WO2023118393A1 - Method for manufacturing a multi-material polymer and metal and/or dielectric part - Google Patents

Method for manufacturing a multi-material polymer and metal and/or dielectric part Download PDF

Info

Publication number
WO2023118393A1
WO2023118393A1 PCT/EP2022/087391 EP2022087391W WO2023118393A1 WO 2023118393 A1 WO2023118393 A1 WO 2023118393A1 EP 2022087391 W EP2022087391 W EP 2022087391W WO 2023118393 A1 WO2023118393 A1 WO 2023118393A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
ald
metal
process according
manufacturing process
Prior art date
Application number
PCT/EP2022/087391
Other languages
French (fr)
Inventor
José Paolo MARTINS
Laurent Divay
Etienne EUSTACHE
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2023118393A1 publication Critical patent/WO2023118393A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Definitions

  • the invention lies in the field of the manufacture of parts produced by additive manufacturing and comprising several materials.
  • the parts produced comprise one or more polymers, and one or more metallic materials or even one or more dielectric materials.
  • the invention relates to the manufacture of parts produced by an additive manufacturing technique based on polymer(s) and comprising on at least one surface at least one metallic material.
  • the parts produced according to the process of the invention can be particularly useful in the production of printed circuits, antennas or other Radio-Frequency (RF) components, or even waveguides.
  • RF Radio-Frequency
  • the general problem is to manufacture parts comprising several materials, using at least one additive manufacturing technique.
  • the parts produced comprise one or more thermoplastic polymers, and one or more metallic materials.
  • additive manufacturing designates, according to standard NF E 67-001, “all the processes making it possible to manufacture layer by layer by adding material a physical object from a digital object”. We also commonly talk about 3D printing.
  • additive manufacturing brings together dozens of designations of manufacturing technologies, classified into seven categories of processes according to the NF ASTM 52900 standard. The general principle of these technologies is generally known to those skilled in the art.
  • additive manufacturing by material extrusion (“Material Extrusion” also called “Fused Deposition Modeling” or "FDM” in English) is a process in which at least one heated printhead extrudes a polymer matrix filament so as to make a part.
  • the movement of the print head along the three axes makes it possible to deposit small volumes of molten polymer locally and to build a part layer by layer.
  • the FDM technique is commonly used for its simplicity of implementation and the possibility that it offers of optionally using several filaments of different polymers, but it does not allow or makes it difficult to produce metal parts, being limited to materials that melt at low temperature.
  • This polymer-based additive manufacturing technique is more suitable for making insulating (or dielectric) parts than metal parts.
  • Direct Energy Deposition is a process in which a moving head in three directions projects metal powder which is simultaneously melted under a laser beam (LENS for "Laser Engineered Net Shaping” in English) or electron (EBAM for “Electron Beam Additive Manufacturing” in English) making it possible to obtain a part.
  • LENS Laser Engineered Net Shaping
  • EBAM Electro Beam Additive Manufacturing
  • Additive manufacturing by powder bed fusion (“Power Bed Fusion” in English) is a family of techniques in which a layer of metal powder of controlled thickness is spread on a manufacturing plate. A source of energy (laser or electron beam) allows selective melting or selective sintering of the powder in the manufacturing plane. Another layer of powder is spread over the previous layer and then the manufacturing iteration continues so as to form a part.
  • this family of techniques mention may be made of the following techniques, which are the techniques of choice for producing metal parts: the selective laser sintering process known as SLS (Selective Laser Sintering) or the selective laser melting process called SLM (Selective Laser Melting).
  • thermoplastic polymer(s) and techniques based on metal powder are not easily compatible with each other, and do not allow the production of surface-metallized polymer parts.
  • a known process for metallizing polymer parts which can be obtained by 3D printing or by a more conventional technique of the injection molding type, consists in depositing on the surface of the polymer part a nucleation (or nucleation) layer which will make it possible to nucleate the growth of a metal layer by an electrochemical process (in a suitable solution).
  • the electrochemical process can be carried out by a deposition process called “electroless”("ELD” in English for “Electroless Layer Deposition”) or “autocatalytic”, that is to say that the process does not include no polarization of the part, which is particularly suitable for polymer parts (since they are insulating).
  • electrochemical electrochemical deposition
  • electrochemical deposition with polarization (electrolytic deposition) of the part, the surface of the part having become conductive. It may be for example a veneer.
  • the seed layer is not deposited on the surface, it is formed by exposing a metallic compound initially present in the polymer to a laser beam, which makes it possible to carry out selective metallization.
  • a laser beam is scanned over the surface of the part and locally exposes the metallic compound present in the polymer.
  • This technique called “LDS”, for "Laser Direct Structuring” in English, therefore makes it possible to produce precise metallic patterns.
  • a first drawback of the LDS technique is that it requires access to the surface which must bear the metallic patterns. Indeed, an aiming angle allowing the laser to sweep over the surface is necessary. And certain surfaces masked from the outside, called “internal surfaces”, cannot therefore be scanned by the laser, even by turning the part, and therefore cannot be metallized by this technique.
  • the need for the laser to illuminate the surface in order to activate it brings constraints on the angle of the surfaces to be metallized, which can lead to modifying the geometry of the part, or even altering the final product with regard to its performance. expected.
  • a second disadvantage of the LDS technique is that it generally requires the dissolution of metal particles in the polymer, which can modify its properties, in particular with regard to RF (Radio Frequency) losses, as described in the aforementioned publication.
  • Table 1 below taken from the aforementioned publication shows that the losses of the polymer used are approximately doubled when the cyclic olefin polymer (COP) is loaded with organometallic particles to allow metallization by LDS.
  • COP cyclic olefin polymer
  • the organometallic particles added to the polymer indeed induce modifications of certain electrical and optical properties.
  • the dielectric losses increase, and the materials become more opaque or even entirely black, thus modifying the optical properties of the polymer.
  • the invention aims to overcome the aforementioned drawbacks of the prior art.
  • a method for manufacturing a multi-material polymer and metallic or even dielectric part which makes it possible to produce at least one metallic and/or dielectric pattern on at least one surface, and what whatever the surface of the part, whether outside or inside said part, without degrading the electrical and/or optical properties of the part produced.
  • internal (or internal) surface of said part we mean a surface not visible from the outside but accessible to gases (therefore not closed to gases).
  • the invention must make it possible to produce localized metallic patterns.
  • the invention aims to be able to manufacture the part, starting from an additive manufacturing process, without this requiring the availability of specific additive manufacturing equipment, that is to say by using standard and adapted additive manufacturing techniques.
  • a first object of the invention making it possible to remedy these drawbacks is a method of manufacturing a polymer and metallic and/or dielectric multi-material part comprising the following steps:
  • ALD atomic layer deposition
  • thin layer is meant a layer whose thickness is less than or equal to a few hundred nanometers.
  • the thickness of the thin layer is thus less than 1 ⁇ m, preferably less than or equal to 200 nm and even more preferably less than or equal to 100 nm.
  • the low thickness of this layer implies that it is not strong enough to maintain a metallic structure around the phantom of the second part during the dissolution of the latter. This is why during step c), the part of the thin metallic layer which was deposited during step b) at the level of the second part disappears at the same time as the latter, so that at the end of step c), there remains only the part of the thin metallic layer which was deposited at the level of the first part.
  • ALD for “Atomic Layer Deposition” deposition process makes it possible to produce a thin metallic, dielectric and/or metallizable layer. Due to the low deposition rates by ALD, the thin layer deposited is generally from a few nanometers to a hundred nanometers, more rarely up to 1 ⁇ m.
  • a layer deposited by ALD, it is necessary to understand “at least one layer”. Thus several layers can be deposited by ALD. For example, an adhesion or adhesion layer can be deposited on the intermediate part, then a seed layer can be deposited on the adhesion or adhesion layer. Several thin layers deposited by ALD can be provided to release the constraint of the grip on the intermediate piece.
  • the ALD deposition process is advantageous in that it can make it possible to produce such a metallic, dielectric and/or metallizable layer at low temperature (typically less than or equal to 100°C, in particular less than or equal to 80°C, or even less than or equal to 70°C, for example of the order of 70 to 80°C, or even at room temperature), this which makes it compatible with the polymer materials used in the additive manufacturing process. Filing at room temperature has the advantage of being more energy efficient.
  • metallic, dielectric or metallizable materials are used, the ALD deposition temperature of which is compatible with the polymer materials according to their glass transition temperatures.
  • the polymer materials used in the additive manufacturing process can be chosen to withstand the temperature used by the ALD deposition process. It is common to use polylactic acid (PLA) or acrylonitrile butadiene styrene (ABS), or even a polyamide (nylon), but other thermoplastic polymer materials can be used such as a polycarbonate (PC), a Polyphenylsulfone (PPSU) or any other thermoplastic polymer suitable for additive manufacturing and supporting higher temperatures than those supported by ABS (80°C). This can make it possible to produce a thin layer of a metal with very good conductivity, such as copper or silver, which generally require a deposition temperature above 100°C.
  • PLA polylactic acid
  • ABS acrylonitrile butadiene styrene
  • nylon polyamide
  • thermoplastic polymer materials such as a polycarbonate (PC), a Polyphenylsulfone (PPSU) or any other thermoplastic polymer suitable for additive manufacturing and supporting higher temperatures than those supported by ABS (80°C
  • the ALD process allows deposition conforming to the topology of the intermediate and uniform part, regardless of the complexity and size of the part to be coated, while guaranteeing good adhesion even on polymer-type materials.
  • it makes it possible to treat large surfaces and/or large volumes (or a large number of parts) depending on the configuration of the ALD deposition reactor, for a reduction in manufacturing costs.
  • the thin layer deposited by ALD can be a layer in one. material which is compatible with an electroless or electrolytic surface treatment, that is to say a so-called “metallizable” material.
  • the metallizable layer may be a reactive layer, which contains an element allowing metallic deposition, such as for example a reactive layer containing palladium as a catalyst, subsequently allowing the nucleation of a metallic layer. obtained by the reduction of ions in solution and its attachment to the ALD layer.
  • the metallizable layer can also be intended to allow the adsorption of a catalyst during a subsequent treatment, in particular a layer of metal oxide (for example TiO2) or a layer of SiO2.
  • the metallizable layer can be a tungsten layer deposited on the polymer material by an ALD deposition at 80° C., knowing that tungsten is a compatible material for electrolytic copper growth.
  • metal material is meant a seed (or nucleation) material capable of forming a metal by an electroless or electrolytic treatment.
  • a “non-metallizable material” is a material which cannot form a metal by electroless or electrolytic treatment.
  • electroless in English for “Electroless Layer Deposition”
  • electrolytic is a method of metal deposition on a substrate with polarization of said substrate (the substrate must be conductive).
  • the deposit is made on the/a thin layer deposited by ALD which then acts as a “substrate”.
  • An electroless or electrolytic treatment step in a suitable treatment solution thus makes it possible to produce thick metallic layers, greater than those achievable by ALD.
  • thick layer is meant a layer whose thickness is greater than or equal to 1 ⁇ m, preferably greater than or equal to 10 ⁇ m, or even greater than or equal to 100 ⁇ m.
  • the thick metallic deposit thus formed by the electroless or electrolytic treatment occurs only on the ALD layer.
  • the electroless or electrolytic treatment can make it possible to deposit on the thin layer ALD a layer of a metallic material. It is also possible to deposit a metal layer by electroless treatment (in particular if the ALD layer is dielectric), then another metal layer by electrolytic treatment.
  • the invention consists of a manufacturing method allowing initially to produce a part called "intermediate part" which comprises a durable material (first polymer material) and a masking material (second polymer material), this intermediate part being produced by a suitable additive manufacturing process.
  • the whole of the intermediate piece is then covered by a deposition of at least one thin layer of metallic, dielectric and/or metallizable material produced by ALD on all of the surfaces of the intermediate piece.
  • the dissolution of the masking material makes it possible to obtain a part on which the metallic, dielectric and/or metallizable material deposited by ALD only persists in the zones initially not masked.
  • the invention therefore essentially consists of a combination of an additive manufacturing step implementing a durable material and a non-perennial masking material and a step of deposition by ALD which is carried out before dissolving the masking material.
