WO2023119684A1 - Method and device for producing semiconductor crystal wafer - Google Patents

Method and device for producing semiconductor crystal wafer Download PDF

Info

Publication number
WO2023119684A1
WO2023119684A1 PCT/JP2022/020658 JP2022020658W WO2023119684A1 WO 2023119684 A1 WO2023119684 A1 WO 2023119684A1 JP 2022020658 W JP2022020658 W JP 2022020658W WO 2023119684 A1 WO2023119684 A1 WO 2023119684A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor crystal
wafer
wafers
semiconductor
grindstone
Prior art date
Application number
PCT/JP2022/020658
Other languages
French (fr)
Japanese (ja)
Inventor
愼介 酒井
哲也 千葉
Original Assignee
有限会社サクセス
有限会社ドライケミカルズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021205896A external-priority patent/JP7041932B1/en
Application filed by 有限会社サクセス, 有限会社ドライケミカルズ filed Critical 有限会社サクセス
Publication of WO2023119684A1 publication Critical patent/WO2023119684A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/02Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/04Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor involving a rotary work-table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method of manufacturing a semiconductor crystal wafer, in which the surface of a wafer sliced from a semiconductor crystal ingot ground into a cylindrical shape is subjected to high-precision grinding.
  • a mass of crystal-grown single-crystal SiC is processed into a columnar ingot, as shown in Patent Document 1 below.
  • the process-affected layer removal process includes a process-affected layer removal process for removing the process-affected layer introduced into the SiC wafer in the preceding process.
  • the mechanical action of the polishing pad and the chemical reaction of the slurry A SiC wafer manufacturing method is known that includes a chemical mechanical polishing (CMP) process in which polishing is performed using a combination of various effects.
  • CMP chemical mechanical polishing
  • an object of the present invention is to provide a semiconductor crystal wafer manufacturing method and manufacturing apparatus that can easily and reliably manufacture high-quality semiconductor crystal wafers.
  • a method for manufacturing a semiconductor crystal wafer according to a first aspect of the invention is a method for manufacturing a semiconductor crystal wafer by cutting a wafer into slices from a semiconductor crystal ingot ground into a cylindrical shape, a cutting step of cutting the semiconductor crystal ingot into slices with a plurality of wires to obtain semiconductor crystal wafers; a waviness removing step of removing waviness on one surface of the semiconductor wafer cut into slices by the cutting step; In the waviness removing step, two of the plurality of semiconductor crystal wafers cut in the cutting step are taken as a pair, and a flat grindstone having both surfaces to be ground is sandwiched from both sides, and the pair of semiconductor crystal wafers and the flat grindstone are sandwiched from both sides. By sliding either one or both of and, undulations on one surface of each of the pair of semiconductor wafers are removed.
  • a semiconductor crystal ingot is precisely sliced by a wire.
  • a pair of a plurality of semiconductor wafers cut into slices is set as one set, and either one or both of the pair of semiconductor crystal wafers and the flat grindstone are placed in a state in which a flat grindstone having grinding surfaces on both sides is sandwiched from both sides.
  • Sliding for example, one or both of rocking and rotating
  • the undulations and streaks of the cut surface can be polished and removed to make it a reference surface, and the loose grinding stone processing that is generally performed in the flattening process, that is, multiple times of the first to fourth times Complicated manufacturing processes such as wrapping can be greatly simplified.
  • the semiconductor crystal wafer manufacturing method of the first invention it is possible to easily and reliably manufacture high-quality semiconductor crystal wafers.
  • a method for manufacturing a semiconductor crystal wafer according to a second aspect of the invention is a method for manufacturing a semiconductor crystal wafer in which wafers are sliced from a semiconductor crystal ingot ground into a cylindrical shape, a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot; a cutting step of obtaining semiconductor crystal wafers by cutting the semiconductor crystal ingot into slices with a plurality of wires arranged in the plurality of grooves formed in the groove processing step; a waviness removing step of removing waviness on one surface of the semiconductor wafer cut into slices by the cutting step; In the waviness removing step, two of the plurality of semiconductor crystal wafers cut in the cutting step are paired and sandwiched from both sides of a flat grindstone having grinding surfaces on both sides, and the flat grindstone is oscillated. It is characterized by removing undulations on each side of a pair of semiconductor wafers.
  • a groove is formed in advance around the entire side surface of the semiconductor crystal ingot, so that the semiconductor crystal ingot is pulled by the wire using the groove as a guide. It can be cut into slices with high accuracy.
  • a pair of a plurality of semiconductor wafers cut into slices is set as one pair, and a flat grindstone having grinding surfaces on both sides is sandwiched from both sides, and the flat grindstone is oscillated to thereby separate each of the pair of semiconductor wafers.
  • One-sided undulation can be removed.
  • the undulations and streaks of the cut surface can be polished and removed to make it a reference surface, and the loose grinding stone processing that is generally performed in the flattening process, that is, multiple times of the first to fourth times Complicated manufacturing processes such as wrapping can be greatly simplified.
  • the semiconductor crystal wafer manufacturing method of the second invention it is possible to easily and reliably manufacture high-quality semiconductor crystal wafers.
  • a semiconductor crystal wafer manufacturing apparatus is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape, a wire saw section for cutting the semiconductor crystal ingot by advancing a plurality of wires while rotating them; a waviness removing unit for removing waviness on one surface of the semiconductor wafer cut into slices by the wire saw unit;
  • the undulation removing unit includes: A flat whetstone with grinding surfaces on both sides, any one of a wafer supporting portion that supports a pair of two semiconductor crystal wafers cut by the wire saw while sandwiching the flat grindstone from both sides; and the flat grindstone and the pair of semiconductor crystal wafers.
  • a sliding mechanism for sliding one or both in the plate surface direction; in a state in which the pair of semiconductor wafers sandwich the flat grindstone from both sides by the wafer supporting portion, and the slide mechanism slides either one or both of the pair of semiconductor crystal wafers and the flat grindstone. undulations on the respective surfaces of the pair of semiconductor wafers are removed.
  • the apparatus realizes the semiconductor crystal wafer manufacturing method of the first invention.
  • the wire saw section cuts the semiconductor crystal ingot into slices with high precision.
  • two of the plurality of semiconductor wafers cut by the wafer supporting portion of the waviness removing portion are grouped into one set, and a flat grindstone having grinding surfaces on both sides can be sandwiched from both sides.
  • a flat grindstone having grinding surfaces on both sides can be sandwiched from both sides.
  • the undulations and streaks of the cut surface can be polished and removed to make it a reference surface, and the loose grinding stone processing that is generally performed in the flattening process, that is, multiple times of the first to fourth times Complicated manufacturing processes such as wrapping can be greatly simplified.
  • the semiconductor crystal wafer manufacturing apparatus of the third invention it is possible to actually manufacture high-quality semiconductor crystal wafers easily and reliably.
  • a semiconductor crystal wafer manufacturing apparatus is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape, a drum grindstone for forming a plurality of grooves around the entire side surface of the semiconductor crystal ingot, the groove processing drum grindstone having a side surface formed with a plurality of protrusions corresponding to the plurality of grooves; a wire saw section for advancing and cutting a plurality of wires arranged in the plurality of grooves while rotating the semiconductor crystal ingot in which a plurality of grooves extending around the entire side surface are formed by the drum grindstone; a waviness removing unit for removing waviness on one surface of the semiconductor wafer cut into slices by the wire saw unit;
  • the undulation removing unit includes: A flat whetstone with grinding surfaces on both sides, a swing mechanism for swinging the flat grindstone in the direction of the plate surface; and a wafer supporting part for supporting two of the plurality of semiconductor crystal wafer
  • the semiconductor crystal wafer manufacturing apparatus of the fourth aspect of the invention is an apparatus for realizing the semiconductor crystal wafer manufacturing method of the second aspect of the invention, specifically, a grooving drum grindstone having a plurality of protrusions formed on its side surface. Thus, a plurality of concave grooves are formed around the entire side surface of the semiconductor crystal ingot.
  • the wires arranged in the plurality of grooves are rotated and advanced by the wire saw section, so that the semiconductor crystal ingot can be cut into slices with high precision by the wires using the grooves as guides.
  • two of the plurality of semiconductor wafers cut by the wafer supporting portion of the waviness removing portion are grouped into one set, and a flat whetstone having grinding surfaces on both sides can be sandwiched from both sides.
