WO2023120540A1 - Cationic electrodeposition coating composition, electrodeposition coated product, and method for producing electrodeposition coated product - Google Patents

Cationic electrodeposition coating composition, electrodeposition coated product, and method for producing electrodeposition coated product Download PDF

Info

Publication number
WO2023120540A1
WO2023120540A1 PCT/JP2022/046966 JP2022046966W WO2023120540A1 WO 2023120540 A1 WO2023120540 A1 WO 2023120540A1 JP 2022046966 W JP2022046966 W JP 2022046966W WO 2023120540 A1 WO2023120540 A1 WO 2023120540A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodeposition coating
coating composition
coated
compound
cationic electrodeposition
Prior art date
Application number
PCT/JP2022/046966
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 山下
シャラフ,マハ
沙理 中島
祐斗 岩橋
俊雄 印部
Original Assignee
日本ペイント・オートモーティブコーティングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント・オートモーティブコーティングス株式会社 filed Critical 日本ペイント・オートモーティブコーティングス株式会社
Priority to JP2023536560A priority Critical patent/JP7429332B2/en
Publication of WO2023120540A1 publication Critical patent/WO2023120540A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic

Definitions

  • the present invention relates to a cationic electrodeposition coating composition, an electrodeposition coating, and a method for producing an electrodeposition coating.
  • Cationic electrodeposition paints are often used as undercoat paints to impart rust resistance to industrial products such as automobiles. From the viewpoint of rust prevention, it is required that the coating film be uniformly formed on the object to be coated. However, it is difficult to cover the edges with a sufficiently thick coating, and corrosion is likely to occur. Therefore, it has been proposed to increase the viscosity of the paint.
  • US Pat. No. 6,200,000 teaches the addition of polyvinylformamide polymer to cationic electrodeposition paints.
  • Patent Document 2 teaches adding a polyvinyl compound to a cationic electrodeposition paint.
  • an aminated epoxy resin (A); a blocked isocyanate curing agent (B); a pigment (C); A polyamidine compound or a hydrophobized modified product thereof (D),
  • the polyamidine compound or its hydrophobized modified product (D) has the following general formula (I):
  • R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and X is an anion.
  • a cationic electrodeposition coating composition having a structural unit represented by [2]
  • the hydrophobized modified form of the polyamidine compound has a cyclic structural unit derived from an unsaturated nitrile or the following general formula (X):
  • R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and R 3 is a substituted or unsubstituted linear or branched chain having
  • cationic electrodeposition coating composition [4] The cationic electrodeposition coating composition according to [1] or [2], wherein the polyamidine compound or its hydrophobized modified product (D) has a weight average molecular weight of 50,000 or more.
  • the aminated epoxy resin (A) is an aminated epoxy resin obtained by reacting an amine compound with an epoxy resin, the amine compound is a combination of two types of primary amine and secondary amine;
  • the primary amine has the formula: NH 2 —(CH 2 )n—NR 11 R 12 (In the formula, R 11 and R 12 are the same or different and represent an alkyl group having 1 to 6 carbon atoms which may have a terminal hydroxyl group, and n represents an integer of 2 to 4.) has wherein said secondary amine has the formula: R13R14NH _ (In the formula, R 13 and R 14 are the same or different and represent an alkyl group having 1 to 4 carbon atoms and having a terminal hydroxyl group.) or the amine compound comprises one or more selected from the group consisting of ketimine compounds and diketimine compounds, The cationic electrodeposition coating composition according to [1] or [2].
  • an object to be coated An electrodeposition-coated article having, on the article to be coated, an electrodeposition coating film formed from the cationic electrodeposition coating composition according to [1] or [2].
  • a voltage is applied between the article to be coated and the counter electrode, and the uncured electrodeposition is applied to the article to be coated.
  • a step of applying an electrodeposition pretreatment agent to the object to be coated The article to be coated to which the pretreatment agent for electrodeposition has been applied is immersed in the cationic electrodeposition coating composition, and then a voltage is applied between the article to be coated and a counter electrode to remove the uncoated material from the article to be coated.
  • a step of forming a cured electrodeposition coating a step of heating the uncured electrodeposition coating film at a temperature of 75° C. or more and 200° C.
  • the cationic electrodeposition coating composition contains an aminated epoxy resin (A), a blocked isocyanate curing agent (B), a pigment (C), and a polyamidine compound or a hydrophobized modified product thereof (D),
  • the polyamidine compound or its hydrophobized modified product (D) has the following general formula: (In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and X is an anion.)
  • a cationic electrodeposition paint composition it is possible to provide a cationic electrodeposition paint composition, an electrodeposition-coated article, and a method for producing the same that provide a coating film with excellent rust resistance, particularly edge rust resistance, and appearance.
  • the polymer viscosity agent interacts with the film-forming resin and pigment to increase the viscosity of the cationic electrodeposition paint composition.
  • the coating composition is suppressed from flowing during heating. However, it is difficult to cure the coating composition while covering the edges.
  • a polyamidine compound having a cyclic amidine skeleton (hereinafter referred to as a cyclic polyamidine compound) is added to the coating composition.
  • a cyclic polyamidine compound has an electric charge.
  • a charged polyamidine compound tends to deposit on the edge portion.
  • the coating composition can be cured while covering the edges, thereby improving the rust prevention of the edges.
  • a cyclic polyamidine compound may be modified to introduce a hydrophobic group from the viewpoint of paint stability.
  • a product into which a hydrophobic group has been introduced is referred to herein as a "hydrophobic modified product".
  • the coating film-forming resin flows to some extent when heated, the surface of the resulting cured coating film is leveled and a good appearance can be obtained.
  • the cationic electrodeposition coating composition according to the present embodiment (hereinafter sometimes simply referred to as coating composition) comprises an aminated epoxy resin (A), a blocked isocyanate curing agent (B), and a pigment (C). , and a polyamidine compound or a hydrophobized modified product thereof (D).
  • the polyamidine compound or its hydrophobized modified product (D) has the following general formula: (In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and X is an anion.) It has a structural unit represented by
  • the aminated epoxy resin (A) is a film-forming resin.
  • the aminated epoxy resin is included in the coating composition in the form of a resin emulsion along with the blocked polyisocyanate curing agent.
  • at least one oxirane ring (also referred to as "epoxy group") of the epoxy resin is aminated.
  • the number average molecular weight of the aminated epoxy resin (A) is, for example, 1,000 or more and 7,000 or less. When the number average molecular weight is 1,000 or more, the resulting cured electrodeposition coating film is likely to have improved rust resistance and solvent resistance. When the number average molecular weight is 7,000 or less, the viscosity of the aminated epoxy resin (A) can be easily adjusted, smooth synthesis becomes possible, and the resulting aminated epoxy resin (A) can be emulsified and dispersed. becomes easier.
  • the aminated epoxy resin (A) may have a number average molecular weight of 1,500 or more and 4,000 or less.
  • the number average molecular weight of the aminated epoxy resin (A) is a styrene homopolymer conversion value measured using gel permeation chromatography.
  • the amine value of the aminated epoxy resin (A) is, for example, 20 mgKOH/g or more and 100 mgKOH/g or less.
  • the amine value of the aminated epoxy resin (A) is 20 mgKOH/g or more, the emulsified dispersion stability of the aminated epoxy resin (A) in the coating composition is improved.
  • the amine value is 100 mgKOH/g or less, the amount of amino groups in the cured electrodeposition coating film is appropriate, and the decrease in water resistance of the coating film is suppressed.
  • the amine value of the aminated epoxy resin (A) may be 20 mgKOH/g or more and 80 mgKOH/g or less.
  • the amine value can be determined by the following method according to ASTM D2073. (1) Accurately weigh 500 mg of aminated epoxy resin into a 200 ml Erlenmeyer flask. (2) Add about 50 ml of glacial acetic acid and dissolve uniformly. (3) Add 5 to 6 drops of indicator (methyl violet solution) and stir evenly. (4) Titration is continued with 0.1N perchloric acid acetic acid solution, and the end point is the bright green point. ((3) and (4) above may be replaced by potentiometric titration.)
  • the hydroxyl value of the aminated epoxy resin (A) is, for example, 150 mgKOH/g or more and 650 mgKOH/g or less.
  • the hydroxyl value of the aminated epoxy resin may be 150 mgKOH/g or more and 400 mgKOH/g or less.
  • the hydroxyl value can be determined by the neutralization titration method using an aqueous potassium hydroxide solution described in JIS K 0070.
  • the aminated epoxy resin (A) has a number average molecular weight within the range of 1,000 to 7,000, an amine value of 20 to 100 mgKOH/g, and a hydroxyl value of 150 to 650 mgKOH/g (preferably is 150 to 400 mgKOH/g), the rust prevention property of the object to be coated is likely to be further improved.
  • the coating composition may contain a plurality of aminated epoxy resins (A) with different amine values and/or hydroxyl values.
  • the average amine value and the average hydroxyl value calculated based on the mass ratio of the plural aminated epoxy resins (A) fall within the above ranges.
  • the plural aminated epoxy resins (A) are composed of an aminated epoxy resin having an amine value of 20 to 50 mgKOH/g and a hydroxyl value of 50 to 300 mgKOH/g and an amine value of 50 to 200 mgKOH/g. and an aminated epoxy resin having a hydroxyl value of 200 to 500 mgKOH/g.
  • the aminated epoxy resin (A) can be prepared, for example, by reacting the oxirane ring of the epoxy resin with an amine compound.
  • an amine compound that is generally used for producing an aminated epoxy resin is used.
  • commonly used amine compounds include primary amines such as butylamine, octylamine, monoethanolamine; secondary amines such as diethylamine, dibutylamine, methylbutylamine, diethanolamine, N-methylethanolamine; complex amines such as diethylenetriamine; Amines are mentioned.
  • the above primary amine can control the reaction by forming a ketimine group using a ketone compound and by so-called blocking.
  • Ketimine-forming ketone compounds include methyl isopropyl ketone (MIPK), diisobutyl ketone (DIBK), methyl isobutyl ketone (MIBK), diethyl ketone (DEK), ethyl butyl ketone (EBK), ethyl propyl ketone (EPK), di Examples include propyl ketone (DPK) and methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK) is preferably used.
  • MIPK isopropyl ketone
  • DIBK diisobutyl ketone
  • MIBK methyl isobutyl ketone
  • DEK diethyl ketone
  • EBK ethyl butyl ketone
  • EPK ethyl propyl ketone
  • di Examples include propyl ketone (DPK) and methyl ethyl ketone (
  • a tertiary amine may be used, and specific examples thereof include triethylamine, N,N-dimethylbenzylamine, N,N-dimethylethanolamine, and the like. These amines may be used individually by 1 type, and may use 2 or more types together.
  • the amine compound is preferably used in an amount of 0.9 equivalent or more and 1.2 equivalent or less with respect to 1 equivalent of the epoxy group of the raw material epoxy resin.
  • the reaction conditions for amination can be appropriately selected according to the reaction scale and the like. For example, the reaction may be carried out at 80° C. to 150° C. for 0.1 hour to 5 hours, or at 120° C. to 150° C. for 0.5 hours to 3 hours.
  • primary amino groups, secondary amino groups and tertiary amino groups other than ketimine are used as amine compounds that modify the oxirane ring (also referred to as "epoxy group") of the epoxy resin.
  • amine compounds that modify the oxirane ring also referred to as "epoxy group”
  • the amine compound is a combination of two types of primary amine and secondary amine, and the primary amine has the formula: NH 2 —(CH 2 )n—NR 11 R 12 (1)
  • R 11 and R 12 are the same or different and represent an alkyl group having 1 to 6 carbon atoms which may have a terminal hydroxyl group, and n represents an integer of 2 to 4.
  • R13R14NH 2
  • R 13 and R 14 represent an alkyl group having 1 to 4 carbon atoms and having a terminal hydroxyl group.
  • a tertiary amino group or a tertiary amino group produced by the reaction of a secondary amino group present in the primary amine may also react with an epoxy group to form a quaternary ammonium group, but this reaction is thought to be rare. be done.
  • the primary amine has the above formula (1), and R 11 and R 12 are specifically methyl, ethyl, propyl or butyl, and may have a terminal hydroxyl group. Further, n is 2 to 4, preferably 3. Specific examples of primary amines include aminopropyldiethanolamine, dimethylaminopropanediamine, diethylaminopropanediamine, dibutylaminopropanediamine and the like.
  • the above secondary amine is a secondary amine having the above formula (2), and is obtained by bonding R 13 and R 14 to a nitrogen atom, and R 3 and R 4 both have hydroxyl groups and have 1 to 1 carbon atoms. It has 4 alkyl groups. Specific examples of secondary amines include dimethanolamine and diethanolamine.
  • the amine compound used for amination may contain an amine compound having a ketimine group or a diketimine group.
  • the coating composition may optionally contain aminated resins other than the aminated epoxy resin (A), such as aminated acrylic resins and aminated polyester resins.
  • the coating composition may also contain other film-forming resins other than the aminated resins described above. Examples of other coating film-forming resins include hydroxyl group-containing acrylic resins, hydroxyl group-containing polyester resins, urethane resins, butadiene resins, phenol resins, and xylene resins.
  • 80% by mass or more, further 90% by mass or more, particularly 100% by mass may be the aminated epoxy resin (A).
  • the blocked polyisocyanate curing agent (B) (hereinafter sometimes simply referred to as curing agent (B)) also constitutes the electrodeposition coating film.
  • the blocked polyisocyanate curing agent (B) preferentially reacts with the amine groups of the aminated epoxy resin (A) and further reacts with hydroxyl groups to cure the aminated epoxy resin (A).
  • a blocked isocyanate curing agent (B) can be prepared by blocking a polyisocyanate with a blocking agent.
  • polyisocyanates examples include aliphatic diisocyanates such as hexamethylene diisocyanate (including trimers), tetramethylene diisocyanate and trimethylhexamethylene diisocyanate; Aromatic diisocyanates such as polyisocyanate, 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate and xylylene diisocyanate can be mentioned.
  • sealants include monohydric alkyl (or aromatic) alcohols such as n-butanol, n-hexyl alcohol, 2-ethylhexanol, lauryl alcohol, phenol carbinol, methylphenyl carbinol; cellosolves such as hexyl ether and ethylene glycol mono-2-ethylhexyl ether; polyether type double-ended diols such as polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol phenol; ethylene glycol, propylene glycol, 1,4-butanediol and the like and polyester type double-ended polyols obtained from dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, suberic acid and sebacic acid; phenols such as para-t-butylphenol and cresol; dimethyl ketoxime and methyl ethyl keto Oximes such as oxime, methyl iso
  • the blocking rate of the blocked isocyanate curing agent (B) is preferably 100%. This improves the storage stability of the coating composition.
  • the content of the curing agent (typically curing agent (B)) is set in consideration of the amount, structure, etc. of the coating film-forming resin (typically aminated epoxy resin (A)). Specifically, a curing agent is used in an amount sufficient to react with active hydrogen-containing functional groups such as primary amino groups, secondary amino groups and hydroxyl groups possessed by the film-forming resin.
  • the solid content mass ratio of the coating film-forming resin to the curing agent (coating film-forming resin/curing agent) is 90/10 to 50/50, more preferably 80/20 to 65/35. are blended as The solids weight ratio of film-forming resin to curing agent controls the flowability and cure rate of the coating composition.
  • the coating composition may contain a curing agent other than the blocked isocyanate curing agent (B), if necessary.
  • Other curing agents include, for example, organic curing agents such as melamine resins or phenolic resins, silane coupling agents, and metal curing agents. Of all the curing agents contained in the coating composition, 80% by mass or more, further 90% by mass or more, particularly 100% by mass may be the blocked isocyanate curing agent (B).
  • Pigments are pigments commonly used in paint compositions.
  • pigments include coloring pigments such as titanium white (titanium dioxide), carbon black and red iron oxide; extender pigments such as kaolin, talc, aluminum silicate, calcium carbonate, mica and clay; iron phosphate, aluminum phosphate, calcium phosphate , aluminum tripolyphosphate, and antirust pigments such as aluminum phosphomolybdate and aluminum zinc phosphomolybdate.
  • the coating composition may contain an extender pigment in that the edge rust prevention property can be further improved. Extender pigments can moderately interact with cyclic polyamidine compounds.
  • the solid content of the coating composition means all the components contained in the coating composition that remain solid even after the solvent is removed.
  • the solid content of the coating composition specifically includes the aminated epoxy resin (A), the blocked polyisocyanate curing agent (B), the pigment (C) and the cyclic polyamidine compound or its They are a hydrophobized modified product (D) and a solid component such as a pigment dispersing resin that is optionally included.
  • Pigments are usually added to the paint composition as a pigment dispersion paste containing a pigment dispersion resin and a pigment.
  • a pigment dispersing resin is a resin for dispersing a pigment.
  • Pigment dispersing resins include, for example, pigment dispersing resins having cationic groups, such as modified epoxy resins having at least one selected from quaternary ammonium groups, tertiary sulfonium groups and primary amino groups.
  • Specific examples of pigment dispersion resins include quaternary ammonium group-containing epoxy resins and tertiary sulfonium group-containing epoxy resins.
  • the aqueous solvent include ion-exchanged water and ion-exchanged water containing a small amount of alcohol.
  • a cyclic polyamidine compound or a hydrophobized modified product thereof (D) has the following general formula: (In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and X is an anion.) It has a structural unit represented by
  • a polyamidine compound having such a cyclic structure has an electric charge, so it is likely to precipitate at the edge, and further increases the viscosity of the coating composition. Therefore, it is considered that the edge rust prevention property is improved.
  • R 1 and R 2 may each independently be a hydrogen atom.
  • X represents an anion, for example a halogen ion.
  • Halogen ions include F ⁇ , Cl ⁇ , Br ⁇ and I ⁇ .
  • the halogen ion may be Cl 2 ⁇ because it is easily available.
  • the cyclic polyamidine compound (D) can be synthesized, for example, by hydrolyzing a copolymer of N-vinylcarboxylic acid amide and unsaturated nitrile in the presence of an acid. During hydrolysis in the presence of an acid, the amide group derived from the N-vinylcarboxylic acid amide hydrolyzes and reacts with the cyano group of the unsaturated nitrile to form a cyclic amidine skeleton.
  • N-vinylcarboxylic acid amides include N-vinylacetamide, N-vinyl-N-methylacetamide, N-vinylformamide, N-methyl-N-vinylformamide, N-vinylpropionamide and N-vinylbutyric acid. Amides can be mentioned. These are used singly or in combination of two or more.
  • the unsaturated nitrile may have, for example, 3 to 18 carbon atoms, or 3 to 9 carbon atoms.
  • Specific examples of unsaturated nitriles include acrylonitrile; ⁇ -alkylacrylonitrile such as methacrylonitrile and ethacrylonitrile; fumaronitrile; ⁇ -halogenoacrylonitrile such as ⁇ -chloroacrylonitrile and ⁇ -bromoacrylonitrile. These are used singly or in combination of two or more.
  • the acid used for hydrolysis is, for example, a strong inorganic acid, specifically hydrochloric acid, nitric acid and p-toluenesulfonic acid.
  • the cyclic polyamidine compound (D) may be a partially hydrolyzed copolymer of N-vinylcarboxylic acid amide and unsaturated nitrile. Using a chemical formula, it can be explained as follows.
  • an N-vinylcarboxylic acid amide is represented by CH 2 ⁇ CR 4 --NH--CO--R 6 and an unsaturated nitrile is represented by CH 2 ⁇ CR 5 --CN
  • their copolymerized polymer has the following general formula: commonly represented as (II).
  • R 1 and R 2 are used in general formula (I)
  • R 4 to R 6 are used because general formula (I) and general formula (II) are different parts of the copolymer.
  • R 4 , R 5 and R 6 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms.
  • the copolymer of (II) in this general formula represents a state in which each monomer is alternately polymerized, but in fact, the structural unit (III) from the following N-vinylcarboxylic acid amide and the unsaturated nitrile Structural unit (IV) and are composed of randomly combined: (In formulas (III) and (IV) above, R 4 to R 6 have the same meanings as above.)
  • the ratio of the number of structural units (I) to the total number of the structural units (I) and the structural units (II) in one molecule of the cyclic polyamidine compound (D): I/(I+II) is 5% or more. Well, it may be 10% or more, and it may be 20% or more. The ratio: I/(I+II) may be 100%, may be 90% or less, or may be 80% or less.
  • Another preferred embodiment of the present invention is to modify the cyclic polyamidine compound to introduce a hydrophobic portion into the polyamidine compound.
  • Hydrophobization has the advantage of improving the stability of the coating when forming the coating (cationic electrodeposition coating composition). More specifically, by hydrophobizing the polyamidine compound, it is possible to improve the storage stability when the resin emulsion containing the aminated epoxy resin (A) and the curing agent is mixed with the polyamidine compound.
  • Hydrophobic modification is mainly performed by the following two methods. In the first hydrophobizing modification method, when the unsaturated nitrile structural units (IV) are arranged next to each other, a cyclization reaction between the nitrile groups with an acid occurs to generate a cyclized structural unit.
  • the chemical reaction formula for the formation of the nitrile cyclization structural unit is believed to be:
  • two nitrile groups (CN) are cyclized to form the nitrogen atom-containing 6-membered ring structure (aminopyridine structure or 6-membered ring pyridine derivative-like structure) as described above. Since the nitrile cyclized structural unit is more hydrophobic than other moieties, it can be hydrophobized.
  • the reaction is carried out by heating in the presence of an acid.
  • Acids are, for example, weak acids such as acetic acid, formic acid, lactic acid, phosphoric acid, oxalic acid, and hydrogen sulfide, and the heating conditions are preferably 70 to 98°C.
  • the amount of acid added is preferably 5 to 40 parts by mass, more preferably 8 to 25 parts by mass, per 100 parts by mass of the polyamidine compound.
  • the reaction time can be appropriately selected according to the heating conditions and the amount of acid added, and can be selected, for example, in the range of 12 to 80 hours, more preferably 36 to 72 hours.
  • pressurization conditions may be added in order to accelerate the reaction.
  • the second method of hydrophobization modification is a method of reacting the amidine ring represented by the above formula (I) with a halogenated alkyl compound to bond the alkyl group to the amidine ring to impart hydrophobicity.
  • a reaction equation is as follows: (In the reaction formula above, R 1 to R 3 and X have the same meanings as above, and Hal represents a halogen atom.)
  • the reaction is carried out by heating in the presence of an alkali.
  • the reaction conditions include a mode in which an alkaline substance such as sodium hydroxide, potassium hydroxide, or aqueous ammonia is added under conditions of pH 4.0 to 6.5.
  • the heating conditions are preferably 80°C to 98°C.
  • the reaction time can be appropriately selected according to the heating conditions, pH conditions and the type of alkaline substance used, and can be selected, for example, in the range of 2 to 36 hours, more preferably 10 to 24 hours.
  • pressurization conditions may be added.
  • R 3 is a substituted or unsubstituted linear or branched C 3-12 alkyl group or a substituted or unsubstituted C 6-12 aromatic at least any of the groups.
  • R 3 is an alkyl group (e.g., n-propyl group, sec-propyl group, n-butyl group, sec-butyl group, hexyl group, n-pentyl group, sec-pentyl group, neopentyl group , heptyl group, pentyl group, octyl group, etc.); or aromatic groups (eg, benzyl group, naphthalene group, etc.).
  • substituents for these groups substituents that do not affect hydrophobization modification can be used without particular limitation. Examples of substituents include alkenyl groups having 3 to 6 carbon atoms and alkyl ether groups having 3 to 6 carbon atoms.
  • the above alkyl group and aromatic group preferably have no substituents.
  • the halogen atom in the halogenated alkyl includes a chlorine atom, a bromine atom and a fluorine atom.
  • Alkyl halides (R 3 -Hal) are more particularly chlorohexane, bromohexane, chloropentane, bromopentane, iodohexane, iodopentane, chloroheptane, bromoheptane, iodoheptane, chlorooctane, bromooctane, iodooctane etc.
  • the weight average molecular weight of the cyclic polyamidine compound or its hydrophobized modified product (D) is, for example, 50,000 or more. As a result, it is possible to obtain the effect of improving the edge portion rust prevention property with a small amount.
  • the weight average molecular weight of the cyclic polyamidine compound or its hydrophobized modified product (D) may be 80,000 or more, 100,000 or more, or 300,000 or more.
  • the weight average molecular weight of the cyclic polyamidine compound or its hydrophobized modified product (D) may be 4 million or less, 3.5 million or less, 3.2 million or less, or 3 million or less. In one aspect, the weight average molecular weight of the cyclic polyamidine compound or its hydrophobized modified product (D) is 50,000 or more and 4,000,000 or less, and may be 80,000 or more and 3,200,000 or less.
  • the weight-average molecular weight of the cyclic polyamidine compound or its hydrophobized modified product (D) is measured by a molecular weight measuring device (DLS-7000 manufactured by Otsuka Electronics Co., Ltd., etc.) using a static light scattering method.
  • the solid content mass of the cyclic polyamidine compound or its hydrophobized modified product (D) may be 0.2 ppm or more of the solid content mass of the cationic electrodeposition coating composition.
  • the solid content mass of the cyclic polyamidine compound or its hydrophobized modified product (D) may be 1,200 ppm or less. Even if the addition amount of the cyclic polyamidine compound or its hydrophobized modified product (D) is such a small amount, it is possible to obtain the effect of improving edge rust prevention.
  • the solid content mass of the cyclic polyamidine compound or its hydrophobized modified product (D) may be 1 ppm or more, 2 ppm or more, or 50 ppm or more.
  • the solid content mass of the cyclic polyamidine compound or its hydrophobized modified product (D) may be 1,000 ppm or less, 700 ppm or less, or 200 ppm or less. In one aspect, the solid content mass of the cyclic polyamidine compound or its hydrophobized modified product (D) is 20 ppm or more and 1,200 ppm or less, may be 25 ppm or more and 1,000 ppm or less, may be 25 ppm or more and 700 ppm or less, It can be 50 ppm or more and 200 ppm or less.
  • the coating composition may contain a curing catalyst.
  • the curing catalyst is not particularly limited, and those known in the field of coatings can be used.
  • curing catalysts include organic tin compounds and bismuth compounds.
  • organotin compounds include dibutyltin oxide, dioctyltin oxide, dioctyltin dilaurate, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin diacetate, dibutyltin dibenzoate, and dioctyltin dibenzoate.
  • Bismuth compounds include bismuth oxide, bismuth hydroxide, bismuth subsalicylate, and bismuth subnitrate.
  • the content of the curing catalyst may be 0.5% by mass or less, or 0.25% by mass or less, of the solid content of the coating composition.
  • the coating composition may further contain a metal nitrite.
  • the nitrite metal salt can further improve the edge rust prevention.
  • the nitrite metal salt is preferably an alkali metal nitrite or an alkaline earth metal nitrite, more preferably an alkaline earth metal nitrite.
  • Nitrite metal salts include, for example, calcium nitrite, sodium nitrite, potassium nitrite, magnesium nitrite, strontium nitrite, barium nitrite, and zinc nitrite.
  • the content of the nitrite metal salt is, for example, 0.001% by mass or more and 0.2% by mass or less in terms of the metal element of the metal component with respect to the total mass of the coating film-forming resin and the curing agent.
  • the paint composition may optionally contain additives commonly used in the paint field, such as organic solvents, anti-drying agents, surfactants such as antifoaming agents, viscosity modifiers such as acrylic resin fine particles, Anti-repellent agents, inorganic rust inhibitors may be included.
  • organic solvents include ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monoethylhexyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, and propylene glycol monophenyl ether.
  • inorganic rust inhibitors include vanadium salts, copper, iron, manganese, magnesium and calcium salts.
  • auxiliary complexing agents buffering agents, smoothing agents, stress relaxation agents, brightening agents, semi-brightening agents, antioxidants, ultraviolet absorbers, and the like may be included depending on the purpose.
  • the coating composition comprises a resin emulsion containing a film-forming resin (typically an aminated epoxy resin (A)) and a curing agent (typically a blocked polyisocyanate curing agent (B)), a pigment (C ), and a cyclic polyamidine compound or a hydrophobized modified product thereof (D: hereinafter simply referred to as “cyclic polyamidine compound (D)”, “cyclic polyamidine or hydrophobized modified product thereof (D)” ) are mixed by a commonly used method.
  • a film-forming resin typically an aminated epoxy resin (A)
  • a curing agent typically a blocked polyisocyanate curing agent (B)
  • B blocked polyisocyanate curing agent
  • C a pigment
  • D cyclic polyamidine compound or a hydrophobized modified product thereof
  • the cyclic polyamidine compound or its hydrophobized modified product (D), other components and additives may be added to the resin emulsion, the pigment dispersion paste, or the combination of the resin emulsion and the pigment dispersion paste. It may be added during or after mixing.
  • a cyclic polyamidine compound or a hydrophobized modified product thereof (D) or the like is added thereto, for example, in the form of an aqueous solution.
  • the resin emulsion is prepared by dissolving each of the aminated epoxy resin (A) and further film-forming resins and the blocked polyisocyanate curing agent (B) and further curing agents in an organic solvent to form a solution. After preparation and mixing of these solutions, they can be prepared by neutralizing with a neutralizing acid.
  • neutralizing acids examples include organic acids such as methanesulfonic acid, sulfamic acid, lactic acid, dimethylolpropionic acid, formic acid, and acetic acid.
  • the neutralizing acid may be one or more selected from the group consisting of formic acid, acetic acid and lactic acid.
  • the solid content of the resin emulsion is, for example, 25% by mass or more and 50% by mass or less, and may be 35% by mass or more and 45% by mass or less, relative to the total amount of the resin emulsion.
  • the solid content of the resin emulsion means all the components contained in the resin emulsion that remain solid even after removal of the solvent.
  • the solid content of the resin emulsion is specifically the aminated epoxy resin (A), the blocked isocyanate curing agent (B), and other solid components added as necessary, which are contained in the resin emulsion.
  • the amount of the neutralizing acid used may be 10% or more and 100% or less, or 20% or more and 70% or less, as the equivalent ratio of the neutralizing acid to the amino group equivalents of the aminated epoxy resin.
  • the equivalent ratio of the neutralizing acid to the amino group equivalent of the aminated epoxy resin is referred to as the neutralization rate.
  • the neutralization rate is 10% or more, affinity for water is ensured, and water dispersibility is improved.
  • a pigment dispersion paste is prepared by mixing a pigment dispersion resin and a pigment.
  • the solid content mass of the pigment dispersion resin in the pigment dispersion paste is not particularly limited, and may be, for example, 20 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the pigment.
  • the solid content mass of the pigment dispersion paste is, for example, 40% by mass or more and 70% by mass or less, and may be 50% by mass or more and 60% by mass or less.
  • the solid content of the pigment-dispersed paste means all the components contained in the pigment-dispersed paste that remain solid even after the solvent is removed.
  • the solid content of the pigment dispersion paste is specifically the pigment dispersion resin, the pigment, and other solid components added as necessary, which are contained in the pigment dispersion paste.
  • An electrodeposition coating film is formed by subjecting an object to be coated to electrodeposition coating using the coating composition.
  • An electrodeposition-coated article having an electrodeposition coating film is obtained by immersing the article to be coated in the cationic electrodeposition coating composition according to the present embodiment, and then applying a voltage between the article to be coated and the counter electrode.
  • a method comprising a step of forming an uncured electrodeposition coating film on an object and a step of heating the coating film at a temperature of 75° C. or more and 200° C. or less to obtain a cured electrodeposition coating film (manufacturing method 1 ).
  • the cationic electrodeposition coating composition comprises an aminated epoxy resin (A), a blocked isocyanate curing agent (B), a pigment (C), a cyclic polyamidine compound or a hydrophobized modified product thereof (D), including.
  • the voltage is, for example, 50 V or more and 450 V or less.
  • the bath liquid temperature is, for example, 10° C. or higher and 45° C. or lower.
  • the voltage application time is not particularly limited, and is, for example, 2 minutes or more and 5 minutes or less.
  • the material of the object to be coated is not particularly limited as long as it is electrically conductive.
  • the shape of the object to be coated is also not particularly limited, and may be a flat plate shape or a complicated three-dimensional shape. Examples of objects to be coated include cold-rolled steel sheets, hot-rolled steel sheets, stainless steel, electrogalvanized steel sheets, hot-dip galvanized steel sheets, zinc-aluminum alloy plated steel sheets, zinc-iron alloy plated steel sheets, and zinc-magnesium alloy plated steel sheets.
  • the article to be coated may be surface-conditioned with a zinc-based, titanium-based, or manganese-based surface conditioner before the chemical conversion treatment. This makes the crystals of the zinc phosphate coating more dense.
  • the formed uncured electrodeposited coating is, if necessary, washed with water and then heated at a temperature of 75° C. or higher and 200° C. or lower. Thereby, a curing reaction occurs and a cured electrodeposition coating film is obtained.
  • the curing temperature may be 100° C. or higher, and may be 110° C. or higher.
  • the curing temperature may be, for example, 180° C. or lower, or 150° C. or lower.
  • the heating time is not particularly limited, and is, for example, 10 to 30 minutes.
  • the electrodeposition-coated article has an article to be coated and an electrodeposition coating film formed on the article from the above cationic electrodeposition coating composition.
  • the electrodeposition coating film is cured.
  • the electrodeposition-coated article is produced, for example, by the method described above.
  • the electrodeposition-coated article is excellent in rust prevention, especially edge rust prevention.
  • the electrodeposition coating also has a good appearance.
  • the film thickness of the electrodeposition coating film after curing may be 5 ⁇ m or more and 60 ⁇ m or less from the viewpoint of rust prevention.
  • the film thickness of the electrodeposition coating film after curing may be 10 ⁇ m or more.
  • the film thickness of the electrodeposition coating film after curing may be 25 ⁇ m or less.
  • Edge rust resistance is evaluated, for example, by a salt spray test (35°C x 72 hours) in accordance with JIS Z 2371 (2000), which is performed on a cured electrodeposition coating film with a thickness of 25 to 50 ⁇ m. After the salt spray test, if the number of rust generated on the edge of the object to be coated is less than 5/cm 2 , it can be evaluated that the edge rust prevention is excellent.
  • the cyclic polyamidine compound may be used as a pretreatment agent for electrodeposition coating (electrodeposition pretreatment agent). Since the electrodeposition pretreatment layer containing the cyclic polyamidine compound is also deposited on the edge portion, a coating film having excellent edge portion rust prevention properties can be obtained.
  • an electrodeposition-coated article having an electrodeposition coating film is produced by applying an electrodeposition pretreatment agent containing a cyclic polyamidine compound or a hydrophobized modified product thereof (D) to the article to be coated, and a step of immersing the object to be coated with the pretreatment agent for electrodeposition into the substrate, and then applying a voltage between the object to be coated and the counter electrode to form an uncured electrodeposition coating film on the object to be coated. and heating the uncured electrodeposition coating film at a temperature of 75° C. or more and 200° C. or less to obtain a cured electrodeposition coating film.
  • an electrodeposition pretreatment agent containing a cyclic polyamidine compound or a hydrophobized modified product thereof (D) to the article to be coated, and a step of immersing the object to be coated with the pretreatment agent for electrodeposition into the substrate, and then applying a voltage between the object to be coated and the counter electrode to form an uncured electrodeposition coating film on the object to be coated. and heating the uncured electrodeposition coating film
  • the cationic electrodeposition coating composition used in production method 2 contains an aminated epoxy resin (A), a blocked isocyanate curing agent (B), and a pigment (C).
  • the cyclic polyamidine compound or its hydrophobized modified product (D) is contained in the electrodeposition pretreatment agent and is applied to the article to be coated prior to the cationic electrodeposition coating composition.
  • a pretreatment agent is used in combination as a paint set.
  • Electrodeposition Pretreatment Agent containing a cyclic polyamidine compound or its hydrophobized modified product (D) is applied to the object to be coated.
  • the electrodeposition pretreatment agent is, for example, an aqueous solution of a cyclic polyamidine compound or its hydrophobized modified product (D).
  • the concentration of the cyclic polyamidine compound is, for example, 10% by mass.
  • the application method is not particularly limited, and the object to be coated may be immersed in the electrodeposition pretreatment agent, or the electrodeposition pretreatment agent may be applied to the object to be coated.
  • Application methods include a coating method and a spray method.
  • a voltage may be applied to the article to be coated.
  • the voltage is, for example, 50 V or more and 450 V or less.
  • the bath liquid temperature is, for example, 10° C. or higher and 45° C. or lower.
  • the voltage application time is not particularly limited, and is, for example, 2 minutes or more and 5 minutes or less.
  • the object to be coated may be subjected to the next step without voltage application.
  • Examples of the object to be coated include those similar to those in manufacturing method 1.
  • the electrodeposition pretreatment agent is applied after the surface conditioning treatment and chemical conversion treatment and before electrodeposition coating.
  • Curing of Electrodeposited Coating The formed uncured electrodeposited coating is optionally washed with water and heated at a temperature of 75° C. or higher and 200° C. or lower. Thereby, a curing reaction occurs and a cured electrodeposition coating film is obtained. Curing conditions may be the same as in production method 1.
  • the film thickness of the electrodeposition coating film after curing may be 5 ⁇ m or more and 60 ⁇ m or less from the viewpoint of rust prevention.
  • the film thickness of the electrodeposition coating film after curing may be 10 ⁇ m or more.
  • the film thickness of the electrodeposition coating film after curing may be 25 ⁇ m or less.
  • Electrodeposition coating 2 According to production method 2, an object to be coated, an electrodeposition pretreatment layer containing a cyclic polyamidine compound or a hydrophobized modified product thereof (D) formed on the object to be coated, an aminated epoxy resin (A), and blocked isocyanate curing and an electrodeposition coating film formed from the cationic electrodeposition coating composition containing the agent (B) and the pigment (C).
  • an electrodeposition coated article including an article to be coated and an electrodeposition coating film formed on the article to be coated is obtained.
  • the electrodeposition coating film is formed by a cationic electrodeposition coating composition containing an aminated epoxy resin (A), a blocked isocyanate curing agent (B) and a pigment (C), and further containing at least Some cyclic polyamidine compounds or hydrophobized modified products thereof (D) are included.
  • A aminated epoxy resin
  • B blocked isocyanate curing agent
  • C a pigment
  • D hydrophobized modified products thereof
  • Preparation Example 1 Preparation of pigment dispersion paste A In a sand grind mill, 1,200 parts of the pigment dispersion resin obtained in Production Example 3, 3 parts of carbon black, 620 parts of kaolin, 500 parts of titanium dioxide, 70 parts of bismuth oxide, deionized 1100 g of water was added and dispersed until the particle size became 10 ⁇ m or less to obtain a pigment-dispersed paste A (solid content: 50%).
  • Preparation Example 2 Preparation of Pigment Dispersion Paste B In a sand grind mill, 1,500 parts of the pigment dispersion resin obtained in Production Example 3, 18 parts of carbon black, 680 parts of kaolin, 590 parts of titanium dioxide, 90 parts of organic tin, deionized. 570 parts of water was added and dispersed until the particle size became 10 ⁇ m or less to obtain a pigment-dispersed paste B (solid content: 52%).
  • Example 1 (1) Preparation of Cationic Electrodeposition Coating Composition A1 In a stainless container, 1394 g of ion-exchanged water, 560 g of resin emulsion prepared as follows, and 41 g of pigment dispersion paste A were added. After that, it was aged at 40° C. for 16 hours.
  • the cyclic polyamidine compound (D1) has a structural unit of the following formula.
  • a cold-rolled steel sheet (JIS G3141, SPCC-SD) was prepared as an object to be coated.
  • This steel plate was degreased by immersing it in a surf cleaner EC90 (manufactured by Nippon Paint Surf Chemicals Co., Ltd.) at 50° C. for 2 minutes. Subsequently, it was immersed in Surfdyne EC3200 (a zirconium chemical conversion treatment agent manufactured by Nippon Paint Surf Chemicals Co., Ltd.) at 35° C. for 90 seconds. After that, it was washed with deionized water.
  • a surf cleaner EC90 manufactured by Nippon Paint Surf Chemicals Co., Ltd.
  • Surfdyne EC3200 a zirconium chemical conversion treatment agent manufactured by Nippon Paint Surf Chemicals Co., Ltd.
  • a necessary amount of 2-ethylhexyl glycol was added to the cationic electrodeposition coating composition A1 so that the film thickness of the electrodeposition coating film after curing was 20 ⁇ m.
  • voltage application was started. The voltage was applied under the condition that the voltage was increased for 30 seconds and maintained for 150 seconds after reaching 180V. As a result, an uncured electrodeposition coating film was deposited on the object to be coated. The resulting uncured electrodeposition coating film was cured by heating at 160° C. for 15 minutes to obtain an electrodeposition coating having a cured electrodeposition coating film of 20 ⁇ m in thickness.
  • Example 2 A cationic electrodeposition coating composition A2 was prepared in the same manner as in Example 1, except that the amount of the polyamidine compound (D1) added was 100 ppm, to produce an electrodeposition coating.
  • Example 3 In place of the polyamidine compound (D1), a cyclic polyamidine compound (D2) (Hymo Co., Ltd., Himolock PVAD, weight average molecular weight of 100,000, partial hydrolyzate of acrylonitrile/N-vinylformamide copolymer, constitution of structural unit (I)
  • the cyclic polyamidine compound (D2) has a structural unit of the following formula.
  • Example 4 A cationic electrodeposition coating composition A4 was prepared in the same manner as in Example 1, except that 1,000 ppm of the polyamidine compound (D2) was added, and an electrodeposition coating was produced.
  • Example 1 A cationic electrodeposition coating composition a1 was obtained in the same manner as in Example 1, except that the pigment dispersion paste B was used instead of the pigment dispersion paste A and the polyamidine compound (D1) was not added. An electrodeposition coating was produced.
  • the object to be coated is cut from a cold-rolled steel plate (JIS G3141, SPCC-SD) to a special blade for L type (LB10K: manufactured by Olfa Co., Ltd., length 100 mm, width 18 mm, thickness 0.5 mm ), a test piece having a cured electrodeposition coating film having a thickness of 20 ⁇ m was prepared in the same manner as described above, except that it was changed to ).
  • This test piece was subjected to a salt spray test (35° C. ⁇ 72 hours) according to JIS Z 2371 (2000), and the number of rust spots generated on the edges of the object to be coated was examined.
  • the edge portion of the object to be coated is a region extending from the apex of the blade to 5 mm in the direction of the main body of the blade, and is present on the front and rear surfaces of the blade.
  • the total area of the edge portion is 10 cm 2 where the length of the blade is 100 mm ⁇ the width of the area (5 mm ⁇ 2).
  • Comparative Example 1 is an example that does not contain the polyamidine compound additive of the present disclosure. In this example, it was confirmed that the edge rust resistance was inferior.
  • Comparative Examples 2 and 3 are examples containing compounds (polyvinylformamide, poly-N-vinylacetamide) known as additives for improving edge rust resistance. In this example, while the edge rust prevention property was improved, the surface roughness was remarkably increased, resulting in poor paint film appearance.
  • Example 5 Preparation of electrodeposition pretreatment agent A 100 ppm aqueous solution of the polyamidine compound (D1) was prepared.
  • Cationic electrodeposition coating composition B was prepared in the same manner as in Example 1, except that the polyamidine compound (D1) was not added.
  • Example 6 An electrodeposition coated article having a cured electrodeposition coating film having a thickness of 20 ⁇ m was obtained in the same manner as in Example 5, except that the electrodeposition pretreatment agent was applied to the steel sheet by electrodeposition as follows.
  • Example 4 After applying the electrodeposition pretreatment agent, a cured electrodeposition coating film was formed in the same manner as in Example 5, except that a 100 ppm aqueous solution of polyvinylformamide (weight average molecular weight: 3,000,000) was used as the electrodeposition pretreatment agent. Then, an electrodeposition-coated article was obtained.
  • a 100 ppm aqueous solution of polyvinylformamide weight average molecular weight: 3,000,000
  • Electrodeposition pretreatment was carried out in the same manner as in Example 5, except that a 100 ppm aqueous solution of poly-N-vinylacetamide (weight average molecular weight: 50,000) was used as the electrodeposition pretreatment agent. After applying the agent, a cured electrodeposition coating film was formed to obtain an electrodeposition coating.
  • a 100 ppm aqueous solution of poly-N-vinylacetamide weight average molecular weight: 50,000
  • Example 7 A cationic electrodeposition coating composition was prepared in the same manner as in Example 1, except that 2 ppm of the polyamidine compound (D1) was added, and an electrodeposition coating was produced.
  • Example 8 A cationic electrodeposition coating composition was prepared in the same manner as in Example 1, except that 10 ppm of the polyamidine compound (D1) was added, and an electrodeposition coating was produced.
  • Production Example 11-1 Production of aminated epoxy resin (A1) In a reaction vessel, 26 parts of butyl cellosolve, 940 parts of bisphenol A type epoxy resin (trade name DER-331J, manufactured by Dow Chemical Co.), 380 parts of bisphenol A, 58 parts of phenol, Two parts of dimethylbenzylamine were added and the internal temperature was maintained at 120°C. After reacting until the epoxy equivalent reached 1100 g/eq, the temperature inside the reactor was cooled to 110°C.
  • bisphenol A type epoxy resin trade name DER-331J, manufactured by Dow Chemical Co.
  • Production Example 13-1 Production of Resin Emulsion (1) 400 g (solid content) of aminated epoxy resin (A1) and 160 g (solid content) of blocked polyisocyanate curing agent (B) obtained in Production Example 2 were mixed. , ethylene glycol mono-2-ethylhexyl ether was added to 3% (15 g) of solids. Next, formic acid was added so as to give a neutralization rate of 40% for neutralization, and ion-exchanged water was added to slowly dilute to obtain a resin emulsion (1).
  • Production Example 13-2 Production of Resin Emulsion (2) 400 g (solid content) of aminated epoxy resin (A2) and 160 g (solid content) of blocked polyisocyanate curing agent (B) obtained in Production Example 2 were mixed. , ethylene glycol mono-2-ethylhexyl ether was added to 3% (15 g) of solids. Next, formic acid was added so as to give a neutralization rate of 40% for neutralization, and ion-exchanged water was added to slowly dilute to obtain a resin emulsion (2).
  • Production Example 15 Preparation of Pigment Dispersion Paste
  • 1,200 parts of the pigment dispersion resin obtained in Production Example 3 3 parts of carbon black, 620 parts of kaolin, 500 parts of titanium dioxide, 70 parts of bismuth oxide, and 1,100 parts of deionized water were added. and dispersed until the particle size became 10 ⁇ m or less to obtain a pigment-dispersed paste A (solid content: 50%).
  • additive A hydrophobicization of polyamidine compound by cyclization of nitrile group
  • proportion of structural unit (I) and structural unit (I+II): I/I+II 30 to 40%
  • 1 part and 499 parts of deionized water were added to the reaction vessel and stirred to prepare a 2% aqueous solution.
  • the temperature in the reaction vessel is maintained at 90 degrees, 1 part of 90% acetic acid, and 30 parts of the epoxy resin having the amine group prepared above as an amine catalyst are added and heated for 60 hours to obtain an unsaturated nitrile.
  • Additive A which is a polyamidine compound (a hydrophobized polyamidine compound) having a cyclization segment (two nitrile groups (CN) are cyclized) units, was obtained.
  • Production Example 16-3 Production of Additive C 33.6 parts of a liquid epoxy resin having an epoxy equivalent weight of 220 g/equivalent was placed in a reactor and heated to 50° C. with stirring. Stirred for 1 hour. In a separate vessel, 50 parts of methyl isobutyl ketone and 11.2 parts of isophorone diisocyanate were mixed and the mixture was heated to 70°C with stirring. Then, the reaction mixture of the above liquid epoxy resin and dialkylamine was added over 1.5 hours and stirred at 70 for 1 hour to react to obtain a cationizing agent. 99 parts of polyvinyl alcohol (Mowiol, manufactured by Kuraray Co., Ltd.) and 1 part of the cationizing agent were mixed to obtain a polyvinyl alcohol (PVA) intermediate.
  • PVA polyvinyl alcohol
  • a reactor equipped with an agitator, thermometer and condenser was prepared and 1000 parts of epoxidized polybutadiene having an oxirane oxygen content of 6.5% and a number average molecular weight of 1800, 377 parts of ethylene glycol monobutyl ether and 131 parts of methyl ethanolamine were prepared. It was kept at 170° C. for 6 hours while stirring in a nitrogen gas stream. Next, the mixture was cooled to 120°C, 81.4 parts of acrylic acid, 8.8 parts of hydroquinone and 27.1 parts of ethylene glycol monobutyl ether were added, maintained at 120°C for 4 hours, and the solid concentration was 75% per molecule. An acrylic-modified polybutadiene resin (e2) containing two ⁇ , ⁇ -ethylenically unsaturated groups was obtained.
  • e2 acrylic-modified polybutadiene resin
  • Example 11 Production of electrodeposition coating composition 1394 parts of ion-exchanged water, 560 parts of resin emulsion (2) prepared in Production Example 3-2, and 41 parts of pigment dispersion paste prepared in Production Example 5 were added to a stainless container. , followed by aging at 40° C. for 16 hours. Next, Additive A prepared in Production Example 16-1 was added in an amount such that the solid content was 10 ppm of the solid content mass of the cationic electrodeposition coating composition to prepare a cationic electrodeposition coating composition.
  • Examples 12-14 and Comparative Examples 11-14 A cationic electrodeposition coating composition was prepared in the same manner as in Example 11, except that the types of resin emulsion and/or additives were changed to those shown in Table 4 below.
  • Examples 11, 12 and 14 are examples using a cationic electrodeposition coating composition using a polyamidine compound hydrophobized by the general formula (X), and Example 13 is hydrophobized by cyclization of nitrile groups.
  • This is an example using a cationic electrodeposition coating composition using a polyamidine compound, and both are excellent in surface roughness Ra and edge rust prevention.
  • This hydrophobized modified polyamidine compound also aims at stabilizing the resin emulsion, and the stability to the resin emulsion was also evaluated, and Examples 11 to 14 were also excellent in stability.
  • Comparative Examples 11 to 14 are examples using additives C to F.
  • Additive C of Comparative Example 11 is an additive corresponding to the polyvinyl alcohol-encapsulating cationic microgel described in WO2022/189111.
  • Comparative Example 11 is an example in which the additive C was used as an edge protective agent in a cationic electrodeposition coating composition.
  • Additive D in Comparative Example 12 is an additive corresponding to the alkoxylated polyethyleneimine described in WO 2022/128359.
  • Comparative Example 12 is an example in which the additive D is used as an edge antirust agent in a cationic electrodeposition coating composition.
  • Additive E in Comparative Example 13 is a cationic microgel
  • Comparative Example 13 is an example in which Additive E (cationic microgel) is used as an edge portion rust inhibitor.
  • Additive F in Comparative Example 14 is a polyvinyl polyamide/polyamine copolymer
  • Comparative Example 14 is an example in which Additive F (polyvinyl polyamide/polyamine copolymer) is used as an edge rust inhibitor. None of Comparative Examples 11 to 14 could achieve both edge rust prevention and surface smoothness. In addition, many of them have poor stability in resin emulsions.
  • the cationic electrodeposition coating composition of the present invention it is possible to obtain a coating film that is excellent in rust resistance, especially edge rust resistance, and appearance. Therefore, the cationic electrodeposition coating composition of the present invention is suitable for coating objects having edges. In addition, the cationic electrodeposition coating composition of the present invention is excellent in coating stability.
  • an aminated epoxy resin A
  • a blocked isocyanate curing agent B
  • a pigment C
  • a polyamidine compound or a hydrophobized modified product thereof D
  • the polyamidine compound or its hydrophobized modified product (D) has the following general formula (I):
  • R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and X is an anion.
  • a cationic electrodeposition coating composition having a structural unit represented by [2]
  • the hydrophobized modified form of the polyamidine compound has a cyclic structural unit derived from an unsaturated nitrile or the following general formula (X):
  • R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and R 3 is a substituted or unsubstituted linear or branched chain having 3 to 3 carbon atom
  • cationic electrodeposition coating composition [4] The cationic electrodeposition coating composition according to any one of [1] to [3], wherein the polyamidine compound or its hydrophobized modified product (D) has a weight average molecular weight of 50,000 or more.
  • the aminated epoxy resin (A) is an aminated epoxy resin obtained by reacting an amine compound with an epoxy resin, the amine compound is a combination of two types of primary amine and secondary amine;
  • the primary amine has the formula: NH 2 —(CH 2 )n—NR 11 R 12 (In the formula, R 11 and R 12 are the same or different and represent an alkyl group having 1 to 6 carbon atoms which may have a terminal hydroxyl group, and n represents an integer of 2 to 4.) has wherein said secondary amine has the formula: R13R14NH _ (In the formula, R 13 and R 14 are the same or different and represent an alkyl group having 1 to 4 carbon atoms and having a terminal hydroxyl group.) or the amine compound comprises one or more selected from the group consisting of ketimine compounds and diketimine compounds, The cationic electrodeposition coating composition according to any one of [1] to [6].
  • an object to be coated An electrodeposition-coated article having, on the article to be coated, an electrodeposition coating film formed from the cationic electrodeposition coating composition according to any one of [1] to [7].
  • a voltage is applied between the article to be coated and the counter electrode to remove the untreated material from the article to be coated.
  • a step of forming a cured electrodeposition coating and heating the uncured electrodeposition coating at a temperature of 75° C. or more and 200° C. or less to obtain a cured electrodeposition coating.
  • a step of applying an electrodeposition pretreatment agent to the object to be coated The article to be coated to which the pretreatment agent for electrodeposition has been applied is immersed in the cationic electrodeposition coating composition, and then a voltage is applied between the article to be coated and a counter electrode to remove the uncoated material from the article to be coated.
  • a step of forming a cured electrodeposition coating a step of heating the uncured electrodeposition coating film at a temperature of 75° C. or more and 200° C.
  • the cationic electrodeposition coating composition contains an aminated epoxy resin (A), a blocked isocyanate curing agent (B), a pigment (C), and a polyamidine compound or a hydrophobized modified product thereof (D),
  • the polyamidine compound or its hydrophobized modified product (D) has the following general formula: (In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and X is an anion.)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Paints Or Removers (AREA)

Abstract

Provided is a cationic electrodeposition coating composition that yields a coating film having exceptional rust resistance, especially edge rust resistance, and an exceptional appearance. The present invention provides a cationic electrodeposition coating composition that includes an aminated epoxy resin (A), a blocked isocyanate curing agent (B), a pigment (C), and a polyamidine compound or a hydrophobized modified form thereof (D), the polyamidine compound or hydrophobized modified form thereof (D) having a structural unit represented by general formula (in the formula, R1 and R2 each independently represent a hydrogen atom or a C1-3 hydrocarbon group, and X represents an anion.).

