WO2023123399A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023123399A1
WO2023123399A1 PCT/CN2021/143805 CN2021143805W WO2023123399A1 WO 2023123399 A1 WO2023123399 A1 WO 2023123399A1 CN 2021143805 W CN2021143805 W CN 2021143805W WO 2023123399 A1 WO2023123399 A1 WO 2023123399A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink channel
uplink
channel group
processing time
channels
Prior art date
Application number
PCT/CN2021/143805
Other languages
English (en)
French (fr)
Inventor
刘哲
史志华
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180103178.7A priority Critical patent/CN118104165A/zh
Priority to PCT/CN2021/143805 priority patent/WO2023123399A1/zh
Publication of WO2023123399A1 publication Critical patent/WO2023123399A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, relate to a wireless communication method, a terminal device, and a network device.
  • a terminal device can send multiple physical uplink control channels (Physical uplink control channel, PUCCH)/physical uplink shared channel (Physical uplink shared channel, PUSCH) overlapping in the time domain through multiple spatial information. How to multiplex the uplink control information (UCI) carried by the PUCCH/PUSCH is an urgent problem to be solved.
  • PUCCH Physical uplink control channel
  • PUSCH Physical uplink shared channel
  • Embodiments of the present application provide a wireless communication method, a terminal device, and a network device, capable of multiplexing UCI carried by at least two uplink channels associated with at least two spatial information, thereby improving the efficiency of wireless communication.
  • a wireless communication method includes:
  • the terminal device sends the UCI carried by the at least two uplink channels according to the multiplexing mode of the uplink control information UCI carried by the at least two uplink channels;
  • the at least two uplink channels are associated with at least two spatial information, the time domain resources of the at least two uplink channels overlap and/or the time domain resources of the at least two uplink channels are in the same time unit .
  • a wireless communication method in a second aspect, includes:
  • the network device receives the UCI carried by the at least two uplink channels from the terminal device according to the multiplexing mode of the uplink control information UCI carried by the at least two uplink channels;
  • the at least two uplink channels are associated with at least two spatial information, the time domain resources of the at least two uplink channels overlap and/or the time domain resources of the at least two uplink channels are in the same time unit .
  • a terminal device configured to execute the method in the first aspect above.
  • the terminal device includes a functional module for executing the method in the first aspect above.
  • a network device configured to execute the method in the second aspect above.
  • the network device includes a functional module for executing the method in the second aspect above.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to invoke and run the computer program stored in the memory to execute the method in the first aspect above.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect above.
  • an apparatus for implementing the method in any one of the first aspect to the second aspect above.
  • the device includes: a processor, configured to invoke and run a computer program from the memory, so that the device installed with the device executes the method in any one of the above first to second aspects.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first aspect to the second aspect.
  • a computer program product including computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above first to second aspects.
  • a computer program which, when running on a computer, causes the computer to execute the method in any one of the above first to second aspects.
  • the terminal device can determine the at least two A multiplexing method of UCI carried by uplink channels, and according to the multiplexing method, UCI carried by the at least two uplink channels is transmitted, thereby realizing multiplexing of UCI carried by the at least two uplink channels and improving the efficiency of wireless communication.
  • FIG. 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of uplink transmission based on multiple TRPs provided by the present application.
  • FIG. 3 is a schematic diagram of another multi-TRP-based uplink transmission provided by the present application.
  • FIG. 4 is a schematic diagram of a PUCCH transmission based on multiple TRPs provided by the present application.
  • Fig. 5 is a schematic diagram of a configuration TCI state provided by the present application.
  • FIG. 6A is a schematic diagram of PUCCHs with overlapping time domains.
  • FIG. 6B is a schematic diagram of PUCCH and PUSCH overlapping in time domain.
  • FIG. 7A is another schematic diagram of PUCCHs with overlapping time domains.
  • FIG. 7B is another schematic diagram of PUCCH and PUSCH overlapping in time domain.
  • Fig. 8 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of PUCCHs with overlapping time domains provided according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to an independent (Standalone, SA ) meshing scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent meshing scene
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, Wherein, the licensed spectrum can also be regarded as a non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network A network device or a base station (gNB) in a network device or a network device in a future evolved PLMN network or a network device in an NTN network.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • eNB evolved base station
  • gNB base station
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite, balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, in water, or other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This embodiment of the present application does not limit it.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the implementation method is not limited.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • multiple antenna elements can be nested and combined with chips to form a panel, which makes it possible to configure multiple low-correlation panels on the transmitter.
  • multi-antenna beamforming Beamforming
  • the radio frequency links of multiple panels are independent, and each panel in the multiple panels can form a transmission beam independently, and the beams formed by different panels can be the same or different. Therefore, a terminal transmitter can simultaneously send data streams on multiple panels through different beams, so as to improve transmission capacity or reliability.
  • the terminal device needs to notify the network side of the number of configured antenna panels in the capability report. At the same time, the terminal device may also need to notify the network side whether it has the ability to simultaneously transmit signals on multiple antenna panels. Since the channel conditions corresponding to different panels are different, different panels need to adopt different transmission parameters according to their respective channel information. In order to obtain these transmission parameters, it is necessary to configure different Sounding Reference Signal Resources (SRS Resources) for different panels to obtain uplink channel information. For example, in order to perform uplink beam management, an SRS resource set (SRS Resource set) can be configured for each panel, so that each panel performs beam management separately and determines an independent analog beam.
  • SRS Resources Sounding Reference Signal Resources
  • each panel can have its own panel ID, which is used to associate different signals transmitted on the same panel, that is, the terminal device can think that the signals associated with the same panel ID need to be transmitted from the same panel.
  • PUCCH Physical Uplink Control Channel
  • TRP Transmission Reception Points
  • the backhaul (backhaul) connection between TRPs can be ideal or non-ideal.
  • TRPs can quickly and dynamically exchange information. Quasi-static information exchange.
  • multiple TRPs can independently schedule multiple Physical Downlink Shared Channel (PDSCH) transmissions of a terminal device based on different control channels, or can schedule transmissions of different TRPs based on the same control channel , where the data of different TRPs are based on different transport layers, and the latter can only be used in the case of ideal backhaul.
  • PDSCH Physical Downlink Shared Channel
  • different TRPs can also independently schedule the PUSCH transmission of the same terminal device.
  • Different PUSCH transmissions can be configured with independent transmission parameters, such as beam, precoding matrix, number of layers, etc.
  • the scheduled PUSCH transmissions can be transmitted in the same slot or in different slots. If the terminal device is simultaneously scheduled for two PUSCH transmissions in the same time slot, it needs to determine how to perform the transmission based on its own capabilities.
  • the terminal device can transmit the two PUSCHs at the same time, and the PUSCHs transmitted on different panels are aligned with the corresponding TRP for analog shaping, thus passing The space domain distinguishes different PUSCHs to improve uplink spectrum efficiency (as shown in Figure 2). If the terminal device has only a single panel, or does not support simultaneous transmission of multiple panels, the terminal device can only transmit PUSCH on one panel. Similar to the downlink, the PUSCH transmitted by different TRPs can be scheduled based on multiple downlink control information (Downlink Control Information, DCI), and these DCIs can be carried by different control resource sets (Control Resource Set, CORESET).
  • DCI Downlink Control Information
  • multiple CORESET groups are configured on the network side, and each TRP is scheduled based on the CORESETs in the respective CORESET groups, that is, different TRPs can be distinguished through the CORESET groups.
  • the network device may configure a CORESET group index for each CORESET, and different indexes indicate that different CORESET groups correspond to different TRPs.
  • PUSCHs transmitted to different TRPs can be scheduled based on a single DCI. At this time, the DCI needs to indicate beams and demodulation reference signal (Demodulation Reference Signal, DMRS) ports ( As shown in Figure 3), different transmission layers of a PUSCH can be transmitted on different panels.
  • DMRS demodulation Reference Signal
  • a similar method can also be used for PUCCH transmission. That is, the terminal device can configure different PUCCHs to be transmitted on different panels at the same time, and the beams based on different panels are different, and notify the terminal device through their respective space-related information. Take two different PUCCHs transmitted on different panels as an example, as shown in Figure 4, the PUCCHs transmitted on different panels can be used to carry uplink control information (Uplink Control Information, UCI) sent to different TRPs, for example, on panel1 The UCI on panel2 is sent to TRP1, and the UCI on panel2 is sent to TRP2.
  • UCI Uplink Control Information
  • a terminal device can use an analog beam to transmit uplink data and uplink control information.
  • the terminal device can perform uplink beam management based on the SRS signal, so as to determine the analog beam used for uplink transmission.
  • the network device may configure an SRS resource set 1 for the terminal device, and the SRS resource set 1 includes N SRS resources (wherein, N>1).
  • the terminal device may use different beams to transmit the N SRS resources, and the network side measures the reception quality of the N SRS resources respectively, and selects K SRS resources with the best reception quality.
  • the network side may further configure an SRS resource set 2, which includes K SRS resources, and make the terminal use the analog beam used by the K SRS resources selected in the SRS resource set 1 to transmit the SRS resources in the SRS resource set 2.
  • This can be realized by configuring the K SRS resources selected in the SRS resource set 1 as the reference SRS resources of the K SRS resources in the SRS resource set 2 respectively.
  • the network side can select an SRS resource with the best reception quality, and notify the terminal device of the corresponding SRS resource indicator (Sounding Reference Signal Resource Indicator, SRI).
  • SRI Sounding Reference Signal Resource Indicator
  • radio resource control Radio Resource Control, RRC
  • media access control Media Access Control, MAC
  • PUCCH-spatialrelationinfo the spatial correlation information (PUCCH-spatialrelationinfo) of N PUCCHs is firstly configured through high-level signaling, and then the spatial correlation information corresponding to each PUCCH resource is determined from the N PUCCH-spatialrelationinfo through MAC signaling.
  • the transmission configuration indicator Transmission Configuration Indicator, TCI
  • TCI Transmission Configuration Indicator
  • the network device can configure the corresponding TCI state for each downlink signal or downlink channel, and indicate the quasi-co-located (QCL) reference signal corresponding to the target downlink signal or target downlink channel, so that the terminal based on The reference signal is used to receive a target downlink signal or a target downlink channel.
  • QCL quasi-co-located
  • a TCI state can include the following configurations:
  • TCI state ID used to identify a TCI state
  • a QCL information contains the following information:
  • QCL type (type) configuration which can be one of QCL type A, QCL type B, QCL type C, and QCL type D;
  • QCL reference signal configuration including the cell ID where the reference signal is located, the bandwidth part (Band Width Part, BWP) ID, and the identification of the reference signal (which can be a channel state information reference signal (Channel State Information Reference Signal, CSI-RS) resource ID or Synchronization Signal Block (SSB) index).
  • BWP Band Width Part
  • CSI-RS Channel State Information Reference Signal
  • SSB Synchronization Signal Block
  • the QCL type of at least one of the QCL information in QCL information 1 and QCL information 2 must be one of typeA, typeB, and typeC, and the QCL type of the other QCL information (if configured) must be QCL type D.
  • 'QCL-TypeA' ⁇ Doppler shift (Doppler shift), Doppler spread (Doppler spread), average delay (average delay), delay spread (delay spread) ⁇ ;
  • 'QCL-TypeB' ⁇ Doppler shift (Doppler shift), Doppler spread (Doppler spread) ⁇ ;
  • 'QCL-TypeC' ⁇ Doppler shift (Doppler shift), average delay (average delay) ⁇ ;
  • the terminal device can assume that the target downlink channel and the reference SSB Or the target large-scale parameters of the reference CSI-RS resources are the same, so the same corresponding receiving parameters are used for reception, and the target large-scale parameters are determined through QCL type configuration.
  • the network device configures the QCL reference signal of the target downlink channel as a reference SSB or reference CSI-RS resource through the TCI state, and the QCL type is configured as type D, then the terminal device can adopt and receive the reference SSB or reference CSI-RS resource.
  • the receiving beam (that is, the Spatial Rx parameter) with the same RS resource is used to receive the target downlink channel.
  • the target downlink channel and its reference time synchronization/broadcast channel (SSB/PBCH) or reference CSI-RS resource are sent by the same TRP or the same antenna panel (panel) or the same beam at the network side. If the transmission TRP or transmission panel or transmission beam of two downlink signals or downlink channels are different, different TCI states are usually configured.
  • the TCI state can be indicated by radio resource control (Radio Resource Control, RRC) signaling or a combination of RRC signaling and MAC signaling.
  • RRC Radio Resource Control
  • the available TCI state set is indicated through RRC signaling, and part of the TCI state is activated through the media access control (Media Access Control, MAC) layer signaling, and finally through the TCI state indication field in the DCI from The activated TCI state indicates one or two TCI states, which are used for the PDSCH scheduled by the DCI.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the network device indicates N candidate TCI states through RRC signaling, activates K TCI states through MAC signaling, and finally indicates 1 from the activated TCI states through the TCI state indication field in DCI One or two TCI states to use.
  • spatial information may refer to a spatial setting or a spatial relation (Spatial relation) used for sending uplink information, for example including but not limited to at least one of the following: Antenna panel ( panel), CORESET group, reference signal set, TCI state, beam.
  • a spatial relation used for sending uplink information, for example including but not limited to at least one of the following: Antenna panel ( panel), CORESET group, reference signal set, TCI state, beam.
  • the reference signal set may be a synchronization signal block (Synchronization Signal Block, SSB) set or a channel state information reference signal (Channel State Information Reference Signal, CSI-RS) set or an SRS set.
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • the beam can also be called a spatial domain transmission filter (Spatial domain transmission filter or Spatial domain filter for transmission), or a spatial domain reception filter (Spatial domain reception filter or Spatial domain filter for reception) or Spatial Rx parameter.
  • a spatial domain transmission filter Spatial domain transmission filter or Spatial domain filter for transmission
  • a spatial domain reception filter Spatial domain reception filter or Spatial domain filter for reception
  • different spatial information can be indicated by different indexes or identifications (Identity, ID).
  • the antenna panel can be identified by a panel ID
  • the CORESET group can be indicated by a CORESET group index
  • the reference signal set can be indicated by The reference signal set index indicates
  • the TCI state can be indicated by TCI
  • the beam can be indicated by beam ID.
  • a terminal device can only transmit at most 2 PUCCHs in a time-division manner in one time slot, and at least one of them is a short format PUCCH.
  • the timing relationship is set so that the terminal device has enough time to judge whether different PUCCHs need to be multiplexed, and if multiplexing is required, consider the time required for UCI repackaging.
  • UCI carried in PUCCH is supported to be carried on PUSCH for transmission.
  • the PUCCH carries the Hybrid automatic repeat request acknowledgment (HARQ-ACK) feedback for the PDSCH, and the timing stipulates the following conditions:
  • Condition 1 The first symbol of the earliest transmitted PUCCH/PUSCH in the uplink transmission with overlapping time domains is not earlier than the last symbol of a group of PDSCHs corresponding to PUCCHs (carrying HARQ-ACK) with overlapping time domains. processing time
  • N 1 is the PDSCH processing time of the terminal equipment corresponding to the i-th PDSCH
  • is the configuration of the subcarrier spacing (SCS), wherein the value of ⁇ is the minimum value of the SCS configured as follows: The SCS of the i-th PDSCH, the SCS of the scheduling PDCCH of the i-th PDSCH, the SCS of the PUCCH carrying the HARQ-ACK feedback of the i-th PDSCH, and the SCSs of all PUSCHs overlapping in the time domain; d 1,1 are in the protocol pre-defined.
  • SCS subcarrier spacing
  • Exemplary, in, is the processing time of the i-th, and N is the processing time of the terminal equipment corresponding to the PDCCH used for the i-th SPS PDSCH release;
  • is the configuration of the SCS, where the value of ⁇ is the minimum value of the SCS configured as follows: The SCS of the PDCCH of the SPS PDSCH release, the SCS of the scheduling PDCCH of the i-th PDSCH, the SCS of the PUCCH carrying the HARQ-ACK feedback of the i-th SPS PDSCH release, and the SCS of all PUSCHs with overlapping time domains.
  • the first symbol of multiple PUCCHs overlapping in the time domain is not earlier than the processing time after the last symbol of the scheduled PDCCH of a group of PDSCHs corresponding to PUCCHs overlapping in the time domain (carrying HARQ-ACK) Or not earlier than the processing time after the last symbol of a PDCCH for SPSPDSCH release corresponding to a group of PUCCHs (carrying HARQ-ACK) overlapping in the time domain
  • Exemplary, in, is the i-th processing time
  • N 2 is the UE PUSCH processing time configured by the PUCCH cell
  • is the SCS configuration, where the value of ⁇ is the minimum value of the SCS configured as follows: the SCS of the PDCCH that schedules the i-th PDSCH or uses SCS of PDCCH in SPSPDSCH release, SCS of PUCCH cell.
  • Condition 3a The first symbol of multiple PUCCHs and PUSCHs overlapping in the time domain, in addition to Condition 3, also needs to meet the condition 3a: not earlier than the processing time after the last symbol of the scheduled PDCCH of the overlapping PUSCH in the time domain
  • N 2 is the PUSCH processing capability of the terminal equipment corresponding to the i-th PUSCH
  • d 2,1 and d 2,2 are predefined in the protocol, where the value of ⁇ is the minimum SCS configured as follows Value: the SCS of the PDCCH that schedules the i-th PUSCH, the SCS of the PDCCH that schedules the PDSCH or the SCS of the PDCCH used for SPS PDSCH release, and the SCS of all PUSCHs that overlap in time domain.
  • FIG. 6A is a schematic diagram of PUCCHs with overlapping time domains
  • FIG. 6B is a schematic diagram of PUCCHs and PUSCHs with overlapping time domains.
  • the HARQ-ACK carried by the PUCCH corresponds to the feedback of the PDSCH.
  • FIG. 7A is another schematic diagram of PUCCHs with overlapping time domains
  • FIG. 7B is another schematic diagram of PUCCHs and PUSCHs with overlapping time domains.
  • the HARQ-ACK carried by the PUCCH corresponds to the feedback of the PDSCH and the feedback of the SPS PDSCH release.
  • the UCI that satisfies the condition is multiplexed into one PUCCH resource for transmission.
  • the PUCCH resource may be determined according to the load of the multiplexed UCI and the PUCCH resource indication field in the DCI.
  • the PUCCH resource after UCI multiplexing that is, the PUCCH resource used to transmit the multiplexed UCI
  • the selection of the resource set can be determined according to the total number of bits of the multiplexed UCI.
  • the number of PRBs of the PUCCH resource can be determined according to at least one of the following: the total number of UCI bits, the number of CRC bits, and the number of time domain symbols corresponding to the PUCCH format.
  • the number of PRBs corresponding to the PUCCH format The number of bits Q m of each resource element (Resource Element, RE), the number of subcarriers of each resource block corresponding to the PUCCH format UCI code rate, etc.
  • the UCI code rate can be understood as the number of information bits of UCI and the number of physical channel bits.
  • the number of information bits of UCI can include the number of bits of HARQ-ACK (expressed as O ACK ), including the number of scheduling requests (Scheduling Request, SR) (expressed as O SR ), cyclic redundancy check (Cyclic Redundancy Check, CRC) bits (expressed as O CRC ), and physical channel bits may be the sum of all RE bits in the PUCCH channel.
  • the UCI code rate R can be expressed as:
  • the maximum UCI code rate corresponding to each PUCCH format can be configured through PUCCH configuration information (such as PUCCH-config), and the maximum UCI code rate can be used for UCI multiplexing.
  • PUCCH configuration information such as PUCCH-config
  • the PUCCH with overlapping time domain, or the PUCCH and PUSCH with overlapping time domain are associated with the same spatial information, for example, they may be sent by the terminal device through the same panel.
  • the PUCCHs with overlapping time domains transmitted by the terminal equipment, or the PUCCHs and PUSCHs with overlapping time domains are associated with at least two spatial information, for example, when they are transmitted through multiple (for example, two or more) different panels, these PUCCH/ How to multiplex the UCI corresponding to the PUSCH is not considered.
  • this application proposes a wireless communication method, terminal equipment and network equipment, when the time domain resources of at least two uplink channels overlap and/or the time domains of the at least two uplink channels are in the same time unit If the at least two uplink channels are associated with at least two spatial information, then the terminal device can determine the multiplexing mode of the UCI carried by the at least two uplink channels, and according to the multiplexing mode, send the at least two uplink The UCI carried by the channel, so as to realize the multiplexing of the UCI of the at least two uplink channels, and improve the efficiency of wireless communication.
  • Fig. 8 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application.
  • the method 200 may be applied to the communication system 100 shown in FIG. 1 .
  • the method 200 may include at least part of the following content:
  • the terminal device determines a multiplexing mode of the uplink control information UCI carried by at least two uplink channels.
  • the at least two uplink channels are associated with at least two spatial information, the time domain resources of the at least two uplink channels overlap and/or the time domain resources of the at least two uplink channels are in the same time unit.
  • the uplink channel may include at least one of PUCCH, PUSCH, SRS, and PRACH, and the at least two uplink channels may be any combination of at least one of PUCCH, PUSCH, SRS, and PRACH.
  • the at least two uplink channels include at least two PUCCHs, and the at least two PUCCHs overlap and/or are in the same time unit in the instant domain resources.
  • the at least two uplink channels include at least one PUCCH and at least one PUSCH, that is, at least one PUCCH and at least one PUSCH with overlapping domain resources and/or in the same time unit, which is not limited in this application.
  • the multiplexing method of UCI carried by at least two uplink channels includes: the at least two uplink channels are at least two PUCCHs, and the multiplexing method of the at least two PUCCHs carrying UCI, or, the at least two uplink channels It is at least one PUCCH and at least one PUSCH, and the multiplexing manner of the UCI carried by the at least one PUCCH and the at least one PUSCH.
  • the at least two uplink channels are associated with at least two spatial information, which can be understood as the at least two uplink channels are in one-to-one correspondence with the at least two spatial information, or can be understood as at least two uplink channels Multiple uplink channels in can be associated with the same spatial information.
  • the spatial information may refer to a spatial setting or spatial relation for uplink information transmission, for example including but not limited to at least one of the following: antenna panel, CORESET group, reference signal set , TCI status, beam.
  • a spatial setting or spatial relation for uplink information transmission for example including but not limited to at least one of the following: antenna panel, CORESET group, reference signal set , TCI status, beam.
  • the spatial information reference may be made to the description above, and details are not repeated here.
  • the time unit in this embodiment of the application may be a subframe, a slot, a sub-slot, a mini-slot, a symbol, or a slot Aggregation (slot aggregation), any of the time windows (time window).
  • the terminal device may receive first information, and the first information may be used to instruct or configure the terminal device to associate at least two uplink channels with at least two pieces of spatial information.
  • the terminal device can be configured or scheduled to have multiple PUCCHs associated with n panels, for example, multiple PUCCHs are sent on n panels, and the time domain resources of the multiple PUCCHs overlap and/or Within one time unit, or the terminal device is configured or scheduled so that at least one PUCCH and at least one PUSCH are associated with n panels, for example, at least one PUCCH and at least one PUSCH are sent on n panels, and the at least one PUCCH and at least one PUSCH The time domain resources have overlapping and/or within the same time unit.
  • the first information may be configured through RRC signaling, or dynamically scheduled through DCI, which is not limited in this application.
  • the network device may also send second information to the terminal device, where the second information is used to indicate the time domain resources of the at least two uplink channels.
  • the terminal device may receive the second information, and determine time domain resources of the at least two uplink channels according to the second information.
  • the second information may be configured through RRC signaling, or dynamically scheduled through DCI, which is not limited in this application.
  • the terminal device sends the UCI carried by the at least two uplink channels according to the multiplexing manner.
  • the UCI carried by the at least two uplink channels is UCI multiplexed according to the multiplexing manner.
  • the terminal device sends the UCI carried by the at least two uplink channels to the network device.
  • the network device receives the UCI carried by the at least two uplink channels.
  • the terminal device may receive the UCI carried by the at least two uplink channels according to the multiplexing manner of the uplink control information UCI carried by the at least two uplink channels.
  • the network device determines a multiplexing manner of the uplink control information UCI carried by the at least two uplink channels.
  • the network device may determine the multiplexing of the UCI carried by the at least two uplink channels before receiving the UCI carried by the at least two uplink channels, or after receiving the UCI carried by the at least two uplink channels, or while receiving the UCI carried by the at least two uplink channels Way.
  • the process for the network device to determine the multiplexing mode of the UCI carried by the at least two uplink channels is the same as or similar to S210, that is, the process for the terminal device to determine the multiplexed mode of the UCI carried by the at least two uplink channels, for example, the network
  • the device and the terminal device may determine the multiplexing manner of the UCI carried by the at least two uplink channels based on the same manner or rule.
