WO2023116273A1 - 定位方法及装置、存储介质、程序产品 - Google Patents

定位方法及装置、存储介质、程序产品 Download PDF

Info

Publication number
WO2023116273A1
WO2023116273A1 PCT/CN2022/132261 CN2022132261W WO2023116273A1 WO 2023116273 A1 WO2023116273 A1 WO 2023116273A1 CN 2022132261 W CN2022132261 W CN 2022132261W WO 2023116273 A1 WO2023116273 A1 WO 2023116273A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
phase
reference signal
measurement
satellite
Prior art date
Application number
PCT/CN2022/132261
Other languages
English (en)
French (fr)
Inventor
李建锋
刘江华
刘梦婷
高鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023116273A1 publication Critical patent/WO2023116273A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/024Guidance services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present application relates to the technical field of communications, and in particular to a positioning method and device, a storage medium, and a program product.
  • the positioning solution can be performed.
  • This technology depends on the number of satellites received, and it needs to receive enough satellite signals to achieve high-precision positioning calculations.
  • GNSS global navigation satellite system
  • the present application provides a positioning method and device, a storage medium, and a program product to perform positioning in combination with at least one satellite signal and at least one reference signal respectively received by the first device and the second device, thereby realizing high-precision positioning.
  • a positioning method comprising: a first device/second device receiving at least one satellite signal and at least one reference signal; and the first device/second device sending first information and a second Two information, the first information is a phase measurement value determined according to the at least one satellite signal, and the second information is a phase measurement value determined according to the at least one reference signal.
  • the first device/the second device sends the phase measurement values respectively determined according to at least one satellite signal and at least one reference signal received by itself to the server, so that the server can The joint positioning of the received satellite signal and the phase measurement value determined by the reference signal can realize a high-precision positioning solution.
  • the foregoing server may be a core network device, a location server, or a component of a network device.
  • the second device and the first device have the largest total number of common communicable satellites and access network devices; or the second device and the first device have The total number of common communicable satellites and access network devices exceeds a first threshold.
  • the second device may be a terminal or an access network device, and the second device may also be called a positioning reference unit (positioning reference unit, PRU).
  • PRU positioning reference unit
  • the probability that the second device can receive at least one satellite signal and at least one reference signal is high, so that the server can perform joint positioning.
  • the at least one satellite signal and the at least one reference signal are used for positioning.
  • the first information includes at least one of the following information: a phase measurement value of each satellite signal in the at least one satellite signal, a phase measurement value of two satellite signals in the at least one satellite signal The difference between the phase measurement values, the difference between the phase measurement values at at least two moments of any one of the at least one satellite signal;
  • the second information includes at least one of the following information: the at least a phase measurement for each of the one reference signal, a difference between phase measurements for two of the at least one reference signal, at least The difference between the phase measurements at two time instants.
  • the representation forms of the first information and the second information are various.
  • the first information includes a phase measurement value of each satellite signal in at least one satellite signal, or the second information includes a phase measurement value of each reference signal in at least one reference signal, and the server receives the first information and can obtain These phase measurements; the first information includes the difference between the phase measurements of two of the at least one satellite signal, or the second information includes the difference between the phase measurements of two of the at least one reference signal can reduce the signaling overhead, and the server can directly use these differences to perform high-precision positioning calculation; the first information includes the phase measurement value between at least two moments of any satellite signal in at least one satellite signal The difference, or the second information includes the difference between the phase measurements of at least two time instants of any one of the at least one reference signal, may enable the server to obtain an accumulated phase measurement of the satellite signal/reference signal, according to The accumulated phase measurements allow for a more accurate determination of the position of the first device.
  • the method further includes: the first device/second device sending a first measurement frequency and/or a second measurement frequency, the first measurement frequency being the at least one satellite signal frequency, the second measurement frequency is the frequency of the at least one reference signal.
  • the frequency of at least one satellite signal and/or the frequency of at least one reference signal may be reported by the first device/second device.
  • the first measurement frequency may comprise one or more frequency values and the second measurement frequency may comprise one or more frequency values.
  • the method further includes: the first device/second device receiving first configuration information and/or second configuration information; wherein the first configuration information includes at least one of the following Information: the first measurement frequency, the reporting period of the first information, and the reporting delay of the first information; the second configuration information includes at least one of the following information: the second measurement frequency, the The reporting cycle of the second information and the reporting time delay of the second information.
  • the server may configure a reporting cycle of the first information/second information and a reporting delay of the first information/second information. If in the above implementation, the first device/second device does not send the first measurement frequency and/or the second measurement frequency, the server may further configure the first measurement frequency and/or the second measurement frequency.
  • the method before the first device/second device sends the first information and the second information, the method further includes: the first device/second device receives the first measurement request and/or or a second measurement request; wherein the first measurement request is used to request to measure the phase of the at least one received satellite signal; the second measurement request is used to request to measure the phase of the at least one received reference signal phase.
  • the first device/second device may measure the phase of the received at least one satellite signal/at least one reference signal after receiving the measurement request from the server.
  • the first device/second device sending the first information and the second information includes: the first device/second device sending a positioning protocol message, where the positioning protocol message includes the The first information and the second information; wherein, the positioning protocol message is a communication protocol message between the first device/second device and the server, which may be a new radio positioning protocol annex (NRPPa) message or long term evolution positioning protocol (long term evolution positioning protocol, LPP) message.
  • NRPPa new radio positioning protocol annex
  • LPP long term evolution positioning protocol
  • the first device is a terminal, and may send the first information and the second information to the server through an LPP message.
  • the second device can be a terminal or a base station. When the second device is a terminal, it can send the first information and the second information to the server through an LPP message; when the second device is a base station, it can send the first information to the server through an NRPPa message. and second information.
  • a positioning method comprising: a server receiving first information, second information, third information, and fourth information; and the server receiving the first information, the second information, , the third information and the fourth information determine the position of the first device; wherein the first information is a phase measurement value determined by the first device according to at least one first satellite signal, and the second The information is a phase measurement value determined by the first device based on at least one first reference signal, the third information is a phase measurement value determined by the second device based on at least one second satellite signal, and the fourth information is the The phase measurement determined by the second device is based on at least one second reference signal.
  • the server receives phase measurement values determined by the first device/second device according to at least one satellite signal and at least one reference signal received by itself, and according to the satellite signals respectively received by the first device and the second device
  • the joint positioning of the phase measurement values determined by the signal and the reference signal can achieve high-precision positioning calculation.
  • the method before the server receives the third information and the fourth information, the method further includes: the server determines the second device.
  • the second device and the first device have the largest total number of common communicable satellites and access network devices; or the second device and the first device have a common The total number of communicating satellites and access network devices exceeds a first threshold.
  • the second device may be a terminal or an access network device, and the second device may also be called a PRU.
  • the second device can receive at least one satellite signal and at least one reference signal, so as to facilitate the server to perform joint positioning.
  • the first information includes at least one of the following information: a phase measurement value of each first satellite signal in the at least one first satellite signal, and a phase measurement value in the at least one first satellite signal The difference between the phase measurements of two first satellite signals of the at least one first satellite signal, the difference between the phase measurements of at least two instants of any one of the at least one first satellite signals;
  • the second information includes at least one of the following information: a phase measurement value of each first reference signal in the at least one first reference signal, a phase measurement value of two first reference signals in the at least one first reference signal The difference between the phase measurements of any one of the at least one first reference signal at least two moments;
  • the third information includes at least one of the following information: the a phase measurement for each of the at least one second satellite signal, a difference between the phase measurements for two of the at least one second satellite signals, the at least one first The difference between phase measurement values at at least two moments of any one of the second satellite signals in the two satellite signals;
  • the fourth information includes at least one of the following information:
  • the method further includes: the server receives a first measurement frequency, a second measurement frequency, a third measurement frequency and/or a fourth measurement frequency, the first measurement frequency is the the frequency of at least one first satellite signal, the second measurement frequency is the frequency of the at least one first reference signal, the third measurement frequency is the frequency of the at least one second satellite signal, the fourth measurement The frequency is the frequency of the at least one second reference signal.
  • the method further includes: the server sending first configuration information and/or second configuration information to the first device; wherein the first configuration information includes at least one of the following Information: the first measurement frequency, the reporting period of the first information, and the reporting delay of the first information; the second configuration information includes at least one of the following information: the second measurement frequency, the The reporting cycle of the second information and the reporting time delay of the second information.
  • the method further includes: the server sending third configuration information and/or fourth configuration information to the second device; wherein the third configuration information includes at least one of the following Information: the third measurement frequency, the reporting period of the third information, and the reporting delay of the third information; the fourth configuration information includes at least one of the following information: the fourth measurement frequency, the The reporting cycle of the fourth information and the reporting time delay of the fourth information.
  • the method further includes: the server sending a first measurement request and/or a second measurement request to the first device; wherein the first measurement request is used to request measurement reception The received phase of the at least one first satellite signal; the second measurement request is used to request to measure the received phase of the at least one first reference signal.
  • the method further includes: the server sending a third measurement request and/or a fourth measurement request to the second device; wherein the third measurement request is used to request measurement reception The received phase of the at least one second satellite signal; the fourth measurement request is used to request to measure the received phase of the at least one second reference signal.
  • the receiving the third information and the fourth information by the server includes: receiving, by the server, a positioning protocol message, where the positioning protocol message includes the first information and the second information; wherein , the positioning protocol message is a communication protocol message between the first device/second device and the server, and may be a New Radio Positioning Protocol NRPPa message or a Long Term Evolution Positioning Protocol LPP message.
  • a positioning method comprising: a first device receiving at least one first satellite signal and at least one first reference signal; the first device receiving third information and fourth information, the The third information is a phase measurement value determined by the second device based on at least one second satellite signal, the fourth information is a phase measurement value determined by the second device based on at least one second reference signal; and the first device Determine the position of the first device according to the first information, the second information, the third information and the fourth information, the first information is the first device according to the at least one first satellite signal A determined phase measurement value, the second information is a phase measurement value determined by the first device according to the at least one first reference signal.
  • the first device may determine phase measurements based on at least one first satellite signal and at least one first reference signal received by itself, and phase measurements received from the second device based on at least one second satellite signal and The phase measurement values respectively determined by the at least one second reference signal are combined for positioning to determine its own position, so that relatively high-precision positioning calculation can be realized.
  • the method before the first device receives at least one first satellite signal and at least one first reference signal, the method further includes: the first device sends a positioning request to a server.
  • the first information includes at least one of the following information: a phase measurement value of each first satellite signal in the at least one first satellite signal, and a phase measurement value in the at least one first satellite signal The difference between the phase measurements of two first satellite signals of the at least one first satellite signal, the difference between the phase measurements of at least two instants of any one of the at least one first satellite signals;
  • the second information includes at least one of the following information: a phase measurement value of each first reference signal in the at least one first reference signal, a phase measurement value of two first reference signals in the at least one first reference signal The difference between the phase measurements of any one of the at least one first reference signal at least two moments;
  • the third information includes at least one of the following information: the a phase measurement for each of the at least one second satellite signal, a difference between the phase measurements for two of the at least one second satellite signals, the at least one first The difference between phase measurement values at at least two moments of any one of the second satellite signals in the two satellite signals;
  • the fourth information includes at least one of the following information:
  • the method further includes: the first device sends a first measurement frequency and/or a second measurement frequency, and the first measurement frequency is the frequency of the at least one first satellite signal , the second measurement frequency is the frequency of the at least one first reference signal.
  • the method further includes: the first device receiving first configuration information and/or second configuration information; wherein the first configuration information includes at least one of the following information: the The first measurement frequency, the reporting period of the first information, and the reporting delay of the first information; the second configuration information includes at least one of the following information: the second measurement frequency, the second information The reporting period and the reporting delay of the second information.
  • the method before the first device receives at least one first satellite signal and at least one first reference signal, the method further includes: the first device receives the first measurement request and/or the first Two measurement requests; wherein, the first measurement request is used to request measurement of the received phase of the at least one first satellite signal; the second measurement request is used to request measurement of the received at least one first reference the phase of the signal.
  • the receiving the third information and the fourth information by the first device includes: receiving a radio resource control message by the first device, and the radio resource control (radio resource control, RRC) message includes The third information and the fourth information; or the first device receives a Long Term Evolution New Radio Positioning Protocol NRPPa message, where the NRPPa message includes the third information and the fourth information; or the first A device receives a sidelink message, the sidelink message including the third information and the fourth information.
  • RRC radio resource control
  • a positioning method comprising: a first device/second device receiving at least one satellite signal; the first device/second device sending at least one reference signal; and the first device /The second device transmits first information, said first information being a phase measurement determined from said at least one satellite signal.
  • the first device/second device sends the phase measurement value determined according to the received at least one satellite signal to the server, and sends at least one reference signal to the access network device, so that the access network device will The phase measurement value determined by the received at least one reference signal is sent to the server, so that the server can perform joint positioning according to these phase measurement values, and realize higher-precision positioning calculation.
  • the at least one satellite signal and the at least one reference signal are used for positioning.
  • the first information includes at least one of the following information: a phase measurement value of each satellite signal in the at least one satellite signal, a phase measurement value of two satellite signals in the at least one satellite signal The difference between the phase measurements, the difference between the phase measurements of at least two time instants for any one of the at least one satellite signal.
  • the method further includes: the first device/second device sending a first measurement frequency and/or a second measurement frequency, the first measurement frequency being the at least one satellite signal frequency, the second measurement frequency is the frequency of the at least one reference signal.
  • the method further includes: the first device/second device receiving configuration information; wherein the configuration information includes at least one of the following information: the first measurement frequency, the The second measurement frequency, the reporting period of the first information, and the reporting delay of the first information.
  • the method further includes: the first device/second device receiving a measurement request and/or sending a request; wherein the measurement request is used to request measurement of the at least one received The phase of the satellite signal; the sending request is used to request sending the at least one reference signal.
  • the method further includes: the first device/second device sending a positioning protocol message, where the positioning protocol message includes the first information; wherein, the positioning protocol message is the first
  • the communication protocol message between the first device/second device and the server may be a New Radio Positioning Protocol NRPPa message or a Long Term Evolution Positioning Protocol LPP message.
  • a positioning method comprising: the server receives the first information sent by the first device, the second information and the fourth information sent by the access network device, and the third information sent by the second device; and the server determines the location of the first device according to the first information, the second information, the third information and the fourth information; wherein the first information is the first The phase measurement value determined by the device according to at least one first satellite signal, the second information is the phase measurement value determined by the access network device according to at least one first reference signal, and the third information is the phase measurement value determined by the second device The phase measurement value determined according to at least one second satellite signal, the fourth information is the phase measurement value determined by the access network device according to at least one second reference signal, and the at least one first reference signal is the first reference signal Sent by a device, the at least one second reference signal is sent by the second device.
  • the first device and the second device respectively send the phase measurement value determined according to at least one received satellite signal to the server, and the first device and the second device respectively send at least one reference signal to the access network device
  • the access network device sends the phase measurement values determined according to the received at least one reference signal to the server, so that the server can perform joint positioning according to these phase measurement values, and realize higher-precision positioning calculation.
  • the method before the server receives the third information and the fourth information, the method further includes: the server determines the second device.
  • the first information includes at least one of the following information: a phase measurement value of each first satellite signal in the at least one first satellite signal, and a phase measurement value in the at least one first satellite signal The difference between the phase measurements of two first satellite signals of the at least one first satellite signal, the difference between the phase measurements of at least two instants of any one of the at least one first satellite signals;
  • the second information includes at least one of the following information: a phase measurement value of each first reference signal in the at least one first reference signal, a phase measurement value of two first reference signals in the at least one first reference signal The difference between the phase measurements of any one of the at least one first reference signal at least two moments;
  • the third information includes at least one of the following information: the a phase measurement for each of the at least one second satellite signal, a difference between the phase measurements for two of the at least one second satellite signals, the at least one first The difference between phase measurement values at at least two moments of any one of the second satellite signals in the two satellite signals;
  • the fourth information includes at least one of the following information:
  • the method further includes: the server receives a first measurement frequency, a second measurement frequency, a third measurement frequency and/or a fourth measurement frequency, the first measurement frequency is the the frequency of at least one first satellite signal, the second measurement frequency is the frequency of the at least one first reference signal, the third measurement frequency is the frequency of the at least one second satellite signal, the fourth measurement The frequency is the frequency of the at least one second reference signal.
  • the method further includes: the server sending first configuration information to the first device; wherein the first configuration information includes at least one of the following information: the first measurement frequency, the second measurement frequency, the reporting period of the first information, and the reporting delay of the first information.
  • the method further includes: the server sending second configuration information to the second device; wherein the second configuration information includes at least one of the following information: the third measurement frequency, the fourth measurement frequency, the reporting period of the third information, and the reporting delay of the third information.
  • the method further includes: the server sending a first measurement request and/or a first sending request to the first device; wherein the first measurement request is used to request measurement reception The received phase of the at least one first satellite signal; the first transmission request is used to request to transmit the at least one first reference signal.
  • the method further includes: the server sending a second measurement request and/or a second sending request to the second device; wherein the second measurement request is used to request a measurement reception The received phase of the at least one second satellite signal; the second sending request is used to request sending the at least one second reference signal.
  • the receiving the third information by the server includes: receiving, by the server, a positioning protocol message, where the positioning protocol message includes the third information; wherein, the positioning protocol message is an /The communication protocol message between the second device and the server may be a New Radio Positioning Protocol NRPPa message or a Long Term Evolution Positioning Protocol LPP message.
  • a positioning device for performing the above first aspect or a method in any possible implementation of the first aspect.
  • the positioning device may be the first device/second device in the first aspect or any possible implementation of the first aspect, or a module applied in the first device/second device, such as a chip or a chip system.
  • the positioning device includes corresponding modules, units, or means (means) for realizing the above method, and the modules, units, or means can be implemented by hardware, software, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the positioning device includes: a transceiver unit and a processing unit; wherein the transceiver unit is configured to receive at least one satellite signal and at least one reference signal; and the transceiver unit, It is also used to send first information and second information, the first information is a phase measurement value determined according to the at least one satellite signal, and the second information is a phase measurement value determined according to the at least one reference signal.
  • the at least one satellite signal and the at least one reference signal are used for positioning.
  • the first information includes at least one of the following information: a phase measurement value of each satellite signal in the at least one satellite signal, a phase measurement value between two satellite signals in the at least one satellite signal The difference between the phase measurements of any one of the at least one satellite signal at at least two moments;
  • the second information includes at least one of the following information: the at least one reference signal in the A phase measurement of each reference signal, a difference between phase measurements of two of the at least one reference signal, a phase of at least two instants in any one of the at least one reference signal The difference between the measured values.
  • the transceiver unit is further configured to send a first measurement frequency and/or a second measurement frequency, the first measurement frequency is the frequency of the at least one satellite signal, and the second measurement frequency is the The frequency of at least one reference signal.
  • the transceiver unit is further configured to receive first configuration information and/or second configuration information; wherein, the first configuration information includes at least one of the following information: the first measurement frequency, the second An information reporting period, a reporting delay of the first information; the second configuration information includes at least one of the following information: the second measurement frequency, the reporting period of the second information, the second information reporting delay.
  • the transceiver unit is further configured to receive a first measurement request and/or a second measurement request; wherein the first measurement request is used to request measurement of the phase of the at least one received satellite signal; the The second measurement request is used to request to measure the phase of the at least one received reference signal.
  • the transceiver unit is further configured to send a positioning protocol message, where the positioning protocol message includes the first information and the second information; wherein, the positioning protocol message is the first device/second device
  • the communication protocol message with the server may be a New Radio Positioning Protocol NRPPa message or a Long Term Evolution Positioning Protocol LPP message.
  • the positioning device is used to execute the method in the above first aspect and various possible implementations thereof.
  • a positioning device for performing the above-mentioned second aspect or a method in any possible implementation of the second aspect.
  • the positioning device may be the server in the second aspect or any possible implementation of the second aspect, or a module applied in the server, such as a chip or a chip system.
  • the positioning device includes a corresponding module, unit, or means for realizing the above method, and the module, unit, or means can be implemented by hardware, software, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the positioning device includes: a transceiver unit and a processing unit; wherein the transceiver unit is configured to receive first information, second information, third information, and fourth information; and the processing unit, configured to determine the location of the first device according to the first information, the second information, the third information, and the fourth information; wherein the first information is the The phase measurement value determined by the first device according to at least one first satellite signal, the second information is the phase measurement value determined by the first device according to at least one first reference signal, and the third information is the phase measurement value determined by the second device according to A phase measurement value determined by at least one second satellite signal, the fourth information is a phase measurement value determined by the second device based on at least one second reference signal.
  • the processing unit is further configured to determine the second device.
  • the first information includes at least one of the following information: a phase measurement value of each first satellite signal in the at least one first satellite signal, two first satellite signals in the at least one first satellite signal The difference between the phase measurements of the satellite signals, the difference between the phase measurements of at least two instants of any one of the first satellite signals in the at least one first satellite signal;
  • the second information includes the following At least one piece of information: a phase measurement for each of the at least one first reference signals, a difference between phase measurements for two of the at least one first reference signals , the difference between the phase measurement values at least two moments of any one of the at least one first reference signal;
  • the third information includes at least one of the following information: the at least one second satellite a phase measurement for each second satellite signal in the signal, a difference between phase measurements for two second satellite signals in the at least one second satellite signal, a phase measurement for two of the at least one second satellite signal, The difference between the phase measurement values of at least two moments of any second satellite signal;
  • the fourth information includes at least one of the following information:
  • the transceiver unit is further configured to receive a first measurement frequency, a second measurement frequency, a third measurement frequency and/or a fourth measurement frequency, the first measurement frequency being the at least one first satellite signal frequency, the second measurement frequency is the frequency of the at least one first reference signal, the third measurement frequency is the frequency of the at least one second satellite signal, and the fourth measurement frequency is the frequency of the at least one the frequency of the second reference signal.
  • the transceiving unit is further configured to send first configuration information and/or second configuration information to the first device; wherein the first configuration information includes at least one of the following information: the first The measurement frequency, the reporting period of the first information, and the reporting delay of the first information; the second configuration information includes at least one of the following information: the second measurement frequency, the reporting period of the second information . The reporting time delay of the second information.
  • the transceiving unit is further configured to send third configuration information and/or fourth configuration information to the second device; wherein the third configuration information includes at least one of the following information: the third The measurement frequency, the reporting period of the third information, and the reporting delay of the third information; the fourth configuration information includes at least one of the following information: the fourth measurement frequency, the reporting period of the fourth information . The reporting delay of the fourth information.
  • the transceiver unit is further configured to send a first measurement request and/or a second measurement request to the first device; wherein the first measurement request is used to request measurement of the at least one received The phase of the first satellite signal; the second measurement request is used to request to measure the phase of the at least one received first reference signal.
  • the transceiver unit is further configured to send a third measurement request and/or a fourth measurement request to the second device; wherein the third measurement request is used to request measurement of the at least one received The phase of the second satellite signal; the fourth measurement request is used to request to measure the phase of the at least one received second reference signal.
  • the transceiving unit is further configured to receive a positioning protocol message, where the positioning protocol message includes the first information and the second information; wherein, the positioning protocol message is a first device/second device
  • the communication protocol message with the server may be a New Radio Positioning Protocol NRPPa message or a Long Term Evolution Positioning Protocol LPP message.
  • the positioning device is used to execute the method in the above second aspect and various possible implementations thereof.
  • a positioning device for performing the above-mentioned third aspect or a method in any possible implementation of the third aspect.
  • the positioning device may be the third aspect or the first device in any possible implementation of the third aspect, or a module applied to the first device, such as a chip or a chip system.
  • the positioning device includes a corresponding module, unit, or means for realizing the above method, and the module, unit, or means can be implemented by hardware, software, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the positioning device includes: a transceiver unit and a processing unit; wherein the transceiver unit is configured to receive at least one first satellite signal and at least one first reference signal; the The transceiver unit is further configured to receive third information and fourth information, the third information is a phase measurement value determined by the second device based on at least one second satellite signal, and the fourth information is the phase measurement value determined by the second device based on at least one second satellite signal a phase measurement value determined by a second reference signal; and the processing unit is configured to determine the position of the first device according to the first information, the second information, the third information and the fourth information, the The first information is a phase measurement value determined by the first device according to the at least one first satellite signal, and the second information is a phase measurement value determined by the first device according to the at least one first reference signal .
  • the transceiving unit is further configured to send a positioning request to a server.
  • the first information includes at least one of the following information: a phase measurement value of each first satellite signal in the at least one first satellite signal, two first satellite signals in the at least one first satellite signal The difference between the phase measurements of the satellite signals, the difference between the phase measurements of at least two instants of any one of the first satellite signals in the at least one first satellite signal;
  • the second information includes the following At least one piece of information: a phase measurement for each of the at least one first reference signals, a difference between phase measurements for two of the at least one first reference signals , the difference between the phase measurement values at least two moments of any one of the at least one first reference signal;
  • the third information includes at least one of the following information: the at least one second satellite a phase measurement for each second satellite signal in the signal, a difference between phase measurements for two second satellite signals in the at least one second satellite signal, a phase measurement for two of the at least one second satellite signal, The difference between the phase measurement values of at least two moments of any second satellite signal;
  • the fourth information includes at least one of the following information:
  • the transceiver unit is further configured to send a first measurement frequency and/or a second measurement frequency, the first measurement frequency is the frequency of the at least one first satellite signal, and the second measurement frequency is A frequency of the at least one first reference signal.