Description

カチオン電着塗料組成物、電着塗装物および電着塗装物の製造方法Cationic electrodeposition coating composition, electrodeposition coating and method for producing electrodeposition coating
 本発明は、カチオン電着塗料組成物、電着塗装物および電着塗装物の製造方法に関する。 The present invention relates to a cationic electrodeposition coating composition, an electrodeposition coating, and a method for producing an electrodeposition coating.
 カチオン電着塗料は、自動車などの工業製品に防錆性を付与するための下塗り塗料として多用されている。防錆性の観点から、塗膜は被塗物上に均一に形成されることが求められる。しかし、特にエッジ部を十分に厚い塗膜で覆うことは難しく、腐食が生じ易い。そこで、塗料の粘性を高めることが提案されている。これに関し、特許文献1は、カチオン電着塗料にポリビニルホルムアミドポリマーを添加することを教示している。特許文献2は、カチオン電着塗料にポリビニル化合物を添加することを教示している。 Cationic electrodeposition paints are often used as undercoat paints to impart rust resistance to industrial products such as automobiles. From the viewpoint of rust prevention, it is required that the coating film be uniformly formed on the object to be coated. However, it is difficult to cover the edges with a sufficiently thick coating, and corrosion is likely to occur. Therefore, it has been proposed to increase the viscosity of the paint. In this regard, US Pat. No. 6,200,000 teaches the addition of polyvinylformamide polymer to cationic electrodeposition paints. Patent Document 2 teaches adding a polyvinyl compound to a cationic electrodeposition paint.
特表2011-524934号公報Japanese Patent Publication No. 2011-524934 国際公開第2020/262549号WO2020/262549
 しかしながら、上記のような粘性剤を添加しても、エッジ部の腐食を抑制する効果は不十分である。さらに、エッジ部の腐食を抑制しようとすると、通常、塗膜の外観は低下する。本発明は、上記従来の課題を解決するものであり、防錆性、特にエッジ部防錆性および外観に優れる塗膜が得られる、カチオン電着塗料組成物を提供することを目的とする。 However, even if the viscosity agent is added as described above, the effect of suppressing corrosion of the edge portion is insufficient. In addition, attempts to control edge corrosion usually degrade the appearance of the coating. SUMMARY OF THE INVENTION It is an object of the present invention to provide a cationic electrodeposition coating composition that provides a coating film with excellent rust resistance, particularly edge rust resistance, and appearance.
 上記課題を解決するため、本発明は下記態様を提供する。
[1]
 アミン化エポキシ樹脂(A)と、
 ブロックイソシアネート硬化剤(B)と、
 顔料(C)と、
 ポリアミジン化合物またはその疎水化変性体(D)と、を含み、
 前記ポリアミジン化合物またはその疎水化変性体(D)は、下記一般式(I):
Figure JPOXMLDOC01-appb-C000004
(式中、RおよびRはそれぞれ独立して、水素原子または炭素数1~3の炭化水素基であり、Xはアニオンである。)
で表される構成単位を有する、カチオン電着塗料組成物。
[2]
 前記ポリアミジン化合物の疎水化変性体が、構成単位(I)に加えて、不飽和ニトリルに由来する環化構造単位または以下の一般式(X):
Figure JPOXMLDOC01-appb-C000005

(式中、RおよびRはそれぞれ独立して、水素原子または炭素数1~3の炭化水素基であり、Rは置換または非置換の直鎖状または分枝状の炭素数3~12のアルキル基、または、置換または非置換の炭素数6~12の芳香族基のいずれかを少なくとも含む、疎水性構成単位である。)
で表される構造単位を有する、[1]に記載のカチオン電着塗料組成物。
[3]
 前記ポリアミジン化合物またはその疎水化変性体(D)の固形分質量は、前記カチオン電着塗料組成物の固形分質量の0.2ppm以上1,200ppm以下である、[1]または[2]に記載のカチオン電着塗料組成物。
[4]
 前記ポリアミジン化合物またはその疎水化変性体(D)の重量平均分子量は、5万以上である、[1]または[2]に記載のカチオン電着塗料組成物。
[5]
 前記顔料(C)は、体質顔料を含む、[1]または[2]に記載のカチオン電着塗料組成物。
[6]
 前記カチオン電着塗料組成物は、有機スズ化合物を含まないか、あるいは、有機スズ化合物の含有量が、0.25質量%以下である、[1]または[2]に記載のカチオン電着塗料組成物。
[7]
 前記アミン化エポキシ樹脂(A)が、アミン化合物とエポキシ樹脂を反応させることで得られるアミン化エポキシ樹脂であり、
 前記アミン化合物が、第1アミンと第2アミンとの2種類の組合せであり、
 前記第1アミンが、式:
 NH-(CH)n-NR1112
(式中、R11およびR12は、同一または異なって、末端に水酸基を有してもよい炭素数1~6のアルキル基を表し、nは2~4の整数を表す。)
を有し、
 前記第2アミンが式:
 R1314NH
(式中、R13およびR14は、同一または異なって、末端に水酸基を有する炭素数1~4のアルキル基を表す。)
を有する、か、または
 前記アミン化合物は、ケチミン化合物およびジケチミン化合物からなる群から選択される1種または2種以上を含む、
[1]または[2]に記載のカチオン電着塗料組成物。
[8]
 被塗物と、
 前記被塗物上に、[1]または[2]に記載のカチオン電着塗料組成物により形成された電着塗膜と、を有する電着塗装物。
[9]
 [1]または[2]に記載のカチオン電着塗料組成物に被塗物を浸漬した後、前記被塗物と対極との間に電圧を印加して、前記被塗物に未硬化の電着塗膜を形成する工程と、
 前記未硬化の電着塗膜を75℃以上200℃以下の温度で加熱して、硬化された電着塗膜を得る工程と、を備える、電着塗装物の製造方法。
[10]
 被塗物に電着前処理剤を付与する工程と、
 カチオン電着塗料組成物に、前記電着前処理剤が付与された前記被塗物を浸漬し、次いで、前記被塗物と対極との間に電圧を印加して、前記被塗物に未硬化の電着塗膜を形成する工程と、
 前記未硬化の電着塗膜を75℃以上200℃以下の温度で加熱して、硬化された電着塗膜を得る工程と、を備え、
 前記カチオン電着塗料組成物は、アミン化エポキシ樹脂(A)と、ブロックイソシアネート硬化剤(B)と、顔料(C)と、ポリアミジン化合物またはその疎水化変性体(D)と、を含み、
 前記ポリアミジン化合物またはその疎水化変性体(D)は、下記一般式:
Figure JPOXMLDOC01-appb-C000006
(式中、RおよびRは、それぞれ独立して、水素原子または炭素数1~3の炭化水素基であり、Xはアニオンである。)
で表される構成単位を有する、電着塗装物の製造方法。
In order to solve the above problems, the present invention provides the following aspects.
[1]
an aminated epoxy resin (A);
a blocked isocyanate curing agent (B);
a pigment (C);
A polyamidine compound or a hydrophobized modified product thereof (D),
The polyamidine compound or its hydrophobized modified product (D) has the following general formula (I):
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and X is an anion.)
A cationic electrodeposition coating composition having a structural unit represented by
[2]
In addition to the structural unit (I), the hydrophobized modified form of the polyamidine compound has a cyclic structural unit derived from an unsaturated nitrile or the following general formula (X):
Figure JPOXMLDOC01-appb-C000005

(In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and R 3 is a substituted or unsubstituted linear or branched chain having 3 to 3 carbon atoms. It is a hydrophobic structural unit containing at least one of 12 alkyl groups or a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms.)
The cationic electrodeposition coating composition according to [1], which has a structural unit represented by
[3]
[1] or [2], wherein the solid content of the polyamidine compound or its hydrophobized modified product (D) is 0.2 ppm or more and 1,200 ppm or less of the solid content of the cationic electrodeposition coating composition. cationic electrodeposition coating composition.
[4]
The cationic electrodeposition coating composition according to [1] or [2], wherein the polyamidine compound or its hydrophobized modified product (D) has a weight average molecular weight of 50,000 or more.
[5]
The cationic electrodeposition coating composition according to [1] or [2], wherein the pigment (C) contains an extender pigment.
[6]
The cationic electrodeposition paint according to [1] or [2], wherein the cationic electrodeposition paint composition does not contain an organic tin compound, or the content of the organic tin compound is 0.25% by mass or less. Composition.
[7]
The aminated epoxy resin (A) is an aminated epoxy resin obtained by reacting an amine compound with an epoxy resin,
the amine compound is a combination of two types of primary amine and secondary amine;
The primary amine has the formula:
NH 2 —(CH 2 )n—NR 11 R 12
(In the formula, R 11 and R 12 are the same or different and represent an alkyl group having 1 to 6 carbon atoms which may have a terminal hydroxyl group, and n represents an integer of 2 to 4.)
has
wherein said secondary amine has the formula:
R13R14NH _
(In the formula, R 13 and R 14 are the same or different and represent an alkyl group having 1 to 4 carbon atoms and having a terminal hydroxyl group.)
or the amine compound comprises one or more selected from the group consisting of ketimine compounds and diketimine compounds,
The cationic electrodeposition coating composition according to [1] or [2].
[8]
an object to be coated;
An electrodeposition-coated article having, on the article to be coated, an electrodeposition coating film formed from the cationic electrodeposition coating composition according to [1] or [2].
[9]
After the article to be coated is immersed in the cationic electrodeposition coating composition according to [1] or [2], a voltage is applied between the article to be coated and the counter electrode, and the uncured electrodeposition is applied to the article to be coated. A step of forming a deposited coating film;
and heating the uncured electrodeposition coating at a temperature of 75° C. or more and 200° C. or less to obtain a cured electrodeposition coating.
[10]
a step of applying an electrodeposition pretreatment agent to the object to be coated;
The article to be coated to which the pretreatment agent for electrodeposition has been applied is immersed in the cationic electrodeposition coating composition, and then a voltage is applied between the article to be coated and a counter electrode to remove the uncoated material from the article to be coated. a step of forming a cured electrodeposition coating;
a step of heating the uncured electrodeposition coating film at a temperature of 75° C. or more and 200° C. or less to obtain a cured electrodeposition coating film;
The cationic electrodeposition coating composition contains an aminated epoxy resin (A), a blocked isocyanate curing agent (B), a pigment (C), and a polyamidine compound or a hydrophobized modified product thereof (D),
The polyamidine compound or its hydrophobized modified product (D) has the following general formula:
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and X is an anion.)
A method for producing an electrodeposition coated product having a structural unit represented by
 本発明によれば、防錆性、特にエッジ部防錆性および外観に優れる塗膜が得られる、カチオン電着塗料組成物、ならびに、電着塗装物およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a cationic electrodeposition paint composition, an electrodeposition-coated article, and a method for producing the same that provide a coating film with excellent rust resistance, particularly edge rust resistance, and appearance.
 高分子粘性剤は、塗膜形成樹脂や顔料と相互作用して、カチオン電着塗料組成物の粘性を高める。塗料組成物の粘性が高まることにより、加熱時に塗料組成物が流動することが抑制される。しかしながら、塗料組成物を、エッジ部を覆った状態で硬化させることは困難である。 The polymer viscosity agent interacts with the film-forming resin and pigment to increase the viscosity of the cationic electrodeposition paint composition. By increasing the viscosity of the coating composition, the coating composition is suppressed from flowing during heating. However, it is difficult to cure the coating composition while covering the edges.
 本実施形態では、塗料組成物に、環状のアミジン骨格を有するポリアミジン化合物(以下、環状ポリアミジン化合物と称する。)を添加する。これにより、エッジ部防錆性が著しく向上する。環状ポリアミジン化合物によってエッジ部防錆性が向上する理由は明確ではないが、ポリアミジン化合物は電荷を有するためであると考えられる。電荷を有するポリアミジン化合物は、エッジ部に析出し易い。加えて、環状構造によって塗料組成物の粘度が高められるため、塗料組成物は、エッジ部を覆った状態で硬化することができて、エッジ部防錆性が向上する。環状ポリアミジン化合物は、塗料安定性の観点から変性して疎水基を導入することがある。疎水基を導入したものを、本明細書中では「疎水化変性体」と呼ぶ。 In the present embodiment, a polyamidine compound having a cyclic amidine skeleton (hereinafter referred to as a cyclic polyamidine compound) is added to the coating composition. As a result, edge rust prevention is remarkably improved. Although the reason why the cyclic polyamidine compound improves the edge rust prevention property is not clear, it is believed that the polyamidine compound has an electric charge. A charged polyamidine compound tends to deposit on the edge portion. In addition, since the cyclic structure increases the viscosity of the coating composition, the coating composition can be cured while covering the edges, thereby improving the rust prevention of the edges. A cyclic polyamidine compound may be modified to introduce a hydrophobic group from the viewpoint of paint stability. A product into which a hydrophobic group has been introduced is referred to herein as a "hydrophobic modified product".
 塗膜形成樹脂は加熱によってある程度流動するため、得られる硬化塗膜の表面はレベリングされて、良好な外観が得られる。 Because the coating film-forming resin flows to some extent when heated, the surface of the resulting cured coating film is leveled and a good appearance can be obtained.
[カチオン電着塗料組成物]
 本実施形態に係るカチオン電着塗料組成物(以下、単に塗料組成物と称する場合がある。)は、アミン化エポキシ樹脂(A)と、ブロックイソシアネート硬化剤(B)と、顔料(C)と、ポリアミジン化合物またはその疎水化変性体(D)と、を含む。
 前記ポリアミジン化合物またはその疎水化変性体(D)は、下記一般式:
Figure JPOXMLDOC01-appb-C000007
(式中、RおよびRはそれぞれ独立して、水素原子または炭素数1~3の炭化水素基であり、Xはアニオンである。)
で表される構成単位を有する。
[Cationic electrodeposition coating composition]
The cationic electrodeposition coating composition according to the present embodiment (hereinafter sometimes simply referred to as coating composition) comprises an aminated epoxy resin (A), a blocked isocyanate curing agent (B), and a pigment (C). , and a polyamidine compound or a hydrophobized modified product thereof (D).
The polyamidine compound or its hydrophobized modified product (D) has the following general formula:
Figure JPOXMLDOC01-appb-C000007
(In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and X is an anion.)
It has a structural unit represented by
<アミン化エポキシ樹脂(A)>
 アミン化エポキシ樹脂(A)は塗膜形成樹脂である。アミン化エポキシ樹脂は、ブロック化ポリイソシアネート硬化剤とともに、樹脂エマルションの形態で塗料組成物に含まれる。アミン化エポキシ樹脂(A)において、エポキシ樹脂の少なくとも1つのオキシラン環(「エポキシ基」ともいう。)がアミン化されている。
<Amine epoxy resin (A)>
The aminated epoxy resin (A) is a film-forming resin. The aminated epoxy resin is included in the coating composition in the form of a resin emulsion along with the blocked polyisocyanate curing agent. In the aminated epoxy resin (A), at least one oxirane ring (also referred to as "epoxy group") of the epoxy resin is aminated.
 アミン化エポキシ樹脂(A)の数平均分子量は、例えば、1,000以上7,000以下である。数平均分子量が1,000以上であると、得られる硬化電着塗膜の防錆性および耐溶剤性が向上し易い。数平均分子量が7,000以下であると、アミン化エポキシ樹脂(A)の粘度調整が容易となって円滑な合成が可能となり、加えて、得られたアミン化エポキシ樹脂(A)の乳化分散が容易になる。アミン化エポキシ樹脂(A)の数平均分子量は、1,500以上4,000以下であってもよい。 The number average molecular weight of the aminated epoxy resin (A) is, for example, 1,000 or more and 7,000 or less. When the number average molecular weight is 1,000 or more, the resulting cured electrodeposition coating film is likely to have improved rust resistance and solvent resistance. When the number average molecular weight is 7,000 or less, the viscosity of the aminated epoxy resin (A) can be easily adjusted, smooth synthesis becomes possible, and the resulting aminated epoxy resin (A) can be emulsified and dispersed. becomes easier. The aminated epoxy resin (A) may have a number average molecular weight of 1,500 or more and 4,000 or less.
 アミン化エポキシ樹脂(A)の数平均分子量は、ゲルパーミエーションクロマトグラフィーを用いて測定される、スチレンホモポリマー換算値である。 The number average molecular weight of the aminated epoxy resin (A) is a styrene homopolymer conversion value measured using gel permeation chromatography.
 アミン化エポキシ樹脂(A)のアミン価は、例えば、20mgKOH/g以上100mgKOH/g以下である。アミン化エポキシ樹脂(A)のアミン価が20mgKOH/g以上であると、塗料組成物中におけるアミン化エポキシ樹脂(A)の乳化分散の安定性が良好となる。アミン価が100mgKOH/g以下であると、硬化電着塗膜中のアミノ基の量が適正となり、塗膜の耐水性の低下が抑制される。アミン化エポキシ樹脂(A)のアミン価は、20mgKOH/g以上80mgKOH/g以下であってもよい。 The amine value of the aminated epoxy resin (A) is, for example, 20 mgKOH/g or more and 100 mgKOH/g or less. When the amine value of the aminated epoxy resin (A) is 20 mgKOH/g or more, the emulsified dispersion stability of the aminated epoxy resin (A) in the coating composition is improved. When the amine value is 100 mgKOH/g or less, the amount of amino groups in the cured electrodeposition coating film is appropriate, and the decrease in water resistance of the coating film is suppressed. The amine value of the aminated epoxy resin (A) may be 20 mgKOH/g or more and 80 mgKOH/g or less.
 アミン価は、ASTM D2073に準じ、以下の方法で求めることができる。
 (1)200ml三角フラスコにアミン化エポキシ樹脂を500mg精秤する。
 (2)氷酢酸約50mlを加え、均一に溶解する。
 (3)指示薬(メチルバイオレット溶液)を5~6滴加え、均一に攪拌する。
 (4)0.1N過塩素酸酢酸溶液で滴定していき、明緑色となった点を終点とする。
 (上記(3)および(4)は電位差滴定に置き換えてもよい。)
The amine value can be determined by the following method according to ASTM D2073.
(1) Accurately weigh 500 mg of aminated epoxy resin into a 200 ml Erlenmeyer flask.
(2) Add about 50 ml of glacial acetic acid and dissolve uniformly.
(3) Add 5 to 6 drops of indicator (methyl violet solution) and stir evenly.
(4) Titration is continued with 0.1N perchloric acid acetic acid solution, and the end point is the bright green point.
((3) and (4) above may be replaced by potentiometric titration.)
 アミン化エポキシ樹脂(A)の水酸基価は、例えば、150mgKOH/g以上650mgKOH/g以下である。水酸基価が150mgKOH/g以上であると、塗料組成物の硬化性が高まるとともに、塗膜外観が向上する。水酸基価が650mgKOH/g以下であると、硬化電着塗中に残存する水酸基の量が適正となり、塗膜の耐水性が向上し易くなる。アミン化エポキシ樹脂の水酸基価は、150mgKOH/g以上400mgKOH/g以下であってもよい。 The hydroxyl value of the aminated epoxy resin (A) is, for example, 150 mgKOH/g or more and 650 mgKOH/g or less. When the hydroxyl value is 150 mgKOH/g or more, the curability of the coating composition increases and the coating film appearance improves. When the hydroxyl value is 650 mgKOH/g or less, the amount of hydroxyl groups remaining in the cured electrodeposition coating becomes appropriate, and the water resistance of the coating film is easily improved. The hydroxyl value of the aminated epoxy resin may be 150 mgKOH/g or more and 400 mgKOH/g or less.
 水酸基価は、JIS K 0070に記載されている水酸化カリウム水溶液を用いる中和滴定法により求めることができる。 The hydroxyl value can be determined by the neutralization titration method using an aqueous potassium hydroxide solution described in JIS K 0070.
 特に、アミン化エポキシ樹脂(A)の数平均分子量が1,000~7,000の範囲内であり、アミン価が20~100mgKOH/gであり、かつ、水酸基価が150~650mgKOH/g(好ましくは150~400mgKOH/g)であると、被塗物の防錆性はさらに向上し易い。 In particular, the aminated epoxy resin (A) has a number average molecular weight within the range of 1,000 to 7,000, an amine value of 20 to 100 mgKOH/g, and a hydroxyl value of 150 to 650 mgKOH/g (preferably is 150 to 400 mgKOH/g), the rust prevention property of the object to be coated is likely to be further improved.
 塗料組成物は、アミン価および/または水酸基価の異なる複数のアミン化エポキシ樹脂(A)を含んでもよい。この場合、複数のアミン化エポキシ樹脂(A)の質量比に基づいて算出される平均アミン価および平均水酸基価が、上記の範囲に含まれることが好ましい。なかでも、複数のアミン化エポキシ樹脂(A)は、アミン価が20~50mgKOH/gであり、かつ、水酸基価が50~300mgKOH/gであるアミン化エポキシ樹脂と、アミン価が50~200mgKOH/gであり、かつ、水酸基価が200~500mgKOH/gであるアミン化エポキシ樹脂と、を含むことが好ましい。これにより、エマルションのコア部がより疎水性となり、シェル部がより親水性となるため、被塗物の防錆性はより向上し易くなる。 The coating composition may contain a plurality of aminated epoxy resins (A) with different amine values and/or hydroxyl values. In this case, it is preferable that the average amine value and the average hydroxyl value calculated based on the mass ratio of the plural aminated epoxy resins (A) fall within the above ranges. Among them, the plural aminated epoxy resins (A) are composed of an aminated epoxy resin having an amine value of 20 to 50 mgKOH/g and a hydroxyl value of 50 to 300 mgKOH/g and an amine value of 50 to 200 mgKOH/g. and an aminated epoxy resin having a hydroxyl value of 200 to 500 mgKOH/g. As a result, the core portion of the emulsion becomes more hydrophobic and the shell portion becomes more hydrophilic, so that the rust prevention property of the object to be coated can be more easily improved.
 上記アミン化エポキシ樹脂(A)は、例えば、上記エポキシ樹脂のオキシラン環とアミン化合物とを反応させることによって、アミン化エポキシ樹脂を調製することができる。アミン化合物としては、一般にアミン化エポキシ樹脂を製造する時に用いられているアミン化合物を用いる。一般的に使用するアミン化合物の例としては、ブチルアミン、オクチルアミン、モノエタノールアミンなどの一級アミン;ジエチルアミン、ジブチルアミン、メチルブチルアミン、ジエタノールアミン、N-メチルエタノールアミンなどの二級アミン;ジエチレントリアミンなどの複合アミンが挙げられる。上記一級アミンは、ケトン化合物を用いてケチミン基を形成して、いわゆるブロック化により反応を制御することが可能である。使用できるケチミン基またはジケチミン基を有するアミン化合物はアミノエチルエタノールアミンのケチミン、ジエチレントリアミンのジケチミンなどが挙げられる。ケチミン基を生成するケトン化合物は、メチルイソプロピルケトン(MIPK)、ジイソブチルケトン(DIBK)、メチルイソブチルケトン(MIBK)、ジエチルケトン(DEK)、エチルブチルケトン(EBK)、エチルプロピルケトン(EPK)、ジプロピルケトン(DPK)、メチルエチルケトン(MEK)などが挙げられるが、メチルイソブチルケトン(MIBK)が好ましく用いられる。アミン化合物としては、三級アミンを使用してもよく、その具体例として、例えば、トリエチルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルエタノールアミンなどが挙げられる。これらのアミン類は1種のみを単独で用いてもよく、2種以上を併用してもよい。 The aminated epoxy resin (A) can be prepared, for example, by reacting the oxirane ring of the epoxy resin with an amine compound. As the amine compound, an amine compound that is generally used for producing an aminated epoxy resin is used. Examples of commonly used amine compounds include primary amines such as butylamine, octylamine, monoethanolamine; secondary amines such as diethylamine, dibutylamine, methylbutylamine, diethanolamine, N-methylethanolamine; complex amines such as diethylenetriamine; Amines are mentioned. The above primary amine can control the reaction by forming a ketimine group using a ketone compound and by so-called blocking. Amine compounds having a ketimine group or a diketimine group that can be used include ketimine of aminoethylethanolamine and diketimine of diethylenetriamine. Ketimine-forming ketone compounds include methyl isopropyl ketone (MIPK), diisobutyl ketone (DIBK), methyl isobutyl ketone (MIBK), diethyl ketone (DEK), ethyl butyl ketone (EBK), ethyl propyl ketone (EPK), di Examples include propyl ketone (DPK) and methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK) is preferably used. As the amine compound, a tertiary amine may be used, and specific examples thereof include triethylamine, N,N-dimethylbenzylamine, N,N-dimethylethanolamine, and the like. These amines may be used individually by 1 type, and may use 2 or more types together.
 アミン化の際、アミン化合物は、原料エポキシ樹脂が有するエポキシ基1当量に対して0.9当量以上1.2当量以下となる量で用いられることが好ましい。アミン化の反応条件は、反応スケールなどに応じて適宜選択することができる。例えば、80℃以上150℃以下で、0.1時間以上5時間以下、あるいは120℃以上150℃以下で、0.5時間以上3時間以下反応させればよい。 At the time of amination, the amine compound is preferably used in an amount of 0.9 equivalent or more and 1.2 equivalent or less with respect to 1 equivalent of the epoxy group of the raw material epoxy resin. The reaction conditions for amination can be appropriately selected according to the reaction scale and the like. For example, the reaction may be carried out at 80° C. to 150° C. for 0.1 hour to 5 hours, or at 120° C. to 150° C. for 0.5 hours to 3 hours.
 本発明のある1態様において、エポキシ樹脂のオキシラン環(「エポキシ基」ともいう。)を変性するアミン化合物として、ケチミン(ジケチミンを含む)を除く、一級アミノ基、二級アミノ基および三級アミノ基の少なくとも1種を有するアミン化合物を用いる態様が挙げられる。 In one embodiment of the present invention, primary amino groups, secondary amino groups and tertiary amino groups other than ketimine (including diketimine) are used as amine compounds that modify the oxirane ring (also referred to as "epoxy group") of the epoxy resin. An embodiment using an amine compound having at least one of the groups.
 アミン化エポキシ樹脂は分子量分布を狭く制御する必要がある場合、特に分子量分布を2.7以下に制御する必要がある場合には、上記アミン化合物を特定のものに選択すると、制御しやすくなるなどの利点がある。具体的には、例えば、アミン化合物は第1アミンと第2アミンとの2種類の組合せであり、かつ
 第1アミンが、式:
 NH-(CH)n-NR1112   (1)
(式(1)中、R11およびR12が、同一または異なって、末端に水酸基を有してもよい炭素数1~6のアルキル基を表し、nは2~4の整数を表す。)
を有し、
 第2アミンが式: 
 R1314NH   (2)
 (式(2)中、R13およびR14が、末端に水酸基を有する炭素数1~4のアルキル基を表す。)
を有するものを用いる態様が挙げられる。これらのアミン化合物を用いると、まず、第1アミンの一級アミノ基がエポキシ樹脂と反応して消費され、残るアミノ基は二級アミノ基だけになり、これがエポキシ樹脂のエポキシ基と反応するので、反応性に優劣が無く均等に反応が進んで、分子量分布を制御できると考えている。第1アミンに存在する三級アミノ基あるいは二級アミノ基の反応で生じた三級アミノ基も、エポキシ基と反応して4級アンモニウム基になることも考えられるが、この反応は少ないと考えられる。
When it is necessary to control the molecular weight distribution of the aminated epoxy resin to be narrow, especially when it is necessary to control the molecular weight distribution to 2.7 or less, selecting a specific amine compound makes the control easier. has the advantage of Specifically, for example, the amine compound is a combination of two types of primary amine and secondary amine, and the primary amine has the formula:
NH 2 —(CH 2 )n—NR 11 R 12 (1)
(In formula (1), R 11 and R 12 are the same or different and represent an alkyl group having 1 to 6 carbon atoms which may have a terminal hydroxyl group, and n represents an integer of 2 to 4.)
has
A secondary amine of the formula:
R13R14NH ( 2)
(In formula (2), R 13 and R 14 represent an alkyl group having 1 to 4 carbon atoms and having a terminal hydroxyl group.)
An embodiment using one having When these amine compounds are used, the primary amino group of the primary amine is first reacted with the epoxy resin and consumed, leaving only the secondary amino group, which reacts with the epoxy group of the epoxy resin. We believe that there is no superiority in reactivity, and the reaction progresses evenly, and the molecular weight distribution can be controlled. A tertiary amino group or a tertiary amino group produced by the reaction of a secondary amino group present in the primary amine may also react with an epoxy group to form a quaternary ammonium group, but this reaction is thought to be rare. be done.
 上記第1アミンは、上記式(1)を有するものであり、R11およびR12は、具体的にはメチル、エチル、プロピルまたはブチルであり、末端に水酸基を有していてもよい。また、nは2~4であり、好ましくは3である。第1アミンの具体例は、アミノプロピルジエタノールアミン、ジメチルアミノプロパンジアミン、ジエチルアミノプロパンジアミン、ジブチルアミノプロパンジアミン等が挙げられる。上記第2アミンは、上記式(2)を有する二級アミンであるが、窒素原子にR13およびR14が結合したものであり、RおよびRは、共に水酸基を有する炭素数1~4のアルキル基を有するものである。第2アミンは具体的にはジメタノールアミンやジエタノールアミンが挙げられる。 The primary amine has the above formula (1), and R 11 and R 12 are specifically methyl, ethyl, propyl or butyl, and may have a terminal hydroxyl group. Further, n is 2 to 4, preferably 3. Specific examples of primary amines include aminopropyldiethanolamine, dimethylaminopropanediamine, diethylaminopropanediamine, dibutylaminopropanediamine and the like. The above secondary amine is a secondary amine having the above formula (2), and is obtained by bonding R 13 and R 14 to a nitrogen atom, and R 3 and R 4 both have hydroxyl groups and have 1 to 1 carbon atoms. It has 4 alkyl groups. Specific examples of secondary amines include dimethanolamine and diethanolamine.
 また本発明の他の1態様において、アミン化に用いるアミン化合物は、ケチミン基またはジケチミン基を有するアミン化合物を含んでもよい。 In another aspect of the present invention, the amine compound used for amination may contain an amine compound having a ketimine group or a diketimine group.
(他の塗膜形成樹脂)
 塗料組成物は、必要に応じて、アミン化エポキシ樹脂(A)以外のアミン化樹脂、例えば、アミン化アクリル樹脂、アミン化ポリエステル樹脂を含んでもよい。塗料組成物は、また、上記アミン化樹脂以外の他の塗膜形成樹脂を含んでもよい。他の塗膜形成樹脂としては、例えば、水酸基含有アクリル樹脂、水酸基含有ポリエステル樹脂、ウレタン樹脂、ブタジエン系樹脂、フェノール樹脂、キシレン樹脂が挙げられる。塗料組成物に含まれるすべての硬化性化樹脂のうち、80質量%以上、さらには90質量%以上、特には100質量%が、アミン化エポキシ樹脂(A)であってよい。
(Other film-forming resins)
The coating composition may optionally contain aminated resins other than the aminated epoxy resin (A), such as aminated acrylic resins and aminated polyester resins. The coating composition may also contain other film-forming resins other than the aminated resins described above. Examples of other coating film-forming resins include hydroxyl group-containing acrylic resins, hydroxyl group-containing polyester resins, urethane resins, butadiene resins, phenol resins, and xylene resins. Of all the curable resins contained in the coating composition, 80% by mass or more, further 90% by mass or more, particularly 100% by mass may be the aminated epoxy resin (A).
<ブロック化ポリイソシアネート硬化剤(B)>
 ブロック化ポリイソシアネート硬化剤(B)(以下、単に硬化剤(B)と称する場合がある。)もまた、電着塗膜を構成する。ブロック化ポリイソシアネート硬化剤(B)は、アミン化エポキシ樹脂(A)のアミン基と優先的に反応し、さらに水酸基と反応して、アミン化エポキシ樹脂(A)を硬化させる。ブロックイソシアネート硬化剤(B)は、ポリイソシアネートを、封止剤でブロック化することによって調製することができる。
<Blocked Polyisocyanate Curing Agent (B)>
The blocked polyisocyanate curing agent (B) (hereinafter sometimes simply referred to as curing agent (B)) also constitutes the electrodeposition coating film. The blocked polyisocyanate curing agent (B) preferentially reacts with the amine groups of the aminated epoxy resin (A) and further reacts with hydroxyl groups to cure the aminated epoxy resin (A). A blocked isocyanate curing agent (B) can be prepared by blocking a polyisocyanate with a blocking agent.
 ポリイソシアネートの例としては、ヘキサメチレンジイソシアネート(3量体を含む)、テトラメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネート、イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)などの脂環式ポリイソシアネート、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネートなどの芳香族ジイソシアネートが挙げられる。 Examples of polyisocyanates include aliphatic diisocyanates such as hexamethylene diisocyanate (including trimers), tetramethylene diisocyanate and trimethylhexamethylene diisocyanate; Aromatic diisocyanates such as polyisocyanate, 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate and xylylene diisocyanate can be mentioned.
 封止剤の例としては、n-ブタノール、n-ヘキシルアルコール、2-エチルヘキサノール、ラウリルアルコール、フェノールカルビノール、メチルフェニルカルビノールなどの一価のアルキル(または芳香族)アルコール類;エチレングリコールモノヘキシルエーテル、エチレングリコールモノ2-エチルヘキシルエーテルなどのセロソルブ類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールフェノールなどのポリエーテル型両末端ジオール類;エチレングリコール、プロピレングリコール、1,4-ブタンジオールなどのジオール類と、シュウ酸、コハク酸、アジピン酸、スベリン酸、セバシン酸などのジカルボン酸類から得られるポリエステル型両末端ポリオール類;パラ-t-ブチルフェノール、クレゾールなどのフェノール類;ジメチルケトオキシム、メチルエチルケトオキシム、メチルイソブチルケトオキシム、メチルアミルケトオキシム、シクロヘキサノンオキシムなどのオキシム類;およびε-カプロラクタム、γ-ブチロラクタムに代表されるラクタム類が好ましく用いられる。 Examples of sealants include monohydric alkyl (or aromatic) alcohols such as n-butanol, n-hexyl alcohol, 2-ethylhexanol, lauryl alcohol, phenol carbinol, methylphenyl carbinol; cellosolves such as hexyl ether and ethylene glycol mono-2-ethylhexyl ether; polyether type double-ended diols such as polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol phenol; ethylene glycol, propylene glycol, 1,4-butanediol and the like and polyester type double-ended polyols obtained from dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, suberic acid and sebacic acid; phenols such as para-t-butylphenol and cresol; dimethyl ketoxime and methyl ethyl keto Oximes such as oxime, methyl isobutyl ketoxime, methyl amyl ketoxime and cyclohexanone oxime; and lactams represented by ε-caprolactam and γ-butyrolactam are preferably used.
 ブロックイソシアネート硬化剤(B)のブロック化率は100%であるのが好ましい。これにより、塗料組成物の貯蔵安定性が向上する。 The blocking rate of the blocked isocyanate curing agent (B) is preferably 100%. This improves the storage stability of the coating composition.
 硬化剤(代表的には、硬化剤(B))の含有量は、塗膜形成樹脂(代表的には、アミン化エポキシ樹脂(A))の量、構造等を考慮して設定される。具体的には、塗膜形成樹脂が有する一級アミノ基、二級アミノ基および水酸基などの活性水素含有官能基と反応するのに十分な量の硬化剤が用いられる。硬化剤は、例えば、塗膜形成樹脂と硬化剤との固形分質量比(塗膜形成樹脂/硬化剤)が、90/10~50/50、より好ましくは80/20~65/35になるように配合される。塗膜形成樹脂と硬化剤との固形分質量比によって、塗料組成物の流動性および硬化速度が制御される。 The content of the curing agent (typically curing agent (B)) is set in consideration of the amount, structure, etc. of the coating film-forming resin (typically aminated epoxy resin (A)). Specifically, a curing agent is used in an amount sufficient to react with active hydrogen-containing functional groups such as primary amino groups, secondary amino groups and hydroxyl groups possessed by the film-forming resin. For the curing agent, for example, the solid content mass ratio of the coating film-forming resin to the curing agent (coating film-forming resin/curing agent) is 90/10 to 50/50, more preferably 80/20 to 65/35. are blended as The solids weight ratio of film-forming resin to curing agent controls the flowability and cure rate of the coating composition.
 塗料組成物は、必要に応じて、ブロックイソシアネート硬化剤(B)以外の硬化剤を含んでいてよい。他の硬化剤としては、例えば、メラミン樹脂またはフェノール樹脂などの有機硬化剤、シランカップリング剤、金属硬化剤が挙げられる。塗料組成物に含まれるすべての硬化剤のうち、80質量%以上、さらには90質量%以上、特には100質量%が、ブロックイソシアネート硬化剤(B)であってよい。 The coating composition may contain a curing agent other than the blocked isocyanate curing agent (B), if necessary. Other curing agents include, for example, organic curing agents such as melamine resins or phenolic resins, silane coupling agents, and metal curing agents. Of all the curing agents contained in the coating composition, 80% by mass or more, further 90% by mass or more, particularly 100% by mass may be the blocked isocyanate curing agent (B).
<顔料(C)>
 顔料は、塗料組成物において一般的に用いられる顔料である。顔料としては、例えば、チタンホワイト(二酸化チタン)、カーボンブラックおよびベンガラなどの着色顔料;カオリン、タルク、ケイ酸アルミニウム、炭酸カルシウム、マイカおよびクレーなどの体質顔料;リン酸鉄、リン酸アルミニウム、リン酸カルシウム、トリポリリン酸アルミニウム、およびリンモリブデン酸アルミニウム、リンモリブデン酸アルミニウム亜鉛などの防錆顔料が挙げられる。エッジ部防錆性がより向上し得る点で、塗料組成物は体質顔料を含んでいてよい。体質顔料は、環状ポリアミジン化合物と適度に相互作用し得る。
<Pigment (C)>
Pigments are pigments commonly used in paint compositions. Examples of pigments include coloring pigments such as titanium white (titanium dioxide), carbon black and red iron oxide; extender pigments such as kaolin, talc, aluminum silicate, calcium carbonate, mica and clay; iron phosphate, aluminum phosphate, calcium phosphate , aluminum tripolyphosphate, and antirust pigments such as aluminum phosphomolybdate and aluminum zinc phosphomolybdate. The coating composition may contain an extender pigment in that the edge rust prevention property can be further improved. Extender pigments can moderately interact with cyclic polyamidine compounds.
 塗料組成物の固形分とは、塗料組成物中に含まれる成分であって、溶媒の除去によっても固形となって残存する成分全てを意味する。塗料組成物の固形分とは、具体的には、塗料組成物中に含まれる、アミン化エポキシ樹脂(A)、ブロック化ポリイソシアネート硬化剤(B)、顔料(C)および環状ポリアミジン化合物またはその疎水化変性体(D)、ならびに必要に応じて含まれる顔料分散樹脂等の固形成分である。 The solid content of the coating composition means all the components contained in the coating composition that remain solid even after the solvent is removed. The solid content of the coating composition specifically includes the aminated epoxy resin (A), the blocked polyisocyanate curing agent (B), the pigment (C) and the cyclic polyamidine compound or its They are a hydrophobized modified product (D) and a solid component such as a pigment dispersing resin that is optionally included.
 顔料は、通常、顔料分散樹脂および顔料を含む顔料分散ペーストとして、塗料組成物に添加される。 Pigments are usually added to the paint composition as a pigment dispersion paste containing a pigment dispersion resin and a pigment.
(顔料分散樹脂)
 顔料分散樹脂は、顔料を分散させるための樹脂である。顔料分散樹脂としては、例えば、四級アンモニウム基、三級スルホニウム基および一級アミノ基から選択される少なくとも1種を有する変性エポキシ樹脂などの、カチオン基を有する顔料分散樹脂が挙げられる。顔料分散樹脂の具体例としては、四級アンモニウム基含有エポキシ樹脂、三級スルホニウム基含有エポキシ樹脂が挙げられる。水性溶媒としては、例えば、イオン交換水、少量のアルコール類を含むイオン交換水が挙げられる。
(Pigment dispersion resin)
A pigment dispersing resin is a resin for dispersing a pigment. Pigment dispersing resins include, for example, pigment dispersing resins having cationic groups, such as modified epoxy resins having at least one selected from quaternary ammonium groups, tertiary sulfonium groups and primary amino groups. Specific examples of pigment dispersion resins include quaternary ammonium group-containing epoxy resins and tertiary sulfonium group-containing epoxy resins. Examples of the aqueous solvent include ion-exchanged water and ion-exchanged water containing a small amount of alcohol.
<環状ポリアミジン化合物またはその疎水化変性体(D)>
 環状ポリアミジン化合物またはその疎水化変性体(D)は、下記一般式:
Figure JPOXMLDOC01-appb-C000008
(式中、RおよびRはそれぞれ独立して、水素原子または炭素数1~3の炭化水素基であり、Xはアニオンである。)
で表される構成単位を有する。
<Cyclic polyamidine compound or hydrophobized modified product thereof (D)>
A cyclic polyamidine compound or a hydrophobized modified product thereof (D) has the following general formula:
Figure JPOXMLDOC01-appb-C000008
(In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and X is an anion.)
It has a structural unit represented by
 このような環状構造を有するポリアミジン化合物は、電荷を有するためエッジ部に析出し易く、さらに塗料組成物の粘度を高める。そのため、エッジ部防錆性が向上すると考えられる。 A polyamidine compound having such a cyclic structure has an electric charge, so it is likely to precipitate at the edge, and further increases the viscosity of the coating composition. Therefore, it is considered that the edge rust prevention property is improved.
 RおよびRはそれぞれ独立して、水素原子であってよい。Xは、アニオンを表し、例えば、ハロゲンイオンである。ハロゲンイオンとしては、F、Cl、Br、Iが挙げられる。なかでも、入手し易い点で、ハロゲンイオンはClであってよい。 R 1 and R 2 may each independently be a hydrogen atom. X represents an anion, for example a halogen ion. Halogen ions include F , Cl , Br and I . Among them, the halogen ion may be Cl 2 − because it is easily available.
 環状ポリアミジン化合物(D)は、例えば、N-ビニルカルボン酸アミドと不飽和ニトリルとの共重合物を、酸の存在下で加水分解することにより合成することができる。酸の存在下における加水分解の際、N-ビニルカルボン酸アミドに由来するアミド基が加水分解するとともに、不飽和ニトリルのシアノ基との反応が生じて、環状のアミジン骨格が形成される。 The cyclic polyamidine compound (D) can be synthesized, for example, by hydrolyzing a copolymer of N-vinylcarboxylic acid amide and unsaturated nitrile in the presence of an acid. During hydrolysis in the presence of an acid, the amide group derived from the N-vinylcarboxylic acid amide hydrolyzes and reacts with the cyano group of the unsaturated nitrile to form a cyclic amidine skeleton.
 N-ビニルカルボン酸アミドとしては、例えば、N-ビニルアセトアミド、N-ビニル-N-メチルアセトアミド、N-ビニルホルムアミド、N-メチル-N-ビニルホルムアミド、N-ビニルプロピオン酸アミドおよびN-ビニル酪酸アミドが挙げられる。これらは、1種を単独で、あるいは2種以上を組み合わせて用いられる。 Examples of N-vinylcarboxylic acid amides include N-vinylacetamide, N-vinyl-N-methylacetamide, N-vinylformamide, N-methyl-N-vinylformamide, N-vinylpropionamide and N-vinylbutyric acid. Amides can be mentioned. These are used singly or in combination of two or more.
 不飽和ニトリルは、例えば、炭素数3~18であってよく、炭素数3~9であってよい。不飽和ニトリルとして、具体的には、アクリロニトリル;メタクリロニトリル、エタクリロニトリルなどのα-アルキルアクリロニトリル;フマロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリルが挙げられる。これらは、1種を単独で、あるいは2種以上を組み合わせて用いられる。 The unsaturated nitrile may have, for example, 3 to 18 carbon atoms, or 3 to 9 carbon atoms. Specific examples of unsaturated nitriles include acrylonitrile; α-alkylacrylonitrile such as methacrylonitrile and ethacrylonitrile; fumaronitrile; α-halogenoacrylonitrile such as α-chloroacrylonitrile and α-bromoacrylonitrile. These are used singly or in combination of two or more.
 加水分解に使用される酸は、例えば無機の強酸であり、具体的には塩酸、硝酸およびp-トルエンスルフォン酸が挙げられる。 The acid used for hydrolysis is, for example, a strong inorganic acid, specifically hydrochloric acid, nitric acid and p-toluenesulfonic acid.
 環状ポリアミジン化合物(D)は、N-ビニルカルボン酸アミドと不飽和ニトリルとの共重合物の部分加水分化物であってよい。化学式を用いて、説明すると以下のように説明することができる。 The cyclic polyamidine compound (D) may be a partially hydrolyzed copolymer of N-vinylcarboxylic acid amide and unsaturated nitrile. Using a chemical formula, it can be explained as follows.
 例えば、N-ビニルカルボン酸アミドをCH=CR-NH-CO-Rと表し、不飽和ニトリルをCH=CR-CNと表すと、それらが共重合したポリマーは以下の一般式(II)として通常表される。尚、一般式(I)ではRやRとしているのに、R~Rを使用しているのは、一般式(I)と一般式(II)が共重合体の異なる部分を表しているからである。
Figure JPOXMLDOC01-appb-C000009


