WO2023123694A1 - 一种用于碳纳米管的高速气体粉碎装置 - Google Patents

一种用于碳纳米管的高速气体粉碎装置 Download PDF

Info

Publication number
WO2023123694A1
WO2023123694A1 PCT/CN2022/081324 CN2022081324W WO2023123694A1 WO 2023123694 A1 WO2023123694 A1 WO 2023123694A1 CN 2022081324 W CN2022081324 W CN 2022081324W WO 2023123694 A1 WO2023123694 A1 WO 2023123694A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
classifying
valve
motor
crushing device
Prior art date
Application number
PCT/CN2022/081324
Other languages
English (en)
French (fr)
Inventor
沈宇栋
万仁涛
蔡小锋
Original Assignee
无锡东恒新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡东恒新能源科技有限公司 filed Critical 无锡东恒新能源科技有限公司
Publication of WO2023123694A1 publication Critical patent/WO2023123694A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/02Feeding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/14Separating or sorting of material, associated with crushing or disintegrating with more than one separator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating

Definitions

  • the invention relates to a high-speed gas crushing device for carbon nanotubes, which belongs to the technical field of chemical equipment.
  • Pulverizing carbon nanotubes into small particle powder is an essential process for the preparation of carbon nanotube conductive agents, while traditional pulverizers will generate a lot of heat when pulverizing materials, resulting in deterioration of heat-sensitive materials, and long-term use will lead to The equipment is aging, the equipment is worn out, and the impurities brought along with it will also pollute the product, so the traditional equipment cannot meet the crushing process of carbon nanotubes.
  • the purpose of the present invention is to provide a high-speed gas pulverization device for carbon nanotubes, which pulverizes carbon nanotubes into small particle powders through high-pressure and high-speed airflow, avoiding the large amount of heat generated when traditional pulverizers pulverize materials.
  • the use of high-pressure high-speed airflow to crush will not cause equipment wear, so that the crushed carbon nanotubes do not contain impurities, the crushing efficiency is high, and the crushing quality is high; and the crushed carbon nanotubes are subjected to two Secondary screening and classification, the carbon nanotubes screened on both sides are collected separately, and at the same time meet the needs of carbon nanotubes with different particle sizes, and can process particles of two particle sizes at the same time, with a wide range of applications.
  • the invention provides a high-speed gas crushing device for carbon nanotubes, comprising an automatic feeder, a crushing mechanism, a screening mechanism and a collection mechanism;
  • the automatic feeder includes a screw conveyor, and the crushing mechanism passes through a first conveying
  • the pipeline is connected with the automatic feeder, and the crushing mechanism includes a first classification motor, a first classification wheel and a high-pressure air pipe;
  • the screening mechanism is connected with the crushing mechanism through a second conveying pipeline, and the screening mechanism includes a second classification A motor, a second classifying wheel, and a first collection bin;
  • the collection mechanism is connected to the screening mechanism through a third delivery pipeline, and the third delivery pipeline includes an induced draft fan, a negative pressure bin and a second collection bin.
  • the high-pressure airflow pipe is communicated with the first delivery pipeline; the high-pressure airflow pipe includes at least two intersecting pipes, and the high-pressure airflow pipe includes at least three air inlets, each of which is connected to There is a high-pressure high-speed airflow.
  • the output end of the first classifying motor is fixedly connected to the first classifying wheel, and the first classifying motor drives the first classifying wheel to rotate, and the first classifying wheel is used for primary classification of carbon nanotubes. sieve.
  • the output end of the second classifying motor is fixedly connected to the second classifying wheel, and the second classifying motor drives the second classifying wheel to rotate, and the second classifying wheel is used for performing secondary classification on carbon nanotubes. secondary sieving.
  • the screening mechanism further includes a first valve and a first collection bin, and the first valve is located above the first collection bin.