  • the transceiver unit is further configured to receive first configuration information and/or second configuration information; wherein, the first configuration information includes at least one of the following information: the first measurement frequency, the second An information reporting period, a reporting delay of the first information; the second configuration information includes at least one of the following information: the second measurement frequency, the reporting period of the second information, the second information reporting delay.
  • the transceiver unit is further configured to receive a first measurement request and/or a second measurement request; wherein the first measurement request is used to request measurement of the phase of the at least one received first satellite signal ; The second measurement request is used to request to measure the phase of the at least one received first reference signal.
  • the transceiving unit is further configured to receive a radio resource control message, where the radio resource control message includes the third information and the fourth information; or the transceiving unit is further configured to receive a long-term evolution new A Wireless Positioning Protocol NRPPa message, where the NRPPa message includes the third information and the fourth information; or the transceiver unit is further configured to receive a sidelink message, where the sidelink message includes the first three messages and the fourth message.
  • the positioning device is used to execute the method in the above third aspect and various possible implementations thereof.
  • a positioning device for performing the above fourth aspect or a method in any possible implementation of the fourth aspect.
  • the positioning device may be the first device/second device in the fourth aspect or any possible implementation of the fourth aspect, or a module applied in the first device/second device, such as a chip or a chip system.
  • the positioning device includes corresponding modules, units, or means for realizing the above method, and the modules, units, or means can be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the positioning device includes: a transceiver unit and a processing unit; wherein the transceiver unit is configured to receive at least one satellite signal; the transceiver unit is also configured to send at least one a reference signal; and the transceiver unit is further configured to send first information, where the first information is a phase measurement value determined according to the at least one satellite signal.
  • the at least one satellite signal and the at least one reference signal are used for positioning.
  • the first information includes at least one of the following information: a phase measurement value of each satellite signal in the at least one satellite signal, a phase measurement value between two satellite signals in the at least one satellite signal The difference between the phase measurements of at least two time instants of any one of the at least one satellite signal.
  • the transceiver unit is further configured to send a first measurement frequency and/or a second measurement frequency, the first measurement frequency is the frequency of the at least one satellite signal, and the second measurement frequency is the The frequency of at least one reference signal.
  • the transceiving unit is further configured to receive configuration information; wherein the configuration information includes at least one of the following information: the first measurement frequency, the second measurement frequency, and reporting of the first information period, and the reporting delay of the first information.
  • the transceiver unit is further configured to receive a measurement request and/or a transmission request; wherein the measurement request is used to request measurement of the phase of the at least one received satellite signal; the transmission request is used to request sending the at least one reference signal.
  • the transceiver unit is further configured to send a positioning protocol message, where the positioning protocol message includes the first information; wherein, the positioning protocol message is a communication between the first device/second device and a server
  • the protocol message may be a New Radio Positioning Protocol NRPPa message or a Long Term Evolution Positioning Protocol LPP message.
  • the positioning device is used to execute the method in the above fourth aspect and various possible implementations thereof.
  • a positioning device for performing the fifth aspect or a method in any possible implementation of the fifth aspect.
  • the positioning device may be the server in the fifth aspect or any possible implementation of the fifth aspect, or a module applied in the server, such as a chip or a chip system.
  • the positioning device includes a corresponding module, unit, or means for realizing the above method, and the module, unit, or means can be implemented by hardware, software, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the positioning apparatus includes: a transceiver unit and a processing unit; wherein the transceiver unit is configured to receive the first information sent by the first device and the first information sent by the access network device. The second information and the fourth information, the third information sent by the second device; and the processing unit, configured to determine according to the first information, the second information, the third information and the fourth information The location of the first device; wherein, the first information is a phase measurement value determined by the first device according to at least one first satellite signal, and the second information is a phase measurement value determined by the access network device according to at least one first satellite signal.
  • a phase measurement value determined by a reference signal is a phase measurement value determined by the second device based on at least one second satellite signal
  • the fourth information is a phase measurement value determined by the access network device based on at least one second satellite signal
  • a phase measurement value determined by a reference signal, the at least one first reference signal is sent by the first device, and the at least one second reference signal is sent by the second device.
  • the processing unit is further configured to determine the second device.
  • the first information includes at least one of the following information: a phase measurement value of each first satellite signal in the at least one first satellite signal, two first satellite signals in the at least one first satellite signal The difference between the phase measurements of the satellite signals, the difference between the phase measurements of at least two instants of any one of the first satellite signals in the at least one first satellite signal;
  • the second information includes the following At least one piece of information: a phase measurement for each of the at least one first reference signals, a difference between phase measurements for two of the at least one first reference signals , the difference between the phase measurement values at least two moments of any one of the at least one first reference signal;
  • the third information includes at least one of the following information: the at least one second satellite a phase measurement for each second satellite signal in the signal, a difference between phase measurements for two second satellite signals in the at least one second satellite signal, a phase measurement for two of the at least one second satellite signal, The difference between the phase measurement values of at least two moments of any second satellite signal;
  • the fourth information includes at least one of the following information:
  • the transceiver unit is further configured to receive a first measurement frequency, a second measurement frequency, a third measurement frequency and/or a fourth measurement frequency, the first measurement frequency being the at least one first satellite signal frequency, the second measurement frequency is the frequency of the at least one first reference signal, the third measurement frequency is the frequency of the at least one second satellite signal, and the fourth measurement frequency is the frequency of the at least one the frequency of the second reference signal.
  • the transceiving unit is further configured to send first configuration information to the first device; wherein the first configuration information includes at least one of the following information: the first measurement frequency, the second The measurement frequency, the reporting period of the first information, and the reporting delay of the first information.
  • the transceiving unit is further configured to send second configuration information to the second device; wherein the second configuration information includes at least one of the following information: the third measurement frequency, the fourth Measurement frequency, reporting period of the third information, and reporting delay of the third information.
  • the transceiver unit is further configured to send a first measurement request and/or a first sending request to the first device; wherein the first measurement request is used to request measurement of the at least one received The phase of the first satellite signal; the first sending request is used to request sending the at least one first reference signal.
  • the transceiver unit is further configured to send a second measurement request and/or a second sending request to the second device; wherein the second measurement request is used to request measurement of the at least one received The phase of the second satellite signal; the second sending request is used to request sending the at least one second reference signal.
  • the transceiving unit is further configured to receive a positioning protocol message, where the positioning protocol message includes the third information; wherein, the positioning protocol message is a New Radio Positioning Protocol NRPPa message or a Long Term Evolution Positioning Protocol LPP message .
  • the positioning device is used to implement the method in the fifth aspect and various possible implementations thereof.
  • the positioning apparatus in the foregoing sixth to tenth aspects includes a processor coupled to a memory; the processor is configured to support the apparatus to perform corresponding functions in the foregoing communication method.
  • the memory is used to couple with the processor, which holds the necessary computer programs (or computer-executable instructions) and/or data of the device.
  • the positioning device may further include a communication interface for supporting communication between the device and other network elements, such as sending or receiving data and/or signals.
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces.
  • the memory may be located inside the positioning device and integrated with the processor; it may also be located outside the positioning device.
  • the positioning device in the sixth aspect to the tenth aspect above includes a processor and a transceiver device, the processor is coupled to the transceiver device, and the processor is used to execute computer programs or instructions , to control the transceiver device to receive and send information; when the processor executes the computer program or instructions, the processor is also used to implement the above method through logic circuits or code instructions.
  • the transceiver device may be a transceiver, a transceiver circuit or an input-output interface, which is used to receive signals from other positioning devices other than the positioning device and transmit them to the processor or transmit signals from the processor Send to other positioning devices other than the positioning device.
  • the transceiver device is a transceiver circuit or an input-output interface.
  • the sending unit may be an output unit, such as an output circuit or a communication interface; the receiving unit may be an input unit, such as an input circuit or a communication interface.
  • the sending unit may be a transmitter or a transmitter; the receiving unit may be a receiver or a receiver.
  • the positioning devices in the above sixth to tenth aspects may also be referred to as communication devices.
  • a positioning system in an eleventh aspect, includes the positioning device according to the sixth aspect or any implementation of the sixth aspect, and the seventh aspect or any implementation of the seventh aspect the positioning device.
  • a positioning system in a twelfth aspect, includes the positioning device according to the eighth aspect or any one of the implementations of the eighth aspect.
  • a thirteenth aspect provides a positioning system, the positioning system includes the positioning device as described in the ninth aspect or any implementation of the ninth aspect, and any implementation of the tenth aspect or the tenth aspect the positioning device.
  • a computer-readable storage medium on which a computer program or instruction is stored, and when the program or instruction is executed by a processor, as described in the first aspect or any implementation of the first aspect
  • the method is executed, or, the method described in the second aspect or any implementation of the second aspect is executed, or, the method described in the third aspect or any implementation of the third aspect is executed, or,
  • the method described in the fourth aspect or any implementation of the fourth aspect is executed, or the method described in the fifth aspect or any implementation of the fifth aspect is executed.
  • a computer program product which, when executed on a computing device, causes the method as described in the first aspect or any one of the implementations of the first aspect to be executed, or the method described in the second aspect or the first aspect
  • the method described in any one of the two aspects is executed, or the method described in the third aspect or any one of the third aspect is executed, or, as in the fourth aspect or any one of the fourth aspect
  • the method described in the implementation is executed, or the method described in the fifth aspect or any one of the implementations of the fifth aspect is executed.
  • FIG. 1 is a schematic diagram of the principle of carrier phase ranging provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of carrier phase double-difference positioning provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a positioning system applying the positioning method of the embodiment of the present application.
  • FIG. 4 is a schematic diagram of the architecture of a positioning system applying the positioning method of the embodiment of the present application in a 5G mobile communication system;
  • FIG. 5 is a schematic structural diagram of another positioning system applying the positioning method of the embodiment of the present application in a 5G mobile communication system
  • FIG. 6 is a schematic flowchart of a positioning method provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a positioning scenario to which the method shown in FIG. 6 is applicable.
  • FIG. 8 is a schematic flowchart of another positioning method provided in the embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another positioning method provided in the embodiment of the present application.
  • FIG. 10 is a schematic diagram of a positioning scenario to which the method shown in FIG. 9 is applicable.
  • FIG. 11 is a schematic flowchart of another positioning method provided in the embodiment of the present application.
  • FIG. 12 is a schematic flowchart of another positioning method provided in the embodiment of the present application.
  • FIG. 13 is a schematic diagram of a positioning scenario to which the method shown in FIG. 12 is applicable;
  • FIG. 14 is a schematic flowchart of another positioning method provided in the embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a positioning device 1600 provided in an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a positioning device 1700 provided by an embodiment of the present application.
  • Communication systems can provide a wide range of horizontal and vertical location services in different environments (such as rural, urban, indoor).
  • the 5G system can provide different 5G positioning services according to the needs of users, operators and third parties.
  • specific performance requirements are put forward for the positioning service of the 5G system.
  • TDOA time difference of arrival
  • the time difference of arrival (TDOA) technology can theoretically achieve sub-meter positioning accuracy, but its accuracy depends on the bandwidth of the positioning reference signal, and it is difficult to obtain a continuous wide frequency spectrum in an actual system.
  • the positioning method based on angle and enhanced cell identity (ECID) is theoretically worse in positioning accuracy.
  • carrier phase positioning technology is one of the main methods of high-precision positioning at present, which realizes the measurement of distance with integer ambiguity by measuring the carrier phase change of the reference signal from the transmitter to the receiver.
  • carrier phase integer ambiguity can be solved correctly, theoretically the carrier phase ranging accuracy can reach centimeter to millimeter level, thus obtaining high-precision positioning results.
  • the specific ranging principle is shown in Fig. 1 .
  • the distance d and the carrier phase satisfy the following formula:
  • d is the distance between the receiver and the transmitter; is the measured value of the carrier phase; N represents the ambiguity of the whole cycle, which is an integer, which means that N carrier cycles have passed; ⁇ is the wavelength of the carrier.
  • Carrier phase positioning technology based on GNSS signal including: precise point positioning (precise point positioning, PPP) technology and real time dynamic (real time kinematic, RTK) differential positioning technology.
  • PPP technology is a single-point high-precision positioning technology based on GNSS carrier phase. It does not need a reference station and relies on the precision products and precision error models provided by the international GNSS service (international GNSS service, IGS) for positioning.
  • IGS international GNSS service
  • RTK technology is a dual-station relative positioning technology. At least two GNSS receivers at the base station and the rover station are required for positioning, and then the observation data including clock difference, atmosphere, ephemeris, etc. are eliminated through inter-station and inter-satellite differences. Modulo error term is calculated to obtain high-precision relative positioning results.
  • Centimeter-level to millimeter-level positioning accuracy can be achieved through PPP technology or RTK technology.
  • carrier phase single-difference or double-difference is generally used technology.
  • the carrier phase double-difference technology is introduced by taking a user equipment (user equipment, UE) receiving a cellular signal as an example.
  • the carrier phase measurement value of the signal carrier phase of the i-th base station (gNB i ) received by the UE is Satisfies the following formula:
  • is the carrier wavelength
  • f is the carrier frequency
  • ⁇ t u is the local clock offset of the receiver
  • ⁇ t i is the clock offset of the i-th base station
  • the carrier phase measurement value of the i-th base station and the j-th base station (gNB j ) received by the UE is differenced to obtain a single-difference measurement value of the carrier phase It satisfies the following formula:
  • the UE's carrier phase single-difference measurement value Carrier-phase single-difference measurements from a reference station Do the difference to get the carrier phase double-difference measurement value It satisfies the following formula:
  • a plurality of equations (4) can be obtained by using multiple base station signals, and the high-precision UE position information can be obtained by combining the equations and solving the integer ambiguity.
  • carrier phase positioning technology depends on the number of satellites received, at least 4 satellite signals need to be received to achieve high-precision positioning calculation; and the more satellite signals, the higher the accuracy of positioning calculation.
  • satellite signal coverage holes and/or communication system signal coverage holes due to occlusion, and the receiver may not be able to receive more than 4 satellite signals and/or communication system signals, which will affect positioning. Accuracy cannot reach centimeter-level positioning accuracy.
  • An embodiment of the present application provides a positioning solution.
  • the first device receives at least one first satellite signal and at least one first reference signal, and sends first information and second information, wherein the first information is determined based on at least one satellite signal
  • the second information is a phase measurement value determined from at least one reference signal.
  • the second device receives at least one second satellite signal and at least one second reference signal, and sends third information and fourth information, wherein the third information is a phase measurement value determined according to at least one second satellite signal, and the fourth information is a phase measurement determined from at least one second reference signal.
  • the server receives the first information, the second information, the third information and the fourth information, and determines the position of the first device according to the first information, the second information, the third information and the fourth information. Therefore, the server can perform joint positioning according to the satellite signals received by the first device and the second device respectively and the phase measurement values determined by the reference signal, so as to achieve higher-precision positioning calculation.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems.
  • long term evolution long term evolution
  • LTE frequency division duplex frequency division duplex, FDD
  • LTE time division duplex time division duplex, TDD
  • 5G system or new radio new radio, NR
  • a next-generation communication system such as a sixth generation ( 6th generation, 6G) mobile communication system
  • the 5G mobile communication system involved in this application includes a non-standalone (NSA) 5G mobile communication system or a standalone (standalone, SA) 5G mobile communication system.
  • NSA non-standalone
  • SA standalone
  • the technical solutions provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the communication system may also be a public land mobile network (PLMN) network, a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, an object Internet of Things (IoT), Internet of Vehicles communication system or other communication systems.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT object Internet of Things
  • IoT Internet of Vehicles communication system or other communication systems.
  • FIG. 3 is a schematic structural diagram of a positioning system applying the positioning method of the embodiment of the present application.
  • the positioning system 300 includes a first device 301 , a second device 302 and a server 304 .
  • the first device 301 may be a terminal
  • the second device 302 may be a terminal or an access network device
  • the server 304 may be a core network device, a location server, or a component of a network device.
  • the positioning system 300 may also include one or more access network devices 303 (Fig. 3 uses an access network device as an example to illustrate, and is represented by a dotted line).
  • the first device 301 and the second device 302 may be served by the same access network device, or may be served by different access network devices.
  • the first device and the second device can be served by the same access network device as an example for description.
  • the first device 301, the second device 302, the access network device 303, or the server 304 may communicate directly or through forwarding by other devices, which is not specifically limited in this embodiment of the present application.
  • the positioning system may also include other network elements such as a mobility management network element, which is not specifically limited in this embodiment of the present application.
  • the positioning system provided in the embodiment of the present application may be applicable to the above-mentioned various communication systems.
  • the network element or entity corresponding to the access network device in Figure 3 may be the next-generation radio access network (NG-RAN) in the 5G mobile communication system equipment.
  • NG-RAN next-generation radio access network
  • the server in the embodiment of the present application is a location management function (location management function, LMF) network element or a location management component (location management component, LMC) network element.
  • LMF location management function
  • LMC location management component
  • FIG. 4 is a schematic structural diagram of a positioning system applying the positioning method of the embodiment of the present application in a 5G mobile communication system.
  • the terminal passes through the LTE-Uu interface through the next-generation evolved NodeB (next-generation evolved NodeB, ng-eNB), or through the NR-Uu interface through the next-generation NodeB (next-generation generation node B, gNB) is connected to the radio access network.
  • the radio access network is connected to the core network through the access and mobility management function (AMF) network element through the NG-C interface.
  • AMF access and mobility management function
  • the NG-RAN includes one or more ng-eNBs ( Figure 4 uses one ng-eNB as an example to illustrate); NG-RAN may also include one or more gNBs ( Figure 4 uses a gNB as an example to illustrate); The NG-RAN may also include one or more ng-eNBs and one or more gNBs.
  • the ng-eNB is an LTE base station connected to the 5G core network
  • the gNB is a 5G base station connected to the 5G core network.
  • the core network includes AMF network elements and LMF network elements. Among them, the AMF network element is used to implement functions such as access management, and the LMF network element is used to implement functions such as positioning or positioning assistance.
  • the AMF network element is connected to the LMF network element through the NL1 interface.
  • FIG. 5 is a schematic structural diagram of another positioning system that applies the positioning method of the embodiment of the present application in a 5G mobile communication system.
  • the difference between the positioning system architecture in Figure 5 and Figure 4 is that the device or component of the positioning management function (such as the LMF network element) in Figure 4 is deployed in the core network, and the device or component of the positioning management function in Figure 5 (such as the LMC network element) is deployed in the core network. ) can be deployed in NG-RAN equipment.
  • the gNB includes LMC network elements.
  • the LMC network element is part of the functional components of the LMF network element, and can be integrated in the gNB of the NG-RAN equipment.
  • the devices or function nodes included in the positioning system in FIG. 4 or FIG. 5 are only described as examples, and do not limit the embodiment of the present application.
  • the positioning system in FIG. 4 or FIG. 5 may also include other network elements or devices or function nodes that have an interactive relationship with the devices or function nodes shown in the figure, which is not specifically limited here.
  • a terminal in this embodiment of the present application may refer to an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal (user terminal), a user equipment ( user equipment, UE), terminal, wireless communication equipment, user agent, user device, cellular phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop (WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device or other processing device connected to a wireless modem, vehicle-mounted device, wearable device, terminal in future 5G network or future evolution
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • handheld device with wireless communication function computing device or other processing device connected to a wireless modem, vehicle-mounted device, wearable device, terminal in future 5G network or future evolution
  • the embodiment of the present application does not limit the terminal in the PLMN or the terminal in the future Internet
  • the terminal may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality terminal, an augmented reality terminal, a wireless terminal in industrial control, or a wireless terminal in unmanned driving , wireless terminals in remote surgery, wireless terminals in smart grids, wireless terminals in transportation security, wireless terminals in smart cities, wireless terminals in smart homes, wearable devices, etc.
  • the terminal can also be a terminal in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • connection so as to realize the intelligent network of man-machine interconnection and object interconnection.
  • the IOT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • the terminal can also include sensors such as smart printers, train detectors, and gas stations, and its main functions include collecting data (part of the terminal), receiving control information and downlink data of access network equipment, and sending electromagnetic waves , to transmit uplink data to the access network device.
  • sensors such as smart printers, train detectors, and gas stations
  • its main functions include collecting data (part of the terminal), receiving control information and downlink data of access network equipment, and sending electromagnetic waves , to transmit uplink data to the access network device.
  • the access network device in the embodiment of the present application may be any communication device with a wireless transceiver function for communicating with a terminal.
  • the access network equipment includes but is not limited to: an evolved node B (evolved node B, eNB), a baseband unit (baseband unit, BBU), a wireless fidelity (wireless fidelity, WIFI) system access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission reception point (transmission reception point, TRP), etc.
  • the access network device may also be a gNB, TRP or TP in the 5G system, or one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system.
  • the access network device may also be a network node constituting the gNB or TP, such as a BBU, or a distributed unit (distributed unit, DU).
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU).
  • the CU implements some functions of the gNB
  • the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical layer (physical layer, PHY).
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU. It can be understood that the access network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the access network device and the terminal in the embodiment of the present application may communicate through licensed spectrum, or through unlicensed spectrum, or through both licensed spectrum and unlicensed spectrum. Communication between the access network device and the terminal may be performed through a frequency spectrum below 6 GHz (gigahertz, GHz), or may be performed through a frequency spectrum above 6 GHz, or may be performed using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time.
  • the embodiments of the present application do not limit the frequency spectrum resources used between the access network device and the terminal.
  • the first device, the second device or the server in the embodiment of the present application can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted; it can also be deployed on water; it can also be deployed on airplanes and balloons in the air and on artificial satellites.
  • the embodiments of the present application do not limit the application scenarios of the first device, the second device, or the server.
  • FIG. 6 it is a schematic flowchart of a positioning method provided by the embodiment of the present application, which is applied to a downlink joint positioning scenario.
  • the method may include the steps of:
  • the first device receives at least one first satellite signal and at least one first reference signal.
  • the first device is a terminal to be positioned.
  • the first device may be blocked, and can receive at least one first satellite signal and at least one first reference signal.
  • the at least one first satellite signal and the at least one first reference signal are used for positioning.
  • the first device receives at least one first satellite signal sent by a satellite
  • the first device receives at least one first reference signal sent by an access network device.
  • the at least one first satellite signal may come from the same satellite or from different satellites.
  • the at least one first reference signal may come from the same access network device, or from different access network devices.
  • the satellite may be a global positioning system (global positioning system, GPS), a Beidou navigation satellite system (BeiDou navigation satellite system, BDS), etc.
  • the first device receives at least one first positioning reference signal (positioning reference signal, PRS) sent by gNB i and/or gNB j , and at least one first positioning reference signal (PRS) sent by satellite Sat m and/or Sat n . satellite signal.
  • PRS positioning reference signal
  • the first device sends the first information and the second information.
  • the server receives the above-mentioned first information and second information.
  • the first device After receiving the at least one first satellite signal, the first device respectively measures phase measurement values of the at least one first satellite signal to obtain first information. That is, the first information is a phase measurement determined from at least one first satellite signal.
  • the first device may respectively measure the phase measurement value of at least one first satellite signal to obtain the phase measurement value of each first satellite signal in the at least one first satellite signal.
  • the first device may further calculate a difference between phase measurement values of two first satellite signals in the at least one first satellite signal, for example, using the measured phase measurement value of the first satellite signal as a reference value, Computing the difference between the phase measurements of the other first satellite signals of the at least one first satellite signal and the aforementioned reference value.
  • the reference value may also be a maximum value or a minimum value among measured phase measurement values of at least one first satellite signal, which is not limited in this embodiment.
  • the first device may further select phase measurement values of a certain number of first satellite signals with better quality among the phase measurement values of each first satellite signal in the at least one first satellite signal.
  • the first device may also measure phase measurements of at least two instants in any one of the at least one first satellite signal.
  • the any one first satellite signal may be every first satellite signal. Further, a difference between phase measurement values at at least two moments of any one first satellite signal may also be calculated. Further, the first device may also measure a difference between phase measurement values at at least two moments of any one of the at least one first satellite signal.
  • the first information may include at least one of the following information: a phase measurement for each of the at least one first satellite signal, a phase measurement for each of the at least one first satellite signal, The difference between the phase measurements of the satellite signals, the difference between the phase measurements of at least two instants in any one of the at least one first satellite signal.
  • the first information may also include phase measurement values of a certain number of first satellite signals with better quality among the at least one first satellite signal.
  • the first device After receiving the at least one first reference signal, the first device respectively measures phase measurement values of the at least one first reference signal to obtain second information. That is, the second information is a phase measurement value determined from at least one first reference signal.
  • the first device may respectively measure phase measurement values of at least one first reference signal to obtain phase measurement values of each first reference signal in the at least one first reference signal.
  • the first device may further calculate a difference between phase measurement values of two first reference signals in the at least one first reference signal, for example, using the measured phase measurement value of the first reference signal as a reference value, Computing the difference between the phase measurements of the other first reference signals of the at least one first reference signal and the aforementioned reference value.
  • the reference value may also be a maximum value or a minimum value among measured phase measurement values of at least one first reference signal, which is not limited in this embodiment.
  • the first device may further select a certain number of phase measurement values of the first reference signals with better quality from the phase measurement values of each first reference signal in the at least one first reference signal.
  • the first device may also measure phase measurement values of at least two instants of any one of the at least one first reference signal.
  • the any first reference signal may be every first reference signal. Further, a difference between phase measurement values at at least two moments of any one of the first reference signals may also be calculated. Further, the first device may also measure a difference between phase measurement values at at least two moments of any one of the at least one first reference signal.
