WO2023124710A1 - 一种聚丙烯材料及其制备方法 - Google Patents

一种聚丙烯材料及其制备方法 Download PDF

Info

Publication number
WO2023124710A1
WO2023124710A1 PCT/CN2022/135171 CN2022135171W WO2023124710A1 WO 2023124710 A1 WO2023124710 A1 WO 2023124710A1 CN 2022135171 W CN2022135171 W CN 2022135171W WO 2023124710 A1 WO2023124710 A1 WO 2023124710A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
fiber
polypropylene material
parts
plant fiber
Prior art date
Application number
PCT/CN2022/135171
Other languages
English (en)
French (fr)
Inventor
张栋玮
陈平绪
叶南飚
李晟
陶四平
Original Assignee
天津金发新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津金发新材料有限公司 filed Critical 天津金发新材料有限公司
Publication of WO2023124710A1 publication Critical patent/WO2023124710A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the invention relates to the technical field of polymer materials, in particular to a polypropylene material and a preparation method thereof.
  • Natural plant fiber composite material is a kind of composite material with natural plant fiber as reinforcement material and resin as matrix. Natural plant fiber has the advantages of cheap, recyclable, degradable, renewable, etc., and has the strength and stiffness of ordinary fibers, and has a small specific gravity, high specific strength and specific stiffness. Composite materials based on natural plant fibers also have excellent properties, such as low price, low density, good strength, and excellent thermal performance.
  • the plant fiber has strong hydrophilicity, the compatibility between the plant fiber and the hydrophobic polypropylene resin is very poor.
  • plant fibers when plant fibers are used to reinforce polypropylene resin to prepare composite materials, it is easy to form voids and defects on the composite interface, resulting in poor mechanical properties of composite materials.
  • the composites show obvious brittleness, and it is difficult to obtain composites with excellent rigidity.
  • natural fibers are processed to obtain natural fibers with rough surfaces, and then polar monomer graft polymers are used as compatibilizers to improve the interfacial bonding force between natural fibers and polypropylene.
  • the purpose of the present invention is to overcome the deficiencies of the prior art and provide a polypropylene material and its preparation method, in order to overcome the technical problems of poor compatibility and unbalanced mechanical properties of existing plant fibers and polypropylene composite materials.
  • the present invention provides a polypropylene material, comprising the following components in parts by weight: 50-90 parts of polypropylene resin, 10-50 parts of modified plant fiber;
  • the modified plant fiber is made of the following raw materials in parts by weight: 50-80 parts of plant fiber, 20-50 parts of POE elastomer, 0.5-2 parts of siloxane coupling agent, organic peroxide 0.1 ⁇ 1 part;
  • the melt index of the polypropylene resin is 5-60g/10min, and the test conditions are: 230°C, 2.16kg;
  • the average length of the plant fibers is 1-30mm;
  • the siloxane coupling agent is one or more of amino siloxane coupling agents or epoxy siloxane coupling agents;
  • the organic peroxide is one or more of alkyl peroxides or acyl peroxides.
  • some groups of organic peroxides are grafted on the surface of plant fibers through the peroxidation reaction of organic peroxides, while POE elastomers are oxidized to form free radicals, and plant fibers and POE elastomers form crosslinks.
  • One end of the siloxane coupling agent has a silane group, the silane group is hydrolyzed to form silanol, and the silanol further chemically reacts with the hydroxyl group in the plant fiber to form a stable covalent bond and reduce the surface of the plant fiber.
  • the number of hydroxyl groups; the other end of the siloxane coupling agent is a carbon functional group, which can react with the polypropylene resin or form a hydrogen bond, so that a crosslinked network is formed between the plant fiber and the polypropylene resin, thereby reducing the swelling of the plant fiber. Further improve the bonding stability between plant fiber and polypropylene resin, so that the modified plant fiber has better compatibility with polypropylene resin, and it is easier to disperse and be compatible after blending with polypropylene resin, thereby having Better and more balanced mechanical properties and surface appearance.
