WO2023117533A1 - Procede de traitement d'une essence contenant des composes soufres comprenant une etape de dilution - Google Patents

Procede de traitement d'une essence contenant des composes soufres comprenant une etape de dilution Download PDF

Info

Publication number
WO2023117533A1
WO2023117533A1 PCT/EP2022/085359 EP2022085359W WO2023117533A1 WO 2023117533 A1 WO2023117533 A1 WO 2023117533A1 EP 2022085359 W EP2022085359 W EP 2022085359W WO 2023117533 A1 WO2023117533 A1 WO 2023117533A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
gasoline
weight
hydrogen
temperature
Prior art date
Application number
PCT/EP2022/085359
Other languages
English (en)
Inventor
Sophie COUDERC
Marie DEHLINGER
Adrien Gomez
Marie-Claire Marion
Antoine Fecant
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2023117533A1 publication Critical patent/WO2023117533A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/06Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a selective hydrogenation of the diolefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/36Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/38Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Definitions

  • Process for treating a gasoline containing sulfur compounds comprising a step of diluting
  • the present invention relates to a method for producing gasoline with a low sulfur and mercaptan content.
  • FCC Fluid Catalytic Cracking according to the Anglo-Saxon terminology, that can be translated by catalytic cracking in a fluidized bed.
  • FCC gasolines therefore constitute the preferred feedstock for the process of the present invention.
  • the purpose of the presale invention is to implement a process for the production of gasolines with a low sulfur content, making it possible to efficiently conserve the whole of a gasoline cut containing sulfur, preferably a gasoline cut from catalytic cracking, and to reduce the sulfur contents in said gasoline cut at very low levels, without a significant reduction in the gasoline yield while minimizing the reduction in the octane number due to the hydrogenation of the olefins.
  • the subject of the present invention is a process for treating a gasoline containing sulfur compounds, olefins and diolefins, the process comprising at least the following steps: a) the gasoline is brought into contact with hydrogen and a hydrodesulphurization catalyst comprising an oxide support and an active phase comprising a group VI B metal and a group VIII metal, at a temperature between 210 and 320°C, at a pressure between 1 and 4 MPa , with a space velocity comprised between 1 and 10 h -1 and a ratio between the hydrogen flow rate expressed in normal m 3 per hour and the feed rate to be treated expressed in m 3 per hour at standard conditions comprised between 100 and 600 Nm 3 /m 3 , to obtain a partially desulfurized effluent; b) the partially desulfurized effluent obtained at the end of step a) is brought into contact directly and without any separation with a gaseous or liquid feedstock as diluent, under normal temperature and pressure conditions, defined here at a temperature of
  • step b) the partially desulfurized and diluted effluent obtained at the end of step b) is brought into contact with a hydrodesulfurization catalyst comprising an oxide support and an active phase comprising a group VI B metal and a metal of group VIII, at a temperature comprised between 210 and 320° C., at a pressure comprised between 1 and 4 MPa, with a space velocity comprised between 1 and 10 h 1 to obtain a desulfurized effluent.
  • a hydrodesulfurization catalyst comprising an oxide support and an active phase comprising a group VI B metal and a metal of group VIII
  • the Applicant has discovered surprisingly that carrying out an intermediate step of diluting a gasoline feedstock to be treated between two steps hydrodesulphurization makes it possible to significantly improve the stability of the hydrodesulphurization performance by controlling the exothermicity of the hydrogenation of the olefins and thus makes it possible to limit the phenomenon of deactivation of the hydrodesulphurization catalysts.
  • said diluent of step b) is a gaseous charge comprising at least 50% by volume of hydrogen relative to the total volume of said gaseous charge.
  • the ratio between the volume flow rate of said gaseous charge introduced in step b) and the volume flow rate of the hydrogen introduced in step a) is between 0.01 and 25 Nm 3 /Nm 3 .
  • said diluent of step b) is a liquid hydrocarbon feed comprising a boiling point of between 30°C and 250°C.
  • the ratio between the volume flow rate of said liquid feed introduced in step b) and the volume flow rate of said gasoline feed introduced in step a) is between 0.01 and 1 Sm 3 /Sm 3 (Standard cubic meter by Standard cubic meter).
  • said liquid feedstock introduced in step b) is identical to the gasoline feedstock introduced in step a) of said method.
  • said gaseous feed or said liquid feed is introduced in step b) at a temperature below the temperature of the partially desulfurized effluent obtained at the end of step a).
  • said gaseous feed or said liquid feed is introduced in step b) at a temperature between 20°C and 300°C.
  • steps a) and b) are carried out in the same reactor.
  • steps a), b) and c) are carried out in the same reactor.
  • the catalyst of step a) and/or of step c) comprises a group VIII metal content of between 0.1 and 10% by weight of group VIII metal oxide relative to the total weight of the catalyst, and a group VI B metal content of between 1 and 20% by weight of group VI B metal oxide relative to the total weight of the catalyst.
  • the catalyst of step a) and/or of step c) comprises alumina and an active phase comprising cobalt, molybdenum and optionally phosphorus, said catalyst containing a content by weight relative to the total weight of cobalt oxide catalyst, in CoO form, of between 0.1 and 10%, a content by weight relative to the total weight of molybdenum oxide catalyst, in MoOs form, of between between 1 and 20%, a cobalt/molybdenum molar ratio of between 0.1 and 0.8, a content by weight relative to the total weight of catalyst of phosphorus oxide in P2O5 form of between 0.3 and 10% when the phosphorus is present, said catalyst having a specific surface between 50 and 250 m 2 /g.
  • the catalysts of steps a) and c) are identical.
  • the gasoline before step a) and before any possible distillation step, the gasoline is brought into contact with hydrogen and a selective hydrogenation catalyst to selectively hydrogenate the diolefins contained in said l gasoline into olefins.
  • the gasoline is a catalytic cracked gasoline.
  • FIG. 1 is a schematic representation of an embodiment according to the invention. detailed description
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IIIPAC classification.
  • specific surface area is meant the BET specific surface area (SBET in m 2 /g) determined by nitrogen adsorption in accordance with the ASTM D 3663-78 standard established from the BRUNAUER-EMMETT-TELLER method described in the periodical "The Journal of American Society”, 1938, 60, 309.
  • total pore volume of the catalyst or of the support used for the preparation of the catalyst is meant the volume measured by intrusion with a mercury porosimeter according to standard ASTM D4284 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne/cm and a contact angle of 140°, for example with an Autopore III model device from the Microméritics® brand.
  • the wetting angle was taken as equal to 140° by following the recommendations of the work “Engineering techniques, treatise on analysis and characterization”, pages 1050-1055, written by Jean Charpin and Bernard Rasneur.
  • the value of the total pore volume corresponds to the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the sample minus the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the same sample for a pressure corresponding to 30 psi (about 0.2 MPa).
  • group VIII, group VIB and phosphorus elements are measured by X-ray fluorescence.
  • the process according to the invention makes it possible to treat any type of gasoline cut containing sulfur compounds and olefins, such as for example a cut from a coking unit (coking according to the Anglo-Saxon terminology), visbreaking (visbreaking according to Anglo-Saxon terminology), steam cracking (steam cracking according to Anglo-Saxon terminology) or catalytic cracking (FCC, Fluid Catalytic Cracking according to Anglo-Saxon terminology).
  • This gasoline may optionally include a significant fraction of gasoline from other production processes such as atmospheric distillation (gasoline from direct distillation (or straight run gasoline according to the Anglo-Saxon terminology)) or conversion processes (gasoline coking or steam cracking).
  • Said feed preferably consists of a gasoline cut from a catalytic cracking unit.
  • the feed is a gasoline cut containing sulfur compounds and olefins whose range of boiling points typically extends from the boiling points of hydrocarbons with 2 or 3 carbon atoms (C2 or C3) up to 260° C, preferably from the boiling points of hydrocarbons with 2 or 3 carbon atoms (C2 or C3) up to 220°C, more preferably from the boiling points of hydrocarbons with 5 carbon atoms up to at 220°C.
  • the process according to the invention can also treat loads having end points lower than those mentioned above, such as for example a C5-180°C cut.
  • the sulfur content of gasoline cuts produced by catalytic cracking depends on the sulfur content of the FCC-treated feedstock, the presence or not of a pretreatment of the FCC feedstock, as well as the end point of the cut.
  • the sulfur contents of an entire gasoline cut, in particular those coming from the FCC are above 100 ppm by weight and most of the time above 500 ppm by weight.
  • the sulfur contents are often higher than 1000 ppm by weight, they can even in certain cases reach values of the order of 4000 to 5000 ppm by weight.
  • the feed treated by the process according to the invention can be a feed containing sulfur compounds in a content greater than 1000 ppm by weight of sulfur, and often greater than 1500 ppm.
  • gasolines from catalytic cracking units contain, on average, between 0.5% and 5% by weight of diolefins, between 20% and 50% by weight of olefins, between 10 ppm and 0.5% weight of sulfur of which generally less than 300 ppm of mercaptans.
  • the gasoline to be treated is sent to a selective hydrogenation catalytic reactor containing at least one fixed or moving bed of catalyst for the selective hydrogenation of diolefins and for the weighting of light mercaptans.
  • the reaction of selective hydrogenation of diolefins and weighting of light mercaptans takes place preferably on a sulfur catalyst comprising at least one element from group VIII and optionally at least one element from group VIB and an oxide support.
  • the group VIII element is preferably chosen from nickel and cobalt and in particular nickel.
  • the element of group VIB when it is present, is preferably chosen from molybdenum and tungsten and very preferably molybdenum.
  • the catalyst oxide support is preferably chosen from alumina, nickel aluminate, silica, silicon carbide, or a mixture of these oxides.
  • alumina is used and even more preferably, high purity alumina.
  • the selective hydrogenation catalyst contains nickel at a content by weight of nickel oxide, in the form of NiO, of between 1 and 12%, and molybdenum at a content by weight of molybdenum oxide , in MoOs form, of between 6% and 18% and a nickel/molybdenum molar ratio of between 0.3 and 2.5, the metals being deposited on a support consisting of alumina.
  • the sulfurization rate of the metals constituting the catalyst is preferably greater than 60%.
  • the gasoline is brought into contact with the catalyst at a temperature of between 50 and 250° C., and preferably between 80 and 220° C., and even more preferably between 90 and 200°C, with a liquid space velocity (LHSV) between 0.5 h -1 and 20 h' 1 , the unit of the liquid space velocity being the volume of charge per volume of catalyst bed and per hour (L /L/h).
  • LHSV liquid space velocity
  • the pressure is between 0.4 and 5 MPa, preferably between 0.6 and 4 MPa and even more preferably between 1 and 3 MPa.
  • the optional selective hydrogenation step is typically carried out with a ratio between the hydrogen flow rate expressed in normal m 3 per hour and the feed flow rate to be treated expressed in m 3 per hour at standard conditions of between 2 and 100 Nm 3 /m 3 , preferably between 3 and 30 Nm 3 /m 3 .
  • the diolefin content determined by means of the maleic anhydride index (MAV or "Maleic Anhydride Value" according to the English terminology), according to the UOP 326 method, is generally reduced to less than 6 mg of maleic anhydride/g, even less than 4 mg AM/g and more preferably less than 2 mg AM/g. In some cases, less than 1 mg AM/g can be obtained.
  • MAV maleic anhydride index
  • the selectively hydrogenated gasoline can then be distilled into at least two cuts, a light cut and a heavy cut and optionally an intermediate cut.
  • the heavy cut is treated according to the method of the invention.
  • the intermediate and heavy cuts can be treated separately by the process according to the invention.
  • the hydrodesulphurization stage a) is implemented to reduce the sulfur content of the gasoline to be treated by converting the sulfur compounds into H 2 S.
  • the temperature is generally between 210 and 320°C and preferably between 220 and 300°C.
  • the temperature used must be sufficient to maintain the gasoline to be treated in the vapor phase in the reactor.
  • the operating pressure for this step is generally between 1 and 4 MPa and preferably between 1.5 and 3 MPa.
  • the quantity of catalyst used in each reactor is generally such that the ratio between the flow rate of gasoline to be treated, expressed in m 3 per hour at standard conditions, per m 3 of catalytic bed (also called space velocity or LHSV) is comprised between 1 and 100 h ⁇ 1 and preferably between 1 and 50 h ⁇ 1 , very preferably between 2 and 20 h ⁇ 1 .
  • the hydrogen flow rate is generally such that the ratio between the hydrogen flow rate expressed in normal m 3 per hour (Nm 3 /h) and the feed flow rate to be treated expressed in m 3 per hour at standard conditions (15°C , 0.1 MPa) is between 10 and 1000 Nm 3 /m 3 , preferably between 50 and 600 Nm 3 /m 3 .
  • Normal m 3 means the volume of 1 m 3 of gas at 0° C. and 0.1 MPa.
  • the hydrogen required for this step can be fresh hydrogen or recycled hydrogen, preferably free of H 2 S, or a mixture of fresh hydrogen and recycled hydrogen. Preferably, a mixture of fresh hydrogen and recycled hydrogen will be used.
  • the degree of desulfurization of step a), which depends on the sulfur content of the feed to be treated, is generally greater than 50% and preferably greater than 70% so that the product resulting from step a) contains less than 100 ppm by weight sulfur and preferably less than 50 ppm by weight sulfur.