  • the network device may send configuration information to the terminal device, where the configuration information is used to configure a multiplexing manner of UCI carried by at least two uplink channels associated with at least two spatial information.
  • the network device may also process the received UCIs of the at least two uplink channels from the terminal device according to the multiplexing manner of the UCIs carried by the at least two uplink channels.
  • the terminal device can determine The multiplexing method of the UCI carried by the at least two uplink channels, and according to the multiplexing method, the UCI carried by the at least two uplink channels is transmitted, thereby realizing the multiplexing of the UCI carried by the at least two uplink channels, and improving wireless communication s efficiency.
  • the foregoing multiplexing manner may include a first multiplexing manner, where the first multiplexing manner includes multiplexing the UCI carried by the at least two uplink channels onto the first uplink channel for transmission.
  • the at least two uplink channels include the first uplink channel, or the first uplink channel is an uplink channel other than the at least two uplink channels.
  • the UCI carried by at least two uplink channels associated with different spatial information may be multiplexed on the same uplink channel for transmission, for example, the first uplink channel. That is, UCI carried by uplink channels of different spatial information can be jointly processed.
  • the first uplink channel may be PUCCH or PUSCH, which is not limited.
  • the first uplink channel belongs to the above at least two uplink channels associated with different spatial information; or, the first uplink channel is an uplink channel other than the at least two uplink channels, for example, it is indicated by the network device and
  • the at least two uplink channels are different uplink channels, which is not limited in this embodiment of the present application.
  • the UCI carried by the uplink channels associated with each panel can be jointly processed, that is, the UCI carried by the multiple uplink channels can be multiplexed on one uplink channel for transmission without distinguishing the panels.
  • the spatial information includes a panel as an example for description.
  • the spatial relationship includes at least one of a CORESET group, a reference signal set, a TCI state, and a beam
  • a multiplexing method is the same as or similar to the multiplexing method when the spatial information includes a panel.
  • the panel in the above embodiment can be replaced with at least one of a panel, a CORESET group, a reference signal set, a TCI state, and a beam. Let me repeat.
  • the terminal device may first process the multiplexing of UCI carried by uplink channels with the same spatial information (for example, the same panelID, or RS index (index)) , and then process the multiplexing of UCI carried by uplink channels associated with different spatial information.
  • the same spatial information for example, the same panelID, or RS index (index)
  • the above multiplexing method includes a second multiplexing method
  • the second multiplexing method includes multiplexing the UCI carried by at least one uplink channel associated with the first spatial information onto the second uplink channel sending, wherein the first spatial information is one of the at least two spatial information, such as any one, and the second uplink channel is associated with the first spatial information.
  • the at least two uplink channels include the second uplink control channel, or the second uplink channel is an uplink channel other than the at least two uplink channels.
  • the UCI carried by at least one uplink channel associated with the first spatial information may be multiplexed to an uplink channel associated with the first spatial information, for example, sent on the second uplink channel
  • the first spatial information may be any one of the at least two spatial information, that is, the UCI carried by the uplink channel associated with each spatial information may be processed separately.
  • the second uplink channel may be PUCCH or PUSCH, which is not limited.
  • the second uplink channel belongs to at least one uplink channel associated with the first spatial information; or, the first uplink channel is an uplink channel other than the at least one uplink channel associated with the first spatial information, for example, a network
  • the at least one uplink channel indicated by the device is different from the at least one uplink channel associated with the first spatial information.
  • the UCI carried by the uplink channel associated with each panel can be processed separately, that is, the panels are distinguished, and the UCI carried by at least one uplink channel associated with one of the at least two panels is multiplexed to the uplink channel associated with the panel Uplink transmission, or it can be described as multiplexing the UCI carried by at least one uplink channel associated with the same panel to one uplink channel associated with the panel for transmission.
  • the spatial information includes a panel as an example for description.
  • the spatial relationship includes at least one of a CORESET group, a reference signal set, a TCI state, and a beam
  • the second multiplexing method is the same or similar to the multiplexing method when the spatial information includes a panel.
  • the panel in the above embodiment can be replaced with at least one of a panel, a CORESET group, a reference signal set, a TCI state, and a beam. Let me repeat.
  • the at least two uplink channels include a first uplink channel group.
  • the first uplink channel group has at least one of the following timing relationships:
  • the time interval between the first symbol of the first PUCCH or the first PUSCH in the first uplink channel group and the last symbol of the PDSCH associated with the first uplink channel group is greater than or equal to the first processing time
  • the time interval between the first symbol of the first PUCCH or the first PUSCH and the last symbol of the scheduled PDCCH of the first channel associated with the first uplink channel group is greater than or equal to the second processing time
  • the period between the first symbol of the first PUCCH or the first PUSCH and the last symbol of the PDCCH associated with the first uplink channel group is greater than or equal to the third processing time, wherein the first uplink channel group is associated with The PDCCH is used for the release of the semi-persistent scheduling SPS PDSCH.
  • the time interval between the first symbol of the first PUCCH or the first PUSCH and the last symbol of the second channel associated with the first uplink channel group is greater than or equal to the fourth processing time.
  • the first uplink channel group may include a part of the at least two uplink channels, or the first uplink channel group may include all the at least two uplink channels.
  • the uplink channels in the first uplink channel group are associated with the same spatial information, or the uplink channels in the first uplink channel group are associated with at least two spatial information satisfying the above timing relationship.
  • step S210 when the multiplexing mode of the UCI carried by the above-mentioned at least two uplink channels is the first multiplexing mode, the uplink channels in the first uplink channel group and the at least two uplink channels in step S210 At least two spatial information associations associated with uplink channels, for example, the first uplink channel group may be uplink channels associated with all panels that satisfy the above timing relationship.
  • step S210 when the multiplexing mode of the UCI carried by the at least two uplink channels is the second multiplexing mode, the uplink channels in the first uplink channel group are associated with the same spatial information, for example, it may be the first above-mentioned A spatial information association, for example, the first uplink channel group may be at least one uplink channel associated with a panel whose panelID is 0 and that satisfies the above timing relationship.
  • the first uplink channel group may include at least one PUCCH, that is, the first uplink channel group may include at least one PUCCH associated with the same spatial information, or include at least two PUCCHs associated with at least two spatial information , which is not limited in this application.
  • the first uplink channel group may include at least one PUCCH and at least one PUSCH, that is, the first uplink channel group may include at least one PUCCH and at least one PUSCH associated with the same spatial information, or include at least two At least one PUCCH and at least one PUSCH associated with the spatial information, which is not limited in this application.
  • the first uplink channel group includes at least two PUCCHs associated with at least two spatial information, or is associated with at least two At least one PUCCH and at least one PUSCH associated with spatial information.
  • the at least two PUCCHs, or at least one PUCCH and at least one PUSCH all satisfy the above timing relationship.
  • one or more of the at least two PUCCHs is associated with spatial information 1
  • the other PUCCHs of the at least two PUCCHs are associated with spatial relationship 2.
  • at least one PUCCH and at least one PUSCH, a part of PUCCH and/or PUSCH is associated with spatial relationship 1
  • another part of PUCCH and/or PUSCH is associated with spatial relationship 2.
  • the first uplink channel group includes at least one PUCCH, or at least one PUCCH and at least one PUSCH associated with the same spatial information.
  • the at least two PUCCHs, or at least one PUCCH and at least one PUSCH all satisfy the above timing relationship.
  • all PUCCHs in the at least one PUCCH are associated with spatial information 1.
  • all uplink information in the at least one PUCCH and the at least one PUSCH is associated with spatial information 1.
  • the spatial information 1 may be any one of the above at least two spatial information.
  • the first PUCCH, the first PUSCH, the PUSCH associated with the first uplink channel group, the first channel associated with the first uplink channel group, and the first uplink channel group associated with the first uplink channel group in the above timing relationship are as follows Two channels are described.
  • the above-mentioned first PUCCH or first PUSCH is the earliest channel in the time domain in the first uplink channel group.
  • the first PUCCH or the first PUSCH may be any channel in the first uplink channel group, which is not limited in this application.
  • the aforementioned PDSCH associated with the first uplink channel group may refer to the PDSCH corresponding to the first uplink channel group.
  • the PDSCH corresponding to the first uplink channel group is the PDSCH corresponding to the PUCCH, and the HARQ-ACK feedback of the PDSCH is also carried on the PUCCH for transmission.
  • the first channel associated with the first uplink channel group includes at least one of PUSCH, PDSCH, and SPSPDSCH release (release).
  • the second channel associated with the first uplink channel group is at least one of the following channels:
  • At least one PUSCH in the first uplink channel group includes aperiodic CSI.
  • the first processing time in the above timing relationship will be described below.
  • the above-mentioned first processing time is determined according to the sum of the processing time of the i-th PDSCH associated with the first uplink channel group and the first additional processing time, where the first additional processing time is
  • the additional processing time required for the at least two uplink channels associated with the at least two spatial information may be the additional processing time required for the PDSCH associated with the first uplink channel group.
  • the first additional processing time may be m symbols, m is an integer greater than or equal to 0, and i is a positive integer less than or equal to the number of uplink channels in the first uplink channel group.
  • the first additional processing time is predefined, or determined according to capability information of the terminal device, which is not limited in this application.
  • m is predefined or determined according to capability information of the terminal device. That is, the first additional processing time, or the value of m is related to the processing capability of the terminal device for simultaneously sending at least two uplink channels of spatial information.
  • m may be 0, 1, 2, 3, etc., without limitation.
  • the first processing time may be the processing time of at least one PDSCH associated with the first uplink channel group (for example, at least one PDSCH corresponding to at least one PUCCH in the first uplink channel group) and the first additional processing time and the maximum value of .
  • the sum of the processing time of the i-th PDSCH and the first additional processing time is the maximum value of the sum of the processing time of all PDSCHs associated with the first uplink channel group and the first additional processing time.
  • the processing time of the i-th PDSCH is the maximum value of the processing time corresponding to each PDSCH in all PDSCHs associated with the first uplink channel group
  • the first processing time is the processing time of the i-th PDSCH and The sum of the first additional processing time.
  • the first processing time can be expressed as in Indicates the sum of the processing time of the i-th PDSCH associated with the first uplink channel group and the first additional processing time.
  • the first processing time is determined according to the first reference subcarrier spacing SCS.
  • the first reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • At least one uplink channel among the at least two uplink channels responds to downlink control information DCI.
  • N 1 is the PDSCH processing time of the terminal equipment corresponding to the i-th PDSCH, i is a positive integer, less than or equal to the number of PDSCHs associated with the first uplink channel group;
  • d 1,1 is a predefined value;
  • m is the first additional Processing time;
  • is the configuration of the SCS, where the value of ⁇ is the minimum value of the SCS configured as follows:
  • the first reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • the ith PDSCH associated with the first uplink channel group
  • none of the uplink information in the at least two uplink channels responds to the downlink control information DCI.
  • N 1 is the PDSCH processing time of the terminal equipment corresponding to the i-th PDSCH;
  • d 1,1 is a predefined value;
  • is the configuration of the SCS, where the value of ⁇ is the minimum value of the SCS configured as follows:
  • the second processing time is based on the processing time of the PUSCH associated with the PUCCH in the first uplink channel group and the second additional processing time and determined, wherein the second additional processing time is the additional processing time required when the terminal device sends the at least two uplink channels associated with at least two spatial information, and here may be the time associated with the first uplink channel group Additional processing time required for the first channel.
  • the second additional processing time may be q symbols, and q is an integer greater than or equal to 0.
  • the second additional processing time is predefined, or determined according to capability information of the terminal device, which is not limited in this application.
  • the second additional processing time is q symbols
  • q is predefined or determined according to capability information of the terminal device. That is, the first additional processing time, or the value of q, is related to the processing capability of the terminal device for simultaneously sending at least two uplink channels of spatial information.
  • q may be 0, 1, 2, 3, etc., without limitation.
  • the second processing time may be the maximum value of the sum of the PUSCH processing time associated with the PUCCH in the first uplink channel group and the second additional processing time , or the maximum value of the sum of the processing time of the PUSCH associated with the PUCCH carrying the HARQ-ACK feedback of the ith PDSCH in the first uplink channel group and the second additional processing time, where i is a positive integer, less than or equal to The number of PDSCHs carried in the first uplink channel group.
  • the second processing time that is, the maximum value of the sum of the processing time of the PUSCH associated with at least one PUCCH in the first uplink channel group and the second additional processing time may be expressed as in Indicates the sum of the processing time of the PUSCH associated with the i-th PUCCH in the first uplink channel group and the second additional processing time, or indicates the association of the PUCCH carrying the HARQ-ACK feedback of the i-th PDSCH in the first uplink channel group The sum of the PUSCH processing time and the second additional processing time.
  • the processing time of the PUSCH associated with the PUCCH in the first uplink channel group is determined according to PUSCH processing capability 1 or PUSCH processing capability 2.
  • the PUSCH processing capability 1 or PUSCH processing capability 2 is determined according to the PUSCH processing capability configured in the cell where the PUCCH is located, or is determined according to the default PUSCH processing capability.
  • the default PUSCH processing capability is PUSCH processing capability 1.
  • the second processing time is determined according to the second reference subcarrier spacing SCS.
  • the second reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • the scheduling PDCCH of the i-th PDSCH associated with the first uplink channel group where i is a positive integer, less than or equal to the number of PDSCHs associated with the first uplink channel group;
  • the i-th scheduling PDCCH associated with the first uplink channel group for semi-persistent scheduling SPSPDSCH release i is a positive integer, less than or equal to the number of scheduling PDCCHs associated with the first uplink channel group for semi-persistent scheduling SPSPDSCH release;
  • PUCCHs in the first uplink channel group are PUCCHs in the first uplink channel group.
  • At least one uplink channel among the at least two uplink channels responds to downlink control information DCI.
  • N 2 is the PUSCH processing time associated with the i-th PUCCH, where i is a positive integer, less than or equal to the number of PUCCHs in the first uplink channel group; q is the second additional processing time; ⁇ is the SCS configuration.
  • N 2 is the processing time of the PUSCH associated with the PUCCH fed back by the HARQ-ACK of the i-th PDSCH, where i is a positive integer, less than or equal to the number of PDSCHs associated with the first uplink channel group; q is the second additional processing time; ⁇ is the configuration of the SCS.
  • is the minimum value of the SCS configured as follows:
  • the SCS of the scheduling PDCCH of the i-th PDSCH associated with the first uplink channel group where i is a positive integer, less than or equal to the number of PDSCHs associated with the first uplink channel group;
  • the SCS of the i-th scheduled PDCCH used for semi-persistent scheduling SPSPDSCH release associated with the first uplink channel group where i is a positive integer, less than or equal to the scheduled PDCCH used for semi-persistent scheduling SPSPDSCH release associated with the first uplink channel group quantity;
  • the SCS of the PUCCH in the first uplink channel group is the SCS of the PUCCH in the first uplink channel group.
  • the second processing time is determined according to the third reference subcarrier spacing SCS.
  • the third reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • the i-th scheduling PDCCH associated with the first uplink channel group for semi-persistent scheduling SPSPDSCH release i is a positive integer, less than or equal to the number of scheduling PDCCHs associated with the first uplink channel group for semi-persistent scheduling SPSPDSCH release;
  • PUCCHs in the first uplink channel group are PUCCHs in the first uplink channel group.
  • none of the at least two uplink channels responds to the downlink control information DCI, that is, the at least two uplink channels are configured through high-layer parameters.
  • the second processing time is determined according to the sum of the processing time of the i-th PUSCH in the first uplink channel group and the second additional processing time wherein, the second additional processing time is the additional processing time required when the terminal device sends the at least two uplink channels associated with the at least two spatial information, and here may be the Additional processing time required for the first channel.
  • i is a positive integer and is less than or equal to the number of uplink channels in the first uplink channel group.
  • the second additional processing time can refer to the description above, and will not be repeated here.
  • the second processing time may be the maximum value of the sum of the processing time of at least one PUSCH in the first uplink channel group and the second additional processing time.
  • the second processing time that is, the maximum value of the sum of the processing time of at least one PUSCH in the first uplink channel group and the second additional processing time may be expressed as in Indicates the sum of the processing time of the i-th PUSCH in the first uplink channel group and the second processing time.
  • the processing time of the PUSCH in the first uplink channel group is determined according to PUSCH processing capability 1 or PUSCH processing capability 2.
  • the PUSCH processing capability 1 or PUSCH processing capability 2 is determined according to the configured PUSCH processing capability, or is determined according to the default PUSCH processing capability.
  • the default PUSCH processing capability is PUSCH processing capability 1.
  • the second processing time is determined according to the fourth reference subcarrier spacing SCS.
  • the fourth reference subcarrier spacing may be the minimum value of the subcarrier spacing of the following channels:
  • the i-th PDSCH associated with the first uplink channel group where i is a positive integer, less than or equal to the number of PDSCHs associated with the first uplink channel group;
  • the scheduling PDCCH of the i-th PDSCH associated with the first uplink channel group where i is a positive integer, less than or equal to the number of PDSCHs associated with the first uplink channel group;
  • the i-th scheduling PDCCH associated with the first uplink channel group for semi-persistent scheduling SPSPDSCH release i is a positive integer, less than or equal to the number of scheduling PDCCHs associated with the first uplink channel group for semi-persistent scheduling SPSPDSCH release;
  • At least one uplink channel among the at least two uplink channels responds to downlink control information DCI.
  • N 2 is the PUSCH processing time associated with the cell corresponding to the i-th PUCCH
  • i is a positive integer, which is less than or equal to the number of PDCCHs in the first uplink channel group
  • d 2,1 , d 2,2 are in the protocol is predefined
  • q is the second additional processing time
  • is the configuration of the SCS, where the value of ⁇ is the minimum value of the SCS configured as follows:
  • the SCS of the i-th PDSCH associated with the first uplink channel group i is a positive integer, less than or equal to the number of PDSCHs associated with the first uplink channel group;
  • the SCS of the scheduling PDCCH of the i-th PDSCH associated with the first uplink channel group i is a positive integer, less than or equal to the number of PDSCHs associated with the first uplink channel group;
  • the SCS of the scheduling PDCCH of the PUSCH in the first uplink channel group is the SCS of the scheduling PDCCH of the PUSCH in the first uplink channel group.
  • the second processing time is determined according to the fifth reference subcarrier spacing SCS.
  • the fifth reference subcarrier spacing may be the minimum value of the subcarrier spacing of the following channels:
  • the i-th PDSCH associated with the first uplink channel group i is a positive integer, less than or equal to the number of PDSCHs associated with the first uplink channel group;
  • the i-th scheduling PDCCH associated with the first uplink channel group for semi-persistent scheduling SPSPDSCH release i is a positive integer, less than or equal to the number of scheduling PDCCHs associated with the first uplink channel group for semi-persistent scheduling SPSPDSCH release;
  • none of the at least two uplink channels responds to downlink control information DCI.
  • FIG. 9 shows a schematic diagram of PUCCHs overlapping in time domain, taking the multiplexing mode as the second multiplexing mode and at least two uplink channels associated with at least two panels as an example.
  • two PUCCHs can be sent through two panels (for example, panel 1 and panel 2).
  • the uplink channel group associated with panel 1 includes 2 PUCCHs, corresponding to the first processing time is the maximum value of the sum of the processing time of the second PDSCH associated with the uplink channel group and the first additional processing time, and the corresponding second processing time is the maximum value of the sum of the processing time of the PUSCH associated with the PUCCH in the uplink channel group and the second additional processing time.
  • the time interval between the first symbol of the first PUCCH transmitted through panel 1 and the last symbol of the PDSCH associated with the PUCCH transmitted through panel1 is greater than or equal to the first processing time corresponding to panel 1
  • the time interval between the first symbol of the first PUCCH sent through panel 1 and the last symbol of the PDCCH associated with the PUCCH sent through panel 1 is greater than or equal to the second processing time corresponding to panel 1
  • the UCI carried by the two PUCCHs associated with the panel 1 may be multiplexed to an uplink channel (such as PUCCH or PUSCH) associated with the panel 1 for transmission.
  • the uplink channel group associated with panel 2 includes 2 PUCCHs
  • the corresponding first processing time is the maximum value of the sum of the processing time of the second PDSCH associated with the uplink channel group and the first additional processing time
  • the corresponding second processing time is the maximum value of the sum of the processing time of the PUSCH associated with the PUCCH in the uplink channel group and the second additional processing time.
  • the time interval between the first symbol of the first PUCCH transmitted through panel 2 and the last symbol of the PDSCH associated with the PUCCH transmitted through panel 2 is greater than or equal to the first processing time corresponding to panel 2
  • the time interval between the first symbol of the first PUCCH sent through panel 2 and the last symbol of the PDCCH associated with the PUCCH sent through panel 2 is greater than or equal to the second processing time corresponding to panel 2
  • the UCI carried by the two PUCCHs associated with the panel 2 can be multiplexed to an uplink channel (such as PUCCH or PUSCH) associated with the panel 2 for transmission.
  • the spatial information includes a panel as an example for description here.
  • the multiplexing method of the uplink control information UCI of the above at least two PUCCHs The multiplexing manner is the same as or similar to when the spatial channel includes a panel.
  • the panel in the above embodiment may be replaced with at least one of a panel, a CORESET group, a reference signal set, a TCI state, and a beam, and details are not repeated here.
  • the above-mentioned third processing time is determined according to the sum of the processing time of the PDCCH associated with the first uplink channel group for SPS PDSCH release and the third additional processing time, wherein the third The additional processing time is the additional processing time required when the terminal device sends at least two uplink channels associated with at least two spatial information, here it may be required for the PDCCH associated with the first uplink channel group for SPS PDSCH release Additional processing time.
  • the HARQ-ACK feedback corresponding to the PDCCH is carried on the PUCCH of the first uplink channel group.
  • the first additional processing time may be p symbols, and p is an integer greater than or equal to 0.
  • the third additional processing time is predefined, or determined according to capability information of the terminal device, which is not limited in this application.
  • the third additional processing time is p symbols
  • p is predefined or determined according to capability information of the terminal device. That is, the third additional processing time, or the value of p is related to the processing capability of the terminal device for simultaneously sending at least two uplink channels of spatial information.
  • p may be 0, 1, 2, 3, etc., without limitation.
  • the third processing time may be the maximum sum of the processing time of the PDCCH used for SPSPDSCH release associated with the first uplink channel group and the third additional processing time.
  • the maximum value of the sum of the processing time of the PDCCH for SPSPDSCH release associated with the first uplink channel group and the third additional processing time can be expressed as in, Indicates the sum of the processing time of the i-th PDCCH associated with the first uplink channel group for SPSPDSCH release and the third additional processing time, where i is a positive integer and less than the first uplink channel group associated with the SPSPDSCH release The number of PDCCHs.
  • the third processing time is determined according to the sixth reference subcarrier spacing.
  • the sixth reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • the i-th scheduled PDCCH for SPSPDSCH release associated with the first uplink channel group i is a positive integer, less than or equal to the number of scheduled PDCCHs used for SPSPDSCH release associated with the first uplink channel group;
  • At least one uplink channel among the at least two uplink channels responds to downlink control information DCI.
  • the processing time of the i-th PDSCH used for SPSPDSCH release associated with the first uplink channel group can be expressed as Where N is the processing time of the terminal equipment corresponding to the i-th PDCCH used for SPS PDSCH release; p is the third additional processing time; ⁇ is the configuration of the SCS, where the value of ⁇ is the minimum value of the SCS configured as follows:
  • the SCS of the i-th PDCCH used for SPS PDSCH release associated with the first uplink channel group i is a positive integer, less than or equal to the number of PDCCHs used for SPSPDSCH release associated with the first uplink channel group;
  • the SCS of the scheduling PDCCH of the i-th PDSCH associated with the first uplink channel group i is a positive integer, less than or equal to the number of PDSCHs associated with the first uplink channel group;
  • the SCS of the PUCCH carrying the HARQ-ACK feedback released by the i-th SPS PDSCH associated with the first uplink channel group i is a positive integer, less than or equal to the SCS of the HARQ-ACK feedback used for the release of the SPSPDSCH associated with the first uplink channel group the number of PUCCH;
  • the fourth processing time is determined according to the sum of the calculation time of the CSI associated with the first uplink channel group and the fourth additional processing time.
  • the fourth additional processing time is the additional processing time required when the terminal device sends the at least two uplink channels associated with the at least two spatial information, here it may be the second uplink channel associated with the first uplink channel group Additional processing time required by the channel.