  • the melt index of the polypropylene resin is 16-50 g/10 min, and the test conditions are: 230° C., 2.16 kg.
  • the preferred polypropylene resin is more conducive to the uniform dispersion of plant fibers in the resin.
  • the plant fiber is at least one of flax fiber, sisal fiber, hemp fiber, jute fiber, kenaf fiber, ramie fiber and bamboo fiber.
  • the average length of the plant fibers is 2-10 mm.
  • the POE elastomer is at least one of ethylene-octene copolymer and ethylene-butene copolymer.
  • the organic peroxide is benzoyl peroxide, bis(tert-butylperoxyisopropyl)benzene, di-tert-butyl peroxide, decaperoxide At least one of diacyl and dicumyl peroxide.
  • the siloxane coupling agent is ⁇ -glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane , ⁇ -ureidopropyltriethoxysilane, ⁇ -(3,4 epoxycyclohexyl)-ethyltriethoxysilane at least one.
  • the present invention provides a method for preparing the above-mentioned polypropylene material, comprising the following steps:
  • the polypropylene and the modified plant fiber are weighed and mixed according to the parts by weight, melted, extruded, granulated, and dried to obtain the obtained product.
  • the preparation method of the modified plant fiber is: take the plant fiber, elastomer, siloxane coupling agent, and organic peroxide according to the weight parts and mix to obtain a premix; granulation, grading, cooling, extrusion granulation, and it is ready.
  • the present invention applies the above-mentioned polypropylene material to polypropylene modified materials for civil engineering, household appliances and vehicles.
  • the compatibility between the plant fiber and the polypropylene composite material is good, the polypropylene material has good rigidity and toughness, balanced mechanical properties, and excellent appearance. It is suitable for polypropylene modified materials used in civil engineering, household appliances and vehicles.
  • Figure 1 is a reference diagram of the first-class appearance floating fiber
  • Figure 2 is a reference diagram of the second-level appearance floating fiber
  • Figure 3 is a reference diagram of floating fiber with 3-level appearance
  • Figure 4 is a reference diagram of level 4 appearance floating fiber
  • Figure 5 is a reference diagram of the appearance of floating fibers of grade 5.
  • test methods used in the examples are conventional methods; the materials, reagents, etc. used, unless otherwise specified, can be obtained from commercial sources.
  • the flexural modulus is detected according to the standard "ISO 178:2001 Determination of Plastic Bending Properties”; the notched impact strength is detected with reference to the standard “ISO 180:2000 Determination of Plastic Izod Impact Strength”; the appearance grade is based on Floating fiber evaluation on the surface of the material, visual observation of the floating fiber condition on the surface, rating according to the whitening of the surface glass fiber, a total of 5 grades, the more * means the worse the floating fiber appearance, * (level 1) refer to Figure 1, ** (Level 2) refer to Figure 2, *** (Level 3) refer to Figure 3, **** (Level 4) refer to Figure 4, ***** (Level 5) refer to Figure 5.
  • Polypropylene resin 1 PP, EP548R, block copolymerized polypropylene, melt index is 30g/10min, purchased from Shell;
  • Polypropylene resin 2 PP, T30S, homopolypropylene, melt index is 3g/10min, purchased from Sinopec;
  • Polypropylene resin 3 PP, K9017, block copolymerized polypropylene, melt index is 16g/10min, purchased from Taihua;
  • Polypropylene resin 4 PP, BX3900, block copolymer polypropylene, melt index is 50g/10min, purchased from SK;
  • Polypropylene resin 5 PP, BX3920, block copolymerized polypropylene, melt index is 100g/10min, purchased from SK;
  • the melt mass flow rate of the above resin is tested under the condition of 230°C/2.16kg according to the standard ISO 1133:2005.
  • Plant fiber 1 jute fiber, the average fiber length is 2-10mm, purchased from Hedi Technology;
  • Plant fiber 2 sisal fiber, the average fiber length is 2-10 mm, purchased from Hedi Technology;
  • Plant fiber 3 bamboo fiber, the average fiber length is 2-10 mm, purchased from Hedi Technology;