(上記一般式(II)中、R、RおよびRは、それぞれ独立して、水素原子または炭素数1~3の炭化水素基である。)
この一般式の(II)の共重合体は、各モノマーが交互に重合した状態を表しているが、実際は以下のN-ビニルカルボン酸アミドからの構成単位(III)と、不飽和ニトリルからの構成単位(IV)と、がランダムに結合して構成されているものである:
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011

(上記式(III)および(IV)中、R~Rは、前記と同意義。)
For example, if an N-vinylcarboxylic acid amide is represented by CH 2 ═CR 4 --NH--CO--R 6 and an unsaturated nitrile is represented by CH 2 ═CR 5 --CN, their copolymerized polymer has the following general formula: commonly represented as (II). Although R 1 and R 2 are used in general formula (I), R 4 to R 6 are used because general formula (I) and general formula (II) are different parts of the copolymer. because it represents
Figure JPOXMLDOC01-appb-C000009


(In general formula (II) above, R 4 , R 5 and R 6 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms.)
The copolymer of (II) in this general formula represents a state in which each monomer is alternately polymerized, but in fact, the structural unit (III) from the following N-vinylcarboxylic acid amide and the unsaturated nitrile Structural unit (IV) and are composed of randomly combined:
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011

(In formulas (III) and (IV) above, R 4 to R 6 have the same meanings as above.)
 このような、共重合体において、上記一般式(II)のように、構造体単位(III)と構造体単位(IV)が横に並ぶ構造を取った時、酸の存在下で加水分解すると、N-ビニルカルボン酸アミドに由来するアミド基(式(III)のアミド基)が加水分解するとともに、不飽和ニトリルのシアノ基(式(IV)のシアノ基)との反応が生じて、環状のアミジン骨格が形成されて、一般式(I)の環状アミジン構造が生じる。 In such a copolymer, when the structural unit (III) and the structural unit (IV) are arranged side by side as in the general formula (II) above, hydrolysis in the presence of an acid yields , the amide group derived from N-vinylcarboxylic acid amide (the amide group of formula (III)) is hydrolyzed, and a reaction with the cyano group of the unsaturated nitrile (the cyano group of formula (IV)) occurs to form a cyclic is formed to give the cyclic amidine structure of general formula (I).
 環状ポリアミジン化合物(D)1分子中の、構成単位(I)と構成単位(II)との合計数に対する、構成単位(I)数の割合:I/(I+II)は、5%以上であってよく、10%以上であってよく、20%以上であってよい。割合:I/(I+II)は、100%であってよく、90%以下であってよく、80%以下であってよい。 The ratio of the number of structural units (I) to the total number of the structural units (I) and the structural units (II) in one molecule of the cyclic polyamidine compound (D): I/(I+II) is 5% or more. Well, it may be 10% or more, and it may be 20% or more. The ratio: I/(I+II) may be 100%, may be 90% or less, or may be 80% or less.
 本発明ではまた、上記環状ポリアミジン化合物を変性して、疎水性部分をポリアミジン化合物中に導入することが、好適な1態様である。疎水化すると、塗料(カチオン電着塗料組成物)を形成する時に、塗料の安定性が向上するなどの利点がある。より具体的には、ポリアミジン化合物を疎水化することにより、アミン化エポキシ樹脂(A)および硬化剤を含む樹脂エマルションとポリアミジン化合物とを混合する場合における保存安定性を良好なものとすることができる利点がある。疎水化変性は、主として以下の2つの方法で行われる。疎水化変性の第1の方法は、上記の不飽和ニトリル構成単位(IV)が隣同士に並んだ時に、ニトリル基同士の酸による環化反応が起こり、環化構造単位が生じる。 Another preferred embodiment of the present invention is to modify the cyclic polyamidine compound to introduce a hydrophobic portion into the polyamidine compound. Hydrophobization has the advantage of improving the stability of the coating when forming the coating (cationic electrodeposition coating composition). More specifically, by hydrophobizing the polyamidine compound, it is possible to improve the storage stability when the resin emulsion containing the aminated epoxy resin (A) and the curing agent is mixed with the polyamidine compound. There are advantages. Hydrophobic modification is mainly performed by the following two methods. In the first hydrophobizing modification method, when the unsaturated nitrile structural units (IV) are arranged next to each other, a cyclization reaction between the nitrile groups with an acid occurs to generate a cyclized structural unit.
 アクリロニトリルを例に取って、ニトリル環化構造単位の形成を化学反応式で表すと、以下のようになると考えられる:
Figure JPOXMLDOC01-appb-C000012

この反応式から明らかなように、二つのニトリル基(CN)が環化して、上記のような窒素原子含有6員環構造(アミノピリジン構造または6員環ピリジン誘導体様構造)が形成され、このニトリル環化構造単位が他部分と比較して疎水性が高くなっているため、疎水化することができる。
Taking acrylonitrile as an example, the chemical reaction formula for the formation of the nitrile cyclization structural unit is believed to be:
Figure JPOXMLDOC01-appb-C000012