  • the catalyst used in step a) must have good selectivity with respect to hydrodesulphurization reactions compared to the hydrogenation reaction of olefins.
  • the hydrodesulfurization catalyst of step a) comprises an oxide support and an active phase comprising a metal from group VIB and a metal from group VIII and optionally phosphorus and/or an organic compound as described below.
  • the group VIB metal present in the active phase of the catalyst is preferably chosen from molybdenum and tungsten.
  • the group VIII metal present in the active phase of the catalyst is preferably chosen from cobalt, nickel and a mixture of these two elements.
  • the active phase of the catalyst is preferably chosen from the group formed by the combination of the elements nickel-molybdenum, cobalt-molybdenum and nickel-cobalt-molybdenum and very preferably the active phase consists of cobalt and molybdenum.
  • the group VIII metal content is between 0.1 and 10% by weight of group VIII metal oxide relative to the total weight of the catalyst, preferably between 0.6 and 8% by weight, preferably between 0 6 and 7% by weight, very preferably between 1 and 6% by weight.
  • the group VI B metal content is between 1 and 20% by weight of group VI B metal oxide relative to the total weight of the catalyst, preferably between 2 and 18% by weight, very preferably between 3 and 16% weight.
  • the molar ratio of group VIII metal to group VIB metal of the catalyst is generally between 0.1 and 0.8, preferably between 0.2 and 0.6.
  • the catalyst may also have a phosphorus content generally between 0.3 and 10% by weight of P2O5 relative to the total weight of catalyst, preferably between 0.3 and 5% by weight, very preferably between 0 .5 and 3% by weight.
  • the phosphorus present in the catalyst is combined with the group VIB metal and possibly also with the group VIII metal in the form of heteropolyanions.
  • the phosphorus/(group VIB metal) molar ratio is generally between 0.1 and 0.7, preferably between 0.2 and 0.6, when phosphorus is present.
  • the catalyst is characterized by a specific surface of between 5 and 400 m 2 /g, preferably of between 10 and 250 m 2 /g, preferably of between 50 and 250 m 2 /g.
  • the specific surface is determined in the present invention by the BET method according to the ASTM D3663 standard, as described in the work Rouquerol F.; Rouquerol J.; Singh K. “Adsorption by Powders & Porous Solids: Principle, methodology and applications”, Academic Press, 1999, for example by means of an Autopore IIITM model apparatus from the MicromeriticsTM brand.
  • the total pore volume of the catalyst is generally between 0.4 cm 3 /g and 1.3 cm 3 /g, preferably between 0.6 cm 3 /g and 1.1 cm 3 /g.
  • the total porous volume is measured by mercury porosimetry according to standard ASTM D4284 with a wetting angle of 140°, as described in the same work.
  • the tapped packing density (TRD) of the catalyst is generally between 0.4 and 0.8 g/mL, preferably between 0.4 and 0.7 g/mL.
  • the DRT measurement consists of introducing the catalyst into a test tube, the volume of which has been previously determined, then, by vibration, compacting it until a constant volume is obtained.
  • the density of the packed product is calculated by comparing the mass introduced and the volume occupied after packing.
  • the catalyst can be in the form of small-diameter, cylindrical or multilobed (trilobed, quadrilobed, etc.) extrudates, or spheres.
  • the catalyst oxide support is usually a porous solid chosen from the group consisting of: aluminas, silica, silica alumina or even titanium or magnesium oxides used alone or in a mixture with alumina or silica alumina . It is preferably chosen from the group consisting of silica, the family of transition aluminas and alumina silicas, very preferably, the oxide support consists essentially of alumina, that is to say that it comprises at least 51% by weight, preferably at least 60% by weight, very preferably at least 80% by weight, or even at least 90% by weight of alumina. It preferably consists solely of alumina.
  • the oxide support of the catalyst is a “high temperature” alumina, that is to say which contains aluminas of theta, delta, kappa or alpha phase, alone or as a mixture and an amount of less than 20 % weight of gamma, chi or eta phase alumina.
  • the conversion of the unsaturated sulfur compounds is advantageously greater than 15% and preferably greater than 50%.
  • the degree of hydrogenation of the olefins is preferably less than 50%, more preferably less than 40%, and very preferably less than 35%, during this step.
  • step a) The partially desulfurized effluent obtained at the end of step a) is then sent directly and without separation to step b) of the process according to the invention.
  • This step consists in diluting the partially desulphurized effluent obtained at the end of step a) with a gaseous or liquid charge as a diluent (also called here “dilution charge” or “diluent”) under the normal conditions of temperature and pressure, defined here by a temperature of 15°C (288.15 K) and a pressure of 0.1 MPa.
  • a diluent also called here “dilution charge” or “diluent”
  • the dilution charge is gaseous under normal temperature and pressure conditions.
  • said gaseous charge when the diluent is a gaseous charge, under normal temperature and pressure conditions, said gaseous charge preferably comprises more than 50% by volume of hydrogen H2, even more preferably more than 70 % by volume of hydrogen, and very preferably more than 90% by volume of hydrogen.
  • the volume flow rate of the gaseous charge is defined so that the ratio between the volume flow rate of said gaseous charge introduced in stage b) and the volume flow rate of the hydrogen introduced in stage a) is between 0.01 and 25 Nm 3 /Nm 3 , preferably between 0.02 and 4 Nm 3 /Nm 3 , and very preferably between 0.04 and 1 Nm 3 /Nm 3 .
  • the gaseous charge is introduced under a pressure generally between about 1 and about 4 MPa, preferably between 1.5 and 3 MPa.
  • the gaseous charge is generally introduced at a temperature below the temperature of the effluent from step a), preferably at a temperature between 20° C. and 300° C., preferably between 30° C. and 280° C. , more preferably between 30°C and 220°C, even more preferably between 35°C and 180°C, more preferably between 35°C and 120°C, and even more preferably between 35°C and 80°C vs.
  • the diluent when the diluent is a liquid filler, under normal temperature and pressure conditions defined here by a temperature of 15°C (288.15 K) and a pressure of 0.1 MPa, said liquid filler can be any liquid hydrocarbon filler comprising a boiling point of between 30°C and 250°C, preferably between 35°C and 240°C, and even more preferably between 40°C and 220°C vs.
  • the liquid feedstock is identical to the gasoline feedstock to be treated introduced during step a) or to the effluent from step c).
  • the volume flow rate of said liquid feedstock is defined so that the ratio between the volume flow rate of said liquid feedstock introduced in step b) and the volume flow rate of the gasoline feedstock introduced in step a) is between 0.01 and 1 m 3 /m 3 , preferably between 0.02 and 1 m 3 /m 3 , and very preferably between 0.02 and 0.5 m 3 /m 3 .
  • the liquid filler is introduced under a pressure generally between about 1 and about 4 MPa, preferably between 1.5 and 3 MPa.
  • the liquid feed is introduced at a temperature below the temperature of the effluent from step a), and is preferably between 20° C. and 300° C., preferably between 30° C. and 280° C., very preferably between 40°C and 220°C, even more preferably between 40°C and 180°C, more preferably between 40°C and 120°C, and even more preferably between 40°C and 80°C vs.
  • step b) is carried out in the same reactor as step a).
  • This stage consists in transforming at least a part of the sulfur compounds contained in the effluent resulting from stage b) such as the thiophenic compounds, into saturated compounds, for example into thiophanes (or thiacyclopentanes) or into mercaptans, or else in hydrogenolysis with less partially these sulfur compounds to form H2S.
  • the temperature is generally between 210 and 320°C and preferably between 220 and 300°C. The temperature used must be sufficient to maintain the gasoline to be treated in the vapor phase in the reactor.
  • the operating pressure for this step is generally between 1 and 4 MPa and preferably between 1.5 and 3 MPa.
  • the quantity of catalyst used in each reactor is generally such that the ratio between the flow rate of gasoline to be treated, expressed in m 3 per hour at standard conditions, per m 3 of catalytic bed (also called space velocity or LHSV) is comprised between 1 and 100 h ⁇ 1 and preferably between 1 and 50 h ⁇ 1 , very preferably between 3 and 20 h ⁇ 1 .
  • the hydrogen flow rate is generally such that the ratio between the hydrogen flow rate expressed in normal m 3 per hour (Nm 3 /h) and the feed flow rate to be treated expressed in m 3 per hour at standard conditions (15°C , 0.1 MPa) is between 50 and 1000 Nm 3 /m3, preferably between 100 and 600 Nm 3 /m.
  • the catalyst used in step c) must have good selectivity with respect to hydrodesulphurization reactions compared to the hydrogenation reaction of olefins.
  • the hydrodesulfurization catalyst of step c) comprises an oxide support and an active phase comprising a group VIB metal and a group VIII metal and optionally phosphorus and/or an organic compound as described below.
  • the group VIB metal present in the active phase of the catalyst is preferably chosen from molybdenum and tungsten.
  • the group VIII metal present in the active phase of the catalyst is preferably chosen from cobalt, nickel and a mixture of these two elements.
  • the active phase of the catalyst is preferably chosen from the group formed by the combination of the elements nickel-molybdenum, cobalt-molybdenum and nickel-cobalt-molybdenum and very preferably the active phase consists of cobalt and molybdenum.
  • the group VIII metal content is between 0.1 and 10% by weight of group VIII metal oxide relative to the total weight of the catalyst, preferably between 0.6 and 8% by weight, preferably between 0 6 and 7% by weight, very preferably between 1 and 6% by weight.
  • the group VIB metal content is between 1 and 20% by weight of group VIB metal oxide relative to the total weight of the catalyst, preferably between 2 and 18% by weight, very preferably between 3 and 16 % weight.
  • the molar ratio of group VIII metal to group VIB metal of the catalyst is generally between 0.1 and 0.8, preferably between 0.2 and 0.6.
  • the catalyst may also have a phosphorus content generally between 0.3 and 10% by weight of P2O5 relative to the total weight of catalyst, preferably between 0.3 and 5% by weight, very preferably between 0 .5 and 3% by weight.
  • the phosphorus present in the catalyst is combined with the group VIB metal and possibly also with the group VIII metal in the form of heteropolyanions.
  • the phosphorus/(group VIB metal) molar ratio is generally between 0.1 and 0.7, preferably between 0.2 and 0.6, when phosphorus is present.
  • the catalyst is characterized by a specific surface of between 5 and 400 m 2 /g, preferably of between 10 and 250 m 2 /g, preferably of between 50 and 250 m 2 /g.
  • the specific surface is determined in the present invention by the BET method according to the ASTM D3663 standard, as described in the work Rouquerol F.; Rouquerol J.; Singh K. “Adsorption by Powders & Porous Solids: Principle, methodology and applications”, Academic Press, 1999, for example by means of an Autopore IIITM model apparatus from the MicromeriticsTM brand.
  • the total pore volume of the catalyst is generally between 0.4 cm 3 /g and 1.3 cm 3 /g, preferably between 0.6 cm 3 /g and 1.1 cm 3 /g.
  • the total porous volume is measured by mercury porosimetry according to standard ASTM D4284 with a wetting angle of 140°, as described in the same work.
  • the tapped packing density (TRD) of the catalyst is generally between 0.4 and 0.8 g/mL, preferably between 0.4 and 0.7 g/mL.
  • DRT measurement consists of introducing the catalyst into a test tube, the volume of which has been previously determined, then, by vibration, compacting it until a constant volume is obtained. The apparent density of the packed product is calculated by comparing the mass introduced and the volume occupied after packing.
  • the catalyst can be in the form of small-diameter, cylindrical or multilobed (trilobed, quadrilobed, etc.) extrudates, or spheres.
  • the catalyst oxide support is usually a porous solid chosen from the group consisting of: aluminas, silica, silica alumina or even titanium or magnesium oxides used alone or in a mixture with alumina or silica alumina . It is preferably chosen from the group consisting of silica, the family of transition aluminas and alumina silicas, very preferably, the oxide support consists essentially of alumina, that is to say that it comprises at least 51% by weight, preferably at least 60% by weight, very preferably at least 80% by weight, or even at least 90% by weight of alumina. It preferably consists solely of alumina.
  • the oxide support of the catalyst is a "high temperature" alumina, that is to say which contains theta, delta, kappa or alpha phase aluminas, alone or as a mixture and an amount less than 20% by weight of gamma, chi or eta phase alumina.
  • the conversion of the unsaturated sulfur compounds is advantageously greater than 15% and preferably greater than 50%.
  • the degree of hydrogenation of the olefins is preferably less than 50%, more preferably less than 40%, and very preferably less than 35%, during this step.
  • the catalyst used during step c) is the same as that used during step a).
  • step c) is carried out in the same reactor as step b).
  • steps a), b) and c) are carried out in the same reactor.
  • step d) is carried out at a higher temperature than that of steps a) and c). Indeed, by using a higher temperature in this step compared to the temperature of steps a) and c), the formation of olefins and H2S will be favored by the thermodynamic equilibrium. Stage d) also makes it possible to continue the hydrodesulfurization of the residual sulfur compounds.
  • the hydrodesulphurization step d) consists in bringing the effluent from step c) into contact, optionally with an addition of hydrogen, in one or more hydrodesulphurization reactors, containing one or more catalysts suitable for carrying out the hydrodesulphurization .
  • the hydrodesulfurization step d) is carried out without significant hydrogenation of the olefins.
  • the degree of hydrogenation of the olefins of the catalyst of the hydrodesulphurization step d) is as a rule less than 5% and even more generally less than 2%.
  • the temperature of this step is generally between 280 and 400°C, more preferably between 290 and 380°C, and very preferably between 300 and 360°C.
  • the temperature of this stage d) is generally higher by at least 5° C., preferably by at least 10° C. and very preferably by at least 30° C. than the temperature of stages a) and c).