  • Plant fiber 4 jute fiber, the average fiber length is 40-50 mm, purchased from Hedi Technology;
  • Plant fiber 5 jute fiber, the average fiber length is 0.1-0.5mm, purchased from Hedi Technology;
  • Elastomer 1 POE 7467, ethylene-butylene copolymer, available from Dow;
  • Elastomer 2 POE 8842, ethylene-octene copolymer, available from Dow;
  • Elastomer 3 SEBS 1657, hydrogenated styrene-butadiene block copolymer, purchased from Kraton, USA;
  • Coupling agent 1 ⁇ -glycidyl etheroxypropyl trimethoxysilane (epoxy siloxane coupling agent), Z-6040, purchased from Dow Corning Corporation of the United States;
  • Coupling agent 2 3-(2,3-glycidoxy)propyltrimethoxysilane (epoxy siloxane coupling agent), A-187, purchased from Momentive;
  • Coupling agent 3 ⁇ -ureidopropyltriethoxysilane (amino siloxane coupling agent), A-1160, purchased from Momentive;
  • Coupling agent 4 bis( ⁇ -triethoxysilylpropyl) tetrasulfide, Z-6940, purchased from Dow Corning, USA;
  • Organic peroxide 1 benzoyl peroxide, purchased from sigma-aldrich;
  • Organic peroxide 2 dicumyl peroxide, available from sigma-aldrich;
  • Organic peroxide 3 lauryl peroxide, purchased from sigma-aldrich;
  • Organic peroxide 4 Dicarbonate peroxydicarbonate (liquid, low in active oxygen), purchased from sigma-aldrich.
  • composition of the modified plant fiber is shown in Table 1.
  • the preparation method of modified plant fiber is:
  • the preparation method of polypropylene material is:
  • the conditions of the melting extrusion step are: the temperature of the first zone is 80-120°C, the temperature of the second zone is 190-210°C, the temperature of the third zone is 210-230°C, the temperature of the fourth zone is 210-230°C, and the temperature of the fifth zone is 210-230°C. °C, the temperature in the sixth zone is 210-230 °C, the temperature in the seventh zone is 210-230 °C, the temperature in the eighth zone is 210-230 °C, the temperature in the ninth zone is 210-230 °C, the speed of the main engine is 250-600 rpm; the length of the twin-screw extruder The diameter ratio is 40:1.
  • the polypropylene materials in Examples 1-12 have good rigidity and toughness, balanced mechanical properties, and excellent appearance. It is suitable for polypropylene modified materials used in civil engineering, household appliances and vehicles.
  • the coupling agent in the modified plant fiber used is bis( ⁇ -triethoxysilylpropyl)tetrasulfide, and the prepared polypropylene Although the mechanical properties of the material are balanced, there are many floating fibers in the appearance.
  • the organic peroxide in the modified plant fiber used was diester peroxydicarbonate, and although the mechanical properties of the prepared polypropylene material were balanced, the appearance was blunt. Fiber is more.
  • the elastic body of the modified plant fiber used is SEBS. Although the mechanical properties of the prepared polypropylene material are balanced, there are more floating fibers in appearance.
  • the average fiber length of the plant fiber in the modified plant fiber used is 40-50mm, and although the mechanical properties of the prepared polypropylene material are balanced, the appearance is floating and fibrous. More; in the polypropylene material of comparative example 11, the average length of the plant fiber in the modified plant fiber used is 0.1-0.5mm, although the obtained polypropylene material basically has no floating fiber in appearance, it has poor rigidity and toughness. Well, the mechanical properties are uneven.
  • Example 1 Compared with Example 1, among the polypropylene materials of Comparative Example 12 and Comparative Example 13, the melt indices of the polypropylene resins used were respectively 3g/10min and 100g/10min, although the obtained polypropylene materials had good rigidity, but The toughness is poor, and there are many floating fibers in the appearance.
  • the unmodified jute fiber was used, and the obtained polypropylene material had poor rigidity, poor toughness, and more floating fibers in appearance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明属于聚丙烯塑料技术领域,公开了一种聚丙烯材料及其制备方法,以期克服现有植物纤维与聚丙烯复合材料相容性不好、力学性能不均衡的技术问题。本发明的聚丙烯材料包括:聚丙烯树脂,改性植物纤维;所述改性植物纤维包括:植物纤维,POE弹性体,硅氧烷偶联剂,有机过氧化物。本发明另提供了聚丙烯材料的制备方法,并将该聚丙烯材料应用于土木建筑、家用电器和车用聚丙烯改性材料中。本发明的聚丙烯材料中植物纤维与聚丙烯复合材料相容性好,聚丙烯材料的刚性和韧性好,力学性能均衡;且外观优良。