As is clear from this reaction formula, two nitrile groups (CN) are cyclized to form the nitrogen atom-containing 6-membered ring structure (aminopyridine structure or 6-membered ring pyridine derivative-like structure) as described above. Since the nitrile cyclized structural unit is more hydrophobic than other moieties, it can be hydrophobized.
 上記疎水化変性の第1の方法は、酸の存在下に加温で反応が行われる。酸は、例えば、酢酸、ギ酸、乳酸、リン酸、シュウ酸、硫化水素などの弱酸であり、加温条件は70~98℃であるのが好ましい。また、酸の添加量は、ポリアミジン化合物100質量部に対して5~40質量部であるのが好ましく、8~25質量部であるのがより好ましい。反応時間は、加温条件および酸添加量に応じて適宜選択することができ、例えば12~80時間、より好ましくは36~72時間の範囲で選択することができる。上記反応において、反応を加速するために、加圧条件を付加してもよい。 In the first hydrophobization modification method, the reaction is carried out by heating in the presence of an acid. Acids are, for example, weak acids such as acetic acid, formic acid, lactic acid, phosphoric acid, oxalic acid, and hydrogen sulfide, and the heating conditions are preferably 70 to 98°C. The amount of acid added is preferably 5 to 40 parts by mass, more preferably 8 to 25 parts by mass, per 100 parts by mass of the polyamidine compound. The reaction time can be appropriately selected according to the heating conditions and the amount of acid added, and can be selected, for example, in the range of 12 to 80 hours, more preferably 36 to 72 hours. In the above reaction, pressurization conditions may be added in order to accelerate the reaction.
 疎水化変性の第2の方法は、上記式(I)で表されるアミジン環を更にハロゲン化アルキル化合物と反応して、アルキル基をアミジン環に結合して、疎水性を付与する方法である。これを反応式で表すと、以下のようになる:
Figure JPOXMLDOC01-appb-C000013
(上記反応式中、R~RおよびXは、前記と同意義であり、Halはハロゲン原子を表す。)
The second method of hydrophobization modification is a method of reacting the amidine ring represented by the above formula (I) with a halogenated alkyl compound to bond the alkyl group to the amidine ring to impart hydrophobicity. . Expressing this in a reaction equation is as follows:
Figure JPOXMLDOC01-appb-C000013
(In the reaction formula above, R 1 to R 3 and X have the same meanings as above, and Hal represents a halogen atom.)
 上記疎水化変性の第2の方法は、アルカリの存在下に加温することにより反応が行われる。反応条件として、例えばpH4.0~6.5条件下で、アルカリ性物質として水酸化ナトリウム、水酸化カリウム、アンモニア水などを加える態様が挙げられる。加温条件は80℃~98℃であるのが好ましい。反応時間は、加温条件、pH条件および使用するアルカリ性物質の種類に応じて適宜選択することができ、例えば2~36時間、より好ましくは10~24時間の範囲で選択することができる。上記反応において反応を加速するために、加圧条件を付加してもよい。 In the second method of hydrophobization modification, the reaction is carried out by heating in the presence of an alkali. Examples of the reaction conditions include a mode in which an alkaline substance such as sodium hydroxide, potassium hydroxide, or aqueous ammonia is added under conditions of pH 4.0 to 6.5. The heating conditions are preferably 80°C to 98°C. The reaction time can be appropriately selected according to the heating conditions, pH conditions and the type of alkaline substance used, and can be selected, for example, in the range of 2 to 36 hours, more preferably 10 to 24 hours. In order to accelerate the reaction in the above reaction, pressurization conditions may be added.
 ハロゲン化アルキル(R-Hal)では、Rは置換または非置換の直鎖状または分枝状の炭素数3~12のアルキル基、または、置換または非置換の炭素数6~12の芳香族基のいずれかを少なくとも含むものである。より具体的には、Rは、アルキル基(例えば、n-プロピル基、sec-プロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、n-ペンチル基、sec-ペンチル基、ネオペンチル基、へプチル基、ペンチル基、オクチル基等);または芳香族基(例えば、ベンジル基、ナフタレン基等)が挙げられる。これらの基の置換基として、疎水化変性に影響を及ぼさない置換基を特に限定されることなく用いることができる。置換基として、例えば、炭素数3~6のアルケニル基、炭素数3~6のアルキルエーテル基などが挙げられる。上記アルキル基、芳香族基は、置換基を有しないのが好ましい。ハロゲン化アルキル中のハロゲン原子は塩素原子、臭素原子、フッ素原子が挙げられる。ハロゲン化アルキル(R-Hal)は、より具体的にクロロヘキサン、ブロモヘキサン、クロロペンタン、ブロモペンタン、ヨードヘキサン、ヨードペンタン、クロロヘプタン、ブロモヘプタン、ヨードヘプタン、クロロオクタン、ブロモオクタン、ヨードオクタン等である。 In halogenated alkyl (R 3 —Hal), R 3 is a substituted or unsubstituted linear or branched C 3-12 alkyl group or a substituted or unsubstituted C 6-12 aromatic at least any of the groups. More specifically, R 3 is an alkyl group (e.g., n-propyl group, sec-propyl group, n-butyl group, sec-butyl group, hexyl group, n-pentyl group, sec-pentyl group, neopentyl group , heptyl group, pentyl group, octyl group, etc.); or aromatic groups (eg, benzyl group, naphthalene group, etc.). As substituents for these groups, substituents that do not affect hydrophobization modification can be used without particular limitation. Examples of substituents include alkenyl groups having 3 to 6 carbon atoms and alkyl ether groups having 3 to 6 carbon atoms. The above alkyl group and aromatic group preferably have no substituents. The halogen atom in the halogenated alkyl includes a chlorine atom, a bromine atom and a fluorine atom. Alkyl halides (R 3 -Hal) are more particularly chlorohexane, bromohexane, chloropentane, bromopentane, iodohexane, iodopentane, chloroheptane, bromoheptane, iodoheptane, chlorooctane, bromooctane, iodooctane etc.
 環状ポリアミジン化合物またはその疎水化変性体(D)の重量平均分子量は、例えば、5万以上である。これにより、少量で、エッジ部防錆性向上の効果を得ることができる。環状ポリアミジン化合物またはその疎水化変性体(D)の重量平均分子量は、8万以上であってよく、10万以上であってよく、30万以上であってよい。環状ポリアミジン化合物またはその疎水化変性体(D)の重量平均分子量は、400万以下であってよく、350万以下であってよく、320万以下であってよく、300万以下であってよい。一態様において、環状ポリアミジン化合物またはその疎水化変性体(D)の重量平均分子量は、5万以上400万以下であり、8万以上320万以下であり得る。 The weight average molecular weight of the cyclic polyamidine compound or its hydrophobized modified product (D) is, for example, 50,000 or more. As a result, it is possible to obtain the effect of improving the edge portion rust prevention property with a small amount. The weight average molecular weight of the cyclic polyamidine compound or its hydrophobized modified product (D) may be 80,000 or more, 100,000 or more, or 300,000 or more. The weight average molecular weight of the cyclic polyamidine compound or its hydrophobized modified product (D) may be 4 million or less, 3.5 million or less, 3.2 million or less, or 3 million or less. In one aspect, the weight average molecular weight of the cyclic polyamidine compound or its hydrophobized modified product (D) is 50,000 or more and 4,000,000 or less, and may be 80,000 or more and 3,200,000 or less.
 本開示における、環状ポリアミジン化合物またはその疎水化変性体(D)の重量平均分子量は、静的光散乱法による分子量測定器(大塚電子製DLS-7000など)によって測定される。 In the present disclosure, the weight-average molecular weight of the cyclic polyamidine compound or its hydrophobized modified product (D) is measured by a molecular weight measuring device (DLS-7000 manufactured by Otsuka Electronics Co., Ltd., etc.) using a static light scattering method.
 環状ポリアミジン化合物またはその疎水化変性体(D)の固形分質量は、カチオン電着塗料組成物の固形分質量の0.2ppm以上であってよい。環状ポリアミジン化合物またはその疎水化変性体(D)の固形分質量は、1,200ppm以下であってよい。環状ポリアミジン化合物またはその疎水化変性体(D)の添加量がこのように少量であっても、エッジ部防錆性向上の効果を得ることができる。環状ポリアミジン化合物またはその疎水化変性体(D)の固形分質量は、1ppm以上であってよく、2ppm以上であってよく、50ppm以上であってよい。環状ポリアミジン化合物またはその疎水化変性体(D)の固形分質量は、1,000ppm以下であってよく、700ppm以下であってよく、200ppm以下であってよい。一態様において、環状ポリアミジン化合物またはその疎水化変性体(D)の上記固形分質量は、20ppm以上1,200ppm以下であり、25ppm以上1,000ppm以下であり得、25ppm以上700ppm以下であり得、50ppm以上200ppm以下であり得る。  The solid content mass of the cyclic polyamidine compound or its hydrophobized modified product (D) may be 0.2 ppm or more of the solid content mass of the cationic electrodeposition coating composition. The solid content mass of the cyclic polyamidine compound or its hydrophobized modified product (D) may be 1,200 ppm or less. Even if the addition amount of the cyclic polyamidine compound or its hydrophobized modified product (D) is such a small amount, it is possible to obtain the effect of improving edge rust prevention. The solid content mass of the cyclic polyamidine compound or its hydrophobized modified product (D) may be 1 ppm or more, 2 ppm or more, or 50 ppm or more. The solid content mass of the cyclic polyamidine compound or its hydrophobized modified product (D) may be 1,000 ppm or less, 700 ppm or less, or 200 ppm or less. In one aspect, the solid content mass of the cyclic polyamidine compound or its hydrophobized modified product (D) is 20 ppm or more and 1,200 ppm or less, may be 25 ppm or more and 1,000 ppm or less, may be 25 ppm or more and 700 ppm or less, It can be 50 ppm or more and 200 ppm or less. 
<硬化触媒>
 塗料組成物は、硬化触媒を含んでもよい。硬化触媒は特に限定されず、塗料分野において公知のものが使用できる。硬化触媒としては、例えば、有機スズ化合物、ビスマス化合物が挙げられる。有機スズ化合物としては、例えば、ジブチル錫オキサイド、ジオクチル錫オキサイド、ジオクチル錫ジラウレート、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジベンゾエート、ジオクチル錫ジベンゾエートが挙げられる。ビスマス化合物としては、酸化ビスマス、水酸化ビスマス、次サリチル酸ビスマス、次硝酸ビスマスが挙げられる。
<Curing catalyst>
The coating composition may contain a curing catalyst. The curing catalyst is not particularly limited, and those known in the field of coatings can be used. Examples of curing catalysts include organic tin compounds and bismuth compounds. Examples of organotin compounds include dibutyltin oxide, dioctyltin oxide, dioctyltin dilaurate, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin diacetate, dibutyltin dibenzoate, and dioctyltin dibenzoate. Bismuth compounds include bismuth oxide, bismuth hydroxide, bismuth subsalicylate, and bismuth subnitrate.
 環境負荷の観点から、硬化触媒(特に、有機スズ化合物)の含有量は、塗料組成物の固形分の0.5質量%以下であってよく、0.25質量%以下であってよい。 From the viewpoint of environmental load, the content of the curing catalyst (particularly the organotin compound) may be 0.5% by mass or less, or 0.25% by mass or less, of the solid content of the coating composition.
<亜硝酸金属塩>
 塗料組成物は、さらに亜硝酸金属塩を含んでもよい。亜硝酸金属塩によって、エッジ部防錆性がより向上し得る。亜硝酸金属塩としては、アルカリ金属の亜硝酸塩またはアルカリ土類金属の亜硝酸塩が好ましく、アルカリ土類金属の亜硝酸塩がより好ましい。亜硝酸金属塩としては、例えば、亜硝酸カルシウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸マグネシウム、亜硝酸ストロンチウム、亜硝酸バリウム、亜硝酸亜鉛が挙げられる。
<Nitrite metal salt>
The coating composition may further contain a metal nitrite. The nitrite metal salt can further improve the edge rust prevention. The nitrite metal salt is preferably an alkali metal nitrite or an alkaline earth metal nitrite, more preferably an alkaline earth metal nitrite. Nitrite metal salts include, for example, calcium nitrite, sodium nitrite, potassium nitrite, magnesium nitrite, strontium nitrite, barium nitrite, and zinc nitrite.
 亜硝酸金属塩の含有量は、例えば、塗膜形成樹脂および硬化剤の合計質量に対して、金属成分の金属元素換算で0.001質量%以上0.2質量%以下である。 The content of the nitrite metal salt is, for example, 0.001% by mass or more and 0.2% by mass or less in terms of the metal element of the metal component with respect to the total mass of the coating film-forming resin and the curing agent.
(その他の成分)
 塗料組成物は、必要に応じて、塗料分野において一般的に用いられている添加剤、例えば、有機溶媒、乾き防止剤、消泡剤などの界面活性剤、アクリル樹脂微粒子などの粘度調整剤、はじき防止剤、無機防錆剤を含んでよい。有機溶媒としては、例えば、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノエチルヘキシルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、プロピレングリコールモノフェニルエーテルが挙げられる。無機防錆剤としては、例えば、バナジウム塩、銅、鉄、マンガン、マグネシウム、カルシウム塩が挙げられる。
(other ingredients)
The paint composition may optionally contain additives commonly used in the paint field, such as organic solvents, anti-drying agents, surfactants such as antifoaming agents, viscosity modifiers such as acrylic resin fine particles, Anti-repellent agents, inorganic rust inhibitors may be included. Examples of organic solvents include ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monoethylhexyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, and propylene glycol monophenyl ether. Examples of inorganic rust inhibitors include vanadium salts, copper, iron, manganese, magnesium and calcium salts.
 さらに、上記以外に、目的に応じて公知の補助錯化剤、緩衝剤、平滑剤、応力緩和剤、光沢剤、半光沢剤、酸化防止剤、および紫外線吸収剤などが含まれてもよい。 Furthermore, in addition to the above, known auxiliary complexing agents, buffering agents, smoothing agents, stress relaxation agents, brightening agents, semi-brightening agents, antioxidants, ultraviolet absorbers, and the like may be included depending on the purpose.
<カチオン電着塗料組成物の調製>
 塗料組成物は、塗膜形成樹脂(代表的には、アミン化エポキシ樹脂(A))および硬化剤(代表的には、ブロック化ポリイソシアネート硬化剤(B))を含む樹脂エマルション、顔料(C)を含む顔料分散ペースト、および、環状ポリアミジン化合物またはその疎水化変性体(D:以下、単に「環状ポリアミジン化合物(D)」と表すと、「環状ポリアミジンまたはその疎水化変性体(D)」を表すこともある。)を、通常用いられる方法により混合することによって、調製される。
<Preparation of cationic electrodeposition coating composition>
The coating composition comprises a resin emulsion containing a film-forming resin (typically an aminated epoxy resin (A)) and a curing agent (typically a blocked polyisocyanate curing agent (B)), a pigment (C ), and a cyclic polyamidine compound or a hydrophobized modified product thereof (D: hereinafter simply referred to as “cyclic polyamidine compound (D)”, “cyclic polyamidine or hydrophobized modified product thereof (D)” ) are mixed by a commonly used method.
 環状ポリアミジン化合物またはその疎水化変性体(D)、その他の成分および添加剤は、樹脂エマルションに添加されてもよいし、顔料分散ペーストに添加されてもよいし、樹脂エマルションと顔料分散ペーストとの混合時または混合後に添加されてもよい。環状ポリアミジン化合物またはその疎水化変性体(D)等は、例えば、水溶液の形態でこれらに添加される。 The cyclic polyamidine compound or its hydrophobized modified product (D), other components and additives may be added to the resin emulsion, the pigment dispersion paste, or the combination of the resin emulsion and the pigment dispersion paste. It may be added during or after mixing. A cyclic polyamidine compound or a hydrophobized modified product thereof (D) or the like is added thereto, for example, in the form of an aqueous solution.
(樹脂エマルションの調製)
 樹脂エマルションは、アミン化エポキシ樹脂(A)およびさらにその他の塗膜形成樹脂、ならびに、ブロック化ポリイソシアネート硬化剤(B)およびさらにその他の硬化剤のそれぞれを、有機溶媒中に溶解させて溶液を調製し、これらの溶液を混合した後、中和酸を用いて中和することにより、調製することができる。
(Preparation of resin emulsion)
The resin emulsion is prepared by dissolving each of the aminated epoxy resin (A) and further film-forming resins and the blocked polyisocyanate curing agent (B) and further curing agents in an organic solvent to form a solution. After preparation and mixing of these solutions, they can be prepared by neutralizing with a neutralizing acid.
 中和酸としては、例えば、メタンスルホン酸、スルファミン酸、乳酸、ジメチロールプロピオン酸、ギ酸、酢酸などの有機酸が挙げられる。中和酸は、ギ酸、酢酸および乳酸よりなる群から選択される1種またはそれ以上であってよい。 Examples of neutralizing acids include organic acids such as methanesulfonic acid, sulfamic acid, lactic acid, dimethylolpropionic acid, formic acid, and acetic acid. The neutralizing acid may be one or more selected from the group consisting of formic acid, acetic acid and lactic acid.
 樹脂エマルションの固形分量は、例えば、樹脂エマルション全量に対して25質量%以上50質量%以下であり、35質量%以上45質量%以下であってよい。樹脂エマルションの固形分とは、樹脂エマルション中に含まれる成分であって、溶媒の除去によっても固形となって残存する成分全てを意味する。樹脂エマルションの固形分とは、具体的には、樹脂エマルション中に含まれる、アミン化エポキシ樹脂(A)、ブロックイソシアネート硬化剤(B)および必要に応じて添加される他の固形成分である。 The solid content of the resin emulsion is, for example, 25% by mass or more and 50% by mass or less, and may be 35% by mass or more and 45% by mass or less, relative to the total amount of the resin emulsion. The solid content of the resin emulsion means all the components contained in the resin emulsion that remain solid even after removal of the solvent. The solid content of the resin emulsion is specifically the aminated epoxy resin (A), the blocked isocyanate curing agent (B), and other solid components added as necessary, which are contained in the resin emulsion.
 中和酸の使用量は、アミン化エポキシ樹脂が有するアミノ基の当量に対する中和酸の当量比率として、10%以上100%以下であってよく、20%以上70%以下であってよい。以下、アミン化エポキシ樹脂が有するアミノ基の当量に対する中和酸の当量比率を、中和率と称する。中和率が10%以上であることにより、水への親和性が確保され、水分散性が良好となる。 The amount of the neutralizing acid used may be 10% or more and 100% or less, or 20% or more and 70% or less, as the equivalent ratio of the neutralizing acid to the amino group equivalents of the aminated epoxy resin. Hereinafter, the equivalent ratio of the neutralizing acid to the amino group equivalent of the aminated epoxy resin is referred to as the neutralization rate. When the neutralization rate is 10% or more, affinity for water is ensured, and water dispersibility is improved.
(顔料分散ペーストの調製方法)
 顔料分散ペーストは、顔料分散樹脂および顔料を混合して調製される。顔料分散ペースト中の顔料分散樹脂の固形分質量は特に限定されず、例えば、顔料100質量部に対して20質量部以上100質量部以下であってよい。
(Method for preparing pigment dispersion paste)
A pigment dispersion paste is prepared by mixing a pigment dispersion resin and a pigment. The solid content mass of the pigment dispersion resin in the pigment dispersion paste is not particularly limited, and may be, for example, 20 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the pigment.
 顔料分散ペーストの固形分質量は、例えば、40質量%以上70質量%以下であり、50質量%以上60質量%以下であってよい。 The solid content mass of the pigment dispersion paste is, for example, 40% by mass or more and 70% by mass or less, and may be 50% by mass or more and 60% by mass or less.
 顔料分散ペーストの固形分とは、顔料分散ペースト中に含まれる成分であって、溶媒の除去によっても固形となって残存する成分全てを意味する。顔料分散ペーストの固形分とは、具体的には、顔料分散ペースト中に含まれる、顔料分散樹脂、顔料および必要に応じて添加される他の固形成分である。 The solid content of the pigment-dispersed paste means all the components contained in the pigment-dispersed paste that remain solid even after the solvent is removed. The solid content of the pigment dispersion paste is specifically the pigment dispersion resin, the pigment, and other solid components added as necessary, which are contained in the pigment dispersion paste.
[電着塗装物の製造方法]
 塗料組成物を用いて被塗物に対し電着塗装することによって、電着塗膜が形成される。
 電着塗膜を有する電着塗装物は、本実施形態に係るカチオン電着塗料組成物中に被塗物を浸漬した後、被塗物と対極との間に電圧を印加して、被塗物に未硬化の電着塗膜を形成する工程と、塗膜を75℃以上200℃以下の温度で加熱して、硬化された電着塗膜を得る工程と、を備える方法(製造方法1)により製造される。
[Manufacturing method of electrodeposition coating]
An electrodeposition coating film is formed by subjecting an object to be coated to electrodeposition coating using the coating composition.
An electrodeposition-coated article having an electrodeposition coating film is obtained by immersing the article to be coated in the cationic electrodeposition coating composition according to the present embodiment, and then applying a voltage between the article to be coated and the counter electrode. A method comprising a step of forming an uncured electrodeposition coating film on an object and a step of heating the coating film at a temperature of 75° C. or more and 200° C. or less to obtain a cured electrodeposition coating film (manufacturing method 1 ).
 カチオン電着塗料組成物は、上記の通り、アミン化エポキシ樹脂(A)と、ブロックイソシアネート硬化剤(B)と、顔料(C)と、環状ポリアミジン化合物またはその疎水化変性体(D)と、を含む。 As described above, the cationic electrodeposition coating composition comprises an aminated epoxy resin (A), a blocked isocyanate curing agent (B), a pigment (C), a cyclic polyamidine compound or a hydrophobized modified product thereof (D), including.
(1)未硬化の電着塗膜の形成
 カチオン電着塗料組成物中に被塗物を浸漬した後、被塗物を陰極として、対極(陽極)との間に電圧を印加する。これにより、未硬化の電着塗膜が被塗物上に析出する。
(1) Formation of Uncured Electrodeposition Coating After dipping the object to be coated in the cationic electrodeposition coating composition, a voltage is applied between the object to be coated and a counter electrode (anode) as a cathode. As a result, an uncured electrodeposition coating film is deposited on the object to be coated.
(印加条件)
 電圧は、例えば、50V以上450V以下である。浴液温度は、例えば、10℃以上45℃以下である。電圧を印加する時間は特に限定されず、例えば、2分以上5分以下である。
(Applied conditions)
The voltage is, for example, 50 V or more and 450 V or less. The bath liquid temperature is, for example, 10° C. or higher and 45° C. or lower. The voltage application time is not particularly limited, and is, for example, 2 minutes or more and 5 minutes or less.
(被塗物)
 被塗物の材質は特に限定されず、通電可能であればよい。被塗物の形状も特に限定されず、平板状であってよく、複雑な立体形状であってよい。被塗物としては、例えば、冷延鋼板、熱延鋼板、ステンレス、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、亜鉛-アルミニウム合金系めっき鋼板、亜鉛-鉄合金系めっき鋼板、亜鉛-マグネシウム合金系めっき鋼板、亜鉛-アルミニウム-マグネシウム合金系めっき鋼板、アルミニウム系めっき鋼板、アルミニウム-シリコン合金系めっき鋼板、錫系めっき鋼板、およびこれらに化成処理(例えば、リン酸塩、ジルコニウム塩などを用いた表面処理)を施したものが挙げられる。リン酸塩で化成処理する場合、化成処理の前に、被塗物を亜鉛系、チタン系、マンガン系の表面調整剤で表面調整処理してもよい。これにより、リン酸亜鉛皮膜の結晶がより緻密になる。
(object to be coated)
The material of the object to be coated is not particularly limited as long as it is electrically conductive. The shape of the object to be coated is also not particularly limited, and may be a flat plate shape or a complicated three-dimensional shape. Examples of objects to be coated include cold-rolled steel sheets, hot-rolled steel sheets, stainless steel, electrogalvanized steel sheets, hot-dip galvanized steel sheets, zinc-aluminum alloy plated steel sheets, zinc-iron alloy plated steel sheets, and zinc-magnesium alloy plated steel sheets. Steel plate, zinc-aluminum-magnesium alloy plated steel plate, aluminum plated steel plate, aluminum-silicon alloy plated steel plate, tin plated steel plate, and chemical conversion treatment (for example, surface treatment using phosphate, zirconium salt, etc.) ) is applied. In the case of chemical conversion treatment with a phosphate, the article to be coated may be surface-conditioned with a zinc-based, titanium-based, or manganese-based surface conditioner before the chemical conversion treatment. This makes the crystals of the zinc phosphate coating more dense.
(2)電着塗膜の硬化
 形成された未硬化の電着塗膜を、必要に応じて水洗した後、75℃以上200℃以下の温度で加熱する。これにより、硬化反応が生じて、硬化した電着塗膜が得られる。
(2) Curing of Electrodeposited Coating The formed uncured electrodeposited coating is, if necessary, washed with water and then heated at a temperature of 75° C. or higher and 200° C. or lower. Thereby, a curing reaction occurs and a cured electrodeposition coating film is obtained.
(硬化条件)
 硬化温度は、100℃以上であってよく、110℃以上であってよい。硬化温度は、例えば180℃以下であってよく、150℃以下であってよい。加熱時間は特に限定されず、例えば、10分から30分である。
(Curing conditions)
The curing temperature may be 100° C. or higher, and may be 110° C. or higher. The curing temperature may be, for example, 180° C. or lower, or 150° C. or lower. The heating time is not particularly limited, and is, for example, 10 to 30 minutes.
[電着塗装物]
 電着塗装物は、被塗物と、被塗物上に、上記のカチオン電着塗料組成物により形成された電着塗膜と、を有する。電着塗膜は硬化している。電着塗装物は、例えば、上記の方法により製造される。電着塗装物は、防錆性、特にエッジ部防錆性に優れる。電着塗装物は、さらに、良好な外観を有する。
[Electrodeposition coating]
The electrodeposition-coated article has an article to be coated and an electrodeposition coating film formed on the article from the above cationic electrodeposition coating composition. The electrodeposition coating film is cured. The electrodeposition-coated article is produced, for example, by the method described above. The electrodeposition-coated article is excellent in rust prevention, especially edge rust prevention. The electrodeposition coating also has a good appearance.
 硬化後の電着塗膜の膜厚は、防錆性の観点から、5μm以上60μm以下であってよい。硬化後の電着塗膜の膜厚は、10μm以上であってよい。硬化後の電着塗膜の膜厚は、25μm以下であってよい。 The film thickness of the electrodeposition coating film after curing may be 5 μm or more and 60 μm or less from the viewpoint of rust prevention. The film thickness of the electrodeposition coating film after curing may be 10 μm or more. The film thickness of the electrodeposition coating film after curing may be 25 μm or less.
 エッジ部防錆性は、例えば、膜厚25~50μmの硬化電着塗膜に対して行われる、JIS Z 2371(2000)に準拠した塩水噴霧試験(35℃×72時間)により評価される。塩水噴霧試験後、被塗物のエッジ部において、錆の発生個数が5個/cm2未満であれば、エッジ部防錆性に優れていると評価できる。 Edge rust resistance is evaluated, for example, by a salt spray test (35°C x 72 hours) in accordance with JIS Z 2371 (2000), which is performed on a cured electrodeposition coating film with a thickness of 25 to 50 µm. After the salt spray test, if the number of rust generated on the edge of the object to be coated is less than 5/cm 2 , it can be evaluated that the edge rust prevention is excellent.
[電着塗装物の製造方法2]
 環状ポリアミジン化合物の作用効果を考慮すると、環状ポリアミジン化合物は、電着塗装の前処理剤(電着前処理剤)として用いられてもよい。環状ポリアミジン化合物を含む電着前処理層は、エッジ部にも析出するため、優れたエッジ部防錆性を有する塗膜が得られる。
[Manufacturing method 2 of electrodeposition coated product]
Considering the effect of the cyclic polyamidine compound, the cyclic polyamidine compound may be used as a pretreatment agent for electrodeposition coating (electrodeposition pretreatment agent). Since the electrodeposition pretreatment layer containing the cyclic polyamidine compound is also deposited on the edge portion, a coating film having excellent edge portion rust prevention properties can be obtained.
 すなわち、電着塗膜を有する電着塗装物は、被塗物に環状ポリアミジン化合物またはその疎水化変性体(D)を含む電着前処理剤を付与する工程と、カチオン電着塗料組成物中に、電着前処理剤が付与された被塗物を浸漬し、次いで、被塗物と対極との間に電圧を印加して、被塗物に未硬化の電着塗膜を形成する工程と、未硬化の電着塗膜を75℃以上200℃以下の温度で加熱して、硬化された電着塗膜を得る工程と、を備える方法によっても製造される。 That is, an electrodeposition-coated article having an electrodeposition coating film is produced by applying an electrodeposition pretreatment agent containing a cyclic polyamidine compound or a hydrophobized modified product thereof (D) to the article to be coated, and a step of immersing the object to be coated with the pretreatment agent for electrodeposition into the substrate, and then applying a voltage between the object to be coated and the counter electrode to form an uncured electrodeposition coating film on the object to be coated. and heating the uncured electrodeposition coating film at a temperature of 75° C. or more and 200° C. or less to obtain a cured electrodeposition coating film.
 製造方法2で用いられるカチオン電着塗料組成物は、アミン化エポキシ樹脂(A)と、ブロックイソシアネート硬化剤(B)と、顔料(C)と、を含む。環状ポリアミジン化合物またはその疎水化変性体(D)は電着前処理剤に含まれ、カチオン電着塗料組成物の前に被塗物に付与される。アミン化エポキシ樹脂(A)、ブロック化ポリイソシアネート硬化剤(B)、および、顔料(C)を含むカチオン電着塗料組成物と、環状ポリアミジン化合物またはその疎水化変性体(D)を含む電着前処理剤とは、塗料セットとして組み合わせて使用される。 The cationic electrodeposition coating composition used in production method 2 contains an aminated epoxy resin (A), a blocked isocyanate curing agent (B), and a pigment (C). The cyclic polyamidine compound or its hydrophobized modified product (D) is contained in the electrodeposition pretreatment agent and is applied to the article to be coated prior to the cationic electrodeposition coating composition. Cationic electrodeposition coating composition containing aminated epoxy resin (A), blocked polyisocyanate curing agent (B), and pigment (C), and electrodeposition containing cyclic polyamidine compound or hydrophobized modification thereof (D) A pretreatment agent is used in combination as a paint set.
(1)電着前処理剤の付与
 被塗物に環状ポリアミジン化合物またはその疎水化変性体(D)を含む電着前処理剤を付与する。電着前処理剤は、例えば、環状ポリアミジン化合物またはその疎水化変性体(D)の水溶液である。環状ポリアミジン化合物の濃度は、例えば10質量%である。
(1) Application of Electrodeposition Pretreatment Agent An electrodeposition pretreatment agent containing a cyclic polyamidine compound or its hydrophobized modified product (D) is applied to the object to be coated. The electrodeposition pretreatment agent is, for example, an aqueous solution of a cyclic polyamidine compound or its hydrophobized modified product (D). The concentration of the cyclic polyamidine compound is, for example, 10% by mass.
 付与方法は特に限定されず、電着前処理剤に被塗物を浸漬してもよく、被塗物に電着前処理剤を塗布してもよい。塗布方法としては、コーティング法およびスプレー法が挙げられる。電着前処理剤が付与された後、被塗物に電圧を印加してもよい。電圧は、例えば、50V以上450V以下である。浴液温度は、例えば、10℃以上45℃以下である。電圧を印加する時間は特に限定されず、例えば、2分以上5分以下である。電着前処理剤が付与された後、電圧の印加を行わずに、被塗物を次の工程に供してもよい。 The application method is not particularly limited, and the object to be coated may be immersed in the electrodeposition pretreatment agent, or the electrodeposition pretreatment agent may be applied to the object to be coated. Application methods include a coating method and a spray method. After applying the electrodeposition pretreatment agent, a voltage may be applied to the article to be coated. The voltage is, for example, 50 V or more and 450 V or less. The bath liquid temperature is, for example, 10° C. or higher and 45° C. or lower. The voltage application time is not particularly limited, and is, for example, 2 minutes or more and 5 minutes or less. After applying the electrodeposition pretreatment agent, the object to be coated may be subjected to the next step without voltage application.
 被塗物としては、製造方法1と同様のものが挙げられる。電着前処理剤の付与は、上記の表面調整処理および化成処理の後であって、電着塗装の前に行われる。 Examples of the object to be coated include those similar to those in manufacturing method 1. The electrodeposition pretreatment agent is applied after the surface conditioning treatment and chemical conversion treatment and before electrodeposition coating.
(2)未硬化の電着塗膜の形成
 カチオン電着塗料組成物中に、電着前処理剤が付与された被塗物を浸漬した後、被塗物を陰極として、対極(陽極)との間に電圧を印加する。これにより、未硬化の電着塗膜が、環状ポリアミジン化合物またはその疎水化変性体(D)を含む膜を介して、被塗物上に析出する。印加条件は、製造方法1と同様であってよい。
(2) Formation of uncured electrodeposition coating After immersing the object to be coated to which the electrodeposition pretreatment agent has been applied in the cationic electrodeposition coating composition, Apply a voltage between As a result, an uncured electrodeposition coating film is deposited on the object to be coated through the film containing the cyclic polyamidine compound or its hydrophobized modified product (D). The application conditions may be the same as in manufacturing method 1.
(3)電着塗膜の硬化
 形成された未硬化の電着塗膜を、必要に応じて水洗し、75℃以上200℃以下の温度で加熱する。これにより、硬化反応が生じて、硬化した電着塗膜が得られる。硬化条件は、製造方法1と同様であってよい。
(3) Curing of Electrodeposited Coating The formed uncured electrodeposited coating is optionally washed with water and heated at a temperature of 75° C. or higher and 200° C. or lower. Thereby, a curing reaction occurs and a cured electrodeposition coating film is obtained. Curing conditions may be the same as in production method 1.
 硬化後の電着塗膜の膜厚は、防錆性の観点から、5μm以上60μm以下であってよい。硬化後の電着塗膜の膜厚は、10μm以上であってよい。硬化後の電着塗膜の膜厚は、25μm以下であってよい。 The film thickness of the electrodeposition coating film after curing may be 5 μm or more and 60 μm or less from the viewpoint of rust prevention. The film thickness of the electrodeposition coating film after curing may be 10 μm or more. The film thickness of the electrodeposition coating film after curing may be 25 μm or less.
[電着塗装物2]
 製造方法2により、被塗物と、被塗物上に形成された環状ポリアミジン化合物またはその疎水化変性体(D)を含む電着前処理層と、アミン化エポキシ樹脂(A)、ブロックイソシアネート硬化剤(B)および顔料(C)を含むカチオン電着塗料組成物により形成される電着塗膜と、を含む電着塗装物が得られる。
[Electrodeposition coating 2]
According to production method 2, an object to be coated, an electrodeposition pretreatment layer containing a cyclic polyamidine compound or a hydrophobized modified product thereof (D) formed on the object to be coated, an aminated epoxy resin (A), and blocked isocyanate curing and an electrodeposition coating film formed from the cationic electrodeposition coating composition containing the agent (B) and the pigment (C).
 あるいは、製造方法2により、被塗物と、被塗物上に形成された電着塗膜と、を含む電着塗装物が得られる。電着塗膜は、アミン化エポキシ樹脂(A)、ブロックイソシアネート硬化剤(B)および顔料(C)を含むカチオン電着塗料組成物により形成され、さらに、電着前処理剤に含まれた少なくとも一部の環状ポリアミジン化合物またはその疎水化変性体(D)を含む。これらの電着塗膜は、優れたエッジ部防錆性および外観を有する。 Alternatively, according to production method 2, an electrodeposition coated article including an article to be coated and an electrodeposition coating film formed on the article to be coated is obtained. The electrodeposition coating film is formed by a cationic electrodeposition coating composition containing an aminated epoxy resin (A), a blocked isocyanate curing agent (B) and a pigment (C), and further containing at least Some cyclic polyamidine compounds or hydrophobized modified products thereof (D) are included. These electrodeposition coatings have excellent edge rust resistance and appearance.
 以下の実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されない。実施例中、「部」および「%」は、ことわりのない限り、質量基準による。 The present invention will be described more specifically with the following examples, but the present invention is not limited to these. In the examples, "parts" and "%" are based on mass unless otherwise specified.
[製造例1]アミン化エポキシ樹脂(A)の製造
 反応容器に、ブチルセロソルブ26部、ビスフェノールA型エポキシ樹脂(商品名DER-331J、ダウケミカル社製)940部、ビスフェノールA380部、フェノール58部、ジメチルベンジルアミン2部を加え、内部の温度を120℃に保持した。エポキシ当量が1100g/eqになるまで反応させた後、反応容器内の温度が110℃になるまで冷却した。ジエタノールアミン(DETA)60部、N-メチルエタノールアミン(MMA)20部、ジエチレントリアミンジケチミン(ジケチミン:固形分73%のメチルイソブチルケトン溶液)85部を添加し、140℃で1時間反応させることにより、アミン化エポキシ樹脂を得た。
[Production Example 1] Production of aminated epoxy resin (A) In a reaction vessel, 26 parts of butyl cellosolve, 940 parts of bisphenol A type epoxy resin (trade name DER-331J, manufactured by Dow Chemical Company), 380 parts of bisphenol A, 58 parts of phenol, Two parts of dimethylbenzylamine were added and the internal temperature was maintained at 120°C. After reacting until the epoxy equivalent reached 1100 g/eq, the temperature inside the reactor was cooled to 110°C. 60 parts of diethanolamine (DETA), 20 parts of N-methylethanolamine (MMA), and 85 parts of diethylenetriamine diketimine (diketimine: methyl isobutyl ketone solution with a solid content of 73%) are added and reacted at 140° C. for 1 hour, An aminated epoxy resin was obtained.
[製造例2]ブロック化ポリイソシアネート硬化剤(B)の製造
 ポリメチレンポリフェニルポリイソシアネート(ポリメリックMDI)1370部およびメチルイソブチルケトン(MIBK)732部を反応容器に仕込み、これを60℃まで加熱した。ここに、ブチルジグリコールエーテル300部、ブチルセロソルブ1330を60℃で2時間かけて滴下した。さらに75℃で4時間加熱した後、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失したことを確認した。放冷後、MIBK27部を加えてブロック化ポリイソシアネート硬化剤(B)を得た。
[Production Example 2] Production of blocked polyisocyanate curing agent (B) 1370 parts of polymethylene polyphenyl polyisocyanate (polymeric MDI) and 732 parts of methyl isobutyl ketone (MIBK) were charged into a reaction vessel and heated to 60°C. . 300 parts of butyl diglycol ether and butyl cellosolve 1330 were added dropwise thereto at 60° C. over 2 hours. After further heating at 75° C. for 4 hours, it was confirmed in IR spectrum measurement that the absorption based on the isocyanate group had disappeared. After standing to cool, 27 parts of MIBK was added to obtain a blocked polyisocyanate curing agent (B).
[製造例3]顔料分散樹脂の調製
 撹拌装置、冷却管、窒素導入管及び温度計を装備した反応容器に、イソホロンジイソシアネート2220部およびメチルイソブチルケトン342.1部を仕込んだ。50℃に昇温して、さらにジブチル錫ラウレート2.2部を投入し、60℃に昇温して、さらにメチルエチルケトンオキシム878.7部を投入した。その後、60℃で1時間保温し、NCO当量が348となっていることを確認し、ジメチルエタノールアミン890部をさらに投入した。さらに、60℃で1時間保温し、IRでNCOピークが消失していることを確認した。次いで、60℃を超えないよう冷却しながら、50%乳酸1872.6部および脱イオン水495部を投入して四級化剤を得た。
[Production Example 3] Preparation of Pigment Dispersion Resin 2220 parts of isophorone diisocyanate and 342.1 parts of methyl isobutyl ketone were charged into a reaction vessel equipped with a stirrer, a condenser, a nitrogen inlet tube and a thermometer. The temperature was raised to 50° C., 2.2 parts of dibutyltin laurate was added, the temperature was raised to 60° C., and 878.7 parts of methyl ethyl ketone oxime was added. After that, the temperature was maintained at 60° C. for 1 hour, the NCO equivalent was confirmed to be 348, and 890 parts of dimethylethanolamine was further added. Further, the temperature was maintained at 60° C. for 1 hour, and it was confirmed by IR that the NCO peak had disappeared. Then, while cooling so as not to exceed 60° C., 1872.6 parts of 50% lactic acid and 495 parts of deionized water were added to obtain a quaternizing agent.
 異なる反応容器にトリレンジイソシアネート870部およびメチルイソブチルケトン49.5部を仕込んだ。50℃以上にならないように冷却しながら、反応容器に2-エチルヘキサノール667.2部を2.5時間かけて滴下した。滴下終了後、さらにメチルイソブチルケトン35.5部を投入し、30分保温した。その後、NCO当量が330~370になっていることを確認して、ハーフブロックポリイソシアネートを得た。 A different reactor was charged with 870 parts of tolylene diisocyanate and 49.5 parts of methyl isobutyl ketone. 667.2 parts of 2-ethylhexanol was added dropwise to the reactor over 2.5 hours while cooling so as not to exceed 50°C. After the dropwise addition was completed, 35.5 parts of methyl isobutyl ketone was added and the temperature was maintained for 30 minutes. After confirming that the NCO equivalent was 330 to 370, a half-blocked polyisocyanate was obtained.
 撹拌装置、冷却管、窒素導入管及び温度計を装備した反応容器に、ビスフェノールA型エポキシ樹脂(商品名DER-331J、ダウケミカル社製)940.0部およびメタノール38.5部を仕込み、さらにジブチル錫ジラウレート0.1部を加えた。これを50℃に昇温した後、トリレンジイソシアネート87.1部投入した。さらに100℃に昇温してN,N-ジメチルベンジルアミン1.4部を投入し、その後、130℃で2時間保温した。このとき、分留管によりメタノールを分留した。これを115℃まで冷却し、メチルイソブチルケトンを固形分濃度90%になるまで仕込んだ。その後、ビスフェノールA270.3部および2-エチルヘキサン酸39.2部を仕込み、125℃で2時間加熱撹拌した。続いて、上記ハーフブロックポリイソシアネート516.4部を30分間かけて滴下し、その後、30分間加熱撹拌した。さらに、ポリオキシエチレンビスフェノールAエーテル1506部を徐々に加えて、これに溶解させた。90℃まで冷却後、上記四級化剤を加え、70~80℃に保持した。その後、酸価が2以下になったことを確認して、顔料分散樹脂(樹脂固形分30%)を得た。 940.0 parts of bisphenol A type epoxy resin (trade name DER-331J, manufactured by Dow Chemical Co.) and 38.5 parts of methanol are charged into a reaction vessel equipped with a stirrer, a condenser, a nitrogen inlet tube and a thermometer, and further 0.1 part of dibutyltin dilaurate was added. After raising the temperature to 50° C., 87.1 parts of tolylene diisocyanate was added. Further, the temperature was raised to 100° C., 1.4 parts of N,N-dimethylbenzylamine was added, and then the temperature was maintained at 130° C. for 2 hours. At this time, methanol was fractionated with a fractionating tube. This was cooled to 115° C. and methyl isobutyl ketone was charged until the solid content concentration reached 90%. After that, 270.3 parts of bisphenol A and 39.2 parts of 2-ethylhexanoic acid were added, and the mixture was heated and stirred at 125° C. for 2 hours. Subsequently, 516.4 parts of the above half-blocked polyisocyanate was added dropwise over 30 minutes, followed by heating and stirring for 30 minutes. Further, 1506 parts of polyoxyethylene bisphenol A ether was gradually added and dissolved therein. After cooling to 90°C, the quaternizing agent was added and the temperature was maintained at 70-80°C. Thereafter, after confirming that the acid value became 2 or less, a pigment dispersion resin (resin solid content: 30%) was obtained.
[調製例1]顔料分散ペーストAの調製
 サンドグラインドミルに製造例3で得た顔料分散樹脂1,200部、カーボンブラック3部、カオリン620部、二酸化チタン500部、酸化ビスマス70部、脱イオン水1100を入れ、粒度10μm以下になるまで分散して、顔料分散ペーストA(固形分50%)を得た。
[Preparation Example 1] Preparation of pigment dispersion paste A In a sand grind mill, 1,200 parts of the pigment dispersion resin obtained in Production Example 3, 3 parts of carbon black, 620 parts of kaolin, 500 parts of titanium dioxide, 70 parts of bismuth oxide, deionized 1100 g of water was added and dispersed until the particle size became 10 μm or less to obtain a pigment-dispersed paste A (solid content: 50%).
[調製例2]顔料分散ペーストBの調製
 サンドグラインドミルに製造例3で得た顔料分散樹脂1,500部、カーボンブラック18部、カオリン680部、二酸化チタン590部、有機スズ90部、脱イオン水570部を入れ、粒度10μm以下になるまで分散して、顔料分散ペーストB(固形分52%)を得た。
[Preparation Example 2] Preparation of Pigment Dispersion Paste B In a sand grind mill, 1,500 parts of the pigment dispersion resin obtained in Production Example 3, 18 parts of carbon black, 680 parts of kaolin, 590 parts of titanium dioxide, 90 parts of organic tin, deionized. 570 parts of water was added and dispersed until the particle size became 10 μm or less to obtain a pigment-dispersed paste B (solid content: 52%).
[実施例1]
(1)カチオン電着塗料組成物A1の調製
 ステンレス容器に、イオン交換水1394g、以下のようにして調製した樹脂エマルション560gおよび顔料分散ペーストA41gを添加した。その後、40℃で16時間エージングした。さらに、ポリアミジン化合物(D1)(ハイモ株式会社、ハイモロックZP-700、重量平均分子量300万、アクリロニトリル・N-ビニルホルムアミド共重合物の部分加水分解物、構成単位(I)構成単位(I+II)の割合:I/I+II=30~40%)の2%水溶液を、その固形分量がカチオン電着塗料組成物の固形分質量の25ppmになるように、添加して、カチオン電着塗料組成物A1を得た。
[Example 1]