  • the operating pressure for this step is generally between 0.5 and 5 MPa and preferably between 1 and 3 MPa.
  • the quantity of catalyst used in each reactor is generally such that the ratio between the flow rate of gasoline to be treated, expressed in m 3 per hour at standard conditions, per m 3 of catalytic volume (also called space velocity or LHSV) is comprised between 1 and 10 h -1 and preferably between 2 and 8 h -1 .
  • the hydrogen flow rate is generally such that the ratio between the hydrogen flow rate expressed in normal m 3 per hour (Nm 3 /h) and the feed flow rate to be treated expressed in m 3 per hour at standard conditions (15°C , 0.1 MPa) is between 50 and 600 Nm 3 /m 3 , preferably between 50 and 500 Nm 3 /m 3 .
  • the degree of desulfurization of step d), which depends on the sulfur content of the feed to be treated, is generally greater than 50% and preferably greater than 70% so that the product resulting from step d) contains less than 60 ppm by weight sulfur and preferably less than 40 ppm by weight sulfur.
  • the catalyst of step d) is of a different nature and/or composition from that used in steps a) and c).
  • the catalyst of stage d) is in particular a very selective hydrodesulphurization catalyst: it makes it possible to hydrodesulphurize without hydrogenating the olefins and therefore to maintain the octane number.
  • the catalyst which may be suitable for this step d) of the process according to the invention, without this list being exhaustive, is a catalyst comprising an oxide support and an active phase consisting of at least one group VIII metal, and of preferably chosen from the group formed by nickel, cobalt, iron. These metals can be used alone or in combination.
  • the active phase consists of a group VIII metal, preferably nickel.
  • the active phase consists of nickel.
  • the group VIII metal content is between 1 and 60% by weight of group VIII metal oxide relative to the total weight of the catalyst, preferably between 5 and 30% by weight, very preferably between 5 and 20 % weight.
  • the catalyst is characterized by a specific surface of between 5 and 400 m 2 /g, preferably between 10 and 250 m 2 /g, preferably between 20 and 200 m 2 /g, very preferably between 30 and 180 m 2 /g.
  • the specific surface is determined in the present invention by the BET method according to the ASTM D3663 standard, as described in the work Rouquerol F.; Rouquerol J.; Singh K. “Adsorption by Powders & Porous Solids: Principle, methodology and applications”, Academic Press, 1999, for example by means of an Autopore IIITM model apparatus from the MicromeriticsTM brand.
  • the pore volume of the catalyst is generally between 0.4 cm 3 /g and 1.3 cm 3 /g, preferably between 0.6 cm 3 /g and 1.1 cm 3 /g.
  • the total porous volume is measured by mercury porosimetry according to standard ASTM D4284 with a wetting angle of 140°, as described in the same work.
  • the tapped packing density (TRD) of the catalyst is generally between 0.4 and 0.8 g/mL, preferably between 0.4 and 0.7 g/mL.
  • DRT measurement consists of introducing the catalyst into a test tube, the volume of which has been previously determined, then, by vibration, compacting it until a constant volume is obtained.
  • the apparent density of the packed product is calculated by comparing the mass introduced and the volume occupied after packing.
  • the catalyst can be in the form of small-diameter, cylindrical or multilobed (trilobed, quadrilobed, etc.) extrudates, or spheres.
  • the catalyst oxide support is usually a porous solid chosen from the group consisting of: aluminas, silica, silica alumina or even titanium or magnesium oxides used alone or in a mixture with alumina or silica alumina . It is preferably chosen from the group consisting of silica, the family of transition aluminas and alumina silicas, very preferably, the oxide support consists essentially of alumina, that is to say that it comprises at least 51% by weight, preferably at least 60% by weight, very preferably at least 80% by weight, or even at least 90% by weight of alumina. It preferably consists solely of alumina.
  • the oxide support of the catalyst is a “high temperature” alumina, that is to say which contains aluminas of theta, delta, kappa or alpha phase, alone or as a mixture and an amount of less than 20 % gamma, chi or eta phase alumina.
  • a very preferred embodiment of the invention corresponds to the implementation for step d) of a catalyst consisting of alumina and nickel, said catalyst containing a content by weight relative to the total weight of catalyst of nickel oxide, in NiO form, between 5 and 20%, said catalyst having a specific surface between 30 and 180 m 2 /g.
  • the catalyst of the hydrodesulphurization step d) is characterized by a catalytic hydrodesulphurization activity generally comprised between 1% and 90%, preferentially comprised between 1% and 70%, and very preferably comprised between 1% and 50% the catalytic activity of the catalyst of steps a) and c) of hydrodesulphurization.
  • the preparation of the catalysts of stages a), c) and d) is known and generally comprises a stage of impregnation of the metals of group VIII and of group VIB when it is present, and optionally phosphorus and/or organic compound on the oxide support, followed by drying, then optional calcination to obtain the active phase in their oxide forms.
  • the catalysts Before its use in a process for the hydrodesulfurization of an olefinic gasoline fraction containing sulfur, the catalysts are generally subjected to sulfurization in order to form the active species as described below.
  • the impregnation step can be carried out either by slurry impregnation, or by excess impregnation, or by dry impregnation, or by any other means known to those skilled in the art.
  • the impregnation solution is chosen so as to be able to dissolve the metal precursors in the desired concentrations.
  • the sources of molybdenum use may be made of oxides and hydroxides, molybdic acids and their salts, in particular ammonium salts such as ammonium molybdate, ammonium heptamolybdate, phosphomolybdic acid (H3PM012O40), and their salts, and optionally silicomolybdic acid (hLSiMo ⁇ C o) and its salts.
  • the sources of molybdenum can also be any heteropolycompound of Keggin, lacunary Keggin, substituted Keggin, Dawson, Anderson, Strandberg type, for example.
  • molybdenum trioxide and the heteropolycompounds of Keggin, lacunary Keggin, substituted Keggin and Strandberg type are used.
  • the tungsten precursors which can be used are also well known to those skilled in the art.
  • oxides and hydroxides tungstic acids and their salts, in particular ammonium salts such as ammonium tungstate, ammonium metatungstate, phosphotungstic acid and their salts, and optionally silicotungstic acid (hLSiW ⁇ CUo) and its salts.
  • the tungsten sources can also be any heteropolycompound of Keggin, lacunary Keggin, substituted Keggin, Dawson type, for example.
  • ammonium oxides and salts are used, such as ammonium metatungstate or heteropolyanions of Keggin, lacunary Keggin or substituted Keggin type.
  • cobalt precursors which can be used are advantageously chosen from oxides, hydroxides, hydroxycarbonates, carbonates and nitrates, for example. Cobalt hydroxide and cobalt carbonate are preferably used.
  • the nickel precursors which can be used are advantageously chosen from oxides, hydroxides, hydroxycarbonates, carbonates and nitrates, for example.
  • the preferred phosphorus precursor is orthophosphoric acid H3PO4, but its salts and esters such as ammonium phosphates are also suitable.
  • the phosphorus can also be introduced at the same time as the element(s) of group VI B in the form of heteropolyanions of Keggin, lacunary Keggin, substituted Keggin or of the Strandberg type.
  • the catalyst is generally subjected to a drying step at a temperature below 200° C., advantageously between 50° C. and 180°C, preferably between 70°C and 150°C, very preferably between 75°C and 130°C.
  • the drying step is preferably carried out under an inert atmosphere or under an atmosphere containing oxygen.
  • the drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure. It is advantageously carried out in a traversed bed using air or any other hot gas.
  • the gas used is either air or an inert gas such as argon or nitrogen.
  • the drying is carried out in a traversed bed in the presence of nitrogen and/or air.
  • the drying step lasts between 5 minutes and 15 hours, preferably between 30 minutes and 12 hours.
  • the catalyst has not undergone calcination during its preparation, that is to say that the impregnated catalytic precursor has not been subjected to a heat treatment step at a temperature higher than at 200° C. under an inert atmosphere or under an atmosphere containing oxygen, in the presence of water or not.
  • the catalyst has undergone a calcination step during its preparation, that is to say that the impregnated catalytic precursor has been subjected to a heat treatment step at a temperature between 250 and 1000° C. and preferably between 200 and 750° C., for a duration typically comprised between 15 minutes and 10 hours, under an inert atmosphere or under an atmosphere containing oxygen, in the presence of water or not.
  • the catalysts of the process according to the invention Before being brought into contact with the feedstock to be treated in a gasoline hydrodesulfurization process, the catalysts of the process according to the invention generally undergo a sulfurization step.
  • the sulfurization is preferably carried out in a sulphur-reducing medium, that is to say in the presence of H 2 S and hydrogen, in order to transform the metal oxides into sulphides such as, for example, M0S2, CogSs or Ni 3 S2.
  • Sulfurization is carried out by injecting onto the catalyst a stream containing H2S and hydrogen, or else a sulfur compound capable of decomposing into H2S in the presence of the catalyst and hydrogen.
  • Polysulphides such as dimethyldisulphide (DMDS) are H 2 S precursors commonly used to sulphide catalysts.
  • the sulfur can also come from the filler.
  • the temperature is adjusted so that the H 2 S reacts with the metal oxides to form metal sulphides.
  • This sulfurization can be carried out in situ or ex situ (inside or outside the reactor) of the reactor of the process according to the invention at temperatures between 200 and 600°C, and more preferably between 300 and 500°C.
  • the sulfurization rate of the metals constituting the catalysts is at least equal to 60%, preferably at least equal to 80%.
  • the sulfur content in the sulfur catalyst is measured by elemental analysis according to ASTM D5373.
  • a metal is considered to be sulfurized when the overall sulfurization rate defined by the molar ratio between the sulfur (S) present on the catalyst and said metal is at least equal to 60% of the theoretical molar ratio corresponding to the total sulfurization of the metal(s) considered.
  • the overall sulfurization rate is defined by the following equation:
  • (S/metal)catai y sor is the molar ratio between sulfur (S) and metal present on the catalyst
  • (S/metal)theoretical is the molar ratio between sulfur and metal corresponding to the total sulphidation of the metal to sulphide.
  • the molar ratio between the S present on the catalyst and all the metals must also be at least equal to 60% of the theoretical molar ratio corresponding to the total sulphidation of each metal to sulphide, the calculation being carried out in proportion to the relative molar fractions of each metal.
  • the gasoline to be treated is sent via line 1 and hydrogen via line 2 into the hydrodesulphurization unit 3 of the step a).
  • the hydrodesulfurization unit 3 of step a) is for example a reactor containing a supported hydrodesulfurization catalyst based on a metal from groups VIII and VIB in a fixed bed or in a fluidized bed, preferably a reactor is used. in a fixed bed.
  • the reactor is operated under operating conditions and in the presence of a hydrodesulphurization catalyst, as described above, to decompose the sulfur compounds and form hydrogen sulphide (H 2 S).
  • step a recombination mercaptans are formed by addition of H 2 S formed on the olefins.
  • the effluent from hydrodesulfurization unit 3 is then mixed with a diluent via line 5 in step b) and introduced into the hydrodesulfurization unit 6 via line 4 without removing the H2S formed.
  • the hydrodesulfurization unit 6 of step c) is for example a reactor containing a supported hydrodesulfurization catalyst based on a metal from groups VIII and VI B in a fixed bed or in a fluidized bed, preferably a fixed bed reactor.
  • the reactor is operated under operating conditions and in the presence of a hydrodesulphurization catalyst, as described above, to decompose the sulfur compounds and form hydrogen sulphide (H 2 S).
  • H 2 S hydrogen sulphide
  • recombination mercaptans are formed by addition of H 2 S formed on the olefins.
  • the effluent from the hydrodesulfurization unit 6 is then introduced into the so-called finishing hydrodesulfurization unit 8 via line 7 without removing the H 2 S formed.
  • the hydrodesulfurization unit 8 of step d) is for example a reactor containing a hydrodesulfurization catalyst in a fixed bed or in a fluidized bed, preferably a fixed bed reactor is used.
  • Unit 8 is operated at a higher temperature than unit 6 and in the presence of a selective catalyst comprising an oxide support and an active phase consisting of at least one group VIII metal to at least partially decompose recombination mercaptans into olefins and H 2 S. It also makes it possible to hydrodesulfurize the more refractory sulfur compounds.
  • a gasoline from a catalytic cracking unit composed of 25% by weight of olefins and 600 ppmS of total sulfur is subjected to a single and unique hydrodesulphurization step in a single catalytic bed in an adiabatic reactor in the presence of a catalyst A of the CoMo type supported on alumina, the metal contents being respectively 3% by weight of CoO and 10% by weight of MoOs, the specific surface of the catalyst is 135 m 2 /g.
  • the catalyst Prior to its use, the catalyst is sulfurized by treatment for 4 hours under a pressure of 3.4 MPa at 350° C., in contact with a charge consisting of 2% by weight of sulfur in the form of dimethyldisulfide in n-heptane.
  • the gasoline from a catalytic cracking unit is subjected to hydrodesulfurization on the sulfurized catalyst A described in example 1.
  • 60 mL of the catalyst are loaded into the reactor in two beds catalysts of 30 mL each.
  • the diluent is added at a temperature of 50°C.
  • This mixture is then subjected to a second stage of hydrodesulfurization on catalyst A in the second bed of catalyst.
  • the gasoline from a catalytic cracking unit is subjected to hydrodesulfurization on the sulfurized catalyst A described in example 1.
  • 60 mL of the catalyst are loaded into the reactor in two beds of 30ml.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