  • a flat whetstone having grinding surfaces on both sides can be sandwiched from both sides.
  • the undulations and streaks of the cut surface can be polished and removed to make it a reference surface, and the loose grinding stone processing that is generally performed in the flattening process, that is, multiple times of the first to fourth times Complicated manufacturing processes such as wrapping can be greatly simplified.
  • the semiconductor crystal wafer manufacturing apparatus of the fourth invention it is possible to actually manufacture high-quality semiconductor crystal wafers easily and reliably.
  • FIG. 4 is a flow chart showing the overall steps of a method for manufacturing a SiC wafer (semiconductor crystal wafer) according to the present embodiment
  • FIG. 2 is an explanatory diagram showing the contents of a groove processing step and a cutting step in the method of manufacturing the SiC wafer of FIG. 1
  • FIG. 2 is an explanatory view showing the content of a waviness removal step in the method of manufacturing the SiC wafer of FIG. 1
  • FIG. 2 is an explanatory diagram showing the contents of a first surface processing step and a second surface processing step in the method of manufacturing the SiC wafer of FIG. 1
  • FIG. 2 is an explanatory view showing a modification of the waviness removing step in the method of manufacturing the SiC wafer of FIG. 1;
  • a SiC wafer which is a semiconductor crystal wafer, is produced by slicing a SiC ingot ground into a cylindrical shape and removing undulation from one surface of the wafer. , comprising a grooving step (STEP 110/FIG. 1), a cutting step (STEP 120/FIG. 1), a waviness removing step (STEP 130/FIG. 1), and a first surface machining step (STEP 140/FIG. 1). and a second face machining step (STEP 150/FIG. 1).
  • a cylindrical SiC ingot 10 obtained by determining the crystal orientation and applying cylindrical grinding to a pre-crystallized SiC crystal in the ingot processing step is prepared. .
  • a plurality of grooves 11 are formed around the entire side surface of the SiC ingot 10 .
  • grooving drum grindstones 20 having convex portions 21 corresponding to the grooves 11 formed on the side surfaces thereof are pressed against the SiC ingot 10 while being rotated on rotating shafts parallel to each other. to form the recessed groove 11 .
  • the SiC ingot 10 (especially the grooves 11) obtained by the grooving process is subjected to non-damage mirror finishing by a chemical treatment method.
  • the SiC ingot 10 is cut into slices by a plurality of wires 31 arranged in the plurality of grooves 11 formed in the groove processing step to obtain SiC wafers 100 .
  • a plurality of wires 31 of a wire saw device 3 (corresponding to the wire saw portion of the present invention), which is a cutting device, are aligned with the plurality of grooves 11 formed in the groove processing step,
  • the SiC ingot 10 is cut into slices by advancing the wire while winding it.
  • the wire 32 circulates through the wire bobbin 31 in which bobbin grooves having the same shape as the plurality of grooves 11 are formed.
  • the SiC ingot 10 can be accurately cut into slices in one operation.
  • the groove 11 is previously formed around the entire side surface of the SiC ingot, and the SiC ingot 10 can be cut into slices with high accuracy by the wire 31 using the groove 11 as a guide. , there is no need to perform the chamfering process again.
  • a waviness removing device 40 (corresponding to the waviness removing section of the present invention) is used.
  • the waviness removing device 40 includes a flat plate grindstone 41 having grinding surfaces on both sides (for example, a diamond flat plate grindstone), and a swing mechanism 42 for swinging the flat plate grindstone 41 in the direction of the plate surface (which also corresponds to the sliding mechanism of the present invention, for example, actuator device, etc.), and a wafer supporting portion 43 that supports two SiC wafers 100 as a pair so as to press against the flat grindstone 41 with the flat grindstone 41 sandwiched from both sides.
  • a flat plate grindstone 41 having grinding surfaces on both sides
  • a swing mechanism 42 for swinging the flat plate grindstone 41 in the direction of the plate surface
  • a wafer supporting portion 43 that supports two SiC wafers 100 as a pair so as to press against the flat grindstone 41 with the flat grindstone 41 sandwiched from both sides.
  • the SiC wafer 100 is housed in the template of the wafer support portion 43 (resin template into which the SiC wafer 100 is fitted) with the polishing surface facing the flat grindstone 41 . pressed.
  • a sponge-like back pad containing water is provided, and the SiC wafer 100 is ground by a flat grindstone in the direction indicated by the arrow in the drawing with an appropriate force. 41 is pressed.
  • the flat plate grindstone 41 is oscillated in the plate surface direction by the oscillating mechanism 42, so that the polishing surfaces 110 of the pair of SiC wafers 100 are simultaneously polished.
  • the ground surface 110 is polished to remove undulations and streaks during cutting, and can be used as a reference surface in the surface processing step to be described later.
  • rocking mechanisms 42 are shown installed in the horizontal direction, but one is a rocking device such as an actuator, and the other is an urging means such as a spring. It may be used as a swing assisting means. Further, the swing mechanism 42 may be installed in the vertical direction instead of or in addition to the horizontal direction (the swing assisting means may also be installed).
  • the polished surface 110 of the SiC wafer 100 is used as a support surface, and the remaining other surface 120 is subjected to mechanical polishing (high-precision grinding). This is because the polished surface 110 of the SiC wafer 100 polished by the waviness removing step of STEP 120 has high smoothness and can be used as a support surface (reference surface).
  • grinding is performed by a mechanical polishing device 50 (ultra-high synthetic high-precision grinding device) that performs mechanical polishing.
  • the mechanical polisher 50 includes a spindle 51 and a diamond grindstone 53 on a platen 52 which is a surface plate.
  • the vacuum porous chuck 54 which is the suction plate of the spindle 51, is sucked and supported.
  • the spindle 51 and the diamond grindstone 53 are rotationally driven by a drive device (not shown), and the spindle 51 is pressed against the diamond grindstone 53 by a compressor (not shown) or the like, whereby the remaining other surface 120 is ground. .
  • the diamond grindstone 53 may be dressed by a dresser or the like.
  • the mechanical polisher 50 may have functional water supply pipes so that a plurality of functional waters can be used during processing, if necessary.
  • one surface 110 (polished surface) is subjected to the first surface processing step with the other surface 120 subjected to high-precision grinding in the first surface processing step as the upper surface.
  • a similar high-precision grinding process is applied.
  • the other surface 120 as the upper surface, it is attracted to the vacuum porous chuck 54 that is the suction plate of the spindle 51, and the one surface 110 is ground with the diamond grindstone 53 with the one surface 110 as the lower surface.
  • dressing may be applied by pressing a dresser or the like against the diamond grindstone 53 as necessary.
  • the polished surface 110 having high flatness obtained by the waviness removal step is attached to the supporting surface (adsorption). surface), mechanical polishing (high-precision grinding) is sequentially applied to the remaining surfaces, so-called transfer can be prevented and a high-quality SiC wafer can be obtained. It is possible to greatly simplify the complicated manufacturing process, such as multiple times of primary to quaternary lapping.
  • the size of the SiC wafer 100 is currently up to 8 inches, and the diameter of each wafer varies depending on the area of the head. It is then set (possibly up to 12 inches) and subjected to the precision grinding process.
  • a chemical mechanical polishing (CMP) process and a wafer cleaning process may be performed as necessary after the series of processes described above.
  • the semiconductor crystal is not limited to SiC, and the semiconductor crystal is not limited to SiC.
  • Other compound semiconductors may be used.
  • the waviness removing device 40 used in the waviness removing step may be changed as shown in FIG.
  • FIG. 5 the same configurations are denoted by the same reference numerals, and the description thereof is omitted.
  • a flat grindstone 41 is connected to one end of a link mechanism 42' (corresponding to the sliding mechanism of the present invention), and is swingable or rockable in the direction of the plate surface by a rotation drive section (not shown) on the other end side. It may be configured to be dynamically rotatable.
  • a crank mechanism may be employed to reciprocate the flat grindstone 41 in the direction of the plate surface, and the flat grindstone 41 may be simply rotated via a gear mechanism instead of the link mechanism 42'. You can let it run.
  • rotation driving means such as a motor (not shown) is operated.
  • the pair of SiC wafers 100 may be oscillatingly rotated by being connected to the rotary shaft via a universal joint 44 (corresponding to the sliding mechanism of the present invention) and pressed.
  • the universal joint 44 may be omitted and the wafer support portion 43 may be simply rotated.
  • a swinging device such as an actuator for swinging may be provided at the end of the wafer supporting portion 43 to simply swing.
  • one or both of the pair of SiC wafers 100 and the flat grindstone 41 are slid (for example, one or both of rocking and rotating) by various sliding mechanisms. to remove the swell.
  • a pretreatment step may be performed.
  • SYMBOLS 1 SiC crystal (semiconductor crystal), 10... SiC ingot (semiconductor crystal ingot), 11... Groove, 20... Grooving drum grindstone, 21... Convex part, 30... Wire saw apparatus (wire saw part), 31...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

