WO2023116687A1 - 发射功率的确定方法、装置及设备 - Google Patents

发射功率的确定方法、装置及设备 Download PDF

Info

Publication number
WO2023116687A1
WO2023116687A1 PCT/CN2022/140336 CN2022140336W WO2023116687A1 WO 2023116687 A1 WO2023116687 A1 WO 2023116687A1 CN 2022140336 W CN2022140336 W CN 2022140336W WO 2023116687 A1 WO2023116687 A1 WO 2023116687A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
signal
echo
quality
moment
Prior art date
Application number
PCT/CN2022/140336
Other languages
English (en)
French (fr)
Inventor
丁圣利
姜大洁
李健之
吴建明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023116687A1 publication Critical patent/WO2023116687A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems

Definitions

  • the present application belongs to the technical field of communications, and in particular relates to a method, device and equipment for determining transmission power.
  • Future wireless communication systems are expected to provide various high-precision sensing services, such as indoor positioning for robot navigation, Wi-Fi sensing for smart homes, and radar sensing for autonomous vehicles.
  • Sensing and communication systems are usually designed separately and occupy different frequency bands.
  • MIMO Multiple Input Multiple Output
  • the communication signals in future wireless communication systems often have high resolution in both time domain and angle domain, which makes the use of communication It is possible to realize high-precision sensing of signals. Therefore, it is better to jointly design sensing and communication systems so that they can share the same frequency band and hardware to improve frequency efficiency and reduce hardware cost. This has prompted research on Integrated Sensing And Communication (ISAC).
  • MIMO Multiple Input Multiple Output
  • ISAC will become a key technology in future wireless communication systems to support many important application scenarios.
  • autonomous vehicles will obtain a large amount of information from the network, including ultra-high-resolution maps and near real-time information, to navigate and avoid upcoming traffic jams.
  • radar sensors in autonomous vehicles should be able to provide robust, high-resolution obstacle detection with resolution on the order of centimeters.
  • ISAC technology for autonomous vehicles offers the possibility of high data rate communication and high resolution obstacle detection using the same hardware and spectrum resources.
  • Other ISAC applications include Wi-Fi-based indoor positioning and activity recognition, communication and sensing for unmanned aircraft, extended reality (Extended Reality, XR), radar and communication integration, etc. Every application has different requirements, limitations and regulatory issues.
  • Radar detection that is, using the reflected echo of the target to measure distance, speed, and angle, can be used as one of the important use cases of communication-sensing integration. , has many differences from traditional radar technology.
  • Embodiments of the present application provide a method, device, and device for determining transmission power, which can optimize system performance and use of power resources in a scenario of integration of communication and sensing.
  • a method for determining transmission power including:
  • the first device determines the target transmission power of the first signal according to the echo signal quality of the first target or the parameters of the first target; the target transmission power is used to indicate the transmission of the first signal at the second moment;
  • the first device detects the echo signal of the first signal sent at the first moment to obtain the echo signal quality of the first target or the parameter of the first target; or, the first device obtains the echo signal quality of the first target or the parameter of the first target;
  • the second device receives the echo signal quality of the first target or the parameters of the first target, and the echo signal of the first target obtained by the second device detecting the echo signal of the first signal sent at the first moment signal quality or a parameter of said first object;
  • the parameters of the first target include: at least one of the radar cross-sectional area RCS of the first target and distance information of the first target.
  • a method for determining transmission power including:
  • the third device determines the candidate transmit power value of the first signal according to the radar cross-sectional area RCS of the sensing target included in the sensing requirement and the maximum range of radar detection;
  • the third device determines the initial transmission power of the first signal according to the candidate value of the transmission power of the first signal, the transmission power requirement of the communication function in the telesensing integration application, and the maximum transmission power of the transmitting end device.
  • an apparatus for determining transmit power is provided, which is applied to the first device, including:
  • the first determination module is configured to determine the target transmission power of the first signal according to the echo signal quality of the first target or the parameters of the first target; the target transmission power is used to indicate the transmission of the first signal at the second moment;
  • the first device detects the echo signal of the first signal sent at the first moment to obtain the echo signal quality of the first target or the parameter of the first target; or, the first device obtains the echo signal quality of the first target or the parameter of the first target;
  • the second device receives the echo signal quality of the first target or the parameters of the first target, and the echo signal of the first target obtained by the second device detecting the echo signal of the first signal sent at the first moment signal quality or a parameter of said first object;
  • the parameters of the first target include: at least one of the radar cross-sectional area RCS of the first target and distance information of the first target.
  • a transmission power determining device which is applied to a third device, including:
  • the fourth determination module is used to determine the candidate value of the transmission power of the first signal according to the radar cross-sectional area RCS of the sensing target included in the sensing requirement and the maximum range of radar detection;
  • the fifth determination module is configured to determine the initial transmission power of the first signal according to the candidate transmission power value of the first signal, the transmission power requirement of the communication function in the application of synesthesia integration and the maximum transmission power of the transmitting end device .
  • a first device in a fifth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor When realizing the steps of the method as described in the first aspect.
  • a first device including a processor and a communication interface, the processor is used to determine the target transmission power of the first signal according to the echo signal quality of the first target or the parameters of the first target ;
  • the target transmission power is used to indicate the first signal transmission at the second moment; wherein, the first device detects the echo signal of the first signal sent at the first moment to obtain the echo signal of the first target echo signal quality or the parameters of the first target; or, the first device receives the echo signal quality of the first target or the parameters of the first target from the second device, and the second device sends the echo signal quality at the first moment
  • the echo signal quality of the first target obtained by detecting the echo signal of the first signal or the parameters of the first target; the second moment is after the first moment;
  • the parameters of the first target include : at least one of the radar cross-sectional area RCS of the first target and distance information of the first target.
  • a third device in a seventh aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor When realizing the steps of the method as described in the second aspect.
  • a third device including a processor and a communication interface, wherein the processor uses the radar cross-sectional area RCS of the sensing target included in the sensing requirement and the maximum range of radar detection to determine the first signal and determine the initial transmission power of the first signal according to the candidate transmission power value of the first signal, the transmission power requirement of the communication function in the application of synaesthesia integration and the maximum transmission power of the transmitting end device .
  • a readable storage medium is provided, and programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the steps of the method described in the first aspect are realized, or the steps of the method described in the first aspect are realized, or The steps of the method described in the second aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect , or implement the method described in the second aspect.
  • a computer program product is provided, the computer program product is stored in a storage medium, and the computer program product is executed by at least one processor to implement the steps of the method described in the first aspect, or The steps of the method described in the second aspect are realized.
  • the first device adaptively adjusts the transmission power of the first signal according to the echo signal quality of the first target or the parameters of the first target, so as to save time as much as possible while meeting the perception requirements , energy and other resources, so as to optimize the performance of the integrated communication perception system and the use of power resources.
  • FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present application is applicable
  • FIG. 2 shows one of the flow charts of the method for determining the transmission power provided by the embodiment of the present application
  • Figure 3 shows an example diagram 1 of the connection relationship between the transmitting end device, the receiving end device, and the sensing function network element in the method for determining the transmission power provided by the embodiment of the present application;
  • Figure 4 shows an example of the connection relationship between the transmitting end device, the receiving end device, and the sensing function network element in the method for determining the transmission power provided by the embodiment of the present application;
  • Figure 5 shows an example of the connection relationship between the transmitting end device, the receiving end device, and the sensing function network element in the method for determining the transmission power provided by the embodiment of the present application;
  • FIG. 6 shows the second flowchart of the steps of the method for determining the transmission power provided by the embodiment of the present application
  • FIG. 7 shows one of the structural schematic diagrams of the device for determining the transmission power provided by the embodiment of the present application.
  • FIG. 8 shows the second structural schematic diagram of the transmission power determining device provided by the embodiment of the present application.
  • FIG. 9 shows one of the structural schematic diagrams of the communication device provided by the embodiment of the present application.
  • FIG. 10 shows the second structural schematic diagram of the communication device provided by the embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , Vehicle User Equipment (VUE), Pedestrian User Equipment (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computer, PC), teller machine or self-service machine and other terminal side devices, wearable devices include: smart watches, smart bracelet
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function, or a wireless network. access network unit.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • the access network device may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point, or a WiFi node, etc.
  • the base station may be called a node B, an evolved node B (eNB), an access point, a base transceiver station ( Base Transceiver Station, BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (Extended Service Set, ESS), Home Node B, Home Evolved Node B, sending and receiving point ( Transmitting Receiving Point, TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary. It should be noted that in the embodiment of this application, only the NR system The base station is introduced as an example, and the specific type of the base station is not limited.
  • the radar technology can adopt the single-station radar mode or the dual-station radar mode.
  • the transmitting and receiving signals share the same antenna, and the received signal and the transmitted signal enter different RF processing links through the circulator; in this mode, continuous wave signal waveforms can be used to achieve detection without blind spots, provided that the received It needs to be well isolated from the transmitted signal, usually an isolation of about 100dB is required to eliminate the flooding of the received signal by the leakage of the transmitted signal. Since the receiver of the monostatic radar has all the information of the transmitted signal, it can process the signal through matched filtering (pulse compression) to obtain a higher signal processing gain.
  • the dual-station radar mode there is no isolation problem of sending and receiving signals, which greatly simplifies the complexity of the hardware.
  • known information such as synchronization signals and reference signals can be used for radar signal processing.
  • the fuzzy diagram of the signal waveform is no longer a thumbtack shape, but a pegboard shape, and the degree of ambiguity of time delay and Doppler will increase, and the gain of the main lobe will be larger than that of the main lobe.
  • the monostatic radar mode is much lowered, reducing the range and speed measurement range.
  • the measurement range of distance and speed can meet the measurement requirements of common objects such as cars and pedestrians.
  • the measurement accuracy of bistatic radar is related to the position of the transceiver station relative to the target, and it is necessary to select a suitable pair of transceiver stations to improve the detection performance.
  • the first device and the third device provided in the embodiment of the present application may respectively be a base station, a transmitting and receiving node (TRP), a terminal device (UE), a wireless access point (Access Point, AP), a reproducible Reconfigurable Intelligence Surface (RIS), etc.
  • TRP transmitting and receiving node
  • UE terminal device
  • AP wireless access point
  • RIS reproducible Reconfigurable Intelligence Surface
  • the method for determining transmission power provided in the embodiment of the present application may also be understood as an adaptive method for transmission power, including an adaptive transmission power method in search mode and an adaptive transmission power method in tracking mode.
  • the search mode refers to the process of discovering targets by traversing various angle intervals, and/or distance intervals, and/or speed intervals within the range specified by the perception prior information in the perception requirements at the beginning of radar detection ; Once the target parameter is obtained, the search mode ends.
  • the target parameters include at least one of the following items: azimuth, elevation, distance, and speed.
  • the tracking mode refers to that after the radar finds the target and obtains the target parameters through the above search mode, it continuously detects the target at the target parameters, or within a certain range containing the target parameters, and uses the detection results Update the target parameters.
  • FIG. 2 is one of the flow charts of the method for determining the transmission power in the search mode provided by the embodiment of the present application.
  • the method for determining the transmission power includes:
  • Step 201 the third device determines the candidate transmit power value of the first signal according to the radar cross-sectional area RCS of the sensing target included in the sensing requirement and the maximum range of radar detection;
  • Step 202 the third device determines the initial transmission power of the first signal according to the candidate transmission power value of the first signal, the transmission power requirement of the communication function in the telesensing integration application, and the maximum transmission power of the transmitting device.
  • the initial transmission power of the first signal is set to cover the maximum range of the typical sensing target in the sensing requirement.
  • the sensing target is a vehicle, a pedestrian, or an unmanned aerial vehicle, etc.
  • the typical RCS value ⁇ RCS of the sensing target is set in combination with the results of sensing channel measurement and channel modeling.
  • a typical RCS of a pedestrian is -3dBm 2
  • a typical RCS of a motorcycle is 0dBm 2
  • a typical RCS of a van is 13dBm 2 .
  • the maximum range R max for radar detection is set.
  • the candidate transmit power value P i is proportional to the 4th power of the maximum range R max , and the candidate transmit power value P i is inversely proportional to the RCS value ⁇ RCS , namely:
  • the candidate transmit power value P i is proportional to the square of the maximum value of the product of the distance R t from the target to the transmitter and the distance R r from the target to the receiver, and the candidate transmit power P i is proportional to the RCS value ⁇ RCS Inversely, that is:
  • the setting of the above-mentioned candidate transmission power values can be set continuously, that is, any value in the pre-configured power range can be set as the above-mentioned candidate transmission power values; or, the setting of the above-mentioned candidate transmission power values can be The method of step setting is adopted, that is, the corresponding transmit power candidate value is set at a certain step interval within a preconfigured power range.
  • step 202 includes:
  • the third device compares the transmit power candidate value of the first signal with the transmit power requirement of the communication function in the integrated application of telepathy, and determines a larger value
  • the determined larger value is greater than the maximum transmit power of the transmitting end device, determine that the initial transmit power of the first signal is the maximum transmit power; or, if the determined greater value is less than the maximum transmit power of the transmitting end device In the case of the maximum transmit power of the device, determine that the initial transmit power of the first signal is the larger value.
  • the setting of the initial transmission power also needs to consider the transmission power requirement of the communication function in the scenario of integrated communication and sensing and the maximum transmission power of the transmitting end device.
  • different transmitter devices may set different maximum transmit powers, which are not specifically limited here.
  • the setting of the initial transmission power also needs to consider the large-scale and small-scale fading of signal transmission in the scenario of integrated synesthesia; A certain power headroom, such as 3dB, is set.
  • the actual power headroom needs to be set according to the channel modeling situation, which is not specifically limited here.
  • the above-mentioned third device is a transmitting end device of the first signal, or a receiving end device of the first signal, or a network element with a perception function.
  • the sensing function network element mentioned in the embodiment of the present application refers to a network node in the core network and/or radio access network that is responsible for at least one function such as sensing request processing, sensing resource scheduling, sensing information interaction, sensing data processing, etc. , can be based on the upgrade of Access and Mobility Management Function (AMF) or Location Management Function (LMF) in the existing 5G network, or it can be other existing or newly defined networks node.
  • AMF Access and Mobility Management Function
  • LMF Location Management Function
  • it is collectively referred to as a perception function network element in this application.
  • bistatic radar or called bistatic radar
  • the transmitting end device and the receiving end device are different devices, then the connection between the sensing function network element, the transmitting end device, and the receiving end device Relationships and corresponding information interaction methods are divided into the following three situations:
  • the perception function network element is only directly connected to one of the transmitter device or the receiver device, and there is a direct communication connection between the transmitter device and the receiver device, as shown in Figure 5; Devices with functional network elements that have direct communication connections can directly interact with sensing function network elements. Devices that are not directly connected to sensing function network elements need to communicate directly with sensing function network elements to interact with sensing function network elements. The device forwards.
  • the transmitting end device and the receiving end device are the same device, then the communication between the sensing function network element and the transmitting end device (that is, the receiving end device)
  • the connection relationship is generally a direct communication connection, that is, the two can directly exchange information; or, the connection relationship between the two is a connection through a third-party device, and the two can exchange information through the above-mentioned third-party device.
  • the device that configures the initial transmission power may be a transmitting end device, may also be a receiving end device, or may be a network element with a perception function.
  • the transmitter device sends the first signal according to the initial transmit power
  • the third device is a receiving end device or a network element with a perception function
  • the receiving end device or the sensing function network element sends to the transmitting end device to determine the initial transmission power of the first signal
  • the transmitter device sends the first signal according to the initial transmit power determined by the sensing function network element or the receiver device.
  • the receiving end device or the sensing function network element indicates that the first target has been searched, and then enters into the transmission power adaptive method in the tracking mode. If the receiving end device or the sensing function network element indicates that the first target is not found, it is considered that there is no target corresponding to the RCS within the range described in the sensing requirement.
  • the third device adaptively adjusts the initial transmission power of the first signal according to the perception demand, so as to save resources such as time and energy as much as possible while meeting the perception demand, so that the Optimizing the performance and power resource usage of the communication-aware integrated system.
  • FIG. 6 is a method for determining the transmission power in the tracking mode provided by the embodiment of the present application.
  • the method for determining the transmission power includes:
  • Step 601 the first device determines the target transmission power of the first signal according to the echo signal quality of the first target or the parameters of the first target; the target transmission power is used to indicate the transmission of the first signal at the second moment;
  • the first device detects the echo signal of the first signal sent at the first moment to obtain the echo signal quality of the first target or the parameter of the first target; or, the first device obtains the echo signal quality of the first target or the parameter of the first target;
  • the second device receives the echo signal quality of the first target or the parameters of the first target, and the echo signal of the first target obtained by the second device detecting the echo signal of the first signal sent at the first moment signal quality or a parameter of said first object;
  • the parameters of the first target include: at least one of the radar cross-sectional area RCS of the first target and distance information of the first target.
  • the first signal may be sent by the first device, or may be sent by the second device.
  • the first device sends a first signal, and the first device detects the echo signal of the first signal sent at the first moment to obtain the echo signal quality of the first target or the Parameters of the first target; or, in a monostatic radar scenario, the first device sends the first signal, and the first device detects the echo signal of the first signal sent at the first moment to obtain echo data, and converts the echo
  • the data is sent to the second device, and the second device obtains the echo signal quality of the first target or the parameters of the first target according to the echo data.
  • the second device sends a first signal, and the first device detects the echo signal of the first signal sent at the first moment to obtain the echo signal quality of the first target or the parameters of the first target; or, in a bistatic radar scenario, the second device sends the first signal, and the first device detects the echo signal of the first signal sent at the first moment to obtain echo data, and returns the The wave data is sent to the sensing function network element, and the sensing function network element obtains the echo signal quality of the first target or the parameter of the first target according to the echo data.
  • the device that detects the first target may be a receiving end device, or may be a network element with a perception function.
  • the receiving end device obtains the echo data of the first signal, and the receiving end device directly detects the first target; or, after obtaining the echo data of the first signal, the receiving end device transmits the echo data to the sensing function network element , the first target is detected by the sensing function network element; or, after the receiving end device obtains the echo data of the first signal, it performs some calculations of radar signal processing to obtain an intermediate result, and sends the intermediate result to the sensing function network element, and the sensing The functional network element detects the first target.
  • the device that determines the target transmission power of the first signal may be a transmitting end device, may also be a receiving end device, or may be a perception function network element.
  • the device for detecting the first target and the device for determining the target transmission power of the first signal may be the same device or different devices, which are not specifically limited here.
  • the transmitting end device sends the first signal according to the target transmission power of the first signal
  • the device that determines the target transmission power of the first signal is a receiving end device or a sensing function network element
  • the receiving end device or the sensing function network element transmits the target transmission power of the first signal to
  • the transmitter device sends transmission power adjustment information, and the transmitter device sends the first signal according to the target transmission power of the first signal; wherein the transmission power adjustment information includes any of the following:
  • the echo signal quality of the first target includes at least one of the following:
  • the echo signal-to-noise ratio (Signal Noise Ratio, SNR) of the first target is the echo signal-to-noise ratio (Signal Noise Ratio, SNR) of the first target
  • the signal-to-noise and interference ratio (SINR) of the echo of the first target is the signal-to-noise and interference ratio (SINR) of the echo of the first target
  • Reference Signal Received Quality (RSRQ) of the echo signal of the first target.
  • the echo signal power of the first target includes at least one of the following:
  • the echo signal power of the first target is the full power of the echo signal
  • the first signal is a communication dominant signal or a perception-enhanced communication dominant signal, such as a 5G NR signal, a Wi-Fi signal, and the echo signal power of the first target is a preamble in the echo signal, and/or Or the power of the synchronization signal, and/or the reference signal;
  • the reference signal can be a demodulation reference signal (Demodulation reference signals, DM-RS), a phase tracking reference signal (Phase-tracking reference signal, PT-RS), channel state Information reference signal (Channel State Information Reference Signal, CSI-RS), positioning reference signal (Positioning Reference Signals, P-RS), channel sounding reference signal (Sounding Reference Signal, SRS), etc.
  • the first device determines the target transmission power of the first signal according to the echo signal quality of the first target, including:
  • the first device determines the target transmission power of the first signal according to the echo signal quality of the first target at the first moment;
  • the first device determines the target transmission power of the first signal according to the predicted distance value of the first target at the second time and the quality of the echo signal of the first target at the first time.
  • the targets for adaptively adjusting transmit power according to the echo signal quality of the first target include:
  • Target 1 maintaining the echo signal quality of the first target near a first preset echo quality.
  • the expression may be P r0 ⁇ P r , wherein P r0 is the preset first preset echo quality, and ⁇ P r is the allowable echo quality error.
  • target 2 maintain the echo signal quality of the first target within the first echo quality range.
  • the expression of the preset first echo quality range may be [P rmin , P rmax ], wherein P rmin is the lower limit value of the first echo quality range, and P rmax is the preset echo quality range.
  • the method also includes:
  • the first condition determines the first preset echo quality or the first echo quality range; the first condition includes at least one of the following:
  • the required echo signal quality is limited by the interference level of the communication function in the synaesthesia integration application.
  • the method for determining the preset echo signal power value includes:
  • the echo signal power value that meets the requirements of the sensing index in the sensing demand, or the echo signal power value that meets the sensing index requirement in the sensing demand and leaves a certain margin, and the sensing index requirement can be: sensing accuracy, Detection probability/false alarm probability;
  • the method for determining the lower limit value of the echo signal power range includes:
  • the minimum received power of the echo signal that satisfies the requirements of the sensing index in the sensing requirement, the sensing index requirement may be: sensing accuracy, detection probability/false alarm probability;
  • the method for determining the upper limit of the echo signal power range includes:
  • the echo signal power corresponding to the sensing index reaching a certain level, the sensing index requirement may be: sensing accuracy, detection probability/false alarm probability;
  • the first device determines the target transmission power of the first signal according to the echo signal quality of the first target at the first moment, including:
  • the echo signal of the first target at the first moment quality and the first preset echo quality determine the target transmit power of the first signal
  • the echo signal quality and the first echo quality range are used to determine the target transmission power of the first signal.
  • determining the target transmit power of the first signal according to the transmit power of the first signal sent at the first moment, the echo signal quality of the first target at the first moment, and the first preset echo quality includes:
  • the first formula determines the target transmit power of the first signal; the first formula is:
  • P t ' is the target transmit power of the first signal
  • P t is the transmit power of the first signal sent at the first moment
  • P r0 is the first preset echo quality
  • P r is the first target's Echo signal quality at one moment.
  • determining the target transmit power of the first signal according to the transmit power of the first signal sent at the first moment, the echo signal quality of the first target at the first moment, and the first echo quality range includes:
  • the second formula determines the target transmission power of the first signal; the second formula is:
  • P t ' is the target transmit power of the first signal
  • P t is the transmit power of the first signal sent at the first moment
  • P r is the echo signal quality of the first target at the first moment
  • P is the lower limit echo quality of the first echo quality range
  • P rmin is the lower limit echo quality of the first echo quality range
  • P is the arithmetic mean value or the geometric mean value of the upper limit echo quality and the lower limit echo quality of the first echo quality range
  • P rmid is the arithmetic mean value or the geometric mean value of the upper limit echo quality and the lower limit echo quality of the first echo quality range.
  • the arithmetic mean can be understood as (P rmax +P rmin )2; the geometric mean can be understood as
  • the first device determines the target transmit power of the first signal according to the predicted distance value of the first target at the second moment and the echo signal quality of the first target at the first moment ,include:
  • the echo signal of the first target at the first moment is determined based on the quality of the wave signal, the quality range of the first echo, and the predicted distance value of the first target at the second moment.
  • predicting the distance of the first target at the second moment is based on maintaining the trajectory of the first target and obtaining the predicted distance value at the second moment by predicting the position of the first target at the second moment.
  • the premise assumption of the prediction method is: when tracking the first target, since the movement speed of the typical target (for example: vehicle, pedestrian, etc.) of the synaesthesia integration application is a low-speed target relative to the update rate of perception,
  • the change of the target state between two adjacent radar detections is small.
  • the small change in the target state here mainly refers to the small change in the target RCS. It can be considered that the target RCS remains almost unchanged in two or several consecutive radar detections.
  • the target’s maneuverability is small, that is, the acceleration is small, and the position and velocity of the target do not change much, so linear filtering algorithms such as Kalman filtering can be used; the other is the perceptual channel characteristics (large-scale and small-scale fading characteristics) have little change, especially the small-scale fading characteristics have little change.
  • the prediction method is implemented by the device, which is not limited here.
  • the target transmission power of the first signal includes:
  • the third formula determine the target transmission power of the first signal; the third formula includes:
  • P t ' is the target transmit power of the first signal
  • P t is the transmit power of the first signal sent at the first moment
  • P r0 is the first preset echo quality
  • P r is the first target's Echo signal quality at one moment
  • R is the distance between the first target and the signal transmitting and receiving equipment at the first moment in the monostatic radar scene
  • R' is the distance between the first target and the signal transmitting and receiving equipment at the second moment in the monostatic radar scene
  • R t is the distance between the first target and the transmitter device at the first moment in the bistatic radar scenario
  • R t ′ is the distance between the first target and the transmitter device at the second moment in the bistatic radar scenario
  • R r is the distance between the first target and the receiving end device at the first moment in the bistatic radar scenario
  • R r ′ is the distance between the first target and the receiving end device at the second moment in the bistatic radar scenario Distance predictions between devices.
  • the determined The target transmission power of the first signal includes:
  • the fourth formula determine the target transmission power of the first signal; the fourth formula includes:
  • P t ′ is the target transmit power of the first signal
  • P t is the transmit power of the first signal sent at the first moment
  • P r is the echo signal quality of the first target at the first moment
  • R is the monostatic radar scene
  • R′ is the predicted distance between the first target and the signal transmitting and receiving equipment at the second moment in the monostatic radar scenario
  • R t is the bistatic radar scenario
  • R t ′ is the predicted distance between the first target and the transmitter device at the second moment in the bistatic radar scene
  • R r is the bistatic radar The distance between the first target and the receiving end device at the first moment in the scene
  • R r ′ is the predicted distance between the first target and the receiving end device at the second moment in the bistatic radar scene
  • P is the lower limit echo quality of the first echo quality range
  • P rmin is the lower limit echo quality of the first echo quality range
  • P is the arithmetic mean value or the geometric mean value of the upper limit echo quality and the lower limit echo quality of the first echo quality range; then the fourth formula is or P rmid is the arithmetic mean value or the geometric mean value of the upper limit echo quality and the lower limit echo quality of the first echo quality range.
  • the arithmetic mean can be understood as (P rmax +P rmin )2; the geometric mean can be understood as
  • the method before determining the target transmission power of the first signal according to the parameters of the first target in step 601, the method further includes:
  • the RCS of the first target is specifically the real-time RCS of the first target; the real-time RCS of the first target is calculated according to the real-time echo power of the target signal and the real-time distance of the target;
  • the real-time RCS of the first target changes as the relative position between the first target and the radar changes.
  • the RCS has a certain range of variation. For example, when a van detects at different angles, its RCS range is approximately -5dBm2 to 25dBm2 (carrier frequency 26GHz); when pedestrians detect at different angles, their RCS ranges approximately -10dBm2 to 0dBm2 (carrier frequency 26GHz).
  • the actual RCS value of the first target under current observation can be calculated from the echo signal power of the first target and the distance of the first target from the radar.
  • the real-time RCS of the target is calculated according to the echo signal power and the perceived distance R of the target; another example, in the dual-station radar scenario, based on the echo signal power, the distance from the target to the transmitter, and the target to the receiver Real-time RCS of the target by distance reckoning.
  • the echo signal contains reflection echoes of multiple targets
  • the echo signal component corresponding to the current tracking target is distinguished through time delay domain and angle domain filtering, and the echo signal of the current tracking target is calculated accordingly Power, so as to deduce the RCS of the current target.
  • determining the target transmission power of the first signal includes:
  • the target transmission power of the first signal is proportional to the fourth power of the first distance, and the target transmission power of the first signal is inversely proportional to the RCS of the first target;
  • the transmission power of the first signal at the second moment is proportional to the square of the product of the second distance and the third distance
  • the target transmission power of the first signal is proportional to the RCS of the first target Inversely proportional.
  • the setting of the transmit power at the second moment also needs to consider the transmit power requirements of the communication function in the scenario of integrated communication with sensing and the maximum transmit power of the transmit end device. power.
  • different transmitting end devices may set different maximum transmitting powers, which is not specifically limited here.
  • the setting of the transmit power at the second moment also needs to consider the large-scale and small-scale fading of signal transmission in the synaesthesia integration scenario;
  • a certain power margin, such as 3dB, is reserved on the basis of the transmit power at the second moment obtained according to the above relationship, and the actual power margin needs to be set according to the channel modeling situation, which is not specifically limited here.
  • the transmitter device and the receiver device mentioned in the embodiments of the present application are one device in a single-static radar scenario, and are different devices in a dual-static radar scenario.
  • first moment and the second moment mentioned in the embodiments of the present application can be understood as at least one first perception frame and at least one second perception frame, and the transmission, reception and signal processing of signals are all based on perception A frame is a unit of time; that is to say, the transmission power of a signal in the same perception frame remains unchanged, and the method for adaptively adjusting transmission power provided by the embodiment of the present application adjusts the transmission power of a transmission signal in the next perception frame.
  • the first device when the first target is detected according to the echo data of the first signal, the first device automatically The transmission power of the first signal is adaptively adjusted to meet the sensing requirements while saving resources such as time and energy as much as possible, so as to optimize the performance of the integrated communication sensing system and the use of power resources.
  • the transmitting end device sets the sensing signal configuration parameters according to the sensing target parameters, sensing index requirements and sensing prior information in the sensing requirements, combined with the capability information of the transmitting end device;
  • the perceptual target parameters include at least one of the following:
  • the perception index includes at least one of the following:
  • Sensing data rate (the update rate of sensing target parameters per unit time, unit: Hz);
  • the function of the perceptual prior information is to narrow the perceived time/space working range, including at least one of the following:
  • the perception target parameters are the same, but the perception indicators are different: the perception indicators of prior information are worse than the perception indicators in the perception requirements;
  • the distance accuracy in prior information is on the order of m;
  • the perceptual target parameters are different: the information given in the perceptual prior information is not the information corresponding to the perceptual target parameters; for example, the perceptual target parameter is distance, and the perceptual prior information gives the target angle.
  • the sensing signal configuration parameters include at least one of the following:
  • the first signal is an Orthogonal frequency division multiplex (OFDM) signal, it also includes OFDM signal subcarrier spacing, sensing signal interval Resource Element (Resource Element) in the frequency domain , RE) number, the number of OFDM symbols spaced apart by the perceived signal in the time domain;
  • OFDM Orthogonal frequency division multiplex
  • Perceptual frame also called perceptual burst duration
  • the process of setting sensing signal configuration parameters according to sensing index requirements includes at least one of the following:
  • the ranging range set the number of OFDM symbols separated by the OFDM signal in the time domain, or the duty cycle and pulse period of the pulse signal;
  • the transmitter device or the sensing function network element sets the first candidate value of the initial transmit power according to the sensing accuracy requirements in the sensing requirements and the typical RCS of the sensing target, combined with the sensing resolution. Then,
  • the transmitter device sets the final initial signal transmission power according to the transmission power requirements of the communication function in the communication-sensing integration and the maximum transmission power requirements specified in relevant regulations, combined with the first candidate value of the initial transmission power.
  • the initial signal transmission power should be greater than or equal to the first candidate value of the initial transmission power, and greater than or equal to the minimum transmission signal power required by the communication function; at the same time, the initial signal transmission power should be less than or equal to the maximum transmission function rate value.
  • the transmitter device generates and transmits the first signal according to the configuration parameters of the perceived signal and the transmission power, and receives the target reflection echo signal of the first signal to obtain the target echo data; perform echo signal processing; obtain the echo signal measurement ; If the sensing signal configuration parameters and transmit power are set by the sensing function network element, before the transmitting end device generates the first signal, the transmitting end device receives the sensing signal configuration parameters and transmit power.
  • the first signal may be any of the following:
  • Communication dominant signal such as NR signal, LTE signal, Wi-Fi signal, etc.
  • Sensing dominant signals such as radar signals, including: Orthogonal Frequency Division Multiplexing (OFDM) radar signals (including phase-coded OFDM radar signals), linear frequency modulation (Linear Frequency Modulation, LFM) signals, simple pulse trains signals, phase-encoded radar signals, etc.;
  • OFDM Orthogonal Frequency Division Multiplexing
  • LFM Linear Frequency Modulation
  • Perception-enhanced communication-dominant signals such as NR signals that redesign reference signal time-frequency domain density for perception functions;
  • Communication-sensing integrated signal refers to the signal waveform newly designed for synaesthesia-integrated scenarios, which may include: signal waveforms based on NR signals for reference signal applicability design, multi-symbol OFDM pulse signal waveforms, etc.
  • the waveform of the first signal may be a continuous wave waveform or a pulse waveform.
  • the radar signal processing of the target echo data includes one of the following three situations:
  • the transmitter device performs radar signal processing on the target echo data to obtain the measured quantity
  • the transmitter device sends the target echo data to the sensing function network element, and the sensing function network element performs radar signal processing to obtain the measured quantity;
  • the transmitting end equipment performs part of radar signal processing to obtain low-level measurement quantities, and sends the low-level measurement quantities to the perception function network element, and the perception function network element performs the remaining part of radar signal processing to obtain high-level measurement quantities.
  • the radar signal processing includes at least one of the following options:
  • Matched filtering (pulse compression) processing including:
  • FFT Fast Fourier Transform
  • Two-dimensional FFT processing If the perception requirement requires sensing the distance and speed information of the target, two-dimensional FFT processing is required, that is, fast time dimension FFT and slow time dimension FFT;
  • Three-dimensional FFT processing If the perception requirements require the perception of distance, speed and angle information of the target, three-dimensional FFT processing is required, that is, fast time dimension FFT, slow time dimension FFT and angle dimension FFT;
  • the measured quantity and the classification of the measured quantity include one or more of the following:
  • Level-1 measurement quantity refers to the receiver of the sensing node after antenna coupling, amplification, down-conversion, filtering, automatic gain control (Automatic Gain Control, AGC), analog/digital (Analog to Digital, A/D) sampling, Measurements that can be obtained directly after digital down-conversion, digital filtering, etc., including: complex signal (including I-channel and Q-channel), signal amplitude, signal phase, signal power, polarization information, etc., and threshold detection of the above-mentioned measurement quantities Results, max/min extraction results, etc.;
  • Secondary measurement quantity refers to the primary measurement quantity after simple operations (including: addition, subtraction, multiplication and division, matrix addition, subtraction, multiplication, matrix transposition, triangular relation operation, square root operation, power operation, etc., and the threshold of the above operation results measurement results, maximum/minimum value extraction results, etc.), including: amplitude ratio, phase difference, received signal angle of arrival (Angle-of-Arrival, AOA), transmitted signal departure angle (Angel of Departure , AOD), delay (distance) information, distance difference, angle difference, etc.;
  • Tertiary measurement quantity refers to the primary measurement quantity and/or secondary measurement quantity after complex calculations (including: FFT/Inverse Fast Fourier Transform (IFFT), Discrete Fourier Transform (Discrete Fourier Transform) Transform, DFT)/inverse discrete Fourier transform (Inverse Discrete Fourier Transform, IDFT), two-dimensional FFT (two-dimensional FFT, 2D-FFT), three-dimensional FFT (three-dimensional FFT, 3D-FFT), matched filtering,
  • IFFT Discrete Fourier Transform
  • IDFT inverse discrete Fourier transform
  • two-dimensional FFT two-dimensional FFT
  • 2D-FFT two-dimensional FFT
  • 3D-FFT three-dimensional FFT
  • matched filtering three-dimensional FFT
  • the measurement quantities that can be obtained after autocorrelation operations, wavelet transformation, digital filtering, etc., and threshold detection results of the above operation results, maximum/minimum value extraction results, etc. including: complex signal (or signal amplitude, or signal phase
  • the first-level measurement quantity, the second-level measurement quantity, and the third-level measurement quantity may be the final perception results, or they may not be the final perception results and need further processing get the final perceptual result
  • a primary measurement quantity and a secondary measurement quantity are required (eg, radar ranging), or a combination of a primary measurement quantity, a secondary measurement quantity, and a tertiary measurement quantity is required (eg, radar imaging).
  • RSS Really Simple Syndication
  • the measurement quantities at all levels can be in the same device It can also be calculated in different devices in the sensing node, sensing function network element, core network, and application server; for example:
  • the sensing node that performs the sensing process has strong computing power (such as a base station), and the data volume of the sensing measurement is large (the transmission time overhead is large), and the sensing demand has a high requirement on the sensing delay, then it can be used in
  • the perception node completes the calculation of the secondary measurement quantity and/or the tertiary measurement quantity, and sends the calculation result to the perception function network element, the core network, and the application server;
  • the computing power of the sensing node performing the sensing process is weak (such as the Internet of Things terminal), and the data volume of the sensing measurement is large (the transmission time overhead is large), and the sensing demand does not have high requirements on the sensing delay but requires If the requirements for sensing accuracy are high, the calculation of the first-level measurement can be completed at the sensing node, and the calculation results are sent to the sensing function network element, core network, and application server, and the sensing function network element, core network, and application server perform the secondary measurement. Calculations of measured quantities and/or tertiary measured quantities;
  • any level of measurement can be completed at the sensing node or sensing function network element or core network or application server under the scheduling of the core network or application server Quantitative operations.
  • the transmitter device or the perception function network element detects the target in the radar signal processing, enter the transmission power adaptive method in the tracking mode to obtain the first candidate value of the transmission power at the next moment, and the method can be:
  • the echo signal quality of the target may be: the echo signal power of the target, the echo signal-to-noise ratio (SNR) of the target, the echo Signal to Interference and Noise Ratio (SINR), Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ).
  • the method for obtaining the signal power of the echo may be:
  • Constant false alarm detection is performed based on the time-delay one-dimensional map obtained by the fast time-dimensional FFT processing of the echo signal. is the target signal amplitude;
  • CFAR is performed based on the Doppler one-dimensional image obtained by the slow time-dimensional FFT processing of the echo signal, and the sample point with the largest amplitude of the CFAR crossing the threshold is used as the target sample point, and its amplitude is used as the target signal amplitude;
  • CFAR is performed based on the time delay-Doppler two-dimensional image obtained by 2D-FFT processing of the echo signal, and the sample point with the largest amplitude of the CFAR crossing the threshold is used as the target sample point, and its amplitude is used as the target signal amplitude;
  • CFAR is performed based on the time delay-Doppler-angle three-dimensional map obtained from the 3D-FFT processing of the echo signal, and the sample point with the largest amplitude that crosses the threshold of CFAR is used as the target sample point, and its amplitude is used as the target signal amplitude;
  • the sample point with the largest amplitude of CFAR passing the threshold can also be used as the target sample point, and the sample point with the largest amplitude of CFAR passing the threshold and its nearest neighbors The mean of the value points is taken as the target signal amplitude.
  • the acquisition method of the SNR/SINR can be:
  • Constant false alarm detection is performed based on the time-delay one-dimensional map obtained by the fast time-dimensional FFT processing of the echo signal.
  • the sample point with the largest amplitude of the CFAR crossing the threshold is used as the target sample point, and its amplitude is used as the target signal amplitude.
  • all sample points other than ⁇ sample points from the target sample point position are interference/noise sample points, and the average interference/amplitude is calculated as the interference/noise signal amplitude, and finally the target signal amplitude and Interference/noise signal amplitude calculation SNR/SINR;
  • CFAR is performed based on the Doppler one-dimensional image obtained by the slow time-dimensional FFT processing of the echo signal, and the sample point with the largest amplitude that crosses the threshold of CFAR is used as the target sample point, its amplitude is used as the target signal amplitude, and the distance in the one-dimensional image is used All sample points other than the target sample point position ⁇ n sample points are interference/noise sample points, and the average amplitude is calculated as the interference/noise signal amplitude, and finally the SNR is calculated based on the target signal amplitude and the interference/noise signal amplitude /SINR;
  • CFAR is performed based on the time-delay-Doppler two-dimensional map obtained by 2D-FFT processing of the echo signal.
  • the sample point with the largest amplitude that crosses the threshold of CFAR is used as the target sample point, and its amplitude is used as the target signal amplitude.
  • All sample points other than ⁇ (fast time dimension) and ⁇ (slow time dimension) sample points of the target sample point in the middle distance are interference/noise sample points, and their average amplitude is the interference/noise signal amplitude , and finally calculate the SNR/SINR with the target signal amplitude and the interference/noise signal amplitude;
  • CFAR is performed based on the time-delay-Doppler-angle three-dimensional map obtained by 3D-FFT processing of the echo signal, and the sample point with the largest amplitude that crosses the threshold of CFAR is used as the target sample point, and its amplitude is used as the target signal amplitude, and the three-dimensional map is used All sample points other than ⁇ (fast time dimension), ⁇ (slow time dimension) and ⁇ (angle dimension) sample points of the middle-distance target sample point are interference/noise sample points, and the average The magnitude is the magnitude of the interference/noise signal, and finally the SNR/SINR is calculated with the magnitude of the target signal and the magnitude of the interference/noise signal.
  • the sample point with the largest amplitude of CFAR passing the threshold can also be used as the target sample point, and the sample point with the largest amplitude of CFAR passing the threshold and its nearest neighbors The mean value of the value point is taken as the target signal amplitude;
  • the determination method of the interference/noise sample point can also be further screened according to the above-mentioned determined interference/noise sample point, and the screening method is: for a time-delay one-dimensional map, remove a number of sample points near 0 when the time delay is The remaining interference/noise sample points are used as noise sample points; for the Doppler one-dimensional map, several sample points near Doppler 0 are removed, and the remaining interference/noise sample points are used as interference/noise sample points.
  • Noise sample points for the time delay-Doppler two-dimensional map, remove the interference/noise sample points in the strip range composed of several points near the time delay of 0 and the entire Doppler range, and use the remaining noise The sample point is used as the interference/noise sample point; for the delay-Doppler-angle three-dimensional map, remove the interference/ Noise sample points, using the remaining interference/noise sample points as interference/noise sample points.
  • the parameters of the target include: the real-time distance of the target, the real-time RCS of the target;
  • the real-time RCS of the target is calculated according to the real-time echo power of the target signal and the real-time distance of the target;
  • the calculation process of calculating the target RCS may be completed by the transmitting end device; it may also be that the transmitting end device reports the sensing measurement quantity to the sensing function network element, and the sensing function network element executes the calculation process.
  • the transmitter device or the perception function network element performs the above-mentioned transmit power adaptation process for each target, and obtains the transmit power first corresponding to each target at the next moment.
  • Candidate values; or, the transmitter device or the sensing function network element synthesizes the parameters of each target to obtain a first candidate value of the integrated transmit power applicable to multiple targets at the next moment.
  • the transmitter device or the sensing function network element determines the transmit power at the next moment in combination with the first candidate value of transmit power, the transmit power requirement of the communication function, and the specified maximum transmit power;
  • the transmission power should be greater than or equal to the first candidate value of the transmission power, and greater than or equal to the minimum transmission signal power required by the communication function; at the same time, the signal transmission power should be less than or equal to the maximum transmission function rate value.
  • the transmitter device or the sensing function network element sets the transmit power at the next moment and executes the sensing process at the next moment, repeating steps 3 to 6 until the sensing process ends;
  • the method for ending the sensing process includes:
  • Sensing timing ends the sensing time length reaches the sensing duration requirement in the sensing requirement, and the sensing process ends;
  • the specific perception index in the perception requirement meets the requirement, and the perception process ends; for example, in the radar imaging scenario, the radar imaging operation for the imaging range in the perception requirement is completed with the imaging resolution requirement in the perception requirement;
  • Target loss Due to the target's motion characteristics (such as frequent acceleration and deceleration, or frequent turns), the radar cannot establish a stable tracking of the target, the radar loses tracking of the target, and the perception process ends.
  • sensing index requirements and sensing prior information in the sensing requirements combined with the capability information of the transmitting end device and the receiving end device, set the sensing signal configuration parameters; including the following options:
  • the perception function network element sets the configuration parameters of the sensing signal according to the sensing target parameters, sensing index requirements and sensing prior information in the sensing requirements, combined with the acquired capability information of the transmitting end device and the receiving end device, and sends it to the transmitting end device and receiver equipment;
  • the transmitting end device and the receiving end device set the relevant parts of the sensing signal configuration parameters according to the sensing target parameters, sensing index requirements and sensing prior information in the sensing requirements, combined with their respective capability information;
  • One of the transmitting end device and the receiving end device sets the sensing signal configuration parameters according to the sensing target parameters, sensing index requirements and sensing prior information in the sensing requirements, combined with its own capability information and the obtained counterpart device capability information, and Send to the other device.
  • the transmitter device or the receiver device Before the transmitter device or the receiver device is configured to include the sensing signal configuration related to the other device, the transmitter device or the receiver device needs to exchange information with the other device to obtain the capability configuration information of the other device.
  • the perception function network element obtains the capability information of the transmitter device and the receiver device in the following two ways:
  • the sensing function network element or other network nodes accessible to the sensing function network element, pre-stores the capability information of the transmitting end device and the receiving end device;
  • the sensing function network element performs information interaction with the transmitting end device and the receiving end device, and the transmitting end device and the receiving end device report their own capability information to the sensing function network element.
  • the capability information of the transmitting end device and the receiving end device includes: the hardware configuration and software configuration of the transmitting end device and the receiving end device, the current occupancy of software and hardware resources, and the current occupancy of the software and hardware resources of the transmitting end device and the receiving end device Business type and business priority information.
  • the perceptual target parameters are the same as Example 1;
  • the perception index is the same as Example 1;
  • the perceptual prior information is the same as Example 1;
  • the process of setting the sensing signal configuration parameters according to the sensing index requirements is the same as the first example.
  • the perception function network element, or the transmitter device, or the receiver device according to the perception accuracy requirements in the perception requirements and the typical RCS of the perception target, combined with the perception resolution, set the first candidate value of the initial transmit power.
  • the final initial signal transmission power is set.
  • the initial signal transmission power should be greater than or equal to the first candidate value of the initial transmission power, and greater than or equal to the minimum transmission signal power required by the communication function; at the same time, the initial signal transmission power should be less than or equal to the specified maximum transmission function rate value.
  • the subject of setting the first candidate value of the initial transmit power in this step should be the same as that of setting the sensing signal configuration parameters in step 1, namely:
  • step 1 If the sensing signal configuration parameters are set by the sensing function network element in step 1, then in this step, the sensing function network element still sets the first candidate value of the initial transmission power and sends it to the transmitting end device;
  • step 2 If the sensing signal configuration parameters are set by the transmitter device in step 1, then in this step, the transmitter device still sets the first candidate value of the initial transmit power;
  • step 3 If the sensing signal configuration parameters are set by the receiver device in step 1, then in this step, the receiver device still sets the first candidate value of the initial transmission power and sends it to the transmitter device;
  • the first candidate value of the initial transmission power can be set by the transmitting end device.
  • the path loss per unit length of the perceptual channel can be estimated from the communication signal between the transmitter device and the receiver device, and the path loss, perceptual Accuracy requirements, typical target RCS and range, set the first candidate value of the initial transmit power.
  • the transmitter device generates and transmits the first signal according to the information related to the transmitter device in the sensing signal configuration parameters and the initial transmission power
  • the receiving end device configures the receiving beam according to the information related to the receiving end device in the sensing signal configuration parameters and receives the target reflected echo signal of the first signal to obtain the target echo data;
  • the first signal is the same as Example 1.
  • the radar signal processing includes one of the following three situations:
  • the receiving end equipment performs radar signal processing on the target echo data to obtain the measurement quantity
  • the receiving end device sends the target echo data to the sensing function network element, and the sensing function network element performs radar signal processing to obtain the measured quantity;
  • the receiving end equipment performs part of the calculation of radar signal processing to obtain low-level measurement quantities, and sends the low-level measurement quantities to the perception function network element, and the perception function network element performs the remaining part of radar signal processing to obtain high-level measurement quantities.
  • the method for the receiving end device to send the target echo data or low-level measurement to the perception function network element is the same as the method in step 1.
  • the radar signal processing is the same as Example 1;
  • the measurement quantity and the classification of the measurement quantity are the same as Example 1;
  • the measurement quantity classification is the same as Example 1;
  • the receiver device or the perception function network element detects the target in the radar signal processing, and then enters the transmission power adaptive method of the tracking mode, and the method includes at least one of the following:
  • the receiving end device detects the target, the receiving end device executes the link adaptive method to obtain the transmission power adjustment information, and sends the transmission power adjustment information to the transmitting end device;
  • the receiving end device detects the target, and the receiving end device sends the target parameters (distance, speed, angle, target echo signal quality, etc.) to the transmitting end device, and the transmitting end device executes the transmission power adaptive method to obtain the transmission power adjustment information;
  • the receiving end device detects the target, and the receiving end device sends the target parameters (distance, speed, angle, target echo signal quality, etc.) to the sensing function network element, and the sensing function network element executes the transmission power adaptive method to obtain the transmission power adjustment information, and send the transmit power adjustment information to the transmitter device:
  • the sensing function network element detects the target, and the sensing function network element executes the transmission power adaptive method to obtain the transmission power adjustment information, and sends the transmission power adjustment information to the transmitting end device;
  • the transmit power adjustment information includes one of the following options:
  • the specific method for performing transmit power adaptation to obtain transmit power adjustment information may be one of the following options:
  • the target echo signal quality can be: target echo signal power, target echo signal-to-noise ratio (SNR), target echo signal-to-interference-noise ratio (SINR), reference signal received power (RSRP), reference signal received quality ( RSRQ);
  • SNR target echo signal-to-noise ratio
  • SINR target echo signal-to-interference-noise ratio
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the method for obtaining the echo signal power is the same as Example 1;
  • the method for obtaining the SNR is the same as that in Example 1.
  • the parameters of the target include: the real-time distance of the target, the real-time RCS of the target;
  • the real-time RCS of the target is calculated according to the real-time echo power of the target signal and the real-time distance of the target.
  • the receiving end device or the sensing function network element performs the above-mentioned transmission power adaptation process for each target, and obtains the transmission power first corresponding to each target at the next moment.
  • the candidate value or the ratio value to the transmit power at the current moment; or, the receiving end device, or the transmitting end device, or the sensing function network element synthesizes various target parameters to obtain a comprehensive transmit power adjustment information applicable to multiple targets.
  • the transmitter device uses the received transmit power adjustment information to calculate the first candidate value of transmit power, including the following methods:
  • the transmission power adjustment information is the transmission power value at the next moment, and the power value is the first candidate value of the transmission power
  • the transmit power adjustment information is the transmit power difference value at the next moment, and the sum of the transmit power value at the current moment and the transmit power adjustment information is the first candidate value of transmit power;
  • the transmit power adjustment information is the ratio of the transmit power at the next moment to the transmit power at the current moment, and the product of the transmit power value at the current moment and the transmit power adjustment information is the first candidate value of the transmit power.
  • the transmitter device determines the transmit power at the next moment in combination with the first candidate value of transmit power, the transmit power requirement of the communication function, and the specified maximum transmit power;
  • the signal transmission power should be greater than or equal to the first candidate value of the transmission power, and greater than or equal to the minimum transmission signal power required by the communication function; at the same time, the signal transmission power should be less than or equal to the maximum transmission function rate value.
  • the transmitter device or the sensing function network element combines the priority ranking information of the N targets with the first candidate for the transmission power of M (M ⁇ N) targets before the priority ranking
  • M M ⁇ N
  • the value or the ratio value to the transmit power at the current moment, the transmit power requirement of the communication function, and the maximum transmit power determine the transmit power at the next moment.
  • the transmitter device sets the transmit power at the next moment and executes the sensing process at the next moment, repeating steps 3 to 7 until the sensing process ends;
  • the method for ending the sensing process is the same as Example 1.
  • the first device adaptively adjusts the transmission power of the first signal according to the echo signal quality of the first target or the parameters of the first target, so as to save time as much as possible while meeting the perception requirements , energy and other resources, so as to optimize the performance of the integrated communication perception system and the use of power resources.
  • the method for determining transmission power provided in the embodiment of the present application may be executed by a device for determining transmission power.
  • the method for determining the transmission power performed by the device for determining the transmission power is taken as an example to illustrate the device for determining the transmission power provided in the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an apparatus 700 for determining transmit power provided in an embodiment of the present application. This apparatus is applied to the first device, including:
  • the first determination module 701 is configured to determine the target transmission power of the first signal according to the echo signal quality of the first target or the parameters of the first target; the target transmission power is used to indicate the transmission of the first signal at the second moment;
  • the first device detects the echo signal of the first signal sent at the first moment to obtain the echo signal quality of the first target or the parameter of the first target; or, the first device obtains the echo signal quality of the first target or the parameter of the first target;
  • the second device receives the echo signal quality of the first target or the parameters of the first target, and the echo signal of the first target obtained by the second device detecting the echo signal of the first signal sent at the first moment signal quality or a parameter of said first object;
  • the parameters of the first target include: at least one of the radar cross-sectional area RCS of the first target and distance information of the first target.
  • the apparatus further includes:
  • the first sending module is configured to send transmission power adjustment information to the transmitting end device according to the determined target transmission power of the first signal;
  • the transmission power adjustment information includes any of the following:
  • the apparatus further includes:
  • the second sending module is configured to send the first signal according to the target transmit power of the first signal.
  • the echo signal quality of the first target includes at least one of the following:
  • the echo signal-to-noise ratio of the first target is the echo signal-to-noise ratio of the first target
  • the echo signal to interference noise ratio of the first target is the echo signal to interference noise ratio of the first target
  • Reference signal received power of the echo signal of the first target
  • the reference signal receiving quality of the echo signal of the first target.
  • the first determination module includes:
  • the first determination submodule is configured to determine the target transmission power of the first signal according to the echo signal quality of the first target at the first moment;
  • the second determining submodule is configured to determine the target transmission power of the first signal according to the predicted distance value of the first target at the second time and the echo signal quality of the first target at the first time.
  • the first determining submodule includes:
  • the first determination unit is configured to, in the case of determining to maintain the echo signal quality of the first target near the first preset echo quality, according to the transmission power of the first signal sent at the first moment, the first target The echo signal quality at the first moment and the first preset echo quality, determine the target transmission power of the first signal;
  • the second determining unit is configured to, in the case of determining to maintain the echo signal quality of the first target within the first echo quality range, according to the transmission power of the first signal sent at the first moment, the second The echo signal quality of a target at the first moment and the first echo quality range determine the target transmit power of the first signal.
  • the first determining unit includes:
  • the first determination subunit is configured to determine the target transmit power of the first signal according to a first formula; the first formula is:
  • P t ' is the target transmit power of the first signal
  • P t is the transmit power of the first signal sent at the first moment
  • P r0 is the first preset echo quality
  • P r is the first target's Echo signal quality at one moment.
  • the second determining unit includes:
  • the second determination subunit is configured to determine the target transmission power of the first signal according to a second formula; the second formula is:
  • P t ' is the target transmit power of the first signal
  • P t is the transmit power of the first signal sent at the first moment
  • P r is the echo signal quality of the first target at the first moment
  • P is the upper limit echo quality of the first echo quality range
  • P is the lower limit echo quality of the first echo quality range
  • P is the arithmetic mean value or the geometric mean value of the upper limit echo quality and the lower limit echo quality of the first echo quality range.
  • the second determining submodule includes:
  • the third determining unit is configured to, in the case of determining to maintain the echo signal quality of the first target near the first preset echo quality, according to the transmission power of the first signal sent at the first moment, the first target The echo signal quality at the first moment, the first preset echo quality and the predicted distance value of the first target at the second moment determine the target transmission power of the first signal;
  • the fourth determining unit is configured to, in the case of determining to maintain the echo signal quality of the first target within the first echo quality range, according to the transmission power of the first signal sent at the first moment, the second The echo signal quality of a target at the first moment, the quality range of the first echo, and the predicted distance value of the first target at the second moment determine the target transmit power of the first signal.
  • the third determining unit includes:
  • a third determining subunit configured to determine the target transmit power of the first signal according to a third formula; the third formula includes:
  • P t ' is the target transmit power of the first signal
  • P t is the transmit power of the first signal sent at the first moment
  • P r0 is the first preset echo quality
  • P r is the first target's Echo signal quality at one moment
  • R is the distance between the first target and the signal transmitting and receiving equipment at the first moment in the monostatic radar scene
  • R' is the distance between the first target and the signal transmitting and receiving equipment at the second moment in the monostatic radar scene
  • R t is the distance between the first target and the transmitter device at the first moment in the bistatic radar scenario
  • R t ′ is the distance between the first target and the transmitter device at the second moment in the bistatic radar scenario
  • R r is the distance between the first target and the receiving end device at the first moment in the bistatic radar scenario
  • R r ′ is the distance between the first target and the receiving end device at the second moment in the bistatic radar scenario Distance predictions between devices.
  • the fourth determination unit includes:
  • a fourth determining subunit configured to determine the target transmission power of the first signal according to a fourth formula; the fourth formula includes:
  • P t ′ is the target transmit power of the first signal
  • P t is the transmit power of the first signal sent at the first moment
  • P r is the echo signal quality of the first target at the first moment
  • R is the monostatic radar scene
  • R′ is the predicted distance between the first target and the signal transmitting and receiving equipment at the second moment in the monostatic radar scenario
  • R t is the bistatic radar scenario
  • R t ′ is the predicted distance between the first target and the transmitter device at the second moment in the bistatic radar scene
  • R r is the bistatic radar The distance between the first target and the receiving end device at the first moment in the scene
  • R r ′ is the predicted distance between the first target and the receiving end device at the second moment in the bistatic radar scene
  • P is the upper limit echo quality of the first echo quality range
  • P is the lower limit echo quality of the first echo quality range
  • P is the arithmetic mean value or the geometric mean value of the upper limit echo quality and the lower limit echo quality of the first echo quality range.
  • the device also includes:
  • the second determining module is configured to determine the RCS of the first target according to the echo signal power of the first target and the first distance of the first target relative to the transceiver device;
  • it is used to determine the first target according to the echo signal power of the first target, the second distance between the first target and the transmitting end device, and the third distance between the first target and the receiving end device.
  • RCS of a target is used to determine the first target according to the echo signal power of the first target, the second distance between the first target and the transmitting end device, and the third distance between the first target and the receiving end device.
  • the device also includes:
  • a third determining module configured to determine the first preset echo quality or the first echo quality range according to a first condition; the first condition includes at least one of the following:
  • the required echo signal quality is limited by the interference level of the communication function in the synaesthesia integration application.
  • the first device adaptively adjusts the transmission power of the first signal according to the echo signal quality of the first target or the parameters of the first target, so as to save time as much as possible while meeting the perception requirements , energy and other resources, so as to optimize the performance of the integrated communication perception system and the use of power resources.
  • the device for determining the transmission power provided by the embodiment of the present application is a device capable of performing the above-mentioned method for determining the transmission power, and all the embodiments of the above-mentioned method for determining the transmission power are applicable to the device, and can achieve the same or similar beneficial effects.
  • FIG. 8 is a schematic structural diagram of an apparatus 800 for determining transmit power provided in an embodiment of the present application.
  • This apparatus is applied to a third device, and is characterized in that it includes:
  • the fourth determination module 801 is configured to determine the candidate value of the transmission power of the first signal according to the radar cross-sectional area RCS of the sensing target included in the sensing requirement and the maximum operating distance of the radar detection;
  • the fifth determination module 802 is configured to determine the initial transmission of the first signal according to the candidate value of the transmission power of the first signal, the transmission power requirement of the communication function in the application of telesensing integration and the maximum transmission power of the transmitting end device power.
  • the fifth determination module includes:
  • the fifth determination sub-module is used to compare the transmission power candidate value of the first signal with the transmission power requirement of the communication function in the integrated application of telepathy, and determine a larger value;
  • the sixth determining submodule is configured to determine that the initial transmission power of the first signal is the maximum transmission power when the determined larger value is greater than the maximum transmission power of the transmitting end device; or, when the determined If the larger value is smaller than the maximum transmit power of the transmitting end device, determine that the initial transmit power of the first signal is the larger value.
  • the apparatus further includes:
  • a third sending module configured to send to the transmitter device the initial transmit power for determining the first signal.
  • the apparatus further includes:
  • a fourth sending module configured to send the first signal according to the initial transmit power
  • the fifth sending module is configured to receive the initial transmission power determined by the sensing function network element or the receiving end device, and send the first signal according to the initial transmission power.
  • the third device adaptively adjusts the initial transmission power of the first signal according to the perception requirement in the search mode, so as to save time, energy and other resources as much as possible while meeting the perception requirement, so as to optimize the communication perception All-in-one system performance and power resource usage.
  • the device for determining the transmission power provided by the embodiment of the present application is a device capable of performing the above-mentioned method for determining the transmission power, and all the embodiments of the above-mentioned method for determining the transmission power are applicable to the device, and can achieve the same or similar beneficial effects.
  • the device for determining transmit power in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but is not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the device for determining the transmission power provided by the embodiment of the present application can realize various processes realized by the method embodiments in FIG. 1 to FIG. 6 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application also provides a communication device 900, including a processor 901 and a memory 902, and the memory 902 stores programs or instructions that can run on the processor 901, such as , when the communication device 900 is the first device, when the program or instruction is executed by the processor 901, each step of the method embodiment for determining the transmit power at the first device side can be realized, and the same technical effect can be achieved.
  • the communication device 900 is a third device, when the program or instruction is executed by the processor 901, each step of the above-mentioned embodiment of the method for determining the transmission power on the third device side is implemented, and the same technical effect can be achieved. In order to avoid repetition, I won't go into details here.
  • the embodiment of the present application also provides a communication device, including a processor and a communication interface, the processor is used to determine the target transmission of the first signal according to the echo signal quality of the first target or the parameters of the first target power; wherein, the second moment is after the first moment; the parameters of the first target include: at least one of the radar cross-sectional area RCS of the first target and the distance information of the first target; Alternatively, the processor determines the candidate transmit power value of the first signal according to the radar cross-sectional area RCS of the perceived target included in the perception requirement and the maximum range of radar detection; and according to the candidate transmit power value of the first signal, The initial transmission power of the first signal is determined by the transmission power requirement of the communication function in the application of the integration of communication and sensing and the maximum transmission power of the transmitting end device.
  • This communication device embodiment corresponds to the first device method embodiment or the third device method embodiment above, and the various implementation processes and implementation methods of the above method embodiments can be applied to this communication device embodiment, and can achieve the same technology Effect.
  • the embodiment of the present application also provides a communication device.
  • the communication device 1000 includes: an antenna 101 , a radio frequency device 102 , a baseband device 103 , a processor 104 and a memory 105 .
  • the antenna 101 is connected to the radio frequency device 102 .
  • the radio frequency device 102 receives information through the antenna 101, and sends the received information to the baseband device 103 for processing.
  • the baseband device 103 processes the information to be sent and sends it to the radio frequency device 102
  • the radio frequency device 102 processes the received information and sends it out through the antenna 101 .
  • the methods performed by the communication device in the above embodiments may be implemented in the baseband apparatus 103, where the baseband apparatus 103 includes a baseband processor.
  • the baseband device 103 may include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the communication device may also include a network interface 106, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 106 such as a common public radio interface (common public radio interface, CPRI).
  • the communication device 1000 in the embodiment of the present application further includes: instructions or programs stored in the memory 105 and operable on the processor 104, and the processor 104 calls the instructions or programs in the memory 105 to execute the instructions shown in FIG. 7 or 8.
  • the methods executed by each module are shown to achieve the same technical effect. In order to avoid repetition, the details are not repeated here.
  • the embodiment of the present application also provides a readable storage medium.
  • the readable storage medium stores a program or an instruction.
  • the program or instruction is executed by the processor, the various processes in the above embodiment of the method for determining the transmission power are implemented, and can To achieve the same technical effect, in order to avoid repetition, no more details are given here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method for determining the transmission power described above
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the method for determining the transmission power described above
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • An embodiment of the present application further provides a computer program product, the computer program product is stored in a storage medium, and the computer program product is executed by at least one processor to implement the processes in the above embodiments of the method for determining transmission power, And can achieve the same technical effect, in order to avoid repetition, no more details here.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请公开了一种发射功率的确定方法、装置及设备,属于通信感知一体化领域,本申请实施例的方法包括:第一设备根据第一目标的回波信号质量或第一目标的参数,确定第一信号的目标发射功率;目标发射功率用于指示第二时刻的第一信号发送;第一设备对第一时刻发送的第一信号的回波信号进行检测得到第一目标的回波信号质量或第一目标的参数;或者,第一设备从第二设备接收第一目标的回波信号质量或第一目标的参数,由第二设备对第一时刻发送的第一信号的回波信号进行检测得到的第一目标的回波信号质量或第一目标的参数;第二时刻在第一时刻之后;第一目标的参数包括:第一目标的RCS和第一目标的距离信息的至少一项。

