WO2023124549A1 - 触控板和电子设备 - Google Patents

触控板和电子设备 Download PDF

Info

Publication number
WO2023124549A1
WO2023124549A1 PCT/CN2022/130660 CN2022130660W WO2023124549A1 WO 2023124549 A1 WO2023124549 A1 WO 2023124549A1 CN 2022130660 W CN2022130660 W CN 2022130660W WO 2023124549 A1 WO2023124549 A1 WO 2023124549A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
cantilever beam
reinforcing plate
beam structure
pressure
Prior art date
Application number
PCT/CN2022/130660
Other languages
English (en)
French (fr)
Inventor
郭益平
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Publication of WO2023124549A1 publication Critical patent/WO2023124549A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04142Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position the force sensing means being located peripherally, e.g. disposed at the corners or at the side of a touch sensing plate

Definitions

  • the embodiments of the present application relate to the field of electronic technology, and in particular, to a touch panel and electronic equipment.
  • a touchpad is a device that senses the position and movement of a user's finger through a touch sensor, thereby controlling the movement of a cursor on a display interface of an electronic device.
  • Conventional touchpads generally detect the user's pressing action through physical buttons, and perform functions such as confirmation or calling out menus.
  • the pressure touchpad cancels the physical buttons of the conventional touchpad, and sets a pressure sensor and a touch feedback device to perform functions such as pressure sensing and vibration feedback.
  • the pressure touch panel is usually provided with an independent pressure detection bracket to support the pressure sensor due to the design requirements of the whole machine assembly, which makes the design and assembly of the touch panel complicated.
  • embodiments of the present application provide a touch panel and an electronic device to at least partly solve the above technical problems.
  • a touch panel which includes: a touch panel; a pressure sensor, configured to convert the deformation of the pressure sensor into a first electrical signal when the touch panel is subjected to pressure, and the first The electrical signal is used to calculate the pressure detection result;
  • the bearing plate is used to carry the touch panel, and a cantilever beam structure is formed on the bearing plate, and the cantilever beam structure is used to support the pressure sensor, and on the
  • the touch panel is subjected to pressure, it drives the pressure sensor to undergo elastic deformation;
  • the tactile feedback component is arranged under the touch panel and is used to provide vibration feedback to the user according to the pressure detection result.
  • the reinforcing plate is adhered to the lower surface of the touch panel through a first adhesive layer.
  • multiple cantilever beam structures are formed on the reinforcing plate, and the multiple cantilever beam structures are arranged on the reinforcing plate close to an edge region of the reinforcing plate.
  • the multiple cantilever beam structures include four cantilever beam structures, and the four cantilever beam structures are respectively arranged at the four corners of the reinforcing plate or at the corners of the reinforcing plate.
  • the cantilever beam structure includes a cantilever area extending inward from the edge area of the reinforcing plate or a cantilever area extending outward from the edge of the reinforcing plate.
  • the cantilever beam structure has a fixed end and a free end that are oppositely arranged, the fixed end has a reinforced portion, and the thickness of the fixed end is greater than the thickness of the free end.
  • connection portion between the cantilever region and the non-cantilever region of the cantilever beam structure is not on the same plane.
  • At least four cantilever beam structures are formed on the reinforcing plate, and the at least four cantilever beam structures are axially symmetrically distributed on the reinforcing plate.
  • the touch panel includes a plurality of electrical components for realizing the touch detection function, and the reinforcement board is provided with at least one first Open your mouth.
  • the touch panel includes a plurality of electrical components for realizing the touch detection function, and the reinforcing board is provided with at least two holes for allowing the plurality of electrical components to pass through. Second opening.
  • the force transmission component includes a damping component, and the damping component is used to absorb aftershocks generated by the tactile feedback component.
  • the damping component is a silicone pad with double-sided adhesive tape on two opposite surfaces.
  • the touch panel further includes a bearing plate, which is arranged under the reinforcement plate, and the bearing plate is provided with an assembly surface adapted to the force transmission component and a to accommodate the first groove of the cantilever beam structure.
  • a reinforcing rib is formed on an edge region of the reinforcing plate, and a second groove for accommodating the reinforcing rib is provided on the bearing plate.
  • the touch panel includes a plurality of electrical components for realizing the touch detection function, and a third opening for allowing the plurality of electrical components to pass through is formed on the carrier plate A limiting structure is provided in the area around the third opening, which is used to limit the downward displacement of the touch panel when it is under pressure.
  • the touch panel includes a protection layer and a touch function layer; the touch function layer is adhered to the lower surface of the protection layer through a second adhesive layer for detecting touch information.
  • the second adhesive layer and the second adhesive layer include double-sided adhesive or low-temperature thermosetting adhesive.
  • an electronic device including: a casing and the touchpad provided according to any implementation manner of the first aspect, the casing is used for installing the touchpad.
  • the back of the casing is provided with an assembly surface for installing the touchpad, and the touchpad is installed from the back of the casing to the shell through the assembly surface. body.
  • the housing is provided with an installation groove for accommodating the touchpad, and the upper surface of the installation groove is provided with an assembly surface for fitting with the force transmission member and for A plurality of openings to allow passage of electrical components on the touchpad.
  • the upper surface of the installation groove is provided with a limiting structure, which is used to limit the downward displacement of the touchpad when it is under pressure.
  • Embodiments of the present application provide a touch panel and an electronic device. Since the reinforcing plate is used to carry the touch panel, a cantilever beam structure is formed under the reinforcing plate, and a force transmission component is arranged under the cantilever beam structure. After the touch panel is subjected to pressure, the pressure can be transmitted down through the reinforcement plate and the force transmission part to the part for assembly with the force transmission part (for example, the housing or other load-bearing part of the electronic device), and the reaction from the part A force is applied to the cantilever beam structure via the force transfer member, displacing the cantilever beam structure upward.
  • the force transmission part for example, the housing or other load-bearing part of the electronic device
  • the pressure sensor Since the pressure sensor is supported by the cantilever beam structure, the upward displacement of the cantilever beam structure will drive the elastic deformation of the pressure sensor supported by it.
  • the pressure sensor converts the detected deformation into an electrical signal for pressure detection. Since the cantilever beam structure for supporting the pressure sensor is formed on the reinforcing plate, no additional elastic support for supporting the pressure sensor is required, which reduces the number of components of the touch panel, thereby simplifying the assembly process and saving costs.
  • the tactile feedback component can feed back the shock feeling to the user according to the pressure detection result. Vibration feedback can allow users to determine whether their pressing operations are effective, thereby minimizing repetitive gestures and providing users with a more convenient or comfortable operating experience.
  • Fig. 1 is a stacked schematic diagram of a touch panel according to an embodiment of the present application
  • FIG. 2 is a schematic stacked view of a touch panel according to an embodiment of the present application.
  • Fig. 3 is a structural schematic diagram of a damping component according to an embodiment of the present application.
  • FIG. 4 is an exploded view of the structure of a touch panel according to an embodiment of the present application.
  • Fig. 5 is a structural schematic diagram of the cantilever beam structure in Fig. 4;
  • FIG. 6 is an exploded view of the structure of a touch panel according to an embodiment of the present application.
  • FIG. 7 is an exploded view of the assembly of the touch panel and the housing of the electronic device according to an embodiment of the present application.
  • FIG. 8 is an exploded view of the assembly of the touch panel and the housing of the electronic device according to an embodiment of the present application.
  • portable or mobile computing devices such as smartphones, laptops, tablet circuits, gaming devices, and other electronic devices such as electronic databases, automobiles, and bank automated teller machines (Automated Teller Machines, ATMs).
  • portable or mobile computing devices such as smartphones, laptops, tablet circuits, gaming devices, and other electronic devices such as electronic databases, automobiles, and bank automated teller machines (Automated Teller Machines, ATMs).
  • this embodiment of the present application is not limited thereto.
  • FIG. 1 shows a schematic structural diagram of a touch panel 10 according to an embodiment of the present application.
  • the touch panel 10 can be installed on the casing of the electronic device. As shown in Figure 1, the touch panel 10 includes:
  • the pressure sensor 120 is configured to convert the deformation of the pressure sensor 120 into a first electrical signal when the touch panel 110 is under pressure, and the first electrical signal is used for calculation to obtain a pressure detection result;
  • the reinforcing plate 130 is fixed under the touch panel 110, and a cantilever beam structure 1031 with steps is formed on the reinforcing plate 130 for supporting the pressure sensor 120;
  • the force transmission part 140 is arranged under the cantilever beam structure 1031, and is used to displace the cantilever beam structure 1031 upward when the touch panel 110 is under pressure, so as to drive the pressure sensor 120 to undergo elastic deformation;