Description

一种聚丙烯材料及其制备方法 技术领域
本发明涉及高分子材料技术领域,具体涉及一种聚丙烯材料及其制备方法。
背景技术
天然植物纤维复合材料是以天然植物纤维作增强材料,以树脂作基体的一种复合材料。天然植物纤维具有价廉、可回收、可降解、可再生等优点,并具有一般纤维的强度和刚度,且比重较小,比强度、比刚度均较高。以天然植物纤维为增强基的复合材料同样具有优良的性能,如价格较低,密度小、强度良好、热性能优良等。
然而,由于植物纤维具有较强的亲水性,所以,植物纤维与疏水性的聚丙烯树脂之间的相容性很差。使得在将植物纤维用于增强聚丙烯树脂制备复合材料时,很容易在复合界面上形成空隙和缺陷,导致复合材料的力学性能很差。特别是,当植物纤维含量较高时,复合材料表现出明显的脆性,且难以获得刚性优异的复合材料。现有技术中,对天然纤维进行处理获得表面粗糙的天然纤维,再用极性单体接枝聚合物作为相容剂来提高天然纤维和聚丙烯之间的界面结合力,该技术虽然能够提高天然纤维增强聚丙烯复合材料的刚性,但是极性单体的接枝聚合物与天然纤维及聚丙烯之间仅靠范德华力进行作用,材料的韧性无法保证。
因此,亟待开发一种植物纤维与聚丙烯的界面相容性好且力学性能佳的聚丙烯材料及其制备方法。
发明内容
本发明的目的在于克服现有技术的不足之处而提供一种聚丙烯材料及其制备方法,以期克服现有植物纤维与聚丙烯复合材料相容性不好、力学性能不均衡的技术问题。
为实现上述目的,本发明采取的技术方案如下:
第一方面,本发明提供一种聚丙烯材料,按重量份计,包括以下组分:聚丙烯树脂50~90份,改性植物纤维10~50份;
其中,所述改性植物纤维按重量份计,包由以下原料制成:植物纤维50~80 份,POE弹性体20~50份,硅氧烷偶联剂0.5~2份,有机过氧化物0.1~1份;
所述聚丙烯树脂的熔融指数为5~60g/10min,测试条件:230℃、2.16kg;
所述植物纤维的平均长度为1~30mm;
所述硅氧烷偶联剂为氨基类硅氧烷偶联剂或环氧基类硅氧烷偶联剂中的一种或几种;
所述有机过氧化物为烷基过氧化物类或酰基过氧化物类中的一种或几种。
该聚丙烯材料中,通过有机过氧化物的过氧化反应在植物纤维表面上接枝有机过氧化物的部分基团,同时POE弹性体被氧化形成自由基,植物纤维与POE弹性体形成交联。硅氧烷偶联剂一端带有硅烷基团,该硅烷基团经水解形成硅烷醇,硅烷醇进一步与植物纤维中的羟基基团发生化学反应,形成稳定的共价键,减少植物纤维表面的羟基数量;硅氧烷偶联剂另一端为碳官能团,能够和聚丙烯树脂发生反应或生成氢键,使植物纤维和聚丙烯树脂之间构成交联网络,从而使植物纤维的溶胀被减少,进而改善植物纤维和聚丙烯树脂之间的键合稳定性,使得改性后的植物纤维与聚丙烯树脂具有更好的相容性,在与聚丙烯树脂共混后更易分散相容,进而具有更好更均衡的力学性能和表面外观。
作为本发明所述聚丙烯材料的优选实施方式,所述聚丙烯树脂的熔融指数为16~50g/10min,测试条件:230℃、2.16kg。优选的聚丙烯树脂更有利于植物纤维在树脂中的均匀分散。
作为本发明所述聚丙烯材料的优选实施方式,所述的植物纤维为亚麻纤维、剑麻纤维、***纤维、黄麻纤维、洋麻纤维、苎麻纤维、竹纤维中的至少一种。
作为本发明所述聚丙烯材料的优选实施方式,所述植物纤维的平均长度为2~10mm。
作为本发明所述聚丙烯材料的优选实施方式,所述的POE弹性体为乙烯-辛烯共聚物、乙烯-丁烯共聚物中的至少一种。
作为本发明所述聚丙烯材料的优选实施方式,所述有机过氧化物为过氧化苯甲酰、双(叔丁基过氧化异丙基)苯、二叔丁基过氧化物、过氧化十二酰、过氧化二异丙苯中的至少一种。