  • the masking material can be a so-called "support” material commonly used to allow the printing of particular parts and which must then be dissolved to reveal the final part.
  • the metallic or metallizable material deposited by ALD can either be kept as it is and form at least one thin layer, or be used as a seed layer for an electroless and/or electrolytic treatment to form a metallic material.
  • Said electroless and/or electrolytic treatment can be carried out before or after the dissolution step.
  • An advantage of the method of the invention compared to known methods of the state of the art is the possibility of simply producing complex metallic and/or dielectric patterns that conform to the topology of the intermediate part on one or more surfaces. of the part, without the need for dedicated 3D printing equipment.
  • a polymer-based additive manufacturing technique is sufficient to produce the intermediate part. It is preferably a technique of additive manufacturing by material extrusion (“FDM” for “Fused Deposition Modeling”). The FDM technique is indeed commonly used for its simplicity of implementation and the possibility it offers of possibly using several filaments of different polymers.
  • the method of the invention makes it possible to produce patterns on surfaces of the part which are difficult to access (certain external surfaces in particular hidden by other surfaces), or even which are not accessible at all, such as for example the internal surfaces (i.e. the hidden surfaces from the outside, called “internal surfaces” but not closed to gas), which is not possible with existing processes, such as the LDS technique (laser activation) described in the "state of the art" section.
  • the internal surfaces i.e. the hidden surfaces from the outside, called “internal surfaces” but not closed to gas
  • the method of the invention thus gives access to multi-material parts which cannot be produced with methods known from the state of the art.
  • the manufacturing method according to the invention may further comprise one or more of the following characteristics taken in isolation or in any possible technical combination.
  • the following characteristics can also be combined with the characteristics previously described in the description of the invention.
  • the first and second polymers are thermoplastic polymers but they are different since one is not soluble in the defined solvent and the other is.
  • the first polymer can be chosen from one or more of the following polymers: an acrylonitrile butadiene styrene (ABS), a polylactic acid (PLA), an acrylonitrile styrene acrylate (ASA), a polyvinyl acetate (PVAc), a polyethylene terephthalate (PET), a glycolized polyethylene terephthalate (PETG), a polycarbonate (PC), a polyaryletherketone (PAEK) such as a polyetheretherketone (PEEK) or a polyetherketoneketone (PEKK), a polyetherimide (PEI), a polyolefin such as a polypropylene (PP) or a polyethylene (PE), a polyphenylsulfone (PPSU), a cyclo-olefin copolymer (COC), a polyamide (nylon), the polymer(s) possibly being added with carbon fiber, diamond, or fiber glass or Kevlar
  • the second polymer can be chosen from one or more of the following polymers: a polyvinyl alcohol (PVAI), a polylactic acid (PLA), a polyethylene terephthalate (PET), an acrylonitrile butadiene styrene (ABS), or even high impact polystyrene (HIPS).
  • PVAI polyvinyl alcohol
  • PLA polylactic acid
  • PET polyethylene terephthalate
  • ABS acrylonitrile butadiene styrene
  • HIPS high impact polystyrene
  • the criteria for choosing the first and second polymers are at least the following:
  • the first and second polymers can be chosen from the pairs of “permanent” and “masking” or “support” polymers known to those skilled in the art for 3D printing by FDM. It can be for example:
  • ABS/HIPS pair (acronym for "high-impact polystyrene” also referred to as high-impact polystyrene) in which the HIPS is soluble in limonene, the ABS not being so;
  • the dissolution solvent can thus be:
  • an additive can be a surfactant in particular to accelerate dissolution, and/or a base;
  • the dissolution solvent can be at room temperature, or be heated.
  • it may be water heated to a temperature above ambient temperature.
  • the at least one thin layer deposited by the ALD process may comprise one or more of the following materials: a metal, a metal oxide, a metal nitride, or a metal alloy, or even a silicon oxide.
  • the at least one thin layer deposited by the ALD process can comprise a catalyst of the noble metal type such as palladium, platinum or gold.
  • the at least one thin layer deposited by the ALD process may comprise an oxide layer capable of preferentially adsorbing a catalyst, which may be a metal oxide, such as titanium dioxide (TiO 2 ) or a carbon dioxide. of silicon (SiO 2 ).
  • a metal oxide such as titanium dioxide (TiO 2 ) or a carbon dioxide. of silicon (SiO 2 ).
  • the at least one thin layer deposited by the ALD process may comprise a metal or a conductive oxide, such as aluminum-doped zinc oxide.
  • a second object of the invention is a polymer and metallic and/or dielectric multi-material part obtained by the manufacturing process.
  • Figures 1A to 1D illustrate the steps of the manufacturing method according to the invention, making it possible to produce a hollow cylindrical part, of the crown or tube type.
  • FIGS 2B to 2D show several examples of parts that can be produced by the manufacturing method according to the invention.
  • the invention therefore consists in producing an intermediate part in thermoplastic polymers by an additive manufacturing technique using two polymer materials: one durable, the other soluble in a defined dissolution solvent which can be water, optionally with one or more additives, such as a surfactant allowing faster dissolution.
  • the soluble material is printed so as to mask the surface of the permanent material at the locations where the surface of the final part must not be metallized (and must therefore remain insulating).
  • On all of the surfaces of the intermediate part is deposited a layer of metallic, dielectric and/or metallizable material by the ALD deposition technique, generally at low temperature, that is to say at a temperature less than or equal to 100° vs.
  • the layer of metallic, dielectric and/or metallizable material deposited by the ALD deposition technique may comprise a metal, a metal oxide, a metal nitride, a metal alloy or even a silicon dioxide.
  • a metal can be: tungsten, platinum, ruthenium, nickel, copper, silver, palladium, gold or even a combination of these elements.
  • An alloy can be a tungsten titanium alloy (TiW).
  • a metal oxide can be: titanium dioxide, copper oxide, zinc oxide doped with aluminum (Al).
  • a metal nitride can be: titanium nitride or tantalum nitride.
  • the layer deposited by ALD can comprise a catalyst of the noble metal type such as palladium, platinum or gold.
  • the layer deposited by ALD can be an oxide layer capable of preferentially adsorbing a catalyst, which can be a layer of metal oxide type (for example TiO2) or a layer of SiO2.
  • the ALD deposition makes it possible to directly obtain a metallic or dielectric layer for which it is desired to produce a pattern on the surface of the permanent part.
  • the process therefore consists of the deposition of the material by ALD, then the dissolution of the soluble masking polymer.
  • a piece is therefore obtained consisting of the perennial material, carrying on its surface patterns of the material deposited by ALD.
  • the ALD deposition allows the deposition of a conductive metallizable layer subsequently allowing the resumption of growth of the layer by an electrolytic process.
  • the method therefore consists in depositing on the intermediate piece a thin layer obtained by ALD and electrically conductive, for example a metal or a conductive oxide such as aluminum-doped zinc oxide.
  • electrolytic growth of a metallic layer can be carried out selectively on the layer obtained by ALD by means of its electrical polarization.
  • a source of electrons allows the reduction of the metal salts present in the electrolytic treatment bath and the deposition of the metal on the ALD layer.
  • the ALD deposit is a metallizable deposit, allowing the nucleation and the growth of a metallic film by subsequent treatment of the electrochemical type (called “auto-catalytic” or “electroless”).
  • the ALD deposit produced on the intermediate piece contains a catalyst of the noble metal type, preferably palladium.
  • Other metals are possible, such as platinum or gold.
  • the part is treated in an electrochemical bath, the possible compositions of which are known to those skilled in the art, such as a solution containing a metallic salt, for example copper sulphate (CuSO 4 ) and additives such as a chelating agent (eg Ethylene Diamine TetraAcetic acid (EDTA)), a reducing agent (eg formaldehyde), and/or a surfactant (eg TritonTM X100).
  • a piece is obtained consisting of the perennial material, and which bears on its surface patterns consisting of the metal deposited by the electroless technique on the layer obtained by ALD.
  • the dissolution of the masking material can be carried out before or after the resumption of electroless growth.
  • a fourth embodiment which is a variant of the third embodiment, consists in depositing by ALD a layer capable of preferentially adsorbing a catalyst.
  • a layer of metal oxide type for example TiO 2
  • a layer of SiO 2 is deposited by ALD on the intermediate piece.
  • the subsequent steps then consist of dissolving the masking material, treating the intermediate part with a first electrochemical type bath containing a catalyst, for example a dispersion of a mixture of tin and palladium salts (treatment known to man of the art), and finally to carry out a deposit of the electrochemical plating type using a bath identical to the third mode.
  • the dissolution of the masking material can be carried out before or after the treatment of the part by the activation and deposition baths.
  • the treatments are known to those skilled in the art, and commonly use the tin-palladium catalyst. However, other solutions are possible, using other metals such as silver or gold.
  • Figures 1A, 1B, 1C and 1D describe the steps of the manufacturing method according to the invention, on a hollow cylindrical part forming a crown (or a tube) of an insulating material, comprising a metal incursion in the thickness and over a partial length of said piece.
  • the shape of the part, and the shape and locations of the metal patterns are given for illustrative purposes and are not limiting.
  • FIG. 1A represents the intermediate part 1 obtained by the technique of additive manufacturing by material extrusion (FDM) (step A).
  • the intermediate piece illustrated comprises a crown made of durable polymer material 2 partially covered with a soluble masking material 3, the uncovered zones defining the location of the surfaces to be metallized.
  • the pairs of durable/masking polymers can be chosen from the lists indicated in the description of the invention, and can in particular be:
  • FIG. 1B shows the intermediate piece on which the deposition by the ALD 4 technique was carried out (step B) and covers all of the internal and external surfaces of the intermediate piece.
  • Reactive gases used in the ALD process can gain access to all of these surfaces.
  • the reactive gases are chemical precursors which depend on the material which it is desired to synthesize by ALD. Any type of ALD precursor is a priori usable within the limit of the temperatures admissible for the polymers.
  • the deposition temperature is lower than the glass transition temperature of the polymer materials used in step A (perennial material and masking material).
  • the deposited material is a metallic material, a dielectric material and/or a metallizable material compatible with an electroless or electrolytic deposition process.
  • the layer of metallic, dielectric or metallizable material deposited by the ALD deposition technique can be or include one or more of the materials listed above. Due to the low deposition rates by ALD, the deposited layer is generally from a few nanometers to a hundred nanometers.
  • FIG. 1C represents the part obtained 10 after the dissolution step (step C).
  • the dissolution of the mask material makes it possible to retain only the permanent polymer material 2 and the ALD layer 4 directly deposited thereon.
  • the dissolution solvent is usually water, possibly heated to a temperature above room temperature.
  • the water can be basic and/or include surfactants to speed up dissolution.
  • the thin layer deposited by ALD can be a seed layer of a metallizable material, compatible with an electroless or electrolytic treatment.
  • an electroless or electrolytic treatment step step D
  • the electroless or electrolytic treatment is carried out in a suitable treatment solution, in a manner known to those skilled in the art.
  • Such a treatment thus makes it possible to produce metallic layers greater than those obtained by the ALD process, typically greater than 1 ⁇ m.
  • tungsten can be deposited on a polymer material at 80° C.
  • FIG. 1D represents the final part 11 .
  • the geometry of the part, and the shape and locations of the metal patterns are given for illustrative purposes and are not limiting.
  • the metallic patterns made can be more complex.
  • the patterns can be made on surfaces that are difficult to access using other manufacturing techniques. It is possible to produce minority metal patterns on a predominantly insulating part (with significant masking on the insulating intermediate part) or produce a predominantly metallic part with minority insulating patterns (with low masking on the insulating intermediate part). In any case, this makes it possible to functionalize the intermediate part produced by additive manufacturing.
  • Figures 2A to 2D show some examples of non-limiting parts that can be produced by the manufacturing method according to the invention.
  • the polymer part is designated by the reference 2 and the metallized part by the reference 6 (as being obtained by electroless treatment).
  • the metallized part could be obtained only by the ALD deposit and would be designated by the reference 4.
  • Figure 2A illustrates a waveguide 12 metallized inside.
  • Figure 2B illustrates a cylindrical part 13 metallized in a checkerboard pattern on the inside. This can form a Frequency Selective Surface (FSS).
  • FSS Frequency Selective Surface
  • FIG. 2C illustrates a part 14 comprising via metallization on a curved surface.
  • FIG. 2D illustrates a part 15 comprising via metallization on a flat surface.
  • the metal patterns thus produced can be useful as metal tracks in order to allow the connection of electronic components, such as antennas, resonators for example to modify or reflect an RF signal passing through a room, or even waveguides. More generally, the fields of application are therefore varied, but we can cite, for example, printed circuits and in particular interconnections, antennas, radars, RF components, or even waveguides, etc.