  • the induced draft fan is connected with a negative pressure chamber.
  • At least one impact air hammer is arranged in the negative pressure chamber, and each of the impact air hammers is connected to an air compressor.
  • a second collection chamber and a second valve are arranged below the negative pressure chamber.
  • both the first valve and the second valve are electromagnetic valves.
  • the present invention also includes a remote control cabinet, and the remote control cabinet is connected with the screw conveyor, the first grading motor, the second grading motor, the first valve, the second valve, the induced draft fan and the air compressor respectively. Data Connections.
  • the high-pressure airflow pipe of the present invention includes at least three air inlets, each air inlet is connected with a high-pressure and high-speed airflow, and the carbon nanotubes are collided and rubbed by the high-pressure and high-speed airflows in multiple directions to crush the carbon nanotubes
  • the carbon nanotubes are crushed into small particle powder by means of high-pressure and high-speed airflow, which avoids the problem that a large amount of heat will be generated when the traditional pulverizer pulverizes the material, resulting in the deterioration of heat-sensitive materials. It will not cause equipment wear and tear, so that the crushed carbon nanotubes do not contain impurities, and the crushing efficiency is high, and the crushing quality is high;
  • the present invention sieves and classifies small particle powder carbon nanotubes twice by setting the first classification wheel and the second classification wheel, and collects the sieved medium and fine particle powder carbon nanotubes respectively It meets the needs of carbon nanotubes of different particle sizes at the same time, and can process particles of two particle sizes at the same time, and has a wide range of applications;
  • the remote control cabinet of the present invention is respectively connected with the data of the screw conveyor, the first grading motor, the second grading motor, the first valve, the second valve, the induced draft fan and the air compressor, and realizes intelligent automatic control of each device through the remote control cabinet Working conditions, high degree of automation, high work efficiency;
  • Fig. 1 is a schematic structural diagram of a high-speed gas crushing device for carbon nanotubes according to the present invention.
  • a high-speed gas crushing device for carbon nanotubes includes an automatic feeder 2, a crushing mechanism 10, a screening mechanism 20 and a collection mechanism 22;
  • the automatic feeder 2 includes a screw conveyor 3
  • the crushing mechanism 10 is connected with the automatic feeder 2 through the first conveying pipeline 7, and the crushing mechanism 10 includes the first classifying motor 4, the first classifying wheel 5 and the high-pressure gas flow pipe 6;
  • the screening mechanism 20 passes through the second Conveying pipeline 19 is connected with pulverizing mechanism 10, and described screening mechanism 20 comprises the second classification motor 17, the second classification wheel 18 and the first collecting bin 8;
  • the third delivery pipeline 21 includes an induced draft fan 13 , a negative pressure bin 14 and a second collection bin 11 .
  • the high-pressure airflow pipe 6 communicates with the first conveying pipeline 7; the high-pressure airflow pipe 6 includes at least two intersecting pipes, and the high-pressure airflow pipe 6 includes at least three air inlets, each of which is connected to a
  • the high-pressure and high-speed airflow collides and rubs the carbon nanotubes through the high-pressure and high-speed airflow in multiple directions to crush the carbon nanotubes into small particle powder.
  • the high-pressure airflow pipe 6 is formed by interlacing two pipes, and the two pipes are interlaced to form a cross-shaped high-pressure airflow pipe 6, and the cross-shaped high-pressure airflow pipe 6 has four air inlets.
  • the output end of the first classifying motor 4 is fixedly connected with the first classifying wheel 5, and the first classifying motor 4 drives the first classifying wheel 5 to rotate; the small particle powdery carbon nanotubes pulverized by the high-pressure gas flow pipe 6 Rising to the first classifying wheel 5, the first classifying wheel 5 rotates to preliminarily sieve and classify the small particle powdery carbon nanotubes, and the sieved coarse particle powdery carbon nanotubes are dropped to the high-pressure air flow due to gravity.