The purpose of the present invention is to provide a method and a device for producing a semiconductor crystal wafer that make it possible to easily and reliably produce a semiconductor crystal wafer of high quality. This method is for producing a SiC wafer which is a semiconductor crystal wafer obtained by performing high-precision polishing of the surface of a wafer cut as a slice from a SiC ingot polished into a cylindrical shape. The method comprises a groove processing step (STEP 100 in fig. 1), a cutting step (STEP 110 in fig. 1), an undulation removal step (STEP 120 in fig. 1), a first surface processing step (STEP 130 in fig. 1), and a second surface processing step (STEP 140 in fig. 1).

Description

半導体結晶ウェハの製造方法および製造装置Semiconductor crystal wafer manufacturing method and manufacturing apparatus
 本発明は、円筒形状に研削加工された半導体結晶インゴットからスライス状に切り出したウェハの表面に高精度研削加工を施した半導体結晶ウェハの製造方法に関するものである。 The present invention relates to a method of manufacturing a semiconductor crystal wafer, in which the surface of a wafer sliced from a semiconductor crystal ingot ground into a cylindrical shape is subjected to high-precision grinding.
 従来、この種の半導体結晶ウェハであるSiCウェハの製造方法としては、下記特許文献1に示すように、ウェハ形状形成工程として、結晶成長させた単結晶SiCの塊を円柱状のインゴットに加工するインゴット成形工程と、インゴットの結晶方位を示す目印となるよう、外周の一部に切欠きを形成する結晶方位成形工程と、単結晶SiCのインゴットをスライスして薄円板状のSiCウェハに加工するスライス工程と、修正モース硬度未満の砥粒を用いてSiCウェハを平坦化する平坦化工程と、刻印を形成する刻印形成工程と、外周部を面取りする面取り工程とを含み、次に、加工変質層除去工程として、先行の工程でSiCウェハに導入された加工変質層を除去する加工変質層除去工程を含み、最後に、鏡面研磨工程として、研磨パッドの機械的な作用とスラリーの化学的な作用を併用して研磨を行う化学機械研磨(CMP)工程を含むSiCウェハの製造方法が知られている。 Conventionally, as a method for manufacturing a SiC wafer, which is a semiconductor crystal wafer of this type, as a wafer shape forming step, a mass of crystal-grown single-crystal SiC is processed into a columnar ingot, as shown in Patent Document 1 below. An ingot forming process, a crystal orientation forming process of forming a notch in a part of the outer circumference so as to serve as a mark indicating the crystal orientation of the ingot, and slicing the single crystal SiC ingot and processing it into a thin disc-shaped SiC wafer. a slicing step, a flattening step of flattening the SiC wafer using abrasive grains less than the modified Mohs hardness, a stamp forming step of forming a stamp, and a chamfering step of chamfering the outer peripheral portion, and then processing The process-affected layer removal process includes a process-affected layer removal process for removing the process-affected layer introduced into the SiC wafer in the preceding process. Finally, as a mirror polishing process, the mechanical action of the polishing pad and the chemical reaction of the slurry A SiC wafer manufacturing method is known that includes a chemical mechanical polishing (CMP) process in which polishing is performed using a combination of various effects.
特開2020-15646号公報JP 2020-15646 A
 しかしながら、かかる従来のSiCウェハの製造方法では、製造工程が多く複雑であり、装置構成が複雑となり製造コストが嵩むという問題ある。 However, such a conventional SiC wafer manufacturing method involves a large number of complicated manufacturing steps, and has the problem of complicating the device configuration and increasing the manufacturing cost.
 一方で、製造工程を簡略化した場合には、SiCウェハに要求される品質を安定して得ることが困難となる。 On the other hand, if the manufacturing process is simplified, it will be difficult to stably obtain the quality required for SiC wafers.
 そこで、本発明は、高品質な半導体結晶ウェハを簡易かつ確実に製造することができる半導体結晶ウェハの製造方法および製造装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a semiconductor crystal wafer manufacturing method and manufacturing apparatus that can easily and reliably manufacture high-quality semiconductor crystal wafers.
 第1発明の半導体結晶ウェハの製造方法は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
 前記半導体結晶インゴットを複数のワイヤーによりスライス状に切断して半導体結晶ウェハを得る切断工程と、
 前記切断工程によりスライス状に切断した半導体ウェハに対して、その一面のうねりを除去するうねり除去工程と
を備え、
 前記うねり除去工程は、前記切断工程により切断された複数の半導体結晶ウェハの2枚を一対として、両面が研削面の平板砥石を両側から挟み込んだ状態で、該一対の半導体結晶ウェハと該平板砥石とのいずれか一方または両方を摺動させることにより該一対の半導体ウェハの各一面のうねりを除去することを特徴とする。
A method for manufacturing a semiconductor crystal wafer according to a first aspect of the invention is a method for manufacturing a semiconductor crystal wafer by cutting a wafer into slices from a semiconductor crystal ingot ground into a cylindrical shape,
a cutting step of cutting the semiconductor crystal ingot into slices with a plurality of wires to obtain semiconductor crystal wafers;
a waviness removing step of removing waviness on one surface of the semiconductor wafer cut into slices by the cutting step;
In the waviness removing step, two of the plurality of semiconductor crystal wafers cut in the cutting step are taken as a pair, and a flat grindstone having both surfaces to be ground is sandwiched from both sides, and the pair of semiconductor crystal wafers and the flat grindstone are sandwiched from both sides. By sliding either one or both of and, undulations on one surface of each of the pair of semiconductor wafers are removed.
 第1発明の半導体結晶ウェハの製造方法によれば、まず、ワイヤーにより半導体結晶インゴットを精度よくスライス状に切断する。 According to the method for manufacturing a semiconductor crystal wafer of the first invention, first, a semiconductor crystal ingot is precisely sliced by a wire.
 そして、スライス状に切断した複数の半導体ウェハの2枚を1組として、両面が研削面の平板砥石を両側から挟み込んだ状態で、一対の半導体結晶ウェハと平板砥石とのいずれか一方または両方を摺動(例えば、揺動と回転とのいずれか一方または両方)させることにより一対の半導体ウェハの各一面のうねりを除去することができる。 Then, a pair of a plurality of semiconductor wafers cut into slices is set as one set, and either one or both of the pair of semiconductor crystal wafers and the flat grindstone are placed in a state in which a flat grindstone having grinding surfaces on both sides is sandwiched from both sides. Sliding (for example, one or both of rocking and rotating) can remove waviness on each side of the pair of semiconductor wafers.
 これにより、切断面のうねりや筋を磨き上げて除去して基準面とするすることができ、平坦化工程において一般的に行われている遊離砥石加工、すなわち1次~4次の複数回のラップなど複雑な製造工程を大幅に簡略化することができる。 As a result, the undulations and streaks of the cut surface can be polished and removed to make it a reference surface, and the loose grinding stone processing that is generally performed in the flattening process, that is, multiple times of the first to fourth times Complicated manufacturing processes such as wrapping can be greatly simplified.
 このように、第1発明の半導体結晶ウェハの製造方法によれば、高品質な半導体結晶ウェハを簡易かつ確実に製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing method of the first invention, it is possible to easily and reliably manufacture high-quality semiconductor crystal wafers.
 第2発明の半導体結晶ウェハの製造方法は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
 前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成する溝加工工程と、
 前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーにより前記半導体結晶インゴットをスライス状に切断して半導体結晶ウェハを得る切断工程と、
 前記切断工程によりスライス状に切断した半導体ウェハに対して、その一面のうねりを除去するうねり除去工程と
を備え、
 前記うねり除去工程は、前記切断工程により切断された複数の半導体結晶ウェハの2枚を一対として、両面が研削面の平板砥石を両側から挟み込んだ状態で、該平板砥石を揺動させることにより該一対の半導体ウェハの各一面のうねりを除去することを特徴とする。
A method for manufacturing a semiconductor crystal wafer according to a second aspect of the invention is a method for manufacturing a semiconductor crystal wafer in which wafers are sliced from a semiconductor crystal ingot ground into a cylindrical shape,
a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
a cutting step of obtaining semiconductor crystal wafers by cutting the semiconductor crystal ingot into slices with a plurality of wires arranged in the plurality of grooves formed in the groove processing step;
a waviness removing step of removing waviness on one surface of the semiconductor wafer cut into slices by the cutting step;
In the waviness removing step, two of the plurality of semiconductor crystal wafers cut in the cutting step are paired and sandwiched from both sides of a flat grindstone having grinding surfaces on both sides, and the flat grindstone is oscillated. It is characterized by removing undulations on each side of a pair of semiconductor wafers.
 第2発明の半導体結晶ウェハの製造方法によれば、溝加工工程において、予め半導体結晶インゴットの側面全体に周回する凹溝を形成しておくことで、凹溝をガイドとしてワイヤーにより半導体結晶インゴットを精度よくスライス状に切断することができる。 According to the method for manufacturing a semiconductor crystal wafer of the second aspect of the invention, in the groove processing step, a groove is formed in advance around the entire side surface of the semiconductor crystal ingot, so that the semiconductor crystal ingot is pulled by the wire using the groove as a guide. It can be cut into slices with high accuracy.
 そして、スライス状に切断した複数の半導体ウェハの2枚を1組として、両面が研削面の平板砥石を両側から挟み込んだ状態で、該平板砥石を揺動させることにより該一対の半導体ウェハの各一面のうねりを除去することができる。 Then, a pair of a plurality of semiconductor wafers cut into slices is set as one pair, and a flat grindstone having grinding surfaces on both sides is sandwiched from both sides, and the flat grindstone is oscillated to thereby separate each of the pair of semiconductor wafers. One-sided undulation can be removed.