  • the tactile feedback component is fixed under the touch panel 110 and is used for providing vibration feedback to the user according to the pressure detection result.
  • the pressure sensor 120 may be a strain gauge, for example, a cantilever strain gauge.
  • the cantilever beam structure 1031 with steps includes a cantilevered area (ie, a free end) protruding in the air, and a non-cantilevered area (ie, a fixed end) integrated with the reinforcing plate 130, for example, as shown in FIG. 1 in the cantilevered region 1031a and the non-cantilevered region 1031b.
  • the height of the upper surface of the cantilever region 1031a is lower than the height of the upper surface of the non-cantilever region 1031b, so that the cantilever region and the non-cantilever region form a step A.
  • the cantilever beam structure 1031 is used to support the pressure sensor 120 , it can be understood that the pressure sensor 120 is fixed on the upper surface of the cantilever beam structure 1031 , or the pressure sensor 120 is fixed on the lower surface of the cantilever beam structure 1031 .
  • the force transmission component 140 is fixed under the cantilever beam structure 1031 , and after the touch panel is installed on the housing or other components of the electronic device, the force transmission component 140 abuts against the housing or other components. After the touch panel 110 is subjected to pressure, the pressure is transmitted down to the housing or other components via the reinforcing plate 130 and the force transmission member 140, and the reaction force from the housing or other components is applied to the cantilever beam via the force transmission member 140.
  • the structure 1031 will cause the cantilever beam structure 1031 to move upwards, and the pressure sensor 120 supported by it will be elastically deformed together. Then, the pressure sensor 120 converts the detected deformation into an electrical signal for pressure detection.
  • the cantilever beam structure 1031 can be integrally formed with the reinforcing plate by using a die-casting process, so as to simplify the assembly process of the touch panel.
  • the tactile feedback component may be a linear motor, for example, a linear motor that vibrates on the X or Y axis.
  • the tactile feedback component may also be a piezoelectric ceramic sheet or the like. It should be understood that the tactile feedback component may also be other suitable actuators.
  • the tactile feedback device can be adhered to the touch panel 110 , for example, on the edge of the touch panel 110 , so that when the touch panel is mounted on the casing of the electronic device, the tactile feedback component is located at the lower edge of the electronic device.
  • the pressure detection chip can detect the magnitude of the pressure according to the first electrical signal collected by the pressure sensor 120, and send the result of the pressure detection to the main control board, and the main control board determines whether to provide the tactile sensor according to the result of the pressure detection.
  • the feedback component sends vibration commands. After receiving the vibration command, the tactile feedback component vibrates according to the set mode, and feeds back the vibration feeling to the user.
  • a cantilever beam structure 1031 is formed under the reinforcing plate 130 , and a force transmission component 140 is disposed under the cantilever beam structure 1031 .
  • the pressure can be transmitted down through the reinforcing plate 130 and the force transmission part 140 to the components (for example, the housing or other bearing parts of the electronic device) for assembly with the force transmission part 140, from The reaction force of this part is applied to the cantilever beam structure 1031 via the force transmission part 140, displacing the cantilever beam structure 1031 upward.
  • the pressure sensor 120 Since the pressure sensor 120 is supported by the cantilever beam structure 1031 , the upward displacement of the cantilever beam structure 1031 will drive the elastic deformation of the pressure sensor 120 supported by it.
  • the pressure sensor 120 converts the detected deformation into an electrical signal for pressure detection. Since the cantilever beam structure 1031 for supporting the pressure sensor is formed on the reinforcing plate, no additional elastic support for supporting the pressure sensor 120 is required, which reduces the number of components of the touch panel, thereby simplifying the assembly process and saving costs.
  • the tactile feedback component can feed back the shock feeling to the user according to the pressure calculation result. Vibration feedback can allow users to determine whether their pressing operations are effective, thereby minimizing repetitive gestures and providing users with a more convenient or comfortable operating experience.
  • the reinforcing plate 130 is adhered to the lower surface of the touch panel 110 through the first adhesive layer 150 to be fixed to the bottom of the touch panel 110 .
  • the reinforcement board 130 Since the reinforcement board 130 is provided, and the reinforcement board 130 is adhered to the touch panel 110 through the first adhesive layer 150, the bending strength of the reinforcement board 130 and the touch panel 110 as a whole can be improved, and the pressure of the touch panel by the user can be reduced. The deformation and collapse of the panel 110 improves user experience.
  • the reinforcing plate 130 may be a metal structure.
  • the first adhesive layer 150 may be double-sided tape. By adopting double-sided adhesive, the reinforcement plate 130 can be bonded to the touch panel 110 in a simple and low-cost manner.
  • the first adhesive layer 150 may also be a low-temperature thermosetting adhesive.
  • Low-temperature thermosetting adhesives have higher hardness than double-sided adhesives. Therefore, the use of low-temperature thermosetting adhesive can better improve the overall bending strength of the touch panel 110 and the reinforcing plate 130 .
  • the curing temperature of the low-temperature thermosetting adhesive is less than or equal to 85°C, and the cured elastic modulus is less than Or equal to 3GPa, and the Shore hardness is in the range of 40D to 80D.
  • reinforcing ribs 1303' are formed on the edge region of the reinforcing plate 130'.
  • the reinforcing ribs may be formed by making the thickness of the reinforcing rib 1303' formed on the reinforcing plate 130' greater than the thickness of other parts of the reinforcing plate 130.
  • the thickness of the free end is 0.8mm, and the thickness of the rib is 1.0mm.
  • the rigidity of the reinforcing plate formed with reinforcing ribs is increased, when the reinforcing plate 130 ′ is fixedly connected to the touch panel 110, the overall rigidity (that is, bending strength) of the touch panel 110 and the reinforcing plate 130 ′ can be correspondingly improved. .
  • a plurality of cantilever beam structures are formed on the reinforcing plate 130 , and the plurality of cantilever beam structures are arranged on the reinforcing plate 130 near the edge region of the reinforcing plate.
  • the cantilever beam structures are arranged in a dispersed manner, which can ensure the structural stability of the touch panel.
  • the plurality of cantilever beam structures 1301 are at least four cantilever beam structures, and the four cantilever beam structures are axially symmetrically distributed on the reinforcing plate.
  • each cantilever beam structure carries a pressure sensor 120. Setting the cantilever beam structure at the four corners of the reinforcing plate can improve the uniformity of pressure detection.
  • each cantilever beam structure 1301 carries a pressure sensor 120, and the cantilever beam structures 1301 are arranged on the reinforcing plate The central positions of the four sides of 130. Since the four cantilever beam structures 1301 are symmetrically distributed on the reinforcing plate, in this way, the structural stability of the touch panel can also be ensured, and the uniformity of pressure detection can be improved.
  • the number of cantilever beam structures 1301 may also be six, eight or more. Since the cantilever beam structure is used to support the pressure sensor, if the number of cantilever beam structures increases, the number of pressure sensors will increase correspondingly, thereby improving the accuracy of pressure detection. However, the increase in the number of pressure sensors also leads to an increase in the cost of the touch panel.
  • the specific position of the cantilever beam structure 1301 can also be designed according to needs, as long as the cantilever beam structure 1301 is distributed axially symmetrically on the reinforcing plate.
  • the touch panel 110 may include: a protective layer 110a and a touch function layer 110c; the touch function layer 110c passes through the second The adhesive layer 110b is adhered to the lower surface of the protection layer 110a for detecting touch information.
  • the protective layer 110a is mainly used to protect the touch function layer 110c.
  • the protective plate may be, for example, a glass cover plate or the like.
  • the protective layer 110a can also be designed to beautify the touch panel from the appearance.
  • the touch function layer 110c is mainly used for detecting touch information.
  • the touch function layer 110c includes a printed circuit board, and the printed circuit board is provided with electrical components (not shown) for realizing the touch detection function, and is used for transmitting and processing touch, press vibration, etc. Electrical signal to realize the system setting function.
  • the protection layer 110a and the touch function layer 110c are bonded by the second adhesive layer 110b.
  • the second adhesive layer 110b may be double-sided tape. By adopting double-sided adhesive, the bonding of the protective layer 110a and the touch function layer 110c can be realized in a simple and low-cost manner.
  • the second adhesive layer 110b may also be a low-temperature thermosetting adhesive.
  • Low-temperature thermosetting adhesives have higher hardness than double-sided adhesives. Therefore, the use of low-temperature thermosetting adhesive can better improve the bending strength of the protective layer 110a and the touch function layer 110c.
  • the curing temperature of the low-temperature thermosetting adhesive is less than or equal to 85°C, and the elastic modulus after curing is Less than or equal to 3GPa, the Shore hardness is in the range of 40D to 80D.
  • the second adhesive layer 110b may also be other suitable colloids, which are not limited in this embodiment.
  • the touch panel 110 is composed of a protection layer 110a and a touch function layer, and the touch function layer is adhered to the lower surface of the protection layer 110a through the second adhesive layer 110b.
  • the bonding reinforcement plate 130 is adhered under the touch panel 110 through the first adhesive layer 150, more precisely, under the touch function layer 110c, the protective layer, the touch function layer and the reinforcement layer are laminated to form a sandwich structure. Increased overall flexural strength.