  • the tube 6 continues to be pulverized, and the sieved carbon nanotubes in the form of medium-sized powder are transported to the second classifying wheel 1 of the pulverizing mechanism 10 through the second conveying pipeline 19 for re-sieving and classifying.
  • the output end of the second classifying motor 17 is fixedly connected with the second classifying wheel 18, and the second classifying motor 17 drives the second classifying wheel 18 to rotate;
  • the screening mechanism 20 also includes a first valve 9 and a first collecting Bin 8, the first valve 9 is located above the first collection bin 8;
  • the second classification wheel 18 performs secondary screening and classification on the carbon nanotubes in the form of medium-sized particles, and the sieved carbon nanotubes in the form of medium-sized particles
  • the carbon nanotubes are collected into the first collection bin 8 through the first valve 9 , and the sieved fine-grained powdered carbon nanotubes are transported to the negative pressure bin 14 through the third delivery pipeline 21 .
  • the induced draft fan 13 is connected with the negative pressure chamber 14, and the induced draft fan 13 turns the negative pressure chamber 14 into a negative pressure state, at this time, the fine particle powdery carbon nanotubes in the third delivery pipeline 21 will enter into the In the negative pressure chamber 14.
  • At least one impact air hammer 15 is provided in the negative pressure chamber 14, and each of the impact air hammers 15 is connected with an air compressor 16, and the air compressor 16 is used to give the impact air hammer 15 is inflated to make the fine particle powdery carbon nanotubes in the negative pressure chamber 14 move down.
  • a second collection bin 11 and a second valve 12 are provided below the negative pressure bin 14, and the fine-grained powder carbon nanotubes that move downward pass through the second valve 12 and are collected in the second collection bin 11 .
  • both the first valve 9 and the second valve 12 are electromagnetic valves.
  • a remote control cabinet 1 which is connected with the screw conveyor 3, the first grading motor 4, the second grading motor 17, the first valve 9, the second valve 12, the induced draft fan 13 and the air Compressor 16 data connection, through the remote control cabinet 1 to realize intelligent automatic control of the working conditions of each device.
  • the carbon nanotube raw material is stored in the automatic feeder 2, and the carbon nanotube raw material is transported to the high-pressure airflow pipe 6 through the screw conveyor 3 and the first conveying pipeline 7, and the high-pressure airflow pipe 6 includes at least three air inlets Each air inlet is connected with a high-pressure and high-speed airflow, and the carbon nanotubes are collided and rubbed by the high-pressure and high-speed airflow in multiple directions to crush the carbon nanotubes into small particle powder;
  • the small particle powdery carbon nanotubes rise to the first classifying wheel 5, and the first classifying wheel 5 rotates to carry out preliminary screening and classification of the small particle powdery carbon nanotubes, and the coarse particle powdery carbon nanotubes sieved out are
  • the tube falls to the high-pressure air flow pipe 6 due to gravity and continues to be crushed, and the sieved medium-sized powdery carbon nanotubes are transported to the crushing mechanism 10 through the second delivery pipeline 19; the second classification wheel 18 in the crushing mechanism 10 is centered
  • the carbon nanotubes are transported to the negative pressure chamber 14 through the third delivery pipeline 21, the induced draft fan 13 turns the negative pressure chamber 14 into a negative pressure state, and the air compressor 16 inflates the impact air hammer 15 to make the negative pressure chamber 14
  • the carbon nanotubes in the form of fine particles move downwards, and the carbon nanotubes in the form of fine particles moving downward pass through the second valve 12 and are collected in the second collection bin 11 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crushing And Pulverization Processes (AREA)