Description

发射功率的确定方法、装置及设备
相关申请的交叉引用
本申请主张在2021年12月22日在中国提交的中国专利申请No.202111583321.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种发射功率的确定方法、装置及设备。
背景技术
未来无线通信***有望提供各种高精度的传感服务,如机器人导航的室内定位、智能家居的Wi-Fi传感和自动驾驶汽车的雷达传感。传感和通信***通常是单独设计的,并占用不同的频段。然后,由于毫米波和大规模多进多出(Multiple Input Multiple Output,MIMO)技术的广泛部署,未来无线通信***中的通信信号往往在时域和角度域都具有高分辨率,这使得利用通信信号实现高精度传感成为可能。因此,最好是联合设计传感和通信***,使它们能够共享同一频段和硬件,以提高频率效率并降低硬件成本。这促使了对通信和感知一体化(Integrated Sensing And Communication,ISAC)的研究。ISAC将成为未来无线通信***的一项关键技术,以支持许多重要的应用场景。例如,在未来的自动驾驶车辆网络中,自动驾驶车辆将从网络中获得大量的信息,包括超高分辨率的地图和接近实时的信息,以进行导航和避免即将到来的交通拥堵。在同样的情况下,自动驾驶车辆中的雷达传感器应该能够提供强大的、高分辨率的障碍物探测功能,分辨率在厘米量级。用于自动驾驶车辆的ISAC技术提供了使用相同硬件和频谱资源实现高数据率通信和高分辨率障碍物探测的可能。ISAC的其他应用包括基于Wi-Fi的室内定位和活动识别、无人驾驶飞机的通信和传感、扩展现实(Extended Reality,XR)、雷达和通信一体化等。每个应用都有不同的要求、限制和监管问题。
雷达探测,即利用目标的反射回波进行测距、测速、测角,可以作为通信感知一体化的重要用例之一,然而通信感知一体化场景下的雷达技术,由于约束条件和应用目标的差异,与传统的雷达技术有许多不同之处。
发明内容
本申请实施例提供一种发射功率的确定方法、装置及设备,能够优化通感一体化场景下的***性能和功率资源的使用。
第一方面,提供了一种发射功率的确定方法,包括:
第一设备根据第一目标的回波信号质量或第一目标的参数,确定第一信号的目标发射功率;所述目标发射功率用于指示第二时刻的第一信号发送;
其中,所述第一设备对第一时刻发送的所述第一信号的回波信号进行检测得到所述第一目标的回波信号质量或所述第一目标的参数;或者,第一设备从第二设备接收所述第一目标的回波信号质量或所述第一目标的参数,由第二设备对第一时刻发送的第一信号的回波信号进行检测得到的第一目标的回波信号质量或所述第一目标的参数;
其中,所述第二时刻在所述第一时刻之后;所述第一目标的参数包括:所述第一目标的雷达截面积RCS和所述第一目标的距离信息的至少一项。
第二方面,提供了一种发射功率的确定方法,包括:
第三设备根据感知需求中包括的感知目标的雷达截面积RCS以及雷达探测的最大作用距离,确定第一信号的发射功率候选值;
第三设备根据所述第一信号的发射功率候选值,通感一体化应用中通信功能的发射功率要求以及发射端设备的最大发射功率,确定所述第一信号的初始发射功率。
第三方面,提供了一种发射功率的确定装置,应用于第一设备,包括:
第一确定模块,用于根据第一目标的回波信号质量或第一目标的参数,确定第一信号的目标发射功率;所述目标发射功率用于指示第二时刻的第一信号发送;
其中,所述第一设备对第一时刻发送的所述第一信号的回波信号进行检测得到所述第一目标的回波信号质量或所述第一目标的参数;或者,第一设备从第二设备接收所述第一目标的回波信号质量或所述第一目标的参数,由第二设备对第一时刻发送的第一信号的回波信号进行检测得到的第一目标的回波信号质量或所述第一目标的参数;
其中,所述第二时刻在所述第一时刻之后;所述第一目标的参数包括:所述第一目标的雷达截面积RCS和所述第一目标的距离信息的至少一项。
第四方面,提供了一种发射功率的确定装置,应用于第三设备,包括:
第四确定模块,用于根据感知需求中包括的感知目标的雷达截面积RCS以及雷达探测的最大作用距离,确定第一信号的发射功率候选值;
第五确定模块,用于根据所述第一信号的发射功率候选值,通感一体化应用中通信功能的发射功率要求以及发射端设备的最大发射功率,确定所述第一信号的初始发射功率。
第五方面,提供了一种第一设备,该第一设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种第一设备,包括处理器及通信接口,所述处理器用于根据第一目标的回波信号质量或第一目标的参数,确定所述第一信号的目标发射功率;所述目标发射功率用于指示第二时刻的第一信号发送;其中,所述第一设备对第一时刻发送的所述第一信号的回波信号进行检测得到所述第一目标的回波信号质量或所述第一目标的参数;或者,第一设备从第二设备接收所述第一目标的回波信号质量或所述第一目标的参数,由第 二设备对第一时刻发送的第一信号的回波信号进行检测得到的第一目标的回波信号质量或所述第一目标的参数;所述第二时刻在所述第一时刻之后;所述第一目标的参数包括:所述第一目标的雷达截面积RCS和所述第一目标的距离信息的至少一项。
第七方面,提供了一种第三设备,该第三设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种第三设备,包括处理器及通信接口,其中,所述处理器用根据感知需求中包括的感知目标的雷达截面积RCS以及雷达探测的最大作用距离,确定第一信号的发射功率候选值;并根据所述第一信号的发射功率候选值,通感一体化应用中通信功能的发射功率要求以及发射端设备的最大发射功率,确定所述第一信号的初始发射功率。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
在本申请实施例中,第一设备根据第一目标的回波信号质量或第一目标的参数,自适应调节所述第一信号的发射功率,以在满足感知需求的同时尽可能实现节约时间、能量等资源,从而能够优化通信感知一体化***的性能和功率资源的使用。
附图说明
图1表示本申请实施例可应用的一种无线通信***的框图;
图2表示本申请实施例提供的发射功率的确定方法的步骤流程图之一;
图3表示本申请实施例提供的发射功率的确定方法中发射端设备、接收端设备以及感知功能网元的连接关系示例图一;
图4表示本申请实施例提供的发射功率的确定方法中发射端设备、接收端设备以及感知功能网元的连接关系示例图二;
图5表示本申请实施例提供的发射功率的确定方法中发射端设备、接收端设备以及感知功能网元的连接关系示例图三;
图6表示本申请实施例提供的发射功率的确定方法的步骤流程图之二;
图7表示本申请实施例提供的发射功率的确定装置的结构示意图之一;
图8表示本申请实施例提供的发射功率的确定装置的结构示意图之二;
图9表示本申请实施例提供的通信设备的结构示意图之一;
图10表示本申请实施例提供的通信设备的结构示意图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如第6代(6 th Generation,6G)通信***。
图1示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智 能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的发射功率的确定方法、装置及设备进行详细地说明。
在通感一体化无线感知应用中,雷达技术可以采用单站雷达模式,也可以采用双站雷达模式。
在单站雷达模式下,收发信号共用天线,接收信号与发射信号通过环形器进入不同的射频处理链路;在这种模式下,可以采用连续波信号波形实现无盲区的探测,前提是接收信号与发射信号需要很好的隔离,通常需要100dB左右的隔离度,以消除发射信号泄露对接收信号的淹没。由于单站雷达的接收机具有发射信号的全部信息,从而可以通过匹配滤波(脉冲压缩)的方式进行信号处理,获得较高的信号处理增益。
在双站雷达模式下,不存在收发信号的隔离问题,极大地简化的硬件的复杂度。由于雷达信号处理建立在已知信息的基础上,在通感一体化应用中,可以利用同步信号、参考信号等已知信息进行雷达信号处理。但是,由于同步信号、参考信号等的周期性,信号波形的模糊图不再是图钉形,而是钉板形,时延和多普勒的模糊程度会增大、且主瓣的增益相较单站雷达模式降低了许多,降低了距离和速度的测量范围。通过恰当的参数集设计,距离和速度的测量范围能够满足汽车、行人等常见目标的测量需求。此外,双站雷达的测量精度与收发站点相对目标的位置有关,需要选择合适的收发站点对来提高探测性能。
需要说明的是,本申请实施例提供的第一设备、第三设备分别可以是基站、发送接收节点(TRP)、终端设备(UE)、无线访问接入点(Access Point,AP)、可重构智能表面(Reconfigurable Intelligence Surface,RIS)等。
本申请实施例提供发射功率的确定方法也可以理解为发射功率的自适应方法,包括搜索模式下的发射功率自适应方法,以及,跟踪模式下的发射功率自适应方法。
其中,所述搜索模式是指,在雷达探测初始,在感知需求中的感知先验信息指定的范围内,通过遍历各个角度区间、和/或距离区间、和/或速度区间来发现目标的过程;一旦获得目标参数,则搜索模式结束。其中,所述目标参数包括以下项目中至少一项:方位角、俯仰角、距离、速度。
所述跟踪模式是指,雷达通过上述搜索模式发现目标并获得目标参数后,在所述目标参数处,或者,在包含所述目标参数的一定范围内,对目标进行持续探测,并以探测结果更新所述目标参数。
请参见图2,图2为本申请实施例提供的搜索模式下的发射功率的确定方法的步骤流程图之一,该发射功率的确定方法包括:
步骤201,第三设备根据感知需求中包括的感知目标的雷达截面积RCS以及雷达探测的最大作用距离,确定第一信号的发射功率候选值;
步骤202,第三设备根据所述第一信号的发射功率候选值,通感一体化应用中通信功能的发射功率要求以及发射端设备的最大发射功率,确定所述第一信号的初始发射功率。
本申请实施例中,在搜索模式下,设定第一信号的初始发射功率,以覆盖感知需求中对典型感知目标的最大作用距离。
例如,感知目标是车辆或行人或无人机等,结合感知信道测量与信道建模的结果设定感知目标的典型RCS值σ RCS。例如,行人的典型RCS是-3dBm 2,摩托车的典型RCS是0dBm 2,厢式货车的典型RCS是13dBm 2
再例如,感知需求中对感知目标的感知距离范围要求,设定雷达探测的最大作用距离R max
对于单站雷达,发射功率候选值P i与最大作用距离R max的4次方成正比、发射功率候选值P i与RCS值σ RCS成反比,即:
Figure PCTCN2022140336-appb-000001
对于双站雷达,发射功率候选值P i与目标相对于发射端距离R t和目标相对于接收端距离R r的乘积最大值的平方成正比、发射功率候选值P i与RCS值σ RCS成反比,即:
Figure PCTCN2022140336-appb-000002
可选地,上述发射功率候选值的设置可以采用连续设置的方式,即在预配置的功率区间内的任意一个值均可以设置为上述发射功率候选值;或者,上述发射功率候选值的设置可以采用步进设置的方式,即在预配置的功率区间内以一定的步进间隔设置对应的发射功率候选值。
在本申请的至少一个实施例中,步骤202包括:
第三设备将所述第一信号的发射功率候选值和通感一体化应用中通信功能的发射功率要求比较,确定较大值;
在确定的所述较大值大于发射端设备的最大发射功率的情况下,确定所述第一信号的初始发射功率为所述最大发射功率;或者,在确定的所述较大值小于发射端设备的最大发射功率的情况下,确定所述第一信号的初始发射功率为所述较大值。
换言之,所述初始发射功率的设定,还需要考虑通感一体化场景下通信功能的发射功率要求和发射端设备的最大发射功率。可选地,不同的发射端设备可以设置不同的最大发 射功率,在此不做具体限定。
需要说明的是,所述初始发射功率的设定,还需要考虑通感一体化场景下的信号传输存在大尺度和小尺度衰落;需在根据上述关系得到的所述初始发射功率的基础上留出一定的功率余量,比如3dB,实际功率余量需要根据信道建模的情况设定,在此不做具体限定。
可选地,上述第三设备为第一信号的发射端设备,或第一信号的接收端设备,或感知功能网元。其中,本申请实施例所提及的感知功能网元是指核心网和/或无线接入网中负责感知请求处理、感知资源调度、感知信息交互、感知数据处理等至少一项功能的网络节点,可以是基于现有5G网络中接入和移动性管理功能(Access and Mobility Management Function,AMF)或位置管理服务(Location Management Function,LMF)升级,也可以是其他已有的或新定义的网络节点。为了叙述的方便,在本申请中统一称为感知功能网元。
其中,针对双站雷达(或称为双基地雷达)的场景,发射端设备和接收端设备为不同的设备,则所述感知功能网元、发射端设备、接收端设备三者之间的连接关系以及对应的信息交互方法分为以下三种情况:
1)感知功能网元、发射端设备、接收端设备三者中任意两者之间具有通信直连,如图3所示;此时任意两者可直接进行信息交互;
2)感知功能网元与发射端设备和接收端设备之间均有通信直连、但发射端设备与接收端设备之间没有通信直连,如图4所示;此时感知功能网元与发射端设备或接收端设备可直接进行信息交互、发射端设备与接收端设备之间的信息交互需通过感知功能网元进行转发;
3)感知功能网元只与发射端设备或接收端设备设置两者之一有通信直连、且发射端设备与接收端设备之间有通信直连,如图5所示;此时与感知功能网元具有通信直连的设备可直接与感知功能网元进行信息交互、与感知功能网元没有通信直连的设备与感知功能网元进行交互需通过与感知功能网元由通信直连的设备进行转发。
而针对单站雷达(或称为单基地雷达)的场景,发射端设备和接收端设备为同一个设备,则所述感知功能网元和发射端设备(即接收端设备)两者之间的连接关系一般为通信直连,即两者之间可直接进行信息交互;或者,两者之间的连接关系为通过第三方设备进行连接,则两者可以通过上述第三方设备进行信息交互。
换言之,本申请实施例中,配置初始发射功率的设备可以是发射端设备,也可以是接收端设备,也可以是感知功能网元。
在第三设备为发射端设备的情况下,发射端设备根据所述初始发射功率,发送所述第一信号;
或者,在所述第三设备为接收端设备或感知功能网元的情况下,
接收端设备或感知功能网元向发射端设备发送确定所述第一信号的初始发射功率;
发射端设备根据感知功能网元或接收端设备确定的所述初始发射功率,发送所述第一信号。
可选的,如果发射设备发送第一信号后,接收端设备或感知功能网元指示搜索到第一目标,转入跟踪模式下的发射功率自适应方法。如果接收端设备或感知功能网元指示没有搜索到第一目标,则认为在感知需求中描述的范围内没有对应RCS的目标。
综上,本申请实施例中第三设备在搜索模式下根据感知需求自适应调节所述第一信号的初始发射功率,以在满足感知需求的同时尽可能实现节约时间、能量等资源,从而能够优化通信感知一体化***的性能和功率资源的使用。
请参见图6,图6为本申请实施例提供的跟踪模式下的发射功率的确定方法,该发射功率的确定方法包括:
步骤601,第一设备根据第一目标的回波信号质量或第一目标的参数,确定所述第一信号的目标发射功率;所述目标发射功率用于指示第二时刻的第一信号发送;
其中,所述第一设备对第一时刻发送的所述第一信号的回波信号进行检测得到所述第一目标的回波信号质量或所述第一目标的参数;或者,第一设备从第二设备接收所述第一目标的回波信号质量或所述第一目标的参数,由第二设备对第一时刻发送的第一信号的回波信号进行检测得到的第一目标的回波信号质量或所述第一目标的参数;
其中,所述第二时刻在所述第一时刻之后;所述第一目标的参数包括:所述第一目标的雷达截面积RCS和所述第一目标的距离信息的至少一项。
可选地,本申请实施例中,第一信号可以是第一设备发送,也可以是第二设备发送。例如,单站雷达场景下,第一设备发送第一信号,第一设备对第一时刻发送的所述第一信号的回波信号进行检测得到所述第一目标的回波信号质量或所述第一目标的参数;或者,单站雷达场景下,第一设备发送第一信号,第一设备对第一时刻发送的所述第一信号的回波信号进行检测得到回波数据,将回波数据发送给第二设备,由第二设备根据回波数据得到所述第一目标的回波信号质量或所述第一目标的参数。再例如,双站雷达场景下,第二设备发送第一信号,第一设备对第一时刻发送的所述第一信号的回波信号进行检测得到所述第一目标的回波信号质量或所述第一目标的参数;或者,双站雷达场景下,第二设备发送第一信号,第一设备对第一时刻发送的所述第一信号的回波信号进行检测得到回波数据,将回波数据发送给感知功能网元,由感知功能网元根据回波数据得到所述第一目标的回波信号质量或所述第一目标的参数。
可选地,检测出第一目标的设备可以是接收端设备,也可以是感知功能网元。例如,接收端设备获取到第一信号的回波数据,由接收端设备直接检测第一目标;或者,接收端设备获取到第一信号的回波数据后将回波数据传输至感知功能网元,由感知功能网元检测第一目标;或者,接收端设备获取到第一信号的回波数据后进行雷达信号处理的部分运算得到中间结果,并将中间结果发送至感知功能网元,由感知功能网元检测第一目标。
可选地,本申请实施例中确定第一信号的目标发射功率的设备可以为发射端设备,也可以为接收端设备,还可以为感知功能网元。
进一步可选地,检测出第一目标的设备和确定第一信号的目标发射功率的设备可以为 相同的设备,也可以为不同的设备,在此不做具体限定。
在确定第一信号的目标发射功率的设备为发射端设备的情况下,发射端设备根据所述第一信号的目标发射功率,发送第一信号;
在确定第一信号的目标发射功率的设备为接收端设备或感知功能网元的情况下,所述接收端设备或所述感知功能网元根据确定的所述第一信号的目标发射功率,向发射端设备发送发射功率调整信息,由发射端设备根据所述第一信号的目标发射功率,发送第一信号;其中,所述发射功率调整信息包括下述任意一项:
所述第一信号的目标发射功率;
所述第一信号的目标发射功率相对于第一时刻发送的第一信号的发射功率的差异值;
所述第一信号的目标发射功率与所述第一时刻发送的第一信号的发射功率的比例值。
在本申请的至少一个实施例中,所述第一目标的回波信号质量包括下述至少一项:
第一目标的回波信号功率;
第一目标的回波信号噪声比(Signal Noise Ratio,SNR);
第一目标的回波信号干扰噪声比(Signal-to-noise and interference ratio,SINR);
第一目标的回波信号的参考信号接收功率(Reference Signal Received Power,RSRP);
第一目标的回波信号的参考信号接收质量(Reference Signal Received Quality,RSRQ)。
可选地第一目标的回波信号功率包括以下至少一项:
第一信号是感知主导信号或通信感知一体化信号,则所述第一目标的回波信号功率为回波信号的全部功率;
第一信号为通信主导信号或感知增强的通信主导信号,例如5G NR信号、Wi-Fi信号,则所述第一目标的回波信号功率为回波信号中的前导码(preamble)、和/或同步信号、和/或参考信号的功率;所述参考信号可以是解调参考信号(Demodulation reference signals,DM-RS)、相位跟踪参考信号(Phase-tracking reference signal,PT-RS)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、定位参考信号(Positioning Reference Signals,P-RS)、信道探测用参考信号(Sounding Reference Signal,SRS)等。
在本申请的至少一个实施例中,步骤601中第一设备根据所述第一目标的回波信号质量,确定所述第一信号的目标发射功率,包括:
第一设备根据第一目标的第一时刻回波信号质量,确定所述第一信号的目标发射功率;
或者,
第一设备根据第二时刻时第一目标的距离预测值和所述第一目标的第一时刻回波信号质量,确定所述第一信号的目标发射功率。
在本申请的至少一个实施例中,根据第一目标的回波信号质量进行发射功率自适应调节的目标包括:
目标1,将所述第一目标的回波信号质量维持在第一预设回波质量附近。表述方式可以是P r0±ΔP r,其中P r0为所述预先设定的第一预设回波质量、ΔP r为允许的回波质量误 差。
或者,目标2,将所述第一目标的回波信号质量维持在第一回波质量范围之内。预先设定的第一回波质量范围的表述方式可以是[P rmin,P rmax],其中P rmin为所述第一回波质量范围的下限值、P rmax为所述预先设定回波信号功率范围的上限值。
可选的,所述方法还包括:
根据第一条件,确定所述第一预设回波质量或所述第一回波质量范围;所述第一条件包括下述至少一项:
感知需求中感知指标要求的回波信号质量;
通感一体化应用中通信功能的通信质量所要求的发射信号功率所对应的回波信号质量;
通感一体化应用中通信功能干扰水平限制所要求的回波信号质量。
例如,第一预设回波质量为预设回波信号功率值时,该预设回波信号功率值的确定方法包括:
a)满足感知需求中感知指标的要求的回波信号功率值,或者,满足感知需求中感知指标要求并留有一定余量的回波信号功率值,所述感知指标要求可以是:感知精度、检测概率/虚警概率;
b)满足通感一体化应用中通信功能的通信质量所要求的发射信号功率所对应的回波信号功率值,和,干扰水平限制所要求的回波信号功率值。
再例如,第一回波质量范围为回波信号功率范围的情况下,该回波信号功率范围的下限值确定方法包括:
a)满足感知需求中感知指标要求的最低回波信号接收功率,所述感知指标要求可以是:感知精度、检测概率/虚警概率;
b)满足通感一体化应用中通信功能波束失败的临界发射信号功率值所对应的回波信号功率值。
该回波信号功率范围的上限值确定方法包括:
a)感知指标达到一定水平对应的回波信号功率,所述感知指标要求可以是:感知精度、检测概率/虚警概率;
b)满足通感一体化应用中通信功能干扰水平限制所要求的回波信号功率值。
在本申请的至少一个实施例中,第一设备根据第一目标的第一时刻回波信号质量,确定所述第一信号的目标发射功率,包括:
在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量以及所述第一预设回波质量,确定所述第一信号的目标发射功率;
或者,
在确定将所述第一目标的回波信号质量维持在第一回波质量范围之内的情况下,根据 所述第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量以及第一回波质量范围,确定所述第一信号的目标发射功率。
其中,根据第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量以及所述第一预设回波质量,确定所述第一信号的目标发射功率,包括:
根据第一公式,确定所述第一信号的目标发射功率;所述第一公式为:
Figure PCTCN2022140336-appb-000003
其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r0为所述第一预设回波质量;P r为第一目标的第一时刻回波信号质量。