  • the fourth additional processing time is predefined, or determined according to capability information of the terminal device, which is not limited in this application.
  • the fourth additional processing time is y symbols
  • y is predefined or determined according to capability information of the terminal device. That is, the fourth additional processing time, or the value of y is related to the processing capability of the terminal device for simultaneously sending at least two uplink channels of spatial information.
  • y may be 0, 1, 2, 3, etc., without limitation.
  • the fourth additional processing time can be Where Z is the CSI calculation time associated with the first uplink channel group, and d, T switch , d 2,2 are values predefined by the protocol.
  • the fourth processing time is determined according to the seventh reference subcarrier spacing
  • the seventh reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • At least one uplink channel among the at least two uplink channels responds to downlink control information DCI.
  • the fourth processing time is determined according to the eighth reference subcarrier spacing
  • the eighth reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • the CSI-RS associated with the PUSCH carrying the aperiodic CSI is the CSI-RS associated with the PUSCH carrying the aperiodic CSI.
  • none of the at least two uplink channels responds to the downlink control information DCI.
  • the first additional processing time, the second additional processing time, the third additional processing time, and the fourth additional processing time may be the same value, or the same additional processing time. This is not limited.
  • the UCI carried by the uplink channel in the first uplink channel group that satisfies the timing relationship is multiplexed to the uplink channel associated with the same spatial information (such as panel 0)
  • the UCI carried by the uplink channel in the second uplink channel group that satisfies the timing relationship is multiplexed to the uplink channel associated with the same spatial information (such as panel 1)
  • the uplink channel in the nth uplink channel group that satisfies the timing relationship The UCI carried by the channel is multiplexed to the uplink channel associated with the same spatial information (such as paneln-1).
  • n is the number of at least two pieces of spatial information that the terminal device supports to simultaneously send the uplink channel.
  • the first uplink channel group among the at least two uplink channels satisfies a certain timing relationship, so that the terminal device can have enough time to judge whether the UCI carried by different uplink channels needs to be multiplexed, and When it is determined that the UCI carried by different uplink channels needs to be multiplexed, the terminal device has enough time for repackaging.
  • the maximum UCI code rate (maxCodeRate) corresponding to the PUCCH format associated with each spatial information in the at least two spatial information is the same or different , which is not limited in this application.
  • different maximum UCI code rates may be configured for each PUCCH format associated with spatial information.
  • each type of spatial information corresponds to one panel as an example
  • n types of spatial information correspond to n panels
  • the panelID is [0,n-1], where n is a positive integer.
  • the PUCCH formats associated with each panelID are respectively configured with a maximum UCI code rate, and the maximum UCI code rates corresponding to the same PUCCH format associated with different panelIDs can be the same or different without limitation.
  • the PUCCH format 2 associated with each panelID as an example, the configuration of the maximum UCI code rate of the same PUCCH format associated with different panelIDs is shown in Table 1 below:
  • MaxCodeRate-panel0, ..., MaxCodeRate-paneln-1 correspond to different maximum UCI code rates.
  • configuration information of uplink channels associated with at least two pieces of spatial information is configured independently.
  • the network device respectively configures the configuration information of the uplink information associated with the at least two pieces of spatial information through different high-layer parameters.
  • the spatial information may be any one of the aforementioned spatial information, which will not be repeated here.
  • the uplink channel may be any one of PUSCH, PUCCH, SRS, and PRACH.
  • each kind of spatial information corresponds to one panel and the uplink channel is PUCCH as an example
  • n types of spatial information correspond to n panels
  • the panelID is [0,n-1], where n is a positive integer.
  • each panelID is associated with a set of PUCCH configuration information, for example, panel x configures a high-level parameter PUCCH-config-panelx, where x represents the index of the panelID, and the range is [0,...,n-1].
  • the high-level parameters of panel0 to paneln-1 are respectively high-level parameters PUCCH-config-panel0, high-level parameters PUCCH-config-panel1, ..., high-level parameters PUCCH-config-paneln-1, etc.
  • high-level parameters PUCCH-config-panelx include The maximum UCI code rate configured for each PUCCH format.
  • the maximum UCI code rate in the PUCCH configuration information associated with different panelIDs may be different, for example, it may be recorded as r panelx .
  • the high-level parameter PUCCH-config-panelx can be as follows:
  • n kinds of spatial information correspond to n panels, and the panelID is [0,n-1], where n is a positive integer.
  • multiple panelIDs associated with at least two spatial information are associated with the same PUCCH configuration parameters, such as PUCCH-config configuration, wherein the same PUCCH formats associated with multiple panelIDs are configured with different maximum UCI code rates.
  • the high-level parameter PUCCH-config may be as follows:
  • the UCI carried by the uplink channel associated with each type of spatial information adopts independent encoding.
  • the spatial information includes a panel as an example for description.
  • the spatial relationship includes at least one of the CORESET group, reference signal set, TCI state, and beam
  • the maximum UCI code rate of multiple PUCCH formats associated with the spatial information The configuration method is the same or similar to the configuration method when the spatial information includes a panel.
  • the panel in the above embodiment can be replaced with at least one of a panel, a CORESET group, a reference signal set, a TCI state, and a beam, and details are not repeated here.
  • the above at least two pieces of spatial information may include s sets of spatial information, and the maximum UCI code rate corresponding to the same PUCCH format associated with each set of spatial information in the s sets of spatial information is the same, where s is An integer greater than 1, s is less than or equal to the quantity of the at least two pieces of spatial information.
  • n types of spatial information correspond to n panels, and the panel ID is [0, n-1], where n is a positive integer.
  • the same PUCCH format associated with the n panelIDs can be configured with at most s different maximum UCI code rates, where s is an integer greater than 1 and less than or equal to n.
  • the UCI carried by the uplink channel associated with at least one spatial information in the same group of spatial information adopts joint coding
  • the UCI carried by the uplink channel associated with different groups of spatial information The UCI uses independent encoding.
  • the uplink channel is PUCCH.
  • the value of s is predefined, or determined according to the UCI priority level.
  • the priority level of the UCI is related to the content and/or service type of the UCI.
  • the content of UCI may include at least one of HARQ-ACK, SR, channel state information part 1 (Channel state information part 1, CSIpart1), channel state information part 2 (Channel state information part 2, CSIpart 2), etc.
  • the business types of UCI include Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Internet of Things (IoT) related services at least one of these.
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low Latency Communications
  • IoT Internet of Things
  • n types of spatial information correspond to n panels, and the panel ID is [0,n-1], where n is a positive integer.
  • the number of panels sent by the terminal device at the same time is 4.
  • 2 panels are in the first group, and the other 2 panels are in the second group.
  • the maximum UCI code rate of the same PUCCH format (such as PUCCH format 2) associated with the panelID included in the first group is the first value of maxCodeRate
  • the maximum UCI code rate of the same PUCCH format (such as PUCCH format 2) associated with the second group of panelIDs is maxCodeRate second value.
  • n types of spatial information correspond to n panels, and the panel ID is [0, n-1], where n is a positive integer.
  • the number of panels sent by the terminal device at the same time is 4.
  • the UCIs carried by the PUCCH associated with 2 panelIDs have the same priority level, then the 2 panels are in the first group, and the first group includes the same PUCCH format (for example, PUCCH format 2) associated with the panelID
  • the maximum UCI code rate is the first value of maxCodeRate.
  • the UCIs carried by the PUCCHs associated with the other 2 panelIDs in the 4 panels have the same priority level, then the other 2 panels are in the second group, and the same PUCCH format (such as PUCCH format) associated with the panel ID included in the second group 2)
  • the maximum UCI code rate is the second value of maxCodeRate.
  • the value of s is determined according to the space information and the priority level of the UCI, and s may be greater than n.
  • the priority levels of UCI carried by multiple uplink channels associated with the same spatial information may be different. In this case, they can be divided into different groups according to the priority levels of different UCIs. For example, if the UCIs carried by multiple uplink channels associated with the same spatial information have two priority levels, they are divided into two groups according to the priority levels of the UCIs.
  • n types of spatial information correspond to n panels, and the panel ID is [0,n-1], where n is a positive integer.
  • n 2, that is, the number of panels sent by the terminal device at the same time is 2.
  • the UCI carried by the PUCCH associated with one of the two panels has the same priority level, then the one panel is in the first group, and the first group includes the same PUCCH format associated with the panelID (for example, PUCCH format 2)
  • the maximum UCI code rate is the first value of maxCodeRate.
  • the priority levels of UCIs carried by multiple PUCCHs associated with the other panelID in the two panels have two priority levels, then the panel is divided into two groups according to the priority levels of UCI, including the second group and the third group Group.
  • the maximum UCI code rate of the same PUCCH format (for example, PUCCH format 2) associated with the panel ID included in the second group is the second value of maxCodeRate.
  • the maximum UCI code rate of the same PUCCH format (for example, PUCCH format 2) associated with the panel ID included in the third group is the third value of maxCodeRate.
  • the spatial information includes a panel as an example for description here.
  • the spatial relationship includes at least one of the CORESET group, reference signal set, TCI state, and beam
  • each group of spatial information in the s group of spatial information is associated with the same PUCCH
  • the configuration method of the maximum UCI code rate corresponding to the format is the same as or similar to the configuration method when the spatial information includes a panel.
  • the panel in the above embodiment can be replaced with at least one of the panel, CORESET group, reference signal set, TCI state, beam, etc. One, which will not be repeated here.
  • the embodiment of the present application divides at least two spatial information into s groups, and the maximum UCI code rate of the same PUCCH format associated with at least one spatial information corresponding to each group of spatial information is the same, which can help reduce UCI complexity. Computational complexity of used PUCCH resources.
  • the terminal device may receive second information, where the second information may be used to indicate the maximum UCI code rate corresponding to the PUCCH format associated with the at least two spatial information.
  • the second information may be configured through RRC signaling, or dynamically indicated through DCI, which is not limited in this application.
  • the number of physical resource blocks (physical resource blocks, PRBs) of the UCI multiplexed PUCCH resources may also be determined.
  • the number of PRBs after UCI multiplexing carried by the at least two uplink channels is the same as that of the at least two space information
  • At least one of the number of UCI bits associated with each spatial information in the information, the number of CRC scrambling bits associated with each spatial information, and the maximum UCI code rate associated with each spatial information is determined.
  • n types of spatial information correspond to n panels, and the panel ID is [0, n-1], where n is a positive integer.
  • the number of multiplexed PRBs can be based on the number of UCI bits associated with each panelID in the n panelIDs and the number of CRC scrambling bits associated with each panelID , at least one association among the maximum UCI code rate associated with each panelID.
  • the number of PRBs after UCI multiplexing carried by the at least two uplink channels is the smallest one that satisfies the formula (1) value, or the smallest value that satisfies the formula and is a common multiple of 2, 3, 5 value.
  • the number of PRBs after UCI multiplexing carried by the at least two uplink channels is value.
  • Q m is a parameter related to the modulation scheme (modulation scheme) or understood as the number of bits per RE, is the number of PRBs corresponding to the PUCCH format, is the number of subcarriers per resource block corresponding to the PUCCH format, is the number of time-domain symbols corresponding to the PUCCH format, is less than The number of PRBs.
  • the present application according to at least one of the number of UCI bits associated with each spatial information in at least two spatial information, the number of CRC scrambling bits associated with each spatial information, and the maximum UCI code rate associated with each spatial information
  • One is to determine the number of PRBs after UCI multiplexing carried by at least two uplink channels, so that at least one of the number of UCI bits corresponding to each spatial information, the number of CRC scrambling bits, and the maximum UCI code rate corresponds to the PRB
  • the impact of the number is reflected in the number of PRBs of the PUCCH resource corresponding to the multiplexed UCI.
  • the UCI carried by the at least two uplink channels The number of PRBs after multiplexing is based on the total number of UCI bits associated with each group of spatial information in the s group of spatial information, the total number of CRC scrambling bits associated with each group of spatial information, and the total maximum UCI code rate associated with each group of spatial information At least one of the identified.
  • n types of spatial information correspond to n panels, and the panel ID is [0, n-1], where n is a positive integer.
  • the n panelIDs can be divided into s groups, the UCI carried by at least two uplink channels associated with each group of panelIDs, the number of multiplexed PRBs can be based on the total number of UCI bits associated with the group of panels, the number of UCI bits associated with the group of panels At least one of the total number of CRC scrambling bits and the total maximum UCI code rate associated with this group of panels is determined.
  • s may be less than or equal to the number n of panels, or greater than or equal to the number n of panels, which is not limited.
  • the process of dividing the n panelIDs into s groups can refer to the above description, and will not be repeated here.
  • the number of PRBs after UCI multiplexing carried by the at least two uplink channels is the smallest one that satisfies the formula (3) value, or the smallest value that satisfies the formula (3) and is a common multiple of 2, 3, 5 value.
  • O UCI_group1 ,..., O UCI_groups correspond to the total number of UCI bits associated with each group of panels respectively
  • r first value correspond to each group of panels
  • the associated maximum UCI code rate, O CRC, group1 ,..., O CRC, groups respectively correspond to the total number of CRC scrambling bits associated with each group of panels
  • Q m is a parameter related to the modulation scheme (modulation scheme) or understood as each the number of bits of the RE, is the number of subcarriers per resource block corresponding to the PUCCH format, is the number of time-domain symbols corresponding to the PUCCH format, is the number of PRBs corresponding to the PUCCH format, is less than The number of PRBs.
  • the spatial information includes a panel as an example for description here.
  • the spatial relationship includes at least one of CORESET group, reference signal set, TCI state, and beam
  • the UCI multiplexed PRBs carried by the at least two uplink channels The method of determining the number is the same or similar to that when the spatial information includes a panel.
  • the panel in the above embodiment can be replaced with at least one of the panel, CORESET group, reference signal set, TCI state, beam, etc., which will not be repeated here repeat.
  • the total number of UCI bits associated with each group of spatial information in at least two spatial information can make the total number of UCI bits corresponding to each group of spatial information, the total number of CRC scrambling bits and the total maximum UCI code rate.
  • determining the number of PRBs after UCI multiplexing carried by at least two uplink channels can make the total number of UCI bits corresponding to each group of spatial information, the total number of CRC scrambling bits and the total maximum UCI code rate
  • the influence of at least one corresponding number of PRBs is reflected in the number of PRBs of PUCCH resources corresponding to the multiplexed UCI.
  • the complexity of determining the number of PRBs of the multiplexed UCI can be reduced.
  • the terminal device may also send capability information, for example, send the capability information of the terminal device to a network device.
  • the capability information includes at least one of the following:
  • the capability information may be, for example, whether to support simultaneous transmission of uplink channels associated with n panelIDs, whether to support the code rate or maximum UCI code rate associated with n panelIDs, and additional processing for simultaneous transmission of uplink channels associated with n panelIDs At least one item of time (eg, first additional processing time, and/or second additional processing time, and/or third additional processing time).
  • first additional processing time, and/or the second additional processing time, and/or the third additional processing time can refer to the description above, and will not be repeated here.
  • the network device receives the capability information, and obtains the capability of the terminal device according to the capability information.
  • the network device configures or schedules the terminal device to simultaneously send uplink channels associated with at least two pieces of space information according to the capability information of the terminal device.
  • the network configures uplink channels associated with at least two pieces of spatial information to use different code rates or maximum UCI code rates according to the capability information of the terminal device.
  • the network device configures additional processing time according to the capability information of the terminal device, for example, a first additional processing time, and/or a second additional processing time, and/or a third additional processing time.
  • the terminal device uses the first additional processing time, and/or the second additional processing time, and/or the third additional processing time to perform UCI multiplexing according to the capability information.
  • the first additional processing time, the second additional processing time, and the third additional processing time may be the same value, or the same additional processing time, which is not limited in this application.
  • the terminal device may simultaneously send at least two uplink channels associated with spatial information according to its capability information, such as PUCCH and/or PUSCH and/or SRS and/or PRACH.
  • its capability information such as PUCCH and/or PUSCH and/or SRS and/or PRACH.
  • the terminal device when the capability information reported by the terminal device is that the terminal device supports simultaneous transmission of PUCCHs associated with n panelIDs, the terminal device performs UCI multiplexing according to the above-mentioned second multiplexing manner.
  • the terminal device When the capability information reported by the terminal device is that the terminal device does not support simultaneous transmission of PUCCHs associated with n panelIDs, the terminal device performs UCI multiplexing according to the above-mentioned first multiplexing manner.
  • the terminal device may perform UCI multiplexing according to the first multiplexing manner.
  • whether the terminal device supports simultaneous sending of at least two uplink channels associated with spatial information may be reported according to different combinations of uplink channels.
  • the combination of uplink channels includes one channel or a combination of multiple channels among PUCCH, PUSCH, SRS, and PRACH.
  • the terminal device may report whether it supports simultaneous transmission of PUCCH associated with at least two spatial information, or the terminal device may report whether it supports simultaneous transmission of PUCCH and PUSCH associated with at least two spatial information, etc., which will not be repeated here.
  • Fig. 10 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 includes a communication unit 310 .
  • the terminal device 300 may further include a processing unit 320 .
  • the communication unit 310 is configured to send the UCI carried by the at least two uplink channels according to the multiplexing mode of the uplink control information UCI carried by the at least two uplink channels;
  • the at least two uplink channels are associated with at least two spatial information, the time domain resources of the at least two uplink channels overlap and/or the time domain resources of the at least two uplink channels are in the same time unit .
  • the processing unit 320 is configured to determine a multiplexing manner of the uplink control information UCI carried by the at least two uplink channels.
  • the multiplexing manner includes a first multiplexing manner, and the first multiplexing manner includes multiplexing the UCI carried by the at least two uplink channels onto the first uplink channel for transmission.
  • the at least two uplink channels include the first uplink channel, or the first uplink channel is an uplink channel other than the at least two uplink channels.
  • the multiplexing mode includes a second multiplexing mode
  • the second multiplexing mode includes multiplexing UCI carried by at least one uplink channel associated with the first spatial information onto a second uplink channel for transmission, wherein , the first spatial information is one of the at least two spatial information, and the second uplink channel is associated with the first spatial information.
  • the at least two uplink channels include the second uplink control channel, or the second uplink channel is an uplink channel other than the at least two uplink channels.
  • the at least two uplink channels include a first uplink channel group, and the first uplink channel group has at least one of the following timing relationships;
  • the time interval between the first symbol of the first PUCCH or the first PUSCH in the first uplink channel group and the last symbol of the PDSCH associated with the first uplink channel group is greater than or equal to the first processing time
  • the time interval between the first symbol of the first PUCCH or the first PUSCH and the last symbol of the scheduled PDCCH of the first channel associated with the first uplink channel group is greater than or equal to the second processing time
  • the interval between the first symbol of the first PUCCH or the first PUSCH and the last symbol of the PDCCH associated with the first uplink channel group is greater than or equal to a third processing time, wherein the The PDCCH associated with an uplink channel group is used for the release of the semi-persistent scheduling SPS PDSCH;
  • a time interval between the first symbol of the first PUCCH or the first PUSCH and the last symbol of the second channel associated with the first uplink channel group is greater than or equal to a fourth processing time.
  • the uplink channels in the first uplink channel group are associated with the same spatial information, or, the uplink channels in the first uplink channel group are associated with at least two pieces of spatial information.
  • the first PUCCH or the first PUSCH is the earliest channel in the time domain of the first uplink channel group.
  • the first channel includes at least one of PUSCH, PDSCH, and SPSPDSCH release.
  • the second channel includes the scheduling PDCCH of the PUSCH in the first uplink channel group, the scheduling PDCCH of the PDSCH corresponding to the PUCCH in the first uplink channel group, and the PDCCH associated with the first uplink channel group. At least one item in the PDCCH of SPSPDSCHrelease.
  • the first processing time is determined according to the sum of the processing time of the ith PDSCH associated with the first uplink channel group and a first additional processing time, where the first additional processing time is the first additional processing time
  • the additional processing time required by the PDSCH associated with an uplink channel group, i is a positive integer and less than or equal to the number of uplink channels in the first uplink channel group.
  • the first additional processing time is predefined, or determined according to capability information of the terminal device.
  • the second processing time is based on the sum of the processing time of the PUSCH associated with the PUCCH in the first uplink channel group and the second additional processing time determined, wherein the second additional processing time is the additional processing time required by the first channel associated with the first uplink channel group.
  • the second processing time is determined according to the sum of the processing time of the i-th PUSCH in the first uplink channel group and the second additional processing time , wherein, the second additional processing time is the additional processing time required by the first channel associated with the first uplink channel group, i is a positive integer and less than or equal to the uplink channel in the first uplink channel group number of channels.
  • the second additional time is predefined, or determined according to capability information of the terminal device.
  • the third processing time is determined according to the sum of the processing time of the PDCCH associated with the first uplink channel group for SPS PDSCH release and the third additional processing time, wherein the third additional processing The time is the additional processing time required by the PDCCH associated with the first uplink channel group for SPS PDSCH release.
  • the third additional processing time is predefined, or determined according to capability information of the terminal device.
  • the fourth processing time is determined according to the sum of the calculation time of the CSI associated with the first uplink channel group and a fourth additional processing time, where the fourth additional processing time is the first Additional processing time required by the second channel associated with the uplink channel group.
  • the fourth additional processing time is predefined, or determined according to capability information of the terminal device.
  • the first processing time is determined according to a first reference subcarrier spacing
  • the first reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • the ith PDSCH associated with the first uplink channel group
  • the second processing time is determined according to a second reference subcarrier spacing
  • the second reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • PUCCHs in the first uplink channel group are PUCCHs in the first uplink channel group.
  • the second processing time is determined according to a third reference subcarrier spacing
  • the third reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • PUCCHs in the first uplink channel group are PUCCHs in the first uplink channel group.
  • the second processing time is determined according to a fourth reference subcarrier spacing
  • the fourth reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • the ith PDSCH associated with the first uplink channel group
  • the second processing time is determined according to a fifth reference subcarrier spacing
  • the fifth reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • the ith PDSCH associated with the first uplink channel group
  • the third processing time is determined according to a sixth reference subcarrier spacing
  • the sixth reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • PUCCH in the first uplink channel group PUCCH in the first uplink channel group, and PUSCH in the first uplink channel group.
  • the fourth processing time is determined according to a seventh reference subcarrier spacing
  • the seventh reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • the fourth processing time is determined according to an eighth reference subcarrier spacing
  • the eighth reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • the maximum UCI code rates corresponding to the PUCCH formats associated with the at least two spatial information are the same or different.
  • the number of PRBs after UCI multiplexing carried by the at least two uplink channels is the number of UCI bits associated with each spatial information in the at least two spatial information, the cyclic CRC associated with each spatial information plus At least one of the number of scrambling bits and the maximum UCI code rate associated with each spatial information is determined.
  • the at least two pieces of spatial information include s sets of spatial information, and the maximum UCI code rate corresponding to the same PUCCH format in each set of spatial information in the s sets of spatial information is the same, where s is an integer greater than 1, s is less than or equal to the quantity of the at least two pieces of spatial information.
  • the value of s is predefined, or determined according to the UCI priority level.
  • the number of PRBs after UCI multiplexing carried by the at least two uplink channels is based on the total number of UCI bits associated with each group of spatial information in the s groups of spatial information, and the total CRC scrambling associated with each group of spatial information At least one of the number of bits and the total maximum UCI code rate associated with each group of spatial information is determined.
  • the uplink channel includes at least one of PUCCH, PUSCH, SRS, and PRACH.
  • the communication unit 310 is further configured to send capability information, where the capability information includes at least one of the following:
  • processing unit 320 is specifically configured to:
  • the terminal device multiplexes UCI carried by at least one uplink channel associated with the same spatial information according to the multiplexing mode
  • the terminal device multiplexes UCI carried by at least two uplink channels associated with different spatial information according to the multiplexing manner.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 300 are for realizing the method shown in FIG. 8 For the sake of brevity, the corresponding process of the terminal device in 200 will not be repeated here.
  • Fig. 11 shows a schematic block diagram of a network device 400 according to an embodiment of the present application.
  • the network device 400 includes a communication unit 410 .
  • the network device 400 further includes a processing unit 420 .
  • the communication unit 410 is configured to receive the UCI carried by the at least two uplink channels from the terminal device according to the multiplexing manner of the uplink control information UCI carried by the at least two uplink channels;
  • the at least two uplink channels are associated with at least two spatial information, the time domain resources of the at least two uplink channels overlap and/or the time domain resources of the at least two uplink channels are in the same time unit .
  • the processing unit 420 is configured to determine a multiplexing mode of the uplink control information UCI carried by at least two uplink channels.