Abstract

The invention relates to a method for manufacturing a multi-material part (10), comprising the following steps: a) a step of producing an intermediate part (1) by a suitable additive manufacturing technique, said intermediate part comprising at least a first part (2), referred to as a "permanent" part, made of a first thermoplastic polymer that is not soluble in a defined dissolving solvent, and at least a second part (3), referred to as a "masking" part, made of a second thermoplastic polymer that is soluble in said defined dissolving solvent, the first and second polymers being free of metallisable material; then b) a step of depositing, by an atomic layer deposition (ALD) process, at least one thin layer (4) of a metal, dielectric and/or metallisable material on all the surfaces of the intermediate part produced; and then c) a step of dissolving, in the dissolving solvent, the at least a second part of the intermediate part made of the second thermoplastic polymer.

Description

Procédé de fabrication d’une pièce multi-matériaux polymère et métallique et/ou diélectrique Process for manufacturing a multi-material polymer and metallic and/or dielectric part
DOMAINE TECHNIQUE DE L’INVENTION TECHNICAL FIELD OF THE INVENTION
[0001] L’invention se situe dans le domaine de la fabrication de pièces réalisées par fabrication additive et comportant plusieurs matériaux. En particulier, les pièces réalisées comportent un ou plusieurs polymères, et un ou plusieurs matériaux métalliques voire un ou plusieurs matériaux diélectriques. Plus précisément, l’invention concerne la fabrication de pièces réalisées par une technique de fabrication additive à base de polymère(s) et comportant sur au moins une surface au moins un matériau métallique. The invention lies in the field of the manufacture of parts produced by additive manufacturing and comprising several materials. In particular, the parts produced comprise one or more polymers, and one or more metallic materials or even one or more dielectric materials. More specifically, the invention relates to the manufacture of parts produced by an additive manufacturing technique based on polymer(s) and comprising on at least one surface at least one metallic material.
[0002] Les pièces réalisées selon le procédé de l’invention peuvent être particulièrement utiles dans la réalisation de circuits imprimés, d’antennes ou autres composants Radio-Fréquence (RF), ou encore de guides d’ondes. The parts produced according to the process of the invention can be particularly useful in the production of printed circuits, antennas or other Radio-Frequency (RF) components, or even waveguides.
ETAT DE LA TECHNIQUE STATE OF THE ART
[0003] La problématique générale est de fabriquer des pièces comportant plusieurs matériaux, en utilisant au moins une technique de fabrication additive. Les pièces réalisées comportent un ou plusieurs polymères thermoplastiques, et un ou plusieurs matériaux métalliques. [0003] The general problem is to manufacture parts comprising several materials, using at least one additive manufacturing technique. The parts produced comprise one or more thermoplastic polymers, and one or more metallic materials.
[0004] Le terme de fabrication additive désigne selon la norme NF E 67-001 , « l’ensemble des procédés permettant de fabriquer couche par couche par ajout de matière un objet physique à partir d’un objet numérique ». On parle également de manière courante d’impression 3D. Le terme de fabrication additive regroupe des dizaines d’appellations de technologies de fabrication, classées en sept catégories de procédés selon la norme NF ASTM 52900. Le principe général de ces technologies est connu de manière générale par l’homme du métier. Parmi les différentes technologies, la fabrication additive par extrusion de matière (« Material Extrusion » également nommée « Fused Deposition Modeling » ou « FDM » en anglais) est un procédé dans lequel au moins une tête d’impression chauffée extrude un filament à matrice polymère de manière à fabriquer une pièce. Le déplacement de la tête d’impression selon les trois axes permet de déposer de petits volumes de polymère fondu localement et de construire une pièce couche par couche. La technique FDM est couramment employée pour sa simplicité de mise en oeuvre et la possibilité qu’elle offre d’utiliser éventuellement plusieurs filaments de polymères différents, mais elle ne permet pas ou difficilement de réaliser des pièces métalliques, se limitant aux matériaux fusibles à basse température. [0004] The term additive manufacturing designates, according to standard NF E 67-001, “all the processes making it possible to manufacture layer by layer by adding material a physical object from a digital object”. We also commonly talk about 3D printing. The term additive manufacturing brings together dozens of designations of manufacturing technologies, classified into seven categories of processes according to the NF ASTM 52900 standard. The general principle of these technologies is generally known to those skilled in the art. Among the different technologies, additive manufacturing by material extrusion ("Material Extrusion" also called "Fused Deposition Modeling" or "FDM" in English) is a process in which at least one heated printhead extrudes a polymer matrix filament so as to make a part. The movement of the print head along the three axes makes it possible to deposit small volumes of molten polymer locally and to build a part layer by layer. The FDM technique is commonly used for its simplicity of implementation and the possibility that it offers of optionally using several filaments of different polymers, but it does not allow or makes it difficult to produce metal parts, being limited to materials that melt at low temperature.
[0005] Cette technique de fabrication additive à base de polymères est davantage adaptée pour réaliser des pièces isolantes (ou diélectriques) que des pièces métalliques. [0005] This polymer-based additive manufacturing technique is more suitable for making insulating (or dielectric) parts than metal parts.
[0006] Les techniques de fabrication additive décrites dans ce qui suit sont davantage adaptées pour réaliser des pièces métalliques. [0006] The additive manufacturing techniques described below are more suitable for producing metal parts.
[0007] La fabrication additive par dépôt d’énergie dirigée (« Direct Energy Deposition ») est un procédé dans lequel une tête mobile selon les trois directions projette de la poudre métallique qui est simultanément fondue sous faisceau laser (LENS pour « Laser Engineered Net Shaping » en anglais) ou d’électron (EBAM pour « Electron Beam Additive Manufacturing » en anglais) permettant l’obtention d’une pièce. Additive manufacturing by directed energy deposition ("Direct Energy Deposition") is a process in which a moving head in three directions projects metal powder which is simultaneously melted under a laser beam (LENS for "Laser Engineered Net Shaping” in English) or electron (EBAM for “Electron Beam Additive Manufacturing” in English) making it possible to obtain a part.
[0008] La fabrication additive par fusion de lit de poudre (« Power Bed Fusion » en anglais) est une famille de techniques dans lesquelles une couche de poudre métallique d’épaisseur contrôlée est étalée sur un plateau de fabrication. Une source d’énergie (laser ou faisceau d’électrons) permet la fusion sélective ou le frittage sélectif de la poudre dans le plan de fabrication. Une autre couche de poudre est étalée sur la couche précédente puis l’itération de fabrication se poursuit de manière à former une pièce. Parmi cette famille de techniques, on peut citer les techniques suivantes qui sont les techniques de choix pour réaliser des pièces métalliques : le procédé de frittage sélectif par laser dit SLS (« Selective Laser Sintering » en anglais) ou le procédé de fusion sélective par laser dit SLM (« Selective Laser Melting » en anglais). [0008] Additive manufacturing by powder bed fusion (“Power Bed Fusion” in English) is a family of techniques in which a layer of metal powder of controlled thickness is spread on a manufacturing plate. A source of energy (laser or electron beam) allows selective melting or selective sintering of the powder in the manufacturing plane. Another layer of powder is spread over the previous layer and then the manufacturing iteration continues so as to form a part. Among this family of techniques, mention may be made of the following techniques, which are the techniques of choice for producing metal parts: the selective laser sintering process known as SLS (Selective Laser Sintering) or the selective laser melting process called SLM (Selective Laser Melting).
[0009] Les techniques à base de polymère(s) thermoplastique(s) et les techniques à base de poudre métallique sont difficilement compatibles entre elles, et ne permettent pas la réalisation de pièces polymère métallisées en surface. [0009] Techniques based on thermoplastic polymer(s) and techniques based on metal powder are not easily compatible with each other, and do not allow the production of surface-metallized polymer parts.
[0010] Il existe d’autres techniques qui permettent de réaliser des pièces multi- matériaux en polymère et matériau métallique. Il existe notamment des techniques consistant à réaliser des pièces en polymère dans un premier temps (par une technique de fabrication additive ou une autre technique adaptée), puis de métalliser leur surface dans un second temps. [0010] There are other techniques which make it possible to produce multi-material parts in polymer and metallic material. In particular, there are techniques consisting in producing parts in polymer in a first step (by a additive manufacturing technique or another suitable technique), then to metallize their surface in a second step.
[0011 ] Ainsi, la publication « International Journal of Electronics and Communications, 2018 » Abdullah Gene et al décrit un procédé de fabrication d’antennes cornets comprenant la fabrication d’une pièce polymère par FDM à partir d’Acrylonitrile Butadiène Styrène (ABS), pièce qui est ensuite métallisée par un procédé de dépôt auto-catalytique de métal puis de galvanoplastie métallique. L’inconvénient de ce procédé est qu’il permet uniquement de métalliser l’ensemble de la pièce, mais qu’il ne permet pas de réaliser des dépôts localisés de métal sur la pièce. En outre, un problème associé à ce procédé est d’assurer une accroche/adhérence suffisante du métal sur le polymère. Afin d'obtenir la meilleure adhérence possible entre la couche métallique déposée et la surface du polymère, l'état de surface doit être optimisé, généralement cela nécessite un prétraitement. [0011] Thus, the publication "International Journal of Electronics and Communications, 2018" Abdullah Gene et al describes a method for manufacturing horn antennas comprising the manufacture of a polymer part by FDM from Acrylonitrile Butadiene Styrene (ABS) , part which is then metallized by an auto-catalytic metal deposition process followed by metal electroplating. The disadvantage of this process is that it only allows the entire part to be metallized, but it does not allow localized deposits of metal to be made on the part. In addition, a problem associated with this process is to ensure sufficient grip/adhesion of the metal on the polymer. In order to obtain the best possible adhesion between the deposited metal layer and the surface of the polymer, the surface state must be optimized, generally this requires a pretreatment.
[0012] Afin notamment d’assurer une meilleure accroche et de réaliser des dépôts plus localisés, un procédé connu de métallisation de pièces polymère, pouvant être obtenues par impression 3D ou par une technique plus classique de type moulage par injection, consiste à déposer sur la surface de la pièce polymère une couche de germination (ou de nucléation) qui va permettre de nucléer la croissance d’une couche métallique par un procédé électrochimique (dans une solution adaptée). [0012] In order in particular to ensure better grip and to produce more localized deposits, a known process for metallizing polymer parts, which can be obtained by 3D printing or by a more conventional technique of the injection molding type, consists in depositing on the surface of the polymer part a nucleation (or nucleation) layer which will make it possible to nucleate the growth of a metal layer by an electrochemical process (in a suitable solution).
[0013] Le procédé électrochimique peut être réalisé par un procédé de dépôt dit « electroless » (« ELD >> en anglais pour « Electroless Layer Deposition >>) ou « autocatalytique », c’est-à-dire que le procédé ne comprend pas de polarisation de la pièce, ce qui est particulièrement indiqué pour les pièces polymère (puisqu’elles sont isolantes). Dans la suite de la description, les termes « autocatalytique » et « electroless » peuvent être utilisés indifféremment. La couche de nucléation est choisie pour amorcer la réaction électrochimique et former un premier dépôt métallique, en générant des métaux par réduction de sels initialement présents dans la solution électrochimique. Ces métaux se déposent sur la surface de la pièce à partir des points de nucléation jusqu’à former un film continu du point de vue de la conduction électrique. [0014] La croissance peut ensuite éventuellement être suivie d’un dépôt électrochimique avec polarisation (dépôt électrolytique) de la pièce, la surface de la pièce étant devenue conductrice. Il peut s’agir par exemple d’un placage. The electrochemical process can be carried out by a deposition process called "electroless"("ELD" in English for "Electroless Layer Deposition") or "autocatalytic", that is to say that the process does not include no polarization of the part, which is particularly suitable for polymer parts (since they are insulating). In the rest of the description, the terms “autocatalytic” and “electroless” can be used interchangeably. The nucleation layer is chosen to initiate the electrochemical reaction and form a first metallic deposit, by generating metals by reduction of salts initially present in the electrochemical solution. These metals are deposited on the surface of the part from the nucleation points until they form a continuous film from the point of view of electrical conduction. [0014] The growth can then optionally be followed by electrochemical deposition with polarization (electrolytic deposition) of the part, the surface of the part having become conductive. It may be for example a veneer.
[0015] Mais généralement, la couche de germination n’est pas déposée en surface, elle est formée par l’exposition d’un composé métallique initialement présent dans le polymère à un faisceau laser, ce qui permet de réaliser une métallisation sélective. Un faisceau laser est balayé sur la surface de la pièce et permet localement d’exposer le composé métallique présent dans le polymère. Cette technique, appelée « LDS », pour « Laser Direct Structuring » en anglais, permet donc de réaliser des motifs métalliques précis. [0015] But generally, the seed layer is not deposited on the surface, it is formed by exposing a metallic compound initially present in the polymer to a laser beam, which makes it possible to carry out selective metallization. A laser beam is scanned over the surface of the part and locally exposes the metallic compound present in the polymer. This technique, called "LDS", for "Laser Direct Structuring" in English, therefore makes it possible to produce precise metallic patterns.