Procédé de traitement d'une essence contenant des composés soufrés, des oléfines et des dioléfines, le procédé comprenant les étapes suivantes : a) on met en contact l'essence, de l'hydrogène et un catalyseur d'hydrodésulfuration pour obtenir un effluent partiellement désulfuré; b) on met en contact directement et sans aucune séparation l'effluent partiellement désulfuré obtenu à l'issue de l'étape a) avec une charge gazeuse ou liquide en tant que diluant, dans des conditions normales de température et de pression, pour obtenir un effluent partiellement désulfuré et dilué; c) on met en contact l'effluent partiellement désulfuré et dilué obtenu à l'issue de l'étape b), de l'hydrogène et un catalyseur pour obtenir un effluent désulfuré.

Description

Procédé de traitement d'une essence contenant des composés soufrés comprenant une étape de dilution
Domaine de l’invention
La présente invention concerne un procédé de production d'essence à basse teneur en soufre et en mercaptans.
Etat de la technique
La production d'essences répondant aux nouvelles normes environnementales nécessite que l'on diminue de façon importante leur teneur en soufre.
Il est par ailleurs connu que les essences de conversion, et plus particulièrement celles provenant du craquage catalytique, qui peuvent représenter 30 à 50 % du pool essence, ont des teneurs élevées en mono-oléfines et en soufre.
Le soufre présent dans les essences est pour cette raison imputable, à près de 90%, aux essences issues des procédés de craquage catalytique, que l'on appellera dans la suite essences de FCC (Fluid Catalytic Cracking selon la terminologie anglo-saxonne, que l'on peut traduire par craquage catalytique en lit fluidisé). Les essences de FCC constituent donc la charge préférée du procédé de la présente invention.
Parmi les voies possibles pour produire des carburants à faible teneur en soufre, celle qui a été très largement retenue consiste à traiter spécifiquement les bases essences riches en soufre par des procédés d’hydrodésulfuration catalytique en présence d’hydrogène. Les procédés traditionnels désulfurent les essences de manière non sélective en hydrogénant une grande partie des mono-oléfines, ce qui engendre une forte perte en indice d'octane et une forte consommation d’hydrogène. Les procédés les plus récents, tels que le procédé Prime G+ (marque commerciale), permettent de désulfurer les essences de craquage riches en oléfines, tout en limitant l’hydrogénation des mono-oléfines et par conséquent la perte d’octane et la forte consommation d’hydrogène qui en résulte. De tels procédés sont par exemple décrits dans les demandes de brevet EP1077247 et EP1174485.
Il est connu de la demande de brevet US2009065396 un procédé d’hydrodésulfuration multi- étape tel que la seconde étape soit opérée à plus haute température.
Les documents EP1857527 et WO2001/38457 divulguent des procédés d’hydrodésulfuration en deux étapes avec une étape intermédiaire d’extraction de l’F^S formé lors de la première étape.
Les documents US5985136 et W02003/099963 divulguent des procédés en deux étapes dans lesquels les catalyseurs utilisés dans les premières et deuxièmes étapes sont différents. Néanmoins, il existe toujours un besoin de limiter les pertes par hydrogénation des oléfines lors des traitements en hydrodésulfuration des charges essence pour atteindre les spécifications en soufre.
Objets de l’invention
Le but de la prévente invention est de mettre en œuvre un procédé de production d'essences à faible teneur en soufre, permettant de valoriser la totalité d’une coupe essence contenant du soufre, de préférence une coupe essence de craquage catalytique, et de réduire les teneurs en soufre dans ladite coupe essence à de très faibles niveaux, sans diminution sensible du rendement en essence tout en minimisant la diminution de l’indice d’octane due à l’hydrogénation des oléfines.
Ainsi, la présente invention a pour objet un procédé de traitement d'une essence contenant des composés soufrés, des oléfines et des dioléfines, le procédé comprenant au moins les étapes suivantes : a) on met en contact l'essence, de l'hydrogène et un catalyseur d'hydrodésulfuration comprenant un support d’oxyde et une phase active comprenant un métal du groupe VI B et un métal du groupe VIII, à une température comprise entre 210 et 320°C, à une pression comprise entre 1 et 4 MPa, avec une vitesse spatiale comprise entre 1 et 10 h-1 et un rapport entre le débit d’hydrogène exprimé en normaux m3 par heure et le débit de charge à traiter exprimé en m3 par heure aux conditions standards compris entre 100 et 600 Nm3/m3, pour obtenir un effluent partiellement désulfuré ; b) on met en contact directement et sans aucune séparation l’effluent partiellement désulfuré obtenu à l’issue de l’étape a) avec une charge gazeuse ou liquide en tant que diluant, dans des conditions normales de température et de pression, définies ici par une température de 15°C (288,15 K) et une pression de 0,1 MPa, pour obtenir un effluent partiellement désulfuré et dilué ; c) on met en contact l’effluent partiellement désulfuré et dilué obtenu à l’issue de l’étape b), et un catalyseur d'hydrodésulfuration comprenant un support d’oxyde et une phase active comprenant un métal du groupe VI B et un métal du groupe VIII, à une température comprise entre 210 et 320°C, à une pression comprise entre 1 et 4 MPa, avec une vitesse spatiale comprise entre 1 et 10 h'1 pour obtenir un effluent désulfuré.
La Demanderesse a découvert de manière surprenante que la réalisation d’une étape intermédiaire de dilution d’une charge essence à traiter entre deux étapes d’hydrodésulfuration permet d’améliorer de manière significative la stabilité des performances en hydrodésulfuration par le contrôle de l’exothermicité de l’hydrogénation des oléfines et permet ainsi de limiter le phénomène de désactivation des catalyseurs d’hydrodésulfuration.
Selon un ou plusieurs modes de réalisation, ledit diluant de l’étape b) est une charge gazeuse comprenant au moins 50% en volume d’hydrogène par rapport au volume total de ladite charge gazeuse.
Selon un ou plusieurs modes de réalisation, le ratio entre le débit volumique de ladite charge gazeuse introduite à l’étape b) et le débit volumique de l’hydrogène introduit à l’étape a) est compris entre 0,01 et 25 Nm3/Nm3.
Selon un ou plusieurs modes de réalisation, ledit diluant de l’étape b) est une charge liquide hydrocarbonée comprenant une température d’ébullition comprise entre 30°C et 250°C.
Selon un ou plusieurs modes de réalisation, le ratio entre le débit volumique de ladite charge liquide introduite à l’étape b) et le débit volumique de ladite charge essence introduite à l’étape a) est compris entre 0,01 et 1 Sm3/Sm3 (Standard mètre cube par Standard mètre cube).
Selon un ou plusieurs modes de réalisation, ladite charge liquide introduite à l’étape b) est identique à la charge essence introduite à l’étape a) dudit procédé.
Selon un ou plusieurs modes de réalisation, ladite charge gazeuse ou ladite charge liquide est introduite à l’étape b) à une température inférieure à la température de l’effluent partiellement désulfuré obtenu à l’issue de l’étape a).
Selon un ou plusieurs modes de réalisation, ladite charge gazeuse ou ladite charge liquide est introduite à l’étape b) à une température comprise entre 20°C et 300°C.
Selon un ou plusieurs modes de réalisation, les étapes a) et b) sont réalisées dans un même réacteur.
Selon un ou plusieurs modes de réalisation, les étapes a), b) et c) sont réalisées dans un même réacteur. Selon un ou plusieurs modes de réalisation, le catalyseur de l'étape a) et/ou de l’étape c) comprend une teneur en métal du groupe VIII comprise entre 0,1 et 10% poids d'oxyde du métal du groupe VIII par rapport au poids total du catalyseur, et une teneur en métal du groupe VI B comprise entre 1 et 20 % poids d'oxyde du métal du groupe VI B par rapport au poids total du catalyseur.
Selon un ou plusieurs modes de réalisation, le catalyseur de l'étape a) et/ou de l’étape c) comprend de l’alumine et une phase active comprenant du cobalt, du molybdène et éventuellement du phosphore, ledit catalyseur contenant une teneur en poids par rapport au poids total de catalyseur d'oxyde de cobalt, sous forme CoO, comprise entre 0,1 et 10%, une teneur en poids par rapport au poids total de catalyseur d'oxyde de molybdène, sous forme MoOs, comprise entre 1 et 20%, un rapport molaire cobalt/molybdène compris entre 0,1 et 0,8, une teneur en poids par rapport au poids total de catalyseur d'oxyde de phosphore sous forme P2O5 comprise entre 0,3 et 10% lorsque le phosphore est présent, ledit catalyseur ayant une surface spécifique entre 50 et 250 m2/g.
Selon un ou plusieurs modes de réalisation, les catalyseurs des étapes a) et c) dont identiques.
Selon un ou plusieurs modes de réalisation, avant l'étape a) et avant toute éventuelle étape de distillation, on met en contact l'essence avec de l'hydrogène et un catalyseur d'hydrogénation sélective pour hydrogéner sélectivement les dioléfines contenues dans ladite l'essence en oléfines.
Selon un ou plusieurs modes de réalisation, l’essence est une essence de craquage catalytique.
Liste des figures
La figure 1 est une représentation schématique d’une mode de réalisation selon l’invention. Description détaillée
Définitions
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81ème édition, 2000-2001). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IIIPAC.
On entend par surface spécifique, la surface spécifique BET (SBET en m2/g) déterminée par adsorption d’azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique "The Journal of American Society”, 1938, 60, 309.
On entend par volume poreux total du catalyseur ou du support utilisé pour la préparation du catalyseur le volume mesuré par intrusion au porosimètre à mercure selon la norme ASTM D4284 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°, par exemple avec un appareil modèle Autopore III de la marque Microméritics®.
L'angle de mouillage a été pris égal à 140° en suivant les recommandations de l'ouvrage « Techniques de l'ingénieur, traité analyse et caractérisation », pages 1050-1055, écrit par Jean Charpin et Bernard Rasneur. Afin d'obtenir une meilleure précision, la valeur du volume poreux total correspond à la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur l'échantillon moins la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur le même échantillon pour une pression correspondant à 30 psi (environ 0,2 MPa).
Les teneurs en éléments du groupe VIII, du groupe VIB et du phosphore sont mesurées par fluorescence X.
Description de la charge
Le procédé selon l'invention permet de traiter tout type de coupe essence contenant des composés soufrés et des oléfines, telle que par exemple une coupe issue d’une unité de cokéfaction (coking selon la terminologie anglo-saxonne), de viscoréduction (visbreaking selon la terminologie anglo-saxonne), de vapocraquage (steam cracking selon la terminologie anglo-saxonne) ou de craquage catalytique (FCC, Fluid Catalytic Cracking selon la terminologie anglo-saxonne). Cette essence peut éventuellement comprendre une fraction significative d’essence provenant d’autres procédés de production telle que la distillation atmosphérique (essence issue d'une distillation directe (ou essence straight run selon la terminologie anglo-saxonne)) ou de procédés de conversion (essence de cokéfaction ou de vapocraquage). Ladite charge est de préférence constituée d’une coupe essence issue d’une unité de craquage catalytique.
La charge est une coupe essence contenant des composés soufrés et des oléfines dont la gamme de points d'ébullition s'étend typiquement depuis les points d’ébullitions des hydrocarbures à 2 ou 3 atomes de carbone (C2 ou C3) jusqu'à 260°C, de préférence depuis les points d’ébullitions des hydrocarbures à 2 ou 3 atomes de carbone (C2 ou C3) jusqu'à 220°C, de manière plus préférée depuis les points d’ébullitions des hydrocarbures à 5 atomes de carbone jusqu'à 220°C. Le procédé selon l'invention peut aussi traiter des charges ayant des points finaux inférieurs à ceux mentionnés précédemment, tel que par exemple une coupe C5-180°C.
La teneur en soufre des coupes essences produites par craquage catalytique (FCC) dépend de la teneur en soufre de la charge traitée par le FCC, de la présence ou non d’un prétraitement de la charge du FCC, ainsi que du point final de la coupe. Généralement, les teneurs en soufre de l'intégralité d’une coupe essence, notamment celles provenant du FCC, sont supérieures à 100 ppm en poids et la plupart du temps supérieures à 500 ppm en poids. Pour des essences ayant des points finaux supérieurs à 200°C, les teneurs en soufre sont souvent supérieures à 1000 ppm en poids, elles peuvent même dans certains cas atteindre des valeurs de l'ordre de 4000 à 5000 ppm en poids.
La charge traitée par le procédé selon l’invention peut être une charge contenant des composés soufrés dans une teneur supérieure à 1000 ppm en poids de soufre, et souvent supérieure à 1500 ppm.
Par ailleurs les essences issues d'unités de craquage catalytique (FCC) contiennent, en moyenne, entre 0,5% et 5% poids de dioléfines, entre 20% et 50% poids d'oléfines, entre 10 ppm et 0,5% poids de soufre dont généralement moins de 300 ppm de mercaptans.
Etape aO) Hydrogénation sélective (optionnelle)
Selon le type d’essence à traiter, il peut être avantageux de préalablement traiter l’essence en présence d'hydrogène et d'un catalyseur d'hydrogénation sélective de manière à hydrogéner au moins partiellement les dioléfines et réaliser une réaction d'alourdissement d'une partie des composés mercaptans légers (RSH) présents dans la charge en thioéthers, par réaction avec des oléfines.
A cette fin, l'essence à traiter est envoyée dans un réacteur catalytique d'hydrogénation sélective contenant au moins un lit fixe ou mobile de catalyseur d'hydrogénation sélective des dioléfines et d'alourdissement des mercaptans légers. La réaction d'hydrogénation sélective des dioléfines et d'alourdissement des mercaptans légers s’effectue préférentiellement sur un catalyseur sulfuré comprenant au moins un élément du groupe VIII et éventuellement au moins un élément du groupe VIB et un support d’oxyde. L'élément du groupe VIII est choisi de préférence parmi le nickel et le cobalt et en particulier le nickel. L'élément du groupe VIB, lorsqu'il est présent, est de préférence choisi parmi le molybdène et le tungstène et de manière très préférée le molybdène.