 これにより、切断面のうねりや筋を磨き上げて除去して基準面とするすることができ、平坦化工程において一般的に行われている遊離砥石加工、すなわち1次~4次の複数回のラップなど複雑な製造工程を大幅に簡略化することができる。 As a result, the undulations and streaks of the cut surface can be polished and removed to make it a reference surface, and the loose grinding stone processing that is generally performed in the flattening process, that is, multiple times of the first to fourth times Complicated manufacturing processes such as wrapping can be greatly simplified.
 このように、第2発明の半導体結晶ウェハの製造方法によれば、高品質な半導体結晶ウェハを簡易かつ確実に製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing method of the second invention, it is possible to easily and reliably manufacture high-quality semiconductor crystal wafers.
 第3発明の半導体結晶ウェハの製造装置は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
 前記半導体結晶インゴットに対して、複数のワイヤーを周回させながら前進させて切断するワイヤーソー部と、
 前記ワイヤーソー部によりスライス状に切断された半導体ウェハに対して、その一面のうねりを除去するうねり除去部と
を備え、
 前記うねり除去部は、
 両面が研削面の平板砥石と、
 前記ワイヤーソー部により切断された複数の半導体結晶ウェハの2枚を一対として、前記平板砥石を両側から挟み込んだ状態で支持するウェハ支持部と
 前記平板砥石と前記一対の半導体結晶ウェハとのいずれか一方または両方を、板面方向において摺動させる摺動機構と、
を有し、前記ウェハ支持部により一対の半導体ウェハが前記平板砥石を両側から挟み込んだ状態で、前記摺動機構により該一対の半導体結晶ウェハと該平板砥石とのいずれか一方または両方を摺動させることで該一対の半導体ウェハの各一面のうねりを除去することを特徴とする。
A semiconductor crystal wafer manufacturing apparatus according to a third aspect of the present invention is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
a wire saw section for cutting the semiconductor crystal ingot by advancing a plurality of wires while rotating them;
a waviness removing unit for removing waviness on one surface of the semiconductor wafer cut into slices by the wire saw unit;
The undulation removing unit includes:
A flat whetstone with grinding surfaces on both sides,
any one of a wafer supporting portion that supports a pair of two semiconductor crystal wafers cut by the wire saw while sandwiching the flat grindstone from both sides; and the flat grindstone and the pair of semiconductor crystal wafers. a sliding mechanism for sliding one or both in the plate surface direction;
in a state in which the pair of semiconductor wafers sandwich the flat grindstone from both sides by the wafer supporting portion, and the slide mechanism slides either one or both of the pair of semiconductor crystal wafers and the flat grindstone. undulations on the respective surfaces of the pair of semiconductor wafers are removed.
 第3発明の半導体結晶ウェハの製造装置によれば、第1発明の半導体結晶ウェハの製造方法を実現する装置である。 According to the semiconductor crystal wafer manufacturing apparatus of the third invention, the apparatus realizes the semiconductor crystal wafer manufacturing method of the first invention.
 まず、ワイヤーソー部により、半導体結晶インゴットをワイヤーで精度よくスライス状に切断する。 First, the wire saw section cuts the semiconductor crystal ingot into slices with high precision.
 次いで、うねり除去部のウェハ支持部により切断した複数の半導体ウェハの2枚を1組として、両面が研削面の平板砥石を両側から挟み込んだ状態とすることができ、この状態で、摺動機構により一対の半導体結晶ウェハと平板砥石とのいずれか一方または両方を摺動(例えば、揺動と回転とのいずれか一方または両方)させることで一対の半導体ウェハの各一面のうねりを除去することができる。 Next, two of the plurality of semiconductor wafers cut by the wafer supporting portion of the waviness removing portion are grouped into one set, and a flat grindstone having grinding surfaces on both sides can be sandwiched from both sides. By sliding one or both of the pair of semiconductor crystal wafers and the flat grindstone (for example, one or both of rocking and rotating) to remove undulations on each side of the pair of semiconductor wafers. can be done.
 これにより、切断面のうねりや筋を磨き上げて除去して基準面とするすることができ、平坦化工程において一般的に行われている遊離砥石加工、すなわち1次~4次の複数回のラップなど複雑な製造工程を大幅に簡略化することができる。 As a result, the undulations and streaks of the cut surface can be polished and removed to make it a reference surface, and the loose grinding stone processing that is generally performed in the flattening process, that is, multiple times of the first to fourth times Complicated manufacturing processes such as wrapping can be greatly simplified.
 このように、第3発明の半導体結晶ウェハの製造装置によれば、実際に高品質な半導体結晶ウェハを簡易かつ確実に製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing apparatus of the third invention, it is possible to actually manufacture high-quality semiconductor crystal wafers easily and reliably.
 第4発明の半導体結晶ウェハの製造装置は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
 前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成するためのドラム砥石であって、該複数の凹溝に対応した複数の凸部が側面に形成された溝加工ドラム砥石と、
 前記ドラム砥石により側面全体に周回する複数の凹溝が形成された前記半導体結晶インゴットに対して、複数の凹溝に配置された複数のワイヤーを周回させながら前進させて切断するワイヤーソー部と、
 前記ワイヤーソー部によりスライス状に切断された半導体ウェハに対して、その一面のうねりを除去するうねり除去部と
を備え、
 前記うねり除去部は、
 両面が研削面の平板砥石と、
 前記平板砥石を板面方向に揺動させる揺動機構と、
 前記ワイヤーソー部により切断された複数の半導体結晶ウェハの2枚を一対として、前記平板砥石を両側から挟み込んだ状態で支持するウェハ支持部と
を有し、前記ウェハ支持部により一対の半導体ウェハが前記平板砥石を両側から挟み込んだ状態で、前記揺動機構により該平板砥石を揺動させることにより該一対の半導体ウェハの各一面のうねりを除去することを特徴とする。
A semiconductor crystal wafer manufacturing apparatus according to a fourth aspect of the present invention is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
a drum grindstone for forming a plurality of grooves around the entire side surface of the semiconductor crystal ingot, the groove processing drum grindstone having a side surface formed with a plurality of protrusions corresponding to the plurality of grooves;
a wire saw section for advancing and cutting a plurality of wires arranged in the plurality of grooves while rotating the semiconductor crystal ingot in which a plurality of grooves extending around the entire side surface are formed by the drum grindstone;
a waviness removing unit for removing waviness on one surface of the semiconductor wafer cut into slices by the wire saw unit;
The undulation removing unit includes:
A flat whetstone with grinding surfaces on both sides,
a swing mechanism for swinging the flat grindstone in the direction of the plate surface;
and a wafer supporting part for supporting two of the plurality of semiconductor crystal wafers cut by the wire saw part as a pair, with the flat grindstone sandwiched from both sides thereof, wherein the wafer supporting part supports the pair of semiconductor wafers. The waviness of each surface of the pair of semiconductor wafers is removed by swinging the flat-plate grindstone by the swing mechanism while the flat-plate grindstone is sandwiched from both sides.
 第4発明の半導体結晶ウェハの製造装置によれば、第2発明の半導体結晶ウェハの製造方法を実現する装置であって、具体的に、複数の凸部が側面に形成された溝加工ドラム砥石により、半導体結晶インゴットの側面全体に周回する複数の凹溝が形成される。 According to the semiconductor crystal wafer manufacturing apparatus of the fourth aspect of the invention, it is an apparatus for realizing the semiconductor crystal wafer manufacturing method of the second aspect of the invention, specifically, a grooving drum grindstone having a plurality of protrusions formed on its side surface. Thus, a plurality of concave grooves are formed around the entire side surface of the semiconductor crystal ingot.
 そして、ワイヤーソー部により、複数の凹溝に配置された複数のワイヤーを周回させながら前進させることで、凹溝をガイドとしてワイヤーにより半導体結晶インゴットを精度よくスライス状に切断することができる。 Then, the wires arranged in the plurality of grooves are rotated and advanced by the wire saw section, so that the semiconductor crystal ingot can be cut into slices with high precision by the wires using the grooves as guides.
 次いで、うねり除去部のウェハ支持部により切断した複数の半導体ウェハの2枚を1組として、両面が研削面の平板砥石を両側から挟み込んだ状態とすることができ、この状態で、揺動機構により平板砥石を揺動させることにより該一対の半導体ウェハの各一面のうねりを除去することができる。 Next, two of the plurality of semiconductor wafers cut by the wafer supporting portion of the waviness removing portion are grouped into one set, and a flat whetstone having grinding surfaces on both sides can be sandwiched from both sides. By oscillating the flat grindstone, the waviness on each side of the pair of semiconductor wafers can be removed.
 これにより、切断面のうねりや筋を磨き上げて除去して基準面とするすることができ、平坦化工程において一般的に行われている遊離砥石加工、すなわち1次~4次の複数回のラップなど複雑な製造工程を大幅に簡略化することができる。 As a result, the undulations and streaks of the cut surface can be polished and removed to make it a reference surface, and the loose grinding stone processing that is generally performed in the flattening process, that is, multiple times of the first to fourth times Complicated manufacturing processes such as wrapping can be greatly simplified.
 このように、第4発明の半導体結晶ウェハの製造装置によれば、実際に高品質な半導体結晶ウェハを簡易かつ確実に製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing apparatus of the fourth invention, it is possible to actually manufacture high-quality semiconductor crystal wafers easily and reliably.