[0016] Un premier inconvénient de la technique LDS est qu’elle nécessite d’avoir un accès à la surface qui doit porter les motifs métalliques. En effet, un angle de visée permettant au laser de balayer sur la surface est nécessaire. Et certaines surfaces masquées depuis l’extérieur, dites « surfaces internes », ne peuvent donc pas être balayées par le laser, même en tournant la pièce, et donc ne sont pas métallisables par cette technique. La nécessité pour le laser d’éclairer la surface afin de l’activer apporte des contraintes sur l’angle des surfaces à métalliser, ce qui peut amener à modifier la géométrie de la pièce, voire à altérer le produit final au regard de ses performances attendues. Ceci est expliqué dans la publication LDS « Realization of High-Q SIW MillimeterWave Filters with Cyclo-Olefin Polymers » qui décrit la réalisation de pièces moulées en polymère d'oléfine cyclique (COP) chargées de particules organométalliques, et métallisées en surface par la technique LDS, ce pour l’injection RF dans un filtre de type guide d'ondes intégré à substrat (SIW) à bande étroite. En d’autres termes, la technique LDS ne permet pas d’être mise en oeuvre pour toutes les géométries de pièces et/sur toutes les surfaces internes et externes de la pièce. [0016] A first drawback of the LDS technique is that it requires access to the surface which must bear the metallic patterns. Indeed, an aiming angle allowing the laser to sweep over the surface is necessary. And certain surfaces masked from the outside, called "internal surfaces", cannot therefore be scanned by the laser, even by turning the part, and therefore cannot be metallized by this technique. The need for the laser to illuminate the surface in order to activate it brings constraints on the angle of the surfaces to be metallized, which can lead to modifying the geometry of the part, or even altering the final product with regard to its performance. expected. This is explained in the LDS publication "Realization of High-Q SIW MillimeterWave Filters with Cyclo-Olefin Polymers" which describes the production of molded parts in cyclic olefin polymer (COP) loaded with organometallic particles, and metallized on the surface by the technique LDS, this for RF injection into a narrow band substrate integrated waveguide (SIW) type filter. In other words, the LDS technique cannot be implemented for all part geometries and/on all internal and external surfaces of the part.
[0017] Un deuxième inconvénient de la technique LDS est qu’elle nécessite généralement la dissolution de particules métalliques dans le polymère, ce qui peut modifier ses propriétés, en particulier en ce qui concerne les pertes RF (Radio Fréquence), comme ceci est décrit dans la publication précitée. Le tableau 1 ci- dessous issu de la publication précitée montre que les pertes du polymère utilisé sont approximativement doublées lorsque le polymère d'oléfine cyclique (COP) est chargé de particules organométalliques pour permettre la métallisation par LDS. [0018]
Figure imgf000007_0001
[0017] A second disadvantage of the LDS technique is that it generally requires the dissolution of metal particles in the polymer, which can modify its properties, in particular with regard to RF (Radio Frequency) losses, as described in the aforementioned publication. Table 1 below taken from the aforementioned publication shows that the losses of the polymer used are approximately doubled when the cyclic olefin polymer (COP) is loaded with organometallic particles to allow metallization by LDS. [0018]
Figure imgf000007_0001
[0019] Les particules organométalliques ajoutées dans le polymère induisent en effet les modifications de certaines propriétés électriques et optiques. Les pertes diélectriques augmentent, et les matériaux deviennent plus opaques voire entièrement noirs, modifiant ainsi les propriétés optiques du polymère. [0019] The organometallic particles added to the polymer indeed induce modifications of certain electrical and optical properties. The dielectric losses increase, and the materials become more opaque or even entirely black, thus modifying the optical properties of the polymer.
[0020] L’invention vise à surmonter les inconvénients précités de l’art antérieur. The invention aims to overcome the aforementioned drawbacks of the prior art.
[0021] Plus particulièrement elle vise à disposer d’un procédé de fabrication d’une pièce multi-matériaux polymère et métallique voire diélectrique, qui permette de réaliser au moins un motif métallique et/ou diélectrique sur au moins une surface, et ce quelle que soit la surface de la pièce, que ce soit à l’extérieur ou à l’intérieur de ladite pièce, sans dégrader les propriétés électriques et/ou optiques de la pièce réalisée. Par surface intérieure (ou interne) de ladite pièce, on entend une surface non visible de l’extérieur mais accessible aux gaz (donc non fermée aux gaz). [0021] More particularly, it aims to have a method for manufacturing a multi-material polymer and metallic or even dielectric part, which makes it possible to produce at least one metallic and/or dielectric pattern on at least one surface, and what whatever the surface of the part, whether outside or inside said part, without degrading the electrical and/or optical properties of the part produced. By internal (or internal) surface of said part, we mean a surface not visible from the outside but accessible to gases (therefore not closed to gases).
[0022] L’invention doit permettre de réaliser des motifs métalliques localisés. The invention must make it possible to produce localized metallic patterns.
[0023] En outre, l’invention vise à pouvoir fabriquer la pièce, en partant d’un procédé de fabrication additive, sans que cela nécessite de disposer d’un matériel de fabrication additive spécifique, c’est-à-dire en utilisant les techniques de fabrication additive standards et adaptées. [0023] In addition, the invention aims to be able to manufacture the part, starting from an additive manufacturing process, without this requiring the availability of specific additive manufacturing equipment, that is to say by using standard and adapted additive manufacturing techniques.
EXPOSE DE L’INVENTION DISCLOSURE OF THE INVENTION
[0024] Un premier objet de l’invention permettant de remédier à ces inconvénients est un procédé de fabrication d’une pièce multi-matériaux polymère et métallique et/ou diélectrique comprenant les étapes suivantes : A first object of the invention making it possible to remedy these drawbacks is a method of manufacturing a polymer and metallic and/or dielectric multi-material part comprising the following steps:
A) une étape de réalisation d’une pièce intermédiaire par une technique de fabrication additive adaptée, ladite pièce intermédiaire comprenant au moins une première partie dite « pérenne » en un premier polymère thermoplastique non soluble dans un solvant de dissolution défini et au moins une seconde partie dite « de masquage » en un second polymère thermoplastique soluble dans ledit solvant de dissolution défini; le premier et le second polymère étant exempt de matériau métallisable ; puis A) a step of producing an intermediate part by a suitable additive manufacturing technique, said intermediate part comprising at least a first so-called "permanent" part made of a first thermoplastic polymer that is not soluble in a defined dissolution solvent and at least a second part called " "masking" into a second thermoplastic polymer soluble in said defined dissolving solvent; the first and the second polymer being free of metallizable material; Then
B) une étape de dépôt par un procédé de dépôt de couche atomique (ALD) d’une au moins une couche mince d’un matériau métallique, diélectrique et/ou métallisable sur toutes les surfaces de la pièce intermédiaire réalisée ; puisB) a step of deposition by an atomic layer deposition (ALD) process of at least one thin layer of a metallic, dielectric and/or metallizable material on all the surfaces of the intermediate part produced; Then
C) une étape de dissolution dans le solvant de dissolution de la seconde partie de la pièce intermédiaire en le second polymère thermoplastique. C) a step of dissolving in the solvent for dissolving the second part of the intermediate part into the second thermoplastic polymer.
[0025] Par « couche mince », on entend une couche dont l’épaisseur est inférieure ou égale à quelques centaines de nanomètres. L’épaisseur de la couche mince est ainsi inférieure à 1 pm, de préférence inférieure ou égale à 200 nm et encore plus préférentiellement inférieure ou égale à 100 nm. La faible épaisseur de cette couche implique qu’elle n’est pas assez résistante pour permettre de conserver une structure métallique autour du fantôme de la seconde partie lors de la dissolution de cette dernière. C’est pourquoi lors de l’étape c), la partie de la couche mince métallique qui a été déposée lors de l’étape b) au niveau de la seconde partie disparait en même temps que cette dernière, de sorte qu’à la fin de l’étape c), il ne reste plus que la partie de la couche mince métallique qui a été déposée au niveau de la première partie. By "thin layer" is meant a layer whose thickness is less than or equal to a few hundred nanometers. The thickness of the thin layer is thus less than 1 μm, preferably less than or equal to 200 nm and even more preferably less than or equal to 100 nm. The low thickness of this layer implies that it is not strong enough to maintain a metallic structure around the phantom of the second part during the dissolution of the latter. This is why during step c), the part of the thin metallic layer which was deposited during step b) at the level of the second part disappears at the same time as the latter, so that at the end of step c), there remains only the part of the thin metallic layer which was deposited at the level of the first part.
[0026] Le procédé de dépôt « ALD >> (pour « Atomic Layer Deposition >> en anglais) permet de réaliser une couche métallique, diélectrique et/ou métallisable mince. Du fait des faibles vitesses de dépôt par ALD, la couche mince déposée est généralement de quelques nanomètres à une centaine de nanomètres, plus rarement jusqu’à 1 pm. The “ALD” (for “Atomic Layer Deposition”) deposition process makes it possible to produce a thin metallic, dielectric and/or metallizable layer. Due to the low deposition rates by ALD, the thin layer deposited is generally from a few nanometers to a hundred nanometers, more rarely up to 1 μm.
[0027] Il est à noter que par « une couche » déposée par ALD, il faut comprendre « au moins une couche ». Ainsi plusieurs couches peuvent être déposées par ALD. Par exemple, une couche d’adhérence ou d’accroche peut être déposée sur la pièce intermédiaire, puis une couche de germination peut être déposée sur la couche d’adhérence ou d’accroche. Plusieurs couches minces déposées par ALD peuvent être prévues pour lâcher la contrainte de l’accroche sur la pièce intermédiaire. It should be noted that by “a layer” deposited by ALD, it is necessary to understand “at least one layer”. Thus several layers can be deposited by ALD. For example, an adhesion or adhesion layer can be deposited on the intermediate part, then a seed layer can be deposited on the adhesion or adhesion layer. Several thin layers deposited by ALD can be provided to release the constraint of the grip on the intermediate piece.
[0028] Le procédé de dépôt ALD est avantageux en ce qu’il peut permettre de réaliser une telle couche métallique, diélectrique et/ou métallisable à basse température (typiquement inférieure ou égale à 100°C, notamment inférieure ou égale à 80°C, voire inférieure ou égale à 70°C, par exemple de l’ordre de 70 à 80°C, voire à la température ambiante), ce qui le rend compatible avec les matériaux polymères mis en oeuvre dans le procédé de fabrication additive. Un dépôt à température ambiante a l’avantage d’être plus économe en énergie. The ALD deposition process is advantageous in that it can make it possible to produce such a metallic, dielectric and/or metallizable layer at low temperature (typically less than or equal to 100°C, in particular less than or equal to 80°C, or even less than or equal to 70°C, for example of the order of 70 to 80°C, or even at room temperature), this which makes it compatible with the polymer materials used in the additive manufacturing process. Filing at room temperature has the advantage of being more energy efficient.
[0029] De préférence, on utilise des matériaux métalliques, diélectriques ou métallisables dont la température de dépôt ALD est compatible avec les matériaux polymères suivant leurs températures de transition vitreuse. Preferably, metallic, dielectric or metallizable materials are used, the ALD deposition temperature of which is compatible with the polymer materials according to their glass transition temperatures.
[0030] Alternativement, les matériaux polymères mis en oeuvre dans le procédé de fabrication additive peuvent être choisis pour supporter la température mise en oeuvre par le procédé de dépôt ALD. Il est courant d’utiliser l’acide polylactique (PLA) ou l’acrylonitrile butadiène styrène (ABS), ou encore un polyamide (nylon), mais d’autres matériaux polymère thermoplastiques peuvent être utilisés comme un polycarbonate (PC), un Polyphénylsulfone (PPSU) ou tout autre polymère thermoplastique adapté à la fabrication additive et supportant des températures plus élevées que celles supportées par l’ABS (80°C). Cela peut permettre de réaliser une couche mince d’un métal avec une très bonne conductivité, tel que le cuivre ou l’argent qui nécessitent généralement une température de dépôt supérieure à 100°C. [0030] Alternatively, the polymer materials used in the additive manufacturing process can be chosen to withstand the temperature used by the ALD deposition process. It is common to use polylactic acid (PLA) or acrylonitrile butadiene styrene (ABS), or even a polyamide (nylon), but other thermoplastic polymer materials can be used such as a polycarbonate (PC), a Polyphenylsulfone (PPSU) or any other thermoplastic polymer suitable for additive manufacturing and supporting higher temperatures than those supported by ABS (80°C). This can make it possible to produce a thin layer of a metal with very good conductivity, such as copper or silver, which generally require a deposition temperature above 100°C.
[0031] En outre, le procédé ALD permet un dépôt conforme à la topologie de la pièce intermédiaire et uniforme, quelle que soit la complexité et la taille de la pièce à revêtir, tout en garantissant une bonne adhérence même sur les matériaux de type polymère. Enfin, il permet de traiter de grandes surfaces et/ou de grands volumes (ou un grand nombre de pièces) en fonction de la configuration du réacteur de dépôt ALD, pour une réduction des coûts de fabrication. [0031] In addition, the ALD process allows deposition conforming to the topology of the intermediate and uniform part, regardless of the complexity and size of the part to be coated, while guaranteeing good adhesion even on polymer-type materials. . Finally, it makes it possible to treat large surfaces and/or large volumes (or a large number of parts) depending on the configuration of the ALD deposition reactor, for a reduction in manufacturing costs.