  • the low-temperature thermosetting adhesive when both the first adhesive layer 150 and the second adhesive layer 110b use low-temperature thermosetting adhesive, since the low-temperature thermosetting adhesive itself has a certain hardness, the low-temperature thermosetting adhesive is used to adhere together.
  • the touch panel 110 and the reinforcing plate 130 as a whole have sufficient bending strength. At this time, no reinforcing ribs may be provided on the reinforcing plate 130 to simplify the structural design.
  • an opening for allowing the passage of the tactile feedback component and the electrical components on the printed circuit board may be provided in the reinforcement board 130 .
  • the size, quantity and shape of the openings can be set as required, which is not limited in this embodiment of the present application.
  • the force transmission component 140 may be a damping component, and the force transmission component 140 is also used to absorb aftershocks generated by the tactile feedback component.
  • the damping component may be a silicone composite material, such as a silicone pad, used for vibration damping of the tactile feedback component.
  • the hardness of the damping component can be preferably about Shore 30A, so as to ensure that the damping component has a certain rigidity, so as to avoid the strain of the damping component itself when the touch panel 110 bears it, which will affect the accuracy of pressure detection.
  • the thickness of the damping part can be preferably between 0.5mm and 0.8mm. Since if the thickness of the damping part is small, the strain space of the cantilever beam structure will be insufficient, and the pressure sensor supported by the cantilever beam structure will not be able to effectively carry out the pressure. detection. On the contrary, if the thickness of the damping component is large, it will cause the problem of inconsistent vibration of the touch panel. In the embodiment of the present application, by setting the thickness of the damping component 140 between 0.5 mm and 0.8 mm, the vibration consistency can be ensured under the condition that the cantilever beam structure 1301 has enough strain space.
  • the force transmission part 140 is a damping part, it can damp the vibration of the tactile feedback part and prevent the vibration of the tactile feedback part from being transmitted to the casing of the electronic device when the touch panel is installed on the electronic device, thereby improving user experience.
  • the damping component can also serve as a force transmission component, the reaction force of the pressure on the touch panel 110 is transmitted to the cantilever beam structure, so that the cantilever beam structure moves upwards, and the pressure sensor 120 is elastically deformed to perform pressure detection.
  • the damping components may be respectively adhered to the cantilever beam structure through an adhesive layer so as to be fixed to the cantilever beam structure.
  • the damping component may be a component with colloids on both opposite surfaces.
  • the damping component is a silicone pad with double-sided adhesive tape on both opposite surfaces.
  • the double-sided adhesive silicone pad is used to fix and connect the cantilever beam structure, which can simplify the assembly process.
  • the damping component is located at the free end 1031a' of the cantilever beam structure.
  • the cantilever beam structure can generate a large longitudinal displacement, which drives the pressure sensor 120 to undergo a large elastic deformation, improving the pressure detection performance. sensitivity.
  • each cantilever beam structure 1301' carries a pressure sensor 120, the cantilever beam structure 1301' is arranged at the four corners of the reinforcing plate 130, which can improve the uniformity of pressure detection.
  • the four cantilever beam structures 1301' can also be arranged at the center of the four sides of the reinforcing plate 130'. Since the four cantilever beam structures 1301' are symmetrically distributed on the reinforcing plate 130, in this way, the structural stability of the touch panel can also be ensured, and the uniformity of pressure detection can be improved.
  • the number of cantilever beam structures 1301' may also be six, eight or more. Since the cantilever beam structure is used to support the pressure sensor, if the number of cantilever beam structures increases, the number of pressure sensors will increase correspondingly, thereby improving the accuracy of pressure detection. However, the increase in the number of pressure sensors also leads to an increase in the cost of the touch panel.
  • the cantilever beam structure 1301' includes cantilevered regions that cantilever outwardly from the edge of the reinforcing plate. Specifically, as shown in FIGS. 4 and 5, the cantilever region 1301a' (free end) extending from the edge region of the short side of the reinforcing plate 130' along the long side of the reinforcing plate 130', the extending cantilever region 1301a' The four corners of the reinforcing plate 130' are formed.
  • the cantilever beam structure 1301' has a reinforced part 1301c' located at the fixed end 1301b' of the cantilever beam structure 1301'.
  • the reinforcing portion 1301c' is located at the fixed end (i.e. 1301b') of the cantilever beam structure 1301'.
  • the thickness of the reinforced portion 1301c' is greater than the thickness of the free end 1301a'.
  • the reinforcing part 1301c' can prevent the cantilever beam structure 1301' from breaking during long-term use by making the fixed end have a sudden change in thickness relative to the free end of the cantilever beam structure, and improve the durability of the cantilever beam structure 1301'.
  • the connection between the cantilever region 1301a' and the non-cantilever region 1301b' of the cantilever beam structure 1301' is not on the same plane, so that the stress concentration position of the cantilever beam structure 1301' Not on the same straight line, that is, forming the reinforced part 1301c', so as to prevent the cantilever beam structure 1301' from breaking during long-term use, and improve the durability of the cantilever beam structure 1301'.
  • the reinforcing plate 130' is provided with a first opening 1302' for allowing the plurality of electrical components to pass through.
  • the number of the first opening 1302' is one to simplify the assembly process.
  • first opening 1302' can be designed based on needs, which is not limited in this application.
  • first opening 1302&apos also allows tactile feedback member 160 to protrude downwardly therethrough.
  • reinforcing ribs are formed on the edge region of the reinforcing plate 130'.
  • the reinforcing ribs can be formed by making the thickness of the part where the reinforcing rib 1303' is formed on the reinforcing plate larger than the thickness of other parts on the reinforcing plate. Since the rigidity of the reinforcing plate formed with the ribs is increased, the overall rigidity (ie, bending strength) of the touch panel 110 and the reinforcing plate 150 can be correspondingly improved when the reinforcing plate 150 is fixedly connected to the touch panel 110 .
  • the reinforcing ribs 1303' are located between each cantilever beam structure 1301a'.
  • the short side direction is provided at the edges of the long side and the short side of the reinforcing plate 130'.
  • the reinforcing rib 1303' may also be arranged at other suitable positions of the reinforcing plate 130', which is not limited in this embodiment of the present application.
  • a bearing plate 170 is also provided below the reinforcement plate 130 ′.
  • the bearing plate 170 is provided with an assembly surface 1704 for fitting with the force transmission part 140 and for accommodating the cantilever.
  • the component 140 is transmitted downward to the bearing plate 170, and the reaction force from the bearing plate 170 is applied to the cantilever beam structure 1301' through the force transmitting component 140, so that the cantilever beam structure 1301' is displaced upward, driving the pressure sensor 120 supported by it to generate Elastic deformation.
  • the pressure sensor 120 converts the detected deformation into an electrical signal for pressure detection.
  • the supporting plate 170 is provided with a second groove 1701 for accommodating reinforcing ribs, so as to achieve a tight fit with the reinforcing plate 130'.
  • the setting position, size, structure and quantity of the second groove 1701 are adaptively changed according to the position, size, structure and quantity of the reinforcing rib on the reinforcing plate 130', which is not limited in the embodiment of the present application.
  • the limiting structure 1702 may be a protruding structure, for example, the thickness of the position on the bearing plate where the limiting structure is set is greater than the thickness of other positions on the bearing plate to form the protruding structure, It should be understood that the limiting structure 1702 may also adopt other structures, which are not limited in this embodiment.
  • the carrying plate 170 is provided with a third opening 1703 for allowing the plurality of electrical components to pass through, in a specific implementation, as shown in FIG.
  • the edge area of the third opening 1703 serves as a better limiter.
  • the carrying plate 170 can be made of metal structural materials, for example, SUS301 stainless steel, SUS304 stainless steel, aluminum alloy material 2A12T4, aluminum alloy material 7075-T6 can be selected. Due to the complex structure on the bearing plate 170, the bearing plate 170 in this application is preferably made of die-casting materials, such as aluminum alloy material 2A12T4, aluminum alloy material 7075-T6, etc.
  • a fixing hole 1706 is provided at an edge area of the carrying board 170 for allowing the touch panel to be installed through a fixing member.
  • the touch panel 10' can be installed on the casing 20' of the electronic device as shown in FIG.
  • the mounting surface 201' is mounted to the housing 20' from the back of the housing.
  • the back of the housing refers to the surface facing the inside of the electronic device during use of the electronic device.
  • fixing holes are provided on the edge area of the carrying plate 170 of the touch panel.
  • Fixing holes 202' are provided at the corresponding positions of the assembly surface 201' of the housing, and the bearing plate 170 can be fixed on the housing of the electronic device through fasteners, such as fastening nuts, so as to fix the touch panel on the electronic device 20' on the housing.
  • a cantilever beam structure 1301' is formed under the reinforcing plate 130', and a force transmission part 140 is arranged under the cantilever beam structure 1301', and the force transmission part 140 consists of The mounting surface of the carrier plate 170 is supported.
  • the pressure can be transmitted down to the bearing plate 170 through the reinforcing plate and the force transmission part 140, and the reaction force from the bearing plate 170 is applied to the cantilever beam structure 1301' through the force transmission part 140, so that the cantilever