Abstract

公开了一种用于碳纳米管的高速气体粉碎装置,属于化工设备技术领域。该装置包括自动加料机(2)、粉碎机构(10)、筛分机构(20)和收集机构(22);自动加料机包括螺旋输送机(3),粉碎机构通过第一输送管道(7)与自动加料机连接,粉碎机构包括第一分级电机(4)、第一分级轮(5)和高压气流管(6);筛分机构通过第二输送管道(19)与粉碎机构连接,筛分机构包括第二分级电机(17)、第二分级轮(18)和第一收集仓(8)。该装置避免了传统粉碎机粉碎物料时会产生大量的热,导致热敏性物料变质的问题,粉碎效率高,粉碎质量高;并且将粉碎后的碳纳米管进行两次筛分,同时满足对不同颗粒大小的碳纳米管的需求,适用范围广。

Description

一种用于碳纳米管的高速气体粉碎装置 技术领域
本发明涉及一种用于碳纳米管的高速气体粉碎装置,属于化工设备技术领域。
背景技术
近年来,碳纳米管作为优良的导电剂,已在新能源汽车锂电池行业得到广泛应用。因其具有超高长径比和高导电性,与传统导电剂石墨、superP相比,只需很少的添加量,便能在电极内组建高效的三维导电网络结构,导电效率极高,同时可提升电池能量密度、使用寿命等关键指标。因此,合成新型的碳纳米管导电剂取代传统导电剂已成为趋势。
将碳纳米管粉碎成小微粒粉末是碳纳米管导电剂的制备必不可少的一道工序,而传统粉碎机粉碎物料时会产生大量的热,导致热敏性物料变质,随着长时间的使用会导致设备老化,设备的磨损,随之带来的杂质也会污染产品,因此传统的设备不能满足碳纳米管的粉碎加工。
发明内容
本发明的目的在于提供一种用于碳纳米管的高速气体粉碎装置,该装置通过高压高速气流的方式将碳纳米管粉碎成小微粒粉末,避免了传统粉碎机粉碎物料时会产生大量的热,导致热敏性物料变质的问题,使用高压高速气流方式粉碎不会造成设备的磨损,使粉碎后的碳纳米管不含杂质,粉碎效率高,粉碎质量高;并且将粉碎后的碳纳米管进行两次筛分、分级,将两侧筛分后的碳纳米管分别收集起来,同时满足对不同颗粒大小的碳纳米管的需求,可以同时进行两种粒径微粒的加工,适用范围广。
本发明提供了一种用于碳纳米管的高速气体粉碎装置,包括自动加料机、粉碎机构、筛分机构和收集机构;所述自动加料机包括螺旋输送机,所述粉碎机构通过第一输送管道与自动加料机连接,所述粉碎机构包括第一分级电机、第一分级轮和高压气流管;所述筛分机构通过第二输送管道与粉碎机构连接,所述筛分机构包括第二分级电机、第二分级轮和第一收集仓;所述收集机构通过第三输送管道与筛分机构连接,所述第三输送管道包括引风机、负压仓和第二收集仓。
本发明的一种实施方式中,所述高压气流管与第一输送管道连通;高压气流管包括至少两根相交的管道,高压气流管包括至少三个进气口,每个进气口均接通有高压高速气流。
本发明的一种实施方式中,所述第一分级电机输出端与第一分级轮固定连接,第一分级电机带动第一分级轮转动,所述第一分级轮用于对碳纳米管进行初次筛分。
本发明的一种实施方式中,所述第二分级电机输出端与第二分级轮固定连接,第二分级电机带动第二分级轮旋转,所述第二分级轮用于对碳纳米管进行二次筛分。
本发明的一种实施方式中,所述筛分机构还包括第一阀门和第一收集仓,所述第一阀门位于第一收集仓的上方。
本发明的一种实施方式中,所述引风机与负压仓连接。
本发明的一种实施方式中,所述负压仓内设有至少一个冲击式气锤,每个所述冲击式气锤均连接有空气压缩机。
本发明的一种实施方式中,所述负压仓的下方设有第二收集仓和第二阀门。
本发明的一种实施方式中,所述第一阀门和第二阀门均为电磁阀。
本发明的一种实施方式中,还包括远程控制柜,所述远程控制柜分别与螺旋输送机、第一分级电机、第二分级电机、第一阀门、第二阀门、引风机和空气压缩机数据连接。
有益效果
1、本发明的高压气流管包括至少三个进气口,每个进气口均接通有高压高速气流,通过多个方向的高压高速气流对碳纳米管进行碰撞、摩擦使碳纳米管粉碎成小微粒粉末状,通过高压高速气流的方式将碳纳米管粉碎成小微粒粉末,避免了传统粉碎机粉碎物料时会产生大量的热,导致热敏性物料变质的问题,同时使用高压高速气流方式粉碎不会造成设备的磨损,使粉碎后的碳纳米管不含杂质,粉碎效率高,粉碎质量高;