  • the multiplexing manner includes a first multiplexing manner, and the first multiplexing manner includes multiplexing the UCI carried by the at least two uplink channels onto the first uplink channel for transmission.
  • the at least two uplink channels include the first uplink channel, or the first uplink channel is an uplink channel other than the at least two uplink channels
  • the multiplexing mode includes a second multiplexing mode
  • the second multiplexing mode includes multiplexing UCI carried by at least one uplink channel associated with the first spatial information onto a second uplink channel for transmission, wherein , the first spatial information is one of the at least two spatial information, and the second uplink channel is associated with the first spatial information.
  • the at least two uplink channels include the second uplink control channel, or the second uplink channel is an uplink channel other than the at least two uplink channels.
  • the at least two uplink channels include a first uplink channel group, and the first uplink channel group has at least one of the following timing relationships:
  • the time interval between the first symbol of the first PUCCH or the first PUSCH in the first uplink channel group and the last symbol of the PDSCH associated with the first uplink channel group is greater than or equal to the first processing time
  • the time interval between the first symbol of the first PUCCH or the first PUSCH and the last symbol of the scheduled PDCCH of the first channel associated with the first uplink channel group is greater than or equal to the second processing time
  • the interval between the first symbol of the first PUCCH or the first PUSCH and the last symbol of the PDCCH associated with the first uplink channel group is greater than or equal to a third processing time, wherein the The PDCCH associated with an uplink channel group is used for the release of the semi-persistent scheduling SPS PDSCH;
  • a time interval between the first symbol of the first PUCCH or the first PUSCH and the last symbol of the second channel associated with the first uplink channel group is greater than or equal to a fourth processing time.
  • the uplink channels in the first uplink channel group are associated with the same spatial information, or, the uplink channels in the first uplink channel group are associated with at least two pieces of spatial information.
  • the first PUCCH or the first PUSCH is the earliest channel in the time domain of the first uplink channel group.
  • the first channel includes at least one of PUSCH, PDSCH, and SPSPDSCH release.
  • the second channel includes the scheduling PDCCH of the PUSCH in the first uplink channel group, the scheduling PDCCH of the PDSCH corresponding to the PUCCH in the first uplink channel group, and the PDCCH associated with the first uplink channel group. At least one item in the PDCCH of SPSPDSCHrelease.
  • the first processing time is determined according to the sum of the processing time of the ith PDSCH associated with the first uplink channel group and a first additional processing time, where the first additional processing time is the first additional processing time
  • the additional processing time required by the PDSCH associated with an uplink channel group, i is a positive integer and less than or equal to the number of uplink channels in the first uplink channel group.
  • the first additional processing time is predefined, or determined according to capability information of the terminal device.
  • the second processing time is based on the sum of the processing time of the PUSCH associated with the PUCCH in the first uplink channel group and the second additional processing time determined, wherein the second additional processing time is the additional processing time required by the first channel associated with the first uplink channel group.
  • the second processing time is determined according to the sum of the processing time of the i-th PUSCH in the first uplink channel group and the second additional processing time , wherein, the second additional processing time is the additional processing time required by the first channel associated with the first uplink channel group, i is a positive integer and less than or equal to the uplink channel in the first uplink channel group number of channels.
  • the second additional time is predefined, or determined according to capability information of the terminal device.
  • the third processing time is determined according to the sum of the processing time of the PDCCH associated with the first uplink channel group for SPS PDSCH release and the third additional processing time, wherein the third additional processing The time is the additional processing time required by the PDCCH associated with the first uplink channel group for SPS PDSCH release.
  • the third additional processing time is predefined, or determined according to capability information of the terminal device.
  • the fourth processing time is determined according to the sum of the calculation time of the CSI associated with the first uplink channel group and a fourth additional processing time, where the fourth additional processing time is the first Additional processing time required by the second channel associated with the uplink channel group.
  • the fourth additional processing time is predefined, or determined according to capability information of the terminal device.
  • the first processing time is determined according to a first reference subcarrier spacing
  • the first reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • the ith PDSCH associated with the first uplink channel group
  • the second processing time is determined according to a second reference subcarrier spacing
  • the second reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • PUCCHs in the first uplink channel group are PUCCHs in the first uplink channel group.
  • the second processing time is determined according to a third reference subcarrier spacing
  • the third reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • PUCCHs in the first uplink channel group are PUCCHs in the first uplink channel group.
  • the second processing time is determined according to a fourth reference subcarrier spacing
  • the fourth reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • the ith PDSCH associated with the first uplink channel group
  • the second processing time is determined according to a fifth reference subcarrier spacing
  • the fifth reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • the ith PDSCH associated with the first uplink channel group
  • the third processing time is determined according to a sixth reference subcarrier spacing
  • the sixth reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • PUCCH in the first uplink channel group PUCCH in the first uplink channel group, and PUSCH in the first uplink channel group.
  • the fourth processing time is determined according to a seventh reference subcarrier spacing
  • the seventh reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • the fourth processing time is determined according to an eighth reference subcarrier spacing
  • the eighth reference subcarrier spacing is the minimum value of the subcarrier spacing of the following channels:
  • the maximum UCI code rates corresponding to the PUCCH formats associated with the at least two spatial information are the same or different.
  • the number of PRBs after UCI multiplexing carried by the at least two uplink channels is the number of UCI bits associated with each spatial information in the at least two spatial information, the cyclic CRC associated with each spatial information plus At least one of the number of scrambling bits and the maximum UCI code rate associated with each spatial information is determined.
  • the at least two pieces of spatial information include s sets of spatial information, and the maximum UCI code rate corresponding to the same PUCCH format in each set of spatial information in the s sets of spatial information is the same, where s is an integer greater than 1, s is less than or equal to the quantity of the at least two pieces of spatial information.
  • the value of s is predefined, or determined according to the UCI priority level.
  • the number of PRBs after UCI multiplexing carried by the at least two uplink channels is based on the total number of UCI bits associated with each group of spatial information in the s groups of spatial information, and the total CRC scrambling associated with each group of spatial information At least one of the number of bits and the total maximum UCI code rate associated with each group of spatial information is determined.
  • the uplink channel includes at least one of PUCCH, PUSCH, SRS, and PRACH.
  • the communication unit 410 is further configured to: receive capability information from the terminal device, where the capability information includes at least one of the following:
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 400 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 400 are to realize the method shown in FIG. 8 For the sake of brevity, the corresponding processes of the network devices in 200 will not be repeated here.
  • Fig. 12 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 shown in FIG. 12 includes a processor 510, and the processor 510 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520 .
  • the processor 510 can invoke and run a computer program from the memory 520, so as to implement the method in the embodiment of the present application.
  • the memory 520 may be an independent device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, to send information or data to other devices, or Receive messages or data from other devices.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include antennas, and the number of antennas may be one or more.
  • the communication device 500 may specifically be the network device of the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat.
  • the communication device 500 may specifically be the terminal device in the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application.
  • the Let me repeat the Let me repeat.
  • Fig. 13 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 600 shown in FIG. 13 includes a processor 610, and the processor 610 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the device 600 may further include an input interface 630 .
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the device 600 may further include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the device can be applied to the network device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network device in the methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 14 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 14 , the communication system 700 includes a terminal device 710 and a network device 720 .
  • the terminal device 710 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 720 can be used to realize the corresponding functions realized by the network device in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
  • the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, I won't repeat them here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For brevity, This will not be repeated here.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the network device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法、终端设备和网络设备,能够对与至少两个空间信息关联的至少两个上行信道承载的UCI进行复用,从而提高无线通信的效率。该无线通信的方法,包括:终端设备根据至少两个上行信道承载的上行控制信息UCI的复用方式,发送所述至少两个上行信道承载的UCI;其中,所述至少两个上行信道与至少两个空间信息关联,所述至少两个上行信道的时域资源有重叠和/或所述至少两个上行信道的时域资源在同一个时间单元内。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法、终端设备和网络设备。
背景技术
无线通信***中,终端设备可以通过多个空间信息发送多个在时域重叠的物理上行控制信道(Physical uplink control channel,PUCCH)/物理上行共享信道(Physical uplink shared channel,PUSCH)。这些PUCCH/PUSCH承载的上行控制信息(Uplink control information,UCI)如何复用,这是亟待解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法、终端设备和网络设备,能够对与至少两个空间信息关联的至少两个上行信道承载的UCI进行复用,从而提高无线通信的效率。
第一方面,提供了一种无线通信的方法,该方法包括:
终端设备根据至少两个上行信道承载的上行控制信息UCI的复用方式,发送所述至少两个上行信道承载的UCI;
其中,所述至少两个上行信道与至少两个空间信息关联,所述至少两个上行信道的时域资源有重叠和/或所述至少两个上行信道的时域资源在同一个时间单元内。
第二方面,提供了一种无线通信的方法,该方法包括:
网络设备根据至少两个上行信道承载的上行控制信息UCI的复用方式,接收来自终端设备的所述至少两个上行信道承载的UCI;
其中,所述至少两个上行信道与至少两个空间信息关联,所述至少两个上行信道的时域资源有重叠和/或所述至少两个上行信道的时域资源在同一个时间单元内。
第三方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面中的方法。
具体地,该网络设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,在至少两个上行信道在时域资源有重叠和/或在同一个时间单元内,且该至少两个上行信道与至少两个空间信息关联时,终端设备可以确定该至少两个上行信道承载的UCI的复用方式,并根据该复用方式,发送该至少两个上行信道承载的UCI,从而实现对该至少两个上行信道的UCI的复用,提高无线通信的效率。
附图说明
图1是本申请实施例应用的一种通信***架构的示意性图。
图2是本申请提供的一种基于多TRP的上行传输的示意性图。
图3是本申请提供的另一种基于多TRP的上行传输的示意性图。
图4是本申请提供的一种基于多TRP的PUCCH传输的示意性图。
图5是本申请提供的一种配置TCI状态的示意性图。
图6A是时域重叠的PUCCH的一个示意图。
图6B是时域重叠的PUCCH与PUSCH的一个示意图。
图7A是时域重叠的PUCCH的另一个示意图。
图7B是时域重叠的PUCCH与PUSCH的另一个示意图。
图8是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图9是根据本申请实施例提供的时域重叠的PUCCH的一个示意图。
图10是根据本申请实施例提供的一种终端设备的示意性框图。
图11是根据本申请实施例提供的一种网络设备的示意性框图。
图12是根据本申请实施例提供的一种通信设备的示意性框图。
图13是根据本申请实施例提供的一种装置的示意性框图。
图14是根据本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新空口(New Radio,NR)***、NR***的演进***、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、非地面通信网络(Non-Terrestrial Networks,NTN)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信***。
在一些实施例中,本申请实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一些实施例中,本申请实施例中的通信***可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信***也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信***例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信***中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,对本申请相关的天线面板(panel)进行说明。
伴随着天线封装技术的不断演进,多个天线阵子(antenna elements)可以与芯片嵌套结合,形成一个panel,这使得在发射机配置多个低相关性的panel成为可能。通过多天线的波束赋形(Beamforming)技术,将发送信号能量汇集在某一方向上进行发送,可以有效提升覆盖,进而提高通信的性能。多个panel的射频链路是独立的,多个panel中的每个panel可以独立的形成发送波束,不同的panel形成的波束可以相同也可以不同。从而一个终端发射机可以通过不同的波束同时在多个panel上发送数据流,以提升传输的容量或可靠性。
