例中,第一通道44和第二通道45可以包括沿第一组件4的长度方向(第一方向D1)间隔设置的多个通孔。
具体地,第一板42a上设有的通孔的数目小于第二板42b上设有的通孔的数目;和/或,第一板42a上设有的通孔的流通面积之和小于第二板42b上设有的通孔的流通面积之和。这样就可以使得第一通道44的流通面积之和小于第二通道45流通的面积之和,从而可以加速第二子腔432内的换热介质自第二通道45流入第三子腔433内,并最终流入换热管3的多个通道内,从而避免了换热介质在第一组件4内的堆积,进而减少了换热介质的充注量。
请参照图19,在一些实施例中,第一通道44和第二通道45还可以为沿第一组件4的长度方向(第一方向D1)设置的长槽,从而取代开设的通孔,可以简化第一组件4的生产工艺,进而提升生产效率。
第一板42a上开设的长槽的流通面积小于第二板42b上开设的长槽的流通面积,这样就使得当换热介质自第二通道45流入第一腔43时,可以加速换热介质 自第二通道45流出第二子腔432,从而避免了换热介质在第一件内的堆积,进而减少了换热介质的充注量。
可以理解的是,第一板42a上开设的第一通道44可以为长槽,第二板42b上开设的第二通道45也可以为长槽;或者,第一板42a上开设有的第一通道44为长槽,第二板42b上开设的第二通道45可以为多个通孔;或者,第一板42a上开设的第一通道44可以为多个通孔,第二板42b上开设的第二通道45可以为长槽;或者,第一板42a上开设的第一通道44可以为多个通孔,第二板42b上开设的第二通道45也可以为多个通孔。
第一通道44的流通面积之和小于第二通道45流通的面积之和。这样的结构设计可以加速第二子腔432内的换热介质自第二通道45流入第三子腔433内,并最终流入换热管3的多个通道内,从而避免了换热介质在第一组件4内的堆积,进而减少了换热介质的充注量。
第三通道46可以包括多个沿第一组件4的长度方向(第一方向D1)间隔设置的多个通孔;或者,第三通道46也可以为沿第一组件4的长度方向(第一方向D1)设置的长槽。示例性地,沿第一组件4的高度方向(第三方向D3),在相邻的两个第三板42c中,位于上侧的第三板42c上开设的第三通道46的流通面积大于位于下侧的第三板42c上开设的第三通道46的流通面积,且任意一个第三板42c上开设的第三通道46的流通面积介于第一板42a上开设的第一通道44的流通面积与第二板42b上开设的第二通道45的流通面积之间。
第三方面,本申请实施例还提供了一种换热***,包括压缩机、节流组件(如节流阀)和换热器,所述换热器包括前述的微通道换热器100,使用该微通道换热器100的换热***,有利提升换热***的换热性能。
本申请实施例公开的微通道换热器100可以但不限于用于车用空调、家用空调、工业用空调等换热***。
由于微通道换热器100的第一件2或第一组件4可以加长换热介质的流程长度,使得换热介质沿第一件2或第一组件4的长度方向分布均匀。因此采用该微通道换热器100的换热***可以减少换热介质在多个换热管3上的分配差异,提升了换热***的换热效率。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明 的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (14)