作为本发明所述聚丙烯材料的优选实施方式,所述硅氧烷偶联剂为γ-缩水甘油醚氧基丙基三甲氧基硅烷、3-缩水甘油醚氧基丙基三乙氧基硅烷、γ-脲基丙基三乙氧基硅烷、β-(3,4环氧环己基)-乙基三乙氧基硅烷中的至少一种。
第二方面,本发明提供了上述聚丙烯材料的制备方法,包括以下步骤:
按所述重量份称取聚丙烯、改性植物纤维混合,熔融挤出造粒,干燥,即得。
其中,所述改性植物纤维的制备方法为:按所述重量份称取植物纤维、弹性体、硅氧烷偶联剂、有机过氧化物混合,得预混料;将所得预混料造粒,分级,冷却,挤出造粒,即成。
第三方面,本发明将上述的聚丙烯材料应用于土木建筑、家用电器和车用聚丙烯改性材料中。
与现有技术相比,本发明的有益效果为:
本发明的聚丙烯材料中植物纤维与聚丙烯复合材料相容性好,聚丙烯材料的刚性和韧性好,力学性能均衡;且外观优良。适用于土木建筑、家用电器和车用聚丙烯改性材料。
附图说明
图1为1级外观浮纤的参照图;
图2为2级外观浮纤的参照图;
图3为3级外观浮纤的参照图;
图4为4级外观浮纤的参照图;
图5为5级外观浮纤的参照图。
具体实施方式
为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。本领域技术人员应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例中所用的试验方法如无特殊说明,均为常规方法;所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例中,弯曲模量按《ISO 178:2001塑料弯曲性能测定》标准检测;缺口冲击强度参照《ISO 180:2000塑料伊兆特(Izod)冲击强度的测定》标准检测;外观等级依据材料表面的浮纤测评,表面浮纤情况目视观察,根据表面玻纤发白情况评定等级,共5级,*越多代表外观浮纤越差,*(1级)参照图1,**(2级)参照图2,***(3级)参照图3,****(4级)参照图4,*****(5级)参 照图5。
下述实施例及对比例所用的原材料说明如下,但不限于这些材料:
聚丙烯树脂1:PP,EP548R,嵌段共聚聚丙烯,熔融指数为30g/10min,购自壳牌;
聚丙烯树脂2:PP,T30S,均聚聚丙烯,熔融指数为3g/10min,购自中石化;
聚丙烯树脂3:PP,K9017,嵌段共聚聚丙烯,熔融指数为16g/10min,购自台化;
聚丙烯树脂4:PP,BX3900,嵌段共聚聚丙烯,熔融指数为50g/10min,购自SK;
聚丙烯树脂5:PP,BX3920,嵌段共聚聚丙烯,熔融指数为100g/10min,购自SK;
上述树脂的熔体质量流动速率依据标准ISO 1133:2005,在230℃/2.16kg条件下检测。
植物纤维1:黄麻纤维,纤维平均长度为2~10mm,购自禾迪科技;
植物纤维2:剑麻纤维,纤维平均长度为2~10mm,购自禾迪科技;
植物纤维3:竹纤维,纤维平均长度为2~10mm,购自禾迪科技;
植物纤维4:黄麻纤维,纤维平均长度为40~50mm,购自禾迪科技;
植物纤维5:黄麻纤维,纤维平均长度为0.1~0.5mm,购自禾迪科技;
弹性体1:POE 7467,乙烯-丁烯共聚物,购自陶氏;
弹性体2:POE 8842,乙烯-辛烯共聚物,购自陶氏;
弹性体3:SEBS 1657,氢化苯乙烯-丁二烯嵌段共聚物,购自美国科腾;
偶联剂1:γ-缩水甘油醚氧基丙基三甲氧基硅烷(环氧基类硅氧烷偶联剂),Z-6040,购自美国道康宁公司;
偶联剂2:3-(2,3-环氧丙氧)丙基三甲氧基硅烷(环氧基类硅氧烷偶联剂),A-187,购自迈图;
偶联剂3:γ-脲基丙基三乙氧基硅烷(氨基类硅氧烷偶联剂),A-1160,购自迈图;