(1) Preparation of Cationic Electrodeposition Coating Composition A1 In a stainless container, 1394 g of ion-exchanged water, 560 g of resin emulsion prepared as follows, and 41 g of pigment dispersion paste A were added. After that, it was aged at 40° C. for 16 hours. Furthermore, polyamidine compound (D1) (Hymo Co., Ltd., Himolock ZP-700, weight average molecular weight of 3,000,000, partial hydrolyzate of acrylonitrile/N-vinylformamide copolymer, ratio of structural unit (I) to structural unit (I+II) : I / I + II = 30 to 40%) is added so that the solid content is 25 ppm of the solid content mass of the cationic electrodeposition coating composition to obtain a cationic electrodeposition coating composition A1. rice field.
 環状ポリアミジン化合物(D1)は、下記式の構成単位を有する。
Figure JPOXMLDOC01-appb-C000014
The cyclic polyamidine compound (D1) has a structural unit of the following formula.
Figure JPOXMLDOC01-appb-C000014
(樹脂エマルションの調製)
 製造例1で得たアミン化エポキシ樹脂(A)400g(固形分)と、製造例2で得たブロック化ポリイソシアネート硬化剤(B)160g(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15g)になるように添加した。次にギ酸を中和率40%になるように加えて中和し、イオン交換水を加えてゆっくり希釈して樹脂エマルションを得た。
(Preparation of resin emulsion)
400 g (solid content) of the aminated epoxy resin (A) obtained in Production Example 1 and 160 g (solid content) of the blocked polyisocyanate curing agent (B) obtained in Production Example 2 were mixed to obtain ethylene glycol mono-2. - Ethylhexyl ether was added at 3% (15 g) on solids. Next, formic acid was added so as to give a neutralization rate of 40% for neutralization, and deionized water was added to slowly dilute to obtain a resin emulsion.
(2)電着塗装物の作製
 被塗物として冷延鋼板(JIS G3141、SPCC-SD)を準備した。この鋼板を、サーフクリーナーEC90(日本ペイント・サーフケミカルズ社製)中に50℃で2分間浸漬して、脱脂処理した。続いて、サーフダインEC3200(日本ペイント・サーフケミカルズ社製、ジルコニウム化成処理剤)に35℃で90秒浸漬した。その後、脱イオン水による水洗を行った。
(2) Production of Electrocoated Object A cold-rolled steel sheet (JIS G3141, SPCC-SD) was prepared as an object to be coated. This steel plate was degreased by immersing it in a surf cleaner EC90 (manufactured by Nippon Paint Surf Chemicals Co., Ltd.) at 50° C. for 2 minutes. Subsequently, it was immersed in Surfdyne EC3200 (a zirconium chemical conversion treatment agent manufactured by Nippon Paint Surf Chemicals Co., Ltd.) at 35° C. for 90 seconds. After that, it was washed with deionized water.
 カチオン電着塗料組成物A1に、硬化後の電着塗膜の膜厚が20μmとなるように2-エチルヘキシルグリコールを必要量添加した。得られた電着塗料に上記の鋼板を全て埋没させた後、直ちに電圧の印加を開始した。電圧は、30秒間昇圧し180Vに達してから150秒間保持する条件で印加した。これにより、被塗物上に未硬化の電着塗膜を析出させた。得られた未硬化の電着塗膜を、160℃で15分間加熱硬化させて、膜厚20μmの硬化電着塗膜を有する電着塗装物を得た。 A necessary amount of 2-ethylhexyl glycol was added to the cationic electrodeposition coating composition A1 so that the film thickness of the electrodeposition coating film after curing was 20 μm. Immediately after the above-mentioned steel plates were all buried in the obtained electrodeposition paint, voltage application was started. The voltage was applied under the condition that the voltage was increased for 30 seconds and maintained for 150 seconds after reaching 180V. As a result, an uncured electrodeposition coating film was deposited on the object to be coated. The resulting uncured electrodeposition coating film was cured by heating at 160° C. for 15 minutes to obtain an electrodeposition coating having a cured electrodeposition coating film of 20 μm in thickness.
[実施例2]
 ポリアミジン化合物(D1)の添加量を100ppmとしたこと以外、実施例1と同様にして、カチオン電着塗料組成物A2を調製し、電着塗装物を作製した。
[Example 2]
A cationic electrodeposition coating composition A2 was prepared in the same manner as in Example 1, except that the amount of the polyamidine compound (D1) added was 100 ppm, to produce an electrodeposition coating.
[実施例3]
 ポリアミジン化合物(D1)に替えて、環状ポリアミジン化合物(D2)(ハイモ株式会社、ハイモロックPVAD、重量平均分子量10万、アクリロニトリル・N-ビニルホルムアミド共重合物の部分加水分解物、構成単位(I)構成単位(I+II)の割合:I/I+II=30~40%)を100ppm添加したこと以外、実施例1と同様にして、カチオン電着塗料組成物A3を調製し、電着塗装物を作製した。
[Example 3]
In place of the polyamidine compound (D1), a cyclic polyamidine compound (D2) (Hymo Co., Ltd., Himolock PVAD, weight average molecular weight of 100,000, partial hydrolyzate of acrylonitrile/N-vinylformamide copolymer, constitution of structural unit (I) A cationic electrodeposition coating composition A3 was prepared in the same manner as in Example 1, except that 100 ppm of the unit (I + II) ratio: I / I + II = 30 to 40%) was added to produce an electrodeposition coating.
 環状ポリアミジン化合物(D2)は、下記式の構成単位を有する。
Figure JPOXMLDOC01-appb-C000015
The cyclic polyamidine compound (D2) has a structural unit of the following formula.
Figure JPOXMLDOC01-appb-C000015
[実施例4]
 ポリアミジン化合物(D2)を1,000ppm添加したこと以外、実施例1と同様にして、カチオン電着塗料組成物A4を調製し、電着塗装物を作製した。
[Example 4]
A cationic electrodeposition coating composition A4 was prepared in the same manner as in Example 1, except that 1,000 ppm of the polyamidine compound (D2) was added, and an electrodeposition coating was produced.
[比較例1]
 顔料分散ペーストAに替えて顔料分散ペーストBを用いたこと、および、ポリアミジン化合物(D1)を添加しなかったこと以外、実施例1と同様にして、カチオン電着塗料組成物a1を得て、電着塗装物を作製した。
[Comparative Example 1]
A cationic electrodeposition coating composition a1 was obtained in the same manner as in Example 1, except that the pigment dispersion paste B was used instead of the pigment dispersion paste A and the polyamidine compound (D1) was not added. An electrodeposition coating was produced.
[比較例2]
 比較例1で調製されたカチオン電着塗料組成物a1に、ポリビニルホルムアミド(重量平均分子量300万)を、その固形分量がカチオン電着塗料組成物a2の固形分質量の100ppmになるように添加して、カチオン電着塗料組成物a2を得た。これを用いて、実施例1と同様にして、電着塗装物を作製した。
[Comparative Example 2]
Polyvinylformamide (weight average molecular weight: 3,000,000) was added to the cationic electrodeposition coating composition a1 prepared in Comparative Example 1 so that the solid content was 100 ppm of the solid content mass of the cationic electrodeposition coating composition a2. to obtain a cationic electrodeposition coating composition a2. An electrodeposition-coated product was produced in the same manner as in Example 1 using this.
[比較例3]
 比較例1で調製されたカチオン電着塗料組成物a1に、ポリN-ビニルアセトアミド(重量平均分子量5万)を、その固形分量がカチオン電着塗料組成物a3の固形分質量の100ppmになるように添加して、カチオン電着塗料組成物a3を得た。これを用いて、実施例1と同様にして、電着塗装物を作製した。
[Comparative Example 3]
Poly N-vinylacetamide (weight average molecular weight 50,000) was added to the cationic electrodeposition coating composition a1 prepared in Comparative Example 1 so that the solid content was 100 ppm of the solid content mass of the cationic electrodeposition coating composition a3. to obtain a cationic electrodeposition coating composition a3. An electrodeposition-coated product was produced in the same manner as in Example 1 using this.
[塗膜の評価]
 上記実施例1~4および比較例1~3で得られた電着塗装物の塗膜の外観(表面粗さRaでの評価)およびエッジ防錆性について、以下の方法で評価した。結果を表1に示す。表1には、ポリアミジン化合物、ポリビニルホルムアミドまたはポリN-ビニルアセトアミドの電着塗料中への配合量も記載している。
[Evaluation of coating film]
The appearance of the coating film (evaluation in terms of surface roughness Ra) and the edge rust resistance of the electrodeposition-coated products obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were evaluated by the following methods. Table 1 shows the results. Table 1 also shows the blending amounts of the polyamidine compound, polyvinylformamide or poly-N-vinylacetamide in the electrodeposition paint.
(1)外観(表面粗さRa)
 JIS-B0601に準拠した方法により、評価型表面粗さ測定機(Mitsutoyo社製、SURFTEST SJ-201P)を用いて、硬化電着塗膜の粗さ曲線の算術平均粗さ(Ra)を測定した。2.5mm幅カットオフ(区画数5)を入れたサンプルを用いて7回測定し、上下消去平均によりRa値(μm)を得た。Ra値が小さい程、凹凸が少なく、塗膜外観が良好である。
(1) Appearance (surface roughness Ra)
The arithmetic mean roughness (Ra) of the roughness curve of the cured electrodeposition coating film was measured using a surface roughness tester (SURFTEST SJ-201P, manufactured by Mitsutoyo Co., Ltd.) according to JIS-B0601. . A sample with a 2.5 mm width cutoff (5 divisions) was used to measure 7 times, and an Ra value (μm) was obtained by averaging the upper and lower sides. The smaller the Ra value, the less unevenness and the better the appearance of the coating film.
(2)エッジ部防錆性
 被塗物を、冷延鋼板(JIS G3141、SPCC-SD)からL型専用替刃(LB10K:オルファ株式会社製、長さ100mm、幅18mm、厚さ0.5mm)に変更したこと以外は、上記と同様の手順で、膜厚20μmの硬化電着塗膜を有する試験片を作製した。
 この試験片に対して、JIS Z 2371(2000)に準拠した塩水噴霧試験(35℃×72時間)を行い、被塗物のエッジ部に発生した錆の個数を調べた。
(2) Edge rust prevention The object to be coated is cut from a cold-rolled steel plate (JIS G3141, SPCC-SD) to a special blade for L type (LB10K: manufactured by Olfa Co., Ltd., length 100 mm, width 18 mm, thickness 0.5 mm ), a test piece having a cured electrodeposition coating film having a thickness of 20 μm was prepared in the same manner as described above, except that it was changed to ).
This test piece was subjected to a salt spray test (35° C.×72 hours) according to JIS Z 2371 (2000), and the number of rust spots generated on the edges of the object to be coated was examined.
 被塗物のエッジ部は、刃の頂点から替刃本体方向に向かって5mmまでの領域であり、替刃の表裏面にそれぞれ存在する。エッジ部の全面積は、替刃の長さ100mm×領域の幅(5mm×2)で10cmである。エッジ部(10cm)に発生した錆が50個未満である場合、エッジ部防錆性が良好であると評価できる。 The edge portion of the object to be coated is a region extending from the apex of the blade to 5 mm in the direction of the main body of the blade, and is present on the front and rear surfaces of the blade. The total area of the edge portion is 10 cm 2 where the length of the blade is 100 mm×the width of the area (5 mm×2). When less than 50 pieces of rust occurred on the edge portion (10 cm 2 ), it can be evaluated that the edge portion rust prevention property is good.
 (評価基準)
  最良:錆が10個未満
   良:錆が10個以上20個未満
   可:錆が20個以上50個未満
  不良:錆が50個以上100個未満
  不可:錆が100個以上
(Evaluation criteria)
Best: Less than 10 rusts Good: 10 to 20 rusts Good: 20 to 50 rusts Poor: 50 to 100 rusts Poor: 100 or more rusts
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 実施例のカチオン電着塗料組成物を用いた場合はいずれも、エッジ部防錆性および塗膜外観ともに良好である。
 比較例1は、本開示におけるポリアミジン化合物の添加剤を含まない例である。この例では、エッジ防錆性が劣ることが確認された。
 比較例2、3は、エッジ防錆性向上用添加剤として知られる化合物(ポリビニルホルムアミド、ポリN-ビニルアセトアミド)を含む例である。この例では、エッジ防錆性は向上した一方で、表面粗さが顕著に高くなり、塗膜外観が劣ることとなった。
In all the cases where the cationic electrodeposition coating compositions of the examples were used, both edge rust prevention and coating film appearance were good.
Comparative Example 1 is an example that does not contain the polyamidine compound additive of the present disclosure. In this example, it was confirmed that the edge rust resistance was inferior.
Comparative Examples 2 and 3 are examples containing compounds (polyvinylformamide, poly-N-vinylacetamide) known as additives for improving edge rust resistance. In this example, while the edge rust prevention property was improved, the surface roughness was remarkably increased, resulting in poor paint film appearance.
[実施例5]
(1)電着前処理剤の調製
 ポリアミジン化合物(D1)の100ppm水溶液を調製した。
[Example 5]
(1) Preparation of electrodeposition pretreatment agent A 100 ppm aqueous solution of the polyamidine compound (D1) was prepared.
(2)カチオン電着塗料組成物Bの調製
 ポリアミジン化合物(D1)を添加しなかったこと以外、実施例1と同様にして、カチオン電着塗料組成物Bを調製した。
(2) Preparation of cationic electrodeposition coating composition B Cationic electrodeposition coating composition B was prepared in the same manner as in Example 1, except that the polyamidine compound (D1) was not added.
(3)電着前処理剤の付与
 冷延鋼板に対して、実施例1と同様にして、ジルコニウム化成処理剤を用いた化成処理を行った。次いで、電着前処理剤に上記の鋼板を全て埋没させて、すぐに引き上げた。
(3) Application of electrodeposition pretreatment agent The cold-rolled steel sheet was subjected to chemical conversion treatment in the same manner as in Example 1 using a zirconium chemical conversion treatment agent. Then, the above steel plate was completely buried in the electrodeposition pretreatment agent and immediately pulled out.
(4)電着塗膜の析出
 続いて、電着前処理剤が付与された鋼板に、カチオン電着塗料組成物Bを用いたこと以外は実施例1と同様にして、膜厚20μmの硬化電着塗膜を形成し、電着塗装物を得た。
(4) Deposition of electrodeposition coating film Subsequently, curing to a film thickness of 20 μm was performed in the same manner as in Example 1 except that the cationic electrodeposition coating composition B was used on the steel plate to which the electrodeposition pretreatment agent was applied. An electrodeposition coating film was formed to obtain an electrodeposition coating.
[実施例6]
 電着前処理剤を、以下のように電析により鋼板に付与したこと以外、実施例5と同様にして、膜厚20μmの硬化電着塗膜を有する電着塗装物を得た。
[Example 6]
An electrodeposition coated article having a cured electrodeposition coating film having a thickness of 20 μm was obtained in the same manner as in Example 5, except that the electrodeposition pretreatment agent was applied to the steel sheet by electrodeposition as follows.
(3)電着前処理剤の付与
 電着前処理剤に鋼板を全て埋没させた後、直ちに電圧の印加を開始した。電圧は、30秒間昇圧し180Vに達してから30秒間保持する条件で印加した。これにより、被塗物上に電着前処理剤を含む膜を析出させた。
(3) Application of Electrodeposition Pretreatment Agent Immediately after the steel plate was completely buried in the electrodeposition pretreatment agent, voltage application was started. The voltage was applied under the condition that the voltage was increased for 30 seconds and maintained for 30 seconds after reaching 180V. As a result, a film containing the electrodeposition pretreatment agent was deposited on the object to be coated.
[比較例4]
 電着前処理剤として、ポリビニルホルムアミド(重量平均分子量300万)の100ppm水溶液を用いたこと以外、実施例5と同様にして、電着前処理剤を付与した後、硬化電着塗膜を形成し、電着塗装物を得た。
[Comparative Example 4]
After applying the electrodeposition pretreatment agent, a cured electrodeposition coating film was formed in the same manner as in Example 5, except that a 100 ppm aqueous solution of polyvinylformamide (weight average molecular weight: 3,000,000) was used as the electrodeposition pretreatment agent. Then, an electrodeposition-coated article was obtained.
[比較例5]
(1)電着前処理剤の調製
 電着前処理剤として、ポリN-ビニルアセトアミド(重量平均分子量5万)の100ppm水溶液を用いたこと以外、実施例5と同様にして、電着前処理剤を付与した後、硬化電着塗膜を形成し、電着塗装物を得た。
[Comparative Example 5]
(1) Preparation of Electrodeposition Pretreatment Agent Electrodeposition pretreatment was carried out in the same manner as in Example 5, except that a 100 ppm aqueous solution of poly-N-vinylacetamide (weight average molecular weight: 50,000) was used as the electrodeposition pretreatment agent. After applying the agent, a cured electrodeposition coating film was formed to obtain an electrodeposition coating.
[塗膜の評価]
 上記実施例5~6および比較例4~6で得られた電着塗装物の塗膜の外観(表面粗さRaでの評価)およびエッジ防錆性について、表1で測定した方法で評価した。結果を表2に示す。表2には、ポリアミジン化合物、ポリビニルホルムアミドまたはポリN-ビニルアセトアミドの電着塗料中への配合量も記載している。また、表2には、比較例1も比較のために乗せている。
[Evaluation of coating film]
Appearance (evaluation in terms of surface roughness Ra) and edge rust resistance of the electrodeposition coatings obtained in Examples 5 to 6 and Comparative Examples 4 to 6 were evaluated by the methods shown in Table 1. . Table 2 shows the results. Table 2 also shows the blending amounts of the polyamidine compound, polyvinylformamide or poly-N-vinylacetamide in the electrodeposition paint. Table 2 also includes Comparative Example 1 for comparison.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 環状ポリアミジン化合物またはその疎水化変性体(D)が電着前処理剤として付与された場合にも、エッジ部防錆性および塗膜外観ともに良好である。比較例の電着前処理剤では、エッジ部防錆性能の向上は見られるものの、塗膜外観が低下した。 Even when the cyclic polyamidine compound or its hydrophobized modified product (D) is added as a pretreatment agent for electrodeposition, both the edge rust prevention property and the coating film appearance are good. With the electrodeposition pretreatment agent of the comparative example, the edge portion rust prevention performance was improved, but the paint film appearance was deteriorated.
[実施例7]
 ポリアミジン化合物(D1)を2ppm添加したこと以外、実施例1と同様にして、カチオン電着塗料組成物を調製し、電着塗装物を作製した。
[Example 7]
A cationic electrodeposition coating composition was prepared in the same manner as in Example 1, except that 2 ppm of the polyamidine compound (D1) was added, and an electrodeposition coating was produced.
[実施例8]
 ポリアミジン化合物(D1)を10ppm添加したこと以外、実施例1と同様にして、カチオン電着塗料組成物を調製し、電着塗装物を作製した。
[Example 8]
A cationic electrodeposition coating composition was prepared in the same manner as in Example 1, except that 10 ppm of the polyamidine compound (D1) was added, and an electrodeposition coating was produced.
[塗膜の評価]
 上記実施例7および8で得られた電着塗装物の塗膜の外観(表面粗さRaでの評価)およびエッジ防錆性について、表1で測定した方法で評価した。結果を表3に示す。表3には、ポリアミジン化合物、ポリビニルホルムアミドまたはポリN-ビニルアセトアミドの電着塗料中への配合量も記載している。
[Evaluation of coating film]
The appearance of the coating film (evaluation in terms of surface roughness Ra) and the edge rust resistance of the electrodeposition-coated products obtained in Examples 7 and 8 were evaluated by the methods shown in Table 1. Table 3 shows the results. Table 3 also shows the blending amounts of the polyamidine compound, polyvinylformamide or poly-N-vinylacetamide in the electrodeposition paint.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表3の結果から明らかなように、環状ポリアミジン化合物(D)の配合量が、2ppm(実施例7)および10ppm(実施例8)のような低い場合にも、エッジ部防錆性および塗膜外観ともに良好である。 As is clear from the results in Table 3, even when the blending amount of the cyclic polyamidine compound (D) was as low as 2 ppm (Example 7) and 10 ppm (Example 8), the edge rust prevention and coating film Appearance is good.
製造例11-1 アミン化エポキシ樹脂(A1)の製造
 反応容器に、ブチルセロソルブ26部、ビスフェノールA型エポキシ樹脂(商品名DER-331J、ダウケミカル社製)940部、ビスフェノールA380部、フェノール58部、ジメチルベンジルアミン2部を加え、内部の温度を120℃に保持した。エポキシ当量が1100g/eqになるまで反応させた後、反応容器内の温度が110℃になるまで冷却した。ジエタノールアミン(DETA)60部、N-メチルエタノールアミン(MMA)20部、ジエチレントリアミンジケチミン(ジケチミン:固形分73%のメチルイソブチルケトン溶液)85部を添加し、140℃で1時間反応させることにより、アミン化エポキシ樹脂(A1)を得た。
Production Example 11-1 Production of aminated epoxy resin (A1) In a reaction vessel, 26 parts of butyl cellosolve, 940 parts of bisphenol A type epoxy resin (trade name DER-331J, manufactured by Dow Chemical Co.), 380 parts of bisphenol A, 58 parts of phenol, Two parts of dimethylbenzylamine were added and the internal temperature was maintained at 120°C. After reacting until the epoxy equivalent reached 1100 g/eq, the temperature inside the reactor was cooled to 110°C. 60 parts of diethanolamine (DETA), 20 parts of N-methylethanolamine (MMA), and 85 parts of diethylenetriamine diketimine (diketimine: methyl isobutyl ketone solution with a solid content of 73%) are added and reacted at 140° C. for 1 hour, An aminated epoxy resin (A1) was obtained.
製造例11-2 アミン化エポキシ樹脂(A2)の製造
 ブチルセロソルブ12部、ビスフェノールA型エポキシ樹脂(商品名DER-331J、ダウケミカル社製)940部、ビスフェノールA325部、フェノール4.2部、ジメチルベンジルアミン2部を加え、反応容器内の温度を120℃に保持し、エポキシ当量が620g/eqになるまで反応させた後、反応容器内の温度が110℃になるまで冷却した。ついでジエタノールアミン(DETA)110部、ジエチルアミノプロパンジアミン(DEAPA)70部の混合物を添加し、140℃で1時間反応させることにより、アミン化エポキシ樹脂(A2)を得た。
Production Example 11-2 Production of aminated epoxy resin (A2) 12 parts of butyl cellosolve, 940 parts of bisphenol A type epoxy resin (trade name DER-331J, manufactured by Dow Chemical Co.), 325 parts of bisphenol A, 4.2 parts of phenol, dimethylbenzyl 2 parts of amine was added, the temperature inside the reaction vessel was kept at 120°C, and the reaction was allowed to proceed until the epoxy equivalent reached 620 g/eq. Then, a mixture of 110 parts of diethanolamine (DETA) and 70 parts of diethylaminopropanediamine (DEAPA) was added and allowed to react at 140° C. for 1 hour to obtain aminated epoxy resin (A2).
製造例12 ブロック化ポリイソシアネート硬化剤(B)の製造
 ポリメチレンポリフェニルポリイソシアネート(ポリメリックMDI)1370部およびメチルイソブチルケトン(MIBK)732部を反応容器に仕込み、これを60℃まで加熱した。ここに、ブチルジグリコールエーテル300部、ブチルセロソルブ1330を60℃で2時間かけて滴下した。さらに75℃で4時間加熱した後、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失したことを確認した。放冷後、MIBK27部を加えてブロック化ポリイソシアネート硬化剤(B)を得た。
Production Example 12 Production of blocked polyisocyanate curing agent (B) 1370 parts of polymethylene polyphenyl polyisocyanate (polymeric MDI) and 732 parts of methyl isobutyl ketone (MIBK) were placed in a reactor and heated to 60°C. 300 parts of butyl diglycol ether and butyl cellosolve 1330 were added dropwise thereto at 60° C. over 2 hours. After further heating at 75° C. for 4 hours, it was confirmed in IR spectrum measurement that the absorption based on the isocyanate group had disappeared. After standing to cool, 27 parts of MIBK was added to obtain a blocked polyisocyanate curing agent (B).
製造例13-1 樹脂エマルション(1)の製造
 アミン化エポキシ樹脂(A1)400g(固形分)と、製造例2で得たブロック化ポリイソシアネート硬化剤(B)160g(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15g)になるように添加した。次にギ酸を中和率40%になるように加えて中和し、イオン交換水を加えてゆっくり希釈して樹脂エマルション(1)を得た。
Production Example 13-1 Production of Resin Emulsion (1) 400 g (solid content) of aminated epoxy resin (A1) and 160 g (solid content) of blocked polyisocyanate curing agent (B) obtained in Production Example 2 were mixed. , ethylene glycol mono-2-ethylhexyl ether was added to 3% (15 g) of solids. Next, formic acid was added so as to give a neutralization rate of 40% for neutralization, and ion-exchanged water was added to slowly dilute to obtain a resin emulsion (1).
製造例13-2 樹脂エマルション(2)の製造
 アミン化エポキシ樹脂(A2)400g(固形分)と、製造例2で得たブロック化ポリイソシアネート硬化剤(B)160g(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15g)になるように添加した。次にギ酸を中和率40%になるように加えて中和し、イオン交換水を加えてゆっくり希釈して樹脂エマルション(2)を得た。
Production Example 13-2 Production of Resin Emulsion (2) 400 g (solid content) of aminated epoxy resin (A2) and 160 g (solid content) of blocked polyisocyanate curing agent (B) obtained in Production Example 2 were mixed. , ethylene glycol mono-2-ethylhexyl ether was added to 3% (15 g) of solids. Next, formic acid was added so as to give a neutralization rate of 40% for neutralization, and ion-exchanged water was added to slowly dilute to obtain a resin emulsion (2).
製造例14 顔料分散樹脂の調製
 撹拌装置、冷却管、窒素導入管及び温度計を装備した反応容器に、イソホロンジイソシアネート2220部およびメチルイソブチルケトン342.1部を仕込んだ。50℃に昇温して、さらにジブチル錫ラウレート2.2部を投入し、60℃に昇温して、さらにメチルエチルケトンオキシム878.7部を投入した。その後、60℃で1時間保温し、NCO当量が348となっていることを確認し、ジメチルエタノールアミン890部をさらに投入した。さらに、60℃で1時間保温し、IRでNCOピークが消失していることを確認した。次いで、60℃を超えないよう冷却しながら、50%乳酸1872.6部および脱イオン水495部を投入して四級化剤を得た。
Production Example 14 Preparation of Pigment Dispersion Resin 2220 parts of isophorone diisocyanate and 342.1 parts of methyl isobutyl ketone were charged into a reaction vessel equipped with a stirrer, a condenser, a nitrogen inlet tube and a thermometer. The temperature was raised to 50° C., 2.2 parts of dibutyltin laurate was added, the temperature was raised to 60° C., and 878.7 parts of methyl ethyl ketone oxime was added. After that, the temperature was maintained at 60° C. for 1 hour, the NCO equivalent was confirmed to be 348, and 890 parts of dimethylethanolamine was further added. Further, the temperature was maintained at 60° C. for 1 hour, and it was confirmed by IR that the NCO peak had disappeared. Then, while cooling so as not to exceed 60° C., 1872.6 parts of 50% lactic acid and 495 parts of deionized water were added to obtain a quaternizing agent.
製造例15 顔料分散ペーストの調製
 サンドグラインドミルに製造例3で得た顔料分散樹脂1,200部、カーボンブラック3部、カオリン620部、二酸化チタン500部、酸化ビスマス70部、脱イオン水1100を入れ、粒度10μm以下になるまで分散して、顔料分散ペーストA(固形分50%)を得た。
Production Example 15 Preparation of Pigment Dispersion Paste In a sand grind mill, 1,200 parts of the pigment dispersion resin obtained in Production Example 3, 3 parts of carbon black, 620 parts of kaolin, 500 parts of titanium dioxide, 70 parts of bismuth oxide, and 1,100 parts of deionized water were added. and dispersed until the particle size became 10 μm or less to obtain a pigment-dispersed paste A (solid content: 50%).
製造例16-1 添加剤Aの調製
(1)アミン化剤の調製
 反応容器にジエタノールアミン179部を加え、50度まで昇温しビスフェノールA型エポキシ樹脂(商品名DER-331J、ダウケミカル社製)320部を加えた。その後、110度に保持し、エポキシ当量が290g/eq になるまで反応させた後、80度まで冷却し、90%酢酸17部を加えた。10分間撹拌した後、脱イオン水420部を加えて、アミン基を導入したエポキシ樹脂を得た。
Production Example 16-1 Preparation of Additive A (1) Preparation of Aminating Agent 179 parts of diethanolamine was added to a reaction vessel, and the temperature was raised to 50° C. to obtain a bisphenol A type epoxy resin (trade name DER-331J, manufactured by Dow Chemical Company). 320 parts were added. Thereafter, the temperature was maintained at 110° C., and the reaction was allowed to proceed until the epoxy equivalent reached 290 g/eq. After stirring for 10 minutes, 420 parts of deionized water was added to obtain an epoxy resin into which an amine group was introduced.
(2)添加剤A(ニトリル基の環化によるポリアミジン化合物の疎水化)の調製
 ポリアミジン(ハイモ株式会社、ハイモロックZP-700、重量平均分子量300万、アクリロニトリル・N-ビニルホルムアミド共重合物の部分加水分解物、構成単位(I)構成単位(I+II)の割合:I/I+II=30~40%)1部、脱イオン水 499部を反応容器内に加えて撹拌し2%水溶液を調製した。その後、反応容器内の温度を90度に保持し、90%酢酸 1部、そしてアミン触媒として上記で調製したアミン基を導入したエポキシ樹脂 30部加えて60時間加温することで、不飽和ニトリル環化セグメント(二つのニトリル基(CN)が環化した)単位を有するポリアミジン化合物(ポリアミジン化合物の疎水化変性体)である添加剤Aを得た。
(2) Preparation of additive A (hydrophobicization of polyamidine compound by cyclization of nitrile group) Decomposition product, proportion of structural unit (I) and structural unit (I+II): I/I+II=30 to 40%) 1 part and 499 parts of deionized water were added to the reaction vessel and stirred to prepare a 2% aqueous solution. Then, the temperature in the reaction vessel is maintained at 90 degrees, 1 part of 90% acetic acid, and 30 parts of the epoxy resin having the amine group prepared above as an amine catalyst are added and heated for 60 hours to obtain an unsaturated nitrile. Additive A, which is a polyamidine compound (a hydrophobized polyamidine compound) having a cyclization segment (two nitrile groups (CN) are cyclized) units, was obtained.
製造例16-2 添加剤Bの調製(前記一般式(X)による疎水化)
 ポリアミジン(ハイモ株式会社、ハイモロックZP-700、重量平均分子量300万、アクリロニトリル・N-ビニルホルムアミド共重合物の部分加水分解物、構成単位(I)構成単位(II)の割合:I/I+II=30~40%)35部、NaOH 1部、脱イオン水 2947部、クロロヘキサン40部を反応容器内に加えて30分撹拌した。その後、反応容器内の温度を90度に保持し15時間攪拌することで、前記一般式(X)の疎水性構成単位Rがヘキサニル基であるポリアミジン化合物(ポリアミジン化合物の疎水化変性体)である添加剤Bを得た。
Production Example 16-2 Preparation of Additive B (Hydrophobicization by General Formula (X))
Polyamidine (Hymo Co., Ltd., Himolock ZP-700, weight average molecular weight 3,000,000, partial hydrolyzate of acrylonitrile/N-vinylformamide copolymer, ratio of structural unit (I) to structural unit (II): I/I+II=30 40%), 1 part of NaOH, 2947 parts of deionized water and 40 parts of chlorohexane were added to the reactor and stirred for 30 minutes. Thereafter, the temperature in the reaction vessel was maintained at 90° C. and stirred for 15 hours to obtain a polyamidine compound (hydrophobic modified polyamidine compound) in which the hydrophobic constitutional unit R 3 of the general formula (X) is a hexanyl group. One additive B was obtained.
製造例16-3 添加剤Cの製造
 エポキシ当量220g/当量である液状エポキシ樹脂33.6部を反応器に入れ、撹拌しながら50℃に加熱した後、ジアルキルアミン5.1部を加えてさらに1時間撹拌した。
 別の容器で、メチルイソブチルケトン50部およびイソホロンジイソシアネート11.2部を混合し、混合物を撹拌しながら70℃に加熱した。
 次いで、上記液状エポキシ樹脂およびジアルキルアミンの反応混合物を1.5時間かけて加え、70で1時間撹拌して反応させて、カチオン化剤を得た。
 ポリビニルアルコール(クラレ社製、Mowiol)99部および上記カチオン化剤1部を混合して、ポリビニルアルコール(PVA)中間体を得た。
Production Example 16-3 Production of Additive C 33.6 parts of a liquid epoxy resin having an epoxy equivalent weight of 220 g/equivalent was placed in a reactor and heated to 50° C. with stirring. Stirred for 1 hour.
In a separate vessel, 50 parts of methyl isobutyl ketone and 11.2 parts of isophorone diisocyanate were mixed and the mixture was heated to 70°C with stirring.
Then, the reaction mixture of the above liquid epoxy resin and dialkylamine was added over 1.5 hours and stirred at 70 for 1 hour to react to obtain a cationizing agent.
99 parts of polyvinyl alcohol (Mowiol, manufactured by Kuraray Co., Ltd.) and 1 part of the cationizing agent were mixed to obtain a polyvinyl alcohol (PVA) intermediate.
 別の容器で、エポキシ当量184g/当量である液状エポキシ樹脂13.3部、ビスフェノールA 6.1部、フェノキシプロパノール2.2部を混合し、150℃に加熱し、次いでトリフェニルホスフィン0.036部を加えた。反応器の温度を130℃まで冷却し、2時間撹拌した。
 その後、撹拌混合物にイソブタノール9.4部を加えて、105℃に冷却した後、ジエチレントリアミンとメチルイソブチルケトンとの反応物であるポリアミン2.2部を加え、カチオン化剤を調製した。
In a separate vessel, 13.3 parts of a liquid epoxy resin with an epoxy equivalent weight of 184 g/equivalent, 6.1 parts of bisphenol A, and 2.2 parts of phenoxypropanol are mixed and heated to 150°C, followed by 0.036 of triphenylphosphine. added part. The reactor temperature was cooled to 130° C. and stirred for 2 hours.
After that, 9.4 parts of isobutanol was added to the stirred mixture and cooled to 105° C., and 2.2 parts of polyamine, which was a reaction product of diethylenetriamine and methyl isobutyl ketone, was added to prepare a cationizing agent.
 上記で調製したカチオン化剤33.2部およびPVA中間体22部を撹拌し、酢酸0.4部を加えた後、脱イオン交換水44部を加えて撹拌し、PVA内包カチオン性マイクロゲルである添加剤Cを調製した。 33.2 parts of the cationizing agent prepared above and 22 parts of the PVA intermediate were stirred, 0.4 parts of acetic acid was added, and then 44 parts of deionized water was added and stirred to obtain a PVA-encapsulating cationic microgel. An additive C was prepared.
製造例16-4 添加剤Dの製造
 アルコキシル化ポリエチレンイミン(Sokalan HP-20、BASF社製)を、添加剤Dとして用いた。
Preparation Example 16-4 Preparation of Additive D Alkoxylated polyethyleneimine (Sokalan HP-20, manufactured by BASF) was used as additive D.
製造例16-5 添加剤Eの製造
 撹拌器、温度計、冷却管を有する反応装置を準備し、エポキシ当量475のビスフェノールA型エポキシ樹脂950部、プロピレングリコールメチルエーテルを588部を仕込み、撹拌下で110℃に加熱し、エポキシ樹脂を溶解させた。これを80℃に冷却し、ジケチミン化合物(メチルエチルケトン2モルとジエチレントリアミン1モルとを加熱し、脱水縮合によって得られたもの)422部を加え、80℃で2時間保持した後、酢酸12部と脱イオン水180部を加え、80℃で1時間反応させて固形分濃度70%で、1分子当たり4個の1級アミノ基を含有するエポキシ樹脂誘導体(e1)を得た。
Production Example 16-5 Production of Additive E 950 parts of a bisphenol A type epoxy resin having an epoxy equivalent of 475 and 588 parts of propylene glycol methyl ether were charged into a reactor equipped with a stirrer, a thermometer and a cooling tube, and stirred. was heated to 110° C. to dissolve the epoxy resin. This was cooled to 80°C, 422 parts of a diketimine compound (obtained by heating 2 mol of methyl ethyl ketone and 1 mol of diethylenetriamine, and dehydration condensation) was added, maintained at 80°C for 2 hours, and then desorbed with 12 parts of acetic acid. 180 parts of ionized water was added and reacted at 80° C. for 1 hour to obtain an epoxy resin derivative (e1) having a solid content of 70% and containing 4 primary amino groups per molecule.
 撹拌器、温度計、冷却管を有する反応装置を準備し、オキシラン酸素含有量6.5%、数平均分子量1800のエポキシ化ポリブタジエンを1000部、エチレングリコールモノブチルエーテルを377部、メチルエタノールアミンを131部仕込み、窒素ガス気流中撹拌下に170℃で6時間保持した。次いで、120℃に冷却し、アクリル酸81.4部、ハイドロキノン8.8部およびエチレングリコールモノブチルエーテル27.1部を投入し、120℃で4時間保持し、固形分濃度75%で1分子当たり2個のα、β-エチレン性不飽和基を含有するアクリル変性ポリブタジエン樹脂(e2)を得た。 A reactor equipped with an agitator, thermometer and condenser was prepared and 1000 parts of epoxidized polybutadiene having an oxirane oxygen content of 6.5% and a number average molecular weight of 1800, 377 parts of ethylene glycol monobutyl ether and 131 parts of methyl ethanolamine were prepared. It was kept at 170° C. for 6 hours while stirring in a nitrogen gas stream. Next, the mixture was cooled to 120°C, 81.4 parts of acrylic acid, 8.8 parts of hydroquinone and 27.1 parts of ethylene glycol monobutyl ether were added, maintained at 120°C for 4 hours, and the solid concentration was 75% per molecule. An acrylic-modified polybutadiene resin (e2) containing two α,β-ethylenically unsaturated groups was obtained.
 撹拌器、温度計、冷却管を有する反応装置を準備し、それに上記の(e2)成分の160部とイソプロピルアルコール13部を仕込み、撹拌を開始する。次いでギ酸88重量%水溶液2部と上記の(e1)成分の60部を投入し、50℃で2時間保温し、その後、脱イオン水600部を投入する。70℃まで昇温し、300~600mmHg(ゲージ圧)の減圧下で65~70℃を保持しながら、80部脱溶剤する。35℃以下に冷却し、カチオン性マイクロゲルである添加剤Eを得た(固形分濃度20%、平均粒子径100nm:レーザー散乱型粒径解析装置で測定)。 Prepare a reactor equipped with a stirrer, a thermometer, and a cooling pipe, charge 160 parts of the above component (e2) and 13 parts of isopropyl alcohol, and start stirring. Next, 2 parts of an 88% by weight aqueous solution of formic acid and 60 parts of the above component (e1) are added, the mixture is kept at 50° C. for 2 hours, and then 600 parts of deionized water is added. The temperature is raised to 70° C., and 80 parts of the solvent is removed while maintaining the temperature at 65 to 70° C. under a reduced pressure of 300 to 600 mmHg (gauge pressure). The mixture was cooled to 35° C. or less to obtain additive E, which was a cationic microgel (solid content concentration 20%, average particle size 100 nm: measured with a laser scattering particle size analyzer).
製造例16-6 添加剤Fの製造
 ポリビニルホルムアミド(三菱ケミカル社製、KP8040)1部を、脱イオン水99部に溶解し撹拌することにより、ポリビニルポリアミド/ポリアミン共重合体1%水溶液である添加剤Fを得た。
Production Example 16-6 Production of Additive F 1 part of polyvinylformamide (Mitsubishi Chemical Co., Ltd., KP8040) was dissolved in 99 parts of deionized water and stirred to obtain a 1% polyvinyl polyamide/polyamine copolymer aqueous solution. Agent F was obtained.
実施例11 電着塗料組成物の製造
 ステンレス容器に、イオン交換水1394部、製造例3-2で調製した樹脂エマルション(2)560部、製造例5で調製した顔料分散ペースト41部部を加え、その後40℃で16時間エージングした。
 次いで、製造例16-1で調製した添加剤Aを、その固形分量がカチオン電着塗料組成物の固形分質量の10ppmとなる量で添加して、カチオン電着塗料組成物を調製した。
Example 11 Production of electrodeposition coating composition 1394 parts of ion-exchanged water, 560 parts of resin emulsion (2) prepared in Production Example 3-2, and 41 parts of pigment dispersion paste prepared in Production Example 5 were added to a stainless container. , followed by aging at 40° C. for 16 hours.
Next, Additive A prepared in Production Example 16-1 was added in an amount such that the solid content was 10 ppm of the solid content mass of the cationic electrodeposition coating composition to prepare a cationic electrodeposition coating composition.
実施例12~14および比較例11~14
 樹脂エマルションおよび/または添加剤の種類などを下記表4に示すものに変更したこと以外は、実施例11と同様の手順により、カチオン電着塗料組成物を調製した。
Examples 12-14 and Comparative Examples 11-14
A cationic electrodeposition coating composition was prepared in the same manner as in Example 11, except that the types of resin emulsion and/or additives were changed to those shown in Table 4 below.
 実施例および比較例で調製したカチオン電着塗料組成物を用いて、下記評価を行った。結果を表4に示した。 The following evaluations were performed using the cationic electrodeposition paint compositions prepared in Examples and Comparative Examples. Table 4 shows the results.
[塗膜の評価]
外観(表面粗さRa)およびエッジ防錆性評価
 上記実施例1~7および比較例1~5の評価で実施した「(1)外観評価」および「(2)エッジ部防錆性評価」と同様の手順および評価項目により、評価した。評価結果を下記表4に示す。
[Evaluation of coating film]
Appearance (Surface Roughness Ra) and Edge Rust Prevention Evaluation “(1) Appearance evaluation” and “(2) Edge rust prevention evaluation” performed in the evaluations of Examples 1 to 7 and Comparative Examples 1 to 5 above. It was evaluated by the same procedures and evaluation items. The evaluation results are shown in Table 4 below.
樹脂エマルションに対する安定性評価
 実施例11~14および比較例11~14のカチオン電着塗料組成物の調製で用いた樹脂エマルション10部に対して、各実施例または比較例で用いた添加剤A~Fいずれかを0.3部加えて混合した。得られた混合物を40℃で24時間静置した後、下記基準で目視評価を行った。
評価基準
〇:分離発生が確認されない
×:分離発生が確認される
Stability Evaluation for Resin Emulsion Additives A to 0.3 part of either F was added and mixed. After the obtained mixture was allowed to stand at 40° C. for 24 hours, it was visually evaluated according to the following criteria.
Evaluation criteria 〇: Separation is not confirmed ×: Separation is confirmed
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 実施例11、12および14は、前記一般式(X)により疎水化したポリアミジン化合物を用いたカチオン電着塗料組成物を用いた例であり、実施例13はニトリル基の環化により疎水化したポリアミジン化合物を用いたカチオン電着塗料組成物を用いた例であり、共に表面粗さRaやエッジ部防錆性は優れている。このポリアミジン化合物の疎水化変性体は、樹脂エマルションの安定化も目指すもので、樹脂エマルションに対する安定性評価も行い、実施例11~14は安定性も優れている。 Examples 11, 12 and 14 are examples using a cationic electrodeposition coating composition using a polyamidine compound hydrophobized by the general formula (X), and Example 13 is hydrophobized by cyclization of nitrile groups. This is an example using a cationic electrodeposition coating composition using a polyamidine compound, and both are excellent in surface roughness Ra and edge rust prevention. This hydrophobized modified polyamidine compound also aims at stabilizing the resin emulsion, and the stability to the resin emulsion was also evaluated, and Examples 11 to 14 were also excellent in stability.
 比較例11~14は、添加剤C~Fを用いた例である。比較例11の添加剤Cは、WO2022/189111記載のポリビニルアルコール内包カチオン性マイクロゲルに相当する添加剤である。そして比較例11は、上記添加剤Cを、カチオン電着塗料組成物におけるエッジ保護剤として用いた例である。比較例12の添加剤Dは、WO2022/128359記載のアルコキシル化ポリエチレンイミンに相当する添加剤である。そして比較例12は、上記添加剤Dを、カチオン電着塗料組成物におけるエッジ部防錆剤として用いた例である。比較例13の添加剤Eはカチオン性マイクロゲルであり、そして比較例13は添加剤E(カチオン性マイクロゲル)をエッジ部防錆剤として用いた例である。比較例14の添加剤Fは、ポリビニルポリアミド/ポリアミン共重合体であり、そして比較例14は添加剤F(ポリビニルポリアミド/ポリアミン共重合体)をエッジ部防錆剤として用いた例である。比較例11~14は、いずれにおいても、エッジ部防錆性および表面平滑性の両立は達成できなかった。また、樹脂エマルション中における安定性が劣るものも多かった。 Comparative Examples 11 to 14 are examples using additives C to F. Additive C of Comparative Example 11 is an additive corresponding to the polyvinyl alcohol-encapsulating cationic microgel described in WO2022/189111. Comparative Example 11 is an example in which the additive C was used as an edge protective agent in a cationic electrodeposition coating composition. Additive D in Comparative Example 12 is an additive corresponding to the alkoxylated polyethyleneimine described in WO 2022/128359. Comparative Example 12 is an example in which the additive D is used as an edge antirust agent in a cationic electrodeposition coating composition. Additive E in Comparative Example 13 is a cationic microgel, and Comparative Example 13 is an example in which Additive E (cationic microgel) is used as an edge portion rust inhibitor. Additive F in Comparative Example 14 is a polyvinyl polyamide/polyamine copolymer, and Comparative Example 14 is an example in which Additive F (polyvinyl polyamide/polyamine copolymer) is used as an edge rust inhibitor. None of Comparative Examples 11 to 14 could achieve both edge rust prevention and surface smoothness. In addition, many of them have poor stability in resin emulsions.
 本発明のカチオン電着塗料組成物によれば、防錆性、特にエッジ部防錆性および外観に優れる塗膜が得られる。そのため、本発明のカチオン電着塗料組成物は、エッジ部を備える被塗物の塗装に適している。また、本発明のカチオン電着塗料組成物は、塗料の安定性も優れている。 According to the cationic electrodeposition coating composition of the present invention, it is possible to obtain a coating film that is excellent in rust resistance, especially edge rust resistance, and appearance. Therefore, the cationic electrodeposition coating composition of the present invention is suitable for coating objects having edges. In addition, the cationic electrodeposition coating composition of the present invention is excellent in coating stability.
以下の態様も本発明に含まれる:
[1]
 アミン化エポキシ樹脂(A)と、
 ブロックイソシアネート硬化剤(B)と、
 顔料(C)と、
 ポリアミジン化合物またはその疎水化変性体(D)と、を含み、
 前記ポリアミジン化合物またはその疎水化変性体(D)は、下記一般式(I):
Figure JPOXMLDOC01-appb-C000020
(式中、RおよびRはそれぞれ独立して、水素原子または炭素数1~3の炭化水素基であり、Xはアニオンである。)
で表される構成単位を有する、カチオン電着塗料組成物。
[2]
 前記ポリアミジン化合物の疎水化変性体が、構成単位(I)に加えて、不飽和ニトリルに由来する環化構造単位または以下の一般式(X):
Figure JPOXMLDOC01-appb-C000021