Le support d’oxyde du catalyseur est de préférence choisi parmi l'alumine, l'aluminate de nickel, la silice, le carbure de silicium, ou un mélange de ces oxydes. On utilise, de manière préférée, de l'alumine et de manière encore plus préférée, de l'alumine de haute pureté. Selon un mode de réalisation préféré le catalyseur d'hydrogénation sélective contient du nickel à une teneur en poids d'oxyde de nickel, sous forme NiO, comprise entre 1 et 12%, et du molybdène à une teneur en poids d'oxyde de molybdène, sous forme MoOs, comprise entre 6% et 18% et un rapport molaire nickel/molybdène compris entre 0,3 et 2,5, les métaux étant déposés sur un support constitué d'alumine. Le taux de sulfuration des métaux constituant le catalyseur est, de manière préférée, supérieur à 60%.
Lors de l'étape optionnelle d'hydrogénation sélective, l'essence est mise en contact avec le catalyseur à une température comprise entre 50 et 250°C, et de préférence entre 80 et 220°C, et de manière encore plus préférée entre 90 et 200°C, avec une vitesse spatiale liquide (LHSV) comprise entre 0,5 h-1 et 20 h’1, l'unité de la vitesse spatiale liquide étant le volume de charge par volume de lit catalytique et par heure (L/L/h). La pression est comprise entre 0,4 et 5 MPa, de préférence entre 0,6 et 4 MPa et de manière encore plus préférée entre 1 et 3 MPa. L’étape optionnelle d'hydrogénation sélective est typiquement réalisée avec un rapport entre le débit d’hydrogène exprimé en normaux m3 par heure et le débit de charge à traiter exprimé en m3 par heure aux conditions standards compris entre 2 et 100 Nm3/m3, de manière préférée entre 3 et 30 Nm3/m3.
Après hydrogénation sélective, la teneur en dioléfines, déterminée par l’intermédiaire de l’indice d’anhydride maléique (MAV ou « Maleic Anhydride Value » selon la terminologie anglo-saxonne), selon la méthode UOP 326, est généralement réduite à moins de 6 mg d’anhydride maléique/g, voire moins de 4 mg AM/g et de manière plus préférée moins de 2 mg AM/g. Dans certains cas, il peut être obtenu moins de 1 mg AM/g.
L'essence hydrogénée sélectivement peut être ensuite distillée en au moins deux coupes, une coupe légère et une coupe lourde et éventuellement une coupe intermédiaire. Dans le cas du fractionnement en deux coupes, on traite la coupe lourde selon le procédé de l'invention. Dans le cas du fractionnement en trois coupes, les coupes intermédiaire et lourde peuvent être traitées séparément par le procédé selon l’invention.
Il est à noter qu'il est envisageable de réaliser les étapes d'hydrogénation des dioléfines et de fractionnement en deux ou trois coupes simultanément au moyen d'une colonne de distillation catalytique qui inclut une colonne de distillation équipée d'au moins un lit catalytique.
Etape a) Hydrodésulfuration
L’étape d’hydrodésulfuration a) est mise en œuvre pour réduire la teneur en soufre de l'essence à traiter en convertissant les composés soufrés en H2S.
La température est généralement comprise entre 210 et 320°C et de préférence comprise entre 220 et 300°C. La température employée doit être suffisante pour maintenir l’essence à traiter en phase vapeur dans le réacteur.
La pression d’opération de cette étape est généralement comprise entre 1 et 4 MPa et de préférence comprise entre 1 ,5 et 3 MPa.
La quantité de catalyseur mise en œuvre dans chaque réacteur est généralement telle que le rapport entre le débit d’essence à traiter exprimé en m3 par heure aux conditions standards, par m3 de lit catalytique (également appelé vitesse spatiale ou LHSV) est compris entre 1 et 100 h-1 et de préférence entre 1 et 50 h’1, de manière très préférée entre 2 et 20 h’1.
Le débit d’hydrogène est généralement tel que le rapport entre le débit d’hydrogène exprimé en normaux m3 par heure (Nm3/h) et le débit de charge à traiter exprimé en m3 par heure aux conditions standards (15°C, 0,1 MPa) est compris entre 10 et 1000 Nm3/m3, de préférence entre 50 et 600 Nm3/m3. On entend par normaux m3 le volume de 1 m3 de gaz à 0°C et 0,1 MPa.
L’hydrogène nécessaire à cette étape peut être de l’hydrogène frais ou de l’hydrogène recyclé, de préférence débarrassé de l’H2S, ou un mélange d’hydrogène frais et d’hydrogène recyclé. De préférence, on utilisera un mélange d’hydrogène frais et d’hydrogène recyclé.
Le taux de désulfuration de l’étape a), qui dépend de la teneur en soufre de la charge à traiter, est généralement supérieur à 50% et de préférence supérieur à 70% de sorte que le produit issu de l’étape a) contient moins de 100 ppm poids de soufre et de façon préférée moins de 50 ppm poids de soufre.
Le catalyseur utilisé dans l’étape a) doit présenter une bonne sélectivité vis-à-vis des réactions d’hydrodésulfuration par rapport à la réaction d'hydrogénation des oléfines. Le catalyseur d’hydrodésulfuration de l'étape a) comprend un support d’oxyde et une phase active comprenant un métal du groupe VIB et un métal du groupe VIII et optionnellement du phosphore et/ou un composé organique tel que décrit ci-après.
Le métal du groupe VIB présent dans la phase active du catalyseur est préférentiellement choisi parmi le molybdène et le tungstène. Le métal du groupe VIII présent dans la phase active du catalyseur est préférentiellement choisi parmi le cobalt, le nickel et le mélange de ces deux éléments. La phase active du catalyseur est choisie de préférence dans le groupe formé par la combinaison des éléments nickel-molybdène, cobalt-molybdène et nickel- cobalt-molybdène et de manière très préférée la phase active est constituée de cobalt et de molybdène.
La teneur en métal du groupe VIII est comprise entre 0,1 et 10% poids d'oxyde du métal du groupe VIII par rapport au poids total du catalyseur, de préférence comprise entre 0,6 et 8% poids, de préférence comprise entre 0,6 et 7% poids, de manière très préférée comprise entre 1 et 6% poids.
La teneur en métal du groupe VI B est comprise entre 1 et 20 % poids d'oxyde du métal du groupe VI B par rapport au poids total du catalyseur, de préférence comprise entre 2 et 18 % poids, de manière très préférée comprise entre 3 et 16% poids.
Le rapport molaire métal du groupe VIII sur métal du groupe VIB du catalyseur est généralement compris entre 0,1 et 0,8, de préférence compris entre 0,2 et 0,6.
Optionnellement, le catalyseur peut présenter en outre une teneur en phosphore généralement comprise entre 0,3 et 10% poids de P2O5 par rapport au poids total de catalyseur, de préférence entre 0,3 et 5% poids, de manière très préférée comprise entre 0,5 et 3% poids. Par exemple, le phosphore présent dans le catalyseur est combiné avec le métal du groupe VIB et éventuellement avec également le métal du groupe VIII sous la forme d'hétéropolyanions.
Par ailleurs, le rapport molaire phosphore/(métal du groupe VIB) est généralement compris entre 0,1 et 0,7, de préférence compris entre 0,2 et 0,6, lorsque le phosphore est présent.
De manière préférée, le catalyseur se caractérise par une surface spécifique comprise entre 5 et 400 m2/g, de préférence comprise entre 10 et 250 m2/g, de préférence comprise entre 50 et 250 m2/g. La surface spécifique est déterminée dans la présente invention par la méthode B.E.T selon la norme ASTM D3663, telle que décrite dans l'ouvrage Rouquerol F.; Rouquerol J.; Singh K. « Adsorption by Powders & Porous Solids: Principle, methodology and applications », Academic Press, 1999, par exemple au moyen d'un appareil modèle Autopore III™ de la marque Microméritics™.
Le volume poreux total du catalyseur est généralement compris entre 0,4 cm3/g et 1 ,3 cm3/g, de préférence compris entre 0,6 cm3/g et 1 ,1 cm3/g. Le volume poreux total est mesuré par porosimétrie au mercure selon la norme ASTM D4284 avec un angle de mouillage de 140°, telle que décrite dans le même ouvrage.
La densité de remplissage tassée (DRT) du catalyseur est généralement comprise entre 0,4 et 0,8 g/mL, de préférence comprise entre 0,4 et 0,7 g/mL. La mesure de DRT consiste à introduire le catalyseur dans une éprouvette dont on a préalablement déterminé le volume puis, par vibration, à le tasser jusqu’à obtenir un volume constant. La masse volumique apparente du produit tassé est calculée en comparant la masse introduite et le volume occupé après tassement.
Le catalyseur peut se trouver sous forme d'extrudés de petit diamètre, cylindriques ou multilobés (trilobés, quadrilobes, ...), ou de sphères.
Le support d’oxyde du catalyseur est habituellement un solide poreux choisi dans le groupe constitué par : les alumines, la silice, les silices alumine ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l’alumine ou la silice alumine. Il est de préférence choisi dans le groupe constitué par la silice, la famille des alumines de transition et les silices alumine, de manière très préférée, le support d’oxyde est essentiellement constitué d’alumine, c'est-à-dire qu'il comprend au moins 51% poids, de préférence au moins 60% poids, de manière très préférée au moins 80% poids, voire au moins 90% poids d'alumine. Il est de préférence constitué uniquement d'alumine. De manière préférée, le support d’oxyde du catalyseur est une alumine « haute température », c'est-à-dire qui contient des alumines de phase thêta, delta, kappa ou alpha, seules ou en mélange et une quantité inférieure à 20% poids d'alumine de phase gamma, chi ou êta.
Dans le procédé selon l'invention la conversion des composés soufrés insaturés est avantageusement supérieure à 15% et de préférence supérieure à 50%. Dans le même temps le taux d’hydrogénation des oléfines est de préférence inférieur à 50%, de façon plus préférée inférieure à 40%, et de manière très préférée inférieure à 35%, au cours de cette étape.
L’effluent partiellement désulfuré obtenue à l’issue de l’étape a) est ensuite envoyé directement et sans séparation vers l’étape b) du procédé selon l’invention.
Etape b) dilution de l’effluent de l’étape a)
Cette étape consiste à diluer l’effluent partiellement désulfuré obtenu à l’issue de l’étape a) avec une charge gazeuse ou liquide en tant que diluant (appelé aussi ici « charge de dilution » ou « diluant ») dans les conditions normales de température et de pression, définies ici par une température de 15°C (288,15 K) et une pression de 0,1 MPa. De manière préférée la charge de dilution est gazeuse dans les conditions normales de température et de pression.
Dans un mode de réalisation selon l’invention, lorsque le diluant est une charge gazeuse, dans les conditions normales de température et de pression, ladite charge gazeuse comprend préférentiellement plus de 50% en volume d’hydrogène H2, encore plus préférentiellement plus de 70% en volume d’hydrogène, et de manière très préférée plus de 90% en volume d’hydrogène. Le débit volumique de la charge gazeuse est défini de manière que le ratio entre le débit volumique de ladite charge gazeuse introduite à l’étape b) et le débit volumique de l’hydrogène introduit à l’étape a) soit compris entre 0,01 et 25 Nm3/Nm3, de préférence entre 0,02 et 4 Nm3/Nm3, et de manière très préférée entre 0,04 et 1 Nm3/Nm3. La charge gazeuse est introduite sous une pression généralement comprise entre environ 1 et environ 4 MPa, de préférence entre 1 ,5 et 3 MPa. La charge gazeuse est généralement introduite à une température inférieure à la température de l’effluent issu de l’étape a), de préférence à une température comprise entre 20°C et 300°C, de préférence entre 30°C et 280°C, plus préférentiellement entre 30°C et 220°C, encore plus préférentiellement entre 35°C et 180°C, de manière plus préférée entre 35°C et 120°C, et de manière encore plus préférée entre 35°C et 80°C.
Dans un autre mode de réalisation selon l’invention, lorsque le diluant est une charge liquide, dans les conditions normales de température et de pression définies ici par une température de 15°C (288,15 K) et une pression de 0,1 MPa, ladite charge liquide peut être toute charge liquide hydrocarbonée comprenant une température d’ébullition comprise entre 30°C et 250°C, de préférence comprise entre 35°C et 240°C, et encore plus préférentiellement entre 40°C et 220°C. De manière préférée, la charge liquide est identique à la charge essence à traiter introduite lors de l’étape a) ou à l’effluent issu de l’étape c). Le débit volumique de ladite charge liquide est défini de manière que le ratio entre le débit volumique de ladite charge liquide introduite à l’étape b) et le débit volumique de la charge essence introduite à l’étape a) soit compris entre 0,01 et 1 m3/m3, de préférence entre 0,02 et 1 m3/m3, et de manière très préférée entre 0,02 et 0,5 m3/m3. La charge liquide est introduite sous une pression généralement comprise entre environ 1 et environ 4 MPa, de préférence entre 1 ,5 et 3 MPa. La charge liquide est introduite à une température inférieure à la température de l’effluent issu de l’étape a), et est de préférence comprise entre 20°C et 300°C, de préférence entre 30°C et 280°C, de manière très préférée entre 40°C et 220°C, encore plus préférentiellement entre 40°C et 180°C, de manière plus préférée entre 40°C et 120°C, et de manière encore plus préférée entre 40°C et 80°C.
De préférence l’étape b) est réalisée dans le même réacteur que l’étape a).
Etape c) Hydrodésulfuration
Cette étape consiste à transformer au moins une partie des composés soufrés contenus dans l’effluent issu de l’étape b) tels que les composés thiophéniques, en composés saturés par exemple en thiophanes (ou thiacyclopentanes) ou en mercaptans, ou encore à hydrogénolyser au moins partiellement ces composés soufrés pour former de l’H2S. La température est généralement comprise entre 210 et 320°C et de préférence comprise entre 220 et 300°C. La température employée doit être suffisante pour maintenir l’essence à traiter en phase vapeur dans le réacteur.
La pression d’opération de cette étape est généralement comprise entre 1 et 4 MPa et de préférence comprise entre 1 ,5 et 3 MPa.