2、本发明通过设置第一分级轮和第二分级轮对小微粒粉末状的碳纳米管进行两次筛分、分级,并且将筛分后的中、细颗粒粉末状的碳纳米管分别收集起来,同时满足对不同颗粒大小的碳纳米管的需求,可以同时进行两种粒径微粒的加工,适用范围广;
3、本发明远程控制柜分别与螺旋输送机、第一分级电机、第二分级电机、第一阀门、第二阀门、引风机和空气压缩机数据连接,通过远程控制柜实现智能自动化控制各设备的工况,自动化程度高,工作效率高;
附图说明
图1为本发明用于碳纳米管的高速气体粉碎装置的结构示意图。
其中:1、远程控制柜;2、自动加料机;3、螺旋输送机;4、第一分级电机;5、第一分级轮;6、高压气流管;7、第一输送管道;8、第一收集仓;9、第一阀门;10、粉碎机构;11、第二收集仓;12、第二阀门;13、引风机;14、负压仓;15、冲击式气锤;16、空气压缩机;17、第二分级电机;18、第二分级轮;19、第二输送管道;20、筛分机构;21、第三输送管道;22、收集机构。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。其中相同的零部件用相同的附图标记表示。需要说明的是,下面描述中使用的词语“前”、“后”、“左”、“右”、“上”和“下”指的是附图中的方向。使用的词语“内”和“外”分别指的是朝向或远离特定部件几何中心的方向。
实施例1
一种用于碳纳米管的高速气体粉碎装置,如图1所示,包括自动加料机2、粉碎机构10、筛分机构20和收集机构22;所述自动加料机2包括螺旋输送机3,所述粉碎机构10通过第一输送管道7与自动加料机2连接,所述粉碎机构10包括第一分级电机4、第一分级轮5和高压气流管6;所述筛分机构20通过第二输送管道19与粉碎机构10连接,所述筛分机构20包括第二分级电机17、第二分级轮18和第一收集仓8;所述收集机构22通过第三输送管道21与筛分机构20连接,所述第三输送管道21包括引风机13、负压仓14和第二收集仓11。
进一步地,所述高压气流管6与第一输送管道7连通;高压气流管6包括至少两根相交的管道,高压气流管6包括至少三个进气口,每个进气口均接通有高压高速气流,通过多个方向的高压高速气流对碳纳米管进行碰撞、摩擦使碳纳米管粉碎成小微粒粉末状。在本实施中,高压气流管6由两根管道交错构成,两根管道交错构成十字形高压气流管6,十字形的高压气流管6有四个进气口。
进一步地,所述第一分级电机4输出端与第一分级轮5固定连接,第一分级电机4带动第一分级轮5转动;经过高压气流管6粉碎后的小微粒粉末状的碳纳米管上升至第一分级轮5,第一分级轮5旋转对小微粒粉末状的碳纳米管进行初步筛分、分级,将筛分出的粗颗粒粉末状的碳纳米管由于重力原因下降到高压气流管6继续粉碎,将筛分出的中颗粒粉末状的碳纳米管经过第二输送管道19传输至粉碎机构10的第二分级轮1再次筛分、分级。
进一步地,所述第二分级电机17输出端与第二分级轮18固定连接,第二分级电机17带动第二分级轮18旋转;所述筛分机构20还包括第一阀门9和第一收集仓8,所述第一阀门9位于第一收集仓8的上方;第二分级轮18对中颗粒粉末状的碳纳米管进行二次筛分、分级,将筛分出的中颗粒粉末状的碳纳米管经第一阀门9收集到第一收集仓8,将筛分出的细颗粒粉末状的碳纳米管经过第三输送管道21传输至负压仓14。
进一步地,所述引风机13与负压仓14连接,引风机13将负压仓14变成负压状态,此时第三输送管道21内的细颗粒粉末状的碳纳米管才会进入到负压仓14内。
进一步地,所述负压仓14内设有至少一个冲击式气锤15,每个所述冲击式气锤15均连 接有空气压缩机16,所述空气压缩机16用于给冲击式气锤15充气,使负压仓14内的细颗粒粉末状的碳纳米管向下移动。
进一步地,所述负压仓14的下方设有第二收集仓11和第二阀门12,向下移动的细颗粒粉末状的碳纳米管经过第二阀门12在第二收集仓11中收集起来。
进一步地,所述第一阀门9和第二阀门12均为电磁阀。
进一步地,还包括远程控制柜1,所述远程控制柜1分别与螺旋输送机3、第一分级电机4、第二分级电机17、第一阀门9、第二阀门12、引风机13和空气压缩机16数据连接,通过远程控制柜1实现智能自动化控制各设备的工况。