终端设备需要在能力上报中通知网络侧所配置的天线面板panel的数量。同时,终端设备还可能需要通知网络侧是否具备在多个天线面板上同时传输信号的能力。由于不同panel对应的信道条件是不同的,不同的panel需要根据各自的信道信息采用不同的传输参数。为了得到这些传输参数,需要为不同的panel配置不同的探测参考信号资源(Sounding Reference Signal Resource,SRS Resource)来获得上行信道信息。例如,为了进行上行的波束管理,可以为每个panel配置一个SRS资源集合(SRS Resource set),从而每个panel分别进行波束管理,确定独立的模拟波束。为了得到物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输所用的预编码信息,也可以为每个panel配置一个SRS资源集合,用于得到该panel上传输的PUSCH所用的波束、预编码向量、传输层数等传输参数。同时,多panel传输也可以应用于物理上行控制信道(Physical Uplink Control Channel,PUCCH),即同一个PUCCH资源或者同样时域资源上的PUCCH资源携带的信息可以同时通过不同的panel发送给网络侧。其中,每个panel可以有自己的panel ID,用于将同一个panel上传输的不同信号关联起来,即终端设备可以认为关联相同panel ID的信号需要从同一个panel上传输。
为便于理解本申请实施例的技术方案,对本申请相关的上行非相干传输进行说明。
在NR***中,引入了基于多个传输接收点(Transmission Reception Point,TRP)的下行和上行的非相干传输。其中,TRP之间的回程(backhaul)连接可以是理想的或者非理想的,理想的backhaul下TRP之间可以快速动态的进行信息交互,非理想的backhaul下由于时延较大TRP之间只能准静态的进行信息交互。在下行非相干传输中,多个TRP可以基于不同的控制信道独立调度一个终端设备的多个物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输,也可以基于同一个控制信道调度不同TRP的传输,其中不同TRP的数据基于不同的传输层,后者只能用于理想backhaul的情况。
在上行非相干传输中,不同TRP同样可以独立调度同一个终端设备的PUSCH传输。不同PUSCH传输可以配置独立的传输参数,例如波束、预编码矩阵、层数等。所调度的PUSCH传输可以在同样的时隙或不同的时隙传输。如果终端设备在同一个时隙被同时调度了两个PUSCH传输,则需要基于自身能力确定如何进行传输。如果终端设备配置有多个panel,且支持在多个panel上同时传输PUSCH,则终端设备可以同时传输这两个PUSCH,且不同panel上传输的PUSCH对准相应的TRP进行模拟赋形,从而通过空间域区分不同的PUSCH,提高上行的频谱效率(如图2)。如果终端设备只有单个panel,或者不支持多个panel同时传输,则终端设备只能在一个panel上传输PUSCH。与下行类似,不同TRP传输的PUSCH可以基于多个下行控制信息(Downlink Control Information,DCI)进行调度,这些DCI可以通过不同的控制资源集(Control Resource Set,CORESET)来承载。具体的,网络侧配置多个CORESET组,每个TRP基于各自的CORESET组中的CORESET进行调度,即可以通过CORESET组来区分不同的TRP。例如,网络设备可以为每个CORESET配置一个CORESET组索引,不同的索引指示不同的CORESE组对应不同的TRP。同样的,向不同TRP传输的PUSCH可以基于单个DCI进行调度,此时所述DCI中需要指示向不同TRP传输的PUSCH传输层分别基于的波束和解调参考信号(Demodulation Reference Signal,DMRS)端口(如图3),即一个PUSCH不同的传输层可以在不同的panel上传输。
类似的方法也可以用于PUCCH传输。即终端设备可以配置不同的PUCCH同时在不同的panel上传输,不同panel上基于的波束不同,分别通过各自的空间相关信息通知给终端设备。以两个不同的PUCCH在不同的panel上传输为例,如图4所示,不同panel上传输的PUCCH可以用于携带发给不同TRP的上行控制信息(Uplink Control Information,UCI),例如panel1上的UCI是发送给TRP1的,panel2上的UCI是发送给TRP2的。
为便于理解本申请实施例的技术方案,对本申请相关的上行波束管理进行说明。
在NR***中,终端设备可以采用模拟波束来传输上行数据和上行控制信息。终端设备可以基于SRS信号来进行上行波束管理,从而确定上行传输所用的模拟波束。具体的,网络设备可以给终端设备配置SRS资源集合1,该SRS资源集合1中包含N个SRS资源(其中,N>1)。终端设备可以采用不同的波束发送所述N个SRS资源,网络侧分别对N个SRS资源进行接收质量的测量,选择其中接收质量最好的K个SRS资源。网络侧可以再配置一个SRS资源集合2,其中包括K个SRS资源,并令终端采用SRS资源集合1中选择出来的K个SRS资源所用的模拟波束来传输SRS资源集合2中的SRS资源。这可以通过将SRS资源集合1中选择出的K个SRS资源分别配置为SRS资源集合2中的K个SRS资源的参考SRS资源来实现。此时,基于终端设备在SRS资源集合2中传输的SRS,网络侧可以选择出接收质量最好的一个SRS资源,并将对应的SRS资源指示(Sounding Reference SignalResource Indicator,SRI)通知给终端设备。终端设备接收到SRI后,将SRI指示的SRS资源所用的模拟波束确定为传输PUSCH所用的模拟波束。
为了确定PUCCH传输所采用的波束,在NR***中,采用无线资源控制(Radio Resource Control,RRC)加媒体接入控制(Media Access Control,MAC)信令的方式来指示每个PUCCH资源上传输UCI所用的波束。具体的,先通过高层信令配置N个PUCCH的空间相关信息(PUCCH-spatialrelationinfo),再通过MAC信令从所述N个PUCCH-spatialrelationinfo中确定每个PUCCH资源分别对应的空间相关信息。
为便于更好的理解本申请实施例,对本申请相关的下行信号传输的传输配置指示(Transmission Configuration Indicator,TCI)状态进行说明。
在NR***中,网络设备可以为每个下行信号或下行信道配置相应的TCI状态,指示目标下行信号或目标下行信道对应的准共址(Quasi-co-located,QCL)参考信号,从而终端基于该参考信号进行目标下行信号或目标下行信道的接收。
其中,一个TCI状态可以包含如下配置:
TCI状态ID,用于标识一个TCI状态;
QCL信息1;
QCL信息2。
其中,一个QCL信息又包含如下信息:
QCL类型(type)配置,可以是QCL type A,QCL type B,QCL type C,QCL type D中的一个;
QCL参考信号配置,包括参考信号所在的小区ID,带宽部分(Band Width Part,BWP)ID以及参考信号的标识(可以是信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源ID或同步信号块(Synchronization Signal Block,SSB)索引)。
其中,QCL信息1和QCL信息2中的至少一个QCL信息的QCL类型必须为typeA,typeB,typeC中的一个,另一个QCL信息(如果配置)的QCL类型必须为QCL type D。
其中,不同QCL类型配置的定义如下:
'QCL-TypeA':{多普勒频移(Doppler shift),多普勒扩展(Doppler spread),平均时延(average delay),延时扩展(delay spread)};
'QCL-TypeB':{多普勒频移(Doppler shift),多普勒扩展(Doppler spread)};
'QCL-TypeC':{多普勒频移(Doppler shift),平均时延(average delay)};
'QCL-TypeD':{空间接收参数(Spatial Rx parameter)}。
如果网络设备通过TCI状态配置目标下行信道的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为typeA,typeB或typeC,则终端设备可以假设所述目标下行信道与所述参考SSB或参考CSI-RS资源的目标大尺度参数是相同的,从而采用相同的相应接收参数进行接收,所述目标大尺度参数通过QCL类型配置来确定。类似的,如果网络设备通过TCI状态配置目标下行信道的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为type D,则终端设备可以采用与接收所述参考SSB或参考CSI-RS资源相同的接收波束(即Spatial Rx parameter),来接收所述目标下行信道。通常的,目标下行信道与其参考时间同步/广播信道(SSB/PBCH)或参考CSI-RS资源在网络侧由同一个TRP或者同一个天线面板(panel)或者相同的波束来发送。如果两个下行信号或下行信道的传输TRP或传输panel或发送波束不同,通常会配置不同的TCI状态。
对于下行控制信道,TCI状态可以通过无线资源控制(Radio Resource Control,RRC)信令或者RRC信令结合MAC信令的方式来指示。对于下行数据信道,可用的TCI状态集合通过RRC信令来指示,并通过媒体接入控制(Media Access Control,MAC)层信令来激活其中部分TCI状态,最后通过DCI中的TCI状态指示域从激活的TCI状态中指示一个或两个TCI状态,用于所述DCI调度的PDSCH。例如,如图5所示,网络设备通过RRC信令指示N个候选的TCI状态,并通过MAC信令激活K个TCI状态,最后通过DCI中的TCI状态指示域从激活的TCI状态中指示1个或2个使用的TCI状态。
应理解,在本申请实施例中,空间信息可以指用于上行信息发送的空间配置(spatial setting),或空间关系(Spatial relation),例如包括但不限于以下中的至少一种:天线面板(panel),CORESET组,参考信号集合,TCI状态,波束。
在一些实施例中,该参考信号集合可以为同步信号块(Synchronization Signal Block,SSB)集合或者信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)集合或者SRS集合。
在本申请实施例中,波束也可以称为空间域传输滤波器(Spatial domain transmission filter或者Spatial domain filter for transmission),或者,空间域接收滤波器(Spatial domain reception filter或者Spatial domain filter for reception)或者空间接收参数(Spatial Rx parameter)。
应理解,在本申请实施例中,不同的空间信息可以通过不同的索引或标识(Identity,ID)指示,例如,天线面板可以通过panel ID标识,CORESET组通过CORESET组索引指示,参考信号集合通过参考信号集合索引指示,TCI状态可以通过TCI指示,波束可以通过波束ID指示。
为便于更好的理解本申请实施例,对现有的一种对时域重叠的PUCCH,或时域重叠的PUCCH与PUSCH的处理方式进行说明。
在NR***中,例如NR版本15(Release 15,R-15)中,终端设备在一个时隙中最多只能以时分的方式发送2个PUCCH,且至少有一个是短格式的PUCCH。当多个PUCCH在时域有重叠,时序关系的设定是为了终端设备有足够的时间判断不同的PUCCH是否需要复用,以及如果需要复用,考虑UCI重新组包所需要的时间。NR中为了降低终端设备上行传输之间的干扰,当PUCCH和PUSCH在时域重叠时,支持将PUCCH中携带的UCI承载于PUSCH来进行传输。
多个PUCCH在时域重叠或者多个PUCCH和PUSCH在时域重叠,PUCCH承载对PDSCH的混合自动重复请求确认(Hybrid automatic repeat request acknowledgement,HARQ-ACK)反馈,时序规定如下条件:
条件1:时域重叠的上行传输中最早发送的PUCCH/PUSCH的第1个符号,不早于一组在时域重叠的PUCCH(承载了HARQ-ACK)对应的PDSCH的最后1个符号之后的处理时间
Figure PCTCN2021143805-appb-000001
示例性的,
Figure PCTCN2021143805-appb-000002
其中,
Figure PCTCN2021143805-appb-000003
为第i个处理时间,N 1为第i个PDSCH对应的终端设备的PDSCH处理时间;μ为子载波间隔(subcarrier spacing,SCS)的配置,其中μ的值是如下配置的SCS的最小值:第i个PDSCH的SCS,第i个PDSCH的调度PDCCH的SCS,承载第i个PDSCH的HARQ-ACK反馈的PUCCH的SCS,所有在时域重叠的PUSCH的SCS;d 1,1为协议中了预定义的。
条件2:时域重叠的上行传输中最早发送的PUCCH/PUSCH的第1个符号,不早于用于半持续调度(Semi-persistent scheduling,SPS)PDSCH释放(release)的PDCCH的最后1个符号之后的处理时间
Figure PCTCN2021143805-appb-000004
该PDCCH对应的HARQ-ACK反馈承载于在时域重叠的一组PUCCH之一。
示例性的,
Figure PCTCN2021143805-appb-000005
其中,
Figure PCTCN2021143805-appb-000006
为第i个处理时间,N为第i个用于SPS PDSCH release的PDCCH对应的终端设备的处理时间;μ为SCS的配置,其中μ的值是如下配置的SCS的最小值:第i个用于SPS PDSCH release的PDCCH的SCS,第i个PDSCH的调度PDCCH的SCS,承载第i个SPS PDSCH release的HARQ-ACK反馈的PUCCH的SCS,所有时域重叠的PUSCH的SCS。
条件3:时域重叠的多个PUCCH的第1个符号,不早于一组在时域重叠的PUCCH(承载了HARQ-ACK)对应的PDSCH的调度PDCCH的最后1个符号之后的处理时间
Figure PCTCN2021143805-appb-000007
或者不早于一组在时域重叠的PUCCH(承载了HARQ-ACK)对应的用于SPSPDSCHrelease的PDCCH的最后1个符号之后的处理时间
Figure PCTCN2021143805-appb-000008
示例性的,
Figure PCTCN2021143805-appb-000009
其中,
Figure PCTCN2021143805-appb-000010
为第i个处理时间,N 2为PUCCH的小区配置的UE PUSCH处理时间,μ为SCS的配置,其中μ的值是如下配置的SCS的最小值:调度第i个PDSCH的PDCCH的SCS或用于SPSPDSCH release的PDCCH的SCS,PUCCH小区的SCS。
条件3a:时域重叠的多个PUCCH和PUSCH的第1个符号,除条件3之外还需要满足条件3a:不早于在时域有重叠的PUSCH的调度PDCCH的最后一个符号之后的处理时间
Figure PCTCN2021143805-appb-000011
示例性的,
Figure PCTCN2021143805-appb-000012
其中,
Figure PCTCN2021143805-appb-000013
为第i个处理时间,N 2为第i个PUSCH对应的终端设备的PUSCH处理能力,d 2,1和d 2,2是协议中预定义的,其中μ的值是如下配置的SCS的最小值:调度第i个PUSCH的PDCCH的SCS,调度PDSCH的PDCCH的SCS或用于SPS PDSCH release的PDCCH的SCS,所有有时域重叠的PUSCH的SCS。
图6A是时域重叠的PUCCH的一个示意图,图6B是时域重叠的PUCCH与PUSCH的一个示意图。在图6A和图6B中,PUCCH承载的HARQ-ACK对应的是PDSCH的反馈。
图7A是时域重叠的PUCCH的另一个示意图,图7B是时域重叠的PUCCH与PUSCH的另一个示意图。在图7A和图7B中,PUCCH承载的HARQ-ACK对应的是PDSCH的反馈和SPS PDSCH release的反馈。
当满足上述时序关系时,将满足条件的UCI复用到一个PUCCH资源发送。示例性的,该PUCCH资源可以是根据复用后的UCI的载荷,以及DCI中的PUCCH资源指示字段确定的。
为便于更好的理解本申请实施例,对UCI复用后的PUCCH资源的物理资源块(physical resource block,PRB)数的确定方式进行说明。
UCI复用后的PUCCH资源,即用于发送复用后的UCI的PUCCH资源,其资源集的选择可以根据复用后的UCI的总比特数确定的。该PUCCH资源的PRB数可以根据以下中的至少一种确定:总UCI比特数,CRC比特数,PUCCH格式对应的时域符号数
Figure PCTCN2021143805-appb-000014
PUCCH格式对应的PRB数
Figure PCTCN2021143805-appb-000015
每个资源元素(Resource Element,RE)的比特数Q m,PUCCH格式对应的每个资源块的子载波数
Figure PCTCN2021143805-appb-000016
UCI码率等。
示例性的,UCI码率可以理解为UCI的信息比特数与物理信道比特数,例如,UCI的信息比特数可以包括HARQ-ACK的比特数(表示为O ACK),包括调度请求(Scheduling Request,SR)的比特数(表示为O SR),循环冗余校验(Cyclic Redundancy Check,CRC)比特数(表示为O CRC),物理信道比特数可以为PUCCH信道中所有RE的比特数之和。那么,UCI码率R可以表示为:
Figure PCTCN2021143805-appb-000017
作为示例,可以通过PUCCH配置信息(比如PUCCH-config)配置每个PUCCH格式对应的最大UCI码率,该最大UCI码率可用于UCI复用。
为便于更好的理解本申请实施例,对本申请实施例需要解决的技术问题进行描述。
上述方案中,时域重叠的PUCCH,或者时域重叠的PUCCH和PUSCH与相同的空间信息关联,例如可以是终端 设备通过同一个panel发送的。而当终端设备发送的时域重叠的PUCCH,或者时域重叠的PUCCH和PUSCH与至少两个空间信息关联,例如通过多个(例如两个或两个以上)不同的panel发送时,这些PUCCH/PUSCH对应的UCI如何复用并未考虑。
基于上述问题,本申请提出了一种无线通信的方法、终端设备和网络设备,当至少两个上行信道的时域资源有重叠和/或该至少两个上行信道的时域在同一个时间单元内时,如果该至少两个上行信道与至少两个空间信息关联,那么终端设备可以确定该至少两个上行信道承载的UCI的复用方式,并根据该复用方式,发送该至少两个上行信道承载的UCI,从而实现对该至少两个上行信道的UCI的复用,提高无线通信的效率。
以下通过具体实施例详述本申请的技术方案。
图8是根据本申请实施例的无线通信的方法200的示意性流程图。示例性的,方法200可以应用于图1所示的通信***100中。如图8所示,该方法200可以包括如下内容中的至少部分内容:
可选的,S210,终端设备确定至少两个上行信道承载的上行控制信息UCI的复用方式。其中,该至少两个上行信道与至少两个空间信息关联,该至少两个上行信道的时域资源有重叠和/或该至少两个上行信道的时域资源在同一个时间单元内。
示例性的,上行信道可以包括PUCCH,PUSCH,SRS,PRACH中的至少一种,该至少两个上行信道可以是PUCCH,PUSCH,SRS,PRACH中的至少一种的任意组合,本申请对此不作限定。例如,该至少两个上行信道包括至少两个PUCCH,即时域资源有重叠的和/或在同一个时间单元内的至少两个PUCCH。又例如,该至少两个上行信道包括包括至少一个PUCCH和至少一个PUSCH,即时域资源有重叠的和/或在同一个时间单元内的至少一个PUCCH和至少一个PUSCH,本申请对此不作限定。
在一些实施例中,至少两个上行信道承载的UCI的复用方式包括:至少两个上行信道是至少两个PUCCH,该至少两个PUCCH承载UCI的复用方式,或者,至少两个上行信道是至少一个PUCCH和至少一个PUSCH,该至少一个PUCCH承载的UCI与至少一个PUSCH的复用方式。
在一些实施例中,该至少两个上行信道与至少两个空间信息关联,可以理解为至少两个上行信道与至少两个空间信息是一一对应的,或者,可以理解为至少两个上行信道中的多个上行信道可以关联到同一个空间信息。
示例性的,空间信息可以指用于上行信息发送的空间配置(spatial setting),或空间关系(Spatial relation),例如包括但不限于以下中的至少一种:天线面板,CORESET组,参考信号集合,TCI状态,波束。具体的,空间信息可以参见上文中的描述,不再赘述。
示例性的,本申请实施例中时间单元可以是子帧(subframe),时隙(slot),子时隙(sub-slot),迷你时隙(mini-slot),符号(symbol),时隙聚合(slot aggregation),时间窗(time window)中的任意一个。
在一些实施例中,终端设备可以接收第一信息,该第一信息可以用于指示或配置终端设备至少两个上行信道与至少两个空间信息关联。作为示例,通过第一信息,终端设备可以被配置或被调度多个PUCCH与n个panel关联,例如在n个panel发送多个PUCCH,该多个PUCCH的时域资源有重叠和/或在同一个时间单元内,或者该终端设备被配置或被调度为至少一个PUCCH和至少一个PUSCH与n个panel关联,例如在n个panel发送至少一个PUCCH和至少一个PUSCH,该至少一个PUCCH和至少一个PUSCH的时域资源有重叠和/或在同一个时间单元内。
可选的,该第一信息可以是通过RRC信令配置的,或者是通过DCI动态调度的,本申请对此不作限定。
在一些可选的实施例中,在所述步骤S210之前,网络设备还可以向终端设备发送第二信息,该第二信息用于指示上述至少两个上行信道的时域资源。相应的,终端设备可以接收该第二信息,并根据该第二信息,确定该至少两个上行信道的时域资源。
示例性的,该第二信息可以通过RRC信令配置的,或者是通过DCI动态调度的,本申请对此不作限定。
S220,该终端设备根据该复用方式,发送该至少两个上行信道承载的UCI。这里,该至少两个上行信道承载的UCI是根据该复用方式复用后的UCI。
示例性的,该终端设备向网络设备发送该至少两个上行信道承载的UCI。对应的,网络设备接收该至少两个上行信道承载的UCI。例如,终端设备可以根据该至少两个上行信道承载的上行控制信息UCI的复用方式,接收该至少两个上行信道承载的UCI。
可选的,S230,网络设备确定该至少两个上行信道承载的上行控制信息UCI的复用方式。
示例性的,网络设备可以在接收该至少两个上行信道承载的UCI之前,或者之后,或者接收该至少两个上行信道承载的UCI的同时,确定该至少两个上行信道承载的UCI的复用方式。
示例性的,网络设备确定该至少两个上行信道承载的UCI的复用方式的过程与S210,即终端设备确定该至少两个上行信道承载的UCI的复用方式的过程相同或相似,例如网络设备和终端设备可以基于相同的方式或规则确定该至少两个上行信道承载的UCI的复用方式。
可选的,网络设备可以向终端设备发送配置信息,该配置信息用于配置至少两个空间信息关联的至少两个上行信道承载的UCI的复用方式。
可选的,网络设备还可以根据该至少两个上行信道承载的UCI的复用方式,对接收收的来自终端设备的该至少两个上行信道的UCI进行处理。
因此,本申请实施例中,在至少两个上行信道在时域资源有重叠和/或在同一个时间单元内,且该至少两个上行信道与至少两个空间信息关联时,终端设备可以确定该至少两个上行信道承载的UCI的复用方式,并根据该复用方式,发送该至少两个上行信道承载的UCI,从而实现对该至少两个上行信道的UCI的复用,提高无线通信的效率。
在一些可选的实施例中,上述复用方式可以包括第一复用方式,该第一复用方式包括将该至少两个上行信道承载的UCI复用到第一上行信道上发送。其中,所述至少两个上行信道包括所述第一上行信道,或所述第一上行信道是所述至少两个上行信道以外的上行信道。
也就是说,在第一复用方式中,可以将与不同空间信息关联的至少两个上行信道承载的UCI复用到同一个上行信道上发送,例如第一上行信道上发送。即可以对各不同空间信息的上行信道承载的UCI进行联合处理。示例性的,该 第一上行信道可以为PUCCH,或PUSCH,不作限定。
在一些实施例中,第一上行信道属于上述与不同空间信息关联的至少两个上行信道;或者,第一上行信道是该至少两个上行信道以外的上行信道,例如,是网络设备指示的与该至少两个上行信道不同的上行信道,本申请实施例对此不作限定。
以至少两个上行信道与至少两个panel关联为例,在第一复用方式中,当与至少两个panel关联的至少两个上行信道在时域资源有重叠和/或在同一个时间单元内时,可以对与各panel关联的上行信道承载的UCI进行联合处理,即不区分panel,将该多个上行信道承载的UCI复用到一个上行信道上发送。
应理解,这里以空间信息包括panel为例进行描述,当空间关系包括CORESET组,参考信号集合,TCI状态,波束中的至少一种时,上述至少两个上行信道承载的上行控制信息UCI的第一复用方式与空间信息包括panel时的复用方式相同或类似,例如上述实施例中的panel可以替换为panel、CORESET组、参考信号集合、TCI状态、波束等中的至少一种,这里不再赘述。
可选的,当对各不同空间信息的上行信道承载的UCI进行联合处理时,终端设备可以先处理相同空间信息(例如相同panelID,或者RS索引(index))的上行信道承载的UCI的复用,然后再处理与不同空间信息关联的上行信道承载的UCI的复用。
在一些可选的实施例中,上述复用方式包括第二复用方式,该第二复用方式包括将与第一空间信息关联的至少一个上行信道承载的UCI复用到第二上行信道上发送,其中,该第一空间信息为所述至少两个空间信息中的一个,例如任意一个,该第二上行信道与该第一空间信息关联。其中,所述至少两个上行信道包含所述第二上行控制信道,或所述第二上行信道是该至少两个上行信道以外的上行信道。
也就是说,在第二复用方式中,可以将第一空间信息关联的至少一个上行信道承载的UCI,复用到该第一空间信息关联的一个上行信道,例如第二上行信道上发送,其中第一空间信息可以为该至少两个空间信息中的任意一个,即可以将与各个空间信息关联的上行信道承载的UCI单独处理。示例性的,该第二上行信道可以为PUCCH,或PUSCH,不作限定。
在一些实施例中,第二上行信道属于该第一空间信息关联的至少一个上行信道;或者,第一上行信道是该第一空间信息关联的至少一个上行信道以外的上行信道,例如,是网络设备指示的与该第一空间信息关联的至少一个上行信道不同的上行信道。
以至少两个上行信道与至少两个panel关联为例,在第二复用方式中,当与至少两个panel关联的至少两个上行信道在时域资源有重叠和/或在同一个时间单元内时,可以将与各个panel关联的上行信道承载的UCI单独处理,即区分panel,将与至少两个panel的其中一个panel关联至少一个上行信道承载的UCI复用到与该panel关联的上行信道上发送,或者可以描述为将与相同panel关联的至少一个上行信道承载的UCI复用到一个与该panel关联的上行信道上发送。
应理解,这里以空间信息包括panel为例进行描述,当空间关系包括CORESET组,参考信号集合,TCI状态,波束中的至少一种时,上述至少两个上行信道承载的上行控制信息UCI的第二复用方式与空间信息包括panel时的复用方式相同或类似,例如上述实施例中的panel可以替换为panel、CORESET组、参考信号集合、TCI状态、波束等中的至少一种,这里不再赘述。
在一些可选的实施例中,上述至少两个上行信道包括第一上行信道组。所述第一上行信道组具有如下至少一项时序关系:
该第一上行信道组中第一PUCCH或第一PUSCH的第一个符号,与该第一上行信道组关联的PDSCH的最后一个符号之间的时间间隔大于或等于第一处理时间;
该第一PUCCH或该第一PUSCH的第一个符号,与该第一上行信道组关联的第一信道的调度PDCCH的最后一个符号之间的时间间隔大于或等于第二处理时间;
该第一PUCCH或所述第一PUSCH的第一个符号,与该第一上行信道组关联的PDCCH的最后一个符号之间大于或等于第三处理时间,其中,与该第一上行信道组关联的PDCCH用于半持续调度SPS PDSCH的释放。
该第一PUCCH或该第一PUSCH的第一个符号,与该第一上行信道组关联的第二信道的最后一个符号之间的时间间隔大于或等于第四处理时间。
示例性的,该第一上行信道组可以包括该至少两个上行信道中的一部分信道,或者第一上行信道组可以包括该至少两个上行信道中的全部信道。
可选的,该第一上行信道组中的上行信道与同一空间信息关联,或者,该第一上行信道组中的上行信道与至少两个空间信息关联的满足上述时序关系的上行信道。
示例性的,在步骤S210中,当上述至少两个上行信道承载的UCI的复用方式为第一复用方式时,该第一上行信道组中的上行信道与步骤S210中的该至少两个上行信道关联的至少两个空间信息关联,例如该第一上行信道组可以是与所有panel关联的满足上述时序关系的上行信道。在步骤S210中,当该至少两个上行信道承载的UCI的复用方式为第二复用方式时,该第一上行信道组中的上行信道与同一空间信息关联,例如可以为上文中的第一空间信息关联,例如该第一上行信道组可以是与panelID为0的panel关联的满足上述时序关系的至少一个上行信道。
作为一个示例,该第一上行信道组可以包括至少一个PUCCH,即该第一上行信道组中可以包括与同一空间信息关联的至少一个PUCCH,或者包括与至少两个空间信息关联的至少两个PUCCH,本申请对此不作限定。
作为另一个示例,该第一上行信道组可以包括至少一个PUCCH和至少一个PUSCH,即该第一上行信道组中可以包括与同一空间信息关联的至少一个PUCCH和至少一个PUSCH,或者包括与至少两个空间信息关联的至少一个PUCCH和至少一个PUSCH,本申请对此不做限定。
具体而言,在上述至少两个上行信道承载的UCI的复用方式为第一复用方式时,该第一上行信道组包括与至少两个空间信息关联的至少两个PUCCH,或与至少两个空间信息关联的至少一个PUCCH和至少一个PUSCH。并且该至少两个PUCCH,或至少一个PUCCH和至少一个PUSCH,均满足上述时序关系。例如,至少两个PUCCH中的一个 或多个PUCCH与空间信息1关联,该至少两个PUCCH中的其他PUCCH与空间关系2关联。例如,至少一个PUCCH和至少一个PUSCH中的一部分PUCCH和/或PUSCH与空间关系1关联,另一部分PUCCH和/或PUSCH与空间关系2关联。
在上述至少两个上行信道承载的UCI的复用方式为第二复用方式时,该第一上行信道组包括与同一空间信息关联的至少一个PUCCH,或至少一个PUCCH和至少一个PUSCH。该至少两个PUCCH,或至少一个PUCCH和至少一个PUSCH均满足上述时序关系。例如,该至少一个PUCCH中的所有PUCCH与空间信息1关联。又例如,该至少一个PUCCH和至少一个PUSCH中的所有上行信息与空间信息1关联。这里,空间信息1可以是上述至少两个空间信息中的任意一种空间信息。
下面对上述时序关系中的第一PUCCH、第一PUSCH、与该第一上行信道组关联的PUSCH、与该第一上行信道组关联的第一信道、与该第一上行信道组关联的第二信道进行描述。
示例性的,上述第一PUCCH或第一PUSCH为第一上行信道组中的时域最早的信道。或者,该第一PUCCH或第一PUSCH可以为该第一上行信道组中的任意一个信道,本申请对此不作限定。
示例性的,上述与该第一上行信道组关联的PDSCH,可以指该第一上行信道组对应的PDSCH。示例性的,当第一上行信道组包括PUCCH时,该第一上行信道组对应的PDSCH即该PUCCH对应的PDSCH,另外该PDSCH的HARQ-ACK反馈也是承载于该PUCCH进行发送的。