偶联剂4:双(γ-三乙氧基硅基丙基)四硫化物,Z-6940,购自美国道康宁;
有机过氧化物1:过氧化苯甲酰,购自sigma-aldrich;
有机过氧化物2:过氧化二异丙苯,购自sigma-aldrich;
有机过氧化物3:过氧化十二酰,购自sigma-aldrich;
有机过氧化物4:过氧化二碳酸双酯(液体,活性氧量低),购自sigma-aldrich。
改性植物纤维的组成组分如表1所示。
改性植物纤维的制备方法为:
按表1重量份数称取植物纤维、弹性体、偶联剂、有机过氧化物先后投入密炼机中密炼10~20min,使植物纤维与弹性体充分混合均匀,得到预混料;将所得预混料通过单螺杆挤出机造粒,分级,冷却,挤出造粒过程重复3次,即得改性植物纤维。
表1:不同改性纤维的配方组成(重量份数)
Figure PCTCN2022135171-appb-000001
续表1:不同改性纤维的配方组成(重量份数)
Figure PCTCN2022135171-appb-000002
实施例1~12和对比例1~14的聚丙烯材料的组成组分如表2所示。
聚丙烯材料的制备方法为:
按表2重量份数称取聚丙烯、改性植物纤维,加入高混机内高速混合1~3min,混合均匀,得到预混料;将预混料加入双螺杆挤出机的主喂料口,进行熔融挤出,造粒干燥,得聚丙烯材料。
其中,所述熔融挤出步骤的条件为:一区温度80~120℃,二区温度190~210℃,三区温度210~230℃,四区温度210~230℃,五区温度210~230℃,六区温度210~230℃,七区温度210~230℃,八区温度210~230℃,九区温度210~230℃,主机转速250~600转/分钟;双螺杆挤出机的长径比为40:1。
表2:实施例和对比例聚丙烯材料组分(重量份数)及其测试结果
Figure PCTCN2022135171-appb-000003
续表2:实施例和对比例聚丙烯材料的组分(重量份数)及其测试结果
Figure PCTCN2022135171-appb-000004
Figure PCTCN2022135171-appb-000005
实施例1~12的聚丙烯材料刚性和韧性好,力学性能均衡;且外观优良。适用于土木建筑、家用电器和车用聚丙烯改性材料。
对比例1~6的聚丙烯材料性能不均衡。
与实施例1相比,对比例7的聚丙烯材料中,采用的改性植物纤维中偶联剂为双(γ-三乙氧基硅基丙基)四硫化物,所制得的聚丙烯材料虽然力学性能均衡,但外观浮纤比较多。
与实施例2相比,对比例8的聚丙烯材料中,采用的改性植物纤维中有机过氧化物为过氧化二碳酸双酯,所制得的聚丙烯材料虽然力学性能均衡,但外观浮纤比较多。
与实施例1相比,对比例9的聚丙烯材料中,采用的改性植物纤维中弹性体为SEBS,所制得的聚丙烯材料虽然力学性能均衡,但外观浮纤比较多。
与实施例1相比,对比例10的聚丙烯材料中,采用的改性植物纤维中植物纤维的纤维平均长度为40~50mm,所制得的聚丙烯材料虽然力学性能均衡,但外观浮纤比较多;对比例11的聚丙烯材料中,采用的改性植物纤维中植物纤维的纤维平均长度为0.1~0.5mm,所制得的聚丙烯材料虽然外观基本无浮纤,但刚 性差,韧性好,力学性能不均衡。
与实施例1相比,对比例12和对比例13的聚丙烯材料中,采用的聚丙烯树脂的熔融指数分别为3g/10min和100g/10min,所制得的聚丙烯材料虽然刚性好,但韧性差,且外观浮纤比较多。
对比例14的聚丙烯材料中,采用未改性的黄麻纤维,所制得的聚丙烯材料刚性差,韧性差,且外观浮纤比较多。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (9)