[0032] Dans le cas où l’on souhaite une couche métallique plus épaisse (par exemple en cuivre, argent, nickel ...), sans rallonger indûment la durée du procédé, la couche mince déposée par ALD peut être une couche en un matériau qui est compatible avec un traitement de surface electroless ou électrolytique, c’est-à-dire un matériau dit « métallisable ». Dans le cas d’un traitement electroless, la couche métallisable peut être une couche réactive, qui contient un élément permettant un dépôt métallique, comme par exemple une couche réactive contenant du palladium comme catalyseur, permettant par la suite la nucléation d’une couche métallique obtenue par la réduction d’ions en solution et son accroche sur la couche ALD. La couche métallisable peut également être destinée à permettre l’adsorption d’un catalyseur lors d’un traitement ultérieur, notamment une couche d’oxyde métallique (par exemple TiÛ2) ou une couche de SiÛ2. Dans le cas d’un traitement électrolytique, la couche métallisable peut être une couche en tungstène déposée sur le matériau polymère par un dépôt ALD à 80°C, sachant que le tungstène est un matériau compatible pour une croissance électrolytique de cuivre. [0032] In the case where a thicker metallic layer is desired (for example copper, silver, nickel, etc.), without unduly lengthening the duration of the process, the thin layer deposited by ALD can be a layer in one. material which is compatible with an electroless or electrolytic surface treatment, that is to say a so-called “metallizable” material. In the case of an electroless treatment, the metallizable layer may be a reactive layer, which contains an element allowing metallic deposition, such as for example a reactive layer containing palladium as a catalyst, subsequently allowing the nucleation of a metallic layer. obtained by the reduction of ions in solution and its attachment to the ALD layer. The metallizable layer can also be intended to allow the adsorption of a catalyst during a subsequent treatment, in particular a layer of metal oxide (for example TiO2) or a layer of SiO2. In the case of an electrolytic treatment, the metallizable layer can be a tungsten layer deposited on the polymer material by an ALD deposition at 80° C., knowing that tungsten is a compatible material for electrolytic copper growth.
[0033] Par « matériau métallisable », on entend un matériau de germination (ou de nucléation) susceptible de former un métal par un traitement electroless ou électrolytique. A contrario, un « matériau non métallisable » est un matériau qui ne peut pas former un métal par un traitement electroless ou électrolytique. [0033] By "metallizable material" is meant a seed (or nucleation) material capable of forming a metal by an electroless or electrolytic treatment. Conversely, a “non-metallizable material” is a material which cannot form a metal by electroless or electrolytic treatment.
[0034] On rappelle qu’un traitement de surface dit « electroless » (« ELD » en anglais pour « Electroless Layer Deposition ») ou « autocatalytique » est un procédé de dépôt métallique sur un substrat sans polarisation dudit substrat (le substrat peut être isolant), alors qu’un traitement de surface électrolytique est un procédé de dépôt métallique sur un substrat avec polarisation dudit substrat (le substrat doit être conducteur). Selon l’invention, le dépôt est fait sur la/une couche mince déposée par ALD qui fait office alors de « substrat ». It is recalled that a so-called "electroless" ("ELD" in English for "Electroless Layer Deposition") or "autocatalytic" surface treatment is a metal deposition process on a substrate without polarization of said substrate (the substrate can be insulation), whereas an electrolytic surface treatment is a method of metal deposition on a substrate with polarization of said substrate (the substrate must be conductive). According to the invention, the deposit is made on the/a thin layer deposited by ALD which then acts as a “substrate”.
[0035] Une étape de traitement electroless ou électrolytique dans une solution de traitement adaptée permet ainsi de réaliser des couches métalliques épaisses, supérieures à celles réalisables par ALD. [0035] An electroless or electrolytic treatment step in a suitable treatment solution thus makes it possible to produce thick metallic layers, greater than those achievable by ALD.
[0036] Par « couche épaisse », on entend une couche dont l’épaisseur est supérieure ou égale à 1 pm, de préférence supérieure ou égale à 10 pm, voire supérieure ou égale à 100 pm. By "thick layer" is meant a layer whose thickness is greater than or equal to 1 μm, preferably greater than or equal to 10 μm, or even greater than or equal to 100 μm.
[0037] Le dépôt métallique épais ainsi formé par le traitement electroless ou électrolytique se produit uniquement sur la couche ALD. Ainsi, le traitement electroless ou électrolytique peut permettre de déposer sur la couche mince ALD une couche en un matériau métallique. Il est également possible de déposer une couche métallique par traitement electroless (notamment si la couche ALD est diélectrique), puis une autre couche métallique par traitement électrolytique. The thick metallic deposit thus formed by the electroless or electrolytic treatment occurs only on the ALD layer. Thus, the electroless or electrolytic treatment can make it possible to deposit on the thin layer ALD a layer of a metallic material. It is also possible to deposit a metal layer by electroless treatment (in particular if the ALD layer is dielectric), then another metal layer by electrolytic treatment.
[0038] Ainsi, l’invention consiste en un procédé de fabrication permettant dans un premier temps de réaliser une pièce dite « pièce intermédiaire » qui comprend un matériau pérenne (premier matériau polymère) et un matériau de masquage (second matériau polymère), cette pièce intermédiaire étant réalisée par un procédé de fabrication additive adapté. L’ensemble de la pièce intermédiaire est ensuite recouverte par un dépôt d’au moins une couche mince en matériau métallique, diélectrique et/ou métallisable réalisé par ALD sur l’intégralité des surfaces de la pièce intermédiaire. Ensuite, la dissolution du matériau de masquage permet d’obtenir une pièce sur laquelle le matériau métallique, diélectrique et/ou métallisable déposé par ALD ne persiste que dans les zones initialement non masquées. L’invention consiste donc essentiellement en une combinaison d’une étape de fabrication additive mettant en oeuvre un matériau pérenne et un matériau de masquage non pérenne et d’une étape de dépôt par ALD qui est réalisée avant dissolution du matériau de masquage. Le matériau de masquage peut être un matériau dit « support » couramment employé pour permettre l’impression de pièces particulières et qui doit ensuite être dissout pour révéler la pièce finale. [0038] Thus, the invention consists of a manufacturing method allowing initially to produce a part called "intermediate part" which comprises a durable material (first polymer material) and a masking material (second polymer material), this intermediate part being produced by a suitable additive manufacturing process. The whole of the intermediate piece is then covered by a deposition of at least one thin layer of metallic, dielectric and/or metallizable material produced by ALD on all of the surfaces of the intermediate piece. Then, the dissolution of the masking material makes it possible to obtain a part on which the metallic, dielectric and/or metallizable material deposited by ALD only persists in the zones initially not masked. The invention therefore essentially consists of a combination of an additive manufacturing step implementing a durable material and a non-perennial masking material and a step of deposition by ALD which is carried out before dissolving the masking material. The masking material can be a so-called "support" material commonly used to allow the printing of particular parts and which must then be dissolved to reveal the final part.
[0039] Le matériau métallique ou métallisable déposé par ALD peut soit être conservé tel quel et former au moins une couche mince, soit être utilisé comme couche de germination pour un traitement electroless et/ou électrolytique pour former un matériau métallique. Ledit traitement electroless et/ou électrolytique peut être réalisé avant ou après l’étape de dissolution. The metallic or metallizable material deposited by ALD can either be kept as it is and form at least one thin layer, or be used as a seed layer for an electroless and/or electrolytic treatment to form a metallic material. Said electroless and/or electrolytic treatment can be carried out before or after the dissolution step.
[0040] Un avantage du procédé de l’invention comparé aux procédés connus de l’état de la technique est la possibilité de réaliser simplement des motifs métalliques et/ou diélectrique complexes et conformes à la topologie de la pièce intermédiaire sur une ou plusieurs surfaces de la pièce, sans qu’il soit nécessaire de disposer d’un matériel d’impression 3D dédié. Une technique de fabrication additive à base de polymères suffit pour réaliser la pièce intermédiaire. Il s’agit préférentiellement, d’une technique de fabrication additive par extrusion de matière (« FDM » pour « Fused Deposition Modeling »). La technique FDM est en effet couramment employée pour sa simplicité de mise en oeuvre et la possibilité qu’elle offre d’utiliser éventuellement plusieurs filaments de polymères différents. [0040] An advantage of the method of the invention compared to known methods of the state of the art is the possibility of simply producing complex metallic and/or dielectric patterns that conform to the topology of the intermediate part on one or more surfaces. of the part, without the need for dedicated 3D printing equipment. A polymer-based additive manufacturing technique is sufficient to produce the intermediate part. It is preferably a technique of additive manufacturing by material extrusion (“FDM” for “Fused Deposition Modeling”). The FDM technique is indeed commonly used for its simplicity of implementation and the possibility it offers of possibly using several filaments of different polymers.
[0041] En outre, le procédé de l’invention permet de réaliser des motifs sur des surfaces de la pièce qui sont difficilement accessibles (certaines surfaces extérieures notamment cachées par d’autres surfaces), voire qui ne sont pas accessibles du tout, comme par exemple les surfaces internes (c’est-à-dire les surfaces masquées depuis l’extérieur, dites « surfaces internes » mais non fermées au gaz), ce que ne permettent pas les procédés existants, comme la technique LDS (activation laser) décrite dans la partie « état de la technique ». [0041] In addition, the method of the invention makes it possible to produce patterns on surfaces of the part which are difficult to access (certain external surfaces in particular hidden by other surfaces), or even which are not accessible at all, such as for example the internal surfaces (i.e. the hidden surfaces from the outside, called "internal surfaces" but not closed to gas), which is not possible with existing processes, such as the LDS technique (laser activation) described in the "state of the art" section.
[0042] Le procédé de l’invention donne ainsi accès à des pièces multi-matériaux qui ne sont pas réalisables avec des procédés connus de l’état de la technique. The method of the invention thus gives access to multi-material parts which cannot be produced with methods known from the state of the art.
[0043] Le procédé de fabrication selon l'invention peut en outre comporter l'une ou plusieurs des caractéristiques suivantes prises isolément ou suivant toutes combinaisons techniques possibles. Les caractéristiques suivantes peuvent également être combinées avec les caractéristiques précédemment décrites dans l’exposé de l’invention. The manufacturing method according to the invention may further comprise one or more of the following characteristics taken in isolation or in any possible technical combination. The following characteristics can also be combined with the characteristics previously described in the description of the invention.
[0044] Les premier et second polymères sont des polymères thermoplastiques mais ils sont différents puisque l’un n’est pas soluble dans le solvant défini et l’autre l’est. The first and second polymers are thermoplastic polymers but they are different since one is not soluble in the defined solvent and the other is.
[0045] Le premier polymère peut être choisi parmi un ou plusieurs polymères suivants : un acrylonitrile butadiène styrène (ABS), un acide polylactique (PLA), un acrylonitrile styrène acrylate (ASA), un polyacétate de vinyle (PVAc), un polyéthylène téréphtalate (PET), un polyéthylène téréphtalate glycolisé (PETG), un polycarbonate (PC), un polyaryléthercétone (PAEK) tel qu’un polyétheréthercétone (PEEK) ou un polyéthercétonecétone (PEKK), un polyétherimide (PEI), un polyoléfine tel qu’un polypropylène (PP) ou un polyéthylène (PE), un polyphénylsulfone (PPSU), un copolymère cyclo-oléfine (COC), un polyamide (nylon), le ou les polymères étant éventuellement additionnés de fibre de carbone, de diamant, ou de fibre de verre ou de kevlar®. The first polymer can be chosen from one or more of the following polymers: an acrylonitrile butadiene styrene (ABS), a polylactic acid (PLA), an acrylonitrile styrene acrylate (ASA), a polyvinyl acetate (PVAc), a polyethylene terephthalate (PET), a glycolized polyethylene terephthalate (PETG), a polycarbonate (PC), a polyaryletherketone (PAEK) such as a polyetheretherketone (PEEK) or a polyetherketoneketone (PEKK), a polyetherimide (PEI), a polyolefin such as a polypropylene (PP) or a polyethylene (PE), a polyphenylsulfone (PPSU), a cyclo-olefin copolymer (COC), a polyamide (nylon), the polymer(s) possibly being added with carbon fiber, diamond, or fiber glass or Kevlar®.
[0046] Le second polymère peut être choisi parmi un ou plusieurs polymères suivants : un alcool polyvinylique (PVAI), un acide polylactique (PLA), un polyéthylène téréphtalate (PET), un acrylonitrile butadiène styrène (ABS), ou encore le polystyrène choc (HIPS). The second polymer can be chosen from one or more of the following polymers: a polyvinyl alcohol (PVAI), a polylactic acid (PLA), a polyethylene terephthalate (PET), an acrylonitrile butadiene styrene (ABS), or even high impact polystyrene (HIPS).
[0047] Les critères de choix des premier et second polymères sont a minima les suivants : The criteria for choosing the first and second polymers are at least the following:
- la possibilité de co-imprimer les deux polymères, par exemple au moyen d’une imprimante FDM à deux buses, avec des températures d’extrusion similaires, et notamment la possibilité d’imprimer le second polymère sur le premier polymère et/ou le premier polymère sur le second polymère ; - la possibilité de dissoudre le second polymère au moyen d’un solvant sans dissoudre, déformer ou détériorer le premier polymère. - the possibility of co-printing the two polymers, for example by means of a two-nozzle FDM printer, with similar extrusion temperatures, and in particular the possibility of printing the second polymer on the first polymer and/or the first polymer to the second polymer; - the possibility of dissolving the second polymer by means of a solvent without dissolving, deforming or damaging the first polymer.