其中,根据所述第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量以及第一回波质量范围,确定所述第一信号的目标发射功率,包括:
根据第二公式,确定所述第一信号的目标发射功率;所述第二公式为:
Figure PCTCN2022140336-appb-000004
其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r为第一目标的第一时刻回波信号质量;
在所述第一目标的第一时刻回波信号质量大于所述第一回波质量范围的上限回波质量的情况下,P为所述第一回波质量范围的上限回波质量;则第二公式为
Figure PCTCN2022140336-appb-000005
P rmax为所述第一回波质量范围的上限回波质量。
或者,在所述第一目标的第一时刻回波信号质量小于所述第一回波质量范围的下限回波质量的情况下,P为所述第一回波质量范围的下限回波质量;则第二公式为
Figure PCTCN2022140336-appb-000006
P rmin为所述第一回波质量范围的下限回波质量。
或者,在任何情况下,P为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值,则第二公式为
Figure PCTCN2022140336-appb-000007
P rmid为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值。其中,算术平均值为理解为(P rmax+P rmin)2;几何平均值可以理解为
Figure PCTCN2022140336-appb-000008
在本申请的至少一个实施例中,第一设备根据第二时刻时第一目标的距离预测值和所述第一目标的第一时刻回波信号质量,确定所述第一信号的目标发射功率,包括:
在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量、所述第一预设回波质量以及第二时刻时第一目标的距离预测值,确定所述第一信号的目标发射功率;
或者,
在确定将所述第一目标的回波信号质量维持在第一回波质量范围之内的情况下,根据所述第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量、第一回波 质量范围以及第二时刻时第一目标的距离预测值,确定所述第一信号的目标发射功率。
可选地,对第二时刻的第一目标的距离进行预测建立在维持第一目标运动轨迹、通过预测第一目标在第二时刻的位置来得到第二时刻的距离预测值。
所述预测方法的前提假设是:在对第一目标进行跟踪时,由于通感一体化应用的典型目标(例如:车辆、行人等)的运动速度相对于感知的更新速率来说是低速目标,相邻两次雷达探测的目标状态变化较小。这里的目标状态变化较小主要是指目标RCS的变化较小,可以认为相邻两次或连续若干次的雷达探测中目标RCS几乎保持不变。满足这一情况有以下两个条件:一是目标的机动较小,即加速度较小,目标的位置和速度变化不大,可以采用卡尔曼滤波等线性滤波算法;二是感知信道特性(大尺度和小尺度衰落特性)变化不大,尤其是小尺度衰落特性变化不大。所述预测方法是设备实现内容,这里不做限制。
其中,根据第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量、所述第一预设回波质量以及第二时刻时第一目标的距离预测值,确定所述第一信号的目标发射功率,包括:
根据第三公式,确定所述第一信号的目标发射功率;所述第三公式包括:
Figure PCTCN2022140336-appb-000009
(单站雷达),或,
Figure PCTCN2022140336-appb-000010
(双站雷达)
其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r0为所述第一预设回波质量;P r为第一目标的第一时刻回波信号质量;R为单站雷达场景下第一时刻时第一目标与信号收发设备之间的距离;R′为单站雷达场景下第二时刻时第一目标与信号收发设备之间的距离预测值;R t为双站雷达场景下第一时刻时第一目标与发射端设备之间的距离;R t′为双站雷达场景下第二时刻时第一目标与发射端设备之间的距离预测值;R r为双站雷达场景下第一时刻时第一目标与接收端设备之间的距离;R r′为双站雷达场景下第二时刻时第一目标与接收端设备之间的距离预测值。
其中,根据所述第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量、第一回波质量范围以及第二时刻时第一目标的距离预测值,确定所述第一信号的目标发射功率,包括:
根据第四公式,确定所述第一信号的目标发射功率;所述第四公式包括:
Figure PCTCN2022140336-appb-000011
或,
Figure PCTCN2022140336-appb-000012
其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r为第一目标的第一时刻回波信号质量;R为单站雷达场景下第一时刻时第一目标与信号收发设备之间的距离;R′为单站雷达场景下第二时刻时第一目标与信号收发设备之间的距离预测值;R t为双站雷达场景下第一时刻时第一目标与发射端设备之间的距离;R t′为双站雷达场景下第二时刻时第一目标与发射端设备之间的距离预测值;R r为双站雷达场景下第 一时刻时第一目标与接收端设备之间的距离;R r′为双站雷达场景下第二时刻时第一目标与接收端设备之间的距离预测值;
在所述第一目标的第一时刻回波信号质量大于所述第一回波质量范围的上限回波质量的情况下,P为所述第一回波质量范围的上限回波质量;则第四公式为
Figure PCTCN2022140336-appb-000013
Figure PCTCN2022140336-appb-000014
P rmax为所述第一回波质量范围的上限回波质量。
或者,在所述第一目标的第一时刻回波信号质量小于所述第一回波质量范围的下限回波质量的情况下,P为所述第一回波质量范围的下限回波质量;则第四公式为
Figure PCTCN2022140336-appb-000015
Figure PCTCN2022140336-appb-000016
P rmin为所述第一回波质量范围的下限回波质量。
或者,在任何情况下,P为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值;则第四公式为
Figure PCTCN2022140336-appb-000017
Figure PCTCN2022140336-appb-000018
P rmid为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值。其中,算术平均值为理解为(P rmax+P rmin)2;几何平均值可以理解为
Figure PCTCN2022140336-appb-000019
在本申请的至少一个实施例中,步骤601中根据所述第一目标的参数,确定所述第一信号的目标发射功率之前,所述方法还包括:
根据所述第一目标的回波信号功率以及所述第一目标相对于收发设备的第一距离,确定所述第一目标的RCS;
或者,
根据所述第一目标的回波信号功率、所述第一目标相对于发射端设备的第二距离以及所述第一目标相对于接收端设备的第三距离,确定所述第一目标的RCS。
本申请实施例中,第一目标的RCS具体为第一目标的实时RCS;所述第一目标的实时RCS是根据目标信号实时回波功率和目标实时距离推算得到的;在通感一体化应用场景中,所述第一目标的实时RCS随第一目标与雷达的相对位置的变化而变化。同一目标在不同角度进行探测时,RCS具有一定的变化范围。例如,面包车在不同角度进行探测时,其RCS的范围大致为-5dBm2~25dBm2(载波频率26GHz);行人在不同角度进行探测时,其RCS的范围大致为-10dBm2~0dBm2(载波频率26GHz)。雷达截获第一目标后,可以由第一目标的回波信号功率和第一目标相对雷达的距离,推算出第一目标在当前观测下的实际RCS值。
例如,单站雷达场景下,根据回波信号功率和感知目标距离R推算出目标的实时RCS;再例如,双站雷达场景下,根据回波信号功率、目标相对发射机距离和目标相对接收机距离推算出目标的实时RCS。
需要说明的是,当回波信号包含多个目标的反射回波时,通过时延域和角度域滤波分辨出当前跟踪目标对应的回波信号分量,并以此计算当前跟踪目标的回波信号功率,从而推算出当前目标的RCS。
相应的,步骤601中根据所述第一目标的参数,确定所述第一信号的目标发射功率包括:
单站雷达场景下,所述第一信号的目标发射功率与所述第一距离的4次方成正比,所述第一信号的目标发射功率与第一目标的RCS成反比;
或者,
双站雷达场景下,所述第一信号的第二时刻的发射功率与所述第二距离和第三距离的乘积的平方成正比,所述第一信号的目标发射功率与第一目标的RCS成反比。
可选地,若根据第一目标的参数设置第二时刻发射功率,则第二时刻发射功率的设定,还需要考虑通感一体化场景下通信功能的发射功率要求和发射端设备的最大发射功率。可选地,不同的发射端设备可以设置不同的最大发射功率,在此不做具体限定。
可选地,若根据第一目标的参数设置第二时刻发射功率,则第二时刻发射功率的设定,还需要考虑通感一体化场景下的信号传输存在大尺度和小尺度衰落;需在根据上述关系得到的所述第二时刻发射功率的基础上留出一定的功率余量,比如3dB,实际功率余量需要根据信道建模的情况设定,在此不做具体限定。
需要说明的是,本申请实施例中提及的发射端设备和接收端设备在单站雷达场景下为一个设备,在双站雷达场景下为不同的设备。
进一步需要说明的是,本申请实施例中提及的第一时刻、第二时刻可以理解为至少一个第一感知帧、至少一个第二感知帧,信号的发射、接收和信号处理均是以感知帧为时间单位的;也就是说在同一个感知帧内信号的发射功率不变,本申请实施例提供的发射功率的自适应调节方法调节的是下一感知帧内的发射信号的发射功率。
综上,在本申请实施例中,在根据第一信号的回波数据检测出第一目标的情况下,第一设备根据第一目标的回波信号质量或所述第一目标的参数,自适应调节所述第一信号的发射功率,以在满足感知需求的同时尽可能实现节约时间、能量等资源,从而能够优化通信感知一体化***的性能和功率资源的使用。
为了更清楚的描述本申请实施例提供的发射功率的确定方法,下面结合两个示例进行说明。
示例一,单站雷达功率自适应
1.感知的初始时刻,发射端设备根据感知需求中的感知目标参数、感知指标要求和感知先验信息,结合发射端设备的能力信息,设置感知信号配置参数;
所述感知目标参数包括以下至少一项:
距离/时延;
速度/多普勒;
角度。
所述感知指标包括以下至少一项:
测距/测角/测速分辨率;
测距/测角/测速精度;
测距/测角/测速范围;
感知目标RCS要求;
感知目标机动特性(加速度);
感知数据率(单位时间内感知目标参数的更新速率,单位:Hz);
检测概率/虚警概率;
所述感知先验信息的作用是缩小感知的时间/空间工作范围,包括以下至少一项:
感知目标参数相同、感知指标不同:先验信息的感知指标相比感知需求中的感知指标较差;例如,感知目标参数是距离,感知指标要求中的测距精度要求在cm量级,而感知先验信息中的距离精度在m量级;
感知目标参数不同:感知先验信息中给出了信息不是感知目标参数对应的信息;例如,感知目标参数是距离,感知先验信息给出的是目标角度。
所述感知信号配置参数包括以下至少一项:
信号频率、工作带宽;如果所述第一信号是正交频分复用(Orthogonal frequency division multiplex,OFDM)信号,则还包括OFDM信号子载波间隔、感知信号在频域上间隔资源元素(Resource Element,RE)数、感知信号在时域上间隔的OFDM符号数;
发射/接收波束宽度、波束指向、波束扫描范围;
感知帧(也可以称为感知burst)持续时间;
脉冲信号的占空比和脉冲周期;
发射功率;
所述根据感知指标要求设置感知信号配置参数过程,包括以下至少一项:
根据测距分辨率要求设置工作带宽;
根据测角分辨率要求设置发射波束宽度与接收波束宽度;
根据测速分辨率要求设置感知脉冲(burst)持续时间;
根据测距范围要求设置OFDM信号在时域上间隔的OFDM符号数,或者,脉冲信号的占空比和脉冲周期;
根据测距范围、目标RCS、测距/测角/测速精度要求设置发射功率和发射/接收波束增益;
根据测角范围要求设置波束扫描范围;
根据测速范围要求设置OFDM信号的子载波间隔、频域上间隔RE数,或者,脉冲信号的脉冲周期。
2.发射端设备或感知功能网元根据感知需求中的感知精度要求和感知目标的典型 RCS,结合感知分辨率,设置初始发射功率第一候选值。然后,
发射端设备根据通信感知一体化中的通信功能的发射功率要求,以及相关规定的最大发射功率要求,结合所述初始发射功率第一候选值,设定最终的初始信号发射功率。
具体地,初始信号发射功率应大于或等于初始发射功率第一候选值,并且大于或等于通信功能要求的最低发射信号功率;同时,初始信号发射功率应小于或等于最大发射功能率值。
3.发射端设备根据感知信号配置参数和发射功率生成并发射第一信号、并接收第一信号的目标反射回波信号,得到目标回波数据;进行回波信号处理;得到回波信号测量量;如果感知信号配置参数、发射功率由感知功能网元设置,则在发射端设备生成第一信号之前,还有发射端设备接收感知信号配置参数、发射功率。
所述第一信号可以是下述任一种:
通信主导信号:如NR信号、LTE信号、Wi-Fi信号等;
感知主导信号:如雷达信号,包括:正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)雷达信号(包括相位编码OFDM雷达信号)、线性调频(Linear Frequency Modulation,LFM)信号、简单脉冲串信号、相位编码雷达信号等;
感知增强的通信主导信号:例如为感知功能重新设计参考信号时频域密度的NR信号;
通信感知一体化信号:指专为通感一体化场景新设计的信号波形,可能包括:基于NR信号进行参考信号适用性设计的信号波形、多符号OFDM脉冲信号波形等。
所述第一信号的波形可以是连续波波形,也可以脉冲波形。
4.发射端设备得到目标回波数据后,目标回波数据的雷达信号处理包括以下三种情况之一:
1)发射端设备对目标回波数据进行雷达信号处理得到测量量;
2)发射端设备将目标回波数据发送至感知功能网元,由感知功能网元进行雷达信号处理得到测量量;
3)发射端设备进行雷达信号处理的部分运算得到低级测量量,并将低级测量量发送至感知功能网元,由感知功能网元进行雷达信号处理的剩余部分运算得到高级测量量。
所述雷达信号处理包括以下选项中的至少一项:
a)匹配滤波(脉冲压缩)处理,包括:
①将已知的发射信号序列分段生成匹配滤波器,对目标反射回波信号分段进行匹配滤波处理;
②将已知的发射信号对目标反射回波信号进行滑动滑窗相关处理。
b)一维快速傅里叶变换(Fast Fourier Transform,FFT)处理:如果感知需求只要求感知目标的距离或者速度信息,则只需进行一维FFT处理;包括:
①快时间维一维FFT处理提取目标距离信息;
②慢时间维一维FFT处理提取目标速度信息;
c)二维FFT处理:如果感知需求要求感知目标的距离和速度信息,则需进行二维FFT处理,即快时间维FFT和慢时间维FFT;
d)三维FFT处理:如果感知需求要求感知目标的距离、速度和角度信息,则需进行三维FFT处理,即快时间维FFT、慢时间维FFT和角度维FFT;
e)角度滤波处理,提高角度感知精度;
所述测量量和测量量的等级划分包括以下内容中的一项多多项:
a)一级测量量:是指感知节点的接收机经过天线耦合、放大、下变频、滤波、自动增益控制(Automatic Gain Control,AGC)、模拟/数字(Analog to Digital,A/D)采样、数字下变频、数字滤波等过程后直接能够得到的测量量,包括:复数信号(包括I路和Q路)、信号幅度、信号相位、信号功率、极化信息等,以及上述测量量的门限检测结果、最大/最小值提取结果等;
b)二级测量量:是指一级测量量经过简单运算(包括:加减乘除、矩阵加减乘、矩阵转置、三角关系运算、平方根运算、幂次运算等,以及上述运算结果的门限检测结果、最大/最小值提取结果等)后能够得到的测量量,包括:幅度比值、相位差值,接收信号到达角(Angle-of-Arrival,AOA)、发射信号离去角(Angel of Departure,AOD)、时延(距离)信息,距离差、角度差等;
c)三级测量量:指一级测量量和/或二级测量量经过复杂运算(包括:FFT/逆快速傅里叶变换(Inverse Fast Fourier Transform,IFFT)、离散傅里叶变换(Discrete Fourier Transform,DFT)/逆离散傅里叶变换(Inverse Discrete Fourier Transform,IDFT)、二维FFT(two-dimensional FFT,2D-FFT)、三维FFT(three-dimensional FFT,3D-FFT)、匹配滤波、自相关运算、小波变换、数字滤波等,以及上述运算结果的门限检测结果、最大/最小值提取结果等)后能够得到的测量量,包括:复数信号(或信号幅度、或信号相位)经过FFT(或IFFT)的运算结果或其最大值数据点、功率谱或其最大值数据点,多普勒频移(速度)、多普勒扩展,速度差,时延多普勒二维图或其最大值数据点、雷达一维成像图或其最大值数据点、雷达二维成像图或其最大值数据点、合成孔径雷达(Synthetic Aperture Radar,SAR)成像图或其最大值数据点等。
所述测量量具有如下特征中的至少一项:
a)在不同的感知用例中,根据感知目标参数的不同,一级测量量、二级测量量、三级测量量均可能是最终的感知结果,也可能均不是最终的感知结果、需要进一步处理得到最终的感知结果
b)在不同的感知用例中,根据感知目标参数和感知方法的不同,可能只需要一级测量量(例如,基于简易信息聚合(Really Simple Syndication,RSS)的人/车流量监测),或者只需要一级测量量和二级测量量(例如,雷达测距),或者同时需要一级测量量、二级测量量和三级测量量(例如,雷达成像)。
c)在不同的感知场景中,根据执行感知过程的感知节点、感知功能网元、核心网、 应用服务器等设备的运算能力,以及对感知指标的要求,各级测量量量可以在同一设备中运算得到,也可以在感知节点、感知功能网元、核心网、应用服务器中的不同设备中运算得到;例如:
①如果执行感知过程的感知节点的运算能力较强(如基站),且感知测量量的数据量较大(传输时间开销较大),且感知需求对感知时延的要求较高,则可以在感知节点完成二级测量量和/或三级测量量的运算,将运算结果发送给感知功能网元、核心网、应用服务器;
②如果执行感知过程的感知节点的运算能力较弱(如物联网终端),且感知测量量的数据量较大(传输时间开销较大),且感知需求对感知时延的要求不高但对感知精度的要求较高,则可以在感知节点完成一级测量量的运算,将运算结果发送给感知功能网元、核心网、应用服务器,由感知功能网元、核心网、应用服务器进行二级测量量和/或三级测量量的运算;
③如果感知测量量的数据量较小(传输时间开销较小),则可在核心网或应用服务器的调度下,可在感知节点或感知功能网元或核心网或应用服务器完成任何一级测量量的运算。
5.如果发射端设备或感知功能网元在所述雷达信号处理中检测出目标,则进入跟踪模式下的发射功率自适应方法得到下一时刻的发射功率第一候选值,方法可以是:
1)根据目标的回波信号质量进行发射功率的自适应调节,所述目标的回波信号质量可以是:目标的回波信号功率、目标的回波信号噪声比(SNR)、目标的回波信号干扰噪声比(SINR)、参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)。
其中,所述回波的信号功率的获取方法,可以是:
基于回波信号快时间维FFT处理得到的时延一维图进行恒虚警检测(Constant False Alarm Rate Detector,CFAR),以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度;
基于回波信号慢时间维FFT处理得到的多普勒一维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度;
基于回波信号2D-FFT处理得到的时延-多普勒二维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度;
基于回波信号3D-FFT处理得到的时延-多普勒-角度三维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度;
目标信号幅度的确定方法除以上的以CFAR过门限的幅度最大样值点为目标样值点以外,还可以是,以CFAR过门限的幅度最大样值点及其最邻近的若干个过门限样值点的均值作为目标信号幅度。
所述SNR/SINR的获取方法可以是:
基于回波信号快时间维FFT处理得到的时延一维图进行恒虚警检测(CFAR),以CFAR 过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以一维图中距离目标样值点位置±ε个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均干扰/幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
基于回波信号慢时间维FFT处理得到的多普勒一维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以一维图中距离目标样值点位置±η个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
基于回波信号2D-FFT处理得到的时延-多普勒二维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以二维图中距离目标样值点±ε(快时间维)和±η(慢时间维)个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR;
基于回波信号3D-FFT处理得到的时延-多普勒-角度三维图进行CFAR,以CFAR过门限的幅度最大样值点为目标样值点、以其幅度为目标信号幅度,以三维图中距离目标样值点±ε(快时间维)、±η(慢时间维)和±δ(角度维)个样值点以外的所有样值点为干扰/噪声样值点、并统计其平均幅度为干扰/噪声信号幅度,最后以目标信号幅度和干扰/噪声信号幅度计算SNR/SINR。
目标信号幅度的确定方法除以上的以CFAR过门限的幅度最大样值点为目标样值点以外,还可以是,以CFAR过门限的幅度最大样值点及其最邻近的若干个过门限样值点的均值作为目标信号幅度;
干扰/噪声样值点的确定方法还可以是根据上述确定的干扰/噪声样值点进一步筛选,筛选方法是:对于时延一维图,去除时延为0附近的若干个样值点,以剩下的干扰/噪声样值点作为噪声样值点;对于多普勒一维图,去除多普勒为0附近的若干个样值点,以剩下的干扰/噪声样值点为干扰/噪声样值点;对于时延-多普勒二维图,去除以时延为0附近若干个点、全部多普勒范围构成的条状范围的干扰/噪声样值点,以剩下的噪声样值点作为干扰/噪声样值点;对于时延-多普勒-角度三维图,去除以时间维0附近若干个点、全部多普勒范围和全部角度范围构成的切片状范围的干扰/噪声样值点,以剩下的干扰/噪声样值点作为干扰/噪声样值点。