  • the second information may include at least one of the following information: the phase measurement value of each of the at least one first reference signal, the phase measurement value of each of the at least one first reference signal, the two first reference signals of the at least one first reference signal The difference between the phase measurement values of the reference signals, the difference between the phase measurement values of any one of the at least one first reference signal at at least two instants.
  • the second information may also include phase measurement values of a certain number of first reference signals with better quality among the at least one first reference signal.
  • the first device sends first information and second information to the server.
  • the second device receives at least one second satellite signal and at least one second reference signal.
  • the second device may be a terminal or an access network device.
  • the second device may also be called a PRU.
  • the second device may have the most common communicable satellite and access network devices with the first device, or the second device may have the common communicable satellite and access network devices with the first device. The total number of network devices exceeds the first threshold.
  • the second device may receive at least one second satellite signal and at least one second reference signal.
  • the at least one second satellite signal and the at least one second reference signal are used for positioning.
  • the second device receives at least one second satellite signal sent by the satellite, and the second device receives at least one second reference signal sent by the access network device.
  • the at least one second satellite signal may come from the same satellite or from different satellites.
  • the at least one second reference signal may come from the same access network device, or may come from different access network devices.
  • the at least one first satellite signal and the at least one second satellite signal may be completely the same, partially the same, or not the same.
  • the at least one first reference signal and the at least one second reference signal may be completely the same, partially the same, or not the same.
  • the above-mentioned at least one first satellite signal and at least one second satellite signal may come from the same satellite or different satellites.
  • the at least one first reference signal and the at least one second reference signal may come from the same access network device or different access network devices.
  • the second device receives at least one second PRS sent by gNB i and/or gNB j , and receives at least one second satellite signal sent by satellite Sat m and/or Sat n .
  • the second device sends the third information and the fourth information.
  • the server receives the above third information and fourth information.
  • the second device After receiving the at least one second satellite signal, the second device respectively measures phase measurement values of the at least one second satellite signal to obtain third information. That is, the third information is a phase measurement determined from at least one second satellite signal.
  • the second device may respectively measure the phase measurement value of at least one second satellite signal to obtain the phase measurement value of each second satellite signal in the at least one second satellite signal.
  • the second device may further calculate a difference between phase measurements of two second satellite signals in the at least one second satellite signal, for example, using the measured phase measurement value of the first satellite signal as a reference value, Computing the difference between the phase measurements of the other second satellite signals of the at least one second satellite signal and the reference value.
  • the reference value may also be a maximum value or a minimum value among measured phase measurement values of at least one second satellite signal, which is not limited in this embodiment.
  • the second device may further select phase measurement values of a certain number of second satellite signals with better quality among the phase measurement values of each second satellite signal in the at least one second satellite signal.
  • the second device may also measure phase measurements of at least two instants in any one of the at least one second satellite signal.
  • the any one second satellite signal may be every second satellite signal. Further, a difference between phase measurement values at at least two moments of any second satellite signal may also be calculated. Further, the second device may also measure a difference between phase measurement values at at least two moments of any one of the at least one second satellite signal.
  • the third information may include at least one of the following information: a phase measurement for each of the at least one second satellite signal, a phase measurement for each of the at least one second satellite signal, The difference between the phase measurements of the satellite signals, the difference between the phase measurements of at least two instants in any one of the at least one second satellite signal.
  • the third information may also include phase measurement values of a certain number of second satellite signals with better quality among the at least one second satellite signal.
  • the second device After receiving the at least one second reference signal, the second device respectively measures phase measurement values of the at least one second reference signal to obtain fourth information. That is, the fourth information is a phase measurement value determined according to at least one second reference signal.
  • the second device may respectively measure the phase measurement value of the at least one second reference signal to obtain the phase measurement value of each second reference signal in the at least one second reference signal.
  • the second device may further calculate a difference between phase measurement values of two second reference signals in the at least one second reference signal, for example, using the measured phase measurement value of the first reference signal as a reference value, Computing the difference between the phase measurements of the other second reference signals of the at least one second reference signal and the aforementioned reference value.
  • the reference value may also be a maximum value or a minimum value among measured phase measurement values of at least one second reference signal, which is not limited in this embodiment.
  • the second device may further select phase measurement values of a certain number of second reference signals with better quality from among the phase measurement values of each second reference signal in the at least one second reference signal.
  • the second device may also measure phase measurements of at least two instants of any one of the at least one second reference signal.
  • the any second reference signal may be every second reference signal. Further, a difference between phase measurement values at at least two moments of any second reference signal may also be calculated. Further, the second device may also measure a difference between phase measurement values at at least two moments of any one of the at least one second reference signal.
  • the fourth information may include at least one of the following information: the phase measurement value of each of the at least one second reference signal, the phase measurement value of each of the at least one second reference signal The difference between the phase measurements of the reference signals, the difference between the phase measurements of any one of the at least one second reference signal at at least two instants.
  • the fourth information may also include phase measurement values of a certain number of second reference signals with better quality among the at least one second reference signal.
  • the second device sends third information and fourth information to the server.
  • the server determines the location of the first device according to the first information, the second information, the third information, and the fourth information.
  • the server receives the first information and the second information sent by the first device, and receives the third information and the fourth information sent by the second device.
  • the server may receive the first information, the second information, the third information and the fourth information at the same time; the server may also receive the first information, the second information, the third information and the fourth information in no particular order.
  • the server may determine the location of the first device according to the first information, the second information, the third information and the fourth information.
  • the server can use at least two reference signals and at least two satellite signals to obtain multiple equations (4) above. Simultaneous equations and solving the integer ambiguity can obtain a higher accuracy of the first device location information.
  • the server After the server obtains the first information, the second information, the third information and the fourth information, it can calculate the phase double-difference measurement value according to formula (4), and then the simultaneous equations are as follows:
  • the carrier phase double-difference measurement value corresponding to the reference signal is the carrier phase double-difference measurement value corresponding to the reference signal
  • ⁇ C is the carrier wavelength of the reference signal
  • ⁇ G is the carrier wavelength of the satellite signal.
  • (x u , y u , z u ) is the three-dimensional position of the first device, and is the quantity to be solved.
  • (x r , y r , z r ) is the three-dimensional position of the second device. If the position of the second device is known, it can be substituted into the equation as a known quantity. At this time, at least 3 equations are required in the equation group (5); If the position of the second device is unknown, it should be solved together with the position of the first device as an unknown, and at this time at least 6 equations are required in the equation group (5).
  • ( xi , y i , zi ) and (x j , y j , z j ) are the three-dimensional position coordinates of the i-th satellite and the j-th satellite, which are known quantities.
  • (x m , y m , z m ) and (x n , y n , z n ) are the three-dimensional position coordinates of the mth gNB and the nth gNB, which are known quantities; similar formula (6 )of expression formula.
  • the first device/the second device sends the phase measurement values respectively determined according to at least one satellite signal and at least one reference signal received by itself to the server, so that the server can
  • the satellite signals received by the first device and the second device respectively and the phase measurement values determined by the reference signal are used for joint positioning, so that a relatively high-precision positioning solution can be realized.
  • FIG. 8 it is a schematic flowchart of another positioning method provided in the embodiment of the present application, which is applied to a downlink joint positioning scenario.
  • the method may include the steps of:
  • the server determines the second device.
  • the server When the server performs positioning calculation for the first device, it may predetermine the second device.
  • the server may select the device with the largest total number of common communicable satellites and access network devices with the first device among multiple devices of the common communicable satellite and access network devices with the first device, Or, a device whose total number of common communicable satellites and access network devices with the first device exceeds the first threshold is used as the second device.
  • the second device may be a terminal or an access network device.
  • the second device may also be called a PRU.
  • the server sends the first configuration information and/or the second configuration information to the first device.
  • the first device receives the first configuration information and/or the second configuration information.
  • the first device is a terminal to be positioned.
  • the first device may be blocked, however, the first device may still receive part of the satellite signal and part of the reference signal.
  • the server may pre-configure how the first device measures the phase of the received satellite signal or reference signal, and configure how the first device reports the measured phase measurement value of the satellite signal or reference signal.
  • the server may send first configuration information to the first device, and the first configuration information is used to configure the measurement and reporting of the phase of at least one first satellite signal; or the server sends second configuration information to the first device, and the second configuration information is used for Configure the measurement and reporting of the phase of at least one first reference signal; or the server sends the first configuration information and the second configuration information to the first device.
  • the server may send the first configuration information and the second configuration information to the first device respectively, or may send the first configuration information and the second configuration information to the first device at the same time.
  • the first configuration information includes at least one of the following information: a first measurement frequency, a reporting cycle of the first information, and a reporting delay of the first information.
  • the first measurement frequency is the frequency of at least one first satellite signal.
  • the reporting period of the first information is used to instruct the first device to report the first information at this period.
  • the reporting delay of the first information is used to indicate how long the first device will report the first information after receiving at least one first satellite signal, or how long it will report the first configuration information after receiving the first configuration information. information, or how long to delay phase measurement after receiving the first measurement request, and so on.
  • the second configuration information includes at least one of the following information: a second measurement frequency, a reporting cycle of the second information, and a reporting delay of the second information.
  • the second measurement frequency is the frequency of at least one first reference signal.
  • the reporting period of the second information is used to instruct the first device to report the second information at this period.
  • the reporting delay of the second information is used to indicate the delay for the first device to report the second information after receiving at least one first reference signal, or the delay for reporting the second configuration information after receiving the second configuration information. information, or how long to delay phase measurement after receiving the second measurement request, and so on.
  • the first configuration information may not include the first measurement frequency, and the first device sends the measurement frequency to the server.
  • the second configuration information may not include the second measurement frequency, and the first device sends the measurement frequency to the server.
  • the server sends the third configuration information and/or the fourth configuration information to the second device.
  • the second device receives the third configuration information and/or the fourth configuration information.
  • the server may send the third configuration information and/or the fourth configuration information to the second device.
  • the server may send third configuration information to the second device, and the third configuration information is used to configure the measurement and reporting of the phase of at least one second satellite signal; or the server sends fourth configuration information to the second device, and the fourth configuration information is used for Configure the measurement and reporting of the phase of at least one second reference signal; or the server sends third configuration information and fourth configuration information to the second device.
  • the server may send the third configuration information and the fourth configuration information to the second device respectively, or may send the third configuration information and the fourth configuration information to the second device at the same time.
  • the third configuration information includes at least one of the following information: a third measurement frequency, a reporting period of the third information, and a reporting delay of the third information.
  • the third measurement frequency is the frequency of at least one second satellite signal.
  • the reporting period of the third information is used to instruct the second device to report the third information at this period.
  • the reporting delay of the third information is used to indicate how long the second device will report the third information after receiving at least one second satellite signal, or how long it will report the third configuration information after receiving the third configuration information. information, or how long to delay phase measurement after receiving the third measurement request, and so on.
  • the fourth configuration information includes at least one of the following information: a fourth measurement frequency, a reporting period of the fourth information, and a reporting delay of the fourth information.
  • the fourth measurement frequency is the frequency of at least one second reference signal.
  • the reporting period of the fourth information is used to instruct the second device to report the fourth information at this period.
  • the reporting delay of the fourth information is used to indicate how long the second device reports the fourth information after receiving at least one second reference signal, or reports the fourth configuration information after receiving the fourth configuration information. information, or how long to delay phase measurement after receiving the fourth measurement request, and so on.
  • the third configuration information may not include the third measurement frequency, and the second device sends the measurement frequency to the server.
  • the fourth configuration information may not include the fourth measurement frequency, and the second device sends the measurement frequency to the server.
  • the above-mentioned first measurement frequency/third measurement frequency is the frequency of at least one satellite signal, which can be the absolute frequency value of the satellite signal; it can also be referred to by the frequency number (for example: L1) of the satellite signal; It can be referred to by the satellite signal name (eg: B1C).
  • the above-mentioned second measurement frequency/fourth measurement frequency is the frequency of at least one reference signal, which may be the absolute frequency value of the reference signal; it may also be represented by a reference signal resource element (resource element, RE) index, that is, the default is the RE index corresponds to the frequency of the subcarrier.
  • RE reference signal resource element
  • the RE index may be a position index relative to point A (pointA) or the first RE relative to the reference signal, where point A is the starting point of a common resource block (common resource block, CRB).
  • the measurement frequency can also be referred to by a reference signal resource block (resource block, RB) index, for example, the default is the frequency of the subcarrier corresponding to the first RE of the RB; an absolute radio-frequency channel number (absolute radio-frequency channel number, ARFCN) to represent.
  • the above-mentioned second measurement frequency/fourth measurement frequency may also be specified as a frequency corresponding to a certain RE on the reference signal in the form of a protocol agreement, for example, a frequency corresponding to an RE in the bandwidth center of the reference signal.
  • the server sends the first measurement request and/or the second measurement request to the first device.
  • the first device receives the first measurement request and/or the second measurement request.
  • the first measurement request is used to request to measure the phase of at least one first satellite signal received
  • the second measurement request is used to request to measure the phase of the at least one received first reference signal.
  • the server may send the first measurement request to the first device; or the server may send the second measurement request to the first device; or the server may send the first measurement request and the second measurement request to the first device.
  • the server may send the first measurement request and the second measurement request to the first device respectively; or the server may send the first measurement request and the second measurement request to the first device at the same time.
  • the server sends the third measurement request and/or the fourth measurement request to the second device.
  • the second device receives the third measurement request and/or the fourth measurement request.
  • the third measurement request is used to request to measure the phase of at least one second satellite signal received
  • the fourth measurement request is used to request to measure the phase of at least one received second reference signal.
  • the server may send the third measurement request to the second device; or the server may send the fourth measurement request to the second device; or the server may send the third measurement request and the fourth measurement request to the second device.
  • the server may send the third measurement request and the fourth measurement request to the second device respectively; or the server may send the third measurement request and the fourth measurement request to the second device at the same time.
  • the access network device sends at least one first reference signal.
  • the first device receives the first reference signal.
  • the first device receives at least one first satellite signal.
  • the first device sends an LPP message to the server, where the LPP message includes first information and second information.
  • the server receives the above-mentioned first information and second information.
  • the first information is a phase measurement value determined from at least one first satellite signal
  • the second information is a phase measurement value determined from at least one first reference signal
  • the first device may carry the first information and the second information through an LPP message.
  • the LPP message is a message used for communication between a terminal and a server. As the communication system evolves, it is not limited to this message name, and may be another message name, but the meaning of the message remains unchanged.
  • the access network device sends at least one second reference signal.
  • the second device receives the second reference signal.
  • the second device receives at least one second satellite signal.
  • the second device After receiving the at least one second satellite signal, the second device respectively measures phase measurement values of the at least one second satellite signal to obtain third information. and after receiving the at least one second reference signal, the second device respectively measures phase measurement values of the at least one second reference signal to obtain fourth information.
  • the second device may send the third information and the fourth information to the server through a positioning protocol message, where the positioning protocol message is a communication protocol message between the second device and the server.
  • the positioning protocol message is a communication protocol message between the second device and the server.
  • An implementation manner is: S811'.
  • the second device has the capability of accessing the network device, and the second device sends an NRPPa message to the server, where the NRPPa message includes the third information and the fourth information.
  • the server receives the aforementioned NRPPa message.
  • the NRPPa message is a message used for communication between the access network device and the server.
  • the communication system evolves, it is not limited to this message name, and may be another message name, but the meaning of the message remains unchanged.
  • the second device has a terminal capability, and the second device sends an LPP message to the server, where the LPP message includes third information and fourth information.
  • the server receives the aforementioned LPP message.
  • the server determines the location of the first device according to the first information, the second information, the third information, and the fourth information.
  • the first device/the second device sends the phase measurement values respectively determined according to at least one satellite signal and at least one reference signal received by itself to the server, so that the server can
  • the satellite signals received by the first device and the second device respectively and the phase measurement values determined by the reference signal are used for joint positioning, so that a relatively high-precision positioning solution can be realized.
  • FIG. 9 it is a schematic flowchart of another positioning method provided by the embodiment of the present application, which is applied to a downlink joint positioning scenario.
  • the method may include the steps of:
  • the first device receives at least one first satellite signal and at least one first reference signal.
  • the first device receives at least one first positioning reference signal sent by gNB i and/or gNB j , and receives at least one first satellite signal sent by satellite Sat m and/or Sat n .
  • the second device receives at least one second satellite signal and at least one second reference signal.
  • the second device receives at least one second PRS sent by gNB i and/or gNB j , and receives at least one second satellite signal sent by satellite Sat m and/or Sat n .
  • the second device sends the third information and the fourth information to the first device.
  • the first device receives the foregoing third information and fourth information.
  • the third information is a phase measurement value determined according to at least one second satellite signal
  • the fourth information is a phase measurement value determined according to at least one second reference signal.
  • the second device sends the third information and the fourth information to the first device.
  • the second device sends third information and fourth information to the first device.
  • the first device determines the location of the first device according to the first information, the second information, the third information, and the fourth information.
  • the first device After receiving the at least one first satellite signal, the first device respectively measures phase measurement values of the at least one first satellite signal to obtain first information. That is, the first information is a phase measurement determined from at least one first satellite signal.
  • the first device After receiving the at least one first reference signal, the first device respectively measures phase measurement values of the at least one first reference signal to obtain second information. That is, the second information is a phase measurement value determined from at least one first reference signal.
  • the first device determines the location of the first device according to the first information and the second information obtained by itself, and according to the third information and the fourth information received from the second device.
  • the first device uses at least two reference signals and at least two satellite signals to obtain multiple equations (4) above. Simultaneous equations and solving the integer ambiguity can obtain a relatively high-precision first Device location information.
  • this step reference may be made to the above step S605.
  • the first device can determine the phase measurement value respectively according to at least one first satellite signal and at least one first reference signal received by itself, and the phase measurement value received from the second device according to
  • the phase measurement values respectively determined by the at least one second satellite signal and the at least one second reference signal are used for joint positioning to determine its own position, so that relatively high-precision positioning calculation can be realized.
  • FIG. 11 it is a schematic flowchart of another positioning method provided by the embodiment of the present application, which is applied to a downlink joint positioning scenario.
  • the method may include the steps of:
  • the first device sends a positioning request to the server.
  • the server receives the positioning request.
  • the positioning solution is performed by the first device itself.
  • the first device sends a positioning request to the server before performing positioning calculation.
  • the server sends the first configuration information and/or the second configuration information to the first device.
  • the first device receives the first configuration information and/or the second configuration information.
  • the first configuration information includes at least one of the following information: a first measurement frequency, a reporting cycle of the first information, and a reporting delay of the first information;
  • the second configuration information includes at least one of the following information: a second measurement frequency, a reporting cycle of the second information, and a reporting delay of the second information.
  • the server sends the third configuration information and/or the fourth configuration information to the second device.
  • the second device receives the third configuration information and/or the fourth configuration information.
  • the third configuration information includes at least one of the following information: a third measurement frequency, a reporting cycle of the third information, and a reporting delay of the third information;
  • the fourth configuration information includes at least one of the following information: a fourth measurement frequency, a reporting period of the fourth information, and a reporting delay of the fourth information.
  • the server may also determine the second device. For details, refer to step S801.
  • the server sends the first measurement request and/or the second measurement request to the first device.
  • the first device receives the first measurement request and/or the second measurement request.
  • the first measurement request is used to request to measure the phase of at least one first satellite signal received
  • the second measurement request is used to request to measure the phase of the at least one received first reference signal.
  • the server sends the third measurement request and/or the fourth measurement request to the second device.
  • the second device receives the third measurement request and/or the fourth measurement request.
  • the third measurement request is used to request to measure the phase of at least one second satellite signal received
  • the fourth measurement request is used to request to measure the phase of at least one received second reference signal.
  • the access network device sends at least one first reference signal.
  • the first device receives the first reference signal.
  • the first device receives at least one first satellite signal.
  • the access network device sends at least one second reference signal.
  • the second device receives the second reference signal.
  • the second device receives at least one second satellite signal.
  • the second device After receiving the at least one second satellite signal, the second device respectively measures phase measurement values of the at least one second satellite signal to obtain third information. and after receiving the at least one second reference signal, the second device respectively measures phase measurement values of the at least one second reference signal to obtain fourth information.
  • the second device may send the third information and the fourth information to the first device through a positioning protocol message, where the positioning protocol message is a communication protocol message between the second device and the server.
  • the positioning protocol message is a communication protocol message between the second device and the server.
  • An implementation manner is: S1110'.
  • the second device has the capability of accessing network devices, and the second device sends an NRPPa message to the first device, where the NRPPa message includes third information and fourth information.
  • the first device receives the foregoing NRPPa message.
  • the second device has a terminal capability, and the second device sends an LPP message to the first device, where the LPP message includes third information and fourth information.
  • the first device receives the foregoing LPP message.
  • the second device supports sidelink (SL) transmission, and the second device sends a sidelink message to the first device, and the sidelink message includes third information and fourth information.
  • SL sidelink
  • the first device receives the foregoing sidelink message.
  • the third information is a phase measurement value determined according to at least one second satellite signal
  • the fourth information is a phase measurement value determined according to at least one second reference signal.
  • the first device determines the location of the first device according to the first information, the second information, the third information, and the fourth information.
  • the first device can determine the phase measurement value respectively according to at least one first satellite signal and at least one first reference signal received by itself, and the phase measurement value received from the second device according to
  • the phase measurement values respectively determined by the at least one second satellite signal and the at least one second reference signal are used for joint positioning to determine its own position, so that relatively high-precision positioning calculation can be realized.
  • FIG. 12 it is a schematic flowchart of another positioning method provided by the embodiment of the present application, which is applied to the uplink joint positioning scenario.
  • the method may include the steps of:
  • the first device receives at least one first satellite signal.
  • the first device receives at least one first satellite signal sent by satellite Sat m and/or Sat n .
  • the second device receives at least one second satellite signal.
  • the second device receives at least one second satellite signal transmitted by satellite Sat m and/or Sat n .
  • the first device sends at least one first reference signal to the access network device.
  • the access network device receives the at least one first reference signal.
  • the first device may send at least one first reference signal to the access network device.
  • the first reference signal may be a sounding reference signal (sounding reference signal, SRS) or the like.
  • the first device sends at least one first SRS to gNB i and/or gNB j .
  • the second device sends at least one second reference signal to the access network device.
  • the access network device receives the at least one second reference signal.
  • the second reference signal may also be an SRS or the like.
  • the second device sends at least one second SRS to gNB i and/or gNB j .
  • the first device sends first information to the server.
  • the server receives the first information.
  • the first device only sends the first information to the server.
  • the second device sends third information to the server.
  • the server receives the third information.
  • step S604, S811' or S811 For the specific implementation of this step, reference may be made to the above step S604, S811' or S811".
  • step S604, S811' or S811 The difference from the above embodiment is that the second device only sends the third information to the server.
  • the access network device sends the second information and the fourth information to the server.
  • the server receives the second information and the fourth information.
  • the access network device After receiving the at least one first reference signal, the access network device respectively measures phase measurement values of the at least one first reference signal to obtain the second information. That is, the second information is a phase measurement value determined from at least one first reference signal.
  • the access network device may respectively measure the phase measurement value of the at least one first reference signal to obtain the phase measurement value of each first reference signal in the at least one first reference signal.
  • the access network device may further calculate the difference between the phase measurement values of two first reference signals in the at least one first reference signal, for example, using the measured phase measurement value of the first reference signal as a reference value , calculating a difference between phase measurement values of other first reference signals in the at least one first reference signal and the aforementioned reference value.
  • the reference value may also be a maximum value or a minimum value among measured phase measurement values of at least one first reference signal, which is not limited in this embodiment.
  • the access network device may further select a certain number of phase measurement values of the first reference signal with better quality from the phase measurement values of each first reference signal in the at least one first reference signal.
  • the access network device may also measure phase measurement values at at least two moments of any one of the at least one first reference signal.
  • the any first reference signal may be every first reference signal. Further, a difference between phase measurement values at at least two moments of any one of the first reference signals may also be calculated.
  • the access network device may also measure a difference between phase measurement values at at least two moments of any one of the at least one first reference signal.
  • the second information may include at least one of the following information: the phase measurement value of each of the at least one first reference signal, the phase measurement value of each of the at least one first reference signal, the two first reference signals of the at least one first reference signal The difference between the phase measurement values of the reference signals, the difference between the phase measurement values of any one of the at least one first reference signal at at least two instants.
  • the second information may also include phase measurement values of a certain number of first reference signals with better quality among the at least one first reference signal.
  • the access network device After receiving the at least one second reference signal, the access network device respectively measures phase measurement values of the at least one second reference signal to obtain fourth information. That is, the fourth information is a phase measurement value determined according to at least one second reference signal.
  • the access network device may respectively measure the phase measurement value of the at least one second reference signal to obtain the phase measurement value of each second reference signal in the at least one second reference signal.
  • the access network device may further calculate the difference between the phase measurement values of the two second reference signals in the at least one second reference signal, for example, using the measured phase measurement value of the first reference signal as the reference value , calculating the difference between the phase measurement value of the other second reference signal in the at least one second reference signal and the aforementioned reference value.
  • the reference value may also be a maximum value or a minimum value among measured phase measurement values of at least one second reference signal, which is not limited in this embodiment.
  • the access network device may further select phase measurement values of a certain number of second reference signals with better quality from the phase measurement values of each second reference signal in the at least one second reference signal.
  • the access network device may also measure phase measurement values at at least two moments of any one of the at least one second reference signal.
  • the any second reference signal may be every second reference signal. Further, a difference between phase measurement values at at least two moments of any second reference signal may also be calculated.