[0048] Les premier et second polymères peuvent être choisis parmi les couples de polymères « pérennes » et « de masquage » ou « support » connus de l’homme de l’art pour l’impression 3D par FDM. Il peut s’agir par exemple du : The first and second polymers can be chosen from the pairs of “permanent” and “masking” or “support” polymers known to those skilled in the art for 3D printing by FDM. It can be for example:
- couple PLA/PVAI, dans lequel le PVAI est soluble dans l’eau éventuellement chauffée et le PLA ne l’est pas ; - PLA/PVAI couple, in which the PVAI is soluble in possibly heated water and the PLA is not;
- couple ABS/SR30™ dans lequel le matériau support SR30™ est soluble dans une solution constituée d’eau et d’un additif, la solution étant portée à une température supérieure à l’ambiante ; - ABS/SR30™ couple in which the SR30™ support material is soluble in a solution consisting of water and an additive, the solution being brought to a temperature above ambient;
- couple ABS/HIPS (acronyme anglais de « high-impact polystyrene » également désigné par Polystyrène choc) dans lequel le HIPS est soluble dans le limonène, l’ABS ne l’étant pas ; ou - ABS/HIPS pair (acronym for "high-impact polystyrene" also referred to as high-impact polystyrene) in which the HIPS is soluble in limonene, the ABS not being so; Or
- couple Nylon/ABS, dans lequel l’ABS est soluble dans l’acétone, le nylon ne l’étant pas. - Nylon/ABS couple, in which ABS is soluble in acetone, nylon not being.
[0049] Il est entendu qu’on ne se limite pas nécessairement aux couples cités, la fonction pouvant être obtenue avec tout couple de matériau permettant leur coimpression, et dans lequel un des deux polymères est soluble dans un solvant dans lequel l’autre ne l’est pas. It is understood that it is not necessarily limited to the pairs mentioned, the function being able to be obtained with any pair of material allowing their co-printing, and in which one of the two polymers is soluble in a solvent in which the other does not is not.
[0050] Le solvant de dissolution peut ainsi être : The dissolution solvent can thus be:
- un solvant aqueux avec au moins un additif : un additif peut être un tensioactif notamment pour accélérer la dissolution, et/ou une base ; ou - an aqueous solvent with at least one additive: an additive can be a surfactant in particular to accelerate dissolution, and/or a base; Or
- de l’eau sans additif ; voire - water without additives; even
- un solvant organique. - an organic solvent.
[0051] Le solvant de dissolution peut être à température ambiante, ou être chauffé. Par exemple il peut s’agir d’eau chauffée à une température supérieure à la température ambiante. The dissolution solvent can be at room temperature, or be heated. For example, it may be water heated to a temperature above ambient temperature.
[0052] La au moins une couche mince déposée par le procédé ALD peut comprendre un ou plusieurs parmi les matériaux suivants : un métal, un oxyde métallique, un nitrure métallique, ou un alliage métallique, voire un oxyde de silicium. [0053] La au moins une couche mince déposée par le procédé ALD peut comprendre un catalyseur de type métal noble tel que le palladium, le platine ou l’or. The at least one thin layer deposited by the ALD process may comprise one or more of the following materials: a metal, a metal oxide, a metal nitride, or a metal alloy, or even a silicon oxide. The at least one thin layer deposited by the ALD process can comprise a catalyst of the noble metal type such as palladium, platinum or gold.
[0054] Alternativement, la au moins une couche mince déposée par le procédé ALD peut comprendre une couche d’oxyde apte à adsorber préférentiellement un catalyseur, qui peut être un oxyde métallique, tel que le dioxyde de titane (TiO2) ou un dioxyde de silicium (SiO2). Alternatively, the at least one thin layer deposited by the ALD process may comprise an oxide layer capable of preferentially adsorbing a catalyst, which may be a metal oxide, such as titanium dioxide (TiO 2 ) or a carbon dioxide. of silicon (SiO 2 ).
[0055] Alternativement, la au moins une couche mince déposée par le procédé ALD peut comprendre un métal ou un oxyde conducteur, tel que l’oxyde de zinc dopé aluminium. Alternatively, the at least one thin layer deposited by the ALD process may comprise a metal or a conductive oxide, such as aluminum-doped zinc oxide.
[0056] Un deuxième objet de l’invention est une pièce multi-matériaux polymère et métallique et/ou diélectrique obtenue par le procédé de fabrication. A second object of the invention is a polymer and metallic and/or dielectric multi-material part obtained by the manufacturing process.
BREVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF FIGURES
[0057] D’autres caractéristiques, détails et avantages de l’invention ressortiront à la lecture de la description faite en référence aux figures annexées données à titre d’exemple et qui représentent, respectivement : Other characteristics, details and advantages of the invention will become apparent on reading the description given with reference to the appended figures given by way of example and which represent, respectively:
[0058] Les figures 1A à 1 D illustrent les étapes du procédé de fabrication selon l’invention, permettant de réaliser une pièce cylindrique creuse, de type couronne ou tube. Figures 1A to 1D illustrate the steps of the manufacturing method according to the invention, making it possible to produce a hollow cylindrical part, of the crown or tube type.
[0059] Les figures 2B à 2D représentent plusieurs exemples de pièces réalisables par le procédé de fabrication selon l’invention. Figures 2B to 2D show several examples of parts that can be produced by the manufacturing method according to the invention.
[0060] Dans l'ensemble de ces figures, des références identiques peuvent désigner des éléments identiques ou analogues. In all of these figures, identical references can designate identical or similar elements.
[0061] De plus, les différentes parties représentées sur les figures ne le sont pas nécessairement selon une échelle uniforme, pour rendre les figures plus lisibles.[0061] In addition, the various parts shown in the figures are not necessarily shown on a uniform scale, to make the figures more readable.
DESCRIPTION DETAILLEE DE L’INVENTION DETAILED DESCRIPTION OF THE INVENTION
[0062] L’invention consiste donc à réaliser une pièce intermédiaire en polymères thermoplastiques par une technique de fabrication additive à l’aide de deux matériaux polymères : l’un pérenne, l’autre soluble dans un solvant de dissolution défini qui peut être de l’eau, éventuellement avec un ou plusieurs additifs, tel un tensioactif permettant une dissolution plus rapide. Le matériau soluble est imprimé de manière à masquer la surface du matériau pérenne aux localisations où la surface de la pièce finale ne doit pas être métallisée (et doit donc rester isolante). Sur l’intégralité des surfaces de la pièce intermédiaire est déposée une couche de matériau métallique, diélectrique et/ou métallisable par la technique de dépôt ALD, généralement à basse température c’est-à-dire à une température inférieure ou égale à 100°C. The invention therefore consists in producing an intermediate part in thermoplastic polymers by an additive manufacturing technique using two polymer materials: one durable, the other soluble in a defined dissolution solvent which can be water, optionally with one or more additives, such as a surfactant allowing faster dissolution. The soluble material is printed so as to mask the surface of the permanent material at the locations where the surface of the final part must not be metallized (and must therefore remain insulating). On all of the surfaces of the intermediate part is deposited a layer of metallic, dielectric and/or metallizable material by the ALD deposition technique, generally at low temperature, that is to say at a temperature less than or equal to 100° vs.
[0063] Selon le dépôt final visé, qu’il soit notamment réalisé uniquement par le dépôt ALD, ou que le dépôt ALD soit suivi d’un traitement de surface electroless ou électrolytique, la couche de matériau métallique, diélectrique et/ou métallisable déposée par la technique de dépôt ALD peut comprendre un métal, un oxyde métallique, un nitrure métallique, un alliage métallique voire un dioxyde de silicium. Un métal peut être : le tungstène, le platine, le ruthénium, le nickel, le cuivre, l’argent, le palladium, l’or voire une combinaison de ces éléments. Un alliage peut être un alliage tungstène titane (TiW). Un oxyde métallique peut être : le dioxyde de titane, l’oxyde de cuivre, l’oxyde de zinc dopé à l’aluminium (Al). Un nitrure métallique peut être : le nitrure de titane ou le nitrure de tantale. La couche déposée par ALD peut comprendre un catalyseur de type métal noble comme le palladium, le platine ou l’or. La couche déposée par ALD peut être une couche d’oxyde apte à adsorber préférentiellement un catalyseur, qui peut être une couche de type oxyde métallique (par exemple le TiÛ2) ou une couche de SiO2. [0063] Depending on the intended final deposition, whether it is in particular carried out solely by the ALD deposition, or whether the ALD deposition is followed by an electroless or electrolytic surface treatment, the layer of metallic, dielectric and/or metallizable material deposited by the ALD deposition technique may comprise a metal, a metal oxide, a metal nitride, a metal alloy or even a silicon dioxide. A metal can be: tungsten, platinum, ruthenium, nickel, copper, silver, palladium, gold or even a combination of these elements. An alloy can be a tungsten titanium alloy (TiW). A metal oxide can be: titanium dioxide, copper oxide, zinc oxide doped with aluminum (Al). A metal nitride can be: titanium nitride or tantalum nitride. The layer deposited by ALD can comprise a catalyst of the noble metal type such as palladium, platinum or gold. The layer deposited by ALD can be an oxide layer capable of preferentially adsorbing a catalyst, which can be a layer of metal oxide type (for example TiO2) or a layer of SiO2.
[0064] Dans un premier mode de réalisation, le dépôt ALD permet d’obtenir directement une couche métallique ou diélectrique dont on souhaite réaliser un motif en surface de la pièce pérenne. Le procédé consiste donc en le dépôt par ALD du matériau, puis la dissolution du polymère de masquage soluble. On obtient donc une pièce constituée du matériau pérenne, portant à sa surface des motifs du matériau déposé par ALD. In a first embodiment, the ALD deposition makes it possible to directly obtain a metallic or dielectric layer for which it is desired to produce a pattern on the surface of the permanent part. The process therefore consists of the deposition of the material by ALD, then the dissolution of the soluble masking polymer. A piece is therefore obtained consisting of the perennial material, carrying on its surface patterns of the material deposited by ALD.
[0065] Dans un deuxième mode de réalisation, le dépôt ALD permet le dépôt d’une couche métallisable conductrice permettant ultérieurement la reprise de croissance de la couche par un procédé électrolytique. Le procédé consiste donc au dépôt sur la pièce intermédiaire d’une couche mince obtenue par ALD et conductrice électriquement, par exemple un métal ou un oxyde conducteur comme l’oxyde de zinc dopé aluminium. Dans ce mode, après la dissolution du polymère de masquage, la croissance électrolytique d’une couche métallique peut être réalisée sélectivement sur la couche obtenue par ALD au moyen de sa polarisation électrique. Une source d’électrons permet la réduction des sels métalliques présents dans le bain de traitement électrolytique et le dépôt du métal sur la couche ALD. De surcroit, il est possible de réaliser ce dépôt électrolytique avant ou après la dissolution du matériau de masquage. In a second embodiment, the ALD deposition allows the deposition of a conductive metallizable layer subsequently allowing the resumption of growth of the layer by an electrolytic process. The method therefore consists in depositing on the intermediate piece a thin layer obtained by ALD and electrically conductive, for example a metal or a conductive oxide such as aluminum-doped zinc oxide. In this mode, after dissolving the masking polymer, electrolytic growth of a metallic layer can be carried out selectively on the layer obtained by ALD by means of its electrical polarization. A source of electrons allows the reduction of the metal salts present in the electrolytic treatment bath and the deposition of the metal on the ALD layer. Moreover, it is possible to carry out this electrolytic deposition before or after the dissolution of the masking material.
[0066] Dans un troisième mode de réalisation, le dépôt ALD est un dépôt métallisable, permettant la nucléation et la croissance d’un film métallique par traitement ultérieur de type électrochimique (dit « auto-catalytique » ou « electroless »). Dans ce mode, le dépôt ALD réalisé sur la pièce intermédiaire contient un catalyseur de type métal noble comme de préférence le palladium. D’autres métaux sont envisageables, comme le platine ou l’or. Après dissolution du matériau de masquage, la pièce est traitée dans un bain électrochimique dont les compositions possibles sont connues de l’homme de l’art, comme une solution contenant un sel métallique, par exemple le sulfate de cuivre (CuSO4) et des additifs comme un agent de chélation (par exemple l’Éthylène Diamine TétraAcétique (EDTA)), un réducteur (par exemple le formaldéhyde), et/ou un tensioactif (par exemple le Triton™ X100). Après ce dernier traitement, on obtient une pièce constituée du matériau pérenne, et qui porte à sa surface des motifs constitués du métal déposé par la technique electroless sur la couche obtenue par ALD. Comme dans le mode précédent, la dissolution du matériau de masquage peut être réalisée avant ou après la reprise de croissance electroless. In a third embodiment, the ALD deposit is a metallizable deposit, allowing the nucleation and the growth of a metallic film by subsequent treatment of the electrochemical type (called “auto-catalytic” or “electroless”). In this mode, the ALD deposit produced on the intermediate piece contains a catalyst of the noble metal type, preferably palladium. Other metals are possible, such as platinum or gold. After dissolving the masking material, the part is treated in an electrochemical bath, the possible compositions of which are known to those skilled in the art, such as a solution containing a metallic salt, for example copper sulphate (CuSO 4 ) and additives such as a chelating agent (eg Ethylene Diamine TetraAcetic acid (EDTA)), a reducing agent (eg formaldehyde), and/or a surfactant (eg Triton™ X100). After this last treatment, a piece is obtained consisting of the perennial material, and which bears on its surface patterns consisting of the metal deposited by the electroless technique on the layer obtained by ALD. As in the previous mode, the dissolution of the masking material can be carried out before or after the resumption of electroless growth.