  1. 一种微通道换热器,其特征在于,包括:
    第一管,所述第一管包括第一管壁,所述第一管具有第一腔,围绕所述第一腔的壁包括所述第一管壁;
    第二管,所述第二管与所述第一管并列设置;
    换热管,所述换热管包括微通道换热管,所述微通道换热管与所述第一管直接连接或间接连接,所述微通道换热管与所述第二管直接连接或间接连接;
    第一件,至少部分所述第一件位于所述第一腔内,所述第一件包括第二管壁,所述第一件具有第二腔,围绕所述第二腔的壁包括所述第二管壁,所述第二腔沿所述第一管的长度方向延伸,所述第二腔包括第一子腔和第二子腔,所述第一子腔和所述第一腔间接连通,所述第二子腔和所述第一腔直接连通,所述第一子腔和所述第二子腔直接连通或间接连通。
  2. 根据权利要求1所述的微通道换热器,其特征在于,所述第一件包括第一孔道和第二孔道,所述第一孔道连通所述第一子腔和所述第二子腔,所述第二孔道连通所述第一腔和所述第二子腔,至少部分所述第一孔道和至少部分所述第二孔道沿所述第一管的长度方向延伸;
    在垂直于所述第一管的长度方向的第一平面内,所述第二管壁的投影包括至少部分螺旋形线,所述第二子腔的投影包括多个圆环。
  3. 根据权利要求1所述的微通道换热器,其特征在于,所述第二管壁包括第一子壁和第二子壁,所述第一子壁和所述第二子壁在所述第一管的长度方向上延伸,所述第一子壁和所述第二子壁具有厚度;
    所述第一子壁包括一个或多个第一通孔,所述第一通孔贯穿所述第一子壁,所述第一通孔连通所述第一子腔和所述第二子腔;
    所述第二子壁包括多个第二通孔,所述第二通孔贯穿所述第二子壁,至少部分所述第二通孔连通所述第二子腔和所述第一腔,所述第一通孔与所述第二通孔间接连通;
    在垂直于所述第一管的长度方向上的第一平面内,所述第一子壁的投影包括第一圆弧,所述第二子壁的投影包括一个或多个第二圆弧,至少一个所述第二圆弧的周长大于所述第一圆弧的周长。
  4. 根据权利要求1所述的微通道换热器,其特征在于,所述第二管壁包括第一子壁和第二子壁,所述第一子壁和所述第二子壁在所述第一管的长度方向上延伸,所述第一子壁和所述第二子壁具有厚度;
    所述第一子壁包括一个或多个第一通孔,所述第一通孔贯穿所述第一子壁,所述第一通孔连通所述第一子腔和所述第二子腔;
    所述第二子壁包括多个第二通孔,所述第二通孔贯穿所述第二子壁,至少部分所述第二通孔连通所述第二子腔和所述第一腔,所述第一通孔与所述第二通孔间接连通;
    在垂直于所述第一管的长度方向上的第一平面内,所述第一子壁的投影包括第一圆弧,所述第二子壁的投影包括多个第二圆弧,至少一个所述第二圆弧的周长大于所述第一圆弧的周长,任意一个所述第二圆弧包括至少一个所述第二通孔的投影。
  5. 根据权利要求3或4所述的微通道换热器,其特征在于,在所述第一平面内,至少一个所述第一通孔的投影中心和至少一个所述第二通孔的投影中心共线。
  6. 根据权利要求3-5任一项所述的微通道换热器,其特征在于,在所述第一平面内,所述第二子壁的投影包括至少三个所述第二圆弧,所述第二圆弧包括一个或者多个半径,一个所述第二圆弧的至少一个所述半径与另一个所述第二圆弧的至少一个所述半径不同;
    在所述第一管的径向方向上,两两相邻的所述第二圆弧之间的所述半径数值的最大差值与其中任意一个所述第二圆弧到所述第一圆弧的距离成反比。
  7. 根据权利要求3或4所述的微通道换热器,其特征在于,所述第一子壁具有的所述第一通孔的数量小于所述第二子壁具有的所述第二通孔的数量;
    和/或,所述第一通孔的流通面积之和小于所述第二通孔的流通面积之和。
  8. 根据权利要求3或4所述的微通道换热器,其特征在于,在所述第一平面内,所述第二子壁的投影包括一个所述第二圆弧,所述第二圆弧包括多个所述第二通孔的投影,且所述第二通孔的数量大于所述第一通孔的数量。
  9. 根据权利要求3或4所述的微通道换热器,其特征在于,在所述第一平面内,所述第二子壁的投影包括两个所述第二圆弧,其中,在所述第一管的径向方向上,靠近所述第一圆弧的一个所述第二圆弧包括多个所述第二通孔的投影,且所述第二通孔的数量大于所述第一通孔的数量,远离所述第一圆弧的另一个所述第二圆弧包括至少一个长槽的投影。
  10. 根据权利要求8或9所述的微通道换热器,其特征在于,所述第一通孔的数量比所述第二通孔的数量的比值小于或等于1/2。
  11. 一种微通道换热器,其特征在于,包括:
    换热管,所述换热管具有沿其长度方向延伸的多个通道;
    第一组件,所述第一组件与所述换热管直接连接或间接连接,所述第一组件包括第一管壁,所述第一组件具有第一腔,围绕所述第一腔的壁包括所述第一管壁,所述第一组件 还包括第一板和第二板,所述第一板和所述第二板沿所述第一组件的长度方向延伸,至少部分所述第一板和至少部分所述第二板位于所述第一腔内,所述第一板和所述第二板沿所述第一组件的宽度方向或高度方向设置,所述第一板与所述第一管壁的内壁连接,所述第二板与所述第一管壁的内壁连接,所述第一腔包括第一子腔、第二子腔和第三子腔,所述第三子腔和所述换热管的多个通道直接连通;
    所述第一板包括第一通道,所述第二板包括第二通道,所述第一通道连通所述第一子腔和所述第二子腔,所述第二通道连通所述第二子腔和所述第三子腔,所述第一通道与所述第二通道间接连通。
  12. 根据权利要求11所述的微通道换热器,其特征在于,所述第一通道的流通面积之和小于所述第二通道流通的面积之和。
  13. 根据权利要求11或12所述的微通道换热器,其特征在于,所述第一通道包括通孔或长槽;和/或,所述第二通道包括通孔或长槽。
  14. 一种换热***,其特征在于,包括压缩机、节流组件和换热器,所述换热器包括如权利要求1-13中任一项所述的微通道换热器。
PCT/CN2022/139073 2021-12-31 2022-12-14 微通道换热器及换热*** WO2023125014A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111669294.3A CN116412695A (zh) 2021-12-31 2021-12-31 平行流换热器及换热***
CN202123453248.8 2021-12-31
CN202123453248.8U CN216668363U (zh) 2021-12-31 2021-12-31 微通道换热器及换热***
CN202111669294.3 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023125014A1 true WO2023125014A1 (zh) 2023-07-06