  • the access network device may also measure a difference between phase measurement values at at least two moments of any one of the at least one second reference signal.
  • the fourth information may include at least one of the following information: the phase measurement value of each of the at least one second reference signal, the phase measurement value of each of the at least one second reference signal The difference between the phase measurements of the reference signals, the difference between the phase measurements of any one of the at least one second reference signal at at least two instants.
  • the fourth information may also include phase measurement values of a certain number of second reference signals with better quality among the at least one second reference signal.
  • the server determines the location of the first device according to the first information, the second information, the third information, and the fourth information.
  • the first device and the second device respectively send the phase measurement value determined according to the received at least one satellite signal to the server, and the first device and the second device respectively send to the access
  • the network device sends at least one reference signal, so that the access network device sends the phase measurement values determined according to the received at least one reference signal to the server, so that the server can perform joint positioning according to these phase measurement values, and achieve higher precision. positioning solution.
  • FIG. 14 it is a schematic flowchart of another positioning method provided in the embodiment of the present application, which is applied to an uplink joint positioning scenario.
  • the method may include the steps of:
  • the server determines the second device.
  • the server sends the first configuration information to the first device.
  • the first device receives the first configuration information.
  • the first configuration information includes at least one of the following information: a first measurement frequency, a second measurement frequency, a reporting cycle of the first information, and a reporting delay of the first information.
  • step S802 For the specific implementation of this step, reference may be made to step S802.
  • the server may not configure the first measurement frequency and the second frequency, and the first device sends the first measurement frequency and the second measurement frequency to the server.
  • the server sends the second configuration information to the second device.
  • the second device receives the second configuration information.
  • the second configuration information includes at least one of the following information: a third measurement frequency, a fourth measurement frequency, a reporting cycle of the third information, and a reporting delay of the third information.
  • step S803 For the specific implementation of this step, reference may be made to step S803.
  • the server may not configure the third measurement frequency and the fourth measurement frequency, and the second device sends the third measurement frequency and the fourth measurement frequency to the server.
  • the server sends a first measurement request and/or a first sending request to the first device.
  • the first device receives the first measurement request and/or the first sending request.
  • the first measurement request is used to request to measure the phase of at least one first satellite signal received
  • the first sending request is used to request to send at least one first reference signal.
  • step S804. The difference from step S804 is that the server also sends the above-mentioned first sending request.
  • the server sends a second measurement request and/or a second sending request to the second device.
  • the second device receives the second measurement request and/or the second sending request.
  • the second measurement request is used to request to measure the phase of at least one second satellite signal received
  • the second sending request is used to request to send at least one second reference signal
  • step S805 For the specific implementation of this step, reference may be made to step S805.
  • the server also sends the above-mentioned second sending request.
  • the first device receives at least one first satellite signal.
  • the at least one first satellite signal is used for positioning.
  • the second device receives at least one second satellite signal.
  • the at least one second satellite signal is used for positioning.
  • the first device sends at least one first reference signal to the access network device.
  • the access network device receives the at least one first reference signal.
  • the at least one first reference signal is used for positioning.
  • the second device sends at least one second reference signal to the access network device.
  • the access network device receives the at least one second reference signal.
  • the at least one second reference signal is used for positioning.
  • the first device sends an LPP message to the server, where the LPP message includes first information.
  • the server receives the LPP message.
  • step S808 For the specific implementation of this step, reference may be made to step S808.
  • the second device may send the third information to the server through a positioning protocol message, and according to different positioning protocol messages, the following implementation methods are available:
  • the second device has the capability of accessing the network device, then S1411'.
  • the second device sends an NRPPa message to the server, and the NRPPa message includes the third information.
  • the server receives the NRPPa message.
  • this step reference may be made to step S811'.
  • the second device has terminal capabilities, then S1411".
  • the second device sends an LPP message to the server, and the LPP message includes the third information.
  • the server receives the LPP message.
  • the specific implementation of this step Refer to step S811".
  • the access network device sends the second information and the fourth information to the server.
  • the server receives the second information and the fourth information.
  • the access network device may send an NRPPa message to the server, where the NRPPa message includes the second information and the fourth information.
  • the server determines the location of the first device according to the first information, the second information, the third information, and the fourth information.
  • the first device and the second device respectively send the phase measurement value determined according to the received at least one satellite signal to the server, and the first device and the second device respectively send to the access
  • the network device sends at least one reference signal, so that the access network device sends the phase measurement values determined according to the received at least one reference signal to the server, so that the server can perform joint positioning according to these phase measurement values, and achieve higher precision. positioning solution.
  • the first device, the second device or the server includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of the present application, as long as the program that records the code of the method provided in the embodiment of the present application can be executed to provide the method according to the embodiment of the present application.
  • the execution body of the method provided by the embodiment of the present application may be a terminal or an access network device or server, or a device that can call a program and execute the program in the first device, second device or server functional module.
  • the relevant functions of the first device, the second device, or the server in the embodiments of the present application can be realized by one device, or by multiple devices, or by one or more functional modules in one device , which is not specifically limited in this embodiment of the present application.
  • the above functions can be network elements in hardware devices, software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (for example, a cloud platform) virtualization capabilities.
  • the first device, the second device or the server include corresponding hardware structures and/or software modules for performing respective functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 15 and FIG. 16 are schematic structural diagrams of possible positioning devices provided by the embodiments of the present application.
  • the locating device can also be a communication device. These positioning devices can be used to implement the functions of the first device, the second device, or the server in the above method embodiments, and thus can also realize the beneficial effects of the above method embodiments.
  • the positioning device may be a first device, a second device or a server, or may be a module (such as a chip) applied to the first device, the second device or the server.
  • a positioning device 1500 includes a processing unit 1510 and a transceiver unit 1520 .
  • the positioning device 1500 is used to realize the functions of the first device, the second device or the server in the method embodiments shown in the above-mentioned Fig. 6 , Fig. 8 , Fig. 9 , Fig. 11 , Fig. 12 and Fig. 14 .
  • the transceiver unit 1520 is configured to receive at least one satellite signal and at least one reference signal; and The transceiver unit 1520 is further configured to send first information and second information, the first information is a phase measurement value determined according to the at least one satellite signal, and the second information is based on the at least one reference signal Determined phase measurements.
  • the at least one satellite signal and the at least one reference signal are used for positioning.
  • the first information includes at least one of the following information: a phase measurement value of each satellite signal in the at least one satellite signal, a phase measurement value of two satellite signals in the at least one satellite signal The difference between the phase measurement values, the difference between the phase measurement values at at least two moments of any one of the at least one satellite signal;
  • the second information includes at least one of the following information: the at least a phase measurement for each of the one reference signal, a difference between phase measurements for two of the at least one reference signal, at least The difference between the phase measurements at two time instants.
  • the transceiver unit 1520 is further configured to send a first measurement frequency and/or a second measurement frequency, the first measurement frequency is the frequency of the at least one satellite signal, and the first measurement frequency The second measurement frequency is the frequency of the at least one reference signal.
  • the transceiving unit 1520 is further configured to receive first configuration information and/or second configuration information; wherein the first configuration information includes at least one of the following information: the first The measurement frequency, the reporting period of the first information, and the reporting delay of the first information; the second configuration information includes at least one of the following information: the second measurement frequency, the reporting period of the second information . The reporting time delay of the second information.
  • the transceiver unit 1520 is further configured to receive a first measurement request and/or a second measurement request; wherein the first measurement request is used to request measurement of the at least one received The phase of the satellite signal; the second measurement request is used to request to measure the phase of the at least one received reference signal.
  • the transceiver unit 1520 is further configured to send a positioning protocol message, where the positioning protocol message includes the first information and the second information; wherein, the positioning protocol message is a new Wireless Positioning Protocol NRPPa message or Long Term Evolution Positioning Protocol LPP message.
  • the transceiving unit 1520 is configured to receive the first information, the second information, the third information and the fourth information; and
  • the processing unit 1510 is configured to determine the location of the first device according to the first information, the second information, the third information, and the fourth information; wherein the first information is the The phase measurement value determined by the first device according to at least one first satellite signal, the second information is the phase measurement value determined by the first device according to at least one first reference signal, and the third information is the phase measurement value determined by the second device according to A phase measurement value determined by at least one second satellite signal, the fourth information is a phase measurement value determined by the second device based on at least one second reference signal.
  • the processing unit 1510 is further configured to determine the second device.
  • the first information includes at least one of the following information: a phase measurement value of each first satellite signal in the at least one first satellite signal, and a phase measurement value in the at least one first satellite signal The difference between the phase measurements of two first satellite signals of the at least one first satellite signal, the difference between the phase measurements of at least two instants of any one of the at least one first satellite signals;
  • the second information includes at least one of the following information: a phase measurement value of each first reference signal in the at least one first reference signal, a phase measurement value of two first reference signals in the at least one first reference signal The difference between the phase measurements of any one of the at least one first reference signal at least two moments;
  • the third information includes at least one of the following information: the a phase measurement for each of the at least one second satellite signal, a difference between the phase measurements for two of the at least one second satellite signals, the at least one first The difference between phase measurement values at at least two moments of any one of the second satellite signals in the two satellite signals;
  • the fourth information includes at least one of the following information:
  • the transceiver unit 1520 is further configured to receive a first measurement frequency, a second measurement frequency, a third measurement frequency and/or a fourth measurement frequency, the first measurement frequency is the the frequency of at least one first satellite signal, the second measurement frequency is the frequency of the at least one first reference signal, the third measurement frequency is the frequency of the at least one second satellite signal, the fourth measurement The frequency is the frequency of the at least one second reference signal.
  • the transceiving unit 1520 is further configured to send first configuration information and/or second configuration information to the first device; wherein the first configuration information includes at least one of the following Information: the first measurement frequency, the reporting period of the first information, and the reporting delay of the first information; the second configuration information includes at least one of the following information: the second measurement frequency, the The reporting cycle of the second information and the reporting time delay of the second information.
  • the transceiving unit 1520 is further configured to send third configuration information and/or fourth configuration information to the second device; wherein the third configuration information includes at least one of the following Information: the third measurement frequency, the reporting period of the third information, and the reporting delay of the third information; the fourth configuration information includes at least one of the following information: the fourth measurement frequency, the The reporting cycle of the fourth information and the reporting time delay of the fourth information.
  • the transceiver unit 1520 is further configured to send a first measurement request and/or a second measurement request to the first device; wherein the first measurement request is used to request a measurement reception The received phase of the at least one first satellite signal; the second measurement request is used to request to measure the received phase of the at least one first reference signal.
  • the transceiving unit 1520 is further configured to send a third measurement request and/or a fourth measurement request to the second device; wherein the third measurement request is used to request measurement reception The received phase of the at least one second satellite signal; the fourth measurement request is used to request to measure the received phase of the at least one second reference signal.
  • the transceiving unit 1520 is further configured to receive a positioning protocol message, where the positioning protocol message includes the first information and the second information; wherein, the positioning protocol message is a new Wireless Positioning Protocol NRPPa message or Long Term Evolution Positioning Protocol LPP message.
  • the transceiver unit 1520 is configured to receive at least one first satellite signal and at least one first reference signal;
  • the transceiver unit 1520 is further configured to receive third information and fourth information, the third information is a phase measurement value determined by the second device according to at least one second satellite signal, and the fourth information is the second device The phase measurement value determined according to at least one second reference signal;
  • the processing unit 1510 configured to determine the first device's phase value according to the first information, the second information, the third information and the fourth information position, the first information is a phase measurement value determined by the first device according to the at least one first satellite signal, and the second information is determined by the first device according to the at least one first reference signal phase measurements.
  • the transceiving unit 1520 is further configured to send a location request to the server.
  • the first information includes at least one of the following information: a phase measurement value of each first satellite signal in the at least one first satellite signal, and a phase measurement value in the at least one first satellite signal The difference between the phase measurements of two first satellite signals of the at least one first satellite signal, the difference between the phase measurements of at least two instants of any one of the at least one first satellite signals;
  • the second information includes at least one of the following information: a phase measurement value of each first reference signal in the at least one first reference signal, a phase measurement value of two first reference signals in the at least one first reference signal The difference between the phase measurements of any one of the at least one first reference signal at least two moments;
  • the third information includes at least one of the following information: the a phase measurement for each of the at least one second satellite signal, a difference between the phase measurements for two of the at least one second satellite signals, the at least one first The difference between phase measurement values at at least two moments of any one of the second satellite signals in the two satellite signals;
  • the fourth information includes at least one of the following information:
  • the transceiver unit 1520 is further configured to send the first measurement frequency and/or the second measurement frequency, the first measurement frequency is the frequency of the at least one first satellite signal, so The second measurement frequency is the frequency of the at least one first reference signal.
  • the transceiving unit 1520 is further configured to receive first configuration information and/or second configuration information; wherein the first configuration information includes at least one of the following information: the first The measurement frequency, the reporting period of the first information, and the reporting delay of the first information; the second configuration information includes at least one of the following information: the second measurement frequency, the reporting period of the second information . The reporting time delay of the second information.
  • the transceiver unit 1520 is further configured to receive a first measurement request and/or a second measurement request; wherein the first measurement request is used to request measurement of the at least one received The phase of the first satellite signal; the second measurement request is used to request to measure the phase of the at least one received first reference signal.
  • the transceiving unit 1520 is further configured to receive a radio resource control message, where the radio resource control message includes the third information and the fourth information; or the transceiving unit 1520, It is further configured to receive a Long Term Evolution New Radio Positioning Protocol NRPPa message, where the NRPPa message includes the third information and the fourth information; or the transceiver unit 1520 is also configured to receive a side link message, the side link The uplink message includes the third information and the fourth information.
  • the transceiver unit 1520 is used to receive at least one satellite signal; the transceiver unit 1520, It is further configured to send at least one reference signal; and the transceiving unit 1520 is further configured to send first information, where the first information is a phase measurement value determined according to the at least one satellite signal.
  • the at least one satellite signal and the at least one reference signal are used for positioning.
  • the first information includes at least one of the following information: a phase measurement value of each satellite signal in the at least one satellite signal, a phase measurement value of two satellite signals in the at least one satellite signal The difference between the phase measurements, the difference between the phase measurements of at least two time instants for any one of the at least one satellite signal.
  • the transceiver unit 1520 is further configured to send a first measurement frequency and/or a second measurement frequency, the first measurement frequency is the frequency of the at least one satellite signal, and the first measurement frequency The second measurement frequency is the frequency of the at least one reference signal.
  • the transceiving unit 1520 is further configured to receive configuration information; wherein the configuration information includes at least one of the following information: the first measurement frequency, the second measurement frequency, the The reporting cycle of the first information and the reporting delay of the first information.
  • the transceiver unit 1520 is further configured to receive a measurement request and/or send a request; wherein the measurement request is used to request measurement of the phase of the at least one received satellite signal; The sending request is used to request sending the at least one reference signal.
  • the transceiver unit 1520 is further configured to send a positioning protocol message, where the positioning protocol message includes the first information; wherein, the positioning protocol message is a New Radio Positioning Protocol NRPPa message or Long Term Evolution Positioning Protocol LPP message.
  • the transceiver unit 1520 is configured to receive the first information sent by the first device and the second information sent by the access network device. information and fourth information, third information sent by the second device; and the processing unit 1510 is configured to determine according to the first information, the second information, the third information, and the fourth information The location of the first device; wherein, the first information is a phase measurement value determined by the first device according to at least one first satellite signal, and the second information is a phase measurement value determined by the access network device according to at least one first satellite signal.
  • a phase measurement value determined by a reference signal is a phase measurement value determined by the second device based on at least one second satellite signal
  • the fourth information is a phase measurement value determined by the access network device based on at least one second satellite signal
  • a phase measurement value determined by a reference signal, the at least one first reference signal is sent by the first device, and the at least one second reference signal is sent by the second device.
  • the processing unit 1510 is further configured to determine the second device.
  • the first information includes at least one of the following information: a phase measurement value of each first satellite signal in the at least one first satellite signal, and a phase measurement value in the at least one first satellite signal The difference between the phase measurements of two first satellite signals of the at least one first satellite signal, the difference between the phase measurements of at least two instants of any one of the at least one first satellite signals;
  • the second information includes at least one of the following information: a phase measurement value of each first reference signal in the at least one first reference signal, a phase measurement value of two first reference signals in the at least one first reference signal The difference between the phase measurements of any one of the at least one first reference signal at least two moments;
  • the third information includes at least one of the following information: the a phase measurement for each of the at least one second satellite signal, a difference between the phase measurements for two of the at least one second satellite signals, the at least one first The difference between phase measurement values at at least two moments of any one of the second satellite signals in the two satellite signals;
  • the fourth information includes at least one of the following information:
  • the transceiver unit 1520 is further configured to receive a first measurement frequency, a second measurement frequency, a third measurement frequency and/or a fourth measurement frequency, the first measurement frequency is the the frequency of at least one first satellite signal, the second measurement frequency is the frequency of the at least one first reference signal, the third measurement frequency is the frequency of the at least one second satellite signal, the fourth measurement The frequency is the frequency of the at least one second reference signal.
  • the transceiving unit 1520 is further configured to send first configuration information to the first device; wherein the first configuration information includes at least one of the following information: the first measurement frequency, the second measurement frequency, the reporting period of the first information, and the reporting delay of the first information.
  • the transceiving unit 1520 is further configured to send second configuration information to the second device; wherein the second configuration information includes at least one of the following information: the third measurement frequency, the fourth measurement frequency, the reporting period of the third information, and the reporting delay of the third information.
  • the transceiving unit 1520 is further configured to send a first measurement request and/or a first sending request to the first device; wherein the first measurement request is used to request a measurement reception The received phase of the at least one first satellite signal; the first transmission request is used to request to transmit the at least one first reference signal.
  • the transceiving unit 1520 is further configured to send a second measurement request and/or a second sending request to the second device; wherein the second measurement request is used to request a measurement reception The received phase of the at least one second satellite signal; the second sending request is used to request sending the at least one second reference signal.
  • the transceiver unit 1520 is further configured to receive a positioning protocol message, where the positioning protocol message includes the third information; wherein, the positioning protocol message is a New Radio Positioning Protocol NRPPa message or Long Term Evolution Positioning Protocol LPP message.
  • processing unit 1510 and the transceiver unit 1520 can be directly obtained by referring to the relevant descriptions in the method embodiments shown in FIG. 6 , FIG. 8 , FIG. 9 , FIG. 11 , FIG. 12 , and FIG. 14 .
  • the positioning device 1600 includes a processor 1610 and an interface circuit 1620 .
  • the processor 1610 and the interface circuit 1620 are coupled to each other.
  • the interface circuit 1620 may be a transceiver or an input/output interface.
  • the positioning device 1600 may further include a memory 1630 for storing instructions executed by the processor 1610 or storing input data required by the processor 1610 to execute the instructions or storing data generated after the processor 1610 executes the instructions.
  • the processor 1610 is used to realize the functions of the above-mentioned processing unit 1510
  • the interface circuit 1620 is used to realize the above-mentioned Functions of the transceiver unit 1520 .
  • the terminal chip When the positioning device is a chip applied to a terminal, the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by an access network device or server; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas). ) to send information, the information is sent by the terminal to the access network device or server.
  • the access network equipment chip When the positioning device is a chip applied to access network equipment, the access network equipment chip implements the functions of the access network equipment in the above method embodiments.
  • the access network device chip receives information from other modules (such as radio frequency modules or antennas) in the access network device, and the information is sent to the access network device by the terminal or server; or, the access network device chip sends information to the access network device Other modules (such as radio frequency modules or antennas) in the network equipment send information, and the information is sent by the access network equipment to the terminal or server.
  • modules such as radio frequency modules or antennas
  • the server chip implements the functions of the server in the above method embodiment.
  • the chip of the server receives information from other modules in the server (such as radio frequency modules or antennas), and the information is sent to the server by the terminal or access network equipment; or, the chip of the server sends information to other modules in the server (such as radio frequency modules) or antenna) to send information, the information is sent by the server to the terminal or the access network device.
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, compact disc read-only memory (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the base station or the terminal.