  • the upward displacement of the beam structure 1301 ′ drives the elastic deformation of the pressure sensor 120 supported by it.
  • the pressure sensor 120 converts the detected deformation into an electrical signal for pressure detection. Since there is no need to separately arrange a bracket for supporting the pressure sensor 120, the number of components of the touch panel is reduced, thereby simplifying the assembly process and saving costs. At the same time, the tactile feedback component can feed back the shock feeling to the user according to the pressure detection result. Vibration feedback can allow users to determine whether their pressing operations are effective, thereby minimizing repetitive gestures and providing users with a more convenient or comfortable operating experience.
  • the four cantilever beam structures 1301 ′′ are arranged on the reinforcing plate 130 ′′, and the four cantilever beam structures 1301 ′′ are respectively formed on the reinforcing plate 130 ′′.
  • the cantilever beam structure 1301 ′′ includes a cantilever area protruding inward from the edge area of the reinforcing plate 130 ′′, specifically, as shown in FIG. out of the cantilever region 1301a" (ie the free end).
  • the cantilever beam structure has a reinforced part 1301c", which is located at the fixed end 1301b" of the cantilever beam structure.
  • the reinforcing portion 1301c" is located at the fixed end (ie 1301b") of the cantilever beam structure 1301".
  • the thickness of the fixed end 1301b" is greater than the thickness of the free end 1301a".
  • the reinforced part 1301c" can prevent the cantilever beam structure 1301" from breaking during long-term use by making the fixed end have a sudden change in thickness relative to the free end of the cantilever beam structure, thereby improving the durability of the cantilever beam structure 1301 .
  • the cantilever region 1301a" of the cantilever beam structure 1301" is not on the same plane as the non-cantilever region 1301b", thereby concentrating the stress of the cantilever beam structure 1301'
  • the positions are not on the same straight line, which prevents the cantilever beam structure 1301 from breaking during long-term use and improves the durability of the cantilever beam structure 1301 .
  • the touch panel 110 includes a plurality of electrical components for realizing the touch detection function, as shown in FIG.
  • Providing a plurality of second openings 1032′′ instead of using a larger opening allowing the passage of the plurality of electrical components, can weaken the bending strength of the reinforcement plate 130 less, thereby eliminating the need to set reinforcement ribs, carrying plate 170 and other structures.
  • the shape, size and quantity of the second opening 1032" can be designed based on needs, and the present application does not limit this.
  • the opening that passes through, or the second opening 1032" also allows the tactile feedback member to protrude downwardly through.
  • the touchpad can be directly installed on the casing 20" of the electronic device.
  • the upper surface of the groove 201 ′′ is provided with a fitting surface 2012 ′′ for fitting with a force transmission member and a plurality of openings 2011 ′′ for allowing electrical components on the touch panel to pass through.
  • the number, size, structure and position of the opening 2011" are adaptively modified according to the number, size, structure and position of the second opening 1032" on the reinforcing plate 130, which is not limited in this embodiment of the present application.
  • the force transmission component 140 can be installed on the mounting surface 2012" on the electronic device that is adapted to the force transmission member, so that after the touch panel 110 bears pressure, the force transmission structure is formed by The shell of the electronic device is supported, and the pressure can be transmitted down to the shell of the electronic device through the reinforcing plate and the force transmission part 140, and the reaction force from the shell is applied to the cantilever beam structure through the force transmission part 140, so that the cantilever beam
  • the upward displacement of the structure drives the elastic deformation of the pressure sensor 120 supported by it.
  • the pressure sensor 120 converts the detected deformation into an electrical signal for pressure detection.
  • the upper surface of the installation groove 201" is set
  • the limiting structure 2013" is used to limit the downward displacement of the touch panel when it is under pressure.
  • the limiting structure 2013" can be a protruding structure.
  • the thickness of the position where the limiting structure is provided at the bottom of the mounting groove 201" can be greater than the thickness of other parts at the bottom of the mounting groove to form the protruding structure.
  • the structure 2013" can also adopt other structures, which are not limited in this embodiment.
  • the limiting structure 2013 ′′ can be installed on the edge area of the groove part of the installation groove 201 ′′, so as to better play a limiting role.
  • a cantilever beam structure is formed under the reinforcing plate 130", and a force transmission part 140 is arranged under the cantilever beam structure.
  • the force transmission part 140 is composed of the shell of the electronic device body support. After the touch panel 110 bears the pressure, the pressure can be transmitted down to the casing of the electronic device through the reinforcing plate and the force transmission part 140, and the reaction force from the casing is applied to the cantilever beam structure through the force transmission part 140, so that the cantilever
  • the upward displacement of the beam structure drives the elastic deformation of the pressure sensor 120 supported by it.
  • the pressure sensor 120 converts the detected deformation into an electrical signal for pressure detection.
  • the tactile feedback component can feed back the shock feeling to the user according to the pressure detection result. Vibration feedback can allow users to determine whether their pressing operations are effective, thereby minimizing repetitive gestures and providing users with a more convenient or comfortable operating experience.
  • FIG. 6 is only an example of the touch panel, and it should be understood that those skilled in the art can conceive of other suitable deformations, which are not limited in the present application.
  • An embodiment of the present application also provides an electronic device, including a housing and the touch panel in the various embodiments described above, and the housing is used to install the touch panel.
  • the back of the casing 20' is provided with an assembly surface 201' for installing a touchpad, and the touchpad 10' is separated from the casing 20' through the assembly surface 201'.
  • the back of the housing is mounted to the housing 20'.
  • the back side of the housing 20' refers to the surface facing the inside of the electronic device during use of the electronic device.
  • a fixing hole 1706 is provided on the edge area of the carrier plate 170 of the touch panel 10'.
  • a fixing hole 202' is provided at a corresponding position on the assembly surface of the housing, and the bearing plate 170 can be fixed on the housing of the electronic device through fasteners, such as fastening nuts, so that the touch panel is fixed on the housing of the electronic device. physically.
  • housing 20' of the electronic device in FIG. 7 is suitable for a touchpad with a carrier plate, such as the touchpad shown in FIG. 4 .
  • housing 20' of the electronic device in FIG. 7 is only an example, and in other embodiments, a suitable housing can be designed as required, which is not limited in this embodiment.
  • the casing is provided with a mounting groove 201" for accommodating the touchpad, and the upper surface of the mounting groove 201" is provided with an assembly surface 2012" for fitting with a force transmission member and for Multiple openings 2011" to allow electrical components on the trackpad to pass through.
  • the number, size, structure and position of the opening 2011" are adaptively modified according to the number, size, structure and position of the second opening 1032" on the reinforcing plate, which is not limited in this embodiment of the present application.
  • the force transmission part can be installed on the assembly surface of the electronic device that is adapted to the force transmission member, so that after the touch panel bears pressure, the force transmission structure is formed by the shell of the electronic device.
  • the pressure can be transmitted down to the shell of the electronic device through the reinforcing plate and the force transmission part, and the reaction force from the shell is applied to the cantilever beam structure through the force transmission part, so that the cantilever beam structure moves upwards, driving
  • the pressure sensor supported by it produces elastic deformation. The pressure sensor converts the detected deformation into an electrical signal for pressure detection.
  • the upper surface of the installation groove 201" is limited
  • the bit structure 2012" is used to limit the downward displacement of the touchpad when it is under pressure.
  • the limiting structure 2012" may be a limiting step or a protrusion. It should be understood that the limiting structure 2012" may also adopt other structures, which are not limited in this embodiment.
  • the position-limiting structure can be installed on the edge area of the groove portion of the installation groove 201 ′′, so as to better play a position-limiting role.
  • the casing of the electronic device in FIG. 8 is suitable for a touchpad without a carrier plate, such as the touchpad shown in FIG. 6 . It should be noted that the casing of the electronic device shown in FIG. 8 is also applicable to a touch panel provided with a carrier plate.
  • housing of the electronic device in FIG. 8 is only an example, and in other embodiments, a suitable housing may be designed as required, which is not limited in this embodiment.
  • each embodiment in this specification is described in a progressive manner, the same or similar parts of each embodiment can be referred to each other, and each embodiment focuses on the difference from other embodiments .
  • the description is relatively simple, and for relevant parts, please refer to some descriptions of other embodiments.
  • modules or elements described or shown herein as separate may be combined into a single module or element, and modules or elements described or shown herein as a single may be split into a plurality of modules or elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本申请实施例提供了一种触控板和电子设备,该触控板用于安装在电子设备的壳体上,其特征在于,包括触摸面板;压力传感器,用于在触摸面板承受压力时,将压力传感器的形变转换成第一电信号,第一电信号被用于计算得到压力检测结果;补强板,固定在触摸面板的下方,补强板上形成有带有台阶的悬臂梁结构,用于支撑压力传感器;力传递部件,力传递部件固定至悬臂梁结构的下方,固定在所述悬臂梁结构的下方,用于在所述触摸面板承受压力时使所述悬臂梁结构向上移位,带动所述压力传感器发生弹性形变;触觉反馈部件,固定在触摸面板下方,用于根据压力计算结果向用户提供震动反馈。基于本方案中,由于补强板上形成有用于支撑压力传感器的悬臂梁结构,不需要额外设置用于支撑压力传感器的弹性支架,减少了触控板的组件数量,进而简化了组装工序、节省了成本。