2)根据目标的参数进行发射功率自适应调节;
所述目标的参数包括:目标的实时距离、目标的实时RCS;
所述目标的实时RCS是根据目标信号实时回波功率和目标实时距离推算得到的;
所述推算目标RCS的计算过程可以由发射端设备完成;也可以是,发射端设备将感知测量量上报至感知功能网元,由感知功能网元执行所述计算过程。
可选地,如果雷达同时跟踪多个目标,则发射端设备或感知功能网元针对每个目标执行上述的发射功率自适应过程,并分别得到对应每个目标的下一时刻的发射功率第一候选 值;或者,发射端设备或感知功能网元综合各目标参数,得到一个适用于多个目标的综合的下一时刻的发射功率第一候选值。
6.发射端设备或感知功能网元结合所述发射功率第一候选值、通信功能的发射功率要求、规定的最大发射功率确定下一时刻的发射功率;
具体地,发射功率应大于或等于发射功率第一候选值,并且大于或等于通信功能要求的最低发射信号功率;同时,信号发射功率应小于或等于最大发射功能率值。
7.在跟踪模式下,发射端设备或感知功能网元设置下一时刻的发射功率并执行下一时刻的感知过程,重复执行步骤3~步骤6,直至感知过程结束;
所述感知过程结束方法包括:
a)感知定时结束:感知时间长度达到感知需求中的感知时长要求,感知过程结束;
b)感知指标达标:感知需求中的特定感知指标达到要求,感知过程结束;例如,雷达成像场景下,以感知需求中的成像分辨率要求完成对感知需求中的成像范围的雷达成像操作;
c)波束失败:因目标被遮挡或目标运动处感知需求中的感知范围,感知回波信号功率或感知回波信号SNR无法达到感知需求中的相关要求,感知过程结束;
d)目标丢失:因目标运动特性(例如频繁加速减速,或频繁转弯)等原因,雷达无法建立对目标的稳定跟踪,雷达丢失对目标的跟踪,感知过程结束。
示例二,双站雷达功率自适应
1.感知的初始时刻,根据感知需求中的感知目标参数、感知指标要求和感知先验信息,结合发射端设备和接收端设备的能力信息,设置感知信号配置参数;包括以下选项:
1)感知功能网元根据感知需求中的感知目标参数、感知指标要求和感知先验信息,结合获取的发射端设备和接收端设备的能力信息,设置感知信号配置参数,并发送给发射端设备和接收端设备;
2)发射端设备和接收端设备根据感知需求中的感知目标参数、感知指标要求和感知先验信息,结合各自的能力信息,设置感知信号配置参数中与各自相关的部分;
3)发射端设备和接收端设备两者之一根据感知需求中的感知目标参数、感知指标要求和感知先验信息,结合自身能力信息和获取的对方设备能力信息,设置感知信号配置参数,并发送给对方设备。
在发射端设备或接收端设备设置包含与对方设备相关的感知信号配置之前,发射端设备或接收端设备需与对方设备进行信息交互,获得对方设备的能力配置信息。
感知功能网元获取发射端设备和接收端设备的能力信息包括以下两种方式:
1)感知功能网元,或感知功能网元可访问的其他网络节点,预先存储有发射端设备和接收端设备的能力信息;
2)感知功能网元与发射端设备和接收端设备进行信息交互,发射端设备和接收端设备向感知功能网元上报自身的能力信息。
所述发射端设备和接收端设备的能力信息包括:发射端设备和接收端设备的硬件配置、软件配置、当前的软硬件资源占用情况、以及当前占用发射端设备和接收端设备软硬件资源的业务类型和业务优先级信息。
所述感知目标参数同示例一;
所述感知指标同示例一;
所述感知先验信息同示例一;
所述感知信号配置参数同示例一:
所述根据感知指标要求设置感知信号配置参数过程同示例一。
2.感知功能网元、或发射端设备、或接收端设备,根据感知需求中的感知精度要求和感知目标的典型RCS,结合感知分辨率,设置初始发射功率第一候选值。
然后,第一根据通信感知一体化中的通信功能的发射功率要求,以及相关规定的最大发射功率要求,结合所述初始发射功率第一候选值,设定最终的初始信号发射功率。
具体地,初始信号发射功率应大于或等于初始发射功率第一候选值,并且大于或等于通信功能要求的最低发射信号功率;同时,初始信号发射功率应小于或等于规定的最大发射功能率值。
本步骤设置初始发射功率第一候选值的主体应与第1步中设置感知信号配置参数的主体相同,即:
1)如果第1步中由感知功能网元设置感知信号配置参数,则本步骤仍然由感知功能网元设置初始发射功率第一候选值,并发送给发射端设备;
2)如果第1步中由发射端设备设置感知信号配置参数,则本步骤仍然由发射端设备设置初始发射功率第一候选值;
3)如果第1步中由接收端设备设置感知信号配置参数,则本步骤仍然由接收端设备设置初始发射功率第一候选值,并发送给发射端设备;
4)如果第1步中由发射端设备和接收端设备共同设置感知信号配置,则本步骤可由发射端设备设置初始发射功率第一候选值。
特别地,对于发射端设备和接收端设备之间有通信直连的情况,可通过发射端设备和接收端设备之间通信信号估算出感知信道单位长度的路径损耗,并应用该路径损耗、感知精度要求、典型目标RCS和作用距离,设置初始发射功率第一候选值。
3.发射端设备根据感知信号配置参数中与发射端设备相关的信息、初始发射功率生成并发射第一信号,
接收端设备根据感知信号配置参数中与接收端设备相关的信息配置接收波束并接收第一信号的目标反射回波信号,得到目标回波数据;
所述第一信号同示例一。
4.接收端设备得到目标回波数据后,雷达信号处理包括以下三种情况之一:
1)接收端设备对目标回波数据进行雷达信号处理得到测量量;
2)接收端设备将目标回波数据发送至感知功能网元,由感知功能网元进行雷达信号处理得到测量量;
3)接收端设备进行雷达信号处理的部分运算得到低级测量量,并将低级测量量发送至感知功能网元,由感知功能网元进行雷达信号处理的剩余部分运算得到高级测量量。
所述接收端设备将目标回波数据或低级测量量发送至感知功能网元的方法同步骤1中方法。
所述雷达信号处理同示例一;
所述测量量和测量量的等级划分同示例一;
所述测量量分级同示例一;
5.接收端设备或感知功能网元在所述雷达信号处理中检测出目标,则进入跟踪模式的发射功率自适应方法,方法包含以下至少一项:
1)接收端设备检测出目标,接收端设备执行链路自适应方法得到发射功率调整信息,并将发射功率调整信息发送至发射端设备;
2)接收端设备检测出目标,接收端设备将目标参数(距离、速度、角度、目标回波信号质量等)发送至发射端设备,发射端设备执行发射功率自适应方法得到发射功率调整信息;
3)接收端设备检测出目标,接收端设备将目标参数(距离、速度、角度、目标回波信号质量等)发送至感知功能网元,感知功能网元执行发射功率自适应方法得到发射功率调整信息,并将发射功率调整信息发送至发射端设备:
4)感知功能网元检测出目标、感知功能网元执行发射功率自适应方法得到发射功率调整信息,并将发射功率调整信息发送至发射端设备;
接收端设备向感知功能网元发送目标参数的方法同第1步中方法。所述发射功率调整信息包括以下选项之一:
1)下一时刻的发射功率值;
2)下一时刻发射功率值相对当前时刻发射功率值的比值;
3)下一时刻发射功率值相对当前时刻发射功率值的差异值。
执行发射功率自适应得到发射功率调整信息的具体方法可以是以下选项之一:
1)根据目标回波信号质量进行发射功率自适应调节;
所述目标回波信号质量可以是:目标回波信号功率、目标回波信号噪声比(SNR)、目标回波信号干扰噪声比(SINR)、参考信号接收功率(RSRP)、参考信号接收质量(RSRQ);
所述回波信号功率的获取方法同示例一;
所述SNR的获取方法同示例一。
2)根据目标的参数进行发射功率自适应调节;
所述目标的参数包括:目标的实时距离、目标的实时RCS;
所述目标的实时RCS是根据目标信号实时回波功率和目标实时距离推算得到的。
可选地,如果雷达同时跟踪多个目标,则接收端设备或感知功能网元针对每个目标执行上述的发射功率自适应过程,并分别得到对应每个目标的下一时刻的发射功率第一候选值或与当前时刻发射功率的比例值;或者,接收端设备、或发射端设备、或感知功能网元综合各目标参数,得到一个适用于多个目标的综合的发射功率调整信息。
6.发射端设备利用接收的发射功率调整信息计算发射功率第一候选值,包括以下方法:
所述发射功率调整信息为下一时刻的发射功率值,则该功率值即为发射功率第一候选值;
所述发射功率调整信息为下一时刻的发射功率差异值,则当前时刻发射功率值与发射功率调整信息之和为发射功率第一候选值;
所述发射功率调整信息为下一时刻的发射功率与当前时刻发射功率的比例值,则当前时刻发射功率值与发射功率调整信息之乘积为发射功率第一候选值。
然后,发射端设备结合所述发射功率第一候选值、通信功能的发射功率要求、规定的最大发射功率确定下一时刻的发射功率;
具体地,信号发射功率应大于或等于发射功率第一候选值,并且大于或等于通信功能要求的最低发射信号功率;同时,信号发射功率应小于或等于最大发射功能率值。
可选地,如果雷达同时跟踪N个目标,则发射端设备或感知功能网元根据N个目标的优先级排序信息,结合优先级排序前M(M≤N)的目标的发射功率第一候选值或与当前时刻发射功率的比例值、通信功能的发射功率要求、最大发射功率确定下一时刻的发射功率。
7.发射端设备设置下一时刻的发射功率并执行下一时刻的感知过程,重复执行步骤3~步骤7,直至感知过程结束;
所述感知过程结束方法同示例一。
在本申请实施例中,第一设备根据第一目标的回波信号质量或第一目标的参数,自适应调节所述第一信号的发射功率,以在满足感知需求的同时尽可能实现节约时间、能量等资源,从而能够优化通信感知一体化***的性能和功率资源的使用。
本申请实施例提供的发射功率的确定方法,执行主体可以为发射功率的确定装置。本申请实施例中以发射功率的确定装置执行发射功率的确定方法为例,说明本申请实施例提供的发射功率的确定装置。
请参见图7,图7为本申请实施例提供的发射功率的确定装置700的结构示意图,该装置应用于第一设备,包括:
第一确定模块701,用于根据第一目标的回波信号质量或第一目标的参数,确定第一信号的目标发射功率;所述目标发射功率用于指示第二时刻的第一信号发送;
其中,所述第一设备对第一时刻发送的所述第一信号的回波信号进行检测得到所述第一目标的回波信号质量或所述第一目标的参数;或者,第一设备从第二设备接收所述第一 目标的回波信号质量或所述第一目标的参数,由第二设备对第一时刻发送的第一信号的回波信号进行检测得到的第一目标的回波信号质量或所述第一目标的参数;
其中,所述第二时刻在所述第一时刻之后;所述第一目标的参数包括:所述第一目标的雷达截面积RCS和所述第一目标的距离信息的至少一项。
作为一个可选实施例,在所述第一设备为接收端设备或感知功能网元的情况下,所述装置还包括:
第一发送模块,用于根据确定的所述第一信号的目标发射功率,向发射端设备发送发射功率调整信息;所述发射功率调整信息包括下述任意一项:
所述第一信号的目标发射功率;
所述第一信号的目标发射功率相对于第一时刻发送的第一信号的发射功率的差异值;
所述第一信号的目标发射功率与所述第一时刻发送的第一信号的发射功率的比例值。
作为一个可选实施例,在所述第一设备为发射端设备的情况下,所述装置还包括:
第二发送模块,用于根据所述第一信号的目标发射功率,发送第一信号。
作为一个可选实施例,所述第一目标的回波信号质量包括下述至少一项:
第一目标的回波信号功率;
第一目标的回波信号噪声比;
第一目标的回波信号干扰噪声比;
第一目标的回波信号的参考信号接收功率;
第一目标的回波信号的参考信号接收质量。
作为一个可选实施例,所述第一确定模块包括:
第一确定子模块,用于根据第一目标的第一时刻回波信号质量,确定所述第一信号的目标发射功率;
或者,
第二确定子模块,用于根据第二时刻时第一目标的距离预测值和所述第一目标的第一时刻回波信号质量,确定所述第一信号的目标发射功率。
作为一个可选实施例,所述第一确定子模块包括:
第一确定单元,用于在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量以及所述第一预设回波质量,确定所述第一信号的目标发射功率;
或者,
第二确定单元,用于在确定将所述第一目标的回波信号质量维持在第一回波质量范围之内的情况下,根据所述第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量以及第一回波质量范围,确定所述第一信号的目标发射功率。
作为一个可选实施例,所述第一确定单元包括:
第一确定子单元,用于根据第一公式,确定所述第一信号的目标发射功率;所述第一 公式为:
Figure PCTCN2022140336-appb-000020
其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r0为所述第一预设回波质量;P r为第一目标的第一时刻回波信号质量。
作为一个可选实施例,所述第二确定单元包括:
第二确定子单元,用于根据第二公式,确定所述第一信号的目标发射功率;所述第二公式为:
Figure PCTCN2022140336-appb-000021
其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r为第一目标的第一时刻回波信号质量;
在所述第一目标的第一时刻回波信号质量大于所述第一回波质量范围的上限回波质量的情况下,P为所述第一回波质量范围的上限回波质量;或者,
在所述第一目标的第一时刻回波信号质量小于所述第一回波质量范围的下限回波质量的情况下,P为所述第一回波质量范围的下限回波质量;或者,
P为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值。
作为一个可选实施例,所述第二确定子模块包括:
第三确定单元,用于在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量、所述第一预设回波质量以及第二时刻时第一目标的距离预测值,确定所述第一信号的目标发射功率;
或者,
第四确定单元,用于在确定将所述第一目标的回波信号质量维持在第一回波质量范围之内的情况下,根据所述第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量、第一回波质量范围以及第二时刻时第一目标的距离预测值,确定所述第一信号的目标发射功率。
作为一个可选实施例,所述第三确定单元包括:
第三确定子单元,用于根据第三公式,确定所述第一信号的目标发射功率;所述第三公式包括:
Figure PCTCN2022140336-appb-000022
或,
Figure PCTCN2022140336-appb-000023
其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r0为所述第一预设回波质量;P r为第一目标的第一时刻回波信号质量;R为单站雷达场景下 第一时刻时第一目标与信号收发设备之间的距离;R′为单站雷达场景下第二时刻时第一目标与信号收发设备之间的距离预测值;R t为双站雷达场景下第一时刻时第一目标与发射端设备之间的距离;R t′为双站雷达场景下第二时刻时第一目标与发射端设备之间的距离预测值;R r为双站雷达场景下第一时刻时第一目标与接收端设备之间的距离;R r′为双站雷达场景下第二时刻时第一目标与接收端设备之间的距离预测值。
作为一个可选实施例,所述第四确定单元包括:
第四确定子单元,用于根据第四公式,确定所述第一信号的目标发射功率;所述第四公式包括:
Figure PCTCN2022140336-appb-000024
或,
Figure PCTCN2022140336-appb-000025
其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r为第一目标的第一时刻回波信号质量;R为单站雷达场景下第一时刻时第一目标与信号收发设备之间的距离;R′为单站雷达场景下第二时刻时第一目标与信号收发设备之间的距离预测值;R t为双站雷达场景下第一时刻时第一目标与发射端设备之间的距离;R t′为双站雷达场景下第二时刻时第一目标与发射端设备之间的距离预测值;R r为双站雷达场景下第一时刻时第一目标与接收端设备之间的距离;R r′为双站雷达场景下第二时刻时第一目标与接收端设备之间的距离预测值;
在所述第一目标的第一时刻回波信号质量大于所述第一回波质量范围的上限回波质量的情况下,P为所述第一回波质量范围的上限回波质量;或者,
在所述第一目标的第一时刻回波信号质量小于所述第一回波质量范围的下限回波质量的情况下,P为所述第一回波质量范围的下限回波质量;或者,
P为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值。
作为一个可选实施例,所述装置还包括:
第二确定模块,用于根据所述第一目标的回波信号功率以及所述第一目标相对于收发设备的第一距离,确定所述第一目标的RCS;
或者,用于根据所述第一目标的回波信号功率、所述第一目标相对于发射端设备的第二距离以及所述第一目标相对于接收端设备的第三距离,确定所述第一目标的RCS。
作为一个可选实施例,所述装置还包括:
第三确定模块,用于根据第一条件,确定所述第一预设回波质量或所述第一回波质量范围;所述第一条件包括下述至少一项:
感知需求中感知指标要求的回波信号质量;
通感一体化应用中通信功能的通信质量所要求的发射信号功率所对应的回波信号质量;
通感一体化应用中通信功能干扰水平限制所要求的回波信号质量。
在本申请实施例中,第一设备根据第一目标的回波信号质量或第一目标的参数,自适应调节所述第一信号的发射功率,以在满足感知需求的同时尽可能实现节约时间、能量等资源,从而能够优化通信感知一体化***的性能和功率资源的使用。
需要说明的是,本申请实施例提供的发射功率的确定装置是能够执行上述发射功率的确定方法的装置,则上述发射功率的确定方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
请参见图8,图8为本申请实施例提供的发射功率的确定装置800的结构示意图,该装置应用于第三设备,其特征在于,包括:
第四确定模块801,用于根据感知需求中包括的感知目标的雷达截面积RCS以及雷达探测的最大作用距离,确定第一信号的发射功率候选值;
第五确定模块802,用于根据所述第一信号的发射功率候选值,通感一体化应用中通信功能的发射功率要求以及发射端设备的最大发射功率,确定所述第一信号的初始发射功率。
作为一个可选实施例,所述第五确定模块包括:
第五确定子模块,用于将所述第一信号的发射功率候选值和通感一体化应用中通信功能的发射功率要求比较,确定较大值;
第六确定子模块,用于在确定的所述较大值大于发射端设备的最大发射功率的情况下,确定所述第一信号的初始发射功率为所述最大发射功率;或者,在确定的所述较大值小于发射端设备的最大发射功率的情况下,确定所述第一信号的初始发射功率为所述较大值。
作为一个可选实施例,在所述第三设备为接收端设备或感知功能网元的情况下,所述装置还包括:
第三发送模块,用于向发射端设备发送确定所述第一信号的初始发射功率。
作为一个可选实施例,在所述第三设备为发射端设备的情况下,所述装置还包括:
第四发送模块,用于根据所述初始发射功率,发送所述第一信号;或者,
第五发送模块,用于接收感知功能网元或接收端设备确定的初始发射功率,并根据初始发射功率,发送所述第一信号。
本申请实施例中第三设备在搜索模式下根据感知需求自适应调节所述第一信号的初始发射功率,以在满足感知需求的同时尽可能实现节约时间、能量等资源,从而能够优化通信感知一体化***的性能和功率资源的使用。
需要说明的是,本申请实施例提供的发射功率的确定装置是能够执行上述发射功率的确定方法的装置,则上述发射功率的确定方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
本申请实施例中的发射功率的确定装置可以是电子设备,例如具有操作***的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类 型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的发射功率的确定装置能够实现图1至图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图9所示,本申请实施例还提供一种通信设备900,包括处理器901和存储器902,存储器902上存储有可在所述处理器901上运行的程序或指令,例如,该通信设备900为第一设备时,该程序或指令被处理器901执行时实现上述第一设备侧的发射功率的确定方法实施例的各个步骤,且能达到相同的技术效果。该通信设备900为第三设备时,该程序或指令被处理器901执行时实现上述第三设备侧的发射功率的确定方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种通信设备,包括处理器和通信接口,所述处理器用于根据第一目标的回波信号质量或所述第一目标的参数,确定所述第一信号的目标发射功率;其中,所述第二时刻在所述第一时刻之后;所述第一目标的参数包括:所述第一目标的雷达截面积RCS和所述第一目标的距离信息的至少一项;或者,所述处理器用根据感知需求中包括的感知目标的雷达截面积RCS以及雷达探测的最大作用距离,确定第一信号的发射功率候选值;并根据所述第一信号的发射功率候选值,通感一体化应用中通信功能的发射功率要求以及发射端设备的最大发射功率,确定所述第一信号的初始发射功率。该通信设备实施例与上述第一设备方法实施例或第三设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种通信设备。如图10所示,该通信设备1000包括:天线101、射频装置102、基带装置103、处理器104和存储器105。天线101与射频装置102连接。在上行方向上,射频装置102通过天线101接收信息,将接收的信息发送给基带装置103进行处理。在下行方向上,基带装置103对要发送的信息进行处理,并发送给射频装置102,射频装置102对收到的信息进行处理后经过天线101发送出去。
以上实施例中通信设备执行的方法可以在基带装置103中实现,该基带装置103包括基带处理器。
基带装置103例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为基带处理器,通过总线接口与存储器105连接,以调用存储器105中的程序,执行以上方法实施例中所示的网络设备操作。
该通信设备还可以包括网络接口106,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的通信设备1000还包括:存储在存储器105上并可在处理器104上运行的指令或程序,处理器104调用存储器105中的指令或程序执行图7或图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该 程序或指令被处理器执行时实现上述发射功率的确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述发射功率的确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现上述发射功率的确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (29)