  • the processor and the storage medium may also exist in the base station or the terminal as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a base station, user equipment or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; or it may be a semiconductor medium, such as a solid state disk.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请公开了一种定位方法及装置、存储介质、程序产品。第一设备接收至少一个第一卫星信号和至少一个第一参考信号,并发送第一信息和第二信息。第二设备接收至少一个第二卫星信号和至少一个第二参考信号,并发送第三信息和第四信息。服务器接收第一信息、第二信息、第三信息和第四信息,并根据第一信息、第二信息、第三信息和第四信息,确定第一设备的位置。从而服务器可以根据第一设备和第二设备分别接收到的卫星信号和参考信号确定的相位测量值进行联合定位,可以实现较高精度的定位解算。

Description

定位方法及装置、存储介质、程序产品
本申请要求于2021年12月21日提交中国国家知识产权局、申请号为202111576791.9、发明名称为“定位方法及装置、存储介质、程序产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种定位方法及装置、存储介质、程序产品。
背景技术
根据全球导航卫星***(global navigation satellite system,GNSS)载波相位定位技术可以进行定位解算。该技术依赖于接收到的卫星数量,需要接收到足够多的卫星信号才能实现高精度定位解算。然而,在高架桥、高楼等密集环境中,由于遮挡等可能存在卫星信号覆盖空洞,接收机可能无法实现高精度定位。
发明内容
本申请提供一种定位方法及装置、存储介质、程序产品,以联合第一设备和第二设备分别接收到的至少一个卫星信号和至少一个参考信号进行定位,从而实现高精度定位。
第一方面,提供了一种定位方法,所述方法包括:第一设备/第二设备接收至少一个卫星信号和至少一个参考信号;以及所述第一设备/第二设备发送第一信息和第二信息,所述第一信息是根据所述至少一个卫星信号确定的相位测量值,所述第二信息是根据所述至少一个参考信号确定的相位测量值。在该方面中,第一设备/第二设备通过将根据自身接收到的至少一个卫星信号和至少一个参考信号分别确定的相位测量值发送给服务器,使得服务器可以根据第一设备和第二设备分别接收到的卫星信号和参考信号确定的相位测量值进行联合定位,可以实现较高精度的定位解算。
上述服务器可以是核心网设备、定位服务器或网络设备的部件等。
在一种可能的实现中,所述第二设备与所述第一设备具有的共同的可通信的卫星和接入网设备的总数最多;或所述第二设备与所述第一设备具有的共同的可通信的卫星和接入网设备的总数超过第一阈值。所述第二设备可以是终端或接入网设备,第二设备也可以称为定位参考单元(positioning reference unit,PRU)。在该实现中,该第二设备可以接收到至少一个卫星信号和至少一个参考信号的概率较大,从而便于服务器进行联合定位。
在另一种可能的实现中,所述至少一个卫星信号和所述至少一个参考信号用于定位。
在又一种可能的实现中,所述第一信息包括以下至少一个信息:所述至少一个卫星信号中的每个卫星信号的相位测量值,所述至少一个卫星信号中的两个卫星信号的相位测量值之间的差值,所述至少一个卫星信号中的任一个卫星信号的至少两个时刻的相位测量值之间的差值;所述第二信息包括以下至少一个信息:所述至少一个参考信号中的每个参考信号的相位测量值,所述至少一个参考信号中的两个参考信号的相位测量值之间的差值,所述至少一个参考信号中的任一个参考信号的至少两个时刻的相位测量值之间的差值。在该实现中,第一信息、第二信息的表示形式多样。第一信息包括至少一个卫星信号中的每个卫星信号的相位测量值,或者第二信息包括至少一个参考信号中的每个参考信号的相位测量值,服务器接收到该第一信息,即可获得这些相位测量值;第一信息包括至少一个卫星信号中的两个卫星 信号的相位测量值之间的差值,或者第二信息包括至少一个参考信号中的两个参考信号的相位测量值之间的差值,可以降低信令开销,服务器可以直接利用这些差值进行高精度定位解算;第一信息包括至少一个卫星信号中的任一个卫星信号的至少两个时刻的相位测量值之间的差值,或者第二信息包括至少一个参考信号中的任一个参考信号的至少两个时刻的相位测量值之间的差值,可以使得服务器获得卫星信号/参考信号的累计的相位测量值,根据该累计的相位测量值,可以更准确地确定第一设备的位置。
在又一种可能的实现中,所述方法还包括:所述第一设备/第二设备发送第一测量频率和/或第二测量频率,所述第一测量频率是所述至少一个卫星信号的频率,所述第二测量频率是所述至少一个参考信号的频率。在该实现中,可以由第一设备/第二设备上报至少一个卫星信号的频率和/或至少一个参考信号的频率。第一测量频率可以包括一个或多个频率值,第二测量频率可以包括一个或多个频率值。
在又一种可能的实现中,所述方法还包括:所述第一设备/第二设备接收第一配置信息和/或第二配置信息;其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第一信息的上报周期、所述第一信息的上报时延;所述第二配置信息包括以下至少一种信息:所述第二测量频率、所述第二信息的上报周期、所述第二信息的上报时延。在该实现中,服务器可以配置第一信息/第二信息的上报周期、第一信息/第二信息的上报时延。若在上述实现中,第一设备/第二设备没有发送第一测量频率和/或第二测量频率,服务器还可以配置第一测量频率和/或第二测量频率。通过接收第一配置信息和/或第二配置信息,第一设备/第二设备可以准确、及时地发送第一信息/第二信息。
在又一种可能的实现中,所述第一设备/第二设备发送第一信息和第二信息之前,所述方法还包括:所述第一设备/第二设备接收第一测量请求和/或第二测量请求;其中,所述第一测量请求用于请求测量接收到的所述至少一个卫星信号的相位;所述第二测量请求用于请求测量接收到的所述至少一个参考信号的相位。在该实现中,第一设备/第二设备可以在接收到服务器的测量请求后,测量接收到的至少一个卫星信号/至少一个参考信号的相位。
在又一种可能的实现中,所述第一设备/第二设备发送第一信息和第二信息,包括:所述第一设备/第二设备发送定位协议消息,所述定位协议消息包括所述第一信息和所述第二信息;其中,所述定位协议消息是第一设备/第二设备与服务器之间的通信协议消息,可以为新无线定位协议(new radio positioning protocol annex,NRPPa)消息或长期演进定位协议(long term evolution positioning protocol,LPP)消息。在该实现中,第一设备为终端,可以通过LPP消息向服务器发送第一信息和第二信息。第二设备可以为终端或基站,当第二设备为终端时,可以通过LPP消息向服务器发送第一信息和第二信息;当第二设备为基站时,可以通过NRPPa消息向服务器发送第一信息和第二信息。
第二方面,提供了一种定位方法,所述方法包括:服务器接收第一信息、第二信息、第三信息和第四信息;以及所述服务器根据所述第一信息、所述第二信息、所述第三信息和所述第四信息,确定第一设备的位置;其中,所述第一信息是所述第一设备根据至少一个第一卫星信号确定的相位测量值,所述第二信息是所述第一设备根据至少一个第一参考信号确定的相位测量值,所述第三信息是第二设备根据至少一个第二卫星信号确定的相位测量值,所述第四信息是所述第二设备根据至少一个第二参考信号确定的相位测量值。在该方面中,服务器通过接收第一设备/第二设备根据自身接收到的至少一个卫星信号和至少一个参考信号分别确定的相位测量值,并根据第一设备和第二设备分别接收到的卫星信号和参考信号确定的相位测量值进行联合定位,可以实现较高精度的定位解算。
在一种可能的实现中,所述服务器接收第三信息和第四信息之前,所述方法还包括:所述服务器确定所述第二设备。在该实现中,所述第二设备与所述第一设备具有的共同的可通信的卫星和接入网设备的总数最多;或所述第二设备与所述第一设备具有的共同的可通信的卫星和接入网设备的总数超过第一阈值。所述第二设备可以是终端或接入网设备,第二设备也可以称为PRU。该第二设备可以接收到至少一个卫星信号和至少一个参考信号,从而便于服务器进行联合定位。
在另一种可能的实现中,所述第一信息包括以下至少一个信息:所述至少一个第一卫星信号中的每个第一卫星信号的相位测量值,所述至少一个第一卫星信号中的两个第一卫星信号的相位测量值之间的差值,所述至少一个第一卫星信号中的任一个第一卫星信号的至少两个时刻的相位测量值之间的差值;所述第二信息包括以下至少一个信息:所述至少一个第一参考信号中的每个第一参考信号的相位测量值,所述至少一个第一参考信号中的两个第一参考信号的相位测量值之间的差值,所述至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值之间的差值;所述第三信息包括以下至少一个信息:所述至少一个第二卫星信号中的每个第二卫星信号的相位测量值,所述至少一个第二卫星信号中的两个第二卫星信号的相位测量值之间的差值,所述至少一个第二卫星信号中的任一个第二卫星信号的至少两个时刻的相位测量值之间的差值;所述第四信息包括以下至少一个信息:所述至少一个第二参考信号中的每个第二参考信号的相位测量值,所述至少一个第二参考信号中的两个第二参考信号的相位测量值之间的差值,所述至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值之间的差值。
在又一种可能的实现中,所述方法还包括:所述服务器接收第一测量频率、第二测量频率、第三测量频率和/或第四测量频率,所述第一测量频率是所述至少一个第一卫星信号的频率,所述第二测量频率是所述至少一个第一参考信号的频率,所述第三测量频率是所述至少一个第二卫星信号的频率,所述第四测量频率是所述至少一个第二参考信号的频率。
在又一种可能的实现中,所述方法还包括:所述服务器向所述第一设备发送第一配置信息和/或第二配置信息;其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第一信息的上报周期、所述第一信息的上报时延;所述第二配置信息包括以下至少一种信息:所述第二测量频率、所述第二信息的上报周期、所述第二信息的上报时延。
在又一种可能的实现中,所述方法还包括:所述服务器向所述第二设备发送第三配置信息和/或第四配置信息;其中,所述第三配置信息包括以下至少一种信息:所述第三测量频率、所述第三信息的上报周期、所述第三信息的上报时延;所述第四配置信息包括以下至少一种信息:所述第四测量频率、所述第四信息的上报周期、所述第四信息的上报时延。
在又一种可能的实现中,所述方法还包括:所述服务器向所述第一设备发送第一测量请求和/或第二测量请求;其中,所述第一测量请求用于请求测量接收到的所述至少一个第一卫星信号的相位;所述第二测量请求用于请求测量接收到的所述至少一个第一参考信号的相位。
在又一种可能的实现中,所述方法还包括:所述服务器向所述第二设备发送第三测量请求和/或第四测量请求;其中,所述第三测量请求用于请求测量接收到的所述至少一个第二卫星信号的相位;所述第四测量请求用于请求测量接收到的所述至少一个第二参考信号的相位。
在又一种可能的实现中,所述服务器接收第三信息和第四信息,包括:所述服务器接收定位协议消息,所述定位协议消息包括所述第一信息和所述第二信息;其中,所述定位协议消息是第一设备/第二设备与服务器之间的通信协议消息,可以为新无线定位协议NRPPa消息或长期演进定位协议LPP消息。
第三方面,提供了一种定位方法,所述方法包括:第一设备接收至少一个第一卫星信号和至少一个第一参考信号;所述第一设备接收第三信息和第四信息,所述第三信息是第二设备根据至少一个第二卫星信号确定的相位测量值,所述第四信息是所述第二设备根据至少一个第二参考信号确定的相位测量值;以及所述第一设备根据第一信息、第二信息、所述第三信息和所述第四信息,确定所述第一设备的位置,所述第一信息是所述第一设备根据所述至少一个第一卫星信号确定的相位测量值,所述第二信息是所述第一设备根据所述至少一个第一参考信号确定的相位测量值。在该方面中,第一设备可以根据自身接收到的至少一个第一卫星信号和至少一个第一参考信号分别确定的相位测量值,以及从第二设备接收到的根据至少一个第二卫星信号和至少一个第二参考信号分别确定的相位测量值,联合进行定位,确定自身的位置,从而可以实现较高精度的定位解算。
在一种可能的实现中,所述第一设备接收至少一个第一卫星信号和至少一个第一参考信号之前,所述方法还包括:所述第一设备向服务器发送定位请求。
在另一种可能的实现中,所述第一信息包括以下至少一个信息:所述至少一个第一卫星信号中的每个第一卫星信号的相位测量值,所述至少一个第一卫星信号中的两个第一卫星信号的相位测量值之间的差值,所述至少一个第一卫星信号中的任一个第一卫星信号的至少两个时刻的相位测量值之间的差值;所述第二信息包括以下至少一个信息:所述至少一个第一参考信号中的每个第一参考信号的相位测量值,所述至少一个第一参考信号中的两个第一参考信号的相位测量值之间的差值,所述至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值之间的差值;所述第三信息包括以下至少一个信息:所述至少一个第二卫星信号中的每个第二卫星信号的相位测量值,所述至少一个第二卫星信号中的两个第二卫星信号的相位测量值之间的差值,所述至少一个第二卫星信号中的任一个第二卫星信号的至少两个时刻的相位测量值之间的差值;所述第四信息包括以下至少一个信息:所述至少一个第二参考信号中的每个第二参考信号的相位测量值,所述至少一个第二参考信号中的两个第二参考信号的相位测量值之间的差值,所述至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值之间的差值。
在又一种可能的实现中,所述方法还包括:所述第一设备发送第一测量频率和/或第二测量频率,所述第一测量频率是所述至少一个第一卫星信号的频率,所述第二测量频率是所述至少一个第一参考信号的频率。
在又一种可能的实现中,所述方法还包括:所述第一设备接收第一配置信息和/或第二配置信息;其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第一信息的上报周期、所述第一信息的上报时延;所述第二配置信息包括以下至少一种信息:所述第二测量频率、所述第二信息的上报周期、所述第二信息的上报时延。
在又一种可能的实现中,所述第一设备接收至少一个第一卫星信号和至少一个第一参考信号之前,所述方法还包括:所述第一设备接收第一测量请求和/或第二测量请求;其中,所述第一测量请求用于请求测量接收到的所述至少一个第一卫星信号的相位;所述第二测量请求用于请求测量接收到的所述至少一个第一参考信号的相位。
在又一种可能的实现中,所述第一设备接收第三信息和第四信息,包括:所述第一设备接收无线资源控制消息,所述无线资源控制(radio resource control,RRC)消息包括所述第三信息和所述第四信息;或所述第一设备接收长期演进新无线定位协议NRPPa消息,所述NRPPa消息包括所述第三信息和所述第四信息;或所述第一设备接收侧行链路消息,所述侧行链路消息包括所述第三信息和所述第四信息。
第四方面,提供了一种定位方法,所述方法包括:第一设备/第二设备接收至少一个卫星信号;所述第一设备/第二设备发送至少一个参考信号;以及所述第一设备/第二设备发送第一信息,所述第一信息是根据所述至少一个卫星信号确定的相位测量值。在该方面中,第一设备/第二设备将根据接收到的至少一个卫星信号确定的相位测量值发送给服务器,并向接入网设备发送至少一个参考信号,使接入网设备将根据接收到的至少一个参考信号确定的相位测量值发送给服务器,从而使得服务器可以根据这些相位测量值进行联合定位,实现较高精度的定位解算。
在一种可能的实现中,所述至少一个卫星信号和所述至少一个参考信号用于定位。
在另一种可能的实现中,所述第一信息包括以下至少一个信息:所述至少一个卫星信号中的每个卫星信号的相位测量值,所述至少一个卫星信号中的两个卫星信号的相位测量值之间的差值,所述至少一个卫星信号中的任一个卫星信号的至少两个时刻的相位测量值之间的差值。
在又一种可能的实现中,所述方法还包括:所述第一设备/第二设备发送第一测量频率和/或第二测量频率,所述第一测量频率是所述至少一个卫星信号的频率,所述第二测量频率是所述至少一个参考信号的频率。
在又一种可能的实现中,所述方法还包括:所述第一设备/第二设备接收配置信息;其中,所述配置信息包括以下至少一种信息:所述第一测量频率、所述第二测量频率、所述第一信息的上报周期、所述第一信息的上报时延。
在又一种可能的实现中,所述方法还包括:所述第一设备/第二设备接收测量请求和/或发送请求;其中,所述测量请求用于请求测量接收到的所述至少一个卫星信号的相位;所述发送请求用于请求发送所述至少一个参考信号。
在又一种可能的实现中,所述方法还包括:所述第一设备/第二设备发送定位协议消息,所述定位协议消息包括所述第一信息;其中,所述定位协议消息是第一设备/第二设备与服务器之间的通信协议消息,可以为新无线定位协议NRPPa消息或长期演进定位协议LPP消息。
第五方面,提供了一种定位方法,所述方法包括:服务器接收第一设备发送的第一信息、接入网设备发送的第二信息和第四信息、第二设备发送的第三信息;以及所述服务器根据所述第一信息、所述第二信息、所述第三信息和所述第四信息,确定所述第一设备的位置;其中,所述第一信息是所述第一设备根据至少一个第一卫星信号确定的相位测量值,所述第二信息是所述接入网设备根据至少一个第一参考信号确定的相位测量值,所述第三信息是所述第二设备根据至少一个第二卫星信号确定的相位测量值,所述第四信息是所述接入网设备根据至少一个第二参考信号确定的相位测量值,所述至少一个第一参考信号是所述第一设备发送的,所述至少一个第二参考信号是所述第二设备发送的。在该实现中,第一设备和第二设备分别将根据接收到的至少一个卫星信号确定的相位测量值发送给服务器,并且第一设备和第二设备分别向接入网设备发送至少一个参考信号,使接入网设备将分别根据接收到的至少一个参考信号确定的相位测量值发送给服务器,从而使得服务器可以根据这些相位测量值进行联合定位,实现较高精度的定位解算。
在一种可能的实现中,所述服务器接收第三信息和第四信息之前,所述方法还包括:所述服务器确定所述第二设备。
在另一种可能的实现中,所述第一信息包括以下至少一个信息:所述至少一个第一卫星信号中的每个第一卫星信号的相位测量值,所述至少一个第一卫星信号中的两个第一卫星信号的相位测量值之间的差值,所述至少一个第一卫星信号中的任一个第一卫星信号的至少两 个时刻的相位测量值之间的差值;所述第二信息包括以下至少一个信息:所述至少一个第一参考信号中的每个第一参考信号的相位测量值,所述至少一个第一参考信号中的两个第一参考信号的相位测量值之间的差值,所述至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值之间的差值;所述第三信息包括以下至少一个信息:所述至少一个第二卫星信号中的每个第二卫星信号的相位测量值,所述至少一个第二卫星信号中的两个第二卫星信号的相位测量值之间的差值,所述至少一个第二卫星信号中的任一个第二卫星信号的至少两个时刻的相位测量值之间的差值;所述第四信息包括以下至少一个信息:所述至少一个第二参考信号中的每个第二参考信号的相位测量值,所述至少一个第二参考信号中的两个第二参考信号的相位测量值之间的差值,所述至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值之间的差值。
在又一种可能的实现中,所述方法还包括:所述服务器接收第一测量频率、第二测量频率、第三测量频率和/或第四测量频率,所述第一测量频率是所述至少一个第一卫星信号的频率,所述第二测量频率是所述至少一个第一参考信号的频率,所述第三测量频率是所述至少一个第二卫星信号的频率,所述第四测量频率是所述至少一个第二参考信号的频率。
在又一种可能的实现中,所述方法还包括:所述服务器向所述第一设备发送第一配置信息;其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第二测量频率、所述第一信息的上报周期、所述第一信息的上报时延。
在又一种可能的实现中,所述方法还包括:所述服务器向所述第二设备发送第二配置信息;其中,所述第二配置信息包括以下至少一种信息:所述第三测量频率、所述第四测量频率、所述第三信息的上报周期、所述第三信息的上报时延。
在又一种可能的实现中,所述方法还包括:所述服务器向所述第一设备发送第一测量请求和/或第一发送请求;其中,所述第一测量请求用于请求测量接收到的所述至少一个第一卫星信号的相位;所述第一发送请求用于请求发送所述至少一个第一参考信号。
在又一种可能的实现中,所述方法还包括:所述服务器向所述第二设备发送第二测量请求和/或第二发送请求;其中,所述第二测量请求用于请求测量接收到的所述至少一个第二卫星信号的相位;所述第二发送请求用于请求发送所述至少一个第二参考信号。
在又一种可能的实现中,所述服务器接收第三信息,包括:所述服务器接收定位协议消息,所述定位协议消息包括所述第三信息;其中,所述定位协议消息是第一设备/第二设备与服务器之间的通信协议消息,可以为新无线定位协议NRPPa消息或长期演进定位协议LPP消息。
第六方面,提供了一种定位装置用于执行上述第一方面或第一方面的任一可能的实现中的方法。该定位装置可以为上述第一方面或第一方面的任一可能的实现中的第一设备/第二设备,或者应用于第一设备/第二设备中的模块,例如芯片或芯片***。其中,该定位装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第六方面,在一种可能的实现中,定位装置包括:收发单元和处理单元;其中,所述收发单元,用于接收至少一个卫星信号和至少一个参考信号;以及所述收发单元,还用于发送第一信息和第二信息,所述第一信息是根据所述至少一个卫星信号确定的相位测量值,所述第二信息是根据所述至少一个参考信号确定的相位测量值。
可选地,所述至少一个卫星信号和所述至少一个参考信号用于定位。
可选地,所述第一信息包括以下至少一个信息:所述至少一个卫星信号中的每个卫星信号的相位测量值,所述至少一个卫星信号中的两个卫星信号的相位测量值之间的差值,所述至少一个卫星信号中的任一个卫星信号的至少两个时刻的相位测量值之间的差值;所述第二信息包括以下至少一个信息:所述至少一个参考信号中的每个参考信号的相位测量值,所述至少一个参考信号中的两个参考信号的相位测量值之间的差值,所述至少一个参考信号中的任一个参考信号的至少两个时刻的相位测量值之间的差值。
可选地,所述收发单元,还用于发送第一测量频率和/或第二测量频率,所述第一测量频率是所述至少一个卫星信号的频率,所述第二测量频率是所述至少一个参考信号的频率。
可选地,所述收发单元,还用于接收第一配置信息和/或第二配置信息;其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第一信息的上报周期、所述第一信息的上报时延;所述第二配置信息包括以下至少一种信息:所述第二测量频率、所述第二信息的上报周期、所述第二信息的上报时延。
可选地,所述收发单元,还用于接收第一测量请求和/或第二测量请求;其中,所述第一测量请求用于请求测量接收到的所述至少一个卫星信号的相位;所述第二测量请求用于请求测量接收到的所述至少一个参考信号的相位。
可选地,所述收发单元,还用于发送定位协议消息,所述定位协议消息包括所述第一信息和所述第二信息;其中,所述定位协议消息是第一设备/第二设备与服务器之间的通信协议消息,可以为新无线定位协议NRPPa消息或长期演进定位协议LPP消息。
在另一种可能的实现方式中,该定位装置用于执行上述第一方面及其各种可能的实现中的方法。
第七方面,提供了一种定位装置用于执行上述第二方面或第二方面的任一可能的实现中的方法。该定位装置可以为上述第二方面或第二方面的任一可能的实现中的服务器,或者应用于服务器中的模块,例如芯片或芯片***。其中,该定位装置包括实现上述方法相应的模块、单元、或means,该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第七方面,在一种可能的实现中,定位装置包括:收发单元和处理单元;其中,所述收发单元,用于接收第一信息、第二信息、第三信息和第四信息;以及所述处理单元,用于根据所述第一信息、所述第二信息、所述第三信息和所述第四信息,确定第一设备的位置;其中,所述第一信息是所述第一设备根据至少一个第一卫星信号确定的相位测量值,所述第二信息是所述第一设备根据至少一个第一参考信号确定的相位测量值,所述第三信息是第二设备根据至少一个第二卫星信号确定的相位测量值,所述第四信息是所述第二设备根据至少一个第二参考信号确定的相位测量值。
可选地,所述处理单元,还用于确定所述第二设备。
可选地,所述第一信息包括以下至少一个信息:所述至少一个第一卫星信号中的每个第一卫星信号的相位测量值,所述至少一个第一卫星信号中的两个第一卫星信号的相位测量值之间的差值,所述至少一个第一卫星信号中的任一个第一卫星信号的至少两个时刻的相位测量值之间的差值;所述第二信息包括以下至少一个信息:所述至少一个第一参考信号中的每个第一参考信号的相位测量值,所述至少一个第一参考信号中的两个第一参考信号的相位测量值之间的差值,所述至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值之间的差值;所述第三信息包括以下至少一个信息:所述至少一个第二卫星信号中的每个第二卫星信号的相位测量值,所述至少一个第二卫星信号中的两个第二卫星信号的相 位测量值之间的差值,所述至少一个第二卫星信号中的任一个第二卫星信号的至少两个时刻的相位测量值之间的差值;所述第四信息包括以下至少一个信息:所述至少一个第二参考信号中的每个第二参考信号的相位测量值,所述至少一个第二参考信号中的两个第二参考信号的相位测量值之间的差值,所述至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值之间的差值。
可选地,所述收发单元,还用于接收第一测量频率、第二测量频率、第三测量频率和/或第四测量频率,所述第一测量频率是所述至少一个第一卫星信号的频率,所述第二测量频率是所述至少一个第一参考信号的频率,所述第三测量频率是所述至少一个第二卫星信号的频率,所述第四测量频率是所述至少一个第二参考信号的频率。
可选地,所述收发单元,还用于向所述第一设备发送第一配置信息和/或第二配置信息;其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第一信息的上报周期、所述第一信息的上报时延;所述第二配置信息包括以下至少一种信息:所述第二测量频率、所述第二信息的上报周期、所述第二信息的上报时延。
可选地,所述收发单元,还用于向所述第二设备发送第三配置信息和/或第四配置信息;其中,所述第三配置信息包括以下至少一种信息:所述第三测量频率、所述第三信息的上报周期、所述第三信息的上报时延;所述第四配置信息包括以下至少一种信息:所述第四测量频率、所述第四信息的上报周期、所述第四信息的上报时延。
可选地,所述收发单元,还用于向所述第一设备发送第一测量请求和/或第二测量请求;其中,所述第一测量请求用于请求测量接收到的所述至少一个第一卫星信号的相位;所述第二测量请求用于请求测量接收到的所述至少一个第一参考信号的相位。
可选地,所述收发单元,还用于向所述第二设备发送第三测量请求和/或第四测量请求;其中,所述第三测量请求用于请求测量接收到的所述至少一个第二卫星信号的相位;所述第四测量请求用于请求测量接收到的所述至少一个第二参考信号的相位。
可选地,所述收发单元,还用于接收定位协议消息,所述定位协议消息包括所述第一信息和所述第二信息;其中,所述定位协议消息是第一设备/第二设备与服务器之间的通信协议消息,可以为新无线定位协议NRPPa消息或长期演进定位协议LPP消息。
在另一种可能的实现方式中,该定位装置用于执行上述第二方面及其各种可能的实现中的方法。
第八方面,提供了一种定位装置用于执行上述第三方面或第三方面的任一可能的实现中的方法。该定位装置可以为上述第三方面或第三方面的任一可能的实现中的第一设备,或者应用于第一设备中的模块,例如芯片或芯片***。其中,该定位装置包括实现上述方法相应的模块、单元、或means,该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第八方面,在一种可能的实现中,定位装置包括:收发单元和处理单元;其中,所述收发单元,用于接收至少一个第一卫星信号和至少一个第一参考信号;所述收发单元,还用于接收第三信息和第四信息,所述第三信息是第二设备根据至少一个第二卫星信号确定的相位测量值,所述第四信息是所述第二设备根据至少一个第二参考信号确定的相位测量值;以及所述处理单元,用于根据第一信息、第二信息、所述第三信息和所述第四信息,确定所述第一设备的位置,所述第一信息是所述第一设备根据所述至少一个第一卫星信号确定的相位测量值,所述第二信息是所述第一设备根据所述至少一个第一参考信号确定的相位测量值。