(式中、RおよびRはそれぞれ独立して、水素原子または炭素数1~3の炭化水素基であり、Rは置換または非置換の直鎖状または分枝状の炭素数3~12のアルキル基、または、置換または非置換の炭素数6~12の芳香族基のいずれかを少なくとも含む、疎水性構成単位である。)
で表される構造単位を有する、[1]に記載のカチオン電着塗料組成物。
[3]
 前記ポリアミジン化合物またはその疎水化変性体(D)の固形分質量は、前記カチオン電着塗料組成物の固形分質量の0.2ppm以上1,200ppm以下である、[1]または[2]に記載のカチオン電着塗料組成物。
[4]
 前記ポリアミジン化合物またはその疎水化変性体(D)の重量平均分子量は、5万以上である、[1]~[3]のいずれかに記載のカチオン電着塗料組成物。
[5]
 前記顔料(C)は、体質顔料を含む、[1]~[4]のいずれかに記載のカチオン電着塗料組成物。
[6]
 前記カチオン電着塗料組成物は、有機スズ化合物を含まないか、あるいは、有機スズ化合物の含有量が、0.25質量%以下である、[1]~[5]のいずれかにに記載のカチオン電着塗料組成物。
[7]
 前記アミン化エポキシ樹脂(A)が、アミン化合物とエポキシ樹脂を反応させることで得られるアミン化エポキシ樹脂であり、
 前記アミン化合物が、第1アミンと第2アミンとの2種類の組合せであり、
 前記第1アミンが、式:
 NH-(CH)n-NR1112
(式中、R11およびR12は、同一または異なって、末端に水酸基を有してもよい炭素数1~6のアルキル基を表し、nは2~4の整数を表す。)
を有し、
 前記第2アミンが式:
 R1314NH
(式中、R13およびR14は、同一または異なって、末端に水酸基を有する炭素数1~4のアルキル基を表す。)
を有する、か、または
 前記アミン化合物は、ケチミン化合物およびジケチミン化合物からなる群から選択される1種または2種以上を含む、
[1]~[6]のいずれかに記載のカチオン電着塗料組成物。
[8]
 被塗物と、
 前記被塗物上に、[1]~[7]のいずれかに記載のカチオン電着塗料組成物により形成された電着塗膜と、を有する電着塗装物。
[9]
 [1]~[7]のいずれかに記載のカチオン電着塗料組成物に被塗物を浸漬した後、前記被塗物と対極との間に電圧を印加して、前記被塗物に未硬化の電着塗膜を形成する工程と、
 前記未硬化の電着塗膜を75℃以上200℃以下の温度で加熱して、硬化された電着塗膜を得る工程と、を備える、電着塗装物の製造方法。
[10]
 被塗物に電着前処理剤を付与する工程と、
 カチオン電着塗料組成物に、前記電着前処理剤が付与された前記被塗物を浸漬し、次いで、前記被塗物と対極との間に電圧を印加して、前記被塗物に未硬化の電着塗膜を形成する工程と、
 前記未硬化の電着塗膜を75℃以上200℃以下の温度で加熱して、硬化された電着塗膜を得る工程と、を備え、
 前記カチオン電着塗料組成物は、アミン化エポキシ樹脂(A)と、ブロックイソシアネート硬化剤(B)と、顔料(C)と、ポリアミジン化合物またはその疎水化変性体(D)と、を含み、
 前記ポリアミジン化合物またはその疎水化変性体(D)は、下記一般式:
Figure JPOXMLDOC01-appb-C000022
(式中、RおよびRは、それぞれ独立して、水素原子または炭素数1~3の炭化水素基であり、Xはアニオンである。)
で表される構成単位を有する、電着塗装物の製造方法。
The following aspects are also included in the invention:
[1]
an aminated epoxy resin (A);
a blocked isocyanate curing agent (B);
a pigment (C);
A polyamidine compound or a hydrophobized modified product thereof (D),
The polyamidine compound or its hydrophobized modified product (D) has the following general formula (I):
Figure JPOXMLDOC01-appb-C000020
(In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and X is an anion.)
A cationic electrodeposition coating composition having a structural unit represented by
[2]
In addition to the structural unit (I), the hydrophobized modified form of the polyamidine compound has a cyclic structural unit derived from an unsaturated nitrile or the following general formula (X):
Figure JPOXMLDOC01-appb-C000021