La quantité de catalyseur mise en œuvre dans chaque réacteur est généralement telle que le rapport entre le débit d’essence à traiter exprimé en m3 par heure aux conditions standards, par m3 de lit catalytique (également appelé vitesse spatiale ou LHSV) est compris entre 1 et 100 h-1 et de préférence entre 1 et 50 h’1, de manière très préférée entre 3 et 20 h’1.
Le débit d’hydrogène est généralement tel que le rapport entre le débit d’hydrogène exprimé en normaux m3 par heure (Nm3/h) et le débit de charge à traiter exprimé en m3 par heure aux conditions standards (15°C, 0,1 MPa) est compris entre 50 et 1000 Nm3/m3, de préférence entre 100 et 600 Nm3/m.
Le catalyseur utilisé dans l’étape c) doit présenter une bonne sélectivité vis-à-vis des réactions d’hydrodésulfuration par rapport à la réaction d'hydrogénation des oléfines. Le catalyseur d’hydrodésulfuration de l'étape c) comprend un support d’oxyde et une phase active comprenant un métal du groupe VIB et un métal du groupe VIII et optionnellement du phosphore et/ou un composé organique tel que décrit ci-après.
Le métal du groupe VIB présent dans la phase active du catalyseur est préférentiellement choisi parmi le molybdène et le tungstène. Le métal du groupe VIII présent dans la phase active du catalyseur est préférentiellement choisi parmi le cobalt, le nickel et le mélange de ces deux éléments. La phase active du catalyseur est choisie de préférence dans le groupe formé par la combinaison des éléments nickel-molybdène, cobalt-molybdène et nickel- cobalt-molybdène et de manière très préférée la phase active est constituée de cobalt et de molybdène.
La teneur en métal du groupe VIII est comprise entre 0,1 et 10% poids d'oxyde du métal du groupe VIII par rapport au poids total du catalyseur, de préférence comprise entre 0,6 et 8% poids, de préférence comprise entre 0,6 et 7% poids, de manière très préférée comprise entre 1 et 6% poids.
La teneur en métal du groupe VIB est comprise entre 1 et 20% poids d'oxyde du métal du groupe VIB par rapport au poids total du catalyseur, de préférence comprise entre 2 et 18% poids, de manière très préférée comprise entre 3 et 16% poids.
Le rapport molaire métal du groupe VIII sur métal du groupe VIB du catalyseur est généralement compris entre 0,1 et 0,8, de préférence compris entre 0,2 et 0,6. Optionnellement, le catalyseur peut présenter en outre une teneur en phosphore généralement comprise entre 0,3 et 10% poids de P2O5 par rapport au poids total de catalyseur, de préférence entre 0,3 et 5% poids, de manière très préférée comprise entre 0,5 et 3% poids. Par exemple, le phosphore présent dans le catalyseur est combiné avec le métal du groupe VIB et éventuellement avec également le métal du groupe VIII sous la forme d'hétéropolyanions.
Par ailleurs, le rapport molaire phosphore/(métal du groupe VIB) est généralement compris entre 0,1 et 0,7, de préférence compris entre 0,2 et 0,6, lorsque le phosphore est présent.
De manière préférée, le catalyseur se caractérise par une surface spécifique comprise entre 5 et 400 m2/g, de préférence comprise entre 10 et 250 m2/g, de préférence comprise entre 50 et 250 m2/g. La surface spécifique est déterminée dans la présente invention par la méthode B.E.T selon la norme ASTM D3663, telle que décrite dans l'ouvrage Rouquerol F.; Rouquerol J.; Singh K. « Adsorption by Powders & Porous Solids: Principle, methodology and applications », Academic Press, 1999, par exemple au moyen d'un appareil modèle Autopore III™ de la marque Microméritics™.
Le volume poreux total du catalyseur est généralement compris entre 0,4 cm3/g et 1 ,3 cm3/g, de préférence compris entre 0,6 cm3/g et 1 ,1 cm3/g. Le volume poreux total est mesuré par porosimétrie au mercure selon la norme ASTM D4284 avec un angle de mouillage de 140°, telle que décrite dans le même ouvrage.
La densité de remplissage tassée (DRT) du catalyseur est généralement comprise entre 0,4 et 0,8 g/mL, de préférence comprise entre 0,4 et 0,7 g/mL. La mesure de DRT consiste à introduire le catalyseur dans une éprouvette dont on a préalablement déterminé le volume puis, par vibration, à le tasser jusqu’à obtenir un volume constant. La masse volumique apparente du produit tassé est calculée en comparant la masse introduite et le volume occupé après tassement.
Le catalyseur peut se trouver sous forme d'extrudés de petit diamètre, cylindriques ou multilobés (trilobés, quadrilobes, ...), ou de sphères.
Le support d’oxyde du catalyseur est habituellement un solide poreux choisi dans le groupe constitué par : les alumines, la silice, les silices alumine ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l’alumine ou la silice alumine. Il est de préférence choisi dans le groupe constitué par la silice, la famille des alumines de transition et les silices alumine, de manière très préférée, le support d’oxyde est essentiellement constitué d’alumine, c'est-à-dire qu'il comprend au moins 51% poids, de préférence au moins 60% poids, de manière très préférée au moins 80% poids, voire au moins 90% poids d'alumine. Il est de préférence constitué uniquement d'alumine. De manière préférée, le support d’oxyde du catalyseur est une alumine « haute température », c'est-à-dire qui contient des alumines de phase thêta, delta, kappa ou alpha, seules ou en mélange et une quantité inférieure à 20% poids d'alumine de phase gamma, chi ou êta.
Dans le procédé selon l'invention la conversion des composés soufrés insaturés est avantageusement supérieure à 15% et de préférence supérieure à 50%. Dans le même temps le taux d’hydrogénation des oléfines est de préférence inférieur à 50%, de façon plus préférée inférieure à 40%, et de manière très préférée inférieure à 35%, au cours de cette étape.
Dans une variante préférée, le catalyseur mis en œuvre lors de l’étape c) est le même que celui mis en œuvre lors de l’étape a).
De préférence l’étape c) est réalisée dans le même réacteur que l’étape b).
De manière très préférée, les étapes a), b) et c) sont réalisées dans le même réacteur.
Etape d) Hydrodésulfuration de finition (optionnelle)
Lors des étapes d’hydrodésulfuration a) et c), on transforme une grande partie des composés soufrés en H2S. Les composés soufrés restants sont essentiellement des composés soufrés réfractaires et les mercaptans de recombinaison issus de l’addition de l’H2S formé dans les étapes a) et c) sur les mono-oléfines présentes dans la charge.
L’étape d’hydrodésulfuration dite de finition est principalement mise en œuvre pour diminuer la teneur des mercaptans de recombinaison. De préférence, l’étape d) est effectuée à une température plus élevée que celle des étapes a) et c). En effet, en utilisant une température plus élevée dans cette étape par rapport à la température des étapes a) et c), la formation d’oléfines et d’H2S va être favorisée par l’équilibre thermodynamique. L’étape d) permet également de poursuivre l’hydrodésulfuration des composés soufrés résiduels.
L’étape d’hydrodésulfuration d) consiste à mettre en contact l’effluent de l’étape c) optionnellement avec un ajout d’hydrogène, dans un ou plusieurs réacteurs d’hydrodésulfuration, contenant un ou plusieurs catalyseurs adaptés pour réaliser l’hydrodésulfuration.
L’étape d’hydrodésulfuration d) est réalisée sans hydrogénation importante des oléfines. Le taux d'hydrogénation des oléfines du catalyseur de l'étape d’hydrodésulfuration d) est en règle générale inférieur à 5% et encore plus généralement inférieur à 2%.
La température de cette étape est généralement comprise entre 280 et 400°C, de manière plus préférée entre 290 et 380°C, et de manière très préférée entre 300 et 360°C. La température de cette étape d) est généralement supérieure d’au moins 5°C, de préférence d’au moins 10°C et de façon très préférée d’au moins 30°C à la température des étapes a) et c). La pression d’opération de cette étape est généralement comprise entre 0,5 et 5 MPa et de préférence comprise entre 1 et 3 MPa.
La quantité de catalyseur mise en œuvre dans chaque réacteur est généralement telle que le rapport entre le débit d’essence à traiter exprimé en m3 par heure aux conditions standards, par m3 de volume catalytique (également appelé vitesse spatiale ou LHSV) est compris entre 1 et 10 h-1 et de préférence entre 2 et 8 h’1.
Le débit d’hydrogène est généralement tel que le rapport entre le débit d’hydrogène exprimé en normaux m3 par heure (Nm3/h) et le débit de charge à traiter exprimé en m3 par heure aux conditions standards (15°C, 0,1 MPa) est compris entre 50 et 600 Nm3/m3, de préférence entre 50 et 500 Nm3/m3.
Le taux de désulfuration de l’étape d), qui dépend de la teneur en soufre de la charge à traiter, est généralement supérieur à 50% et de préférence supérieur à 70% de sorte que le produit issu de l’étape d) contient moins de 60 ppm poids de soufre et de façon préférée moins de 40 ppm poids de soufre.
Le catalyseur de l'étape d) est de nature et/ou de composition différente de celui utilisé dans les étapes a) et c). Le catalyseur de l'étape d) est notamment un catalyseur d’hydrodésulfuration très sélectif : il permet d’hydrodésulfurer sans hydrogéner les oléfines et donc de maintenir l’indice d’octane.
Le catalyseur qui peut convenir à cette étape d) du procédé selon l’invention, sans que cette liste soit exhaustive, est un catalyseur comprenant un support d’oxyde et une phase active constituée d’au moins un métal du groupe VIII, et de préférence choisi dans le groupe formé par le nickel, le cobalt, le fer. Ces métaux peuvent être utilisés seuls ou en combinaison. De préférence, la phase active est constituée d’un métal du groupe VIII, de préférence du nickel. De façon particulièrement préférée, la phase active est constituée de nickel.
La teneur en métal du groupe VIII est comprise entre 1 et 60% poids d'oxyde du métal du groupe VIII par rapport au poids total du catalyseur, de préférence comprise entre 5 et 30% poids, de manière très préférée comprise entre 5 et 20% poids.
De manière préférée, le catalyseur se caractérise par une surface spécifique comprise entre 5 et 400 m2/g, de préférence comprise entre 10 et 250 m2/g, de préférence comprise entre 20 et 200 m2/g, de manière très préférée comprise entre 30 et 180 m2/g. La surface spécifique est déterminée dans la présente invention par la méthode B.E.T selon la norme ASTM D3663, telle que décrite dans l'ouvrage Rouquerol F.; Rouquerol J.; Singh K. « Adsorption by Powders & Porous Solids: Principle, methodology and applications », Academic Press, 1999, par exemple au moyen d'un appareil modèle Autopore III™ de la marque Microméritics™. Le volume poreux du catalyseur est généralement compris entre 0,4 cm3/g et 1,3 cm3/g, de préférence compris entre 0,6 cm3/g et 1,1 cm3/g. Le volume poreux total est mesuré par porosimétrie au mercure selon la norme ASTM D4284 avec un angle de mouillage de 140°, telle que décrite dans le même ouvrage.
La densité de remplissage tassée (DRT) du catalyseur est généralement comprise entre 0,4 et 0,8 g/mL, de préférence comprise entre 0,4 et 0,7 g/mL.
La mesure de DRT consiste à introduire le catalyseur dans une éprouvette dont on a préalablement déterminé le volume puis, par vibration, à le tasser jusqu’à obtenir un volume constant. La masse volumique apparente du produit tassé est calculée en comparant la masse introduite et le volume occupé après tassement.
Le catalyseur peut se trouver sous forme d'extrudés de petit diamètre, cylindriques ou multilobés (trilobés, quadrilobes,...), ou de sphères.
Le support d’oxyde du catalyseur est habituellement un solide poreux choisi dans le groupe constitué par : les alumines, la silice, les silices alumine ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l’alumine ou la silice alumine. Il est de préférence choisi dans le groupe constitué par la silice, la famille des alumines de transition et les silices alumine, de manière très préférée, le support d’oxyde est essentiellement constitué d’alumine, c'est-à-dire qu'il comprend au moins 51% poids, de préférence au moins 60% poids, de manière très préférée au moins 80% poids, voire au moins 90% poids d'alumine. Il est de préférence constitué uniquement d'alumine. De manière préférée, le support d’oxyde du catalyseur est une alumine « haute température », c'est-à-dire qui contient des alumines de phase thêta, delta, kappa ou alpha, seules ou en mélange et une quantité inférieure à 20% d'alumine de phase gamma, chi ou êta.
Un mode de réalisation très préféré de l'invention correspond à la mise en œuvre pour l'étape d) d'un catalyseur constitué d’alumine et de nickel, ledit catalyseur contenant une teneur en poids par rapport au poids total de catalyseur d'oxyde de nickel, sous forme NiO, comprise entre 5 et 20%, ledit catalyseur ayant une surface spécifique entre 30 et 180 m2/g.
Le catalyseur de l'étape d’hydrodésulfuration d) est caractérisé par une activité catalytique d’hydrodésulfuration généralement comprise entre 1% et 90%, préférentiellement comprise entre 1% et 70%, et de manière très préférée comprise entre 1% et 50% de l'activité catalytique du catalyseur des étapes a) et c) d’hydrodésulfuration.
Description de la préparation des catalyseurs et de la sulfuration
La préparation des catalyseurs des étapes a), c) et d) est connue et comprend généralement une étape d’imprégnation des métaux du groupe VIII et du groupe VIB lorsqu’il est présent, et éventuellement du phosphore et/ou du composé organique sur le support d’oxyde, suivie d’un séchage, puis d’une calcination optionnelle permettant d’obtenir la phase active sous leurs formes oxydes. Avant son utilisation dans un procédé d’hydrodésulfuration d’une coupe essence oléfinique contenant du soufre, les catalyseurs sont généralement soumis à une sulfuration afin de former l’espèce active telle que décrite ci-dessous.
L’étape d’imprégnation peut être effectuée soit par imprégnation en slurry, soit par imprégnation en excès, soit par imprégnation à sec, soit par tout autre moyen connu de l'Homme du métier. La solution d’imprégnation est choisie de manière à pouvoir solubiliser les précurseurs de métaux dans les concentrations désirées.