可选地,所述收发单元,还用于向服务器发送定位请求。
可选地,所述第一信息包括以下至少一个信息:所述至少一个第一卫星信号中的每个第一卫星信号的相位测量值,所述至少一个第一卫星信号中的两个第一卫星信号的相位测量值之间的差值,所述至少一个第一卫星信号中的任一个第一卫星信号的至少两个时刻的相位测量值之间的差值;所述第二信息包括以下至少一个信息:所述至少一个第一参考信号中的每个第一参考信号的相位测量值,所述至少一个第一参考信号中的两个第一参考信号的相位测量值之间的差值,所述至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值之间的差值;所述第三信息包括以下至少一个信息:所述至少一个第二卫星信号中的每个第二卫星信号的相位测量值,所述至少一个第二卫星信号中的两个第二卫星信号的相位测量值之间的差值,所述至少一个第二卫星信号中的任一个第二卫星信号的至少两个时刻的相位测量值之间的差值;所述第四信息包括以下至少一个信息:所述至少一个第二参考信号中的每个第二参考信号的相位测量值,所述至少一个第二参考信号中的两个第二参考信号的相位测量值之间的差值,所述至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值之间的差值。
可选地,所述收发单元,还用于发送第一测量频率和/或第二测量频率,所述第一测量频率是所述至少一个第一卫星信号的频率,所述第二测量频率是所述至少一个第一参考信号的频率。
可选地,所述收发单元,还用于接收第一配置信息和/或第二配置信息;其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第一信息的上报周期、所述第一信息的上报时延;所述第二配置信息包括以下至少一种信息:所述第二测量频率、所述第二信息的上报周期、所述第二信息的上报时延。
可选地,所述收发单元,还用于接收第一测量请求和/或第二测量请求;其中,所述第一测量请求用于请求测量接收到的所述至少一个第一卫星信号的相位;所述第二测量请求用于请求测量接收到的所述至少一个第一参考信号的相位。
可选地,所述收发单元,还用于接收无线资源控制消息,所述无线资源控制消息包括所述第三信息和所述第四信息;或所述收发单元,还用于接收长期演进新无线定位协议NRPPa消息,所述NRPPa消息包括所述第三信息和所述第四信息;或所述收发单元,还用于接收侧行链路消息,所述侧行链路消息包括所述第三信息和所述第四信息。
在另一种可能的实现方式中,该定位装置用于执行上述第三方面及其各种可能的实现中的方法。
第九方面,提供了一种定位装置用于执行上述第四方面或第四方面的任一可能的实现中的方法。该定位装置可以为上述第四方面或第四方面的任一可能的实现中的第一设备/第二设备,或者应用于第一设备/第二设备中的模块,例如芯片或芯片***。其中,该定位装置包括实现上述方法相应的模块、单元、或手段means,该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第九方面,在一种可能的实现中,定位装置包括:收发单元和处理单元;其中,所述收发单元,用于接收至少一个卫星信号;所述收发单元,还用于发送至少一个参考信号;以及所述收发单元,还用于发送第一信息,所述第一信息是根据所述至少一个卫星信号确定的相位测量值。
可选地,所述至少一个卫星信号和所述至少一个参考信号用于定位。
可选地,所述第一信息包括以下至少一个信息:所述至少一个卫星信号中的每个卫星信 号的相位测量值,所述至少一个卫星信号中的两个卫星信号的相位测量值之间的差值,所述至少一个卫星信号中的任一个卫星信号的至少两个时刻的相位测量值之间的差值。
可选地,所述收发单元,还用于发送第一测量频率和/或第二测量频率,所述第一测量频率是所述至少一个卫星信号的频率,所述第二测量频率是所述至少一个参考信号的频率。
可选地,所述收发单元,还用于接收配置信息;其中,所述配置信息包括以下至少一种信息:所述第一测量频率、所述第二测量频率、所述第一信息的上报周期、所述第一信息的上报时延。
可选地,所述收发单元,还用于接收测量请求和/或发送请求;其中,所述测量请求用于请求测量接收到的所述至少一个卫星信号的相位;所述发送请求用于请求发送所述至少一个参考信号。
可选地,所述收发单元,还用于发送定位协议消息,所述定位协议消息包括所述第一信息;其中,所述定位协议消息是第一设备/第二设备与服务器之间的通信协议消息,可以为新无线定位协议NRPPa消息或长期演进定位协议LPP消息。
在另一种可能的实现方式中,该定位装置用于执行上述第四方面及其各种可能的实现中的方法。
第十方面,提供了一种定位装置用于执行上述第五方面或第五方面的任一可能的实现中的方法。该定位装置可以为上述第五方面或第五方面的任一可能的实现中的服务器,或者应用于服务器中的模块,例如芯片或芯片***。其中,该定位装置包括实现上述方法相应的模块、单元、或means,该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第十方面,在一种可能的实现中,定位装置包括:收发单元和处理单元;其中,所述收发单元,用于接收第一设备发送的第一信息、接入网设备发送的第二信息和第四信息、第二设备发送的第三信息;以及所述处理单元,用于根据所述第一信息、所述第二信息、所述第三信息和所述第四信息,确定所述第一设备的位置;其中,所述第一信息是所述第一设备根据至少一个第一卫星信号确定的相位测量值,所述第二信息是所述接入网设备根据至少一个第一参考信号确定的相位测量值,所述第三信息是所述第二设备根据至少一个第二卫星信号确定的相位测量值,所述第四信息是所述接入网设备根据至少一个第二参考信号确定的相位测量值,所述至少一个第一参考信号是所述第一设备发送的,所述至少一个第二参考信号是所述第二设备发送的。
可选地,所述处理单元,还用于确定所述第二设备。
可选地,所述第一信息包括以下至少一个信息:所述至少一个第一卫星信号中的每个第一卫星信号的相位测量值,所述至少一个第一卫星信号中的两个第一卫星信号的相位测量值之间的差值,所述至少一个第一卫星信号中的任一个第一卫星信号的至少两个时刻的相位测量值之间的差值;所述第二信息包括以下至少一个信息:所述至少一个第一参考信号中的每个第一参考信号的相位测量值,所述至少一个第一参考信号中的两个第一参考信号的相位测量值之间的差值,所述至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值之间的差值;所述第三信息包括以下至少一个信息:所述至少一个第二卫星信号中的每个第二卫星信号的相位测量值,所述至少一个第二卫星信号中的两个第二卫星信号的相位测量值之间的差值,所述至少一个第二卫星信号中的任一个第二卫星信号的至少两个时刻的相位测量值之间的差值;所述第四信息包括以下至少一个信息:所述至少一个第二参考信号中的每个第二参考信号的相位测量值,所述至少一个第二参考信号中的两个第二参考信号 的相位测量值之间的差值,所述至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值之间的差值。
可选地,所述收发单元,还用于接收第一测量频率、第二测量频率、第三测量频率和/或第四测量频率,所述第一测量频率是所述至少一个第一卫星信号的频率,所述第二测量频率是所述至少一个第一参考信号的频率,所述第三测量频率是所述至少一个第二卫星信号的频率,所述第四测量频率是所述至少一个第二参考信号的频率。
可选地,所述收发单元,还用于向所述第一设备发送第一配置信息;其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第二测量频率、所述第一信息的上报周期、所述第一信息的上报时延。
可选地,所述收发单元,还用于向所述第二设备发送第二配置信息;其中,所述第二配置信息包括以下至少一种信息:所述第三测量频率、所述第四测量频率、所述第三信息的上报周期、所述第三信息的上报时延。
可选地,所述收发单元,还用于向所述第一设备发送第一测量请求和/或第一发送请求;其中,所述第一测量请求用于请求测量接收到的所述至少一个第一卫星信号的相位;所述第一发送请求用于请求发送所述至少一个第一参考信号。
可选地,所述收发单元,还用于向所述第二设备发送第二测量请求和/或第二发送请求;其中,所述第二测量请求用于请求测量接收到的所述至少一个第二卫星信号的相位;所述第二发送请求用于请求发送所述至少一个第二参考信号。
可选地,所述收发单元,还用于接收定位协议消息,所述定位协议消息包括所述第三信息;其中,所述定位协议消息为新无线定位协议NRPPa消息或长期演进定位协议LPP消息。
在另一种可能的实现方式中,该定位装置用于执行上述第五方面及其各种可能的实现中的方法。
在又一种可能的实现方式中,上述第六方面至第十方面中的定位装置包括与存储器耦合的处理器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的计算机程序(或计算机可执行指令)和/或数据。示例性地,所述定位装置还可以包括通信接口用于支持所述装置与其他网元之间的通信,例如数据和/或信号的发送或接收。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。示例性地,该存储器可以位于该定位装置内部,和处理器集成在一起;也可以位于该定位装置外部。
在又一种可能的实现方式中,上述第六方面至第十方面中的定位装置包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于通过逻辑电路或执行代码指令实现上述方法。其中,所述收发装置可以为收发器、收发电路或输入输出接口,用于接收来自所述定位装置之外的其它定位装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述定位装置之外的其它定位装置。当所述定位装置为芯片时,所述收发装置为收发电路或输入输出接口。
当上述第六方面至第十方面中的定位装置为芯片时,发送单元可以是输出单元,比如输出电路或者通信接口;接收单元可以是输入单元,比如输入电路或者通信接口。当所述定位装置为终端时,发送单元可以是发射器或发射机;接收单元可以是接收器或接收机。
上述第六方面至第十方面中的定位装置也可以称为通信装置。
第十一方面,提供了一种定位***,所述定位***包括如第六方面或第六方面的任一种 实现所述的定位装置、以及如第七方面或第七方面的任一种实现所述的定位装置。
第十二方面,提供了一种定位***,所述定位***包括如第八方面或第八方面的任一种实现所述的定位装置。
第十三方面,提供了一种定位***,所述定位***包括如第九方面或第九方面的任一种实现所述的定位装置、以及如第十方面或第十方面的任一种实现所述的定位装置。
第十四方面,提供了一种计算机可读存储介质,其上存储有计算机程序或指令,该程序或指令被处理器执行时,如第一方面或第一方面的任一种实现所述的方法被执行,或者,如第二方面或第二方面的任一种实现所述的方法被执行,或者,如第三方面或第三方面的任一种实现所述的方法被执行,或者,如第四方面或第四方面的任一种实现所述的方法被执行,或者,如第五方面或第五方面的任一种实现所述的方法被执行。
第十五方面,提供了一种计算机程序产品,当其在计算设备上执行时,使得如第一方面或第一方面的任一种实现所述的方法被执行,或者如第二方面或第二方面的任一种实现所述的方法被执行,或者,如第三方面或第三方面的任一种实现所述的方法被执行,或者,如第四方面或第四方面的任一种实现所述的方法被执行,或者,如第五方面或第五方面的任一种实现所述的方法被执行。
附图说明
图1为本申请实施例提供的一种载波相位测距的原理示意图;
图2为本申请实施例提供的一种载波相位双差定位示意图;
图3为应用本申请实施例的定位方法的一个定位***的架构示意图;
图4为在5G移动通信***中应用本申请实施例的定位方法的一个定位***的架构示意图;
图5为在5G移动通信***中应用本申请实施例的定位方法的另一个定位***的架构示意图;
图6为本申请实施例提供的一种定位方法的流程示意图;
图7为图6所示方法适用的一种定位场景示意图;
图8为本申请实施例提供的另一种定位方法的流程示意图;
图9为本申请实施例提供的又一种定位方法的流程示意图;
图10为图9所示方法适用的一种定位场景示意图;
图11为本申请实施例提供的又一种定位方法的流程示意图;
图12为本申请实施例提供的又一种定位方法的流程示意图;
图13为图12所示方法适用的一种定位场景示意图;
图14为本申请实施例提供的又一种定位方法的流程示意图;
图15为本申请实施例提供的定位装置1600的结构示意图;
图16为本申请实施例提供的定位装置1700的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
通信***(如第五代(5 thgeneration,5G)蜂窝***)可以在不同的环境(如农村、城市、室内)提供广泛的水平和垂直位置服务。例如,5G***可以根据用户、运营商和第三方的需要,提供不同的5G定位服务。其中,对5G***的定位业务提出了具体的性能要求。在高的定位服务级别下,需要满足分米级定位需求。然而,目前的蜂窝定位技术很难达到分米 级及更高的定位需求。到达时间差(time difference of arrival,TDOA)技术理论上能达到亚米级定位精度,但是其精度依赖于定位参考信号带宽,在实际***中很难得到连续的宽频谱。基于角度及增强型小区标识(enhanced cell identity,ECID)的定位方式理论上定位精度更差。
其中,载波相位定位技术是目前高精度定位的主要方法之一,其通过测量参考信号从发射机到接收机的载波相位变化实现测量带有整周模糊度的距离。当可以正确求解载波相位整周模糊度后,理论上载波相位测距精度可以达到厘米级到毫米级,从而得到高精度定位结果。具体测距原理如图1所示。
其中,距离d与载波相位
Figure PCTCN2022132261-appb-000001
之间满足下式:
Figure PCTCN2022132261-appb-000002
其中,d为接收机与发射机之间的距离;
Figure PCTCN2022132261-appb-000003
为载波相位测量值;N代表整周模糊度,为整数,代表经过了N个载波整周;λ为载波波长。
基于GNSS信号的载波相位定位技术,包括:精密单点定位(precise point positioning,PPP)技术和实时动态(real time kinematic,RTK)差分定位技术。
其中,PPP技术是基于GNSS载波相位的单点高精度定位技术,无需参考站,依靠国际GNSS服务(international GNSS service,IGS)提供的精密产品与精密误差模型进行定位。
RTK技术是一种双站式相对定位技术,定位时需要基站与流动站至少两台GNSS接收机,然后通过站间、星间差分的方式消除观测量中包括钟差、大气、星历等共模误差项,计算得到高精度的相对定位结果。
通过PPP技术或RTK技术可以达到厘米级到毫米级定位精度。
另外,载波相位定位在实际应用中,为了消除时钟钟差(接收机与发射机之间、多个发射机之间的时钟不同步)等共模误差项,一般采用载波相位单差或双差技术。如图2所示,展示了以用户设备(user equipment,UE)接收蜂窝信号为例介绍载波相位双差技术。
UE接收到第i个基站(gNB i)的信号载波相位测量值为
Figure PCTCN2022132261-appb-000004
满足下式:
Figure PCTCN2022132261-appb-000005
其中,λ为载波波长,
Figure PCTCN2022132261-appb-000006
为UE与第i个基站之间的距离,f为载波频率,δt u为接收机本地钟差,δt i为第i个基站的钟差,
Figure PCTCN2022132261-appb-000007
代表整周模糊度,
Figure PCTCN2022132261-appb-000008
为噪声。
将UE接收到的第i个基站和第j个基站(gNB j)的信号载波相位测量值做差,得到载波相位单差测量值
Figure PCTCN2022132261-appb-000009
其满足下式:
Figure PCTCN2022132261-appb-000010
其中,
Figure PCTCN2022132261-appb-000011
Figure PCTCN2022132261-appb-000012
为单差整周模糊度,
Figure PCTCN2022132261-appb-000013
为单差噪声。
进一步,将UE的载波相位单差测量值
Figure PCTCN2022132261-appb-000014
与参考站的载波相位单差测量值
Figure PCTCN2022132261-appb-000015
做差得到载波相位双差测量值
Figure PCTCN2022132261-appb-000016
其满足下式:
Figure PCTCN2022132261-appb-000017
其中,
Figure PCTCN2022132261-appb-000018
Figure PCTCN2022132261-appb-000019
为双差整周模糊度,
Figure PCTCN2022132261-appb-000020
为双差噪声。
利用多个基站信号可以得到多个式(4),联立方程组并进行整周模糊度求解即可得到高精度的UE位置信息。
根据GNSS载波相位定位技术,载波相位定位技术依赖于接收到的卫星数量,需要至少接收到4颗卫星信号才能实现高精度定位解算;且卫星信号数量越多,定位解算精度越高。然而,在高架桥、高楼等密集环境中,由于遮挡等可能存在卫星信号覆盖空洞和/或通信***信号覆盖空洞,接收机可能无法接收到4颗以上卫星信号和/或通信***信号,进而影响定位精度,无法达到厘米级的定位精度。
本申请实施例提供一种定位方案,第一设备接收至少一个第一卫星信号和至少一个第一参考信号,并发送第一信息和第二信息,其中,第一信息是根据至少一个卫星信号确定的相位测量值,第二信息是根据至少一个参考信号确定的相位测量值。第二设备接收至少一个第二卫星信号和至少一个第二参考信号,并发送第三信息和第四信息,其中,第三信息是根据至少一个第二卫星信号确定的相位测量值,第四信息是根据至少一个第二参考信号确定的相位测量值。服务器接收上述第一信息、第二信息、第三信息和第四信息,并根据第一信息、第二信息、第三信息和第四信息,确定第一设备的位置。从而服务器可以根据第一设备和第二设备分别接收到的卫星信号和参考信号确定的相位测量值进行联合定位,可以实现较高精度的定位解算。
本申请实施例的技术方案可以应用于各种通信***。例如:长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)***、5G***或新无线(new radio,NR)、或者下一代通信***,比如第六代(6 th generation,6G)移动通信***等。本申请中涉及的5G移动通信***包括非独立组网(non-standalone,NSA)的5G移动通信***或独立组网(standalone,SA)的5G移动通信***。本申请提供的技术方案还可以应用于未来的通信***,如第六代移动通信***。通信***还可以是陆上公用移动通信网(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)通信***、机器到机器(machine to machine,M2M)通信***、物联网(Internet of Things,IoT)、车联网通信***或者其他通信***。
图3为应用本申请实施例的定位方法的一个定位***的架构示意图。如图3所示,该定位***300包括第一设备301、第二设备302以及服务器304。本申请中的第一设备301可以是终端,第二设备302可以是终端或接入网设备,服务器304可以是核心网设备、定位服务器或网络设备的部件等。该定位***300还可以包括一个或多个接入网设备303(图3以一个接入网设备为例进行示意,并且以虚线表示)。当该第二设备是终端时,第一设备301和第二设备302可以由同一个接入网设备服务,也可以由不同的接入网设备服务。本申请以第一设备和第二设备可以由同一个接入网设备服务为例进行描述。其中,第一设备301、第二设备302、接入网设备303或者服务器304两两之间可以直接通信,也可以通过其他设备的转发进行通信,本申请实施例对此不作具体限定。虽然未示出,该定位***还可以包括移动管理网元等其他网元,本申请实施例对此不做具体限定。
示例性地,本申请实施例提供的定位***可以适用于上述各种通信***。以5G移动通信***为例,图3中的接入网设备所对应的网元或者实体可以为该5G移动通信***中的下一代无线接入网(next-generation radio access network,NG-RAN)设备。
示例性地,本申请实施例中的服务器以是定位管理功能(location management function,LMF)网元或者定位管理组件(location management component,LMC)网元。
示例性的,图4为在5G移动通信***中应用本申请实施例的定位方法的一个定位***的架构示意图。如图4所示,该定位***中,终端通过LTE-Uu接口经由下一代演进型节点B(next-generation evolved NodeB,ng-eNB),或通过NR-Uu接口经由下一代节点B(next-generation node B,gNB)连接到无线接入网。无线接入网通过NG-C接口经由接入及移动性管理功能(access and mobility management function,AMF)网元连接到核心网。其中,NG-RAN包括一个或多个ng-eNB(图4以一个ng-eNB为例进行示意);NG-RAN也可以包括一个或多个gNB(图4以一个gNB为例进行示意);NG-RAN还可以包括一个或多个ng-eNB以及一个或多个gNB。ng-eNB为接入5G核心网的LTE基站,gNB为接入5G核心网的5G 基站。核心网包括AMF网元与LMF网元。其中,AMF网元用于实现接入管理等功能,LMF网元用于实现定位或定位辅助等功能。AMF网元与LMF网元之间通过NL1接口连接。
示例性的,图5为在5G移动通信***中应用本申请实施例的定位方法的另一个定位***的架构示意图。图5与图4的定位***架构的区别在于,图4的定位管理功能的装置或组件(比如LMF网元)部署在核心网中,图5的定位管理功能的装置或组件(比如LMC网元)可以部署在NG-RAN设备中。如图5所示,gNB中包含LMC网元。LMC网元是LMF网元的部分功能组件,可以集成在NG-RAN设备的gNB中。
应理解,上述图4或图5的定位***中包括的设备或功能节点只是示例性地描述,并不对本申请实施例构成限定。事实上,图4或图5的定位***中还可以包含其他与图中示意的设备或功能节点具有交互关系的网元或设备或功能节点,这里不作具体限定。
示例性地,本申请实施例中的终端可以指接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、用户设备(user equipment,UE)、终端(terminal)、无线通信设备、用户代理、用户装置、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的PLMN中的终端或者未来车联网中的终端等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,终端可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端、增强现实终端、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端、可穿戴设备等。
此外,在本申请实施例中,终端还可以是物联网(intemet of things,IoT)***中的终端,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端)、接收接入网设备的控制信息与下行数据,并发送电磁波,向接入网设备传输上行数据。
示例性地,本申请实施例中的接入网设备可以是用于与终端通信的任意一种具有无线收发功能的通信设备。该接入网设备包括但不限于:演进型节点B(evolved node B,eNB),基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者传输接收点(transmission reception point,TRP)等。该接入网设备还可以为5G***中的gNB或TRP或TP,或者5G***中的基站的一个或一组(包括多个天线面板)天线面板。此外,该接入网设备还可以为构成gNB或TP的网络节点,如BBU,或分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。此外,gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控 制(media access control,MAC)层和物理层(physical layer,PHY)的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。
示例性地,本申请实施例中的接入网设备和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。接入网设备和终端之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对接入网设备和终端之间所使用的频谱资源不做限定。
示例性地,本申请实施例中的第一设备、第二设备或者服务器可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对第一设备、第二设备或者服务器的应用场景不做限定。
下面将结合图1至图5对本申请实施例提供的定位方法进行具体阐述。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不做具体限定。
如图6所示,为本申请实施例提供的一种定位方法的流程示意图,应用于下行联合定位场景。该方法可以包括以下步骤:
S601.第一设备接收至少一个第一卫星信号和至少一个第一参考信号。
本实施例中,第一设备为待定位终端。第一设备可能被遮挡,可以接收到至少一个第一卫星信号和至少一个第一参考信号。其中,该至少一个第一卫星信号和至少一个第一参考信号用于定位。示例性地,第一设备接收卫星发送的至少一个第一卫星信号,以及第一设备接收接入网设备发送的至少一个第一参考信号。该至少一个第一卫星信号可以来自于同一个卫星,也可以来自不同的卫星。该至少一个第一参考信号可以来自于同一个接入网设备,也可以来自不同的接入网设备。其中,该卫星可以是全球定位***(global positioning system,GPS)、北斗卫星导航***(BeiDou navigation satellite sytem,BDS)等。
如图7所示,第一设备接收gNB i和/或gNB j发送的至少一个第一定位参考信号(positioning reference signal,PRS),以及接收卫星Sat m和/或Sat n发送的至少一个第一卫星信号。
S602.第一设备发送第一信息和第二信息。
相应地,服务器接收上述第一信息和第二信息。
第一设备接收到至少一个第一卫星信号后,分别测量至少一个第一卫星信号的相位测量值,得到第一信息。即第一信息是根据至少一个第一卫星信号确定的相位测量值。
具体地,第一设备可以分别测量至少一个第一卫星信号的相位测量值,得到至少一个第一卫星信号中的每个第一卫星信号的相位测量值。第一设备还可以进一步计算至少一个第一卫星信号中的两个第一卫星信号的相位测量值之间的差值,例如,将测量得到的第一个卫星信号的相位测量值作为参考值,计算至少一个第一卫星信号中其它第一卫星信号的相位测量值与上述参考值之间的差值。该参考值还可以是测量得到的至少一个第一卫星信号的相位测量值中的最大值或最小值,本实施例对此不作限制。第一设备还可以进一步在至少一个第一卫星信号中的每个第一卫星信号的相位测量值中选取质量较好的一定数量的第一卫星信号的相位测量值。第一设备还可以测量至少一个第一卫星信号中的任一个第一卫星信号的至少两个时刻的相位测量值。该任一个第一卫星信号可以是每个第一卫星信号。进一步地,还可以 计算任一个第一卫星信号的至少两个时刻的相位测量值之间的差值。进一步地,第一设备还可以测量至少一个第一卫星信号中的任一个第一卫星信号的至少两个时刻的相位测量值的差值。