本実施形態のSiCウェハ(半導体結晶ウェハ)の製造方法の工程全体を示すフローチャート。4 is a flow chart showing the overall steps of a method for manufacturing a SiC wafer (semiconductor crystal wafer) according to the present embodiment; 図1のSiCウェハの製造方法における溝加工工程および切断工程の内容を示す説明図。FIG. 2 is an explanatory diagram showing the contents of a groove processing step and a cutting step in the method of manufacturing the SiC wafer of FIG. 1; 図1のSiCウェハの製造方法におけるうねり除去工程の内容を示す説明図。FIG. 2 is an explanatory view showing the content of a waviness removal step in the method of manufacturing the SiC wafer of FIG. 1; 図1のSiCウェハの製造方法における第1面加工工程および第2面加工工程の内容を示す説明図。FIG. 2 is an explanatory diagram showing the contents of a first surface processing step and a second surface processing step in the method of manufacturing the SiC wafer of FIG. 1; 図1のSiCウェハの製造方法におけるうねり除去工程の変更例を示す説明図。FIG. 2 is an explanatory view showing a modification of the waviness removing step in the method of manufacturing the SiC wafer of FIG. 1;
 図1に示すように、本実施形態において、半導体結晶ウェハであるSiCウェハの製造方法は、円筒形状に研削加工されたSiCインゴットからスライス状に切り出したウェハの一面のうねり除去を施したSiCウェハを得る方法であって、溝加工工程(STEP110/図1)と、切断工程(STEP120/図1)と、うねり除去工程(STEP130/図1)と、第1面加工工程(STEP140/図1)と、第2面加工工程(STEP150/図1)とを備える。 As shown in FIG. 1, in the present embodiment, a SiC wafer, which is a semiconductor crystal wafer, is produced by slicing a SiC ingot ground into a cylindrical shape and removing undulation from one surface of the wafer. , comprising a grooving step (STEP 110/FIG. 1), a cutting step (STEP 120/FIG. 1), a waviness removing step (STEP 130/FIG. 1), and a first surface machining step (STEP 140/FIG. 1). and a second face machining step (STEP 150/FIG. 1).
 図2~図5を参照して各工程の詳細および各工程で用いられる装置について説明する。 Details of each step and devices used in each step will be described with reference to FIGS.
 まず、図2に示すSTEP100の溝加工工程では、予め結晶させたSiC結晶に対して、インゴット加工工程において、結晶方位を定めて円筒研削加工を施して得られる円筒形状のSiCインゴット10を準備する。 First, in the grooving step of STEP 100 shown in FIG. 2, a cylindrical SiC ingot 10 obtained by determining the crystal orientation and applying cylindrical grinding to a pre-crystallized SiC crystal in the ingot processing step is prepared. .
 そして、STEP100の溝加工工程では、かかるSiCインゴット10に対して、側面全体に周回する複数の凹溝11を形成する。 Then, in the grooving step of STEP 100 , a plurality of grooves 11 are formed around the entire side surface of the SiC ingot 10 .
 具体的に、STEP100の溝加工工程では、凹溝11に対応した凸部21が側面に形成された溝加工ドラム砥石20を互いに平行な回転軸上でそれぞれ回転させながらSiCインゴット10に圧接することにより凹溝11を形成する。 Specifically, in the grooving step of STEP 100, grooving drum grindstones 20 having convex portions 21 corresponding to the grooves 11 formed on the side surfaces thereof are pressed against the SiC ingot 10 while being rotated on rotating shafts parallel to each other. to form the recessed groove 11 .
 なお、溝加工工程により得られたSiCインゴット10(特に凹溝11)に対して化学処理的手法によりノンダメージの鏡面加工を施すことが望ましい。 It is desirable that the SiC ingot 10 (especially the grooves 11) obtained by the grooving process is subjected to non-damage mirror finishing by a chemical treatment method.
 次に、STEP110の切断工程では、溝加工工程において形成された複数の凹溝11に配置された複数のワイヤー31によりSiCインゴット10をスライス状に切断してSiCウェハ100を得る。 Next, in the cutting step of STEP 110 , the SiC ingot 10 is cut into slices by a plurality of wires 31 arranged in the plurality of grooves 11 formed in the groove processing step to obtain SiC wafers 100 .
 具体的に切断工程では、切断加工装置であるワイヤーソー装置3(本発明のワイヤーソー部に相当する)の複数のワイヤー31を、溝加工工程で形成した複数の凹溝11にそれぞれ合せて、ワイヤーを周回させながら前進させることによりSiCインゴット10をスライス状に切断する。 Specifically, in the cutting step, a plurality of wires 31 of a wire saw device 3 (corresponding to the wire saw portion of the present invention), which is a cutting device, are aligned with the plurality of grooves 11 formed in the groove processing step, The SiC ingot 10 is cut into slices by advancing the wire while winding it.
 このとき、ワイヤーソー装置3の複数のワイヤー32を周回させるワイヤーソーボビン31の側面全体に複数の凸溝21に対応した複数のボビン溝を形成しておくことが好ましい。 At this time, it is preferable to form a plurality of bobbin grooves corresponding to the plurality of convex grooves 21 on the entire side surface of the wire saw bobbin 31 around which the plurality of wires 32 of the wire saw device 3 are wound.
 これにより、複数の凹溝11と同一形状のボビン溝が形成されたワイヤーボビン31を介してワイヤー32が周回することにより、複数の凹溝11に正確に配置された複数のワイヤー32で精度よくSiCインゴット10を1回でスライス状に精度よく切断することができる。 As a result, the wire 32 circulates through the wire bobbin 31 in which bobbin grooves having the same shape as the plurality of grooves 11 are formed. The SiC ingot 10 can be accurately cut into slices in one operation.
 このように、溝加工工程において、予めSiCインゴットの側面全体に周回する凹溝11を形成しておき、凹溝11をガイドとしてワイヤー31によりSiCインゴット10を精度よくスライス状に切断することができ、改めて面取り工程を行う必要がない。 In this way, in the grooving step, the groove 11 is previously formed around the entire side surface of the SiC ingot, and the SiC ingot 10 can be cut into slices with high accuracy by the wire 31 using the groove 11 as a guide. , there is no need to perform the chamfering process again.
 次に、図3に示すように、STEP120のうねり除去工程では、切断工程により得られたSiCウェハ100に対して、その一面のうねりを除去する。 Next, as shown in FIG. 3, in the waviness removal step of STEP 120, waviness on one surface of the SiC wafer 100 obtained by the cutting step is removed.
 具体的にうねり除去工程では、うねり除去装置40(本発明のうねり除去部に相当する)が用いられる。 Specifically, in the waviness removing step, a waviness removing device 40 (corresponding to the waviness removing section of the present invention) is used.
 うねり除去装置40は、両面が研削面の平板砥石41(例えばダイヤモンド平板砥石)と、平板砥石41を板面方向に揺動させる揺動機構42(本発明の摺動機構にも相当する、例えばアクチュエータ装置など)と、SiCウェハ100の2枚を一対として、平板砥石41を両側から挟み込んだ状態で平板砥石41に押圧するように支持するウェハ支持部43とを備える。 The waviness removing device 40 includes a flat plate grindstone 41 having grinding surfaces on both sides (for example, a diamond flat plate grindstone), and a swing mechanism 42 for swinging the flat plate grindstone 41 in the direction of the plate surface (which also corresponds to the sliding mechanism of the present invention, for example, actuator device, etc.), and a wafer supporting portion 43 that supports two SiC wafers 100 as a pair so as to press against the flat grindstone 41 with the flat grindstone 41 sandwiched from both sides.
 ここで、SiCウェハ100は、研磨面を平板砥石41に対向させて、ウェハ支持部43のテンプレート内(SiCウェハ100が嵌まり込む樹脂製のテンプレート)に格納された状態で、平板砥石41に押圧される。 Here, the SiC wafer 100 is housed in the template of the wafer support portion 43 (resin template into which the SiC wafer 100 is fitted) with the polishing surface facing the flat grindstone 41 . pressed.
 このとき、ウェハ支持部43のテンプレート内には、例えば、水分を含ませたスポンジ状のバックパッドが装備されており、図中に矢印で示す方向に、適度な力でSiCウェハ100が平板砥石41に押圧される。 At this time, in the template of the wafer support portion 43, for example, a sponge-like back pad containing water is provided, and the SiC wafer 100 is ground by a flat grindstone in the direction indicated by the arrow in the drawing with an appropriate force. 41 is pressed.
 さらに、このとき、図中に矢印で示すように、平板砥石41が揺動機構42により板面方向に揺動することで、一対のSiCウェハ100のそれぞれの研磨面110が同時に研磨される。 Further, at this time, as indicated by arrows in the drawing, the flat plate grindstone 41 is oscillated in the plate surface direction by the oscillating mechanism 42, so that the polishing surfaces 110 of the pair of SiC wafers 100 are simultaneously polished.
 これにより、研磨面110は、切断時のうねりや筋が磨き上げられて除去され、後述する面加工工程における基準面とするすることができる。 As a result, the ground surface 110 is polished to remove undulations and streaks during cutting, and can be used as a reference surface in the surface processing step to be described later.
 なお、本実施形態では、揺動機構42が横方向に2箇所設置されているように図示しているが、一方をアクチュエータなどの揺動装置とすると共に、他方をばねなどの付勢手段による揺動補助手段としてもよい。また、揺動機構42は横方向に代えて又は加えて縦方向に設置(揺動補助手段も併せて設置)してもよい。 In this embodiment, two rocking mechanisms 42 are shown installed in the horizontal direction, but one is a rocking device such as an actuator, and the other is an urging means such as a spring. It may be used as a swing assisting means. Further, the swing mechanism 42 may be installed in the vertical direction instead of or in addition to the horizontal direction (the swing assisting means may also be installed).
 次に、図4に示すように、STEP130の第1面加工工程では、SiCウェハ100の研磨面110を支持面として、残る他面120にメカニカルポリッシュ(高精度研削加工)を施す。ここで、STEP120のうねり除去工程により研磨されたSiCウェハ100は、その研磨面110が高い平滑性を有するため支持面(基準面)とすることができるためである。 Next, as shown in FIG. 4, in the first surface processing step of STEP 130, the polished surface 110 of the SiC wafer 100 is used as a support surface, and the remaining other surface 120 is subjected to mechanical polishing (high-precision grinding). This is because the polished surface 110 of the SiC wafer 100 polished by the waviness removing step of STEP 120 has high smoothness and can be used as a support surface (reference surface).
 具体的には、第1面加工工程では、メカニカルポリッシュを施すメカニカルポリッシュ装置50(超高合成高精度研削加工装置)により、研削加工を行う。 Specifically, in the first surface machining process, grinding is performed by a mechanical polishing device 50 (ultra-high synthetic high-precision grinding device) that performs mechanical polishing.
 メカニカルポリッシュ装置50は、スピンドル51と、定盤であるプラテン52上のダイアモンド砥石53とを備える。 The mechanical polisher 50 includes a spindle 51 and a diamond grindstone 53 on a platen 52 which is a surface plate.
 まず、ここで研磨面110を上面として、スピンドル51の吸着プレートである真空ポーラスチャック54に吸着させて支持させ、他面120を下面として、ダイアモンド砥石53により他面120を研削加工する。 First, with the polished surface 110 as the upper surface, the vacuum porous chuck 54, which is the suction plate of the spindle 51, is sucked and supported.