(In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and R 3 is a substituted or unsubstituted linear or branched chain having 3 to 3 carbon atoms. It is a hydrophobic structural unit containing at least one of 12 alkyl groups or a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms.)
The cationic electrodeposition coating composition according to [1], which has a structural unit represented by
[3]
[1] or [2], wherein the solid content of the polyamidine compound or its hydrophobized modified product (D) is 0.2 ppm or more and 1,200 ppm or less of the solid content of the cationic electrodeposition coating composition. cationic electrodeposition coating composition.
[4]
The cationic electrodeposition coating composition according to any one of [1] to [3], wherein the polyamidine compound or its hydrophobized modified product (D) has a weight average molecular weight of 50,000 or more.
[5]
The cationic electrodeposition coating composition according to any one of [1] to [4], wherein the pigment (C) contains an extender pigment.
[6]
The cationic electrodeposition coating composition according to any one of [1] to [5], wherein the composition does not contain an organic tin compound, or the content of the organic tin compound is 0.25% by mass or less. Cationic electrodeposition coating composition.
[7]
The aminated epoxy resin (A) is an aminated epoxy resin obtained by reacting an amine compound with an epoxy resin,
the amine compound is a combination of two types of primary amine and secondary amine;
The primary amine has the formula:
NH 2 —(CH 2 )n—NR 11 R 12
(In the formula, R 11 and R 12 are the same or different and represent an alkyl group having 1 to 6 carbon atoms which may have a terminal hydroxyl group, and n represents an integer of 2 to 4.)
has
wherein said secondary amine has the formula:
R13R14NH _
(In the formula, R 13 and R 14 are the same or different and represent an alkyl group having 1 to 4 carbon atoms and having a terminal hydroxyl group.)
or the amine compound comprises one or more selected from the group consisting of ketimine compounds and diketimine compounds,
The cationic electrodeposition coating composition according to any one of [1] to [6].
[8]
an object to be coated;
An electrodeposition-coated article having, on the article to be coated, an electrodeposition coating film formed from the cationic electrodeposition coating composition according to any one of [1] to [7].
[9]
After immersing the article to be coated in the cationic electrodeposition coating composition according to any one of [1] to [7], a voltage is applied between the article to be coated and the counter electrode to remove the untreated material from the article to be coated. a step of forming a cured electrodeposition coating;
and heating the uncured electrodeposition coating at a temperature of 75° C. or more and 200° C. or less to obtain a cured electrodeposition coating.
[10]
a step of applying an electrodeposition pretreatment agent to the object to be coated;
The article to be coated to which the pretreatment agent for electrodeposition has been applied is immersed in the cationic electrodeposition coating composition, and then a voltage is applied between the article to be coated and a counter electrode to remove the uncoated material from the article to be coated. a step of forming a cured electrodeposition coating;
a step of heating the uncured electrodeposition coating film at a temperature of 75° C. or more and 200° C. or less to obtain a cured electrodeposition coating film;
The cationic electrodeposition coating composition contains an aminated epoxy resin (A), a blocked isocyanate curing agent (B), a pigment (C), and a polyamidine compound or a hydrophobized modified product thereof (D),
The polyamidine compound or its hydrophobized modified product (D) has the following general formula:
Figure JPOXMLDOC01-appb-C000022
(In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and X is an anion.)
A method for producing an electrodeposition coated product having a structural unit represented by