在测量或计算相位测量值后,第一信息可以包括以下至少一个信息:至少一个第一卫星信号中的每个第一卫星信号的相位测量值,至少一个第一卫星信号中的两个第一卫星信号的相位测量值之间的差值,至少一个第一卫星信号中的任一个第一卫星信号的至少两个时刻的相位测量值之间的差值。示例性地,第一信息也可以包括至少一个第一卫星信号中质量较好的一定数量的第一卫星信号的相位测量值。
第一设备接收到至少一个第一参考信号后,分别测量至少一个第一参考信号的相位测量值,得到第二信息。即第二信息是根据至少一个第一参考信号确定的相位测量值。
具体地,第一设备可以分别测量至少一个第一参考信号的相位测量值,得到至少一个第一参考信号中的每个第一参考信号的相位测量值。第一设备还可以进一步计算至少一个第一参考信号中的两个第一参考信号的相位测量值之间的差值,例如,将测量得到的第一个参考信号的相位测量值作为参考值,计算至少一个第一参考信号中其它第一参考信号的相位测量值与上述参考值之间的差值。该参考值还可以是测量得到的至少一个第一参考信号的相位测量值中的最大值或最小值,本实施例对此不作限制。第一设备还可以进一步在至少一个第一参考信号中的每个第一参考信号的相位测量值中选取质量较好的一定数量的第一参考信号的相位测量值。第一设备还可以测量至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值。该任一个第一参考信号可以是每个第一参考信号。进一步地,还可以计算任一个第一参考信号的至少两个时刻的相位测量值之间的差值。进一步地,第一设备还可以测量至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值的差值。
在测量或计算相位测量值后,第二信息可以包括以下至少一个信息:至少一个第一参考信号中的每个第一参考信号的相位测量值,至少一个第一参考信号中的两个第一参考信号的相位测量值之间的差值,至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值之间的差值。示例性地,第二信息也可以包括至少一个第一参考信号中质量较好的一定数量的第一参考信号的相位测量值。
如图7所示,第一设备向服务器发送第一信息和第二信息。
S603.第二设备接收至少一个第二卫星信号和至少一个第二参考信号。
本实施例中,第二设备可以是终端或接入网设备。第二设备也可以称为PRU。该第二设备可以是与第一设备具有的共同的可通信的卫星和接入网设备的总数最多,或者,该第二设备可以是与第一设备具有的共同的可通信的卫星和接入网设备的总数超过第一阈值。
第二设备可以接收到至少一个第二卫星信号和至少一个第二参考信号。其中,该至少一个第二卫星信号和至少一个第二参考信号用于定位。示例性地,第二设备接收卫星发送的至少一个第二卫星信号,以及第二设备接收接入网设备发送的至少一个第二参考信号。该至少一个第二卫星信号可以来自于同一个卫星,也可以来自不同的卫星。该至少一个第二参考信号可以来自于同一个接入网设备,也可以来自不同的接入网设备。
可以理解的,上述至少一个第一卫星信号和至少一个第二卫星信号可以完全相同,部分相同,或者不相同。上述至少一个第一参考信号和至少一个第二参考信号可以完全相同,部分相同,或者不相同。上述至少一个第一卫星信号和至少一个第二卫星信号可以来自于同一个卫星或不同的卫星。上述至少一个第一参考信号和至少一个第二参考信号可以来自于同一 个接入网设备或不同的接入网设备。
如图7所示,第二设备接收gNB i和/或gNB j发送的至少一个第二PRS,以及接收卫星Sat m和/或Sat n发送的至少一个第二卫星信号。
S604.第二设备发送第三信息和第四信息。
相应地,服务器接收上述第三信息和第四信息。
第二设备接收到至少一个第二卫星信号后,分别测量至少一个第二卫星信号的相位测量值,得到第三信息。即第三信息是根据至少一个第二卫星信号确定的相位测量值。
具体地,第二设备可以分别测量至少一个第二卫星信号的相位测量值,得到至少一个第二卫星信号中的每个第二卫星信号的相位测量值。第二设备还可以进一步计算至少一个第二卫星信号中的两个第二卫星信号的相位测量值之间的差值,例如,将测量得到的第一个卫星信号的相位测量值作为参考值,计算至少一个第二卫星信号中其它第二卫星信号的相位测量值与上述参考值之间的差值。该参考值还可以是测量得到的至少一个第二卫星信号的相位测量值中的最大值或最小值,本实施例对此不作限制。第二设备还可以进一步在至少一个第二卫星信号中的每个第二卫星信号的相位测量值中选取质量较好的一定数量的第二卫星信号的相位测量值。第二设备还可以测量至少一个第二卫星信号中的任一个第二卫星信号的至少两个时刻的相位测量值。该任一个第二卫星信号可以是每个第二卫星信号。进一步地,还可以计算任一个第二卫星信号的至少两个时刻的相位测量值之间的差值。进一步地,第二设备还可以测量至少一个第二卫星信号中的任一个第二卫星信号的至少两个时刻的相位测量值的差值。
在测量或计算相位测量值后,第三信息可以包括以下至少一个信息:至少一个第二卫星信号中的每个第二卫星信号的相位测量值,至少一个第二卫星信号中的两个第二卫星信号的相位测量值之间的差值,至少一个第二卫星信号中的任一个第二卫星信号的至少两个时刻的相位测量值之间的差值。示例性地,第三信息也可以包括至少一个第二卫星信号中质量较好的一定数量的第二卫星信号的相位测量值。
第二设备接收到至少一个第二参考信号后,分别测量至少一个第二参考信号的相位测量值,得到第四信息。即第四信息是根据至少一个第二参考信号确定的相位测量值。
具体地,第二设备可以分别测量至少一个第二参考信号的相位测量值,得到至少一个第二参考信号中的每个第二参考信号的相位测量值。第二设备还可以进一步计算至少一个第二参考信号中的两个第二参考信号的相位测量值之间的差值,例如,将测量得到的第一个参考信号的相位测量值作为参考值,计算至少一个第二参考信号中其它第二参考信号的相位测量值与上述参考值之间的差值。该参考值还可以是测量得到的至少一个第二参考信号的相位测量值中的最大值或最小值,本实施例对此不作限制。第二设备还可以进一步在至少一个第二参考信号中的每个第二参考信号的相位测量值中选取质量较好的一定数量的第二参考信号的相位测量值。第二设备还可以测量至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值。该任一个第二参考信号可以是每个第二参考信号。进一步地,还可以计算任一个第二参考信号的至少两个时刻的相位测量值之间的差值。进一步地,第二设备还可以测量至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值的差值。
在测量或计算相位测量值后,第四信息可以包括以下至少一个信息:至少一个第二参考信号中的每个第二参考信号的相位测量值,至少一个第二参考信号中的两个第二参考信号的相位测量值之间的差值,至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的 相位测量值之间的差值。示例性地,第四信息也可以包括至少一个第二参考信号中质量较好的一定数量的第二参考信号的相位测量值。
如图7所示,第二设备向服务器发送第三信息和第四信息。
S605.服务器根据第一信息、第二信息、第三信息和第四信息,确定第一设备的位置。
服务器接收上述第一设备发送的第一信息和第二信息,以及接收上述第二设备发送的第三信息和第四信息。示例性地,服务器可以同时接收上述第一信息、第二信息、第三信息和第四信息;服务器也可以不分先后地接收上述第一信息、第二信息、第三信息和第四信息。
服务器可以根据第一信息、第二信息、第三信息和第四信息,确定第一设备的位置。示例性地,服务器利用至少两个参考信号和至少两个卫星信号,可以得到多个上述式(4),联立方程组并进行整周模糊度求解即可得到较高精度的第一设备的位置信息。
具体地,服务器得到第一信息、第二信息、第三信息和第四信息后可以如式(4)计算相位双差测量值后联立方程组如下式:
Figure PCTCN2022132261-appb-000021
其中,
Figure PCTCN2022132261-appb-000022
为参考信号对应的载波相位双差测量值,λ C为参考信号的载波波长;
Figure PCTCN2022132261-appb-000023
为卫星信号对应的载波相位双差测量值,λ G为卫星信号的载波波长。第一设备和第二设备的位置信息在
Figure PCTCN2022132261-appb-000024
Figure PCTCN2022132261-appb-000025
中,通过联立方程组,将参考信号和卫星信号的载波相位双差测量值进行联合解算,再进行整周模糊度求解后可以得到高精度定位结果如下式:
Figure PCTCN2022132261-appb-000026
其中,(x u,y u,z u)为第一设备的三维位置,是待求解量。(x r,y r,z r)为第二设备的三维位置,如果第二设备位置已知,则作为已知量代入方程即可,此时方程组(5)中需要至少3个方程;如果第二设备位置未知,则作为未知数和第一设备位置一起求解,此时方程组(5)中需要至少6个方程。(x i,y i,z i)和(x j,y j,z j)为第i个卫星和第j个卫星的三维位置坐标,为已知量。同理,(x m,y m,z m)和(x n,y n,z n)为第m个gNB和第n个gNB的三维位置坐标,为已知量;可以得到类似式(6)的
Figure PCTCN2022132261-appb-000027
表达公式。最后,通过解方程组(5)得到第一设备的高精度位置坐标。
根据本申请实施例提供的一种定位方法,第一设备/第二设备通过将根据自身接收到的至少一个卫星信号和至少一个参考信号分别确定的相位测量值发送给服务器,使得服务器可以根据第一设备和第二设备分别接收到的卫星信号和参考信号确定的相位测量值进行联合定位,可以实现较高精度的定位解算。
如图8所示,为本申请实施例提供的另一种定位方法的流程示意图,应用于下行联合定位场景。该方法可以包括以下步骤:
S801.服务器确定第二设备。
服务器在为第一设备作定位解算时,可以预先确定第二设备。服务器可以在与第一设备具有的共同的可通信的卫星和接入网设备的多个设备中,选择与第一设备具有的共同的可通信的卫星和接入网设备的总数最多的设备,或者,与第一设备具有的共同的可通信的卫星和接入网设备的总数超过第一阈值的设备,作为第二设备。该第二设备可以是终端或接入网设备。第二设备也可以称为PRU。
S802.服务器向第一设备发送第一配置信息和/或第二配置信息。
相应地,第一设备接收该第一配置信息和/或第二配置信息。
第一设备为待定位终端。第一设备可能被遮挡,然而,第一设备仍然可能接收到部分卫星信号和部分参考信号。服务器可以预先配置第一设备如何测量接收到的卫星信号或参考信号的相位,以及配置第一设备如何上报测量得到的卫星信号或参考信号的相位测量值。
服务器可以向第一设备发送第一配置信息,第一配置信息用于配置至少一个第一卫星信号的相位的测量和上报;或服务器向第一设备发送第二配置信息,第二配置信息用于配置至少一个第一参考信号的相位的测量和上报;或服务器向第一设备发送第一配置信息和第二配置信息。
示例性地,服务器可以分别向第一设备发送第一配置信息和第二配置信息,也可以同时向第一设备发送第一配置信息和第二配置信息。
其中,第一配置信息包括以下至少一种信息:第一测量频率、第一信息的上报周期、第一信息的上报时延。其中,第一测量频率是至少一个第一卫星信号的频率。第一信息的上报周期用于指示第一设备以该周期上报第一信息。第一信息的上报时延用于指示第一设备在接收到至少一个第一卫星信号后的多长时延上报第一信息,或者在接收到第一配置信息后的多长时延上报第一信息,或者在接收到第一测量请求后的多长时延进行相位测量,等等。
第二配置信息包括以下至少一种信息:第二测量频率、第二信息的上报周期、第二信息的上报时延。其中,第二测量频率是至少一个第一参考信号的频率。第二信息的上报周期用于指示第一设备以该周期上报第二信息。第二信息的上报时延用于指示第一设备在接收到至少一个第一参考信号后的多长时延上报第二信息,或者在接收到第二配置信息后的多长时延上报第二信息,或者在接收到第二测量请求后的多长时延进行相位测量,等等。
可替换地,该第一配置信息也可以不包括第一测量频率,而由第一设备向服务器发送该测量频率。
可替换地,该第二配置信息也可以不包括第二测量频率,而由第一设备向服务器发送该测量频率。
S803.服务器向第二设备发送第三配置信息和/或第四配置信息。
相应地,第二设备接收该第三配置信息和/或第四配置信息。
服务器在确定第二设备后,可以向第二设备发送第三配置信息和/或第四配置信息。
服务器可以向第二设备发送第三配置信息,第三配置信息用于配置至少一个第二卫星信号的相位的测量和上报;或服务器向第二设备发送第四配置信息,第四配置信息用于配置至少一个第二参考信号的相位的测量和上报;或服务器向第二设备发送第三配置信息和第四配置信息。
示例性地,服务器可以分别向第二设备发送第三配置信息和第四配置信息,也可以同时向第二设备发送第三配置信息和第四配置信息。
其中,第三配置信息包括以下至少一种信息:第三测量频率、第三信息的上报周期、第三信息的上报时延。其中,第三测量频率是至少一个第二卫星信号的频率。第三信息的上报周期用于指示第二设备以该周期上报第三信息。第三信息的上报时延用于指示第二设备在接收到至少一个第二卫星信号后的多长时延上报第三信息,或者在接收到第三配置信息后的多长时延上报第三信息,或者在接收到第三测量请求后的多长时延进行相位测量,等等。
第四配置信息包括以下至少一种信息:第四测量频率、第四信息的上报周期、第四信息的上报时延。其中,第四测量频率是至少一个第二参考信号的频率。第四信息的上报周期用于指示第二设备以该周期上报第四信息。第四信息的上报时延用于指示第二设备在接收到至 少一个第二参考信号后的多长时延上报第四信息,或者在接收到第四配置信息后的多长时延上报第四信息,或者在接收到第四测量请求后的多长时延进行相位测量,等等。
可替换地,该第三配置信息也可以不包括第三测量频率,而由第二设备向服务器发送该测量频率。
可替换地,该第四配置信息也可以不包括第四测量频率,而由第二设备向服务器发送该测量频率。
示例性地,上述第一测量频率/第三测量频率是至少一个卫星信号的频率,其可以是卫星信号的绝对频率值;也可以用卫星信号的频率编号(例如:L1)来指代;还可以通过卫星信号名称(例如:B1C)来指代。
上述第二测量频率/第四测量频率是至少一个参考信号的频率,其可以是参考信号的绝对频率值;也可以用参考信号资源单元(resource element,RE)索引来表示,即默认为RE索引对应子载波的频率。RE索引可以是相对于A点(pointA)或者相对于参考信号第一个RE的位置索引,其中A点是公共资源块(common resource block,CRB)的起始点。测量频率也可以用参考信号资源块(resource block,RB)索引来指代,例如默认为RB的第一个RE对应子载波的频率;也可以用绝对射频信道号(absolute radio-frequency channel number,ARFCN)来表示。上述第二测量频率/第四测量频率还可以采用协议约定的形式约定为参考信号上的某个RE对应的频率,比如参考信号的带宽中心的RE对应的频率。
S804.服务器向第一设备发送第一测量请求和/或第二测量请求。
相应地,第一设备接收该第一测量请求和/或第二测量请求。
其中,第一测量请求用于请求测量接收到的至少一个第一卫星信号的相位;
第二测量请求用于请求测量接收到的至少一个第一参考信号的相位。
示例性地,服务器可以向第一设备发送第一测量请求;或服务器可以向第一设备发送第二测量请求;或服务器向第一设备发送第一测量请求和第二测量请求。
示例性地,服务器可以分别向第一设备发送第一测量请求和第二测量请求;或服务器可以同时向第一设备发送第一测量请求和第二测量请求。
S805.服务器向第二设备发送第三测量请求和/或第四测量请求。
相应地,第二设备接收该第三测量请求和/或第四测量请求。
其中,第三测量请求用于请求测量接收到的至少一个第二卫星信号的相位;
第四测量请求用于请求测量接收到的至少一个第二参考信号的相位。
示例性地,服务器可以向第二设备发送第三测量请求;或服务器可以向第二设备发送第四测量请求;或服务器向第二设备发送第三测量请求和第四测量请求。
示例性地,服务器可以分别向第二设备发送第三测量请求和第四测量请求;或服务器可以同时向第二设备发送第三测量请求和第四测量请求。
S806.接入网设备发送至少一个第一参考信号。
相应地,第一设备接收到该第一参考信号。
该步骤的具体实现可以参考上述步骤S601。
S807.第一设备接收至少一个第一卫星信号。
该步骤的具体实现可以参考上述步骤S601。
S808.第一设备向服务器发送LPP消息,该LPP消息包括第一信息和第二信息。
相应地,服务器接收上述第一信息和第二信息。
其中,第一信息是根据至少一个第一卫星信号确定的相位测量值,第二信息是根据至少 一个第一参考信号确定的相位测量值。
该步骤的具体实现可以参考上述步骤S602。
示例性地,第一设备可以通过LPP消息携带该第一信息和第二信息。在5G通信***中,该LPP消息是用于终端与服务器之间通信的消息。随着通信***的演变,不限制于该消息名称,还可以是其它的消息名称,但消息的含义不变。
S809.接入网设备发送至少一个第二参考信号。
相应地,第二设备接收到该第二参考信号。
该步骤的具体实现可以参考上述步骤S603。
S810.第二设备接收至少一个第二卫星信号。
该步骤的具体实现可以参考上述步骤S603。
第二设备接收到至少一个第二卫星信号后,分别测量至少一个第二卫星信号的相位测量值,得到第三信息。以及第二设备接收到至少一个第二参考信号后,分别测量至少一个第二参考信号的相位测量值,得到第四信息。
第二设备可以通过定位协议消息向服务器发送第三信息和第四信息,该定位协议消息是第二设备与服务器之间的通信协议消息。根据定位协议消息的不同,具有以下实现方式:
一种实现方式为:S811′.第二设备具有接入网设备的能力,第二设备向服务器发送NRPPa消息,该NRPPa消息包括第三信息和第四信息。
相应地,服务器接收上述NRPPa消息。
在5G通信***中,该NRPPa消息是用于接入网设备与服务器之间通信的消息。随着通信***的演变,不限制于该消息名称,还可以是其它的消息名称,但消息的含义不变。
另一种实现方式为:S811″.第二设备具有终端的能力,第二设备向服务器发送LPP消息,该LPP消息包括第三信息和第四信息。
相应地,服务器接收上述LPP消息。
S812.服务器根据第一信息、第二信息、第三信息和第四信息,确定第一设备的位置。
该步骤的具体实现可以参考上述步骤S605。
根据本申请实施例提供的一种定位方法,第一设备/第二设备通过将根据自身接收到的至少一个卫星信号和至少一个参考信号分别确定的相位测量值发送给服务器,使得服务器可以根据第一设备和第二设备分别接收到的卫星信号和参考信号确定的相位测量值进行联合定位,可以实现较高精度的定位解算。
如图9所示,为本申请实施例提供的又一种定位方法的流程示意图,应用于下行联合定位场景。该方法可以包括以下步骤:
S901.第一设备接收至少一个第一卫星信号和至少一个第一参考信号。
该步骤的具体实现可以参考上述步骤S601或S806、S807。
如图10所示,第一设备接收gNB i和/或gNB j发送的至少一个第一定位参考信号,以及接收卫星Sat m和/或Sat n发送的至少一个第一卫星信号。
S902.第二设备接收至少一个第二卫星信号和至少一个第二参考信号。
该步骤的具体实现可以参考上述步骤S603或S809、S810。
如图10所示,第二设备接收gNB i和/或gNB j发送的至少一个第二PRS,以及接收卫星Sat m和/或Sat n发送的至少一个第二卫星信号。
S903.第二设备向第一设备发送第三信息和第四信息。
相应地,第一设备接收上述第三信息和第四信息。
其中,第三信息是根据至少一个第二卫星信号确定的相位测量值,第四信息是根据至少一个第二参考信号确定的相位测量值。
该第三信息和第四信息的获得及相关含义可参考上述实施例。与上述实施例不同的是,第二设备向第一设备发送第三信息和第四信息。
如图10所示,第二设备向第一设备发送第三信息和第四信息。
S904.第一设备根据第一信息、第二信息、第三信息和第四信息,确定第一设备的位置。
第一设备接收到至少一个第一卫星信号后,分别测量至少一个第一卫星信号的相位测量值,得到第一信息。即第一信息是根据至少一个第一卫星信号确定的相位测量值。第一设备接收到至少一个第一参考信号后,分别测量至少一个第一参考信号的相位测量值,得到第二信息。即第二信息是根据至少一个第一参考信号确定的相位测量值。
第一设备根据自身获得的第一信息和第二信息,以及根据从第二设备接收到的第三信息和第四信息,确定第一设备的位置。示例性地,第一设备利用至少两个参考信号和至少两个卫星信号,可以得到多个上述式(4),联立方程组并进行整周模糊度求解即可得到较高精度的第一设备的位置信息。该步骤的具体实现可以参考上述步骤S605。
根据本申请实施例提供的一种定位方法,第一设备可以根据自身接收到的至少一个第一卫星信号和至少一个第一参考信号分别确定的相位测量值,以及从第二设备接收到的根据至少一个第二卫星信号和至少一个第二参考信号分别确定的相位测量值,联合进行定位,确定自身的位置,从而可以实现较高精度的定位解算。
如图11所示,为本申请实施例提供的又一种定位方法的流程示意图,应用于下行联合定位场景。该方法可以包括以下步骤:
S1101.第一设备向服务器发送定位请求。
相应地,服务器接收该定位请求。
在本实施例中,由第一设备自身进行定位解算。第一设备在进行定位解算前,向服务器发送定位请求。
S1102.服务器向第一设备发送第一配置信息和/或第二配置信息。
相应地,第一设备接收该第一配置信息和/或第二配置信息。
其中,第一配置信息包括以下至少一种信息:第一测量频率、第一信息的上报周期、第一信息的上报时延;
第二配置信息包括以下至少一种信息:第二测量频率、第二信息的上报周期、第二信息的上报时延。
该步骤的具体实现可参考上述步骤S802。
S1103.服务器向第二设备发送第三配置信息和/或第四配置信息。
相应地,第二设备接收该第三配置信息和/或第四配置信息。
其中,第三配置信息包括以下至少一种信息:第三测量频率、第三信息的上报周期、第三信息的上报时延;
第四配置信息包括以下至少一种信息:第四测量频率、第四信息的上报周期、第四信息的上报时延。
该步骤的具体实现可参考上述步骤S803。
进一步地,在步骤S1103之前,服务器还可以确定第二设备。具体可参考步骤S801。
S1104.服务器向第一设备发送第一测量请求和/或第二测量请求。
相应地,第一设备接收该第一测量请求和/或第二测量请求。
其中,第一测量请求用于请求测量接收到的至少一个第一卫星信号的相位;
第二测量请求用于请求测量接收到的至少一个第一参考信号的相位。
该步骤的具体实现可参考上述步骤S804。
S1105.服务器向第二设备发送第三测量请求和/或第四测量请求。
相应地,第二设备接收该第三测量请求和/或第四测量请求。
其中,第三测量请求用于请求测量接收到的至少一个第二卫星信号的相位;
第四测量请求用于请求测量接收到的至少一个第二参考信号的相位。
该步骤的具体实现可参考上述步骤S805。
S1106.接入网设备发送至少一个第一参考信号。
相应地,第一设备接收到该第一参考信号。
该步骤的具体实现可参考上述步骤S601、S806或S901。
S1107.第一设备接收至少一个第一卫星信号。
该步骤的具体实现可参考上述步骤S601、S807或S901。
S1108.接入网设备发送至少一个第二参考信号。
相应地,第二设备接收到该第二参考信号。
该步骤的具体实现可参考上述步骤S603、S809或S902。
S1109.第二设备接收至少一个第二卫星信号。
该步骤的具体实现可参考上述步骤S603、S810或S902。
第二设备接收到至少一个第二卫星信号后,分别测量至少一个第二卫星信号的相位测量值,得到第三信息。以及第二设备接收到至少一个第二参考信号后,分别测量至少一个第二参考信号的相位测量值,得到第四信息。
第二设备可以通过定位协议消息向第一设备发送第三信息和第四信息,该定位协议消息是第二设备与服务器之间的通信协议消息。根据定位协议消息的不同,具有以下实现方式:
一种实现方式为:S1110′.第二设备具有接入网设备的能力,第二设备向第一设备发送NRPPa消息,该NRPPa消息包括第三信息和第四信息。
相应地,第一设备接收上述NRPPa消息。
另一种实现方式为:S1110″.第二设备具有终端的能力,第二设备向第一设备发送LPP消息,该LPP消息包括第三信息和第四信息。
相应地,第一设备接收上述LPP消息。
又一种实现方式为:S1110″′.第二设备支持侧行链路(sidelink,SL)传输,第二设备向第一设备发送侧行链路消息,该侧行链路消息包括第三信息和第四信息。
相应地,第一设备接收上述侧行链路消息。
其中,第三信息是根据至少一个第二卫星信号确定的相位测量值,第四信息是根据至少一个第二参考信号确定的相位测量值。
S1111.第一设备根据第一信息、第二信息、第三信息和第四信息,确定第一设备的位置。
该步骤的具体实现可参考上述步骤S605、S812或S904。
根据本申请实施例提供的一种定位方法,第一设备可以根据自身接收到的至少一个第一卫星信号和至少一个第一参考信号分别确定的相位测量值,以及从第二设备接收到的根据至少一个第二卫星信号和至少一个第二参考信号分别确定的相位测量值,联合进行定位,确定自身的位置,从而可以实现较高精度的定位解算。
如图12所示,为本申请实施例提供的又一种定位方法的流程示意图,应用于上行联合定 位场景。该方法可以包括以下步骤:
S1201.第一设备接收至少一个第一卫星信号。
该步骤的具体实现可参考上述步骤S601、S807、S901或S1107。
如图13所示,第一设备接收卫星Sat m和/或Sat n发送的至少一个第一卫星信号。
S1202.第二设备接收至少一个第二卫星信号。
该步骤的具体实现可参考上述步骤S603、S810、S902或S1109。
如图13所示,第二设备接收卫星Sat m和/或Sat n发送的至少一个第二卫星信号。
S1203.第一设备向接入网设备发送至少一个第一参考信号。
相应地,接入网设备接收该至少一个第一参考信号。
本实施例应用于上行联合定位场景。第一设备可以向接入网设备发送至少一个第一参考信号。该第一参考信号可以是探测参考信号(souding reference signal,SRS)等。
如图13所示,第一设备向gNB i和/或gNB j发送至少一个第一SRS。
S1204.第二设备向接入网设备发送至少一个第二参考信号。
相应地,接入网设备接收该至少一个第二参考信号。
该第二参考信号也可以是SRS等。
如图13所示,第二设备向gNB i和/或gNB j发送至少一个第二SRS。
S1205.第一设备向服务器发送第一信息。
相应地,服务器接收该第一信息。
该步骤的具体实现可参考上述步骤S602或S808。与上述实施例不同的是,第一设备仅向服务器发送第一信息。
S1206.第二设备向服务器发送第三信息。
相应地,服务器接收该第三信息。
该步骤的具体实现可参考上述步骤S604、S811′或S811″。与上述实施例不同的是,第二设备仅向服务器发送第三信息。
S1207.接入网设备向服务器发送第二信息和第四信息。
相应地,服务器接收该第二信息和第四信息。
接入网设备接收到至少一个第一参考信号后,分别测量至少一个第一参考信号的相位测量值,得到第二信息。即第二信息是根据至少一个第一参考信号确定的相位测量值。
具体地,接入网设备可以分别测量至少一个第一参考信号的相位测量值,得到至少一个第一参考信号中的每个第一参考信号的相位测量值。接入网设备还可以进一步计算至少一个第一参考信号中的两个第一参考信号的相位测量值之间的差值,例如,将测量得到的第一个参考信号的相位测量值作为参考值,计算至少一个第一参考信号中其它第一参考信号的相位测量值与上述参考值之间的差值。该参考值还可以是测量得到的至少一个第一参考信号的相位测量值中的最大值或最小值,本实施例对此不作限制。接入网设备还可以进一步在至少一个第一参考信号中的每个第一参考信号的相位测量值中选取质量较好的一定数量的第一参考信号的相位测量值。接入网设备还可以测量至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值。该任一个第一参考信号可以是每个第一参考信号。进一步地,还可以计算任一个第一参考信号的至少两个时刻的相位测量值之间的差值。接入网设备还可以测量至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值的差值。
在测量或计算相位测量值后,第二信息可以包括以下至少一个信息:至少一个第一参考信号中的每个第一参考信号的相位测量值,至少一个第一参考信号中的两个第一参考信号的 相位测量值之间的差值,至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值之间的差值。示例性地,第二信息也可以包括至少一个第一参考信号中质量较好的一定数量的第一参考信号的相位测量值。