 このとき、スピンドル51およびダイアモンド砥石53は、図示しない駆動装置により回転駆動されると共に、図示しないコンプレッサーなどによりスピンドル51がダイアモンド砥石53に押圧されることにより残る他面120に研削加工が施される。 At this time, the spindle 51 and the diamond grindstone 53 are rotationally driven by a drive device (not shown), and the spindle 51 is pressed against the diamond grindstone 53 by a compressor (not shown) or the like, whereby the remaining other surface 120 is ground. .
 なお、研削加工後には、ドレッサー等によりダイアモンド砥石53へのドレッシングが施されてもよい。 After grinding, the diamond grindstone 53 may be dressed by a dresser or the like.
 また、メカニカルポリッシュ装置50は、必要に応じて、加工時に複数の機能水を使用可能なように機能水供給配管を有してもよい。 In addition, the mechanical polisher 50 may have functional water supply pipes so that a plurality of functional waters can be used during processing, if necessary.
 次に、STEP140の第2面加工工程では、第1面加工工程により、高精度研削加工が施された他面120を上面として、一面110(研磨面)に対して、第1面加工工程と同様の高精度研削加工を施す。 Next, in the second surface processing step of STEP 140, one surface 110 (polished surface) is subjected to the first surface processing step with the other surface 120 subjected to high-precision grinding in the first surface processing step as the upper surface. A similar high-precision grinding process is applied.
 すなわち、他面120を上面として、スピンドル51の吸着プレートである真空ポーラスチャック54に吸着させ、一面110を下面として、ダイアモンド砥石53により一面110を研削加工する。 That is, with the other surface 120 as the upper surface, it is attracted to the vacuum porous chuck 54 that is the suction plate of the spindle 51, and the one surface 110 is ground with the diamond grindstone 53 with the one surface 110 as the lower surface.
 この場合にも、必要に応じて、ドレッサー等をダイアモンド砥石53に押圧することによりドレッシングが施されてもよい。 Also in this case, dressing may be applied by pressing a dresser or the like against the diamond grindstone 53 as necessary.
 かかるSTEP130の第1面加工工程およびSTEP140の第2面加工工程のメカニカルポリッシュ(高精度研削加工)処理によれば、うねり除去工程により得られた高い平坦性を有する研磨面110を支持面(吸着面)として、残りの面に順次、メカニカルポリッシュ(高精度研削加工)を施していくことで、いわゆる転写を防止して高品質なSiCウェハを得ることができると共に、従来の遊離砥石加工、すなわち1次~4次の複数回のラップなど複雑な製造工程を大幅に簡略化することができる。 According to the mechanical polishing (high-precision grinding) processing in the first surface processing step of STEP 130 and the second surface processing step of STEP 140, the polished surface 110 having high flatness obtained by the waviness removal step is attached to the supporting surface (adsorption). surface), mechanical polishing (high-precision grinding) is sequentially applied to the remaining surfaces, so-called transfer can be prevented and a high-quality SiC wafer can be obtained. It is possible to greatly simplify the complicated manufacturing process, such as multiple times of primary to quaternary lapping.
 より具体的には、砥石を替えて粗研削や複数回の仕上げ研削を行う必要がなく、例えば、♯30000以上の砥石により直接1回の研削加工により仕上げまで行うことができるため、簡易であるばかりでなく、SiCウェハ100から利用できる真性半導体層を大きく確保するすることができるという優位性がある。 More specifically, there is no need to perform rough grinding or finish grinding multiple times by changing the grindstone. In addition, there is an advantage that a large intrinsic semiconductor layer that can be used from the SiC wafer 100 can be secured.
 なお、STEP130の第1面加工工程およびSTEP140の第2面加工工程の高精度研削加工処理において、SiCウェハ100のサイズは、現在8インチまでであり、それぞれの口径のウェハはヘッドの面積に応じて、セットされ、(12インチまでが可能)高精度研削加工処理が行われる。 In the high-precision grinding process of the first surface processing step of STEP 130 and the second surface processing step of STEP 140, the size of the SiC wafer 100 is currently up to 8 inches, and the diameter of each wafer varies depending on the area of the head. It is then set (possibly up to 12 inches) and subjected to the precision grinding process.
 以上が本実施形態のSiCウェハの製造方法の詳細である。以上、詳しく説明したように、かかる本実施形態のSiCウェハの製造方法によれば、高品質なSiCウェハを簡易かつ確実に製造することができる。 The details of the method for manufacturing the SiC wafer of the present embodiment have been described above. As described above in detail, according to the SiC wafer manufacturing method of the present embodiment, a high-quality SiC wafer can be manufactured easily and reliably.
 なお、本実施形態のSiCウェハの製造方法において、上述の一連の処理の後、必要に応じて、化学機械研磨(CMP)工程やウェハ洗浄工程が行われてもよい。 In the SiC wafer manufacturing method of the present embodiment, a chemical mechanical polishing (CMP) process and a wafer cleaning process may be performed as necessary after the series of processes described above.
 また、本実施形態は、半導体結晶ウェハの製造方法として、SiCインゴットからSiCウェハを製造する場合について説明したが、半導体結晶は、SiCに限定されるものはなく、ガリヒソ、インジュウムリン、シリコン、その他の化合物半導体であってもよい。 In addition, in the present embodiment, as a method for manufacturing a semiconductor crystal wafer, a case of manufacturing a SiC wafer from a SiC ingot has been described, but the semiconductor crystal is not limited to SiC, and the semiconductor crystal is not limited to SiC. Other compound semiconductors may be used.
 なお、本実施形態のSiCウェハの製造方法において、うねり除去工程で用いられるうねり除去装置40は、図5に示すように変更してもよい。なお、図5において、同一構成については、同一符号を付してその説明を省略する。 In addition, in the SiC wafer manufacturing method of the present embodiment, the waviness removing device 40 used in the waviness removing step may be changed as shown in FIG. In addition, in FIG. 5, the same configurations are denoted by the same reference numerals, and the description thereof is omitted.
 図5において、平板砥石41は、リンク機構42´(本発明の摺動機構に相当する)の一端に連結され、図示しない他端側の回転駆動部により、板面方向に揺動可能または揺動回転可能に構成されてもよい。 In FIG. 5, a flat grindstone 41 is connected to one end of a link mechanism 42' (corresponding to the sliding mechanism of the present invention), and is swingable or rockable in the direction of the plate surface by a rotation drive section (not shown) on the other end side. It may be configured to be dynamically rotatable.
 なお、リンク機構42´に代えて、クランク機構を採用して、平板砥石41を板面方向において往復運動させてもよく、リンク機構42´の代わりにギア機構を介して平板砥石41を単に回転させるようにしてもよい。 Instead of the link mechanism 42', a crank mechanism may be employed to reciprocate the flat grindstone 41 in the direction of the plate surface, and the flat grindstone 41 may be simply rotated via a gear mechanism instead of the link mechanism 42'. You can let it run.
 また、図5において、ウェハ支持部43により、SiCウェハ100の2枚を一対として、平板砥石41を両側から挟み込んだ状態で平板砥石41に押圧する際に、図示しないモータなどの回転駆動手段の回転軸にユニバーサルジョイント44(本発明の摺動機構に相当する)を介して連結して押圧することで、一対のSiCウェハ100を揺動回転させるようにしてもよい。 In FIG. 5, when two SiC wafers 100 are pressed against the flat grindstone 41 with the flat grindstone 41 sandwiched from both sides by the wafer support portion 43, rotation driving means such as a motor (not shown) is operated. The pair of SiC wafers 100 may be oscillatingly rotated by being connected to the rotary shaft via a universal joint 44 (corresponding to the sliding mechanism of the present invention) and pressed.
 なお、ユニバーサルジョイント44を省略して、ウェハ支持部43を単に回転させてもよく、ユニバーサルジョイント44および回転駆動手段の代わりに、(揺動機構42と同様に)ウェハ支持部43を板面方向に揺動させるアクチュエータなどの揺動装置を、ウェハ支持部43の端部に設けて、単に揺動させるようにしてもよい。 It should be noted that the universal joint 44 may be omitted and the wafer support portion 43 may be simply rotated. A swinging device such as an actuator for swinging may be provided at the end of the wafer supporting portion 43 to simply swing.
 このように、うねり除去工程では、各種摺動機構により一対のSiCウェハ100と平板砥石41とのいずれか一方または両方を摺動(例えば、揺動と回転とのいずれか一方または両方)させることでうねりを除去するようにしてもよい。 As described above, in the waviness removing step, one or both of the pair of SiC wafers 100 and the flat grindstone 41 are slid (for example, one or both of rocking and rotating) by various sliding mechanisms. to remove the swell.
 また、本実施形態では、溝加工工程の後に切断工程を行う場合について説明したが、これに限定されるものではなく、溝加工工程を省略したり、溝加工工程に代えて他の他の切断前処理工程を実行するようにしてもよい。 In addition, in the present embodiment, the case where the cutting process is performed after the grooving process has been described, but the present invention is not limited to this. A pretreatment step may be performed.
1…SiC結晶(半導体結晶)、10…SiCインゴット(半導体結晶インゴット)、11…凹溝、20…溝加工ドラム砥石、21…凸部、30…ワイヤーソー装置(ワイヤーソー部)、31…ワイヤーソーボビン、32…ワイヤー、40…うねり除去装置(うねり除去部)、41…平板砥石、42…揺動機構(摺動機構)、42´…リンク機構(摺動機構)43…ウェハ支持部、44…ユニバーサルジョイント(摺動機構)、50…メカニカルポリッシュ装置(超高合成高精度研削加工装置)、51…スピンドル、52…プラテン、53…ダイアモンド砥石、54…真空ポーラスチャック(吸着プレート)、100…SiCウェハ(半導体結晶ウェハ)、110…研磨面(基準面、一面)、120…他面。 DESCRIPTION OF SYMBOLS 1... SiC crystal (semiconductor crystal), 10... SiC ingot (semiconductor crystal ingot), 11... Groove, 20... Grooving drum grindstone, 21... Convex part, 30... Wire saw apparatus (wire saw part), 31... Wire Saw bobbin 32 wire 40 waviness removing device (waviness removing unit) 41 flat grindstone 42 rocking mechanism (sliding mechanism) 42′ link mechanism (sliding mechanism) 43 wafer supporting unit 44 -- Universal joint (sliding mechanism), 50 -- Mechanical polishing device (ultra-high synthetic high-precision grinding device), 51 -- Spindle, 52 -- Platen, 53 -- Diamond whetstone, 54 -- Vacuum porous chuck (adsorption plate), 100 ... SiC wafer (semiconductor crystal wafer), 110 ... polished surface (reference surface, one surface), 120 ... other surface.