[0067] Un quatrième mode de réalisation, qui est une variante du troisième mode de réalisation, consiste à déposer par ALD une couche apte à adsorber préférentiellement un catalyseur. Dans ce cas, on dépose par ALD sur la pièce intermédiaire une couche de type oxyde métallique (par exemple le TiO2) ou une couche de SiO2. Les étapes ultérieures consistent ensuite à dissoudre le matériau de masquage, traiter la pièce intermédiaire par un premier bain de type électrochimique contenant un catalyseur, par exemple une dispersion d’un mélange de sels d’étain et de palladium (traitement connu de l’homme de l’art), et enfin à réaliser un dépôt de type placage électrochimique à l’aide d’un bain identique au troisième mode. Comme dans les modes précédents, la dissolution du matériau de masquage peut être réalisée avant ou après le traitement de la pièce par les bains d’activation et de dépôt. [0068] Dans ce dernier mode de réalisation, on se trouve dans un cas de figure où le traitement de la pièce en vue de son revêtement par un dépôt métallique électrochimique (electroless) est identique aux cas connus de la littérature puisque la chimie de surface est celle de substrats couramment employés comme par exemple le verre (SiO2), ou encore de pièces dont la surface a été activée par laser (comme pour le procédé LDS). Les traitements sont connus de l’homme de l’art, et utilisent couramment le catalyseur étain-palladium. Cependant d’autres solutions sont possibles, utilisant d’autres métaux comme l’argent ou l’or. A fourth embodiment, which is a variant of the third embodiment, consists in depositing by ALD a layer capable of preferentially adsorbing a catalyst. In this case, a layer of metal oxide type (for example TiO 2 ) or a layer of SiO 2 is deposited by ALD on the intermediate piece. The subsequent steps then consist of dissolving the masking material, treating the intermediate part with a first electrochemical type bath containing a catalyst, for example a dispersion of a mixture of tin and palladium salts (treatment known to man of the art), and finally to carry out a deposit of the electrochemical plating type using a bath identical to the third mode. As in the previous modes, the dissolution of the masking material can be carried out before or after the treatment of the part by the activation and deposition baths. In this last embodiment, we find ourselves in a situation where the treatment of the part with a view to its coating by an electrochemical metal deposit (electroless) is identical to the cases known from the literature since the surface chemistry is that of commonly used substrates such as glass (SiO 2 ), or parts whose surface has been activated by laser (as for the LDS process). The treatments are known to those skilled in the art, and commonly use the tin-palladium catalyst. However, other solutions are possible, using other metals such as silver or gold.
[0069] Les figures 1A, 1 B, 1 C et 1 D décrivent les étapes du procédé de fabrication selon l’invention, sur une pièce cylindrique creuse formant une couronne (ou un tube) en un matériau isolant, comprenant une incursion métallique dans l’épaisseur et sur une longueur partielle de ladite pièce. La forme de la pièce, et la forme et les emplacements des motifs métalliques sont donnés à titre illustratif et ne sont pas limitatifs. [0069] Figures 1A, 1B, 1C and 1D describe the steps of the manufacturing method according to the invention, on a hollow cylindrical part forming a crown (or a tube) of an insulating material, comprising a metal incursion in the thickness and over a partial length of said piece. The shape of the part, and the shape and locations of the metal patterns are given for illustrative purposes and are not limiting.
[0070] La figure 1A représente la pièce intermédiaire 1 obtenue par la technique de fabrication additive par extrusion de matière (FDM) (étape A). La pièce intermédiaire illustrée comprend une couronne en matériau polymère pérenne 2 recouverte partiellement d’un matériau de masquage soluble 3, les zones non recouvertes définissant la localisation des surfaces à métalliser. FIG. 1A represents the intermediate part 1 obtained by the technique of additive manufacturing by material extrusion (FDM) (step A). The intermediate piece illustrated comprises a crown made of durable polymer material 2 partially covered with a soluble masking material 3, the uncovered zones defining the location of the surfaces to be metallized.
[0071] Les couples de polymères pérenne/de masquage peuvent être choisis parmi les listes indiquées dans l’exposé de l’invention, et peuvent notamment être : The pairs of durable/masking polymers can be chosen from the lists indicated in the description of the invention, and can in particular be:
- PLA/PVAI ; - PLA/PVAI;
- ABS/SR30™ ; - ABS/SR30™;
- ABS/HIPS ; ou - ABS/HIPS; Or
- Nylon/ABS. - Nylon/ABS.
[0072] La figure 1 B représente la pièce intermédiaire sur laquelle le dépôt par la technique ALD 4 a été réalisé (étape B) et recouvre l’ensemble des surfaces internes et externes de la pièce intermédiaire. Les gaz réactifs utilisés dans le procédé ALD peuvent avoir accès à toutes ces surfaces. De manière connue de l’homme du métier, les gaz réactifs sont des précurseurs chimiques qui dépendent du matériau que l’on souhaite synthétiser par ALD. Tout type de précurseur ALD est a priori utilisable dans la limite des températures admissibles pour les polymères. FIG. 1B shows the intermediate piece on which the deposition by the ALD 4 technique was carried out (step B) and covers all of the internal and external surfaces of the intermediate piece. Reactive gases used in the ALD process can gain access to all of these surfaces. As known to those skilled in the art, the reactive gases are chemical precursors which depend on the material which it is desired to synthesize by ALD. Any type of ALD precursor is a priori usable within the limit of the temperatures admissible for the polymers.
[0073] De préférence, la température de dépôt est inférieure à la température de transition vitreuse des matériaux polymères utilisés dans l’étape A (matériau pérenne et matériau de masquage). Le matériau déposé est un matériau métallique, un matériau diélectrique et/ou un matériau métallisable compatible avec un procédé de dépôt electroless ou électrolytique. Selon le dépôt final visé, qu’il soit notamment réalisé uniquement par le dépôt ALD, ou que le dépôt ALD soit suivi d’un traitement electroless ou électrolytique, la couche de matériau métallique, diélectrique ou métallisable déposée par la technique de dépôt ALD peut être ou comprendre l’un ou plusieurs des matériaux indiqués précédemment. Du fait des faibles vitesses de dépôt par ALD, la couche déposée est généralement de quelques nanomètres à une centaine de nanomètres. Preferably, the deposition temperature is lower than the glass transition temperature of the polymer materials used in step A (perennial material and masking material). The deposited material is a metallic material, a dielectric material and/or a metallizable material compatible with an electroless or electrolytic deposition process. Depending on the final deposition targeted, whether it is in particular carried out solely by the ALD deposition, or whether the ALD deposition is followed by an electroless or electrolytic treatment, the layer of metallic, dielectric or metallizable material deposited by the ALD deposition technique can be or include one or more of the materials listed above. Due to the low deposition rates by ALD, the deposited layer is generally from a few nanometers to a hundred nanometers.
[0074] La figure 1 C représente la pièce obtenue 10 après l’étape de dissolution (étape C). La dissolution du matériau de masque permet de ne conserver que le matériau polymère pérenne 2 et la couche ALD 4 directement déposée dessus. Le solvant de dissolution est généralement de l’eau, éventuellement chauffée à une température supérieure à la température ambiante. L’eau peut être basique et/ou comprendre des tensioactifs pour accélérer la dissolution. FIG. 1C represents the part obtained 10 after the dissolution step (step C). The dissolution of the mask material makes it possible to retain only the permanent polymer material 2 and the ALD layer 4 directly deposited thereon. The dissolution solvent is usually water, possibly heated to a temperature above room temperature. The water can be basic and/or include surfactants to speed up dissolution.
[0075] Dans le cas où l’on souhaite une couche métallique épaisse, sans rallonger indûment la durée du procédé, la couche mince déposée par ALD peut être une couche de germination en un matériau métallisable, compatible avec un traitement electroless ou électrolytique. Ainsi on peut ajouter une étape de traitement electroless ou électrolytique (étape D), par exemple selon l’un des traitements décrits précédemment (deuxième à quatrième modes). Le traitement electroless ou électrolytique est réalisé dans une solution de traitement adaptée, de manière connue de l’homme du métier. Un tel traitement permet ainsi de réaliser des couches métalliques supérieures à celles obtenues par le procédé ALD, typiquement supérieures à 1 pm. Par exemple, le tungstène peut être déposé sur un matériau polymère à 80°C par ALD, sachant que le tungstène est un matériau compatible (utilisé comme catalyseur, de même que l’argent) d’une croissance électrolytique de cuivre. Le dépôt métallique épais 6 ainsi formé par le traitement electroless ou électrolytique est réalisé uniquement au niveau de la couche ALD, comme ceci est illustré en figure 1 D qui représente la pièce finale 11 . In the case where a thick metallic layer is desired, without unduly lengthening the duration of the process, the thin layer deposited by ALD can be a seed layer of a metallizable material, compatible with an electroless or electrolytic treatment. Thus it is possible to add an electroless or electrolytic treatment step (step D), for example according to one of the treatments described previously (second to fourth modes). The electroless or electrolytic treatment is carried out in a suitable treatment solution, in a manner known to those skilled in the art. Such a treatment thus makes it possible to produce metallic layers greater than those obtained by the ALD process, typically greater than 1 μm. For example, tungsten can be deposited on a polymer material at 80° C. by ALD, knowing that tungsten is a compatible material (used as a catalyst, as well as silver) for an electrolytic growth of copper. The thick metallic deposit 6 thus formed by the electroless treatment or electrolytic is carried out only at the level of the ALD layer, as this is illustrated in FIG. 1D which represents the final part 11 .
[0076] La géométrie de la pièce, et la forme et les emplacements des motifs métalliques sont donnés à titre illustratif et ne sont pas limitatifs. Par exemple, les motifs métalliques réalisés peuvent être plus complexes. Les motifs peuvent être réalisés sur des surfaces difficilement accessibles par les autres techniques de fabrication. On peut réaliser des motifs métalliques minoritaires sur une pièce majoritairement isolante (avec un masquage important sur la pièce intermédiaire isolante) ou réaliser une pièce majoritairement métallique avec des motifs isolants minoritaires (avec un masquage faible sur la pièce intermédiaire isolante). Dans tous les cas, cela permet de fonctionnaliser la pièce intermédiaire réalisée par fabrication additive. The geometry of the part, and the shape and locations of the metal patterns are given for illustrative purposes and are not limiting. For example, the metallic patterns made can be more complex. The patterns can be made on surfaces that are difficult to access using other manufacturing techniques. It is possible to produce minority metal patterns on a predominantly insulating part (with significant masking on the insulating intermediate part) or produce a predominantly metallic part with minority insulating patterns (with low masking on the insulating intermediate part). In any case, this makes it possible to functionalize the intermediate part produced by additive manufacturing.
[0077] Les figures 2A à 2D présentent quelques exemples de pièces, non limitatifs, pouvant être réalisées par le procédé de fabrication selon l’invention. Dans les quatre figures, la partie polymère est désignée par la référence 2 et la partie métallisée par la référence 6 (comme étant obtenue par traitement electroless). La partie métallisée pourrait être obtenue uniquement par le dépôt ALD et serait désignée par la référence 4. Figures 2A to 2D show some examples of non-limiting parts that can be produced by the manufacturing method according to the invention. In the four figures, the polymer part is designated by the reference 2 and the metallized part by the reference 6 (as being obtained by electroless treatment). The metallized part could be obtained only by the ALD deposit and would be designated by the reference 4.
[0078] La figure 2A illustre un guide d’onde 12 métallisé à l’intérieur. [0078] Figure 2A illustrates a waveguide 12 metallized inside.
[0079] La figure 2B illustre une pièce cylindrique 13 métallisée en damier à l’intérieur. Ceci peut former une Surface Sélective en Fréquence (FSS). [0079] Figure 2B illustrates a cylindrical part 13 metallized in a checkerboard pattern on the inside. This can form a Frequency Selective Surface (FSS).
[0080] La figure 2C illustre une pièce 14 comprenant une métallisation de via sur une surface courbe. [0080] FIG. 2C illustrates a part 14 comprising via metallization on a curved surface.
[0081] La figure 2D illustre une pièce 15 comprenant une métallisation de via sur une surface plane. FIG. 2D illustrates a part 15 comprising via metallization on a flat surface.
[0082] Les motifs métalliques ainsi réalisés peuvent être utiles comme pistes métalliques afin de permettre la connexion des composants électroniques, comme des antennes, des résonateurs par exemple pour modifier ou réfléchir un signal RF traversant une pièce, ou encore des guides d’ondes. [0083] Plus généralement, les domaines d’applications sont donc variés, mais on peut citer par exemple les circuits imprimés et notamment les interconnections, les antennes, les radars, les composants RF, ou encore les guides d’ondes ... The metal patterns thus produced can be useful as metal tracks in order to allow the connection of electronic components, such as antennas, resonators for example to modify or reflect an RF signal passing through a room, or even waveguides. More generally, the fields of application are therefore varied, but we can cite, for example, printed circuits and in particular interconnections, antennas, radars, RF components, or even waveguides, etc.
[0084] En outre, la présente invention n'est pas limitée aux modes de réalisation précédemment décrits mais s'étend à tout mode de réalisation entrant dans la portée des revendications. Furthermore, the present invention is not limited to the embodiments described above but extends to any embodiment falling within the scope of the claims.