  1. 一种聚丙烯材料,其特征在于,按重量份计,包括以下组分:聚丙烯树脂50~90份,改性植物纤维10~50份;
    其中,所述改性植物纤维按重量份计,由以下原料制成:植物纤维50~80份,POE弹性体20~50份,硅氧烷偶联剂0.5~2份,有机过氧化物0.1~1份;
    所述聚丙烯树脂的熔融指数为5~60g/10min,测试条件:230℃、2.16kg;
    所述植物纤维的平均长度为1~30mm;
    所述硅氧烷偶联剂为氨基类硅氧烷偶联剂或环氧基类硅氧烷偶联剂中的一种或几种;
    所述有机过氧化物为烷基过氧化物类或酰基过氧化物类中的一种或几种。
  2. 根据权利要求1所述的聚丙烯材料,其特征在于,所述聚丙烯树脂的熔融指数为16~50g/10min,测试条件:230℃、2.16kg。
  3. 根据权利要求1所述的聚丙烯材料,其特征在于,所述的植物纤维为亚麻纤维、剑麻纤维、***纤维、黄麻纤维、洋麻纤维、苎麻纤维、竹纤维中的至少一种。
  4. 根据权利要求1所述的聚丙烯材料,其特征在于,所述植物纤维的平均长度为2~10mm。
  5. 根据权利要求1所述的聚丙烯材料,其特征在于,所述的POE弹性体为乙烯-辛烯共聚物、乙烯-丁烯共聚物中的至少一种。
  6. 根据权利要求1所述的聚丙烯材料,其特征在于,所述有机过氧化物为过氧化苯甲酰、双(叔丁基过氧化异丙基)苯、二叔丁基过氧化物、过氧化十二酰、过氧化二异丙苯中的至少一种。
  7. 根据权利要求1所述的聚丙烯材料,其特征在于,所述硅氧烷偶联剂为γ-缩水甘油醚氧基丙基三甲氧基硅烷、3-缩水甘油醚氧基丙基三乙氧基硅烷、γ-脲基丙基三乙氧基硅烷、β-(3,4环氧环己基)-乙基三乙氧基硅烷中的至少一种。
  8. 根据权利要求1~7任一项所述的聚丙烯材料的制备方法,其特征在于,包括以下步骤:
    按所述重量份称取聚丙烯、改性植物纤维混合,熔融挤出造粒,干燥,即 得;
    其中,所述改性植物纤维的制备方法为:按所述重量份称取所述植物纤维、POE弹性体、硅氧烷偶联剂、有机过氧化物,混合,得预混料;将所得预混料造粒,分级,冷却,挤出造粒,即成。
  9. 权利要求1~7任一项所述的聚丙烯材料在土木建筑、家用电器和车用聚丙烯改性材料中的应用。
PCT/CN2022/135171 2021-12-31 2022-11-29 一种聚丙烯材料及其制备方法 WO2023124710A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111681233.9 2021-12-31
CN202111681233.9A CN114196115B (zh) 2021-12-31 2021-12-31 一种聚丙烯材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2023124710A1 true WO2023124710A1 (zh) 2023-07-06