A titre d'exemple, parmi les sources de molybdène, on peut utiliser les oxydes et hydroxydes, les acides molybdiques et leurs sels en particulier les sels d'ammonium tels que le molybdate d'ammonium, l'heptamolybdate d'ammonium, l'acide phosphomolybdique (H3PM012O40), et leurs sels, et éventuellement l'acide silicomolybdique (hLSiMo^C o) et ses sels. Les sources de molybdène peuvent être également tout hétéropolycomposé de type Keggin, Keggin lacunaire, Keggin substitué, Dawson, Anderson, Strandberg, par exemple. On utilise de préférence le trioxyde de molybdène et les hétéropolycomposés de type Keggin, Keggin lacunaire, Keggin substitué et Strandberg.
Les précurseurs de tungstène qui peuvent être utilisés sont également bien connus de l'homme du métier. Par exemple, parmi les sources de tungstène, on peut utiliser les oxydes et hydroxydes, les acides tungstiques et leurs sels en particulier les sels d'ammonium tels que le tungstate d'ammonium, le métatungstate d'ammonium, l'acide phosphotungstique et leurs sels, et éventuellement l'acide silicotungstique (hLSiW^CUo) et ses sels. Les sources de tungstène peuvent également être tout hétéropolycomposé de type Keggin, Keggin lacunaire, Keggin substitué, Dawson, par exemple. On utilise de préférence les oxydes et les sels d'ammonium tel que le métatungstate d'ammonium ou les hétéropolyanions de type Keggin, Keggin lacunaire ou Keggin substitué.
Les précurseurs de cobalt qui peuvent être utilisés sont avantageusement choisis parmi les oxydes, les hydroxydes, les hydroxycarbonates, les carbonates et les nitrates, par exemple. L'hydroxyde de cobalt et le carbonate de cobalt sont utilisés de manière préférée.
Les précurseurs de nickel qui peuvent être utilisés sont avantageusement choisis parmi les oxydes, les hydroxydes, les hydroxycarbonates, les carbonates et les nitrates, par exemple. Le précurseur de phosphore préféré est l'acide orthophosphorique H3PO4, mais ses sels et esters comme les phosphates d'ammonium conviennent également. Le phosphore peut également être introduit en même temps que le(s) élément(s) du groupe VI B sous la forme d'hétéropolyanions de Keggin, Keggin lacunaire, Keggin substitué ou de type Strandberg.
Après l’étape d’imprégnation, le catalyseur est généralement soumis à une étape de séchage à une température inférieure à 200°C, avantageusement comprise entre 50°C et 180°C, de préférence entre 70°C et 150°C, de manière très préférée entre 75°C et 130°C. L’étape de séchage est préférentiellement réalisée sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène. L’étape de séchage peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique. Elle est avantageusement effectuée en lit traversé en utilisant de l'air ou tout autre gaz chaud. De manière préférée, lorsque le séchage est effectué en lit fixe, le gaz utilisé est soit l'air, soit un gaz inerte comme l'argon ou l'azote. De manière très préférée, le séchage est réalisé en lit traversé en présence d'azote et/ou d’air. De préférence, l’étape de séchage a une durée comprise entre 5 minutes et 15 heures, de préférence entre 30 minutes et 12 heures.
Selon une variante de l’invention, le catalyseur n’a pas subi de calcination lors de sa préparation, c'est-à-dire que le précurseur catalytique imprégné n'a pas été soumis à une étape de traitement thermique à une température supérieure à 200°C sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène, en présence d’eau ou non. Selon une autre variante de l’invention, préférée, le catalyseur a subi une étape de calcination lors de sa préparation, c'est-à-dire que le précurseur catalytique imprégné a été soumis à une étape de traitement thermique à une température comprise entre 250 et 1000°C et de préférence entre 200 et 750°C, pendant une durée typiquement comprise entre 15 minutes et 10 heures, sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène, en présence d’eau ou non.
Avant la mise en contact avec la charge à traiter dans un procédé d’hydrodésulfuration d’essences, les catalyseurs du procédé selon l'invention subissent généralement une étape de sulfuration. La sulfuration est de préférence réalisée en milieu sulforéducteur, c'est-à-dire en présence d'H2S et d'hydrogène, afin de transformer les oxydes métalliques en sulfures tels que par exemple, le M0S2, le CogSs ou le Ni3S2. La sulfuration est réalisée en injectant sur le catalyseur un flux contenant de l'H2S et de l'hydrogène, ou bien un composé soufré susceptible de se décomposer en H2S en présence du catalyseur et de l'hydrogène. Les polysulfures tel que le diméthyldisulfure (DMDS) sont des précurseurs d'H2S couramment utilisés pour sulfurer les catalyseurs. Le soufre peut aussi provenir de la charge. La température est ajustée afin que l'H2S réagisse avec les oxydes métalliques pour former des sulfures métalliques. Cette sulfuration peut être réalisée in situ ou ex situ (en dedans ou dehors du réacteur) du réacteur du procédé selon l’invention à des températures comprises entre 200 et 600°C, et plus préférentiellement entre 300 et 500°C.
Le taux de sulfuration des métaux constituants les catalyseurs est au moins égal à 60%, de préférence au moins égal à 80%. La teneur en soufre dans le catalyseur sulfuré est mesurée par analyse élémentaire selon ASTM D5373. Un métal est considéré comme sulfuré lorsque le taux de sulfuration global défini par le rapport molaire entre le soufre (S) présent sur le catalyseur et ledit métal est au moins égal à 60% du rapport molaire théorique correspondant à la sulfuration totale du(des) métal(aux) considéré(s). Le taux de sulfuration global est défini par l’équation suivante :
(S/métal)catalyseur — 0,6 X (S/métal)théorique dans laquelle :
(S/métal)cataiyseur est le rapport molaire entre le soufre (S) et du métal présents sur le catalyseur
(S/métal)théorique est le rapport molaire entre le soufre et du métal correspondant à la sulfuration totale du métal en sulfure.
Ce rapport molaire théorique varie selon le métal considéré :
(S/Fe)théorique 1 (S/Co)théorique 1 (S/Ni)théorique 1 (S/Mo)théorique 2/1 (S/W)théorique =2/1
Lorsque le catalyseur comprend plusieurs métaux, le rapport molaire entre le S présent sur le catalyseur et l’ensemble des métaux doit également être au moins égal à 60% du rapport molaire théorique correspondant à la sulfuration totale de chaque métal en sulfure, le calcul étant effectué au prorata des fractions molaires relatives de chaque métal.
D'autres caractéristiques et avantages de l'invention vont apparaître maintenant à la lecture de la description qui va suivre, donnée à titre uniquement illustratif et non limitatif, et en référence à la figure 1.
En référence à la figure 1 et selon un mode de réalisation du procédé selon l'invention, on envoie par la ligne 1 l'essence à traiter et de l'hydrogène par la ligne 2 dans l’unité d'hydrodésulfuration 3 de l’étape a). L'unité d'hydrodésulfuration 3 de l’étape a) est par exemple un réacteur contenant un catalyseur d'hydrodésulfuration supporté à base d’un métal du groupe VIII et VIB en lit fixe ou en lit fluidisé, de préférence on utilise un réacteur en lit fixe. Le réacteur est opéré dans des conditions opératoires et en présence d'un catalyseur d'hydrodésulfuration, comme décrit plus haut pour décomposer les composés soufrés et former du sulfure d'hydrogène (H2S). Lors de l’hydrodésulfuration dans l’étape a), des mercaptans de recombinaison se forment par addition d’H2S formé sur les oléfines. L’effluent de l’unité d’hydrodésulfuration 3 est ensuite mélangé à un diluant par la ligne 5 dans l’étape b) et introduit dans l’unité d’hydrodésulfuration 6 par la ligne 4 sans élimination de l’H2S formé.
L'unité d'hydrodésulfuration 6 de l’étape c) est par exemple un réacteur contenant un catalyseur d'hydrodésulfuration supporté à base d’un métal du groupe VIII et VI B en lit fixe ou en lit fluidisé, de préférence on utilise un réacteur en lit fixe. Le réacteur est opéré dans des conditions opératoires et en présence d'un catalyseur d'hydrodésulfuration, comme décrit plus haut pour décomposer les composés soufrés et former du sulfure d'hydrogène (H2S). Lors de l’hydrodésulfuration dans l’étape c), des mercaptans de recombinaison se forment par addition d’H2S formé sur les oléfines. L’effluent de l’unité d’hydrodésulfuration 6 est ensuite introduit dans l’unité d’hydrodésulfuration dite de finition 8 par la ligne 7 sans élimination de l’H2S formé. L'unité d'hydrodésulfuration 8 de l’étape d) est par exemple un réacteur contenant un catalyseur d'hydrodésulfuration en lit fixe ou en lit fluidisé, de préférence on utilise un réacteur en lit fixe. L’unité 8 est opérée à une température plus élevée que l’unité 6 et en présence d’un catalyseur sélectif comprenant un support d’oxyde et une phase active constituée d’au moins un métal du groupe VIII pour décomposer au moins en partie les mercaptans de recombinaison en oléfines et en H2S. Elle permet également d’hydrodésulfurer les composés soufrés plus réfractaires.
On soutire dudit réacteur d'hydrodésulfuration 8 par la ligne 9 un effluent, une essence contenant de l'H2S, des composés ayant une température d'ébullition supérieure à celle du butane, et des composés soufrés dont des mercaptans.
Les exemples ci-après illustrent l'invention sans en limiter la portée.
Exemples
Les méthodes d’analyse utilisées pour caractériser les charges et effluents sont les suivantes :
- masse volumique selon la méthode NF EN ISO 12185 ;
- teneur en soufre selon la méthode ASTM D2622 pour les teneurs supérieures à 10 ppm S et ISO 20846 pour les teneurs inférieures à 10 ppm S ;
- distillation selon la méthode CSD distillation simulée « CSD selon la méthode ASTM2887 ;
- teneur en dioléfines, déterminée par l’intermédiaire de l’indice d’anhydride maléique (MAV ou « Maleic Anhydride Value » selon la terminologie anglo-saxonne), selon la méthode UOP 326.
Exemple 1 (non conforme)
Une essence issue d’une unité de craquage catalytique composée de 25%poids d’oléfines et de 600 ppmS de soufre total est soumise à une seule et unique étape d’hydrodésulfuration dans un seul lit catalytique dans un réacteur adiabatique en présence d’un catalyseur A de type CoMo supporté sur alumine, les teneurs en métaux étant respectivement de 3% poids de CoO et 10% poids de MoOs, la surface spécifique du catalyseur est de 135 m2/g. Préalablement à son utilisation, le catalyseur est sulfuré par traitement pendant 4 heures sous une pression de 3,4 MPa à 350°C, au contact d’une charge constituée de 2% poids de soufre sous forme de diméthyldisulfure dans du n-heptane.
60 mL du catalyseur sont chargés dans le réacteur en un seul lit catalytique.
Les conditions opératoires de l'étape d’hydrodésulfuration en une étape de la charge essence sont les suivantes : LHSV = 3 h-1 par rapport à l’ensemble du lit catalytique, H2/HC = 250 Nm3/m3, P = 2,0 MPa.
Les caractéristiques de l’effluent liquide obtenu à l’issue de l’étape d’hydrodésulfuration et les conditions de température en fonction du temps sous flux de charge ainsi obtenus sont présentées dans le tableau 1 .
Tableau 1
Figure imgf000022_0001
Hydrogénation des oléfines
Exemple 2 (conforme)
L’essence issue d’une unité de craquage catalytique dont les caractéristiques sont décrites dans l’exemple 1 est soumise à une hydrodésulfuration sur le catalyseur A sulfuré décrit dans l’exemple 1. 60 mL du catalyseur sont chargés dans le réacteur en deux lits catalytiques de 30 mL chacun.
Les conditions opératoires globales de l'hydrodésulfuration par rapport à l’ensemble des deux lits catalytiques sont les suivantes : LHSV = 3 h’1, H2/HC = 250 Nm3/m3, P = 2,0 MPa. Dans le premier lit catalytique, les conditions opératoires de la première étape d'hydrodésulfuration sont les suivantes : LHSV = 6 h’1, H2/HC = 225 Nm3/m3.
Un ajout de diluant gazeux composé d’hydrogène à la fin de cette étape est réalisé avec un ratio débit diluant/débit de H2 en entrée du 1er réacteur = 0,22 Nm3/Nm3. Le diluant est ajouté à une température de 50°C.
Ce mélange est ensuite soumis à une deuxième étape d’hydrodésulfuration sur le catalyseur A dans le deuxième lit de catalyseur. Les conditions opératoires de cette étape d'hydrodésulfuration dans le deuxième lit sont les suivantes : LHSV = 6 h’1, H2/HC = 275 Nm3/m3.
Les caractéristiques de l’effluent liquide issu de la seconde étape d’hydrodésulfuration et les conditions de températures en fonction du temps sous flux de charge ainsi obtenus sont présentées dans le tableau 2.
Tableau 2
Figure imgf000023_0001
Hydrogénation des oléfines
L’exotherme est plus faible dans cet exemple par rapport à l’exemple 1 ainsi que la température maximale. Cela entraine une désactivation plus lente du catalyseur et des teneurs en soufre réduites en sortie du procédé selon l’invention.
Exemple 3 (conforme)
L’essence issue d’une unité de craquage catalytique dont les caractéristiques sont décrites dans l’exemple 1 est soumise à une hydrodésulfuration sur le catalyseur A sulfuré décrit dans l’exemple 1. 60 mL du catalyseur sont chargés dans le réacteur en deux lits de 30 mL. Les conditions opératoires globales de l'hydrodésulfuration par rapport à l’ensemble des lits catalytiques sont les suivantes : LHSV = 3 h’1, H2/HC = 250 Nm3/m3, P = 2,0 MPa.
Dans le premier lit, les conditions opératoires de l’étape d'hydrodésulfuration sont les suivantes : LHSV = 6 IT1, H2/HC = 237,5 Nm3/m3.
Un ajout de diluant gazeux composé d’hydrogène à la fin de cette étape avec un ratio débit diluant/débit de H2 en entrée du 1er réacteur = 0,105 Nm3/Nm3. Le diluant est ajouté à une température de 50°C.
Ce mélange est ensuite soumis à une deuxième étape d’hydrodésulfuration sur le catalyseur A dans le deuxième lit de catalyseur. Les conditions opératoires de cette étape d'hydrodésulfuration dans le deuxième lit sont les suivantes : LHSV = 6 h’1, H2/HC = 262,5 Nm3/m3. Les caractéristiques de l’effluent liquide issu de la seconde étape d’hydrodésulfuration et les conditions de températures en fonction du temps sous flux de charge ainsi obtenus sont présentées dans le tableau 3. Tableau s
Figure imgf000024_0001
Hydrogénation des oléfines
L’exotherme est plus faible dans cet exemple par rapport à l’exemple 1 ainsi que la température maximale. Cela entraine une désactivation plus lente du catalyseur et des teneurs en soufre réduites en sortie du procédé selon l’invention.