本发明的工作原理:自动加料机2内储存有碳纳米管原料,碳纳米管原料经过螺旋输送机3和第一输送管道7传输至高压气流管6,高压气流管6包括至少三个进气口,每个进气口均接通有高压高速气流,通过多个方向的高压高速气流对碳纳米管进行碰撞、摩擦使碳纳米管粉碎成小微粒粉末状;经过高压气流管6粉碎后的小微粒粉末状的碳纳米管上升至第一分级轮5,第一分级轮5旋转对小微粒粉末状的碳纳米管进行初步筛分、分级,将筛分出的粗颗粒粉末状的碳纳米管由于重力原因下降到高压气流管6继续粉碎,将筛分出的中颗粒粉末状的碳纳米管经过第二输送管道19传输至粉碎机构10;粉碎机构10内的第二分级轮18对中颗粒粉末状的碳纳米管进行二次筛分、分级,将筛分出的中颗粒粉末状的碳纳米管经第一阀门9收集到第一收集仓8,将筛分出的细颗粒粉末状的碳纳米管经过第三输送管道21传输至负压仓14,引风机13将负压仓14变成负压状态,空气压缩机16给冲击式气锤15充气,使负压仓14内的细颗粒粉末状的碳纳米管向下移动,向下移动的细颗粒粉末状的碳纳米管经过第二阀门12在第二收集仓11中收集起来。
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同更换,凡在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种用于碳纳米管的高速气体粉碎装置,其特征在于,包括自动加料机、粉碎机构、筛分机构和收集机构;所述自动加料机包括螺旋输送机,所述粉碎机构通过第一输送管道与自动加料机连接,所述粉碎机构包括第一分级电机、第一分级轮和高压气流管;所述筛分机构通过第二输送管道与粉碎机构连接,所述筛分机构包括第二分级电机、第二分级轮和第一收集仓;所述收集机构通过第三输送管道与筛分机构连接,所述第三输送管道包括引风机、负压仓和第二收集仓。
  2. 根据权利要求1所述的用于碳纳米管的高速气体粉碎装置,其特征在于,所述高压气流管与第一输送管道连通;高压气流管包括至少两根相交的管道,高压气流管包括至少三个进气口,每个进气口均接通有高压高速气流。
  3. 根据权利要求2所述的用于碳纳米管的高速气体粉碎装置,其特征在于,所述第一分级电机输出端与第一分级轮固定连接,第一分级电机带动第一分级轮转动,所述第一分级轮用于对碳纳米管进行初次筛分。
  4. 根据权利要求3所述的用于碳纳米管的高速气体粉碎装置,其特征在于,所述第二分级电机输出端与第二分级轮固定连接,第二分级电机带动第二分级轮旋转,所述第二分级轮用于对碳纳米管进行二次筛分。
  5. 根据权利要求4所述的用于碳纳米管的高速气体粉碎装置,其特征在于,所述筛分机构还包括第一阀门和第一收集仓,所述第一阀门位于第一收集仓的上方。
  6. 根据权利要求5所述的用于碳纳米管的高速气体粉碎装置,其特征在于,所述引风机与负压仓连接。
  7. 根据权利要求6所述的用于碳纳米管的高速气体粉碎装置,其特征在于,所述负压仓内设有至少一个冲击式气锤,每个所述冲击式气锤均连接有空气压缩机。
  8. 根据权利要求7所述的用于碳纳米管的高速气体粉碎装置,其特征在于,所述负压仓的下方设有第二收集仓和第二阀门。
  9. 根据权利要求8所述的用于碳纳米管的高速气体粉碎装置,其特征在于,所述第一阀门和第二阀门均为电磁阀。
  10. 根据权利要求9所述的用于碳纳米管的高速气体粉碎装置,其特征在于,还包括远程控制柜,所述远程控制柜分别与螺旋输送机、第一分级电机、第二分级电机、第一阀门、第二阀门、引风机和空气压缩机数据连接。
PCT/CN2022/081324 2021-12-30 2022-03-17 一种用于碳纳米管的高速气体粉碎装置 WO2023123694A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111649947.1 2021-12-30
CN202111649947.1A CN114289151A (zh) 2021-12-30 2021-12-30 一种用于碳纳米管的高速气体粉碎装置