Claims

REVENDICATIONS
1 . Procédé de fabrication d’une pièce multi-matériaux polymère et métallique et/ou diélectrique (10, 11 , 12, 13, 14, 15) comprenant les étapes suivantes : a) une étape de réalisation d’une pièce intermédiaire (1 ) par une technique de fabrication additive adaptée, ladite pièce intermédiaire comprenant au moins une première partie dite « pérenne » (2) en un premier polymère thermoplastique non soluble dans un solvant de dissolution défini et au moins une seconde partie dite « de masquage » (3) en un second polymère thermoplastique soluble dans ledit solvant de dissolution défini; le premier et le second polymère étant exempt de matériau métallisable ; puis b) une étape de dépôt par un procédé de dépôt de couche atomique (ALD) d’au moins une couche mince (4) d’un matériau métallique, diélectrique et/ou métallisable sur toutes les surfaces de la pièce intermédiaire réalisée ; puis c) une étape de dissolution dans le solvant de dissolution de la seconde partie de la pièce intermédiaire en le second polymère thermoplastique. 1 . Method for manufacturing a polymer and metallic and/or dielectric multi-material part (10, 11, 12, 13, 14, 15) comprising the following steps: a) a step of producing an intermediate part (1) by a suitable additive manufacturing technique, said intermediate part comprising at least a first so-called "permanent" part (2) made of a first thermoplastic polymer that is not soluble in a defined dissolution solvent and at least a second so-called "masking" part (3) into a second thermoplastic polymer soluble in said defined dissolving solvent; the first and the second polymer being free of metallizable material; then b) a step of deposition by an atomic layer deposition (ALD) process of at least one thin layer (4) of a metallic, dielectric and/or metallizable material on all the surfaces of the intermediate part produced; then c) a step of dissolving in the solvent for dissolving the second part of the intermediate part into the second thermoplastic polymer.
2. Procédé de fabrication selon la revendication 1 comprenant, avant ou après l’étape c) de dissolution : d) une étape de traitement de surface electroless et/ou une étape de traitement de surface électrolytique. 2. Manufacturing process according to claim 1 comprising, before or after step c) of dissolving: d) an electroless surface treatment step and/or an electrolytic surface treatment step.
3. Procédé de fabrication selon la revendication 1 ou la revendication 2, le premier polymère étant choisi parmi un ou plusieurs polymères suivants : un acrylonitrile butadiène styrène (ABS), un acide polylactique (PLA), un acrylonitrile styrène acrylate (ASA), un polyacétate de vinyle (PVAc), un polyéthylène téréphtalate (PET), un polyéthylène téréphtalate glycolisé (PETG), un polycarbonate (PC), un polyaryléthercétone (PAEK) tel qu’un polyétheréthercétone (PEEK) ou un polyéthercétonecétone (PEKK), un polyétherimide (PEI), un polyoléfine tel qu’un polypropylène (PP) ou un polyéthylène (PE), un polyphénylsulfone (PPSU), un copolymère cyclo-oléfine (COC), un polyamide (nylon), le ou les polymères étant éventuellement additionnés de fibre de carbone, de verre ou de kevlar®, ou de diamant. Procédé de fabrication selon l’une des revendications précédentes, le second polymère étant choisi parmi un ou plusieurs polymères suivants : un alcool polyvinylique (PVAI), un acide polylactique (PLA), un polyéthylène téréphtalate (PET), un acrylonitrile butadiène styrène (ABS), ou encore le polystyrène choc (HIPS). Procédé de fabrication selon l’une des revendications précédentes, la technique de fabrication additive étant une technique de fabrication additive par extrusion de matière (FDM). Procédé de fabrication selon l’une des revendications précédentes, le solvant de dissolution étant un solvant aqueux comprenant au moins un additif, tel qu’un tensioactif et/ou une base, de l’eau sans additif, ou un solvant organique, ledit solvant de dissolution étant mis en oeuvre à température ambiante ou à une température supérieure à la température ambiante. Procédé de fabrication selon l’une des revendications précédentes, l’étape de dépôt par le procédé ALD étant réalisée à une température inférieure ou égale à 100°C, notamment inférieure ou égale à 80°C, voire inférieure ou égale à 70°C. Procédé de fabrication selon l’une des revendications précédentes, la au moins une couche mince déposée par le procédé ALD comprenant un ou plusieurs parmi les matériaux suivants : un métal, un oxyde métallique, un nitrure métallique, ou un alliage métallique, ou un oxyde de silicium. Procédé de fabrication selon l’une des revendications 1 à 8, la au moins une couche mince déposée par le procédé ALD comprenant un catalyseur de type métal noble tel que le palladium, le platine ou l’or. Procédé de fabrication selon l’une des revendications 1 à 8, la au moins une couche mince déposée par le procédé ALD comprenant une couche d’oxyde apte à adsorber préférentiellement un catalyseur, qui peut être un oxyde métallique, tel que le dioxyde de titane (TiÛ2) ou un dioxyde de silicium (SiÛ2). Procédé de fabrication selon l’une des revendications 1 à 8, la au moins une couche mince déposée par le procédé ALD comprenant un métal ou un oxyde conducteur, tel que l’oxyde de zinc dopé aluminium. 3. Manufacturing process according to claim 1 or claim 2, the first polymer being chosen from one or more of the following polymers: an acrylonitrile butadiene styrene (ABS), a polylactic acid (PLA), an acrylonitrile styrene acrylate (ASA), an polyvinyl acetate (PVAc), a polyethylene terephthalate (PET), a glycolized polyethylene terephthalate (PETG), a polycarbonate (PC), a polyaryletherketone (PAEK) such as a polyetheretherketone (PEEK) or a polyetherketoneketone (PEKK), a polyetherimide (PEI), a polyolefin such as a polypropylene (PP) or a polyethylene (PE), a polyphenylsulfone (PPSU), a cyclo-olefin copolymer (COC), a polyamide (nylon), the polymer(s) optionally being added with carbon fiber, glass or Kevlar®, or diamond. Manufacturing process according to one of the preceding claims, the second polymer being chosen from one or more of the following polymers: a polyvinyl alcohol (PVAI), a polylactic acid (PLA), a polyethylene terephthalate (PET), an acrylonitrile butadiene styrene (ABS ), or even high-impact polystyrene (HIPS). Manufacturing process according to one of the preceding claims, the additive manufacturing technique being an additive manufacturing technique by material extrusion (FDM). Manufacturing process according to one of the preceding claims, the dissolution solvent being an aqueous solvent comprising at least one additive, such as a surfactant and/or a base, water without additive, or an organic solvent, said solvent dissolution being carried out at room temperature or at a temperature above room temperature. Manufacturing process according to one of the preceding claims, the step of deposition by the ALD process being carried out at a temperature less than or equal to 100°C, in particular less than or equal to 80°C, or even less than or equal to 70°C . Manufacturing process according to one of the preceding claims, the at least one thin layer deposited by the ALD process comprising one or more of the following materials: a metal, a metal oxide, a metal nitride, or a metal alloy, or an oxide of silicon. Manufacturing process according to one of Claims 1 to 8, the at least one thin layer deposited by the ALD process comprising a catalyst of the noble metal type such as palladium, platinum or gold. Manufacturing process according to one of claims 1 to 8, the at least one thin layer deposited by the ALD process comprising an oxide layer capable of preferentially adsorbing a catalyst, which may be a metal oxide, such as titanium dioxide (TiO2) or silicon dioxide (SiO2). Manufacturing process according to one of Claims 1 to 8, the at least one thin layer deposited by the ALD process comprising a metal or a conductive oxide, such as aluminum-doped zinc oxide.
12. Pièce multi-matériaux polymère et métallique et/ou diélectrique (10, 11 , 12, 13,12. Polymer and metallic and/or dielectric multi-material part (10, 11, 12, 13,
14, 15) obtenue par le procédé de fabrication selon l’une des revendications 1 à 11. 14, 15) obtained by the manufacturing process according to one of claims 1 to 11.
PCT/EP2022/087391 2021-12-23 2022-12-22 Method for manufacturing a multi-material polymer and metal and/or dielectric part WO2023118393A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2114325A FR3131244B1 (en) 2021-12-23 2021-12-23 METHOD FOR MANUFACTURING A POLYMERIC AND METALLIC AND/OR DIELECTRIC MULTI-MATERIAL PART.
FRFR2114325 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023118393A1 true WO2023118393A1 (en) 2023-06-29

Family

ID=82850006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/087391 WO2023118393A1 (en) 2021-12-23 2022-12-22 Method for manufacturing a multi-material polymer and metal and/or dielectric part

Country Status (2)

Country Link
FR (1) FR3131244B1 (en)
WO (1) WO2023118393A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013010108A1 (en) * 2011-07-13 2013-01-17 Nuvotronics, Llc Methods of fabricating electronic and mechanical structures
US20200370206A1 (en) * 2015-03-27 2020-11-26 U.S. Army Combat Capabilities Development Command, Army Research Laboratory High strength 3d-printed polymer structures and methods of formation
US20210387422A1 (en) * 2018-10-05 2021-12-16 Hercules Llc Support materials for three-dimensional printing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013010108A1 (en) * 2011-07-13 2013-01-17 Nuvotronics, Llc Methods of fabricating electronic and mechanical structures
US20200370206A1 (en) * 2015-03-27 2020-11-26 U.S. Army Combat Capabilities Development Command, Army Research Laboratory High strength 3d-printed polymer structures and methods of formation
US20210387422A1 (en) * 2018-10-05 2021-12-16 Hercules Llc Support materials for three-dimensional printing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ABDULLAH GENC, INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2018
GENC ABDULLAH ET AL: "Investigation of the characteristics of low-cost and lightweight horn array antennas with novel monolithic waveguide feeding networks", AEU - INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, ELSEVIER, AMSTERDAM, NL, vol. 89, 16 March 2018 (2018-03-16), pages 15 - 23, XP085387471, ISSN: 1434-8411, DOI: 10.1016/J.AEUE.2018.03.024 *

Also Published As

Publication number Publication date
FR3131244A1 (en) 2023-06-30
FR3131244B1 (en) 2024-04-19

Similar Documents

Publication Publication Date Title
BE1004844A7 (en) Metallisation methods surface using metal powder.
FR2962995A1 (en) METHOD FOR MANUFACTURING A STRUCTURE COMPRISING A GRAPHENE SHEET PROVIDED WITH METAL PLOTS, STRUCTURE THUS OBTAINED AND USES THEREOF
EP2589679B1 (en) Method for synthesising a graphene sheet on a platinum silicide, structures obtained by said method and uses thereof
TWI484065B (en) Method for making flexible transparent conductive film
EP2181824B1 (en) Herstellungsverfahren eines Werkzeugs für Werkstücke aus nanostrukturierten Polymermaterialien
FR2901891A1 (en) ELECTROCHROME CELL, ITS USE IN THE PRODUCTION OF A GLASS OR A MIRROR AND ITS PRODUCTION METHOD
EP3003973B1 (en) Substrate that is electrically conductive on at least one of the faces of same provided with a stack of thin layers for growing carbon nanotubes (cnt)
FR2933425A1 (en) PROCESS FOR PREPARING AN ELECTRIC INSULATING FILM AND APPLICATION FOR METALLIZING VIAS THROUGH
JP5698684B2 (en) Semiconductor device manufacturing method, semiconductor device manufacturing apparatus, semiconductor device, and transfer member
KR101599103B1 (en) Method for manufacturing metal particles with core-shell structure
EP2898121A1 (en) Electrolyte and method for electrodepositing copper onto a barrier layer
FR2917893A1 (en) METHOD FOR MANUFACTURING AN ELECTRICAL CONNECTION BASED ON CARBON NANOTUBES
WO2023118393A1 (en) Method for manufacturing a multi-material polymer and metal and/or dielectric part
EP2534678B1 (en) Interconnection structure made of redirected carbon nanotubes
EP3502310B1 (en) Method for metallising a porous structure made of a carbon material
Zhou et al. Electroless Deposition of Confined Copper Layers Based on Selective Activation by Pulsed Laser Irradiation
FR2844396A1 (en) METHOD FOR PRODUCING AN INTEGRATED ELECTRONIC COMPONENT AND ELECTRIC DEVICE INCORPORATING AN INTEGRATED COMPONENT THUS OBTAINED
FR2761374A1 (en) METHOD FOR SELECTIVE METALLIZATION OF INTRINSICALLY PLASTIC MATERIALS AND INTEGRATED CIRCUIT BOARD (S) OBTAINED ACCORDING TO THE PROCESS
EP1311144A2 (en) Printed circuit board having integrated connections and method for manufacturing such a board
KR100991693B1 (en) Mother mold for reproducing a replica mold by electroplating and fabrication method therof
FR3119104A1 (en) Method of forming a metallo-organic network
EP2691960A1 (en) Production of transparent electrodes made from metallized carbon nanotubes
WO2018172321A1 (en) Reactor device and method for producing thin layers, implementing a series of deposition steps, and uses of this method
FR2687012A1 (en) JOSEPHSON DEVICE AND METHOD FOR MANUFACTURING SAME.
FR2844395A1 (en) Production of an electronic component using a temporary material to form a volume between it and a substrate for the introduction of a conducting material via a shaft in this volume, notably for MOS transistors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22843729

Country of ref document: EP

Kind code of ref document: A1