Claims

24 REVENDICATIONS
1. Procédé de traitement d'une essence contenant des composés soufrés, des oléfines et des dioléfines, le procédé comprenant au moins les étapes suivantes : a) on met en contact l'essence, de l'hydrogène et un catalyseur d'hydrodésulfuration comprenant un support d’oxyde et une phase active comprenant un métal du groupe VI B et un métal du groupe VIII, à une température comprise entre 210 et 320°C, à une pression comprise entre 1 et 4 MPa, avec une vitesse spatiale comprise entre 1 et 10 h-1 et un rapport entre le débit d’hydrogène exprimé en normaux m3 par heure et le débit de charge à traiter exprimé en m3 par heure aux conditions standards compris entre 100 et 600 Nm3/m3, pour obtenir un effluent partiellement désulfuré ; b) on met en contact directement et sans aucune séparation l’effluent partiellement désulfuré obtenu à l’issue de l’étape a) avec une charge gazeuse ou liquide en tant que diluant, dans des conditions normales de température et de pression, pour obtenir un effluent partiellement désulfuré et dilué ; c) on met en contact l’effluent partiellement désulfuré et dilué obtenu à l’issue de l’étape b), de l'hydrogène et un catalyseur d'hydrodésulfuration comprenant un support d’oxyde et une phase active comprenant un métal du groupe VI B et un métal du groupe VIII, à une température comprise entre 210 et 320°C, à une pression comprise entre 1 et 4 MPa, avec une vitesse spatiale comprise entre 1 et 10 h-1 pour obtenir un effluent désulfuré.
2. Procédé selon la revendication 1 , dans lequel ledit diluant de l’étape b) est une charge gazeuse comprenant au moins 50% en volume d’hydrogène par rapport au volume total de ladite charge gazeuse.
3. Procédé selon l’une des revendications 1 ou 2, dans lequel le ratio entre le débit volumique de ladite charge gazeuse introduite à l’étape b) et le débit volumique de l’hydrogène introduit à l’étape a) est compris entre 0,01 et 25 Nm3/Nm3.
4. Procédé selon la revendication 1 , dans lequel ledit diluant de l’étape b) est une charge liquide hydrocarbonée comprenant une température d’ébullition comprise entre 30°C et 250°C.
5. Procédé selon l’une quelconque des revendications 1 et 4, dans lequel le ratio entre le débit volumique de ladite charge liquide introduite à l’étape b) et le débit volumique de ladite charge essence introduite à l’étape a) est compris entre 0,01 et 1 Sm3/Sm3.
6. Procédé selon l’une quelconque des revendications 4 et 5, dans lequel ladite charge liquide introduite à l’étape b) est identique à la charge essence introduite à l’étape a) dudit procédé.
7. Procédé selon l’une quelconque des revendications 1 à 6, dans lequel à l’étape b) ladite charge gazeuse ou ladite charge liquide est introduite à une température inférieure à la température de l’effluent partiellement désulfuré obtenu à l’issue de l’étape a).
8. Procédé selon la revendication 7, dans lequel ladite charge gazeuse ou ladite charge liquide est introduite à l’étape b) à une température comprise entre 20°C et 300°C.
9. Procédé selon l’une quelconque des revendications 1 à 8, dans lequel les étapes a) et b) sont réalisées dans un même réacteur.
10. Procédé selon l’une quelconque des revendications 1 à 9, dans lequel les étapes a), b) et c) sont réalisées dans un même réacteur.
11. Procédé selon l’une quelconque des revendications 1 à 10, dans lequel le catalyseur de l'étape a) et/ou de l’étape c) comprend une teneur en métal du groupe VIII comprise entre 0,1 et 10% poids d'oxyde du métal du groupe VIII par rapport au poids total du catalyseur, et une teneur en métal du groupe VI B comprise entre 1 et 20 % poids d'oxyde du métal du groupe VI B par rapport au poids total du catalyseur.
12. Procédé selon l’une quelconque des revendications 1 à 11, dans lequel le catalyseur de l'étape a) et/ou de l’étape c) comprend de l’alumine et une phase active comprenant du cobalt, du molybdène et éventuellement du phosphore, ledit catalyseur contenant une teneur en poids par rapport au poids total de catalyseur d'oxyde de cobalt, sous forme CoO, comprise entre 0,1 et 10%, une teneur en poids par rapport au poids total de catalyseur d'oxyde de molybdène, sous forme MoOs, comprise entre 1 et 20%, un rapport molaire cobalt/molybdène compris entre 0,1 et 0,8, une teneur en poids par rapport au poids total de catalyseur d'oxyde de phosphore sous forme P2O5 comprise entre 0,3 et 10% lorsque le phosphore est présent, ledit catalyseur ayant une surface spécifique entre 50 et 250 m2/g.
13. Procédé selon l’une quelconque des revendications 1 à 12, dans lequel les catalyseurs des étapes a) et c) dont identiques.
14. Procédé selon l'une quelconque des revendications 1 à 13, dans lequel avant l'étape a) et avant toute éventuelle étape de distillation, on met en contact l'essence avec de l'hydrogène et un catalyseur d'hydrogénation sélective pour hydrogéner sélectivement les dioléfines contenues dans ladite l'essence en oléfines.
15. Procédé selon l'une quelconque des revendications 1 à 14, dans lequel l’essence est une essence de craquage catalytique.
PCT/EP2022/085359 2021-12-20 2022-12-12 Procede de traitement d'une essence contenant des composes soufres comprenant une etape de dilution WO2023117533A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2114040 2021-12-20
FR2114040A FR3130835A1 (fr) 2021-12-20 2021-12-20 Procédé de traitement d'une essence contenant des composés soufrés comprenant une étape de dilution

Publications (1)

Publication Number Publication Date
WO2023117533A1 true WO2023117533A1 (fr) 2023-06-29

Family

ID=80786362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/085359 WO2023117533A1 (fr) 2021-12-20 2022-12-12 Procede de traitement d'une essence contenant des composes soufres comprenant une etape de dilution

Country Status (3)

Country Link
AR (1) AR128007A1 (fr)
FR (1) FR3130835A1 (fr)
WO (1) WO2023117533A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985136A (en) 1998-06-18 1999-11-16 Exxon Research And Engineering Co. Two stage hydrodesulfurization process
EP1077247A1 (fr) 1999-08-19 2001-02-21 Institut Francais Du Petrole Procédé de production d'essences à faible teneur en soufre
WO2001038457A1 (fr) 1999-11-24 2001-05-31 Exxon Research And Engineering Company Desulfuration poussee de naphta en deux etapes avec formation reduite de mercaptans
EP1174485A1 (fr) 2000-07-06 2002-01-23 Institut Francais Du Petrole Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S
WO2003099963A1 (fr) 2002-05-21 2003-12-04 Exxonmobil Research And Engineering Company Hydrodesulfurisation a etapes multiples de flux de naphte au moyen d'un reacteur a lits empiles
EP1857527A1 (fr) 2006-05-17 2007-11-21 Petroleo Brasileiro S.A. Petrobras Processus d'hydrodésulfuration sélective de flux de naphte
US20090065396A1 (en) 2007-09-07 2009-03-12 Peter Kokayeff Hydrodesulfurization Process
US20120273394A1 (en) * 2011-04-26 2012-11-01 Uop, Llc Hydrotreating process and controlling a temperature thereof
US20150014218A1 (en) * 2013-07-10 2015-01-15 Uop Llc Hydrotreating Process and Apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985136A (en) 1998-06-18 1999-11-16 Exxon Research And Engineering Co. Two stage hydrodesulfurization process
EP1077247A1 (fr) 1999-08-19 2001-02-21 Institut Francais Du Petrole Procédé de production d'essences à faible teneur en soufre
WO2001038457A1 (fr) 1999-11-24 2001-05-31 Exxon Research And Engineering Company Desulfuration poussee de naphta en deux etapes avec formation reduite de mercaptans
EP1174485A1 (fr) 2000-07-06 2002-01-23 Institut Francais Du Petrole Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S
WO2003099963A1 (fr) 2002-05-21 2003-12-04 Exxonmobil Research And Engineering Company Hydrodesulfurisation a etapes multiples de flux de naphte au moyen d'un reacteur a lits empiles
EP1857527A1 (fr) 2006-05-17 2007-11-21 Petroleo Brasileiro S.A. Petrobras Processus d'hydrodésulfuration sélective de flux de naphte
US20090065396A1 (en) 2007-09-07 2009-03-12 Peter Kokayeff Hydrodesulfurization Process
US20120273394A1 (en) * 2011-04-26 2012-11-01 Uop, Llc Hydrotreating process and controlling a temperature thereof
US20150014218A1 (en) * 2013-07-10 2015-01-15 Uop Llc Hydrotreating Process and Apparatus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D.R. LIDE: "CRC Handbook of Chemistry and Physics", 2000
JEAN CHARPINBERNARD RASNEUR, TECHNIQUES DE L'INGÉNIEUR, TRAITÉ ANALYSE ET CARACTÉRISATION, pages 1050 - 1055
ROUQUEROL F.ROUQUEROL J.SINGH K.: "Adsorption by Powders & Porous Solids: Principle, methodology and applications", 1999, ACADEMIC PRESS
THE JOURNAL OF AMERICAN SOCIETY, vol. 60, 1938, pages 309

Also Published As

Publication number Publication date
AR128007A1 (es) 2024-03-20
FR3130835A1 (fr) 2023-06-23

Similar Documents

Publication Publication Date Title
FR3023184A1 (fr) Catalyseur d'hydrotraitement a densite de molybdene elevee et methode de preparation.
FR2904242A1 (fr) Procede d'hydrodesulfuration de coupes contenant des composes soufres et des olefines en presence d'un catalyseur supporte comprenant des elements des groupes viii et vib
EP2161076A1 (fr) Procédé d'hydrogénation sélective mettant en oeuvre un catalyseur sulfuré de composition spécifique
FR2923837A1 (fr) Procede de desulfuration en deux etapes d'essences olefiniques comprenant de l'arsenic.
EP1447436A1 (fr) Catalyseurs partiellement cokes utilisables dans l'hydrotraitement des coupes contenant des composes soufres et des olefines
EP2816093A1 (fr) Procédé d'élimination de l'arsenic d'une charge d'hydrocarbures
CA2872292A1 (fr) Procede d'hydrotraitement de gazole mettant en oeuvre un enchainement de catalyseurs
WO2021013528A1 (fr) Procédé de production d'une essence a basse teneur en soufre et en mercaptans
WO2021013526A1 (fr) Procédé de production d'une essence a basse teneur en soufre et en mercaptans
WO2021185658A1 (fr) Procédé de production d'une essence a basse teneur en soufre et en mercaptans
WO2022223482A1 (fr) Catalyseur contenant du phosphore et du sodium et son utilisation dans un procede d'hydrodesulfuration
WO2021013527A1 (fr) Procédé de production d'une essence a basse teneur en soufre et en mercaptans
WO2023117533A1 (fr) Procede de traitement d'une essence contenant des composes soufres comprenant une etape de dilution
EP4251714A1 (fr) Procede d'hydrodesulfuration mettant en oeuvre un catalyseur comprenant un support d'alumine flash
EP2606969B1 (fr) Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des esences de craquage catalytique
FR3061038A1 (fr) Procede de sulfuration d'un catalyseur a partir d'une coupe d'hydrocarbures prealablement hydrotraitee et d'un compose soufre.
WO2023117531A1 (fr) Procede de traitement d'une essence contenant des composes soufres
WO2024115276A1 (fr) Catalyseur d'hydrodesulfuration de finition comprenant un metal du groupe vib, un metal du groupe viii et du phosphore sur support alumine alpha
WO2024115275A1 (fr) Procede d'hydrodesulfuration de finition des essences mettant en œuvre un enchainement de catalyseurs
WO2023117532A1 (fr) Procede de production d'une coupe essence legere a basse teneur en soufre
WO2024115277A1 (fr) Procede d'hydrodesulfuration de finition des essences mettant en œuvre un catalyseur a base de metaux du groupe vib et viii et du phosphore sur support alumine a faible surface specifique
WO2021013525A1 (fr) Procede de traitement d'une essence par separation en trois coupes
WO2021224172A1 (fr) Catalyseur d'hydrogenation comprenant un support et un ratio nimo specifique
WO2021224171A1 (fr) Catalyseur d'hydrogenation selective comprenant une repartition particuliere du nickel et du molybdene
EP4146384A1 (fr) Catalyseur d'hydrogenation selective comprenant un support specifique en partie sous forme aluminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22835667

Country of ref document: EP

Kind code of ref document: A1