Claims (4)

  1.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
     前記半導体結晶インゴットを複数のワイヤーによりスライス状に切断して半導体結晶ウェハを得る切断工程と、
     前記切断工程によりスライス状に切断した半導体ウェハに対して、その一面のうねりを除去するうねり除去工程と
    を備え、
     前記うねり除去工程は、前記切断工程により切断された複数の半導体結晶ウェハの2枚を一対として、両面が研削面の平板砥石を両側から挟み込んだ状態で、該一対の半導体結晶ウェハと該平板砥石とのいずれか一方または両方を摺動させることにより該一対の半導体ウェハの各一面のうねりを除去することを特徴とする半導体結晶ウェハの製造方法。
    A method for manufacturing a semiconductor crystal wafer by cutting a wafer into slices from a semiconductor crystal ingot ground into a cylindrical shape, comprising:
    a cutting step of cutting the semiconductor crystal ingot into slices with a plurality of wires to obtain semiconductor crystal wafers;
    a waviness removing step of removing waviness on one surface of the semiconductor wafer cut into slices by the cutting step;
    In the waviness removing step, two of the plurality of semiconductor crystal wafers cut in the cutting step are taken as a pair, and a flat grindstone having both surfaces to be ground is sandwiched from both sides, and the pair of semiconductor crystal wafers and the flat grindstone are sandwiched from both sides. A method of manufacturing a semiconductor crystal wafer, wherein undulations on each side of the pair of semiconductor wafers are removed by sliding one or both of and.
  2.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
     前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成する溝加工工程と、
     前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーにより前記半導体結晶インゴットをスライス状に切断して半導体結晶ウェハを得る切断工程と、
     前記切断工程によりスライス状に切断した半導体ウェハに対して、その一面のうねりを除去するうねり除去工程と
    を備え、
     前記うねり除去工程は、前記切断工程により切断された複数の半導体結晶ウェハの2枚を一対として、両面が研削面の平板砥石を両側から挟み込んだ状態で、該平板砥石を揺動させることにより該一対の半導体ウェハの各一面のうねりを除去することを特徴とする半導体結晶ウェハの製造方法。
    A method for manufacturing a semiconductor crystal wafer by cutting a wafer into slices from a semiconductor crystal ingot ground into a cylindrical shape, comprising:
    a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
    a cutting step of obtaining semiconductor crystal wafers by cutting the semiconductor crystal ingot into slices with a plurality of wires arranged in the plurality of grooves formed in the groove processing step;
    a waviness removing step of removing waviness on one surface of the semiconductor wafer cut into slices by the cutting step;
    In the waviness removing step, two of the plurality of semiconductor crystal wafers cut in the cutting step are paired and sandwiched from both sides of a flat grindstone having grinding surfaces on both sides, and the flat grindstone is oscillated. What is claimed is: 1. A method of manufacturing a semiconductor crystal wafer, comprising removing undulations from one surface of each of a pair of semiconductor wafers.
  3.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
     前記半導体結晶インゴットに対して、複数のワイヤーを周回させながら前進させて切断するワイヤーソー部と、
     前記ワイヤーソー部によりスライス状に切断された半導体ウェハに対して、その一面のうねりを除去するうねり除去部と
    を備え、
     前記うねり除去部は、
     両面が研削面の平板砥石と、
     前記ワイヤーソー部により切断された複数の半導体結晶ウェハの2枚を一対として、前記平板砥石を両側から挟み込んだ状態で支持するウェハ支持部と
     前記平板砥石と前記一対の半導体結晶ウェハとのいずれか一方または両方を、板面方向において摺動させる摺動機構と、
    を有し、前記ウェハ支持部により一対の半導体ウェハが前記平板砥石を両側から挟み込んだ状態で、前記摺動機構により該一対の半導体結晶ウェハと該平板砥石とのいずれか一方または両方を摺動させることで該一対の半導体ウェハの各一面のうねりを除去することを特徴とする半導体結晶ウェハの製造装置。
    A semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
    a wire saw section for cutting the semiconductor crystal ingot by advancing a plurality of wires while rotating them;
    a waviness removing unit for removing waviness on one surface of the semiconductor wafer cut into slices by the wire saw unit;
    The undulation removing unit includes:
    A flat whetstone with grinding surfaces on both sides,
    any one of a wafer supporting portion that supports a pair of two semiconductor crystal wafers cut by the wire saw while sandwiching the flat grindstone from both sides; and the flat grindstone and the pair of semiconductor crystal wafers. a sliding mechanism for sliding one or both in the plate surface direction;
    in a state in which the pair of semiconductor wafers sandwich the flat grindstone from both sides by the wafer supporting portion, and the slide mechanism slides either one or both of the pair of semiconductor crystal wafers and the flat grindstone. 1. An apparatus for manufacturing semiconductor crystal wafers, characterized in that undulations on each side of the pair of semiconductor wafers are removed by aligning them.
  4.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
     前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成するためのドラム砥石であって、該複数の凹溝に対応した複数の凸部が側面に形成された溝加工ドラム砥石と、
     前記ドラム砥石により側面全体に周回する複数の凹溝が形成された前記半導体結晶インゴットに対して、複数の凹溝に配置された複数のワイヤーを周回させながら前進させて切断するワイヤーソー部と、
     前記ワイヤーソー部によりスライス状に切断された半導体ウェハに対して、その一面のうねりを除去するうねり除去部と
    を備え、
     前記うねり除去部は、
     両面が研削面の平板砥石と、
     前記平板砥石を板面方向に揺動させる揺動機構と、
     前記ワイヤーソー部により切断された複数の半導体結晶ウェハの2枚を一対として、前記平板砥石を両側から挟み込んだ状態で支持するウェハ支持部と
    を有し、前記ウェハ支持部により一対の半導体ウェハが前記平板砥石を両側から挟み込んだ状態で、前記揺動機構により該平板砥石を揺動させることにより該一対の半導体ウェハの各一面のうねりを除去することを特徴とする半導体結晶ウェハの製造装置。
     