Description

触控板和电子设备 技术领域
本申请实施例涉及电子技术领域,尤其涉及一种触控板和电子设备。
背景技术
触控板是一种通过触摸传感器感知用户手指位置和移动,从而在电子设备的显示界面上控制光标移动的装置。常规触控板上一般通过物理按键检测用户的按压动作,执行确认或调出菜单等功能。
为了提升触控板的操作便捷性,压力触控板逐渐成为一种新趋势。压力触控板取消了常规触控板的物理按键,设置压力传感器和触控反馈装置来执行压力感应和震动反馈等功能。
相关技术中,压力触控板由于整机装配设计需要,通常设置有独立的压力检测支架来支撑压力传感器,这导致触控板设计组装复杂。
发明内容
有鉴于此,本申请实施例提供了一种触控板和电子设备,用以至少部分地解决上述技术问题。
第一方面,提供了一种触控板,其包括:触摸面板;压力传感器,用于在所述触摸面板承受压力时,将所述压力传感器的形变转换成第一电信号,所述第一电信号被用于计算得到压力检测结果;承载板,用于承载所述触摸面板,所述承载板上形成有悬臂梁结构,所述悬臂梁结构用于支撑所述压力传感器,并且在所述触摸面板承受压力时,带动所述压力传感器发生弹性形变;触觉反馈部件,设置于所述触摸面板下方,用于根据所述压力检测结果向用户提供震动反馈。
在一种可能的实现方式中,所述补强板通过第一粘接层粘附在所述触摸面板的下表面。
在一种可能的实现方式中,所述补强板上形成有多个所述悬臂梁结构,所述多个悬臂梁结构设置在所述补强板上靠近所述补强板的边缘区域。
在一种可能的实现方式中,所述多个悬臂梁结构包括四个悬臂梁结构,所述四个悬臂梁结构分别设置在所述补强板的四个角部或所述补强板的四个边的中心位置,所述悬臂梁结构包括从所述补强板的边缘区域朝内悬空延伸的悬臂区域或从所述补强板的边缘向外悬空伸出的悬臂区域。
在一种可能的实现方式中,所述悬臂梁结构具有相对设置的固定端和自由端,所述固定端具有加强部位,所述固定端的厚度大于所述自由端的厚度。
在一种可能的实现方式中,所述悬臂区域与所述悬臂梁结构的非悬臂区域的连接部不在同一平面上。
在一种可能的实现方式中,所述补强板上形成有至少四个所述悬臂梁结构,所述至少四个悬臂梁结构轴对称地分布在所述补强板上。
在一种可能的实现方式中,所述触摸面板包括用于实现所述触控检测功能的多个电器部 件,所述补强板设置有用于允许所述多个电器部件穿过的至少一个第一开口。
在一种可能的实现方式中,所述触摸面板包括用于实现所述触控检测功能的多个电器部件,所述补强板设置有用于允许所述多个电器部件穿过的至少两个第二开口。
在一种可能的实现方式中,所述力传递部件包括阻尼部件,所述阻尼部件用于吸收所述触觉反馈部件产生的余震。
在一种可能的实现方式中,所述阻尼部件为两个相对表面均具有双面胶的硅胶垫。
在一种可能的实现方式中,所述触控板还包括承载板,设置在所述补强板的下方,所述承载板上设置有用于与所述力传递部件适配的装配面和用于容纳所述悬臂梁结构的第一凹槽。
在一种可能的实现方式中,所述补强板的边缘区域形成有加强筋,所述承载板上设置有容纳所述加强筋的第二凹槽。
在一种可能的实现方式中,所述触摸面板包括用于实现所述触控检测功能的多个电器部件,所述承载板上形成有用于允许所述多个电器部件穿过的第三开口,所述第三开口的周围区域设置有限位结构,用于限定所述触摸面板承受压力时向下的移位。
在一种可能的实现方式中,所述触摸面板包括保护层和触控功能层;所述触控功能层通过第二粘接层粘附在所述保护层的下表面,用于检测触控信息。
在一种可能的实现方式中,所述第二粘接层和所述第二粘接层包括双面胶或低温热固胶。
第二方面,提供了一种电子设备,包括:壳体和根据第一方面的任一种实现方式提供的触控板板,所述壳体用于安装所述触控板。
在一种可能的实现方式中,所述壳体的背面设置有用于安装所述触控板的装配面,所述触控板通过所述装配面从所述壳体的背面安装至所述壳体。
在一种可能的实现方式中,所述壳体上设置有容纳所述触控板的安装槽,所述安装槽的上表面设置有用于与所述力传递构件适配的装配面以及用于允许所述触控板上的电器部件穿过的多个开口。
在一种可能的实现方式中,所述安装槽的上表面设置有限位结构,用于限定所述触控板承受压力时向下的移位。
本申请实施例提供了一种触控板和电子设备,由于补强板用于承载触摸面板,补强板下方形成有悬臂梁结构,悬臂梁结构下方设置力传递部件。在触摸面板承受压力之后,压力可经由补强板和力传递部件传递向下传递至用于与力传递部件装配的部件(例如,电子设备的壳体或其他承载部件),来自该部件的反作用力经由力传递部件施加至悬臂梁结构,使悬臂梁结构向上移位。由于悬臂梁结构支撑有压力传感器,因此悬臂梁结构向上移位会带动其支撑的压力传感器发生弹性形变。压力传感器将检测到的形变转换成电信号,进行压力检测。由于补强板上形成有用于支撑压力传感器的悬臂梁结构,不需要额外设置用于支撑压力传感器的弹性支架,减少了触控板的组件数量,进而简化了组装工序、节省了成本。同时,由于触觉反馈部件可以根据压力检测结果向用户反馈震感。震动反馈可以使得用户确定其按压操作是否有效,从而可以最大限度地减少重复手势,为用户提供更为便捷或舒适的操作体验。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例的触控板的层叠示意图;
图2是本申请一个实施例的触控板的层叠示意图;
图3是本申请一个实施例的阻尼部件的结构示意图;
图4是本申请一个实施例的触控板的结构***图;
图5是图4中的悬臂梁结构的结构示意图;
图6是本申请一个实施例的触控板的结构***图;
图7是本申请一个实施例的触控板与电子设备的壳体的装配***图;
图8是本申请一个实施例的触控板与电子设备的壳体的装配***图。
具体实施方式
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、详细地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
下面结合附图进一步说明本申请实施例的具体实现。
本申请实施例的技术方案可以应用于各种电子设备。
例如,智能手机、笔记本电脑、平板电路、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员即(Automated Teller Machine,ATM)等其他电子设备。但本申请实施例对此并不限定。
图1示出了本申请实施例的触控板10的示意性结构图。该触控板10可以安装在电子设备的壳体上。如图1所示,该触控板10包括:
触摸面板110;
压力传感器120,用于在触摸面板110承受压力时,将压力传感器120的形变转换成第一电信号,第一电信号被用于计算得到压力检测结果;
补强板130,固定在触摸面板110的下方,补强板130上形成有带有台阶的悬臂梁结构1031,用于支撑压力传感器120;
力传递部件140,设置在悬臂梁结构1031的下方,用于在触摸面板110承受压力时使悬臂梁结构1031向上移位,带动压力传感器120发生弹性形变;
触觉反馈部件,固定于触摸面板110下方,用于根据压力检测结果向用户提供震动反馈。
本申请实施例中,压力传感器120可以采用应变计,例如,悬臂应变检测计。
本申请实施例中,带有台阶的悬臂梁结构1031包括悬空伸出的悬臂区域(也即自由端),以及与补强板130一体化的非悬臂区域(也即固定端),例如,图1中的悬臂区域1031a和 非悬臂区域1031b。在该悬臂梁结构中,悬臂区域1031a的上表面高度低于非悬臂区域1031b的高度1031b的上表面的高度,以使悬臂区域与非悬臂区域形成台阶A。
应理解,悬臂梁结构1031用于支撑压力传感器120,可以理解为压力传感器120固定于悬臂梁结构1031的上表面,或者压力传感器120固定于悬臂梁结构1031的下表面。
本申请实施例中,力传递部件140固定在悬臂梁结构1031的下方,在触控板安装在电子设备的壳体或其他部件之后,力传递部件140抵靠在该壳体或其他部件上。在触摸面板110承受压力之后,压力经由补强板130和力传递部件140传递向下传递至该壳体或其他部件,来自该壳体或其他部件的反作用力经由力传递部件140施加至悬臂梁结构1031,会导致悬臂梁结构1031向上移位,带动其支撑的压力传感器120一起发生弹性形变。然后,压力传感器120将检测到的形变转换成电信号,以用于压力检测。在本申请的一种实现方式中,悬臂梁结构1031可以采用压铸工艺与补强板一体成型,以简化触控板的组装工艺。
本申请实施例中,触觉反馈部件可以是线性马达,例如,X或Y轴振动的线性马达。触觉反馈部件也可以是压电陶瓷片等。应理解,触觉反馈部件也可以是其他合适的致动器。触控反馈装置可以粘附在触摸面板110,例如粘附在触摸面板110的边缘,使得在触控板安装于电子设备的壳体时,触觉反馈部件位于电子设备的下部的边缘。在操作时,压力检测芯片可以根据压力传感器120采集到的第一电信号来检测压力大小,并将压力检测的结果发送至主控板,由主控板根据压力检测的结果来确定是否向触觉反馈部件发送震动命令。触觉反馈部件接收到震动命令之后根据设定模式进行震动,向用户反馈震感。
本申请实施例中,由于补强板130用于承载触摸面板110,补强板130下方形成有悬臂梁结构1031,悬臂梁结构1031下方设置力传递部件140。在触摸面板110承受压力之后,压力可经由补强板130和力传递部件140传递向下传递至用于与力传递部件140装配的部件(例如,电子设备的壳体或其他承载部件),来自该部件的反作用力经由力传递部件140施加至悬臂梁结构1031,使悬臂梁结构1031向上移位。由于悬臂梁结构1031支撑有压力传感器120,因此悬臂梁结构1031向上移位会带动其支撑的压力传感器120发生弹性形变。压力传感器120将检测到的形变转换成电信号,进行压力检测。由于补强板上形成有用于支撑压力传感器的悬臂梁结构1031,不需要额外设置用于支撑压力传感器120的弹性支架,减少了触控板的组件数量,进而简化了组装工序、节省了成本。同时,由于触觉反馈部件可以根据压力计算结果向用户反馈震感。震动反馈可以使得用户确定其按压操作是否有效,从而可以最大限度地减少重复手势,为用户提供更为便捷或舒适的操作体验。
在本申请的一种实施例中,如图2所示,补强板130通过第一粘接层150粘附在触摸面板110的下表面,以固定至触摸面板110的下方。
由于设置有补强板130,且补强板130通过第一粘接层150与触摸面板110粘附在一起,可以提升补强板130与触摸面板110整体的抗弯强度,减小用户按压触摸面板110时产生的形变与塌陷,提高用户体验。
本申请实施例中,补强板130可以是金属件结构。
第一粘接层150可以是双面胶。采用双面胶粘,可以简便且低成本的方式实现补强板130与触摸面板110的粘接。
第一粘接层150也可以是低温热固胶。低温热固胶相对于双面胶具有更高的硬度。因此,采用低温热固胶,可以更好地提升触摸面板110与补强板130整体的抗弯强度。