Publications (1)

Publication Number Publication Date
WO2023123694A1 true WO2023123694A1 (zh) 2023-07-06

Family

ID=80972719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081324 WO2023123694A1 (zh) 2021-12-30 2022-03-17 一种用于碳纳米管的高速气体粉碎装置

Country Status (2)

Country Link
CN (1) CN114289151A (zh)
WO (1) WO2023123694A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115625018B (zh) * 2022-12-07 2023-03-10 广东汇群中药饮片股份有限公司 中草药破壁饮片超微循环气流粉碎干燥处理装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008145910A2 (fr) * 2007-04-20 2008-12-04 Arkema France Procédé de préparation d'une suspension alcoolique de nanotubes de carbone et suspension ainsi obtenue
CN102836768A (zh) * 2012-09-03 2012-12-26 李振欣 一种粉碎分级机
CN203540659U (zh) * 2013-10-29 2014-04-16 优彩科技(湖北)有限公司 墨粉制造用二级分级装置
CN206665703U (zh) * 2017-04-12 2017-11-24 信丰县包钢新利稀土有限责任公司 一种石灰负压进料装置
JP2018012063A (ja) * 2016-07-21 2018-01-25 株式会社スギノマシン 微粒化装置用硬質粒子対応背圧ユニット
CN110215981A (zh) * 2019-05-29 2019-09-10 西安科技大学 一种梯级排料气流粉碎分级分选装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657822A (zh) * 2012-09-18 2014-03-26 中磁科技股份有限公司 双研磨室气流磨
CN103341382A (zh) * 2013-07-22 2013-10-09 四川坤森微纳科技股份有限公司 超细粉碎***
CN205815879U (zh) * 2016-05-28 2016-12-21 安徽广信农化股份有限公司 一种用于多菌灵生产粉碎装置
CN206404881U (zh) * 2016-12-29 2017-08-15 上海深化实业有限公司 一种高效节能的气流粉碎机
CN207222098U (zh) * 2017-09-20 2018-04-13 张泰� 一种气流粉碎机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008145910A2 (fr) * 2007-04-20 2008-12-04 Arkema France Procédé de préparation d'une suspension alcoolique de nanotubes de carbone et suspension ainsi obtenue
CN102836768A (zh) * 2012-09-03 2012-12-26 李振欣 一种粉碎分级机
CN203540659U (zh) * 2013-10-29 2014-04-16 优彩科技(湖北)有限公司 墨粉制造用二级分级装置
JP2018012063A (ja) * 2016-07-21 2018-01-25 株式会社スギノマシン 微粒化装置用硬質粒子対応背圧ユニット
CN206665703U (zh) * 2017-04-12 2017-11-24 信丰县包钢新利稀土有限责任公司 一种石灰负压进料装置
CN110215981A (zh) * 2019-05-29 2019-09-10 西安科技大学 一种梯级排料气流粉碎分级分选装置及方法

Also Published As

Publication number Publication date
CN114289151A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
CN101905186B (zh) 冷却雷蒙磨及压制石墨产品所用粉料的制备方法
CN208944323U (zh) 一种石墨烯气流粉碎设备
CN110449246A (zh) 一种对矿物进行选择性磨矿、分选的方法及实施装备
CN106269139B (zh) 一种提高气流磨颗粒加速性能的方法
WO2023123694A1 (zh) 一种用于碳纳米管的高速气体粉碎装置
CN205323950U (zh) 一种生物质原料粉碎筛选装置
CN105618235A (zh) 碳石墨连续生产制备装置
CN206823967U (zh) 一种纳米碳酸钙连续粉碎解聚装置
CN1295021C (zh) 机械湍流磨
CN204159418U (zh) 粉碎装置
CN202447180U (zh) 物料粉碎装置
CN103537357A (zh) 一种节能型粉碎分级设备
CN106391268A (zh) 一种煤炭粉碎分级分选装置及方法
CN210279412U (zh) 流化床对撞式气流粉碎机
CN102872963A (zh) 片状和团块状硬脂酸盐粉碎流程及设备
CN218190109U (zh) 一种农药用气流粉碎机
CN2260662Y (zh) 对喷式超微气流粉碎分级机
JP2967859B2 (ja) 複合粉体の製造方法
CN2352257Y (zh) 一种对撞式流化床气流磨
CN203470072U (zh) 无筛超微粉碎机
CN206404851U (zh) 一种粉碎机
JPH11114442A (ja) 砕砂の製造設備
JPS63112627A (ja) トナ−粉の製造方法
CN210022422U (zh) 一种分级式冲击磨料装置
CN217910819U (zh) 一种窄粒径磨粉装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913000

Country of ref document: EP

Kind code of ref document: A1