  1. 一种发射功率的确定方法,包括:
    第一设备根据第一目标的回波信号质量或第一目标的参数,确定第一信号的目标发射功率;所述目标发射功率用于指示第二时刻的第一信号发送;
    其中,所述第一设备对第一时刻发送的所述第一信号的回波信号进行检测得到所述第一目标的回波信号质量或所述第一目标的参数;或者,第一设备从第二设备接收所述第一目标的回波信号质量或所述第一目标的参数,由第二设备对第一时刻发送的第一信号的回波信号进行检测得到的第一目标的回波信号质量或所述第一目标的参数;
    其中,所述第二时刻在所述第一时刻之后;所述第一目标的参数包括:所述第一目标的雷达截面积RCS和所述第一目标的距离信息的至少一项。
  2. 根据权利要求1所述的方法,其中,在所述第一设备为接收端设备或感知功能网元的情况下,所述方法还包括:
    所述接收端设备或所述感知功能网元根据确定的所述目标发射功率,向发射端设备发送发射功率调整信息;所述发射功率调整信息包括下述任意一项:
    所述目标发射功率;
    所述目标发射功率相对于第一时刻发送的第一信号的发射功率的差异值;
    所述目标发射功率与所述第一时刻发送的第一信号的发射功率的比例值。
  3. 根据权利要求1或2所述的方法,其中,在所述第一设备为发射端设备的情况下,所述方法还包括:
    发射端设备根据所述目标发射功率,发送第一信号。
  4. 根据权利要求1所述的方法,其中,所述第一目标的回波信号质量包括下述至少一项:
    所述第一目标的回波信号功率;
    所述第一目标的回波信号噪声比;
    所述第一目标的回波信号干扰噪声比;
    所述第一目标的回波信号的参考信号接收功率;
    所述第一目标的回波信号的参考信号接收质量。
  5. 根据权利要求1或4所述的方法,其中,第一设备根据所述第一目标的回波信号质量,确定所述第一信号的目标发射功率,包括:
    第一设备根据第一目标的第一时刻回波信号质量,确定所述第一信号的目标发射功率;
    或者,
    第一设备根据第二时刻时第一目标的距离预测值和所述第一目标的第一时刻回波信号质量,确定所述第一信号的目标发射功率。
  6. 根据权利要求5所述的方法,其中,第一设备根据第一目标的第一时刻回波信号 质量,确定所述第一信号的目标发射功率,包括:
    在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量以及所述第一预设回波质量,确定所述第一信号的目标发射功率;
    或者,
    在确定将所述第一目标的回波信号质量维持在第一回波质量范围之内的情况下,根据所述第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量以及第一回波质量范围,确定所述第一信号的目标发射功率。
  7. 根据权利要求6所述的方法,其中,根据第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量以及所述第一预设回波质量,确定所述第一信号的目标发射功率,包括:
    根据第一公式,确定所述第一信号的目标发射功率;所述第一公式为:
    Figure PCTCN2022140336-appb-100001
    其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r0为所述第一预设回波质量;P r为第一目标的第一时刻回波信号质量。
  8. 根据权利要求6所述的方法,其中,根据所述第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量以及第一回波质量范围,确定所述第一信号的目标发射功率,包括:
    根据第二公式,确定所述第一信号的目标发射功率;所述第二公式为:
    Figure PCTCN2022140336-appb-100002
    其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r为第一目标的第一时刻回波信号质量;
    在所述第一目标的第一时刻回波信号质量大于所述第一回波质量范围的上限回波质量的情况下,P为所述第一回波质量范围的上限回波质量;或者,
    在所述第一目标的第一时刻回波信号质量小于所述第一回波质量范围的下限回波质量的情况下,P为所述第一回波质量范围的下限回波质量;或者,
    P为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值。
  9. 根据权利要求5所述的方法,其中,第一设备根据第二时刻时第一目标的距离预测值和所述第一目标的第一时刻回波信号质量,确定所述第一信号的目标发射功率,包括:
    在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量、所述第一预设回波质量以及第二时刻时第一目标的距离预测值,确定所述第一信号的目标发射功率;
    或者,
    在确定将所述第一目标的回波信号质量维持在第一回波质量范围之内的情况下,根据所述第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量、第一回波质量范围以及第二时刻时第一目标的距离预测值,确定所述第一信号的目标发射功率。
  10. 根据权利要求9所述的方法,其中,根据第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量、所述第一预设回波质量以及第二时刻时第一目标的距离预测值,确定所述第一信号的目标发射功率,包括:
    根据第三公式,确定所述第一信号的目标发射功率;所述第三公式包括:
    Figure PCTCN2022140336-appb-100003
    或,
    Figure PCTCN2022140336-appb-100004
    其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r0为所述第一预设回波质量;P r为第一目标的第一时刻回波信号质量;R为单站雷达场景下第一时刻时第一目标与信号收发设备之间的距离;R′为单站雷达场景下第二时刻时第一目标与信号收发设备之间的距离预测值;R t为双站雷达场景下第一时刻时第一目标与发射端设备之间的距离;R t′为双站雷达场景下第二时刻时第一目标与发射端设备之间的距离预测值;R r为双站雷达场景下第一时刻时第一目标与接收端设备之间的距离;R r′为双站雷达场景下第二时刻时第一目标与接收端设备之间的距离预测值。
  11. 根据权利要求9所述的方法,其中,根据所述第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量、第一回波质量范围以及第二时刻时第一目标的距离预测值,确定所述第一信号的目标发射功率,包括:
    根据第四公式,确定所述第一信号的目标发射功率;所述第四公式包括:
    Figure PCTCN2022140336-appb-100005
    或,
    Figure PCTCN2022140336-appb-100006
    其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r为第一目标的第一时刻回波信号质量;R为单站雷达场景下第一时刻时第一目标与信号收发设备之间的距离;R′为单站雷达场景下第二时刻时第一目标与信号收发设备之间的距离预测值;R t为双站雷达场景下第一时刻时第一目标与发射端设备之间的距离;R t′为双站雷达场景下第二时刻时第一目标与发射端设备之间的距离预测值;R r为双站雷达场景下第一时刻时第一目标与接收端设备之间的距离;R r′为双站雷达场景下第二时刻时第一目标与接收端设备之间的距离预测值;
    在所述第一目标的第一时刻回波信号质量大于所述第一回波质量范围的上限回波质量的情况下,P为所述第一回波质量范围的上限回波质量;或者,
    在所述第一目标的第一时刻回波信号质量小于所述第一回波质量范围的下限回波质量的情况下,P为所述第一回波质量范围的下限回波质量;或者,
    P为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均 值。
  12. 根据权利要求1所述的方法,其中,根据所述第一目标的参数,确定所述第一信号的目标发射功率之前,所述方法还包括:
    根据所述第一目标的回波信号功率以及所述第一目标相对于收发设备的第一距离,确定所述第一目标的RCS;
    或者,
    根据所述第一目标的回波信号功率、所述第一目标相对于发射端设备的第二距离以及所述第一目标相对于接收端设备的第三距离,确定所述第一目标的RCS。
  13. 根据权利要求6或9所述的方法,其中,所述方法还包括:
    根据第一条件,确定所述第一预设回波质量或所述第一回波质量范围;所述第一条件包括下述至少一项:
    感知需求中感知指标要求的回波信号质量;
    通感一体化应用中通信功能的通信质量所要求的发射信号功率所对应的回波信号质量;
    通感一体化应用中通信功能干扰水平限制所要求的回波信号质量。
  14. 一种发射功率的确定方法,包括:
    第三设备根据感知需求中包括的感知目标的雷达截面积RCS以及雷达探测的最大作用距离,确定第一信号的发射功率候选值;
    第三设备根据所述第一信号的发射功率候选值,通感一体化应用中通信功能的发射功率要求以及发射端设备的最大发射功率,确定所述第一信号的初始发射功率。
  15. 根据权利要求14所述的方法,其中,第三设备根据所述第一信号的发射功率候选值,通感一体化应用中通信功能的发射功率要求以及发射端设备的最大发射功率,确定所述第一信号的初始发射功率,包括:
    第三设备将所述第一信号的发射功率候选值和通感一体化应用中通信功能的发射功率要求比较,确定较大值;
    在确定的所述较大值大于发射端设备的最大发射功率的情况下,确定所述第一信号的初始发射功率为所述最大发射功率;或者,在确定的所述较大值小于发射端设备的最大发射功率的情况下,确定所述第一信号的初始发射功率为所述较大值。
  16. 根据权利要求14所述的方法,其中,在所述第三设备为接收端设备或感知功能网元的情况下,所述方法还包括:
    接收端设备或感知功能网元向发射端设备发送确定所述第一信号的初始发射功率。
  17. 根据权利要求14或16所述的方法,其中,在所述第三设备为发射端设备的情况下,所述方法还包括:
    发射端设备根据所述初始发射功率,发送所述第一信号;或者,
    发射端设备接收感知功能网元或接收端设备确定的初始发射功率,并根据初始发射功 率,发送所述第一信号。
  18. 一种发射功率的确定装置,应用于第一设备,包括:
    第一确定模块,用于根据第一目标的回波信号质量或第一目标的参数,确定第一信号的目标发射功率;所述目标发射功率用于指示第二时刻的第一信号发送;
    其中,所述第一设备对第一时刻发送的所述第一信号的回波信号进行检测得到所述第一目标的回波信号质量或所述第一目标的参数;或者,第一设备从第二设备接收所述第一目标的回波信号质量或所述第一目标的参数,由第二设备对第一时刻发送的第一信号的回波信号进行检测得到的第一目标的回波信号质量或所述第一目标的参数;
    其中,所述第二时刻在所述第一时刻之后;所述第一目标的参数包括:所述第一目标的雷达截面积RCS和所述第一目标的距离信息的至少一项。
  19. 根据权利要求18所述的装置,其中,所述第一确定模块包括:
    第一确定子模块,用于根据第一目标的第一时刻回波信号质量,确定所述第一信号的目标发射功率;
    或者,
    第二确定子模块,用于根据第二时刻时第一目标的距离预测值和所述第一目标的第一时刻回波信号质量,确定所述第一信号的目标发射功率。
  20. 根据权利要求19所述的装置,其中,所述第一确定子模块包括:
    第一确定单元,用于在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量以及所述第一预设回波质量,确定所述第一信号的目标发射功率;
    或者,
    第二确定单元,用于在确定将所述第一目标的回波信号质量维持在第一回波质量范围之内的情况下,根据所述第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量以及第一回波质量范围,确定所述第一信号的目标发射功率。
  21. 根据权利要求20所述的装置,其中,所述第一确定单元包括:
    第一确定子单元,用于根据第一公式,确定所述第一信号的目标发射功率;所述第一公式为:
    Figure PCTCN2022140336-appb-100007
    其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r0为所述第一预设回波质量;P r为第一目标的第一时刻回波信号质量。
  22. 根据权利要求20所述的装置,其特征在于,所述第二确定单元包括:
    第二确定子单元,用于根据第二公式,确定所述第一信号的目标发射功率;所述第二公式为:
    Figure PCTCN2022140336-appb-100008
    其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r为第一目标的第一时刻回波信号质量;
    在所述第一目标的第一时刻回波信号质量大于所述第一回波质量范围的上限回波质量的情况下,P为所述第一回波质量范围的上限回波质量;或者,
    在所述第一目标的第一时刻回波信号质量小于所述第一回波质量范围的下限回波质量的情况下,P为所述第一回波质量范围的下限回波质量;或者,
    P为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值。
  23. 根据权利要求19所述的装置,其中,所述第二确定子模块包括:
    第三确定单元,用于在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量、所述第一预设回波质量以及第二时刻时第一目标的距离预测值,确定所述第一信号的目标发射功率;
    或者,
    第四确定单元,用于在确定将所述第一目标的回波信号质量维持在第一回波质量范围之内的情况下,根据所述第一时刻发送的第一信号的发射功率、第一目标的第一时刻回波信号质量、第一回波质量范围以及第二时刻时第一目标的距离预测值,确定所述第一信号的目标发射功率。
  24. 根据权利要求23所述的装置,其中,所述第三确定单元包括:
    第三确定子单元,用于根据第三公式,确定所述第一信号的目标发射功率;所述第三公式包括:
    Figure PCTCN2022140336-appb-100009
    或,
    Figure PCTCN2022140336-appb-100010
    其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r0为所述第一预设回波质量;P r为第一目标的第一时刻回波信号质量;R为单站雷达场景下第一时刻时第一目标与信号收发设备之间的距离;R′为单站雷达场景下第二时刻时第一目标与信号收发设备之间的距离预测值;R t为双站雷达场景下第一时刻时第一目标与发射端设备之间的距离;R t′为双站雷达场景下第二时刻时第一目标与发射端设备之间的距离预测值;R r为双站雷达场景下第一时刻时第一目标与接收端设备之间的距离;R r′为双站雷达场景下第二时刻时第一目标与接收端设备之间的距离预测值。
  25. 根据权利要求23所述的装置,其中,所述第四确定单元包括:
    第四确定子单元,用于根据第四公式,确定所述第一信号的目标发射功率;所述第四公式包括:
    Figure PCTCN2022140336-appb-100011
    或,
    Figure PCTCN2022140336-appb-100012
    其中,P t′为第一信号的目标发射功率;P t为第一时刻发送的第一信号的发射功率;P r为第一目标的第一时刻回波信号质量;R为单站雷达场景下第一时刻时第一目标与信号收发设备之间的距离;R′为单站雷达场景下第二时刻时第一目标与信号收发设备之间的距离预测值;R t为双站雷达场景下第一时刻时第一目标与发射端设备之间的距离;R t′为双站雷达场景下第二时刻时第一目标与发射端设备之间的距离预测值;R r为双站雷达场景下第一时刻时第一目标与接收端设备之间的距离;R r′为双站雷达场景下第二时刻时第一目标与接收端设备之间的距离预测值;
    在所述第一目标的第一时刻回波信号质量大于所述第一回波质量范围的上限回波质量的情况下,P为所述第一回波质量范围的上限回波质量;或者,
    在所述第一目标的第一时刻回波信号质量小于所述第一回波质量范围的下限回波质量的情况下,P为所述第一回波质量范围的下限回波质量;或者,
    P为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值。
  26. 一种发射功率的确定装置,应用于第三设备,包括:
    第四确定模块,用于根据感知需求中包括的感知目标的雷达截面积RCS以及雷达探测的最大作用距离,确定第一信号的发射功率候选值;
    第五确定模块,用于根据所述第一信号的发射功率候选值,通感一体化应用中通信功能的发射功率要求以及发射端设备的最大发射功率,确定所述第一信号的初始发射功率。
  27. 一种第一设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至13任一项所述的发射功率的确定方法的步骤。
  28. 一种第三设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求14至17任一项所述的发射功率的确定方法的步骤。
  29. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1-13任一项所述的发射功率的确定方法,或者实现如权利要求14至17任一项所述的发射功率的确定方法的步骤。
PCT/CN2022/140336 2021-12-22 2022-12-20 发射功率的确定方法、装置及设备 WO2023116687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111583321.5A CN116367287A (zh) 2021-12-22 2021-12-22 发射功率的确定方法、装置及设备
CN202111583321.5 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023116687A1 true WO2023116687A1 (zh) 2023-06-29