为了确保更好地提升触摸面板110与补强板130整体的抗弯强度,在本申请的一种实现方式中,低温热固胶的固化温度小于或等于85℃,固化后的弹性模量小于或等于3GPa,肖氏硬度在40D~80D的范围内。
为了提升触摸面板与补强板的整体抗弯强度,如图4所示,在一种可能的实现方式中,补强板130’的边缘区域形成有加强筋1303’。例如,可以通过使补强板130’上形成有加强筋1303’的部位的厚度大于补强板130上其他部位的厚度来形成加强筋。例如,自由端的厚度为0.8mm,加强筋的厚度为1.0mm。由于形成有加强筋的补强板的刚度增加,因此在补强板130’与触摸面板110固定连接时可以相应地提升触摸面板110与补强板130’整体的刚性(也即抗弯强度)。
在本申请的一种实施例中,补强板130上形成有多个悬臂梁结构,多个悬臂梁结构设置在补强板130上靠近该补强板的边缘区域。由此,使得悬臂梁结构分散设置,可以保证触控板的结构稳定性。
此外,为了进一步地保证触控板的结构稳定性,所述多个悬臂梁结构1301为至少四个悬臂梁结构,四个悬臂梁结构轴对称地分布在补强板上。
在一种实现方式中,补强板130上设置有四个悬臂梁结构,四个悬臂梁结构分别设置在补强板130的四个角部,由于每个悬臂梁结构上均承载有压力传感器120,将悬臂梁结构设置补强板的四个角部,可以提高压力检测的均匀性。
又例如,在另一种具体的实现方式中,补强板130上设置有四个悬臂梁结构1301,每个悬臂梁结构1301上均承载有压力传感器120,悬臂梁结构1301设置在补强板130的四个边的中心位置。由于四个悬臂梁结构1301对称地分布在补强板上,以此方式,也可以确保触控板的结构稳定性,提高压力检测的均匀性。
需要注意的是,本申请实施例中,悬臂梁结构1301的数量也可以为六个、八个或更多个。由于悬臂梁结构用于支撑压力传感器,若悬臂梁结构增多,则相应地,压力传感器的数量较多,进而提高了压力检测的准确度。然而,压力传感器的数量增加,也会导致触摸板的成本增加。
此外,悬臂梁结构1301的具***置也可以根据需要进行设计,只要确保悬臂梁结构1301在补强板上轴对称地分布即可。
应理解,悬臂梁结构的数量、位置等可以根据具体需要进行设置,本申请对此不做限定。
在本申请的一种实施例中,在本申请的一种实施例中,如图2所示,触摸面板110可以包括:保护层110a和触控功能层110c;触控功能层110c通过第二粘接层110b粘附在保护层110a的下表面,用于检测触控信息。
其中,保护层110a主要用于保护触控功能层110c。保护板例如可以是玻璃盖板等。此外,作为触控板的外观件,保护层110a也可以被设计成从外观上美化触控板。
触控功能层110c主要用于检测触控信息。在一种实现方式中,触控功能层110c包括印刷电路板,印刷电路板上设置有用于实现触控检测功能的电器部件(未示出),用于传送和 处理触控、压力机震动等电信号,实现***设定功能。
保护层110a和触控功能层110c通过第二粘接层110b粘接。第二粘接层110b可以是双面胶。采用双面胶粘,可以简便且低成本的方式实现保护层110a和触控功能层110c的粘接。
第二粘接层110b也可以是低温热固胶。低温热固胶相对于双面胶具有更高的硬度。因此,采用低温热固胶,可以更好地提升保护层110a和触控功能层110c的抗弯强度。
为了确保更好地提升保护层110a和触控功能层110c整体的抗弯强度,在本申请的一种实现方式中,低温热固胶的固化温度小于或等于85℃,固化后的弹性模量小于或等于3GPa,肖氏硬度在40D~80D的范围内。
应理解,第二粘接层110b也可以其他合适的胶体,本实施例对此不做限定。
本申请实施例中,触摸面板110由保护层110a和触控功能层,且触控功能层通过第二粘接层110b粘附在保护层110a的下表面。结合补强板130通过第一粘接层150粘附在触摸面板110下方,更确切地,触控功能层110c的下方,保护层、触控功能层和补强层贴合后形成三明治结构,提升了整体抗弯强度。
在本申请实施例中,当第一粘接层150和第二粘接层110b均采用低温热固胶时,由于低温热固胶本身具有一定的硬度,采用低温热固胶粘附在一起的触摸面板110与补强板130整体具有足够的抗弯强度。此时,在补强板130上可以不设置加强筋,以简化结构设计。
然而,当第一粘接层150和第二粘接层110b采用双面胶时,考虑到双面胶材质较弱,容易产生位移,采用双面胶粘附在一起的触摸面板110与补强板130整体的抗弯强度可能比较差。为此,可以在补强板130上再设置加强筋,以提升粘附在一起的触摸面板110与补强板130整体的抗弯强度。
在本申请实施例中,由于在触摸面板110下方设置有补强板130,补强板130中可以设置有用于允许触觉反馈部件和印刷电路板上的电器元件穿过的开口。开口的大小、数量和形状可以根据需要进行设置,本申请实施例对此不做限定。
在本申请的一种实施例中,力传递部件140可以是阻尼部件,该力传递部件140还用于吸收触觉反馈部件产生的余震。
其中,阻尼部件可以是硅胶复合材料,例如硅胶垫,用于触觉反馈部件的振动阻尼。
阻尼部件的硬度可以优选为肖氏30A左右,以确保阻尼部件具有一定的刚性,避免在触摸面板110承受时,阻尼部件本身发生应变,影响压力检测的准确度。
阻尼部件的厚度可以优选为0.5mm至0.8mm之间.由于若阻尼部件的厚度较小,则会导致悬臂梁结构的应变空间不足,进而导致悬臂梁结构所支撑的压力传感器无法有效地进行压力检测。相反,若阻尼部件的厚度较大,则会导致触摸面板震动不一致的问题。本申请实施例中,通过将阻尼部件140的厚度设置于0.5mm至0.8mm之间,可以在使悬臂梁结构1301具有足够的应变空间情况下确保震动的一致性。
由于力传递部件140为阻尼部件,可以阻尼触觉反馈部件的震动,防止在触控板安装于电子设备时,触觉反馈部件的震动传递至电子设备的机壳,提高了用户体验。同时,由于阻尼部件还可以充当力传递部件,将触摸面板110承受的压力的反作用力传递至悬臂梁结构,以使悬臂梁结构向上移位,带动压力传感器120发生弹性形变,进行压力检测。
在本申请的一种实现方式中,阻尼部件可以分别通过粘接层粘附至悬臂梁结构,以固定至悬臂梁结构。
可选地,在本申请的另一种实现方式中,阻尼部件可以是两个相对表面均具有胶体的部件。例如,如图3所示,阻尼部件为两个相对表面均具有双面胶的硅胶垫。采用双面胶硅胶垫固定连接悬臂梁结构,可以简化组装工艺。
可选地,在本申请的一种实现方式中,如图4所示,阻尼部件位于悬臂梁结构的自由端1031a’。这使得悬臂梁结构对施加在触摸面板上的压力更为敏感,在触摸面板110承受压力时,悬臂梁结构能够产生较大的纵向位移,带动压力传感器120发生较大弹性形变,提高压力检测的灵敏度。
基于上述实施例,如图4所示,在本申请的一种具体实施例中,补强板130’上设置有四个悬臂梁结构1301’,四个悬臂梁结构1301’分别设置在补强板130’的四个角部。由此,使得悬臂梁结构1301’分散设置,可以保证触控板的结构稳定性。同时,由于每个悬臂梁结构1301’上均承载有压力传感器120,将悬臂梁结构1301’设置所述补强板130的四个角部,可以提高压力检测的均匀性。
应理解,四个悬臂梁结构1301’也可以设置在补强板130’的四个边的中心位置。由于四个悬臂梁结构1301’对称地分布在补强板130上,以此方式,也可以确保触控板的结构稳定性,提高压力检测的均匀性。
需要注意的是,本申请实施例中,悬臂梁结构1301’的数量也可以为六个、八个或更多个。由于悬臂梁结构用于支撑压力传感器,若悬臂梁结构增多,则相应地,压力传感器的数量较多,进而提高了压力检测的准确度。然而,压力传感器的数量增加,也会导致触摸板的成本增加。
悬臂梁结构1301’包括从补强板的边缘向外悬空伸出的悬臂区域。具体地,如图4和5所示,从补强板130’短边的边缘区域沿补强板130’的长边方向延伸的悬臂区域1301a’(自由端),延伸出的悬臂区域1301a’形成补强板130’的四个角。
应理解,图4的补强板130’中悬臂梁结构1301’的结构、数量和位置等仅是一种实施例,本领域技术人员可以想到其他合适的变形,本申请对此不做限定。
在本申请实施例中,悬臂梁结构1301’具有加强部位1301c’,位于悬臂梁结构1301’的固定端1301b’。该加强部位1301c’位于悬臂梁结构1301’的固定端(也即1301b’)。
在本申请的一种实现方式中,加强部位1301c’的厚度大于自由端1301a’的厚度。该加强部位1301c’可以通过使固定端相对于悬臂梁结构的自由端具有突变的厚度来防止悬臂梁结构1301’长期使用过程中发生断裂,提高了悬臂梁结构1301’的耐用性。
在本申请的一种实现方式中,如图5所示,悬臂梁结构1301’的悬臂区域1301a’与非悬臂区域1301b’的连接部不在同一平面上,使悬臂梁结构1301’的应力集中位置不在同一条直线上,即形成加强部位1301c’,避免悬臂梁结构1301’长期使用过程中发生断裂,提高了悬臂梁结构1301’的耐用性。
由于触摸面板110包括用于实现触控检测功能的多个电器部件,如图4所示,补强板130’设置有用于允许所述多个电器部件穿过的第一开口1302’。
在图4的实施例中,第一开口1302’的数量为一个,以简化组装工艺。
应理解,第一开口1302’的形状、大小可以基于需要进行设计,本申请对此不做限定。在图4的实施例中,第一开口1302’还允许触觉反馈部件160向下伸出穿过。
为了提高补强板130’的抗弯强度,如图4所示,所述补强板130’的边缘区域形成有加强筋。例如,可以通过使补强板上形成有加强筋1303’的部位的厚度大于补强板上其他部位的厚度来形成加强筋。由于形成有加强筋的补强板的刚度增加,因此在补强板150与触摸面板110固定连接时可以相应地提升触摸面板110与补强板150整体的刚性(也即抗弯强度)。
加强筋1303’位于各个悬臂梁结构1301a’之间,在图4所示的实施例中,悬臂梁结构1301a’位于补强板130的四个角部,加强筋1303’分别沿长边方向和短边方向设置在补强板130’的长边和短边的边缘。
然而,在其他实现方式中,加强筋1303’也可以设置在补强板130’的其他合适的位置,本申请实施例对此不做限定。
在图4所示的实施例中,还设置有承载板170,设置在补强板130’的下方,承载板170上设置有用于与力传递部件140适配的装配面1704和用于容纳悬臂梁结构1301’的第一凹槽1705。在承载板170与补强板130’和力传递部件140组装之后,力传递部件140可以安装在该装配面上,以在触摸面板110承受压力之后,压力可经由补强板130’和力传递部件140传递向下传递至承载板170,来自该承载板170的反作用力经由力传递部件140施加至悬臂梁结构1301’,使悬臂梁结构1301’向上移位,带动其支撑的压力传感器120发生弹性形变。压力传感器120将检测到的形变转换成电信号,进行压力检测。
如图4所示,所述承载板170上设置有容纳加强筋的第二凹槽1701,以实现与补强板130’的紧密配合。第二凹槽1701的设置位置、大小、结构和数量根据补强板130’上加强筋的位置、大小、结构和数量适应性地变化,本申请实施例对此不做限定。