示例性的,上述与该第一上行信道组关联的第一信道包括PUSCH,PDSCH,SPSPDSCH释放(release)的至少一项。
示例性的,上述与该第一上行信道组关联的第二信道是以下的至少一个信道:
第一上行信道组中的PUSCH的调度PDCCH;
第一上行信道组中的PUCCH对应的PDSCH的调度PDCCH;
第一上行信道组关联的用于SPSPDSCHrelease的PDCCH等。
上述第一上行信道组中的至少一个PUSCH包括非周期CSI。
下面对上述时序关系中的第一处理时间进行描述。
可选的,上述第一处理时间是根据该第一上行信道组关联的第i个PDSCH的处理时间与第一额外处理时间的和确定的,其中,该第一额外处理时间是该终端设备发送与至少两个空间信息关联的该该至少两个上行信道时所需的额外处理时间,这里可以是第一上行信道组关联的PDSCH所需的额外处理时间。示例性的,第一额外处理时间可以是m个符号,m为大于或等于0的整数,i为正整数且小于或等于该第一上行信道组中的上行信道的数量。
可选的,该第一额外处理时间是预定义的,或根据所述终端设备的能力信息确定的,本申请对此不作限定。当第一额外处理时间是m个符号时,m是预定义的,或根据所述终端设备的能力信息确定的。即该第一额外处理时间,或者m的取值与终端设备对至少两个空间信息的上行信道同时发送的处理能力相关。作为示例,m可以为0,1,2,3等,不作限定。
示例性的,该第一处理时间可以是该第一上行信道组关联的至少一个PDSCH(例如该第一上行信道组中的至少一个PUCCH对应的至少一个PDSCH)的处理时间与第一额外处理时间的和的最大值。
示例性的,该第i个PDSCH的处理时间与第一额外处理时间的和是第一上行信道组关联的所有PDSCH的处理时间与第一额外处理时间的和的最大值。
示例性的,该第i个PDSCH的处理时间是该第一上行信道组关联的所有PDSCH中的每个PDSCH对应的处理时间的最大值,第一处理时间是该第i个PDSCH的处理时间与第一额外处理时间的和。
示例性的,第一处理时间可表示为
Figure PCTCN2021143805-appb-000018
其中
Figure PCTCN2021143805-appb-000019
表示该第一上行信道组关联的第i个PDSCH的处理时间与第一额外处理时间的和。
在一些可选的实施例中,该第一处理时间是根据第一参考子载波间隔SCS确定的。
其中,该第一参考子载波间隔为以下信道的子载波间隔的最小值:
该第一上行信道组关联的第i个PDSCH;
该第一上行信道组关联的第i个PDSCH的调度PDCCH;
该第一上行信道组中的PUCCH;
该第一上行信道组中的PUSCH。
示例性的,该至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的。
示例性的,该第一上行信道组关联的第i个PDSCH的处理时间与第一额外处理时间的和可以表示为
Figure PCTCN2021143805-appb-000020
Figure PCTCN2021143805-appb-000021
N 1为第i个PDSCH对应的终端设备的PDSCH处理时间,i为正整数,小于或等于第一上行信道组关联的PDSCH的数量;d 1,1为预定义的值;m为第一额外处理时间;μ为SCS的配置,其中μ的值是如下配置的SCS的最小值:
第一上行信道组关联的第i个PDSCH的SCS;
第一上行信道组关联的第i个PDSCH的调度PDCCH的SCS;
承载第一上行信道组关联的第i个PDSCH的HARQ-ACK反馈的PUCCH的SCS;
第一上行信道组关联的所有在时域重叠的PUSCH的SCS。
在一些可选的实施例中,该第一参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组关联的第i个PDSCH;
所述第一上行信道组中的PUCCH;
所述第一上行信道组中的PUSCH。
示例性的,该至少两个上行信道中的任意一个上行信息都不是响应于下行控制信息DCI的。
示例性的,该第一上行信道组中关联的第i个PDSCH的处理时间与m个符号的和可以表示为
Figure PCTCN2021143805-appb-000022
Figure PCTCN2021143805-appb-000023
N 1为第i个PDSCH对应的终端设备的PDSCH处理时间;d 1,1为预定义的值;μ为SCS的配置,其中μ的值是如下配置的SCS的最小值:
第一上行信道组关联的第i个PDSCH的SCS;
承载第一上行信道组关联的第i个PDSCH的HARQ-ACK反馈的PUCCH的SCS;
第一上行信道组关联的所有在时域重叠的PUSCH的SCS。
下面对上述时序关系中的第二处理时间进行描述。
在一些可选的实施例中,如果第一上行信道组中不包括PUSCH,上述第二处理时间是根据该第一上行信道组中的PUCCH所关联的PUSCH的处理时间与第二额外处理时间的和确定的,其中,该第二额外处理时间是该终端设备发送与至少两个空间信息关联的该至少两个上行信道时所需的额外的处理时间,这里可以是第一上行信道组关联的第一信道所需的额外处理时间。示例性的,第二额外处理时间可以为q个符号,q为大于或等于0的整数。
可选的,该第二额外处理时间是是预定义的,或根据该终端设备的能力信息确定的,本申请对此不作限定。当第二额外处理时间时q个符号时,q是预定义的,或根据所述终端设备的能力信息确定的。即该第一额外处理时间,或者q的取值与终端设备对至少两个空间信息的上行信道同时发送的处理能力相关。作为示例,q可以为0,1,2,3等,不作限定。
示例性的,当第一上行信道组中不包括PUSCH时,该第二处理时间可以是该第一上行信道组中的PUCCH所关联的PUSCH的处理时间与第二额外处理时间的和的最大值,或者是第一上行信道组中承载第i个PDSCH的HARQ-ACK反馈的PUCCH所关联的PUSCH的处理时间与第二额外处理时间的和的最大值,其中,i为正整数,小于或等于第一上行信道组中承载的PDSCH的数量。
示例性的,第二处理时间,即该第一上行信道组中的至少一个PUCCH所关联的PUSCH的处理时间与第二额外处理时间的和的最大值可表示为
Figure PCTCN2021143805-appb-000024
其中
Figure PCTCN2021143805-appb-000025
表示第一上行信道组中的第i个PUCCH所关联的PUSCH的处理时间与第二额外处理时间之和,或者表示第一上行信道组中承载第i个PDSCH的HARQ-ACK反馈的PUCCH所关联的PUSCH的处理时间与第二额外处理时间的和。
示例性的,第一上行信道组中的PUCCH所关联的PUSCH的处理时间是根据PUSCH处理能力1或PUSCH处理能力2确定的。该PUSCH处理能力1或PUSCH处理能力2是根据PUCCH所在小区所配置的PUSCH处理能力确定的,或者是根据默认PUSCH处理能力确定的。示例性的,该默认PUSCH处理能力是PUSCH处理能力1。
可选的,当第一上行信道组中不包括PUSCH时,该第二处理时间是根据第二参考子载波间隔SCS确定的。
其中,该第二参考子载波间隔为以下信道的子载波间隔的最小值:
该第一上行信道组关联的第i个PDSCH的调度PDCCH,其中i为正整数,小于或等于第一上行信道组关联的PDSCH的数量;
该第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH,i为正整数,小于或等于第一上行信道组关联的用于半持续调度SPSPDSCH释放的调度PDCCH的数量;
该第一上行信道组中的PUCCH。
示例性的,该至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的。
示例性的,该第一上行信道组中的第i个PUCCH所关联的PUSCH的处理时间与第二额外处理时间之和可表示为
Figure PCTCN2021143805-appb-000026
其中,N 2为第i个PUCCH所关联的PUSCH处理时间,其中i为正整数,小于或等于第一上行信道组的PUCCH的数量;q为第二额外处理时间;μ为SCS的配置。
示例性的,该第一上行信道组中承载第i个PDSCH的HARQ-ACK反馈的PUCCH所关联的PUSCH的处理时间与第二额外处理时间之和可表示为
Figure PCTCN2021143805-appb-000027
其中,N 2为第i个PDSCH的HARQ-ACK反馈的PUCCH所关联的PUSCH的处理时间,其中i为正整数,小于或等于第一上行信道组关联的PDSCH的数量;q为第二额外处理时间;μ为SCS的配置。
示例性的,在
Figure PCTCN2021143805-appb-000028
中,μ的值是如下配置的SCS的最小值:
该第一上行信道组关联的第i个PDSCH的调度PDCCH的SCS,其中i为正整数,小于或等于第一上行信道组关联的PDSCH的数量;
该第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH的SCS,其中i为正整数,小于或等于第一上行信道组关联的用于半持续调度SPSPDSCH释放的调度PDCCH的数量;
该第一上行信道组中的PUCCH的SCS。
在一些实施例中,当第一上行信道组中不包括PUSCH时,该第二处理时间是根据第三参考子载波间隔SCS确定的。其中,该第三参考子载波间隔为以下信道的子载波间隔的最小值:
该第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH,i为正整数,小于或等于第一上行信道组关联的用于半持续调度SPSPDSCH释放的调度PDCCH的数量;
该第一上行信道组中的PUCCH。
示例性的,该至少两个上行信道中没有上行信道是响应于下行控制信息DCI的,即该至少两个上行信道是通过高层参数配置的。
在一些可选的实施例中,如果第一上行信道组中包括PUSCH,上述第二处理时间是根据该第一上行信道组中的第i个PUSCH的处理时间与第二额外处理时间的和确定的,其中,该第二额外处理时间是该终端设备发送与至少两个空间信息关联的该至少两个上行信道时所需的额外的处理时间,这里可以是该第一上行信道组关联的该第一信道所需的额外处理时间。i为正整数且小于或等于所述第一上行信道组中的上行信道的数量。示例性的,第二额外处理时间可以参见上文中的描述,不再赘述。
示例性的,当第一上行信道组中包括PUSCH时,该第二处理时间可以是该第一上行信道组中的至少一个PUSCH的处理时间与第二额外处理时间的和的最大值。
示例性的,第二处理时间,即该第一上行信道组中的至少一个PUSCH的处理时间与第二额外处理时间的和的最大值可表示为
Figure PCTCN2021143805-appb-000029
其中
Figure PCTCN2021143805-appb-000030
表示第一上行信道组中的第i个PUSCH的处理时间与第二处理时间之和。
示例性的,第一上行信道组中的PUSCH的处理时间是根据PUSCH处理能力1或PUSCH处理能力2确定的。该PUSCH处理能力1或PUSCH处理能力2是根据配置的PUSCH处理能力确定的,或者是根据默认PUSCH处理能力确定的。示例性的,该默认PUSCH处理能力是PUSCH处理能力1。
在一些可选的实施例中,当第一上行信道组中包括PUSCH时,该第二处理时间是根据第四参考子载波间隔SCS确定的。
其中,该第四参考子载波间隔可以为以下信道的子载波间隔的最小值:
该第一上行信道组关联的第i个PDSCH,其中i为正整数,小于或等于第一上行信道组关联的PDSCH的数量;
该第一上行信道组关联的第i个PDSCH的调度PDCCH,其中i为正整数,小于或等于第一上行信道组关联的PDSCH的数量;
该第一上行信道组中的PUSCH的调度PDCCH;
该第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH,i为正整数,小于或等于第一上行信道组关联的用于半持续调度SPSPDSCH释放的调度PDCCH的数量;
该第一上行信道组中的PUSCH。
示例性的,该至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的。
示例性的,该第一上行信道组中的第i个PUSCH的处理时间与第二额外处理时间的和的最大值可表示为
Figure PCTCN2021143805-appb-000031
其中,N 2为第i个PUCCH对应的小区所关联的PUSCH处理时间,i为正整数,小于或等于第一上行信道组中的PDCCH的数量;d 2,1,d 2,2为协议中了预定义的;q为第二额外处理时间;μ为SCS的配置,其中μ的值是如下配置的SCS的最小值:
该第一上行信道组关联的第i个PDSCH的SCS,i为正整数,小于或等于第一上行信道组关联的PDSCH的数量;
该第一上行信道组关联的第i个PDSCH的调度PDCCH的SCS,i为正整数,小于或等于第一上行信道组关联的PDSCH的数量;
该第一上行信道组中的PUSCH的调度PDCCH的SCS。
在一些可选的实施例中,当第一上行信道组中包括PUSCH时,该第二处理时间是根据第五参考子载波间隔SCS确定的。其中,该第五参考子载波间隔可以为以下信道的子载波间隔的最小值:
该第一上行信道组关联的第i个PDSCH,i为正整数,小于或等于第一上行信道组关联的PDSCH的数量;
该第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH,i为正整数,小于或等于第一上行信道组关联的用于半持续调度SPSPDSCH释放的调度PDCCH的数量;
该第一上行信道组中的PUSCH。
示例性的,该至少两个上行信道中的没有上行信道是响应于下行控制信息DCI的。
图9以复用方式为第二复用方式,至少两个上行信道与至少两个panel关联为例,示出了时域重叠的PUCCH的示意图。在图9中,可以通过两个panel(比如panel 1和panel 2)分别发送2个PUCCH。参见图9,与panel 1关联的上行信道组包括2个PUCCH,对应的第一处理时间
Figure PCTCN2021143805-appb-000032
是根据该上行信道组关联的第2个PDSCH的处理时间和第一额外处理时间的和的最大值,对应的第二处理时间
Figure PCTCN2021143805-appb-000033
是根据该上行信道组中的PUCCH所关联的PUSCH的处理时间与第二额外处理时间的和的最大值。在图9中,通过panel 1发送的第一个PUCCH的第一个符号与通过panel1发送的PUCCH关联的PDSCH的最后一个符号之间的时间间隔大于或等于panel 1对应的第一处理时间
Figure PCTCN2021143805-appb-000034
通过panel 1发送的第一个PUCCH的第一个符号与通过panel 1发送的PUCCH关联的PDCCH的最后一个符号之间的时间间隔大于或等于panel 1对应的第二处理时间
Figure PCTCN2021143805-appb-000035
那么可以将与panel 1关联的该2个PUCCH承载的UCI复用到一个与该panel 1关联的上行信道(比如PUCCH或PUSCH)上发送。
另外,在图9中,与panel 2关联的上行信道组包括2个PUCCH,对应的第一处理时间
Figure PCTCN2021143805-appb-000036
是根据该上行信道组关联的第2个PDSCH的处理时间和第一额外处理时间的和的最大值,对应的第二处理时间
Figure PCTCN2021143805-appb-000037
是根据该上行信道组中的PUCCH所关联的PUSCH的处理时间与第二额外处理时间的和的最大值。在图9中,通过panel 2发送的第一个PUCCH的第一个符号与通过panel 2发送的PUCCH关联的PDSCH的最后一个符号之间的时间间隔大于或等于panel 2对应的第一处理时间
Figure PCTCN2021143805-appb-000038
通过panel 2发送的第一个PUCCH的第一个符号与通过panel 2发送的PUCCH关联的PDCCH的最后一个符号之间的时间间隔大于或等于panel 2对应的第二处理时间
Figure PCTCN2021143805-appb-000039
那么可以将与panel 2关联的该2个PUCCH承载的UCI复用到一个与该panel 2关联的上行信道(比如PUCCH或PUSCH)上发送。
应理解,这里以空间信息包括panel为例进行描述,当空间关系包括CORESET组,参考信号集合,TCI状态,波束中的至少一种时,上述至少两个PUCCH的上行控制信息UCI的复用方式与空间信道包括panel时的复用方式相同或类似,例如上述实施例中的panel可以替换为panel、CORESET组、参考信号集合、TCI状态、波束等中的至少一种,这里不再赘述。
在一些可选的实施例中,上述第三处理时间是根据该第一上行信道组关联的用于SPS PDSCH释放的PDCCH的处理时间与第三额外处理时间的和确定的,其中,该第三额外处理时间是该终端设备发送与至少两个空间信息关联的至少两个上行信道时所需的额外的处理时间,这里可以是第一上行信道组关联的用于SPS PDSCH释放的PDCCH所需的额外处理时间。这里,该PDCCH对应的HARQ-ACK反馈承载于该第一上行信道组的PUCCH。示例性的,第一额外处理时间可以是p个符号,p为大于或等于0的整数。
可选的,该第三额外处理时间是预定义的,或根据所述终端设备的能力信息确定的,本申请对此不作限定。当第 三额外处理时间是p个符号时,p是预定义的,或根据所述终端设备的能力信息确定的。即该第三额外处理时间,或者p的取值与终端设备对至少两个空间信息的上行信道同时发送的处理能力相关。作为示例,p可以为0,1,2,3等,不作限定。
示例性的,该第三处理时间可以是该第一上行信道组关联的用于SPSPDSCH释放的PDCCH的处理时间与第三额外处理时间的和最大值。
示例性的,即该第一上行信道组关联的用于SPSPDSCH释放的PDCCH的处理时间与第三额外处理时间的和的最大值可表示为
Figure PCTCN2021143805-appb-000040
其中,
Figure PCTCN2021143805-appb-000041
表示该第一上行信道组关联的第i个用于SPSPDSCH释放的PDCCH的处理时间与第三额外处理时间的和,这里i为正整数,且小于该第一上行信道组关联的用于SPSPDSCH释放的PDCCH的数量。
在一些可选的实施例中,该第三处理时间是根据第六参考子载波间隔确定的。
其中,该第六参考子载波间隔为以下信道的子载波间隔的最小值:
该第一上行信道组关联的第i个用于SPSPDSCH释放的调度PDCCH,i为正整数,小于或等于第一上行信道组关联的用于SPSPDSCH释放的调度PDCCH的数量;
该第一上行信道组中的PUCCH;
该第一上行信道组中的PUSCH。
示例性的,该至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的。
示例性的,该第一上行信道组关联的第i个用于SPSPDSCH释放的PDSCH的处理时间可表示为
Figure PCTCN2021143805-appb-000042
Figure PCTCN2021143805-appb-000043
其中N为第i个用于SPS PDSCH release的PDCCH对应的终端设备的处理时间;p为第三额外处理时间;μ为SCS的配置,其中μ的值是如下配置的SCS的最小值:
该第一上行信道组关联的第i个用于SPS PDSCH释放的PDCCH的SCS,i为正整数,小于或等于第一上行信道组关联的用于SPSPDSCH释放的PDCCH的数量;
该第一上行信道组关联的第i个PDSCH的调度PDCCH的SCS,i为正整数,小于或等于第一上行信道组关联的PDSCH的数量;
该第一上行信道组关联的承载第i个SPS PDSCH释放的HARQ-ACK反馈的PUCCH的SCS,i为正整数,小于或等于第一上行信道组关联的用于SPSPDSCH释放的HARQ-ACK反馈的PUCCH的数量;
该第一上行信道组关联的所有时域重叠的PUSCH的SCS。
在一些可选的实施例中,上述第四处理时间是根据该第一上行信道组关联的CSI的计算时间与第四额外处理时间的和确定的。其中,该第四额外处理时间是该终端设备发送与至少两个空间信息关联的该至少两个上行信道时所需的额外的处理时间,这里可以是该第一上行信道组关联的该第二信道所需的额外处理时间。
可选的,该第四额外处理时间是预定义的,或根据所述终端设备的能力信息确定的,本申请对此不作限定。当第四额外处理时间是y个符号时,y是预定义的,或根据所述终端设备的能力信息确定的。即该第四额外处理时间,或者y的取值与终端设备对至少两个空间信息的上行信道同时发送的处理能力相关。作为示例,y可以为0,1,2,3等,不作限定。
示例的,第四额外处理时间可以为
Figure PCTCN2021143805-appb-000044
其中Z为第一上行信道组关联的CSI计算时间,d,T switch,d 2,2为协议预定义的值。
示例的,第四处理时间是根据第七参考子载波间隔确定的,该第七参考子载波间隔为以下信道的子载波间隔的最小值:
该第一上行信道组中的PUSCH的调度PDCCH;
该第一上行信道组中的PUCCH对应的PDSCH的调度PDCCH;
该第一上行信道组关联的用于SPSPDSCHrelease的PDCCH;
该第一上行信道组中的PUSCH;
该第一上行信道组关联的承载非周期CSI的PUSCH关联的CSI-RS。
示例性的,该至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的。
示例的,第四处理时间是根据第八参考子载波间隔确定的,该第八参考子载波间隔为以下信道的子载波间隔的最小值:
第一上行信道组中的PUSCH;
承载非周期CSI的PUSCH关联的CSI-RS。
示例性的,该至少两个上行信道中没有上行信道是响应于下行控制信息DCI的。
在一些可选的实施例中,上述第一额外处理时间、第二额外处理时间、第三额外处理时间、第四额外处理时间可以是相同的值,或者是同样的额外处理时间,本申请对此不作限定。
作为一种可能的实现方式,当采用上述第二复用方式时,满足时序关系的第一上行信道组中的上行信道承载的UCI复用到相同空间信息(比如panel 0)关联的上行信道上,满足时序关系的第二上行信道组中的上行信道承载的UCI复用到相同空间信息(比如panel 1)关联的上行信道上,以此类推,满足时序关系的第n上行信道组中的上行信道承载的UCI复用到相同空间信息(比如paneln-1)关联的上行信道上。这里,n为终端设备支持的同时发送上行信道的至少两个空间信息的数量。
因此,本申请实施例通过至少两个上行信道中的第一上行信道组满足一定的时序关系,从而能够使得终端设备有足够的时间来判断不同的上行信道承载的UCI是否需要复用,以及在确定不同上行信道承载的UCI需要复用的情况下,终端设备有足够的重新组包时间。
在一些可选的实施例中,当确定复用方式为第一复用方式时,上述至少两个空间信息中的每种空间信息关联的PUCCH格式对应的最大UCI码率(maxCodeRate)相同或不同,本申请对此不作限定。
示例性的,可以分别为每个空间信息关联的PUCCH格式配置不同的最大UCI码率。以每种空间信息对应一个panel为例,n种空间信息对应n个panel,panelID为[0,n-1],n为正整数。每个panelID关联的PUCCH格式分别配置最大UCI码率,不同panelID关联的相同PUCCH格式对应的最大UCI码率可以相同或不同,不作限定。以每个panelID关联的PUCCH格式2为例,不同panelID关联的相同PUCCH格式的最大UCI码率的配置如下表1所示:
表1
panelID PUCCH格式 最大UCI码率
panel 0 PUCCH格式2 MaxCodeRate-panel0
panel 1 PUCCH格式2 MaxCodeRate-panel1
panel 2 PUCCH格式2 MaxCodeRate-panel2
panel n-1 PUCCH格式2 MaxCodeRate-paneln-1
在表1中,不同panelID关联的相同PUCCH格式对应的最大UCI码率是不同的,MaxCodeRate-panel0,…,MaxCodeRate-paneln-1分别对应不同的最大UCI码率。
作为一个例子,与至少两个空间信息关联的上行信道的配置信息是独立配置的。
在一些实施例中,网络设备通过不同的高层参数分别配置与至少两个空间信息关联的上行信息的配置信息。示例性的,空间信息可以是前述空间信息的任意一种,在此不再赘述。示例性的,上行信道可以是PUSCH,PUCCH,SRS,PRACH的任意一种。
示例性的,以每种空间信息对应一个panel,上行信道是PUCCH为例,n种空间信息对应n个panel,panelID为[0,n-1],n为正整数。其中,每个panelID关联一组PUCCH配置信息,例如panel x配置高层参数PUCCH-config-panelx,其中x表示panelID的索引,范围为[0,…,n-1]。例如,panel0至paneln-1的高层参数分别为高层参数PUCCH-config-panel0,高层参数PUCCH-config-panel1,…,高层参数PUCCH-config-paneln-1等,高层参数PUCCH-config-panelx中包括对每个PUCCH格式配置的最大UCI码率。可选的,不同panelID关联的PUCCH配置信息中的最大UCI码率可以不同,例如可以记为r panelx
示例性的,高层参数PUCCH-config-panelx可以如下:
Figure PCTCN2021143805-appb-000045
作为另一个例子,以每种空间信息对应一个panel,上行信道是PUCCH为例,n种空间信息对应n个panel,panelID为[0,n-1],n为正整数。其中,至少两个空间信息关联的多个panelID关联相同的PUCCH配置参数,例如PUCCH-config配置,其中,多个panelID关联的相同PUCCH格式配置不同的最大UCI码率。
示例性的,高层参数PUCCH-config可以如下:
Figure PCTCN2021143805-appb-000046
示例性的,与每种空间信息关联的上行信道承载的UCI采用独立编码。
应理解,这里以空间信息包括panel为例进行描述,当空间关系包括CORESET组,参考信号集合,TCI状态,波束中的至少一种时,空间信息关联的多种PUCCH格式的最大UCI码率的配置方式与空间信息包括panel时的配置方式相同或类似,例如上述实施例中的panel可以替换为panel、CORESET组、参考信号集合、TCI状态、波束等中的至少一种,这里不再赘述。
因此,本申请实施例通过分别配置与每种空间信息关联的多种PUCCH格式的最大UCI码率,并不限制不同空间信息关联的相同PUCCH格式的最大UCI码率是否相同,从而可以灵活的实现独立调整与不同空间信息关联的PUCCH格式的最大UCI码率。
在一些可选的实施例中,上述至少两个空间信息可以包括s组空间信息,该s组空间信息中的每组空间信息关联的相同PUCCH格式对应的最大UCI码率相同,其中,s为大于1的整数,s小于或等于所述至少两个空间信息的数量。
示例性的,以每种空间信息对应一个panel为例,n种空间信息对应n个panel,panelID为[0,n-1],n为正整数。其中,该n个panelID关联的相同PUCCH格式最多可以配置s个不同的最大UCI码率,其中s为大于1的整数,且小于或等于n。示例地,表2示出了不同panelID关联的相同PUCCH格式的最大UCI码率的一个示例,其中该n个panelID可以分为s=2个组,如表2所示,第一组panelID包括的至少一个panelID(包括panel 0和panel 1)关联的PUCCH 格式2的最大UCI码率配置为MaxCodeRate第一值,第二组panelID包括的至少一个panelID(包括panel 2至paneln-1)关联的PUCCH格式2的最大UCI码率配置为MaxCodeRate第二值。示例地,MaxCodeRate第一值与MaxCodeRate第二值不同。
表2
panelID PUCCH格式 最大UCI码率
panel 0 PUCCH格式2 MaxCodeRate第一值
panel 1 PUCCH格式2 MaxCodeRate第一值
panel 2 PUCCH格式2 MaxCodeRate第二值
panel n-1 PUCCH格式2 MaxCodeRate第二值
示例性的,当将上述至少两个空间信息分为s组空间信息时,同一组空间信息中的至少一个空间信息关联的上行信道承载的UCI采用联合编码,不同组空间信息关联的上行信道承载的UCI采用独立编码。示例地,上行信道是PUCCH。
可选的,s的值是预定义的,或者是根据UCI的优先级等级确定的。示例性的,UCI的优先级等级是与UCI的内容和/或业务类型相关的。作为示例,UCI的内容可以包括HARQ-ACK、SR、信道状态信息第一部分(Channel state information part 1,CSIpart1),信道状态信息第二部分(Channel state information part 2,CSIpart 2)等中的至少一项;UCI的业务类型包括增强移动宽带相关业务(Enhanced Mobile BroadBand,eMBB),超高可靠低延迟通信相关业务(Ultra-Reliable Low Latency Communications,URLLC),物联网(Internet of Things,IoT)相关业务等中的至少一项。
作为一个具体的例子,以每种空间信息对应一个panel为例,n种空间信息对应n个panel,panelID为[0,n-1],n为正整数。示例性的,当n=4,s=2,终端设备同时发送的panel的数量为4个。该4个panel中的其中2个panel在第一组,另外2个panel在第二组。第一组包括的panelID关联的相同PUCCH格式(例如PUCCH格式2)的最大UCI码率为maxCodeRate第一值,第二组panelID关联的相同PUCCH格式(例如PUCCH格式2)的最大UCI码率为maxCodeRate第二值。
作为另一个具体的例子,以每种空间信息对应一个panel为例,n种空间信息对应n个panel,panelID为[0,n-1],n为正整数。示例性的,当n=4,s=2,终端设备同时发送的panel的数量为4个。该4个panel中的其中2个panelID关联的PUCCH承载的UCI的优先级等级相同,那么该2个panel在第一组,第一组包括的panelID关联的相同PUCCH格式(例如PUCCH格式2)的最大UCI码率为maxCodeRate第一值。该4个panel中的另外2个panelID关联的PUCCH承载的UCI的优先级等级相同,那么该另外2个panel在第二组,该第二组包括的panel ID关联的相同PUCCH格式(例如PUCCH格式2)的最大UCI码率为maxCodeRate第二值。
在另一些实施例中,s的值是根据空间信息和UCI的优先级等级确定的,s可以大于n。
示例性的,同一种空间信息关联的多个上行信道承载的UCI的优先级等级可以不同。该种情况下,可以根据不同的UCI的优先级等级分为不同组。例如,同一种空间信息关联的多个上行信道承载的UCI的优先级等级有2种,则根据UCI的优先级等级分为2组。
作为一个具体的例子,以每种空间信息对应一个panel为例,n种空间信息对应n个panel,panelID为[0,n-1],n为正整数。在一些实施例中,n=2,即终端设备同时发送的panel的数量为2个。该2个panel中的其中1个panelID关联的PUCCH承载的UCI的优先级等级相同,那么该1个panel在第一组,第一组包括的panelID关联的相同PUCCH格式(例如PUCCH格式2)的最大UCI码率为maxCodeRate第一值。该2个panel中的另外1个panelID关联的多个PUCCH承载的UCI的优先级等级有2种优先级等级,那么该panel根据UCI的优先级等级分为2组,包括第二组和第三组。该第二组包括的panel ID关联的相同PUCCH格式(例如PUCCH格式2)的最大UCI码率为maxCodeRate第二值。该第三组包括的panel ID关联的相同PUCCH格式(例如PUCCH格式2)的最大UCI码率为maxCodeRate第三值。
应理解,这里以空间信息包括panel为例进行描述,当空间关系包括CORESET组,参考信号集合,TCI状态,波束中的至少一种时,s组空间信息中的每组空间信息关联的相同PUCCH格式对应的最大UCI码率的配置方式与空间信息包括panel时的配置方式相同或类似,例如上述实施例中的panel可以替换为panel、CORESET组、参考信号集合、TCI状态、波束等中的至少一种,这里不再赘述。