Family

ID=86901240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140336 WO2023116687A1 (zh) 2021-12-22 2022-12-20 发射功率的确定方法、装置及设备

Country Status (2)

Country Link
CN (1) CN116367287A (zh)
WO (1) WO2023116687A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732543A (zh) * 2018-04-24 2018-11-02 南京航空航天大学 一种基于射频隐身的机载组网雷达辐射参数联合优化方法
CN109324507A (zh) * 2018-08-30 2019-02-12 西北工业大学 针对隐身目标动态rcs的雷达发射功率自适应控制方法
WO2020172892A1 (zh) * 2019-02-28 2020-09-03 华为技术有限公司 一种雷达功率控制方法和装置
CN111654832A (zh) * 2020-05-29 2020-09-11 南方电网数字电网研究院有限公司 传感器的发射功率确定方法、装置、***和传感器设备
CN112639509A (zh) * 2019-03-28 2021-04-09 华为技术有限公司 一种雷达功率控制方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732543A (zh) * 2018-04-24 2018-11-02 南京航空航天大学 一种基于射频隐身的机载组网雷达辐射参数联合优化方法
CN109324507A (zh) * 2018-08-30 2019-02-12 西北工业大学 针对隐身目标动态rcs的雷达发射功率自适应控制方法
WO2020172892A1 (zh) * 2019-02-28 2020-09-03 华为技术有限公司 一种雷达功率控制方法和装置
CN112639509A (zh) * 2019-03-28 2021-04-09 华为技术有限公司 一种雷达功率控制方法及装置
CN111654832A (zh) * 2020-05-29 2020-09-11 南方电网数字电网研究院有限公司 传感器的发射功率确定方法、装置、***和传感器设备

Also Published As

Publication number Publication date
CN116367287A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
WO2023078297A1 (zh) 无线感知协同方法、装置、网络侧设备和终端
WO2023116589A1 (zh) 无线感知的参数确定方法、装置及设备
WO2023088299A1 (zh) 感知信号传输处理方法、装置及相关设备
WO2023116588A1 (zh) 无线感知的参数确定方法、装置及设备
WO2023116590A1 (zh) 感知、感知配置方法、装置及通信设备
WO2023125154A1 (zh) 感知信号周期的确定方法、装置、通信设备及存储介质
WO2023116687A1 (zh) 发射功率的确定方法、装置及设备
WO2023109755A1 (zh) 感知方法、装置及通信设备
WO2023116673A1 (zh) 感知方法、装置及通信设备
WO2024131756A1 (zh) 信号配置方法、装置、通信设备及可读存储介质
WO2024012237A1 (zh) 感知处理方法、装置、终端及设备
WO2024012253A1 (zh) 感知处理方法、装置、终端、网络侧设备及可读存储介质
WO2024131760A1 (zh) 移动性管理方法、装置、通信设备及可读存储介质
WO2024012252A1 (zh) 感知处理方法、装置、终端、网络侧设备及可读存储介质
WO2023174345A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
WO2024131764A1 (zh) 信号配置方法、装置及设备
WO2024140796A1 (zh) 传输处理方法、装置、终端及网络侧设备
WO2024012366A1 (zh) 感知处理方法、装置、终端及设备
WO2024120359A1 (zh) 信息处理、传输方法及通信设备
WO2024131691A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
WO2023174342A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
WO2023160546A1 (zh) 感知方法、装置及通信设备
WO2024109785A1 (zh) 信号传输方法、装置及通信设备
WO2024099152A1 (zh) 信息传输方法、装置及通信设备
CN117793773A (zh) 前导码发送方法、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909999

Country of ref document: EP

Kind code of ref document: A1