为了限制避免在承受较大压力时,触摸面板110下榻变形较大,影响触控板的使用体验,如图4所示,在本申请的一种实施例中,承载板170上设置有限位结构1702,用于限定所述触摸面板110承受压力时向下的移位。
在一种具体的实现方式中,限位结构1702可以是凸起结构,例如,可以使承载板上设置有限位结构的部位的厚度大于承载板上的其他部位的厚度来形成该凸起结构,应理解,限位结构1702也可以采用其他结构,本实施例对此不做限定。
由于所述承载板170上设置有用于允许所述多个电器部件穿过的第三开口1703,在一种具体的实现方式中,如图4所示,所述限位结构1702设置在所述第三开口1703的边缘区域,以较好地起到限位作用。
本申请实施例中,承载板170可以采用金属结构材料制成,例如,可以选用SUS301不锈钢、SUS304不锈钢、铝合金材料2A 12 T4、铝合金材料7075-T6。由于承载板170上结构复杂,本申请中承载板170优选采用压铸材料制成,例如铝合金材料2A 12 T4、铝合金材料7075-T6等。
在本申请实施例中,所述承载板170的边缘区域设置有固定孔1706,用于允许通过固定件安装所述触控板。
本申请实施例中,触控板10'可以安装至如图7所示的电子设备的壳体20’上,壳体的背面设置有用于安装触控板的装配面201’,触控板通过该装配面201’从壳体的背面安装至壳体20’。
其中,壳体的背面是指在电子设备的使用过程中朝电子设备内侧的表面。如图7所示,触控板的承载板170的边缘区域设置有固定孔。壳体的装配面201’的对应位置设置有固定孔202’,通过紧固件,例如紧固螺母,可以将承载板170固定在电子设备的壳体上,从而将触控板固定在电子设备的壳体上20’。
本申请实施例中,由于补强板130’用于承载触摸面板110,补强板130’下方形成有悬臂梁结构1301’,悬臂梁结构1301’下方设置力传递部件140,力传递部件140由承载板170的装配面支撑。在触摸面板110承受压力之后,压力可经由补强板和力传递部件140传递向下传递至承载板170,来自承载板170的反作用力经由力传递部件140施加至悬臂梁结构1301’,使悬臂梁结构1301’向上移位,带动其支撑的压力传感器120发生弹性形变。压力传感器120将检测到的形变转换成电信号,进行压力检测。由于不需要再单独设置用于支撑压力传感器120的支架,减少了触控板的组件数量,进而简化了组装工序、节省了成本。同时,由于触觉反馈部件可以根据压力检测结果向用户反馈震感。震动反馈可以使得用户确定其按压操作是否有效,从而可以最大限度地减少重复手势,为用户提供更为便捷或舒适的操作体验。
应理解,本申请实施例中的触摸面板110、力传递部件140以及其他相关部件的结构、数量、形状和位置与前述实施例相似,为了避免赘述,此处不再详细描述。
基于前述实施例,如图6所示,在本申请的另一种实施例中,补强板130”上设置有四个悬臂梁结构1301”,四个悬臂梁结构1301”分别形成在补强板130”的四个角部。悬臂梁结构1301”包括从补强板130”的边缘区域向内悬空伸出的悬臂区域,具体地,如图6所示,从补强板130”的边缘区域沿长边方向向内悬空伸出的悬臂区域1301a”(即自由端)。
应理解,图6的补强板130”中悬臂梁结构1301”的结构、数量和位置等仅是一种实施例,本领域技术人员可以想到其他合适的变形,本申请对此不做限定。
在本申请实施例中,悬臂梁结构具有加强部位1301c”,位于悬臂梁结构的固定端1301b”。该加强部位1301c”位于悬臂梁结构1301”的固定端(也即1301b”)。
在本申请的一种实现方式中,固定端1301b”的厚度大于自由端1301a”的厚度。具体地,加强部位1301c”可以通过使固定端相对于悬臂梁结构的自由端具有突变的厚度来防止悬臂梁结构1301”长期使用过程中发生断裂,提高了悬臂梁结构1301的耐用性。
在本申请的另一种实现方式中,如图6所示,悬臂梁结构1301”的悬臂区域1301a”,与非悬臂区域1301b”不在同一平面上,由此使悬臂梁结构1301’的应力集中位置不在同一直线上,避免悬臂梁结构1301长期使用过程中发生断裂,提高了悬臂梁结构1301的耐用性。
由于触摸面板110包括用于实现触控检测功能的多个电器部件,如图6所示,补强板130设置有用于允许所述多个电器部件穿过的多个第二开口1032”。通过设置多个第二开口1032”,而非使用允许所述多个电器部件穿过的一个较大的开口,可以较小地减弱补强板130的抗弯强度,由此可以省略设置加强筋、承载板170等结构。
应理解,第二开口1032”的形状、大小和数量可以基于需要进行设计,本申请对此不做限定。在图6的实施例中,第二开口1032”还包括允许触觉反馈部件向下伸出穿过的开口,或者第二开口1032”还允许触觉反馈部件向下伸出穿过。
本申请实施例中,触控板可以直接安装至电子设备的壳体20”上,如图8所示,对应的电子设备的壳体20”设置有容纳触控板的安装槽201”,安装槽201”的上表面设置有用于与力传递构件适配的装配面2012”以及用于允许触控板上的电器部件穿过的多个开口2011”。
其中,开口2011”的数量、大小、结构和位置根据补强板130上的第二开口1032”的数量、大小、结构和位置进行适应性修改,本申请实施例对此不再限定。
当触控板安装于该壳体20”上时,力传递部件140可以安装在电子设备上与力传递构件适配的装配面2012”上,以在触摸面板110承受压力之后,力传递结构由电子设备的壳体支撑,压力可经由补强板和力传递部件140传递向下传递至电子设备的壳体,来自该壳体的反作用力经由力传递部件140施加至悬臂梁结构,使悬臂梁结构向上移位,带动其支撑的压力传感器120发生弹性形变。压力传感器120将检测到的形变转换成电信号,进行压力检测。
为了限制避免在承受较大压力时,触摸面板110下榻变形较大,影响触控板的使用体验,如图8所示,在本申请的一种实施例中,安装槽201”的上表面设置有限位结构2013”,用于限定所述触控板承受压力时向下的移位。
其中,限位结构2013”可以是凸起结构,例如可以使安装槽201”底部设置有限位结构的部位的厚度大于安装槽底部的其他部位的厚度来形成该凸起结构,应理解,限位结构2013”也可以采用其他结构,本实施例对此不做限定。
在一种具体的实施方式中,如图8所示,限位结构2013”可以安装在安装槽201”的槽部的边缘区域,以较好地起到限位作用。
本申请实施例中,由于补强板130”用于承载触摸面板110,补强板130”下方形成有悬臂梁结构,悬臂梁结构下方设置力传递部件140,力传递部件140由电子设备的壳体支撑。在触摸面板110承受压力之后,压力可经由补强板和力传递部件140传递向下传递至电子设备的壳体,来自该壳体的反作用力经由力传递部件140施加至悬臂梁结构,使悬臂梁结构向上移位,带动其支撑的压力传感器120发生弹性形变。压力传感器120将检测到的形变转换成电信号,进行压力检测。由于不需要再单独设置用于支撑压力传感器120的支架,并且不需要设置承载板,加大地减少了触控板的组件数量,进而简化了组装工序、节省了成本。同时,由于触觉反馈部件可以根据压力检测结果向用户反馈震感。震动反馈可以使得用户确定其按压操作是否有效,从而可以最大限度地减少重复手势,为用户提供更为便捷或舒适的操作体验。
应理解,本申请实施例中的触摸面板、力传递部件140以及其他相关部件的结构、数量、形状和位置与前述实施例相似,为了避免赘述,此处不再详细描述。
此外,图6仅是触控板的一种示例,应理解,本领域技术人员可以想到其他合适的变形,本申请对此不做限定。
本申请实施例还提供了一种电子设备,包括壳体和上文描述的各种实施例中的触控板,壳体用于安装所述触控板。
在本申请的一种实施例中,如图7所示,壳体20’的背面设置有用于安装触控板的装配面201’,触控板10’通过装配面201’从壳体20’的背面安装至壳体20’。
其中,壳体20’的背面是指在电子设备的使用过程中朝电子设备内侧的表面。如图7所示,触控板10’的承载板170的边缘区域设置有固定孔1706。壳体的装配面的对应位置设置有固定孔202’,通过紧固件,例如紧固螺母,可以将承载板170固定在电子设备的壳体上,从而将触控板固定在电子设备的壳体上。
应理解,图7中的电子设备的壳体20’适用于具有承载板的触控板,例如图4所示的触控板。
应理解,图7中的电子设备的壳体20’仅是一种示例,在其他实施例中可以根据需要设计合适的壳体,本实施例对此不做限定。
在本申请的另一种实施例中,壳体上设置有容纳触控板的安装槽201”,安装槽201”的上表面设置有用于与力传递构件适配的装配面2012”以及用于允许触控板上的电器部件穿过的多个开口2011”。
其中,开口2011”的数量、大小、结构和位置根据补强板上的第二开口1032”的数量、大小、结构和位置进行适应性修改,本申请实施例对此不再限定。
当触控板安装于该壳体20”上时,力传递部件可以安装在电子设备上与力传递构件适配的装配面上,以在触摸面板承受压力之后,力传递结构由电子设备的壳体支撑,压力可经由补强板和力传递部件传递向下传递至电子设备的壳体,来自该壳体的反作用力经由力传递部件施加至悬臂梁结构,使悬臂梁结构向上移位,带动其支撑的压力传感器生弹性形变。压力传感器将检测到的形变转换成电信号,进行压力检测。
为了限制避免在承受较大压力时,触摸面板下榻变形较大,影响触控板的使用体验,如图8所示,在本申请的一种实施例中,安装槽201”的上表面设置有限位结构2012”,用于限定所述触控板承受压力时向下的移位。
其中,限位结构2012”可以是限位台阶或凸起,应理解,限位结构2012”也可以采用其他结构,本实施例对此不做限定。
在一种具体的实施方式中,如图8所示,限位结构可以安装在安装槽201”的槽部的边缘区域,以较好地起到限位作用。
应理解,图8中的电子设备的壳体适用于未设置承载板的触控板,例如图6所示的触控板。需要说明的是,图8中的电子设备的壳体也适用于设置有承载板的触控板。
应理解,图8中的电子设备的壳体仅是一种示例,在其他实施例中可以根据需要设计合适的壳体,本实施例对此不做限定。
应该理解,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于方法实施例而言,由于其基本相似于装置和***实施例中描述的方法,所以描述的比较简单,相关之处参见其他实施例的部分说明即可。
应该理解,本文用单数形式描述或者在附图中仅显示一个的元件并不代表将该元件的数量限于一个。此外,本文中被描述或示出为分开的模块或元件可被组合为单个模块或元件, 且本文中被描述或示出为单个的模块或元件可被拆分为多个模块或元件。
还应理解,本文采用的术语和表述方式只是用于描述,本说明书的一个或多个实施例并不应局限于这些术语和表述。使用这些术语和表述并不意味着排除任何示意和描述(或其中部分)的等效特征,应认识到可能存在的各种修改也应包含在权利要求范围内。其他修改、变化和替换也可能存在。相应的,权利要求应视为覆盖所有这些等效物。