    A semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
    a drum grindstone for forming a plurality of grooves around the entire side surface of the semiconductor crystal ingot, the groove processing drum grindstone having a side surface formed with a plurality of protrusions corresponding to the plurality of grooves;
    a wire saw section for advancing and cutting a plurality of wires arranged in the plurality of grooves while rotating the semiconductor crystal ingot in which a plurality of grooves extending around the entire side surface are formed by the drum grindstone;
    a waviness removing unit for removing waviness on one surface of the semiconductor wafer cut into slices by the wire saw unit;
    The undulation removing unit includes:
    A flat whetstone with grinding surfaces on both sides,
    a swing mechanism for swinging the flat grindstone in the direction of the plate surface;
    and a wafer supporting part for supporting two of the plurality of semiconductor crystal wafers cut by the wire saw part as a pair, with the flat grindstone sandwiched from both sides thereof, wherein the wafer supporting part supports the pair of semiconductor wafers. 1. An apparatus for manufacturing semiconductor crystal wafers, wherein undulations on each side of said pair of semiconductor wafers are removed by swinging said flat plate grindstone by said swinging mechanism while said flat plate grindstone is sandwiched from both sides.
PCT/JP2022/020658 2021-12-20 2022-05-18 Method and device for producing semiconductor crystal wafer WO2023119684A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-205896 2021-12-20
JP2021205896A JP7041932B1 (en) 2021-12-20 2021-12-20 Manufacturing method and equipment for semiconductor crystal wafers
JP2022032217A JP7072180B1 (en) 2021-12-20 2022-03-03 Manufacturing method and equipment for semiconductor crystal wafers
JP2022-032217 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023119684A1 true WO2023119684A1 (en) 2023-06-29

Family

ID=86901804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020658 WO2023119684A1 (en) 2021-12-20 2022-05-18 Method and device for producing semiconductor crystal wafer

Country Status (3)

Country Link
JP (1) JP7072180B1 (en)
TW (1) TWI806616B (en)
WO (1) WO2023119684A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219353A (en) * 2009-03-17 2010-09-30 Sumitomo Metal Mining Co Ltd Method of polishing wafer for semiconductor
JP2013045909A (en) * 2011-08-25 2013-03-04 Sumco Corp Method for manufacturing semiconductor wafer
JP2017079249A (en) * 2015-10-20 2017-04-27 株式会社Sumco Semiconductor wafer processing method
JP2017204606A (en) * 2016-05-13 2017-11-16 株式会社ディスコ Manufacturing method of wafer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001162510A (en) 1999-09-30 2001-06-19 Hoya Corp Method of polishing, method of manufacturing glass substrate for magnetic recording medium, and method of manufacturing magnetic recording medium
JP4728023B2 (en) 2005-03-24 2011-07-20 株式会社ディスコ Wafer manufacturing method
JP4820108B2 (en) 2005-04-25 2011-11-24 コマツNtc株式会社 Semiconductor wafer manufacturing method, workpiece slicing method, and wire saw used therefor
JP2010205861A (en) 2009-03-03 2010-09-16 Okamoto Machine Tool Works Ltd Chamfering device for laminated wafer, and method for chamfering bevel and edge of laminated wafer using the same
WO2011105255A1 (en) 2010-02-26 2011-09-01 株式会社Sumco Manufacturing method for semiconductor wafer
JP5494552B2 (en) * 2011-04-15 2014-05-14 信越半導体株式会社 Double-head grinding method and double-head grinding apparatus
JP5887986B2 (en) 2012-02-21 2016-03-16 Tdk株式会社 Cutting device
JP6187579B2 (en) 2013-02-19 2017-08-30 株式会社Sumco Semiconductor wafer processing method
JP6079554B2 (en) * 2013-10-22 2017-02-15 信越半導体株式会社 Manufacturing method of semiconductor wafer
JP6377485B2 (en) * 2014-10-08 2018-08-22 株式会社ディスコ Slicing method
JP6562819B2 (en) * 2015-11-12 2019-08-21 株式会社ディスコ Method for separating SiC substrate
JP2018064030A (en) * 2016-10-13 2018-04-19 株式会社Tkx Multiple wire saw device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219353A (en) * 2009-03-17 2010-09-30 Sumitomo Metal Mining Co Ltd Method of polishing wafer for semiconductor
JP2013045909A (en) * 2011-08-25 2013-03-04 Sumco Corp Method for manufacturing semiconductor wafer
JP2017079249A (en) * 2015-10-20 2017-04-27 株式会社Sumco Semiconductor wafer processing method
JP2017204606A (en) * 2016-05-13 2017-11-16 株式会社ディスコ Manufacturing method of wafer

Also Published As

Publication number Publication date
JP2023091696A (en) 2023-06-30
TWI806616B (en) 2023-06-21
JP7072180B1 (en) 2022-05-20
TW202325918A (en) 2023-07-01

Similar Documents

Publication Publication Date Title
US6093087A (en) Wafer processing machine and a processing method thereby
US20060258268A1 (en) Manufacturing method for semiconductor wafers, slicing method for slicing work and wire saw used for the same
WO2023112345A1 (en) Semiconductor crystal wafer manufacturing device and manufacturing method
JP6079554B2 (en) Manufacturing method of semiconductor wafer
JP3924641B2 (en) Manufacturing method of semiconductor wafer
JP2000114216A (en) Manufacture of semiconductor wafer
WO2005070619A1 (en) Method of grinding wafer and wafer
JP4406878B2 (en) Single crystal ingot cauldron
JPH10256203A (en) Manufacturing method of mirror-finished thin sheet-like wafer
WO2023119684A1 (en) Method and device for producing semiconductor crystal wafer
JP7104909B1 (en) Semiconductor crystal wafer manufacturing method and manufacturing apparatus
JP7041932B1 (en) Manufacturing method and equipment for semiconductor crystal wafers
JP7041931B1 (en) Manufacturing method and equipment for semiconductor crystal wafers
JP7007625B1 (en) Manufacturing method and equipment for semiconductor crystal wafers
WO2023119703A1 (en) Method and apparatus for producing semiconductor crystal wafer
JP7100864B1 (en) Manufacturing method and equipment for semiconductor crystal wafers
WO2023053476A1 (en) Method and apparatus for producing semiconductor crystal wafer
JPH08197400A (en) Chamfered part polishing method for semiconductor wafer
JP7398852B1 (en) Semiconductor crystal wafer manufacturing equipment and manufacturing method
JP7429080B1 (en) Semiconductor crystal wafer manufacturing equipment and manufacturing method
JP2003318138A (en) Method for manufacturing semiconductor wafer
JP7243996B1 (en) Semiconductor crystal wafer manufacturing apparatus and manufacturing method
JP7260889B1 (en) Semiconductor crystal wafer manufacturing apparatus and manufacturing method
JP2013123763A (en) Polishing method for object to be polished
KR100897579B1 (en) Method for polishing wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910415

Country of ref document: EP

Kind code of ref document: A1