Family

ID=86997634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139073 WO2023125014A1 (zh) 2021-12-31 2022-12-14 微通道换热器及换热***

Country Status (1)

Country Link
WO (1) WO2023125014A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041876A (ja) * 2007-08-10 2009-02-26 Gac Corp 熱交換器
JP2011085324A (ja) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置
CN203132412U (zh) * 2013-03-19 2013-08-14 杭州三花微通道换热器有限公司 换热器及其分配组件
CN103673729A (zh) * 2013-12-03 2014-03-26 上海热泰能源技术有限公司 迷宫式分配器
CN103776206A (zh) * 2012-10-22 2014-05-07 浙江盾安人工环境股份有限公司 一种制冷剂分配器
CN104048548A (zh) * 2014-05-26 2014-09-17 杭州三花微通道换热器有限公司 可调节的制冷剂分配装置和具有它的换热器
CN203940771U (zh) * 2013-05-15 2014-11-12 三菱电机株式会社 层叠型集管、热交换器以及空调装置
CN105874297A (zh) * 2013-12-27 2016-08-17 大金工业株式会社 热交换器及空调装置
CN106123409A (zh) * 2016-08-22 2016-11-16 杭州三花微通道换热器有限公司 制冷剂分配装置和平行流换热器
FR3061280A1 (fr) * 2016-11-30 2018-06-29 Valeo Systemes Thermiques Dispositif de distribution d'un fluide refrigerant a l'interieur d'une boite collectrice d'un echangeur thermique pour une installation de conditionnement d'air d'un vehicule
US20200300515A1 (en) * 2017-06-09 2020-09-24 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
CN216668363U (zh) * 2021-12-31 2022-06-03 杭州三花微通道换热器有限公司 微通道换热器及换热***

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041876A (ja) * 2007-08-10 2009-02-26 Gac Corp 熱交換器
JP2011085324A (ja) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置
CN103776206A (zh) * 2012-10-22 2014-05-07 浙江盾安人工环境股份有限公司 一种制冷剂分配器
CN203132412U (zh) * 2013-03-19 2013-08-14 杭州三花微通道换热器有限公司 换热器及其分配组件
CN203940771U (zh) * 2013-05-15 2014-11-12 三菱电机株式会社 层叠型集管、热交换器以及空调装置
CN103673729A (zh) * 2013-12-03 2014-03-26 上海热泰能源技术有限公司 迷宫式分配器
CN105874297A (zh) * 2013-12-27 2016-08-17 大金工业株式会社 热交换器及空调装置
CN104048548A (zh) * 2014-05-26 2014-09-17 杭州三花微通道换热器有限公司 可调节的制冷剂分配装置和具有它的换热器
CN106123409A (zh) * 2016-08-22 2016-11-16 杭州三花微通道换热器有限公司 制冷剂分配装置和平行流换热器
FR3061280A1 (fr) * 2016-11-30 2018-06-29 Valeo Systemes Thermiques Dispositif de distribution d'un fluide refrigerant a l'interieur d'une boite collectrice d'un echangeur thermique pour une installation de conditionnement d'air d'un vehicule
US20200300515A1 (en) * 2017-06-09 2020-09-24 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
CN216668363U (zh) * 2021-12-31 2022-06-03 杭州三花微通道换热器有限公司 微通道换热器及换热***

Similar Documents

Publication Publication Date Title
JP4031761B2 (ja) 流れ分散撹拌器を有する熱交換器吸込み管
CN101568792B (zh) 用于分配的小通道换热器集管***件
US12044480B2 (en) Heat exchanger and air-conditioning apparatus including the same
US10228170B2 (en) Refrigerant distributor of micro-channel heat exchanger
US20110042049A1 (en) Parallel flow evaporator with spiral inlet manifold
CN105431704B (zh) 热交换器和流量分配器
US10168083B2 (en) Refrigeration system and heat exchanger thereof
WO2012034436A1 (zh) 制冷剂导管和具有该制冷剂导管的换热器
JPH04155194A (ja) 熱交換器
US20210285733A1 (en) Heat exchanger
US10907903B2 (en) Air conditioner with flow direction changing mechanism
JP2017133820A (ja) ヘッダ、及び、熱交換器
CN216668363U (zh) 微通道换热器及换热***
EP3314191B1 (en) Two phase distributor evaporator
US20220107146A1 (en) Heat exchanger and heat exchange system
KR20180082954A (ko) 냉매 회로 내의 열 전달을 위한 장치
WO2023125014A1 (zh) 微通道换热器及换热***
US10670348B2 (en) Heat exchanger
US20210278148A1 (en) Heat exchanger
KR102595179B1 (ko) 공기조화기
US11466939B2 (en) Header assembly for heat exchanger and heat exchanger
CN116412695A (zh) 平行流换热器及换热***
CN218511526U (zh) 一种冷凝器
CN112066598A (zh) 换热器及空调设备
CN215984131U (zh) 一种多股流螺旋板式换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914269

Country of ref document: EP

Kind code of ref document: A1