Claims (20)

  1. 一种触控板,用于安装在所述电子设备的壳体上,其特征在于,包括:
    触摸面板;
    压力传感器,用于在所述触摸面板承受压力时,将所述压力传感器的形变转换成第一电信号,所述第一电信号被用于计算得到压力检测结果;
    补强板,固定在所述触摸面板的下方,所述补强板上形成有带有台阶的悬臂梁结构,用于支撑所述压力传感器;
    力传递部件,固定在所述悬臂梁结构的下方,用于在所述触摸面板承受压力时使所述悬臂梁结构向上移位,带动所述压力传感器发生弹性形变;
    触觉反馈部件,固定于所述触摸面板下方,用于根据所述压力检测结果向用户提供震动反馈。
  2. 根据权利要求1所述的触控板,其特征在于,所述补强板通过第一粘接层粘附在所述触摸面板的下表面。
  3. 根据权利要求1所述的触控板,其特征在于,所述补强板上形成有多个所述悬臂梁结构,所述多个悬臂梁结构设置在所述补强板上靠近所述补强板的边缘区域。
  4. 根据权利要求3所述的触控板,其特征在于,所述多个悬臂梁结构包括四个悬臂梁结构,所述四个悬臂梁结构分别设置在所述补强板的四个角部或所述补强板的四个边的中心位置,所述悬臂梁结构包括从所述补强板的边缘区域朝内悬空延伸的悬臂区域或从所述补强板的边缘向外悬空伸出的悬臂区域。
  5. 根据权利要求4所述的触控板,其特征在于,所述悬臂梁结构具有相对设置的固定端和自由端,所述固定端具有加强部位,所述固定端的厚度大于所述自由端的厚度。
  6. 根据权利要求4所述的触控板,其特征在于,所述悬臂区域与所述悬臂梁结构的非悬臂区域的连接部不在同一平面上。
  7. 根据权利要求1所述的触控板,其特征在于,所述补强板上形成有至少四个所述悬臂梁结构,所述至少四个悬臂梁结构轴对称地分布在所述补强板上。
  8. 根据权利要求1所述的触控板,其特征在于,所述触摸面板包括用于实现所述触控检测功能的多个电器部件,所述补强板设置有用于允许所述多个电器部件穿过的至少一个第一开口。
  9. 根据权利要求1所述的触控板,其特征在于,所述触摸面板包括用于实现所述触控检测功能的多个电器部件,所述补强板设置有用于允许所述多个电器部件穿过的至少两个第二 开口。
  10. 根据权利要求1所述的触控板,其特征在于,所述力传递部件包括阻尼部件,所述阻尼部件用于吸收所述触觉反馈部件产生的余震。
  11. 根据权利要求10所述的触控板,其特征在于,所述阻尼部件为两个相对表面均具有双面胶的硅胶垫。
  12. 根据权利要求1所述的触控板,其特征在于,所述触控板还包括承载板,设置在所述补强板的下方,所述承载板上设置有用于与所述力传递部件适配的装配面和用于容纳所述悬臂梁结构的第一凹槽。
  13. 根据权利要求12所述的触控板,其特征在于,所述补强板的边缘区域形成有加强筋,所述承载板上设置有容纳所述加强筋的第二凹槽。
  14. 根据权利要求12所述的触控板,其特征在于,所述触摸面板包括用于实现所述触控检测功能的多个电器部件,所述承载板上形成有用于允许所述多个电器部件穿过的第三开口,所述第三开口的周围区域设置有限位结构,用于限定所述触摸面板承受压力时向下的移位。
  15. 根据权利要求2所述的触控板,其特征在于,所述触摸面板包括保护层和触控功能层;所述触控功能层通过第二粘接层粘附在所述保护层的下表面,用于检测触控信息。
  16. 根据权利要求15所述的触控板,其特征在于,所述第二粘接层和所述第二粘接层包括双面胶或低温热固胶。
  17. 一种电子设备,其特征在于,包括:壳体和根据权利要求1至16中任一项所述的触控板,所述壳体用于安装所述触控板。
  18. 根据权利要求17所述的电子设备,其特征在于,所述壳体的背面设置有用于安装所述触控板的装配面,所述触控板通过所述装配面从所述壳体的背面安装至所述壳体。
  19. 根据权利要求17所述的电子设备,其特征在于,所述壳体上设置有容纳所述触控板的安装槽,所述安装槽的上表面设置有用于与所述力传递构件适配的装配面以及用于允许所述触控板上的电器部件穿过的多个开口。
  20. 根据权利要求19所述的电子设备,其特征在于,所述安装槽的上表面设置有限位结构,用于限定所述触控板承受压力时向下的移位。
PCT/CN2022/130660 2021-12-31 2022-11-08 触控板和电子设备 WO2023124549A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111679664.1A CN114397969A (zh) 2021-12-31 2021-12-31 触控板和电子设备
CN202111679664.1 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023124549A1 true WO2023124549A1 (zh) 2023-07-06

Family

ID=81229920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130660 WO2023124549A1 (zh) 2021-12-31 2022-11-08 触控板和电子设备

Country Status (2)

Country Link
CN (1) CN114397969A (zh)
WO (1) WO2023124549A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114397969A (zh) * 2021-12-31 2022-04-26 深圳市汇顶科技股份有限公司 触控板和电子设备
CN115793779B (zh) 2022-03-11 2023-12-12 深圳市汇顶科技股份有限公司 触控板模组以及使用该触控板模组的电子装置
CN115668109B (zh) * 2022-05-23 2023-09-01 深圳市汇顶科技股份有限公司 一种支撑组件、触控板及电子设备
CN115398379A (zh) * 2022-07-25 2022-11-25 深圳市汇顶科技股份有限公司 压力触控板和电子设备
TWI830348B (zh) * 2022-08-26 2024-01-21 致伸科技股份有限公司 觸控裝置
WO2024050746A1 (zh) * 2022-09-08 2024-03-14 深圳市汇顶科技股份有限公司 压力触控板和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204965394U (zh) * 2014-09-30 2016-01-13 苹果公司 触控板和电子设备
CN112703469A (zh) * 2019-03-04 2021-04-23 谷歌有限责任公司 具有力感测电路的触控板
CN112817438A (zh) * 2019-11-15 2021-05-18 美蓓亚三美株式会社 振动促动器以及振动呈现装置
US20210240270A1 (en) * 2020-01-31 2021-08-05 Dell Products, Lp System for a solid-state keyboard and touchpad with a single sheet cover for providing haptic feedback
CN114397969A (zh) * 2021-12-31 2022-04-26 深圳市汇顶科技股份有限公司 触控板和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204965394U (zh) * 2014-09-30 2016-01-13 苹果公司 触控板和电子设备
CN112703469A (zh) * 2019-03-04 2021-04-23 谷歌有限责任公司 具有力感测电路的触控板
CN112817438A (zh) * 2019-11-15 2021-05-18 美蓓亚三美株式会社 振动促动器以及振动呈现装置
US20210240270A1 (en) * 2020-01-31 2021-08-05 Dell Products, Lp System for a solid-state keyboard and touchpad with a single sheet cover for providing haptic feedback
CN114397969A (zh) * 2021-12-31 2022-04-26 深圳市汇顶科技股份有限公司 触控板和电子设备

Also Published As

Publication number Publication date
CN114397969A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2023124549A1 (zh) 触控板和电子设备
JP6080265B2 (ja) タッチパッド入力装置
US9875866B2 (en) Haptic keyswitch structure and input device
US10725567B1 (en) Touchpad module and computing device using same
CN214225888U (zh) 触控板和电子设备
WO2023202044A1 (zh) 压力触控板、压力触控板组件及电子设备
US10606377B1 (en) Touchpad module and computing device using same
WO2022147887A1 (zh) 触控板和电子设备
CN112445329A (zh) 触控反馈模组及触控装置
CN217443844U (zh) 触控板、压力触控装置和电子设备
US11556189B1 (en) Touchpad module and computing device using same
WO2022027326A1 (zh) 振动反馈模组、触控组件及电子设备
US10969895B2 (en) Input device
US11829567B2 (en) Touch pad, force touch apparatus, and electronic device
CN217467638U (zh) 压力触控板、压力触控板组件及电子设备
WO2024020849A1 (zh) 触控装置、触控板和电子设备
CN216848701U (zh) 触控板和电子设备
CN216871180U (zh) 触控板和电子设备
WO2024000172A1 (zh) 触控板和电子设备
WO2024020725A1 (zh) 压力触控板和电子设备
TWI784685B (zh) 具有震動功能的觸控板
WO2024050746A1 (zh) 压力触控板和电子设备
CN217443846U (zh) 压力触控板和电子设备
CN217386333U (zh) 压力触控模组以及电子设备
CN217404849U (zh) 触控板和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913812

Country of ref document: EP

Kind code of ref document: A1