Family

ID=80657957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135171 WO2023124710A1 (zh) 2021-12-31 2022-11-29 一种聚丙烯材料及其制备方法

Country Status (2)

Country Link
CN (1) CN114196115B (zh)
WO (1) WO2023124710A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117417595A (zh) * 2023-09-13 2024-01-19 吉林盛大电缆有限公司 一种耐温电缆及改性聚丙烯电缆保护套材料

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196115B (zh) * 2021-12-31 2023-10-17 天津金发新材料有限公司 一种聚丙烯材料及其制备方法
CN116082746B (zh) * 2022-12-27 2023-11-14 金发科技股份有限公司 一种改性聚丙烯复合材料及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0760385A1 (en) * 1995-08-30 1997-03-05 Ube Industries, Ltd. Fine fiber-reinforced thermoplastic elastomer composition and process for producing same
CN101914298A (zh) * 2010-08-05 2010-12-15 宁波竹源新材料科技有限公司 竹纤维复合塑料粒子的制备方法及其产品的用途
CN106589578A (zh) * 2016-11-04 2017-04-26 重庆普利特新材料有限公司 一种高性能黄麻纤维增强聚丙烯复合材料及其制备方法
CN107987401A (zh) * 2017-12-19 2018-05-04 会通新材料股份有限公司 一种耐热氧老化植物纤维增强聚丙烯复合材料及其制备方法
CN112608553A (zh) * 2020-11-24 2021-04-06 威海市泓淋电力技术股份有限公司 一种植物纤维增强聚丙烯复合材料及其制备方法
CN114196115A (zh) * 2021-12-31 2022-03-18 天津金发新材料有限公司 一种聚丙烯材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108129746A (zh) * 2016-12-01 2018-06-08 四川鑫达企业集团有限公司 一种高性能植物纤维改性聚丙烯复合材料及其制备方法
CN108164820A (zh) * 2017-12-27 2018-06-15 四川鑫达企业集团有限公司 一种植物纤维/pp复合材料及其制备方法
CN108034136A (zh) * 2017-12-27 2018-05-15 四川鑫达企业集团有限公司 一种增韧型麻纤维改性聚丙烯复合材料及其制备方法
CN109251418A (zh) * 2018-07-27 2019-01-22 会通新材料股份有限公司 一种抗析出植物纤维改性聚丙烯复合材料及其制备方法
CN111040309A (zh) * 2018-10-11 2020-04-21 中国石油化工股份有限公司 聚丙烯复合材料及其制备方法和应用
CN109749239A (zh) * 2018-12-27 2019-05-14 温州市森马网络技术有限公司 一种麻纤维增强塑料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0760385A1 (en) * 1995-08-30 1997-03-05 Ube Industries, Ltd. Fine fiber-reinforced thermoplastic elastomer composition and process for producing same
CN101914298A (zh) * 2010-08-05 2010-12-15 宁波竹源新材料科技有限公司 竹纤维复合塑料粒子的制备方法及其产品的用途
CN106589578A (zh) * 2016-11-04 2017-04-26 重庆普利特新材料有限公司 一种高性能黄麻纤维增强聚丙烯复合材料及其制备方法
CN107987401A (zh) * 2017-12-19 2018-05-04 会通新材料股份有限公司 一种耐热氧老化植物纤维增强聚丙烯复合材料及其制备方法
CN112608553A (zh) * 2020-11-24 2021-04-06 威海市泓淋电力技术股份有限公司 一种植物纤维增强聚丙烯复合材料及其制备方法
CN114196115A (zh) * 2021-12-31 2022-03-18 天津金发新材料有限公司 一种聚丙烯材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117417595A (zh) * 2023-09-13 2024-01-19 吉林盛大电缆有限公司 一种耐温电缆及改性聚丙烯电缆保护套材料

Also Published As

Publication number Publication date
CN114196115A (zh) 2022-03-18
CN114196115B (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
WO2023124710A1 (zh) 一种聚丙烯材料及其制备方法
CA2037859C (en) Compatibilized blends of crystalline propylene polymers and styrenic copolymers
CN103756125B (zh) 一种聚丙烯复合材料汽车水箱横梁及制备方法
EP3090018A1 (en) Polyolefin composition including hollow glass microspheres and method of using the same
CN109627582A (zh) 一种轻量化、高韧性和高刚性的聚丙烯组合物及其制备方法
JP2019529620A (ja) 衝撃強度が向上されたガラス繊維複合材料造成物
JP2020033541A (ja) セルロース複合樹脂及びその製造方法
CN101759910A (zh) 一种挤出吹塑级玻璃纤维增强聚丙烯复合材料及其制备方法
CN112608553A (zh) 一种植物纤维增强聚丙烯复合材料及其制备方法
WO2023108805A1 (zh) 一种玻璃纤维增强热塑性管道用的聚乙烯复合材料
CN104974525A (zh) 聚乙烯醇纤维增强聚苯硫醚复合材料及其制备方法
CN111171443A (zh) 一种水泵专用聚丙烯增强材料及其制备方法
CN112063056B (zh) 一种良外观玻纤增强聚丙烯复合材料及其制备方法
JP5511148B2 (ja) 耐アルコール性成形材料及び成形品
JP2004231911A (ja) 長繊維強化ポリオレフィン樹脂組成物及びその製造方法
Tjong et al. Mechanical properties of glass fiber and liquid crystalline polymer reinforced polypropylene hybrid composites toughened with elastomers
JP4476621B2 (ja) ポリプロピレン系樹脂組成物及びその成形体
CN114350072A (zh) 一种聚丙烯组合物及其制备方法与应用
KR101458178B1 (ko) 장섬유 복합재의 제조방법
JP2006241340A (ja) 樹脂組成物およびその成形体
EP1362079A1 (en) Polypropylene resin composition with improved surface hardness and scratch resistance properties
Garakani et al. Study on morphological, rheological, and mechanical properties of PP/SEBS‐MA/SGF hybrid composites
TWI658082B (zh) 一種輕量化高韌性高剛性聚丙烯組合物及其製法
JP7097521B1 (ja) セルロース繊維強化熱可塑性樹脂成形体及びその製造方法
CN114672128B (zh) 一种改性聚丙烯材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913966

Country of ref document: EP

Kind code of ref document: A1