Claims (10)

  1.  アミン化エポキシ樹脂(A)と、
     ブロックイソシアネート硬化剤(B)と、
     顔料(C)と、
     ポリアミジン化合物またはその疎水化変性体(D)と、を含み、
     前記ポリアミジン化合物またはその疎水化変性体(D)は、下記一般式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、RおよびRはそれぞれ独立して、水素原子または炭素数1~3の炭化水素基であり、Xはアニオンである。)
    で表される構成単位を有する、カチオン電着塗料組成物。
    an aminated epoxy resin (A);
    a blocked isocyanate curing agent (B);
    a pigment (C);
    A polyamidine compound or a hydrophobized modified product thereof (D),
    The polyamidine compound or its hydrophobized modified product (D) has the following general formula (I):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and X is an anion.)
    A cationic electrodeposition coating composition having a structural unit represented by
  2.  前記ポリアミジン化合物の疎水化変性体が、構成単位(I)に加えて、不飽和ニトリルに由来する環化構造単位または以下の一般式(X):
    Figure JPOXMLDOC01-appb-C000002

    (式中、RおよびRはそれぞれ独立して、水素原子または炭素数1~3の炭化水素基であり、Rは置換または非置換の直鎖状または分枝状の炭素数3~12のアルキル基、または、置換または非置換の炭素数6~12の芳香族基のいずれかを少なくとも含む、疎水性構成単位である。)
    で表される構造単位を有する、請求項1に記載のカチオン電着塗料組成物。
    In addition to the structural unit (I), the hydrophobized modified form of the polyamidine compound has a cyclic structural unit derived from an unsaturated nitrile or the following general formula (X):
    Figure JPOXMLDOC01-appb-C000002

    (In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and R 3 is a substituted or unsubstituted linear or branched chain having 3 to 3 carbon atoms. It is a hydrophobic structural unit containing at least one of 12 alkyl groups or a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms.)
    The cationic electrodeposition coating composition according to claim 1, having a structural unit represented by
  3.  前記ポリアミジン化合物またはその疎水化変性体(D)の固形分質量は、前記カチオン電着塗料組成物の固形分質量の0.2ppm以上1,200ppm以下である、請求項1または2に記載のカチオン電着塗料組成物。 3. The cation according to claim 1 or 2, wherein the polyamidine compound or its hydrophobized modified product (D) has a solid content mass of 0.2 ppm or more and 1,200 ppm or less of the solid content mass of the cationic electrodeposition coating composition. Electrodeposition paint composition.
  4.  前記ポリアミジン化合物またはその疎水化変性体(D)の重量平均分子量は、5万以上である、請求項1または2に記載のカチオン電着塗料組成物。 The cationic electrodeposition coating composition according to claim 1 or 2, wherein the polyamidine compound or its hydrophobized modified product (D) has a weight average molecular weight of 50,000 or more.
  5.  前記顔料(C)は、体質顔料を含む、請求項1または2に記載のカチオン電着塗料組成物。 The cationic electrodeposition coating composition according to claim 1 or 2, wherein the pigment (C) contains an extender pigment.
  6.  前記カチオン電着塗料組成物は、有機スズ化合物を含まないか、あるいは、有機スズ化合物の含有量が、0.25質量%以下である、請求項1または2に記載のカチオン電着塗料組成物。 3. The cationic electrodeposition coating composition according to claim 1, wherein the cationic electrodeposition coating composition does not contain an organic tin compound, or the content of the organic tin compound is 0.25% by mass or less. .
  7.  前記アミン化エポキシ樹脂(A)が、アミン化合物とエポキシ樹脂を反応させることで得られるアミン化エポキシ樹脂であり、
     前記アミン化合物が、第1アミンと第2アミンとの2種類の組合せであり、
     前記第1アミンが、式:
     NH-(CH)n-NR1112
    (式中、R11およびR12は、同一または異なって、末端に水酸基を有してもよい炭素数1~6のアルキル基を表し、nは2~4の整数を表す。)
    を有し、
     前記第2アミンが式:
     R1314NH
    (式中、R13およびR14は、同一または異なって、末端に水酸基を有する炭素数1~4のアルキル基を表す。)
    を有する、か、または
     前記アミン化合物は、ケチミン化合物およびジケチミン化合物からなる群から選択される1種または2種以上を含む、
    請求項1または2に記載のカチオン電着塗料組成物。
    The aminated epoxy resin (A) is an aminated epoxy resin obtained by reacting an amine compound with an epoxy resin,
    the amine compound is a combination of two types of primary amine and secondary amine;
    The primary amine has the formula:
    NH 2 —(CH 2 )n—NR 11 R 12
    (In the formula, R 11 and R 12 are the same or different and represent an alkyl group having 1 to 6 carbon atoms which may have a terminal hydroxyl group, and n represents an integer of 2 to 4.)
    has
    wherein said secondary amine has the formula:
    R13R14NH _
    (In the formula, R 13 and R 14 are the same or different and represent an alkyl group having 1 to 4 carbon atoms and having a terminal hydroxyl group.)
    or the amine compound comprises one or more selected from the group consisting of ketimine compounds and diketimine compounds,
    The cationic electrodeposition coating composition according to claim 1 or 2.
  8.  被塗物と、
     前記被塗物上に、請求項1または2に記載のカチオン電着塗料組成物により形成された電着塗膜と、を有する電着塗装物。
    an object to be coated;
    An electrodeposition-coated article comprising an electrodeposition coating film formed from the cationic electrodeposition coating composition according to claim 1 or 2 on the article to be coated.
  9.  請求項1または2に記載のカチオン電着塗料組成物に被塗物を浸漬した後、前記被塗物と対極との間に電圧を印加して、前記被塗物に未硬化の電着塗膜を形成する工程と、
     前記未硬化の電着塗膜を75℃以上200℃以下の温度で加熱して、硬化された電着塗膜を得る工程と、を備える、電着塗装物の製造方法。
    After immersing an object to be coated in the cationic electrodeposition coating composition according to claim 1 or 2, a voltage is applied between the object to be coated and the counter electrode to apply an uncured electrodeposition coating to the object to be coated. forming a membrane;
    and heating the uncured electrodeposition coating at a temperature of 75° C. or more and 200° C. or less to obtain a cured electrodeposition coating.
  10.  被塗物に電着前処理剤を付与する工程と、
     カチオン電着塗料組成物に、前記電着前処理剤が付与された前記被塗物を浸漬し、次いで、前記被塗物と対極との間に電圧を印加して、前記被塗物に未硬化の電着塗膜を形成する工程と、
     前記未硬化の電着塗膜を75℃以上200℃以下の温度で加熱して、硬化された電着塗膜を得る工程と、を備え、
     前記カチオン電着塗料組成物は、アミン化エポキシ樹脂(A)と、ブロックイソシアネート硬化剤(B)と、顔料(C)と、ポリアミジン化合物またはその疎水化変性体(D)と、を含み、
     前記ポリアミジン化合物またはその疎水化変性体(D)は、下記一般式:
    Figure JPOXMLDOC01-appb-C000003
    (式中、RおよびRは、それぞれ独立して、水素原子または炭素数1~3の炭化水素基であり、Xはアニオンである。)
    で表される構成単位を有する、電着塗装物の製造方法。
    a step of applying an electrodeposition pretreatment agent to the object to be coated;
    The article to be coated to which the pretreatment agent for electrodeposition has been applied is immersed in the cationic electrodeposition coating composition, and then a voltage is applied between the article to be coated and a counter electrode to remove the uncoated material from the article to be coated. a step of forming a cured electrodeposition coating;
    a step of heating the uncured electrodeposition coating film at a temperature of 75° C. or more and 200° C. or less to obtain a cured electrodeposition coating film;
    The cationic electrodeposition coating composition contains an aminated epoxy resin (A), a blocked isocyanate curing agent (B), a pigment (C), and a polyamidine compound or a hydrophobized modified product thereof (D),
    The polyamidine compound or its hydrophobized modified product (D) has the following general formula:
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and X is an anion.)
    A method for producing an electrodeposition coated product having a structural unit represented by
PCT/JP2022/046966 2021-12-22 2022-12-20 Cationic electrodeposition coating composition, electrodeposition coated product, and method for producing electrodeposition coated product WO2023120540A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023536560A JP7429332B2 (en) 2021-12-22 2022-12-20 Cationic electrodeposition coating composition, electrodeposition coating, and method for producing electrodeposition coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-208151 2021-12-22
JP2021208151 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023120540A1 true WO2023120540A1 (en) 2023-06-29

Family

ID=86902550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046966 WO2023120540A1 (en) 2021-12-22 2022-12-20 Cationic electrodeposition coating composition, electrodeposition coated product, and method for producing electrodeposition coated product

Country Status (2)

Country Link
JP (1) JP7429332B2 (en)
WO (1) WO2023120540A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026530A (en) * 1998-07-09 2000-01-25 Mitsubishi Chemicals Corp Polymer of cyclic amidine structure, production and use thereof
JP2000026790A (en) * 1998-07-09 2000-01-25 Mitsubishi Chemicals Corp Polymer composition for coating and its manufacture
JP2011524934A (en) * 2008-06-19 2011-09-08 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrodeposition composition and method
WO2020262549A1 (en) * 2019-06-28 2020-12-30 関西ペイント株式会社 Cationic electrodeposition paint composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026530A (en) * 1998-07-09 2000-01-25 Mitsubishi Chemicals Corp Polymer of cyclic amidine structure, production and use thereof
JP2000026790A (en) * 1998-07-09 2000-01-25 Mitsubishi Chemicals Corp Polymer composition for coating and its manufacture
JP2011524934A (en) * 2008-06-19 2011-09-08 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrodeposition composition and method
WO2020262549A1 (en) * 2019-06-28 2020-12-30 関西ペイント株式会社 Cationic electrodeposition paint composition

Also Published As

Publication number Publication date
JP7429332B2 (en) 2024-02-07
JPWO2023120540A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
JP6608463B2 (en) Method for producing cationic electrodeposition coating composition
JP6441126B2 (en) Method for preparing cationic electrodeposition coating composition
JP5814828B2 (en) Cationic electrodeposition coating composition
JP2008184620A (en) Method for forming bilayer paint film
WO2016143707A1 (en) Cationic electrodeposition coating composition
US20120024703A1 (en) Compositions useful for electrocoating metal substrates and electrodeposition processes using the coatings
EP3354701B1 (en) Method for preparing cationic electrodeposition coating composition
JP2018159031A (en) Cationic electrodeposition paint composition
JP7471151B2 (en) Manufacturing method of epoxy viscosifier for cationic electrodeposition paint
JP7429332B2 (en) Cationic electrodeposition coating composition, electrodeposition coating, and method for producing electrodeposition coating
WO2022014277A1 (en) Cationic electrodeposition coating composition
JP2015187199A (en) electrodeposition coating composition
JP5996338B2 (en) Electrodeposition coating composition
JP6406848B2 (en) Electrodeposition coating composition
JP2022183490A (en) Cationic electrodeposition coating composition, electrodeposited material and method for producing electrodeposited material
JP2022129794A (en) Cationic electro-deposition coating composition
JP2008231452A (en) Method for depositing multilayer coating film
JP2002356645A (en) Lead-less cationic electrodeposition coating composition
JP6615552B2 (en) Cationic electrodeposition coating composition
JP6719185B2 (en) Method for preparing cationic electrodeposition coating composition
JP4236253B2 (en) Cationic electrodeposition coating composition
WO2022092288A1 (en) Cationic electrodeposition coating composition
JP2022129797A (en) Cationic electro-deposition coating composition
JP2022129791A (en) Cationic electro-deposition coating composition
JP2024016478A (en) Cationic electrodeposition coating composition, cationic electrodeposition coating film and coating method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023536560

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911242

Country of ref document: EP

Kind code of ref document: A1