因此,本申请实施例通过将至少两个空间信息分为s组,并且每组空间信息对应的至少一种空间信息关联的相同PUCCH格式的最大UCI码率相同,能够有助于减小UCI复用后PUCCH资源计算的复杂度。
可选的,终端设备可以接收第二信息,该第二信息可以用于指示该至少两个空间信息关联的PUCCH格式对应的最大UCI码率。示例性的,第二信息可以是通过RRC信令配置的,或者是通过DCI动态指示的,本申请对此不作限定。
在本申请一些可选的实施例中,还可以确定UCI复用后的PUCCH资源的物理资源块(physical resource block,PRB)数。
作为一种可能的实现方式,当分别为每个空间信息关联的PUCCH格式配置不同的最大UCI码率时,该至少两个上行信道承载的UCI复用后的PRB数是与该至少两个空间信息中的每个空间信息关联的UCI比特数、每个空间信息关联的CRC加扰比特数、每个空间信息关联的最大UCI码率中的至少一种确定的。
作为具体的例子,以每种空间信息对应一个panel为例,n种空间信息对应n个panel,panelID为[0,n-1],n为正整数。其中,与n个panelID关联的至少两个上行信道承载的UCI,复用后的PRB数可以根据该n个panelID中的每个panelID关联的UCI比特数、每个panelID关联的CRC加扰比特数、每个panelID关联的最大UCI码率中的至少一项关联。
例如,如果以下公式(1)成立:
Figure PCTCN2021143805-appb-000047
Figure PCTCN2021143805-appb-000048
则该至少两个上行信道承载的UCI复用后的PRB数为满足该公式(1)的最小的
Figure PCTCN2021143805-appb-000049
的值,或者是满足该公式,且为2,3,5的公倍数的最小的
Figure PCTCN2021143805-appb-000050
的值。
例如,如果以下公式(2)成立:
Figure PCTCN2021143805-appb-000051
则该至少两个上行信道承载的UCI复用后的PRB数为
Figure PCTCN2021143805-appb-000052
的值。
其中,在上述公式(1)和公式(2)中,
Figure PCTCN2021143805-appb-000053
分别对应每个panelID关联的UCI比特数,
Figure PCTCN2021143805-appb-000054
分别对应每个panelID关联的CRC加扰比特数,r panel0,…,r paneln-1分别对应每个panelID关联的最大UCI码率,Q m是与调制方案(modulation scheme)相关的参数或理解为每个RE的比特数,
Figure PCTCN2021143805-appb-000055
是PUCCH格式对应的PRB数,
Figure PCTCN2021143805-appb-000056
是PUCCH格式对应的每个资源块的子载波数,
Figure PCTCN2021143805-appb-000057
是PUCCH格式对应的时域符号数,
Figure PCTCN2021143805-appb-000058
是小于
Figure PCTCN2021143805-appb-000059
的PRB数。
因此,本申请实施例通过根据至少两个空间信息中的每个空间信息关联的UCI比特数、每个空间信息关联的CRC加扰比特数、每个空间信息关联的最大UCI码率中的至少一种,确定至少两个上行信道承载的UCI复用后的PRB数,能够使得将每个空间信息对应的UCI比特数、CRC加扰比特数和最大UCI码率中的至少一种对应的PRB数的影响体现在复用后的UCI对应的PUCCH资源的PRB数上。
作为另一种可能的实现方式,当上述至少两个空间信息包括s组空间信息,且每组空间信息关联的相同PUCCH格式对应的最大UCI码率相同时,该至少两个上行信道承载的UCI复用后的PRB数是根据该s组空间信息中每组空间信息关联的总UCI比特数、每组空间信息关联的总CRC加扰比特数、每组空间信息关联的总最大UCI码率中的至少一种确定的。
作为具体的例子,以每种空间信息对应一个panel为例,n种空间信息对应n个panel,panelID为[0,n-1],n为正整数。当该n个panelID可以分为s个组,与每组panelID关联的至少两个上行信道承载的UCI,复用后的PRB数可以根据该组panel关联的总UCI比特数、该组panel关联的总CRC加扰比特数、该组panel关联的总最大UCI码率中的至少一种确定。示例性的,s可以小于或等于panel的数量n,或者大于或等于panel的数量n,不作限定。具体的,将该n个panelID可以分为s个组的过程可以参见上文中的描述,这里不再赘述。
例如,如果以下公式(3)成立:
Figure PCTCN2021143805-appb-000060
则该至少两个上行信道承载的UCI复用后的PRB数为满足该公式(3)的最小的
Figure PCTCN2021143805-appb-000061
的值,或者是满足该公式(3)且为2,3,5的公倍数的最小的
Figure PCTCN2021143805-appb-000062
的值。
例如,如果以下公式(4)成立:
Figure PCTCN2021143805-appb-000063
则该至少两个上行信道承载的UCI复用后的PRB数为
Figure PCTCN2021143805-appb-000064
其中,在上述公式(3)和公式(4)中,O UCI_group1,…,O UCI_groups分别对应每组panel关联的总UCI比特数,r 第一值,…,r 第s值分别对应每组panel关联的最大UCI码率,O CRC,group1,…,O CRC,groups分别对应每组panel关联的总CRC加扰比特数,Q m是与调制方案(modulation scheme)相关的参数或理解为每个RE的比特数,
Figure PCTCN2021143805-appb-000065
是PUCCH格式对应的每个资源块的子载波数,
Figure PCTCN2021143805-appb-000066
是PUCCH格式对应的时域符号数,
Figure PCTCN2021143805-appb-000067
是PUCCH格式对应的PRB数,
Figure PCTCN2021143805-appb-000068
是小于
Figure PCTCN2021143805-appb-000069
的PRB数。
应理解,这里以空间信息包括panel为例进行描述,当空间关系包括CORESET组,参考信号集合,TCI状态,波束中的至少一种时,该至少两个上行信道承载的UCI复用后的PRB数的确定方式与空间信息包括panel时的确定方式相同或类似,例如上述实施例中的panel可以替换为panel、CORESET组、参考信号集合、TCI状态、波束等中的至少一种,这里不再赘述。
因此,本申请实施例通过根据至少两个空间信息中的每组空间信息关联的总UCI比特数、每组空间信息关联的总CRC加扰比特数、每组空间信息关联的总最大UCI码率中的至少一种,确定至少两个上行信道承载的UCI复用后的PRB数,能够使得将每组空间信息对应的总UCI比特数、总CRC加扰比特数和总最大UCI码率中的至少一种对应的PRB数的影响体现在复用后的UCI对应的PUCCH资源的PRB数上。并且,通过将至少两个空间信息分为s组空间信息,并且每组空间信息对应的相同PUCCH格式设置相同的最大UCI码率,能够减小确定复用后的UCI的PRB数的复杂度。
在一些可选的实施例中,终端设备还可以发送能力信息,例如向网络设备发送该终端设备的能力信息。示例性的,该能力信息包括以下至少一项:
是否支持同时发送与至少两个空间信息关联的上行信道;
是否支持与至少两个空间信息关联的上行信道采用不同的码率或最大UCI码率;
与至少两个空间信息关联的上行信道同时传输所需要的额外处理时间。
作为具体的例子,以以每种空间信息对应一个panel为例,n种空间信息对应n个panel,panelID为[0,n-1],n为正整数。其中,该能力信息例如可以为是否支持同时发送与n个panelID关联的上行信道、是否支持与n个panelID关 联的码率或最大UCI码率、与n个panelID关联的上行信道同时传输的额外处理时间(例如第一额外处理时间,和/或第二额外处理时间,和/或第三额外处理时间)中的至少一项。示例性的,第一额外处理时间,和/或第二额外处理时间,和/或第三额外处理时间可以参见上文中的描述,不再赘述。
对应的,网络设备接收该能力信息,并根据该能力信息获知终端设备的能力。
可选的,网络设备根据终端设备的能力信息,配置或调度终端设备同时发送与至少两个空间信息关联的上行信道。
可选的,网络根据终端设备的能力信息,配置与至少两个空间信息关联的上行信道采用不同的码率或最大UCI码率。
可选的,网络设备根据终端设备的能力信息,配置额外处理时间,例如第一额外处理时间,和/或第二额外处理时间,和/或第三额外处理时间。
可选的,终端设备根据能力信息,采用第一额外处理时间,和/或第二额外处理时间,和/或第三额外处理时间进行UCI复用。
可选的,第一额外处理时间、第二额外处理时间、第三额外处理时间可以是相同的值,或者是同样的额外处理时间,本申请对此不作限定。
可选的,终端设备可以根据其能力信息,同时发送与至少两个空间信息关联的上行信道,比如PUCCH和/或PUSCH和/或SRS和/或PRACH。
示例性的,当终端设备上报的能力信息为该终端设备支持同时发送与n个panelID关联的PUCCH时,该终端设备按照上述第二复用方式进行UCI的复用。当终端设备上报的能力信息为该终端设备不支持同时发送与n个panelID关联的PUCCH时,该终端设备按照上述第一复用方式进行UCI复用。当终端设备上报的能力信息为该终端设备支持与至少两个空间信息关联的上行信道采用不同的码率或最大UCI码率时,终端设备可以按照第一复用方式进行UCI的复用。
示例性的,终端设备是否支持同时发送与至少两个空间信息关联的上行信道,可以是按照不同的上行信道的组合来上报的。示例性的,上行信道的组合包括PUCCH,PUSCH,SRS,PRACH中的一种信道或多种信道的组合。例如,终端设备可以上报是否支持同时发送与至少两个空间信息关联的PUCCH,或者终端设备可以上报是否支持同时发送与至少两个空间信息关联的PUCCH和PUSCH等多种组合,这里不再赘述。
上文描述了本申请的方法实施例,下文结合图10至图14,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图10示出了根据本申请实施例的终端设备300的示意性框图。如图10所示,该终端设备300包括通信单元310。可选的,终端设备300还可以包括处理单元320。
通信单元310,用于根据至少两个上行信道承载的上行控制信息UCI的复用方式,发送所述至少两个上行信道承载的UCI;
其中,所述至少两个上行信道与至少两个空间信息关联,所述至少两个上行信道的时域资源有重叠和/或所述至少两个上行信道的时域资源在同一个时间单元内。
可选的,处理单元320,用于确定所述至少两个上行信道承载的上行控制信息UCI的复用方式。
可选的,所述复用方式包括第一复用方式,所述第一复用方式包括将所述至少两个上行信道承载的UCI复用到第一上行信道上发送。其中,所述至少两个上行信道包括所述第一上行信道,或所述第一上行信道是所述至少两个上行信道以外的上行信道。
可选的,所述复用方式包括第二复用方式,所述第二复用方式包括将与第一空间信息关联的至少一个上行信道承载的UCI复用到第二上行信道上发送,其中,所述第一空间信息为所述至少两个空间信息中的一个,所述第二上行信道与所述第一空间信息关联。其中,所述至少两个上行信道包含所述第二上行控制信道,或所述第二上行信道是该至少两个上行信道以外的上行信道。
可选的,所述至少两个上行信道包括第一上行信道组,所述第一上行信道组具有如下至少一项时序关系;
所述第一上行信道组中第一PUCCH或第一PUSCH的第一个符号,与所述第一上行信道组关联的PDSCH的最后一个符号之间的时间间隔大于或等于第一处理时间;
所述第一PUCCH或所述第一PUSCH的第一个符号,与所述第一上行信道组关联的第一信道的调度PDCCH的最后一个符号之间的时间间隔大于或等于第二处理时间;
所述第一PUCCH或所述第一PUSCH的第一个符号,与所述第一上行信道组关联的PDCCH的最后一个符号之间大于或等于第三处理时间,其中,所述与所述第一上行信道组关联的PDCCH用于半持续调度SPS PDSCH的释放;
所述第一PUCCH或所述第一PUSCH的第一个符号,与所述第一上行信道组关联的第二信道的最后一个符号之间的时间间隔大于或等于第四处理时间。
可选的,所述第一上行信道组中的上行信道与同一空间信息关联,或者,所述第一上行信道组中的上行信道与至少两个空间信息关联。
可选的,所述第一PUCCH或所述第一PUSCH为所述第一上行信道组的时域最早的信道。
可选的,所述第一信道包括PUSCH,PDSCH,SPSPDSCH释放的至少一项。
可选的,所述第二信道包括第一上行信道组中的PUSCH的调度PDCCH、所述第一上行信道组中的PUCCH对应的PDSCH的调度PDCCH、所述第一上行信道组关联的用于SPSPDSCHrelease的PDCCH中的至少一项。
可选的,所述第一处理时间是根据所述第一上行信道组关联的第i个PDSCH的处理时间与第一额外处理时间的和确定的,其中,所述第一额外处理时间是第一上行信道组关联的PDSCH所需的额外处理时间,i为正整数且小于或等于所述第一上行信道组中的上行信道的数量。
可选的,所述第一额外处理时间是预定义,或根据所述终端设备的能力信息确定的。
可选的,如果所述第一上行信道组中不包括PUSCH,所述第二处理时间是根据所述第一上行信道组中的PUCCH所关联的PUSCH的处理时间与第二额外处理时间的和确定的,其中,所述第二额外处理时间是所述第一上行信道组 关联的所述第一信道所需的额外处理时间。
可选的,如果所述第一上行信道组中包括PUSCH,所述第二处理时间是根据所述第一上行信道组中的第i个PUSCH的处理时间与第二额外处理时间的和确定的,其中,所述第二额外处理时间是所述第一上行信道组关联的所述第一信道所需的额外处理时间,i为正整数且小于或等于所述第一上行信道组中的上行信道的数量。
可选的,所述第二额外时间是预定义,或根据所述终端设备的能力信息确定的。
可选的,所述第三处理时间是根据所述第一上行信道组关联的用于SPS PDSCH释放的PDCCH的处理时间与第三额外处理时间的和确定的,其中,所述第三额外处理时间是所述第一上行信道组关联的用于SPS PDSCH释放的PDCCH所需的额外处理时间。
可选的,所述第三额外处理时间是预定义,或根据所述终端设备的能力信息确定的。
可选的,所述第四处理时间是根据所述第一上行信道组关联的CSI的计算时间与第四额外处理时间的和确定的,其中,所述第四额外处理时间是所述第一上行信道组关联的所述第二信道所需的额外处理时间。
可选的,所述第四额外处理时间是预定义的,或根据所述终端设备的能力信息确定的。
可选的,所述第一处理时间是根据第一参考子载波间隔确定的;
其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第一参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组关联的第i个PDSCH;
第i个PDSCH的调度PDCCH;
所述第一上行信道组中的PUCCH;
所述第一上行信道组中的PUSCH。
可选的,所述第二处理时间是根据第二参考子载波间隔确定的;
其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第二参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组关联的第i个PDSCH的调度PDCCH;
所述第一上行信道组关联的第i个用于SPSPDSCH释放的调度PDCCH;
所述第一上行信道组中的PUCCH。
可选的,所述第二处理时间是根据第三参考子载波间隔确定的;
其中,若所述至少两个上行信道是通过高层参数配置的,则所述第三参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH;
所述第一上行信道组中的PUCCH。
可选的,所述第二处理时间是根据第四参考子载波间隔确定的;
其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第四参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组关联的第i个PDSCH;
所述第一上行信道组关联的第i个PDSCH的调度PDCCH;
所述第一上行信道组中的PUSCH的调度PDCCH;
所述第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH;
所述第一上行信道组中的PUSCH。
可选的,所述第二处理时间是根据第五参考子载波间隔确定的;
其中,若所述至少两个上行信道是通过高层参数配置的,则所述第五参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组关联的第i个PDSCH;
所述第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH;
所述第一上行信道组中的PUSCH。
可选的,所述第三处理时间是根据第六参考子载波间隔确定的;
其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第六参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组关联的第i个用于SPSPDSCH释放的调度PDCCH;
所述第一上行信道组中的PUCCH,所述第一上行信道组中的PUSCH。
可选的,所述第四处理时间是根据第七参考子载波间隔确定的;
其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第七参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组中的PUSCH的调度PDCCH;
所述第一上行信道组中的PUCCH对应的PDSCH的调度PDCCH;
所述第一上行信道组关联的用于SPSPDSCHrelease的PDCCH;
所述第一上行信道组中的PUSCH;
所述第一上行信道组关联的承载非周期CSI的PUSCH关联的CSI-RS。
可选的,所述第四处理时间是根据第八参考子载波间隔确定的;
其中,若所述至少两个上行信道是通过高层参数配置的,则所述第八参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组中的PUSCH;
所述第一上行信道组关联的承载非周期CSI的PUSCH关联的CSI-RS。
可选的,所述至少两个空间信息关联的PUCCH格式对应的最大UCI码率相同或不同。
可选的,所述至少两个上行信道承载的UCI复用后的PRB数是与所述至少两个空间信息中的每个空间信息关联的UCI比特数、每个空间信息关联的循环CRC加扰比特数、每个空间信息关联的最大UCI码率中的至少一种确定的。
可选的,所述至少两个空间信息包括s组空间信息,所述s组空间信息中的每组空间信息中相同PUCCH格式对应的最大UCI码率相同,其中,s为大于1的整数,s小于或等于所述至少两个空间信息的数量。
可选的,s的值是预定义的,或者是根据UCI的优先级等级确定的。
可选的,所述至少两个上行信道承载的UCI复用后的PRB数是根据所述s组空间信息中每组空间信息关联的总UCI比特数、每组空间信息关联的总CRC加扰比特数、每组空间信息关联的总最大UCI码率中的至少一种确定的。
可选的,所述上行信道包括PUCCH,PUSCH,SRS,PRACH中的至少一种。
可选的,所述通信单元310还用于发送能力信息,所述能力信息包括以下至少一项:
是否支持同时发送与至少两个空间信息关联的上行信道;
是否支持与至少两个空间信息关联的上行信道采用不同的码率或最大UCI码率;
与至少两个空间信息关联的上行信道同时传输所需要的额外处理时间。
可选的,所述处理单元320具体用于:
所述终端设备根据所述复用方式,对与相同空间信息关联的至少一个上行信道承载的UCI进行复用;
所述终端设备根据所述复用方式,对与不同空间信息关联的至少两个上行信道承载的UCI进行复用。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图8所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图11示出了根据本申请实施例的网络设备400的示意性框图。如图11所示,该网络设备400包括通信单元410。可选的,网络设备400还包括处理单元420。
通信单元410,用于根据至少两个上行信道承载的上行控制信息UCI的复用方式接收来自终端设备的所述至少两个上行信道承载的UCI;
其中,所述至少两个上行信道与至少两个空间信息关联,所述至少两个上行信道的时域资源有重叠和/或所述至少两个上行信道的时域资源在同一个时间单元内。
可选的,处理单元420,用于确定至少两个上行信道承载的上行控制信息UCI的复用方式。
可选的,所述复用方式包括第一复用方式,所述第一复用方式包括将所述至少两个上行信道承载的UCI复用到第一上行信道上发送。其中,所述至少两个上行信道包括所述第一上行信道,或所述第一上行信道是所述至少两个上行信道以外的上行信道
可选的,所述复用方式包括第二复用方式,所述第二复用方式包括将与第一空间信息关联的至少一个上行信道承载的UCI复用到第二上行信道上发送,其中,所述第一空间信息为所述至少两个空间信息中的一个,所述第二上行信道与所述第一空间信息关联。其中,所述至少两个上行信道包含所述第二上行控制信道,或所述第二上行信道是该至少两个上行信道以外的上行信道。
可选的,所述至少两个上行信道包括第一上行信道组,所述第一上行信道组具有如下至少一项时序关系:
所述第一上行信道组中第一PUCCH或第一PUSCH的第一个符号,与所述第一上行信道组关联的PDSCH的最后一个符号之间的时间间隔大于或等于第一处理时间;
所述第一PUCCH或所述第一PUSCH的第一个符号,与所述第一上行信道组关联的第一信道的调度PDCCH的最后一个符号之间的时间间隔大于或等于第二处理时间;
所述第一PUCCH或所述第一PUSCH的第一个符号,与所述第一上行信道组关联的PDCCH的最后一个符号之间大于或等于第三处理时间,其中,所述与所述第一上行信道组关联的PDCCH用于半持续调度SPS PDSCH的释放;
所述第一PUCCH或所述第一PUSCH的第一个符号,与所述第一上行信道组关联的第二信道的最后一个符号之间的时间间隔大于或等于第四处理时间。
可选的,所述第一上行信道组中的上行信道与同一空间信息关联,或者,所述第一上行信道组中的上行信道与至少两个空间信息关联。
可选的,所述第一PUCCH或所述第一PUSCH为所述第一上行信道组的时域最早的信道。
可选的,所述第一信道包括PUSCH,PDSCH,SPSPDSCH释放的至少一项。
可选的,所述第二信道包括第一上行信道组中的PUSCH的调度PDCCH、所述第一上行信道组中的PUCCH对应的PDSCH的调度PDCCH、所述第一上行信道组关联的用于SPSPDSCHrelease的PDCCH中的至少一项。
可选的,所述第一处理时间是根据所述第一上行信道组关联的第i个PDSCH的处理时间与第一额外处理时间的和确定的,其中,所述第一额外处理时间是第一上行信道组关联的PDSCH所需的额外处理时间,i为正整数且小于或等于所述第一上行信道组中的上行信道的数量。
可选的,所述第一额外处理时间是预定义,或根据所述终端设备的能力信息确定的。
可选的,如果所述第一上行信道组中不包括PUSCH,所述第二处理时间是根据所述第一上行信道组中的PUCCH所关联的PUSCH的处理时间与第二额外处理时间的和确定的,其中,所述第二额外处理时间是所述第一上行信道组关联的所述第一信道所需的额外处理时间。
可选的,如果所述第一上行信道组中包括PUSCH,所述第二处理时间是根据所述第一上行信道组中的第i个PUSCH的处理时间与第二额外处理时间的和确定的,其中,所述第二额外处理时间是所述第一上行信道组关联的所述第一信道所需的额外处理时间,i为正整数且小于或等于所述第一上行信道组中的上行信道的数量。
可选的,所述第二额外时间是预定义,或根据所述终端设备的能力信息确定的。
可选的,所述第三处理时间是根据所述第一上行信道组关联的用于SPS PDSCH释放的PDCCH的处理时间与第三额外处理时间的和确定的,其中,所述第三额外处理时间是所述第一上行信道组关联的用于SPS PDSCH释放的PDCCH所需的额外处理时间。
可选的,所述第三额外处理时间是预定义,或根据所述终端设备的能力信息确定的。
可选的,所述第四处理时间是根据所述第一上行信道组关联的CSI的计算时间与第四额外处理时间的和确定的,其中,所述第四额外处理时间是所述第一上行信道组关联的所述第二信道所需的额外处理时间。
可选的,所述第四额外处理时间是预定义的,或根据所述终端设备的能力信息确定的。
可选的,所述第一处理时间是根据第一参考子载波间隔确定的;
其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第一参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组关联的第i个PDSCH;
第i个PDSCH的调度PDCCH;
所述第一上行信道组中的PUCCH;
所述第一上行信道组中的PUSCH。
可选的,所述第二处理时间是根据第二参考子载波间隔确定的;
其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第二参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组关联的第i个PDSCH的调度PDCCH;
所述第一上行信道组关联的第i个用于SPSPDSCH释放的调度PDCCH;
所述第一上行信道组中的PUCCH。
可选的,所述第二处理时间是根据第三参考子载波间隔确定的;
其中,若所述至少两个上行信道是通过高层参数配置的,则所述第三参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH;
所述第一上行信道组中的PUCCH。
可选的,所述第二处理时间是根据第四参考子载波间隔确定的;
其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第四参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组关联的第i个PDSCH;
所述第一上行信道组关联的第i个PDSCH的调度PDCCH;
所述第一上行信道组中的PUSCH的调度PDCCH;
所述第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH;
所述第一上行信道组中的PUSCH。
可选的,所述第二处理时间是根据第五参考子载波间隔确定的;
其中,若所述至少两个上行信道是通过高层参数配置的,则所述第五参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组关联的第i个PDSCH;
所述第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH;
所述第一上行信道组中的PUSCH。
可选的,所述第三处理时间是根据第六参考子载波间隔确定的;
其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第六参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组关联的第i个用于SPSPDSCH释放的调度PDCCH;
所述第一上行信道组中的PUCCH,所述第一上行信道组中的PUSCH。
可选的,所述第四处理时间是根据第七参考子载波间隔确定的;
其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第七参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组中的PUSCH的调度PDCCH;
所述第一上行信道组中的PUCCH对应的PDSCH的调度PDCCH;
所述第一上行信道组关联的用于SPSPDSCHrelease的PDCCH;
所述第一上行信道组中的PUSCH;
所述第一上行信道组关联的承载非周期CSI的PUSCH关联的CSI-RS。
可选的,所述第四处理时间是根据第八参考子载波间隔确定的;
其中,若所述至少两个上行信道是通过高层参数配置的,则所述第八参考子载波间隔为以下信道的子载波间隔的最小值:
所述第一上行信道组中的PUSCH;
所述第一上行信道组关联的承载非周期CSI的PUSCH关联的CSI-RS。
可选的,所述至少两个空间信息关联的PUCCH格式对应的最大UCI码率相同或不同。
可选的,所述至少两个上行信道承载的UCI复用后的PRB数是与所述至少两个空间信息中的每个空间信息关联的UCI比特数、每个空间信息关联的循环CRC加扰比特数、每个空间信息关联的最大UCI码率中的至少一种确定的。
可选的,所述至少两个空间信息包括s组空间信息,所述s组空间信息中的每组空间信息中相同PUCCH格式对 应的最大UCI码率相同,其中,s为大于1的整数,s小于或等于所述至少两个空间信息的数量。
可选的,s的值是预定义的,或者是根据UCI的优先级等级确定的。
可选的,所述至少两个上行信道承载的UCI复用后的PRB数是根据所述s组空间信息中每组空间信息关联的总UCI比特数、每组空间信息关联的总CRC加扰比特数、每组空间信息关联的总最大UCI码率中的至少一种确定的。
可选的,所述上行信道包括PUCCH,PUSCH,SRS,PRACH中的至少一种。
可选的,通信单元410还用于:接收来自所述终端设备的能力信息,所述能力信息包括以下至少一项:
是否支持同时发送与至少两个空间信息关联的上行信道;
是否支持与至少两个空间信息关联的上行信道采用不同的码率或最大UCI码率;
与至少两个空间信息关联的上行信道同时传输所需要的额外处理时间。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上***的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备400可对应于本申请方法实施例中的网络设备,并且网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图8所示方法200中网络设备的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例提供的一种通信设备500示意性结构图。图12所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图12所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
在一些实施例中,如图12所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备500具体可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备500具体可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的装置的示意性结构图。图13所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图13所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是***级芯片,***芯片,芯片***或片上***芯片等。
图14是本申请实施例提供的一种通信***700的示意性框图。如图14所示,该通信***700包括终端设备710和网络设备720。
其中,该终端设备710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备720可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储 器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (75)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备根据至少两个上行信道承载的上行控制信息UCI的复用方式,发送所述至少两个上行信道承载的UCI;
    其中,所述至少两个上行信道与至少两个空间信息关联,所述至少两个上行信道的时域资源有重叠和/或所述至少两个上行信道的时域资源在同一个时间单元内。
  2. 根据权利要求1所述的方法,其特征在于,所述复用方式包括第一复用方式,所述第一复用方式包括将所述至少两个上行信道承载的UCI复用到第一上行信道上发送;
    其中,所述至少两个上行信道包括所述第一上行信道,或所述第一上行信道是所述至少两个上行信道以外的上行信道。
  3. 根据权利要求1所述的方法,其特征在于,所述复用方式包括第二复用方式,所述第二复用方式包括将与第一空间信息关联的至少一个上行信道承载的UCI复用到第二上行信道上发送,其中,所述第一空间信息为所述至少两个空间信息中的一个,所述第二上行信道与所述第一空间信息关联;
    其中,所述至少两个上行信道包含所述第二上行控制信道,或所述第二上行信道是该至少两个上行信道以外的上行信道。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述至少两个上行信道包括第一上行信道组,所述第一上行信道组具有如下至少一项时序关系:
    所述第一上行信道组中第一PUCCH或第一PUSCH的第一个符号,与所述第一上行信道组关联的PDSCH的最后一个符号之间的时间间隔大于或等于第一处理时间;
    所述第一PUCCH或所述第一PUSCH的第一个符号,与所述第一上行信道组关联的第一信道的调度PDCCH的最后一个符号之间的时间间隔大于或等于第二处理时间;
    所述第一PUCCH或所述第一PUSCH的第一个符号,与所述第一上行信道组关联的PDCCH的最后一个符号之间大于或等于第三处理时间,其中,所述与所述第一上行信道组关联的PDCCH用于半持续调度SPS PDSCH的释放;
    所述第一PUCCH或所述第一PUSCH的第一个符号,与所述第一上行信道组关联的第二信道的最后一个符号之间的时间间隔大于或等于第四处理时间。
  5. 根据权利要求4所述的方法,其特征在于,所述第一上行信道组中的上行信道与同一空间信息关联,或者,所述第一上行信道组中的上行信道与至少两个空间信息关联。
  6. 根据权利要求4所述的方法,其特征在于,所述第一PUCCH或所述第一PUSCH为所述第一上行信道组的时域最早的信道。
  7. 根据权利要求4所述的方法,其特征在于,所述第一信道包括PUSCH,PDSCH,SPSPDSCH释放的至少一项;
    所述第二信道包括第一上行信道组中的PUSCH的调度PDCCH、所述第一上行信道组中的PUCCH对应的PDSCH的调度PDCCH、所述第一上行信道组关联的用于SPSPDSCHrelease的PDCCH中的至少一项。
  8. 根据权利要求4所述的方法,其特征在于,所述第一处理时间是根据所述第一上行信道组关联的第i个PDSCH的处理时间与第一额外处理时间的和确定的,其中,所述第一额外处理时间是第一上行信道组关联的PDSCH所需的额外处理时间,i为正整数且小于或等于所述第一上行信道组中的上行信道的数量。
  9. 根据权利要求8所述的方法,其特征在于,所述第一额外处理时间是预定义,或根据所述终端设备的能力信息确定的。
  10. 根据权利要求4所述的方法,其特征在于,如果所述第一上行信道组中不包括PUSCH,所述第二处理时间是根据所述第一上行信道组中的PUCCH所关联的PUSCH的处理时间与第二额外处理时间的和确定的,其中,所述第二额外处理时间是所述第一上行信道组关联的所述第一信道所需的额外处理时间。
  11. 根据权利要求4所述的方法,其特征在于,如果所述第一上行信道组中包括PUSCH,所述第二处理时间是根据所述第一上行信道组中的第i个PUSCH的处理时间与第二额外处理时间的和确定的,其中,所述第二额外处理时间是所述第一上行信道组关联的所述第一信道所需的额外处理时间,i为正整数且小于或等于所述第一上行信道组中的上行信道的数量。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第二额外时间是预定义,或根据所述终端设备的能力信息确定的。
  13. 根据权利要求4所述的方法,其特征在于,所述第三处理时间是根据所述第一上行信道组关联的用于SPS PDSCH释放的PDCCH的处理时间与第三额外处理时间的和确定的,其中,所述第三额外处理时间是所述第一上行信道组关联的用于SPS PDSCH释放的PDCCH所需的额外处理时间。
  14. 根据权利要求13所述的方法,其特征在于,所述第三额外处理时间是预定义,或根据所述终端设备的能力信息确定的。
  15. 根据权利要求4所述的方法,其特征在于,所述第四处理时间是根据所述第一上行信道组关联的CSI的计算时间与第四额外处理时间的和确定的,其中,所述第四额外处理时间是所述第一上行信道组关联的所述第二信道所需的额外处理时间。
  16. 根据权利要求15所述的方法,其特征在于,所述第四额外处理时间是预定义的,或根据所述终端设备的能力信息确定的。
  17. 根据权利要求8所述的方法,其特征在于,所述第一处理时间是根据第一参考子载波间隔确定的;
    其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第一参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组关联的第i个PDSCH;
    第i个PDSCH的调度PDCCH;
    所述第一上行信道组中的PUCCH;
    所述第一上行信道组中的PUSCH。
  18. 根据权利要求10所述的方法,其特征在于,所述第二处理时间是根据第二参考子载波间隔确定的;
    其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第二参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组关联的第i个PDSCH的调度PDCCH;
    所述第一上行信道组关联的第i个用于SPSPDSCH释放的调度PDCCH;
    所述第一上行信道组中的PUCCH。
  19. 根据权利要求10所述的方法,其特征在于,所述第二处理时间是根据第三参考子载波间隔确定的;
    其中,若所述至少两个上行信道是通过高层参数配置的,则所述第三参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH;
    所述第一上行信道组中的PUCCH。
  20. 根据权利要求11所述的方法,其特征在于,所述第二处理时间是根据第四参考子载波间隔确定的;
    其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第四参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组关联的第i个PDSCH;
    所述第一上行信道组关联的第i个PDSCH的调度PDCCH;
    所述第一上行信道组中的PUSCH的调度PDCCH;
    所述第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH;
    所述第一上行信道组中的PUSCH。
  21. 根据权利要求11所述的方法,其特征在于,所述第二处理时间是根据第五参考子载波间隔确定的;
    其中,若所述至少两个上行信道是通过高层参数配置的,则所述第五参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组关联的第i个PDSCH;
    所述第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH;
    所述第一上行信道组中的PUSCH。
  22. 根据权利要求13所述的方法,其特征在于,所述第三处理时间是根据第六参考子载波间隔确定的;
    其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第六参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组关联的第i个用于SPSPDSCH释放的调度PDCCH;
    所述第一上行信道组中的PUCCH,所述第一上行信道组中的PUSCH。
  23. 根据权利要求15所述的方法,其特征在于,所述第四处理时间是根据第七参考子载波间隔确定的;
    其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第七参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组中的PUSCH的调度PDCCH;
    所述第一上行信道组中的PUCCH对应的PDSCH的调度PDCCH;
    所述第一上行信道组关联的用于SPSPDSCHrelease的PDCCH;
    所述第一上行信道组中的PUSCH;
    所述第一上行信道组关联的承载非周期CSI的PUSCH关联的CSI-RS。
  24. 根据权利要求15所述的方法,其特征在于,所述第四处理时间是根据第八参考子载波间隔确定的;
    其中,若所述至少两个上行信道是通过高层参数配置的,则所述第八参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组中的PUSCH;
    所述第一上行信道组关联的承载非周期CSI的PUSCH关联的CSI-RS。
  25. 根据权利要求1-24任一项所述的方法,其特征在于,所述至少两个空间信息关联的PUCCH格式对应的最大UCI码率相同或不同。
  26. 根据权利要求25所述的方法,其特征在于,所述至少两个上行信道承载的UCI复用后的PRB数是与所述至少两个空间信息中的每个空间信息关联的UCI比特数、每个空间信息关联的循环CRC加扰比特数、每个空间信息关联的最大UCI码率中的至少一种确定的。
  27. 根据权利要求26所述的方法,其特征在于,所述至少两个空间信息包括s组空间信息,所述s组空间信息中的每组空间信息中相同PUCCH格式对应的最大UCI码率相同,其中,s为大于1的整数,s小于或等于所述至少两个空间信息的数量。
  28. 根据权利要求27所述的方法,其特征在于,s的值是预定义的,或者是根据UCI的优先级等级确定的。
  29. 根据权利要求27或28所述的方法,其特征在于,所述至少两个上行信道承载的UCI复用后的PRB数是根据所述s组空间信息中每组空间信息关联的总UCI比特数、每组空间信息关联的总CRC加扰比特数、每组空间信息关联的总最大UCI码率中的至少一种确定的。
  30. 根据权利要求1-29任一项所述的方法,其特征在于,所述上行信道包括PUCCH,PUSCH,SRS,PRACH中的至少一种。
  31. 根据权利要求1-30任一项所述的方法,其特征在于,还包括:
    所述终端设备发送能力信息,所述能力信息包括以下至少一项:
    是否支持同时发送与至少两个空间信息关联的上行信道;
    是否支持与至少两个空间信息关联的上行信道采用不同的码率或最大UCI码率;
    与至少两个空间信息关联的上行信道同时传输所需要的额外处理时间。
  32. 根据权利怄气1-31任一项所述的方法,其特征在于,所述终端设备根据所述复用方式,发送所述至少两个上行信道承载的UCI,包括:
    所述终端设备根据所述复用方式,对与相同空间信息关联的至少一个上行信道承载的UCI进行复用;
    所述终端设备根据所述复用方式,对与不同空间信息关联的至少两个上行信道承载的UCI进行复用。
  33. 一种无线无线通信的方法,其特征在于,包括:
    网络设备根据至少两个上行信道承载的上行控制信息UCI的复用方式,接收来自终端设备的所述至少两个上行信道承载的UCI;
    其中,所述至少两个上行信道与至少两个空间信息关联,所述至少两个上行信道的时域资源有重叠和/或所述至少两个上行信道的时域资源在同一个时间单元内。
  34. 根据权利要求33所述的方法,其特征在于,所述复用方式包括第一复用方式,所述第一复用方式包括将所述至少两个上行信道承载的UCI复用到第一上行信道上发送;
    其中,所述至少两个上行信道包括所述第一上行信道,或所述第一上行信道是所述至少两个上行信道以外的上行信道。
  35. 根据权利要求33所述的方法,其特征在于,所述复用方式包括第二复用方式,所述第二复用方式包括将与第一空间信息关联的至少一个上行信道承载的UCI复用到第二上行信道上发送,其中,所述第一空间信息为所述至少两个空间信息中的一个,所述第二上行信道与所述第一空间信息关联;
    其中,所述至少两个上行信道包含所述第二上行控制信道,或所述第二上行信道是该至少两个上行信道以外的上行信道。
  36. 根据权利要求33-35任一项所述的方法,其特征在于,所述至少两个上行信道包括第一上行信道组,所述第一上行信道组具有如下至少一项时序关系:
    所述第一上行信道组中第一PUCCH或第一PUSCH的第一个符号,与所述第一上行信道组关联的PDSCH的最后一个符号之间的时间间隔大于或等于第一处理时间;
    所述第一PUCCH或所述第一PUSCH的第一个符号,与所述第一上行信道组关联的第一信道的调度PDCCH的最后一个符号之间的时间间隔大于或等于第二处理时间;
    所述第一PUCCH或所述第一PUSCH的第一个符号,与所述第一上行信道组关联的PDCCH的最后一个符号之间大于或等于第三处理时间,其中,所述与所述第一上行信道组关联的PDCCH用于半持续调度SPS PDSCH的释放;
    所述第一PUCCH或所述第一PUSCH的第一个符号,与所述第一上行信道组关联的第二信道的最后一个符号之间的时间间隔大于或等于第四处理时间。
  37. 根据权利要求36所述的方法,其特征在于,所述第一上行信道组中的上行信道与同一空间信息关联,或者,所述第一上行信道组中的上行信道与至少两个空间信息关联。
  38. 根据权利要求36所述的方法,其特征在于,所述第一PUCCH或所述第一PUSCH为所述第一上行信道组的时域最早的信道。
  39. 根据权利要求36所述的方法,其特征在于,所述第一信道包括PUSCH,PDSCH,SPSPDSCH释放的至少一项;
    所述第二信道包括第一上行信道组中的PUSCH的调度PDCCH、所述第一上行信道组中的PUCCH对应的PDSCH的调度PDCCH、所述第一上行信道组关联的用于SPSPDSCHrelease的PDCCH中的至少一项。
  40. 根据权利要求36所述的方法,其特征在于,所述第一处理时间是根据所述第一上行信道组关联的第i个PDSCH的处理时间与第一额外处理时间的和确定的,其中,所述第一额外处理时间是第一上行信道组关联的PDSCH所需的额外处理时间,i为正整数且小于或等于所述第一上行信道组中的上行信道的数量。
  41. 根据权利要求40所述的方法,其特征在于,所述第一额外处理时间是预定义,或根据所述终端设备的能力信息确定的。
  42. 根据权利要求36所述的方法,其特征在于,如果所述第一上行信道组中不包括PUSCH,所述第二处理时间是根据所述第一上行信道组中的PUCCH所关联的PUSCH的处理时间与第二额外处理时间的和确定的,其中,所述第二额外处理时间是所述第一上行信道组关联的所述第一信道所需的额外处理时间。
  43. 根据权利要求36所述的方法,其特征在于,如果所述第一上行信道组中包括PUSCH,所述第二处理时间是根据所述第一上行信道组中的第i个PUSCH的处理时间与第二额外处理时间的和确定的,其中,所述第二额外处理时间是所述第一上行信道组关联的所述第一信道所需的额外处理时间,i为正整数且小于或等于所述第一上行信道组中的上行信道的数量。
  44. 根据权利要求42或43所述的方法,其特征在于,所述第二额外时间是预定义,或根据所述终端设备的能力信息确定的。
  45. 根据权利要求36所述的方法,其特征在于,所述第三处理时间是根据所述第一上行信道组关联的用于SPS PDSCH释放的PDCCH的处理时间与第三额外处理时间的和确定的,其中,所述第三额外处理时间是所述第一上行信道组关联的用于SPS PDSCH释放的PDCCH所需的额外处理时间。
  46. 根据权利要求45所述的方法,其特征在于,所述第三额外处理时间是预定义,或根据所述终端设备的能力信息确定的。
  47. 根据权利要求36所述的方法,其特征在于,所述第四处理时间是根据所述第一上行信道组关联的CSI的计算时间与第四额外处理时间的和确定的,其中,所述第四额外处理时间是所述第一上行信道组关联的所述第二信道所需的额外处理时间。
  48. 根据权利要求47所述的方法,其特征在于,所述第四额外处理时间是预定义的,或根据所述终端设备的能力 信息确定的。
  49. 根据权利要求40所述的方法,其特征在于,所述第一处理时间是根据第一参考子载波间隔确定的;
    其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第一参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组关联的第i个PDSCH;
    第i个PDSCH的调度PDCCH;
    所述第一上行信道组中的PUCCH;
    所述第一上行信道组中的PUSCH。
  50. 根据权利要求42所述的方法,其特征在于,所述第二处理时间是根据第二参考子载波间隔确定的;
    其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第二参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组关联的第i个PDSCH的调度PDCCH;
    所述第一上行信道组关联的第i个用于SPSPDSCH释放的调度PDCCH;
    所述第一上行信道组中的PUCCH。
  51. 根据权利要求42所述的方法,其特征在于,所述第二处理时间是根据第三参考子载波间隔确定的;
    其中,若所述至少两个上行信道是通过高层参数配置的,则所述第三参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH;
    所述第一上行信道组中的PUCCH。
  52. 根据权利要求43所述的方法,其特征在于,所述第二处理时间是根据第四参考子载波间隔确定的;
    其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第四参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组关联的第i个PDSCH;
    所述第一上行信道组关联的第i个PDSCH的调度PDCCH;
    所述第一上行信道组中的PUSCH的调度PDCCH;
    所述第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH;
    所述第一上行信道组中的PUSCH。
  53. 根据权利要求43所述的方法,其特征在于,所述第二处理时间是根据第五参考子载波间隔确定的;
    其中,若所述至少两个上行信道是通过高层参数配置的,则所述第五参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组关联的第i个PDSCH;
    所述第一上行信道组关联的第i个用于半持续调度SPSPDSCH释放的调度PDCCH;
    所述第一上行信道组中的PUSCH。
  54. 根据权利要求45所述的方法,其特征在于,所述第三处理时间是根据第六参考子载波间隔确定的;
    其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第六参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组关联的第i个用于SPSPDSCH释放的调度PDCCH;
    所述第一上行信道组中的PUCCH,所述第一上行信道组中的PUSCH。
  55. 根据权利要求47所述的方法,其特征在于,所述第四处理时间是根据第七参考子载波间隔确定的;
    其中,若所述至少两个上行信道中的至少一个上行信道是响应于下行控制信息DCI的,所述第七参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组中的PUSCH的调度PDCCH;
    所述第一上行信道组中的PUCCH对应的PDSCH的调度PDCCH;
    所述第一上行信道组关联的用于SPSPDSCHrelease的PDCCH;
    所述第一上行信道组中的PUSCH;
    所述第一上行信道组关联的承载非周期CSI的PUSCH关联的CSI-RS。
  56. 根据权利要求47所述的方法,其特征在于,所述第四处理时间是根据第八参考子载波间隔确定的;
    其中,若所述至少两个上行信道是通过高层参数配置的,则所述第八参考子载波间隔为以下信道的子载波间隔的最小值:
    所述第一上行信道组中的PUSCH;
    所述第一上行信道组关联的承载非周期CSI的PUSCH关联的CSI-RS。
  57. 根据权利要求33-56任一项所述的方法,其特征在于,所述至少两个空间信息关联的PUCCH格式对应的最大UCI码率相同或不同。
  58. 根据权利要求57所述的方法,其特征在于,所述至少两个上行信道承载的UCI复用后的PRB数是与所述至少两个空间信息中的每个空间信息关联的UCI比特数、每个空间信息关联的循环CRC加扰比特数、每个空间信息关联的最大UCI码率中的至少一种确定的。
  59. 根据权利要求58所述的方法,其特征在于,所述至少两个空间信息包括s组空间信息,所述s组空间信息中的每组空间信息中相同PUCCH格式对应的最大UCI码率相同,其中,s为大于1的整数,s小于或等于所述至少两个空间信息的数量。
  60. 根据权利要求59所述的方法,其特征在于,s的值是预定义的,或者是根据UCI的优先级等级确定的。
  61. 根据权利要求59或60所述的方法,其特征在于,所述至少两个上行信道承载的UCI复用后的PRB数是根据 所述s组空间信息中每组空间信息关联的总UCI比特数、每组空间信息关联的总CRC加扰比特数、每组空间信息关联的总最大UCI码率中的至少一种确定的。
  62. 根据权利要求33-61任一项所述的方法,其特征在于,所述上行信道包括PUCCH,PUSCH,SRS,PRACH中的至少一种。
  63. 根据权利要求33-62任一项所述的方法,其特征在于,还包括:
    所述网络设备接收来自所述终端设备的能力信息,所述能力信息包括以下至少一项:
    是否支持同时发送与至少两个空间信息关联的上行信道;
    是否支持与至少两个空间信息关联的上行信道采用不同的码率或最大UCI码率;
    与至少两个空间信息关联的上行信道同时传输所需要的额外处理时间。
  64. 一种终端设备,其特征在于,包括:
    通信单元,用于根据至少两个上行信道承载的上行控制信息UCI的复用方式,发送所述至少两个上行信道承载的UCI;
    其中,所述至少两个上行信道与至少两个空间信息关联,所述至少两个上行信道的时域资源有重叠和/或所述至少两个上行信道的时域资源在同一个时间单元内。
  65. 一种网络设备,其特征在于,包括:
    通信单元,用于根据至少两个上行信道承载的上行控制信息UCI的复用方式,接收来自终端设备的所述至少两个上行信道承载的UCI;
    其中,所述至少两个上行信道与至少两个空间信息关联,所述至少两个上行信道的时域资源有重叠和/或所述至少两个上行信道的时域资源在同一个时间单元内。
  66. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至32中任一项所述的方法。
  67. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求33至63中任一项所述的方法。
  68. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至32中任一项所述的方法。
  69. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求33至63中任一项所述的方法。
  70. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至32中任一项所述的方法。
  71. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求33至63中任一项所述的方法。
  72. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至32中任一项所述的方法。
  73. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求33至63中任一项所述的方法。
  74. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至32中任一项所述的方法。
  75. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求33至63中任一项所述的方法。
PCT/CN2021/143805 2021-12-31 2021-12-31 无线通信的方法、终端设备和网络设备 WO2023123399A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180103178.7A CN118104165A (zh) 2021-12-31 2021-12-31 无线通信的方法、终端设备和网络设备
PCT/CN2021/143805 WO2023123399A1 (zh) 2021-12-31 2021-12-31 无线通信的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143805 WO2023123399A1 (zh) 2021-12-31 2021-12-31 无线通信的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023123399A1 true WO2023123399A1 (zh) 2023-07-06

Family

ID=86997232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143805 WO2023123399A1 (zh) 2021-12-31 2021-12-31 无线通信的方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN118104165A (zh)
WO (1) WO2023123399A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435878A (zh) * 2019-01-11 2020-07-21 电信科学技术研究院有限公司 一种信息传输方法、终端及网络设备
CN111615855A (zh) * 2018-05-08 2020-09-01 Oppo广东移动通信有限公司 无线通信方法、通信设备、芯片和***
CN111835480A (zh) * 2019-07-05 2020-10-27 维沃移动通信有限公司 一种uci传输方法、接收方法、终端和网络设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615855A (zh) * 2018-05-08 2020-09-01 Oppo广东移动通信有限公司 无线通信方法、通信设备、芯片和***
CN111435878A (zh) * 2019-01-11 2020-07-21 电信科学技术研究院有限公司 一种信息传输方法、终端及网络设备
CN111835480A (zh) * 2019-07-05 2020-10-27 维沃移动通信有限公司 一种uci传输方法、接收方法、终端和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Discussion on HARQ-ACK multiplexing on PUSCH", 3GPP TSG RAN WG1 MEETING #107-E, R1-2111361, 6 November 2021 (2021-11-06), XP052074827 *

Also Published As

Publication number Publication date
CN118104165A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
CN115553005A (zh) 侧行反馈资源配置方法、终端设备和网络设备
US20230063901A1 (en) Sidelink feedback method and terminal device
US20230262696A1 (en) Method for determining uplink transmission parameter, and terminal device
US20230231665A1 (en) Method for feeding back hybrid automatic repeat request acknowledgement (harq-ack) and terminal device
WO2019192500A1 (zh) 通信方法和通信装置
WO2022188253A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022016342A1 (zh) 信道加扰方法和终端设备
WO2022036523A1 (zh) 数据传输的方法及设备
WO2020248794A1 (zh) 一种功率控制方法、通信方法、装置及存储介质
WO2023123399A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023102813A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023102848A1 (zh) 无线通信的方法和终端设备
WO2023035144A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023050337A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024026678A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023141824A1 (zh) 无线通信的方法和终端设备
WO2022188081A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023108638A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024031237A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023115583A1 (zh) 通信方法、终端设备和网络设备
WO2022077346A1 (zh) 信道传输的方法、终端设备和网络设备
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
WO2024007336A1 (zh) 信息处理方法、终端设备和网络设备
WO2022246824A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023141823A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969746

Country of ref document: EP

Kind code of ref document: A1