接入网设备接收到至少一个第二参考信号后,分别测量至少一个第二参考信号的相位测量值,得到第四信息。即第四信息是根据至少一个第二参考信号确定的相位测量值。
具体地,接入网设备可以分别测量至少一个第二参考信号的相位测量值,得到至少一个第二参考信号中的每个第二参考信号的相位测量值。接入网设备还可以进一步计算至少一个第二参考信号中的两个第二参考信号的相位测量值之间的差值,例如,将测量得到的第一个参考信号的相位测量值作为参考值,计算至少一个第二参考信号中其它第二参考信号的相位测量值与上述参考值之间的差值。该参考值还可以是测量得到的至少一个第二参考信号的相位测量值中的最大值或最小值,本实施例对此不作限制。接入网设备还可以进一步在至少一个第二参考信号中的每个第二参考信号的相位测量值中选取质量较好的一定数量的第二参考信号的相位测量值。接入网设备还可以测量至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值。该任一个第二参考信号可以是每个第二参考信号。进一步地,还可以计算任一个第二参考信号的至少两个时刻的相位测量值之间的差值。接入网设备还可以测量至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值的差值。
在测量或计算相位测量值后,第四信息可以包括以下至少一个信息:至少一个第二参考信号中的每个第二参考信号的相位测量值,至少一个第二参考信号中的两个第二参考信号的相位测量值之间的差值,至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值之间的差值。示例性地,第四信息也可以包括至少一个第二参考信号中质量较好的一定数量的第二参考信号的相位测量值。
S1208.服务器根据第一信息、第二信息、第三信息和第四信息,确定第一设备的位置。
该步骤的具体实现可参考上述步骤S605或S812。
根据本申请实施例提供的一种定位方法,第一设备和第二设备分别将根据接收到的至少一个卫星信号确定的相位测量值发送给服务器,并且第一设备和第二设备分别向接入网设备发送至少一个参考信号,使接入网设备将分别根据接收到的至少一个参考信号确定的相位测量值发送给服务器,从而使得服务器可以根据这些相位测量值进行联合定位,实现较高精度的定位解算。
如图14所示,为本申请实施例提供的又一种定位方法的流程示意图,应用于上行联合定位场景。该方法可以包括以下步骤:
S1401.服务器确定第二设备。
该步骤的具体实现可参考步骤S801。
S1402.服务器向第一设备发送第一配置信息。
相应地,第一设备接收该第一配置信息。
其中,第一配置信息包括以下至少一种信息:第一测量频率、第二测量频率、第一信息的上报周期、第一信息的上报时延。
该步骤的具体实现可参考步骤S802。
可替换地,服务器也可以不配置第一测量频率和第二频率,由第一设备向服务器发送上述第一测量频率和第二测量频率。
S1403.服务器向第二设备发送第二配置信息。
相应地,第二设备接收该第二配置信息。
其中,第二配置信息包括以下至少一种信息:第三测量频率、第四测量频率、第三信息的上报周期、第三信息的上报时延。
该步骤的具体实现可参考步骤S803。
可替换地,服务器也可以不配置第三测量频率和第四测量频率,由第二设备向服务器发送上述第三测量频率和第四测量频率。
S1404.服务器向第一设备发送第一测量请求和/或第一发送请求。
相应地,第一设备接收该第一测量请求和/或第一发送请求。
其中,第一测量请求用于请求测量接收到的至少一个第一卫星信号的相位,第一发送请求用于请求发送至少一个第一参考信号。
该步骤的具体实现可参考步骤S804。与步骤S804的区别在于,服务器还发送上述第一发送请求。
S1405.服务器向第二设备发送第二测量请求和/或第二发送请求。
相应地,第二设备接收该第二测量请求和/或第二发送请求。
其中,第二测量请求用于请求测量接收到的至少一个第二卫星信号的相位,第二发送请求用于请求发送至少一个第二参考信号。
该步骤的具体实现可参考步骤S805。与步骤S805的区别在于,服务器还发送上述第二发送请求。
S1406.第一设备接收至少一个第一卫星信号。
该至少一个第一卫星信号用于定位。
该步骤的具体实现可参考步骤S1201。
S1407.第二设备接收至少一个第二卫星信号。
该至少一个第二卫星信号用于定位。
该步骤的具体实现可参考步骤S1202。
S1408.第一设备向接入网设备发送至少一个第一参考信号。
相应地,接入网设备接收该至少一个第一参考信号。
该至少一个第一参考信号用于定位。
该步骤的具体实现可参考步骤S1203。
S1409.第二设备向接入网设备发送至少一个第二参考信号。
相应地,接入网设备接收该至少一个第二参考信号。
该至少一个第二参考信号用于定位。
该步骤的具体实现可参考步骤S1204。
S1410.第一设备向服务器发送LPP消息,该LPP消息包括第一信息。
相应地,服务器接收该LPP消息。
该步骤的具体实现可参考步骤S808。
第二设备可以通过定位协议消息向服务器发送第三信息,根据定位协议消息的不同,具有以下实现方式:
一种实现方式为,第二设备具有接入网设备的能力,则S1411′.第二设备向服务器发送NRPPa消息,该NRPPa消息包括第三信息。相应地,服务器接收该NRPPa消息。该步骤的具体实现可参考步骤S811′。
另一种实现方式为,第二设备具有终端的能力,则S1411″.第二设备向服务器发送LPP消息,该LPP消息包括第三信息。相应地,服务器接收该LPP消息。该步骤的具体实现可参 考步骤S811″。
S1412.接入网设备向服务器发送第二信息和第四信息。
相应地,服务器接收该第二信息和第四信息。
该步骤的具体实现可参考步骤S1207。示例性地,接入网设备可以向服务器发送NRPPa消息,该NRPPa消息包括第二信息和第四信息。
S1413.服务器根据第一信息、第二信息、第三信息和第四信息,确定第一设备的位置。
该步骤的具体实现可参考上述步骤S605、S812或S1208。
根据本申请实施例提供的一种定位方法,第一设备和第二设备分别将根据接收到的至少一个卫星信号确定的相位测量值发送给服务器,并且第一设备和第二设备分别向接入网设备发送至少一个参考信号,使接入网设备将分别根据接收到的至少一个参考信号确定的相位测量值发送给服务器,从而使得服务器可以根据这些相位测量值进行联合定位,实现较高精度的定位解算。
示例性地,在本申请实施例中,第一设备、第二设备或者服务器包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端或接入网设备或服务器,或者,是第一设备、第二设备或者服务器中能够调用程序并执行程序的功能模块。
换言之,本申请实施例中的第一设备、第二设备或者服务器的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
可以理解的是,为了实现上述实施例中的功能,第一设备、第二设备或服务器包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图15和图16为本申请的实施例提供的可能的定位装置的结构示意图。该定位装置也可以是通信装置。这些定位装置可以用于实现上述方法实施例中第一设备、第二设备或服务器的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该定位装置可以是第一设备、第二设备或服务器,还可以是应用于第一设备、第二设备或服务器的模块(如芯片)。
如图15所示,定位装置1500包括处理单元1510和收发单元1520。定位装置1500用于实现上述图6、图8、图9、图11、图12、图14中所示的方法实施例中第一设备、第二设备或服务器的功能。
当定位装置1500用于实现图6或图8所示的方法实施例中第一设备/第二设备的功能时:所述收发单元1520,用于接收至少一个卫星信号和至少一个参考信号;以及所述收发单元1520,还用于发送第一信息和第二信息,所述第一信息是根据所述至少一个卫星信号确定的相位测量值,所述第二信息是根据所述至少一个参考信号确定的相位测量值。
在一种可能的实现中,所述至少一个卫星信号和所述至少一个参考信号用于定位。
在另一种可能的实现中,所述第一信息包括以下至少一个信息:所述至少一个卫星信号中的每个卫星信号的相位测量值,所述至少一个卫星信号中的两个卫星信号的相位测量值之间的差值,所述至少一个卫星信号中的任一个卫星信号的至少两个时刻的相位测量值之间的差值;所述第二信息包括以下至少一个信息:所述至少一个参考信号中的每个参考信号的相位测量值,所述至少一个参考信号中的两个参考信号的相位测量值之间的差值,所述至少一个参考信号中的任一个参考信号的至少两个时刻的相位测量值之间的差值。
在又一种可能的实现中,所述收发单元1520,还用于发送第一测量频率和/或第二测量频率,所述第一测量频率是所述至少一个卫星信号的频率,所述第二测量频率是所述至少一个参考信号的频率。
在又一种可能的实现中,所述收发单元1520,还用于接收第一配置信息和/或第二配置信息;其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第一信息的上报周期、所述第一信息的上报时延;所述第二配置信息包括以下至少一种信息:所述第二测量频率、所述第二信息的上报周期、所述第二信息的上报时延。
在又一种可能的实现中,所述收发单元1520,还用于接收第一测量请求和/或第二测量请求;其中,所述第一测量请求用于请求测量接收到的所述至少一个卫星信号的相位;所述第二测量请求用于请求测量接收到的所述至少一个参考信号的相位。
在又一种可能的实现中,所述收发单元1520,还用于发送定位协议消息,所述定位协议消息包括所述第一信息和所述第二信息;其中,所述定位协议消息为新无线定位协议NRPPa消息或长期演进定位协议LPP消息。
当定位装置1500用于实现图6或图8所示的方法实施例中服务器的功能时:所述收发单元1520,用于接收第一信息、第二信息、第三信息和第四信息;以及所述处理单元1510,用于根据所述第一信息、所述第二信息、所述第三信息和所述第四信息,确定第一设备的位置;其中,所述第一信息是所述第一设备根据至少一个第一卫星信号确定的相位测量值,所述第二信息是所述第一设备根据至少一个第一参考信号确定的相位测量值,所述第三信息是第二设备根据至少一个第二卫星信号确定的相位测量值,所述第四信息是所述第二设备根据至少一个第二参考信号确定的相位测量值。
在一种可能的实现中,所述处理单元1510,还用于确定所述第二设备。
在另一种可能的实现中,所述第一信息包括以下至少一个信息:所述至少一个第一卫星信号中的每个第一卫星信号的相位测量值,所述至少一个第一卫星信号中的两个第一卫星信号的相位测量值之间的差值,所述至少一个第一卫星信号中的任一个第一卫星信号的至少两个时刻的相位测量值之间的差值;所述第二信息包括以下至少一个信息:所述至少一个第一参考信号中的每个第一参考信号的相位测量值,所述至少一个第一参考信号中的两个第一参考信号的相位测量值之间的差值,所述至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值之间的差值;所述第三信息包括以下至少一个信息:所述至少一个第二卫星信号中的每个第二卫星信号的相位测量值,所述至少一个第二卫星信号中的两个第二卫星信号的相位测量值之间的差值,所述至少一个第二卫星信号中的任一个第二卫星信号 的至少两个时刻的相位测量值之间的差值;所述第四信息包括以下至少一个信息:所述至少一个第二参考信号中的每个第二参考信号的相位测量值,所述至少一个第二参考信号中的两个第二参考信号的相位测量值之间的差值,所述至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值之间的差值。
在又一种可能的实现中,所述收发单元1520,还用于接收第一测量频率、第二测量频率、第三测量频率和/或第四测量频率,所述第一测量频率是所述至少一个第一卫星信号的频率,所述第二测量频率是所述至少一个第一参考信号的频率,所述第三测量频率是所述至少一个第二卫星信号的频率,所述第四测量频率是所述至少一个第二参考信号的频率。
在又一种可能的实现中,所述收发单元1520,还用于向所述第一设备发送第一配置信息和/或第二配置信息;其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第一信息的上报周期、所述第一信息的上报时延;所述第二配置信息包括以下至少一种信息:所述第二测量频率、所述第二信息的上报周期、所述第二信息的上报时延。
在又一种可能的实现中,所述收发单元1520,还用于向所述第二设备发送第三配置信息和/或第四配置信息;其中,所述第三配置信息包括以下至少一种信息:所述第三测量频率、所述第三信息的上报周期、所述第三信息的上报时延;所述第四配置信息包括以下至少一种信息:所述第四测量频率、所述第四信息的上报周期、所述第四信息的上报时延。
在又一种可能的实现中,所述收发单元1520,还用于向所述第一设备发送第一测量请求和/或第二测量请求;其中,所述第一测量请求用于请求测量接收到的所述至少一个第一卫星信号的相位;所述第二测量请求用于请求测量接收到的所述至少一个第一参考信号的相位。
在又一种可能的实现中,所述收发单元1520,还用于向所述第二设备发送第三测量请求和/或第四测量请求;其中,所述第三测量请求用于请求测量接收到的所述至少一个第二卫星信号的相位;所述第四测量请求用于请求测量接收到的所述至少一个第二参考信号的相位。
在又一种可能的实现中,所述收发单元1520,还用于接收定位协议消息,所述定位协议消息包括所述第一信息和所述第二信息;其中,所述定位协议消息为新无线定位协议NRPPa消息或长期演进定位协议LPP消息。
当定位装置1500用于实现图9或图11所示的方法实施例中第一设备的功能时:所述收发单元1520,用于接收至少一个第一卫星信号和至少一个第一参考信号;所述收发单元1520,还用于接收第三信息和第四信息,所述第三信息是第二设备根据至少一个第二卫星信号确定的相位测量值,所述第四信息是所述第二设备根据至少一个第二参考信号确定的相位测量值;以及所述处理单元1510,用于根据第一信息、第二信息、所述第三信息和所述第四信息,确定所述第一设备的位置,所述第一信息是所述第一设备根据所述至少一个第一卫星信号确定的相位测量值,所述第二信息是所述第一设备根据所述至少一个第一参考信号确定的相位测量值。
在一种可能的实现中,所述收发单元1520,还用于向服务器发送定位请求。
在另一种可能的实现中,所述第一信息包括以下至少一个信息:所述至少一个第一卫星信号中的每个第一卫星信号的相位测量值,所述至少一个第一卫星信号中的两个第一卫星信号的相位测量值之间的差值,所述至少一个第一卫星信号中的任一个第一卫星信号的至少两个时刻的相位测量值之间的差值;所述第二信息包括以下至少一个信息:所述至少一个第一参考信号中的每个第一参考信号的相位测量值,所述至少一个第一参考信号中的两个第一参考信号的相位测量值之间的差值,所述至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值之间的差值;所述第三信息包括以下至少一个信息:所述至少一个 第二卫星信号中的每个第二卫星信号的相位测量值,所述至少一个第二卫星信号中的两个第二卫星信号的相位测量值之间的差值,所述至少一个第二卫星信号中的任一个第二卫星信号的至少两个时刻的相位测量值之间的差值;所述第四信息包括以下至少一个信息:所述至少一个第二参考信号中的每个第二参考信号的相位测量值,所述至少一个第二参考信号中的两个第二参考信号的相位测量值之间的差值,所述至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值之间的差值。
在又一种可能的实现中,所述收发单元1520,还用于发送第一测量频率和/或第二测量频率,所述第一测量频率是所述至少一个第一卫星信号的频率,所述第二测量频率是所述至少一个第一参考信号的频率。
在又一种可能的实现中,所述收发单元1520,还用于接收第一配置信息和/或第二配置信息;其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第一信息的上报周期、所述第一信息的上报时延;所述第二配置信息包括以下至少一种信息:所述第二测量频率、所述第二信息的上报周期、所述第二信息的上报时延。
在又一种可能的实现中,所述收发单元1520,还用于接收第一测量请求和/或第二测量请求;其中,所述第一测量请求用于请求测量接收到的所述至少一个第一卫星信号的相位;所述第二测量请求用于请求测量接收到的所述至少一个第一参考信号的相位。
在又一种可能的实现中,所述收发单元1520,还用于接收无线资源控制消息,所述无线资源控制消息包括所述第三信息和所述第四信息;或所述收发单元1520,还用于接收长期演进新无线定位协议NRPPa消息,所述NRPPa消息包括所述第三信息和所述第四信息;或所述收发单元1520,还用于接收侧行链路消息,所述侧行链路消息包括所述第三信息和所述第四信息。
当定位装置1500用于实现图12或图14所示的方法实施例中第一设备/第二设备的功能时:所述收发单元1520,用于接收至少一个卫星信号;所述收发单元1520,还用于发送至少一个参考信号;以及所述收发单元1520,还用于发送第一信息,所述第一信息是根据所述至少一个卫星信号确定的相位测量值。
在一种可能的实现中,所述至少一个卫星信号和所述至少一个参考信号用于定位。
在另一种可能的实现中,所述第一信息包括以下至少一个信息:所述至少一个卫星信号中的每个卫星信号的相位测量值,所述至少一个卫星信号中的两个卫星信号的相位测量值之间的差值,所述至少一个卫星信号中的任一个卫星信号的至少两个时刻的相位测量值之间的差值。
在又一种可能的实现中,所述收发单元1520,还用于发送第一测量频率和/或第二测量频率,所述第一测量频率是所述至少一个卫星信号的频率,所述第二测量频率是所述至少一个参考信号的频率。
在又一种可能的实现中,所述收发单元1520,还用于接收配置信息;其中,所述配置信息包括以下至少一种信息:所述第一测量频率、所述第二测量频率、所述第一信息的上报周期、所述第一信息的上报时延。
在又一种可能的实现中,所述收发单元1520,还用于接收测量请求和/或发送请求;其中,所述测量请求用于请求测量接收到的所述至少一个卫星信号的相位;所述发送请求用于请求发送所述至少一个参考信号。
在又一种可能的实现中,所述收发单元1520,还用于发送定位协议消息,所述定位协议消息包括所述第一信息;其中,所述定位协议消息为新无线定位协议NRPPa消息或长期演进 定位协议LPP消息。
当定位装置1500用于实现图12或图14所示的方法实施例中服务器的功能时:所述收发单元1520,用于接收第一设备发送的第一信息、接入网设备发送的第二信息和第四信息、第二设备发送的第三信息;以及所述处理单元1510,用于根据所述第一信息、所述第二信息、所述第三信息和所述第四信息,确定所述第一设备的位置;其中,所述第一信息是所述第一设备根据至少一个第一卫星信号确定的相位测量值,所述第二信息是所述接入网设备根据至少一个第一参考信号确定的相位测量值,所述第三信息是所述第二设备根据至少一个第二卫星信号确定的相位测量值,所述第四信息是所述接入网设备根据至少一个第二参考信号确定的相位测量值,所述至少一个第一参考信号是所述第一设备发送的,所述至少一个第二参考信号是所述第二设备发送的。
在一种可能的实现中,所述处理单元1510,还用于确定所述第二设备。
在另一种可能的实现中,所述第一信息包括以下至少一个信息:所述至少一个第一卫星信号中的每个第一卫星信号的相位测量值,所述至少一个第一卫星信号中的两个第一卫星信号的相位测量值之间的差值,所述至少一个第一卫星信号中的任一个第一卫星信号的至少两个时刻的相位测量值之间的差值;所述第二信息包括以下至少一个信息:所述至少一个第一参考信号中的每个第一参考信号的相位测量值,所述至少一个第一参考信号中的两个第一参考信号的相位测量值之间的差值,所述至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值之间的差值;所述第三信息包括以下至少一个信息:所述至少一个第二卫星信号中的每个第二卫星信号的相位测量值,所述至少一个第二卫星信号中的两个第二卫星信号的相位测量值之间的差值,所述至少一个第二卫星信号中的任一个第二卫星信号的至少两个时刻的相位测量值之间的差值;所述第四信息包括以下至少一个信息:所述至少一个第二参考信号中的每个第二参考信号的相位测量值,所述至少一个第二参考信号中的两个第二参考信号的相位测量值之间的差值,所述至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值之间的差值。
在又一种可能的实现中,所述收发单元1520,还用于接收第一测量频率、第二测量频率、第三测量频率和/或第四测量频率,所述第一测量频率是所述至少一个第一卫星信号的频率,所述第二测量频率是所述至少一个第一参考信号的频率,所述第三测量频率是所述至少一个第二卫星信号的频率,所述第四测量频率是所述至少一个第二参考信号的频率。
在又一种可能的实现中,所述收发单元1520,还用于向所述第一设备发送第一配置信息;其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第二测量频率、所述第一信息的上报周期、所述第一信息的上报时延。
在又一种可能的实现中,所述收发单元1520,还用于向所述第二设备发送第二配置信息;其中,所述第二配置信息包括以下至少一种信息:所述第三测量频率、所述第四测量频率、所述第三信息的上报周期、所述第三信息的上报时延。
在又一种可能的实现中,所述收发单元1520,还用于向所述第一设备发送第一测量请求和/或第一发送请求;其中,所述第一测量请求用于请求测量接收到的所述至少一个第一卫星信号的相位;所述第一发送请求用于请求发送所述至少一个第一参考信号。
在又一种可能的实现中,所述收发单元1520,还用于向所述第二设备发送第二测量请求和/或第二发送请求;其中,所述第二测量请求用于请求测量接收到的所述至少一个第二卫星信号的相位;所述第二发送请求用于请求发送所述至少一个第二参考信号。
在又一种可能的实现中,所述收发单元1520,还用于接收定位协议消息,所述定位协议 消息包括所述第三信息;其中,所述定位协议消息为新无线定位协议NRPPa消息或长期演进定位协议LPP消息。
有关上述处理单元1510和收发单元1520更详细的描述可以直接参考图6、图8、图9、图11、图12、图14所示的方法实施例中相关描述直接得到,这里不加赘述。
如图16所示,定位装置1600包括处理器1610和接口电路1620。处理器1610和接口电路1620之间相互耦合。可以理解的是,接口电路1620可以为收发器或输入输出接口。示例性地,定位装置1600还可以包括存储器1630,用于存储处理器1610执行的指令或存储处理器1610运行指令所需要的输入数据或存储处理器1610运行指令后产生的数据。
当定位装置1600用于实现图6、图8、图9、图11、图12、图14所示的方法时,处理器1610用于实现上述处理单元1510的功能,接口电路1620用于实现上述收发单元1520的功能。
当上述定位装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是接入网设备或服务器发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给接入网设备或服务器的。
当上述定位装置为应用于接入网设备的芯片时,该接入网设备芯片实现上述方法实施例中接入网设备的功能。该接入网设备芯片从接入网设备中的其它模块(如射频模块或天线)接收信息,该信息是终端或服务器发送给接入网设备的;或者,该接入网设备芯片向接入网设备中的其它模块(如射频模块或天线)发送信息,该信息是接入网设备发送给终端或服务器的。
当上述定位装置为应用于服务器的芯片时,该服务器的芯片实现上述方法实施例中服务器的功能。该服务器的芯片从服务器中的其它模块(如射频模块或天线)接收信息,该信息是终端或接入网设备发送给服务器的;或者,该服务器的芯片向服务器中的其它模块(如射频模块或天线)发送信息,该信息是服务器发送给终端或接入网设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、紧凑型光盘只读存储器(compact disc read-only memory,CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包 括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、基站、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。还应理解,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。

Claims (42)

  1. 一种定位方法,其特征在于,所述方法包括:
    接收至少一个卫星信号和至少一个参考信号;
    发送第一信息和第二信息,所述第一信息是根据所述至少一个卫星信号确定的相位测量值,所述第二信息是根据所述至少一个参考信号确定的相位测量值。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个卫星信号和所述至少一个参考信号用于定位。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息包括以下至少一个信息:所述至少一个卫星信号中的每个卫星信号的相位测量值,所述至少一个卫星信号中的两个卫星信号的相位测量值之间的差值,所述至少一个卫星信号中的任一个卫星信号的至少两个时刻的相位测量值之间的差值;
    所述第二信息包括以下至少一个信息:所述至少一个参考信号中的每个参考信号的相位测量值,所述至少一个参考信号中的两个参考信号的相位测量值之间的差值,所述至少一个参考信号中的任一个参考信号的至少两个时刻的相位测量值之间的差值。
  4. 根据权利要求1~3中任一项所述的方法,其特征在于,所述方法还包括:
    发送第一测量频率和/或第二测量频率,所述第一测量频率是所述至少一个卫星信号的频率,所述第二测量频率是所述至少一个参考信号的频率。
  5. 根据权利要求1~4中任一项所述的方法,其特征在于,所述方法还包括:
    接收第一配置信息和/或第二配置信息;
    其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第一信息的上报周期、所述第一信息的上报时延;
    所述第二配置信息包括以下至少一种信息:所述第二测量频率、所述第二信息的上报周期、所述第二信息的上报时延。
  6. 根据权利要求1~5中任一项所述的方法,其特征在于,所述发送第一信息和第二信息之前,所述方法还包括:
    接收第一测量请求和/或第二测量请求;
    其中,所述第一测量请求用于请求测量接收到的所述至少一个卫星信号的相位;
    所述第二测量请求用于请求测量接收到的所述至少一个参考信号的相位。
  7. 根据权利要求1~6中任一项所述的方法,其特征在于,所述发送第一信息和第二信息,包括:
    发送定位协议消息,所述定位协议消息包括所述第一信息和所述第二信息;
    其中,所述定位协议消息为新无线定位协议NRPPa消息或长期演进定位协议LPP消息。
  8. 一种定位方法,其特征在于,所述方法包括:
    接收第一信息、第二信息、第三信息和第四信息;
    根据所述第一信息、所述第二信息、所述第三信息和所述第四信息,确定第一设备的位置;
    其中,所述第一信息是所述第一设备根据至少一个第一卫星信号确定的相位测量值,所述第二信息是所述第一设备根据至少一个第一参考信号确定的相位测量值,所述第三信息是第二设备根据至少一个第二卫星信号确定的相位测量值,所述第四信息是所述第二设备根据至少一个第二参考信号确定的相位测量值。
  9. 根据权利要求8所述的方法,其特征在于,所述接收第三信息和第四信息之前,所述方法还包括:
    确定所述第二设备。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一信息包括以下至少一个信息:所述至少一个第一卫星信号中的每个第一卫星信号的相位测量值,所述至少一个第一卫星信号中的两个第一卫星信号的相位测量值之间的差值,所述至少一个第一卫星信号中的任一个第一卫星信号的至少两个时刻的相位测量值之间的差值;
    所述第二信息包括以下至少一个信息:所述至少一个第一参考信号中的每个第一参考信号的相位测量值,所述至少一个第一参考信号中的两个第一参考信号的相位测量值之间的差值,所述至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值之间的差值;
    所述第三信息包括以下至少一个信息:所述至少一个第二卫星信号中的每个第二卫星信号的相位测量值,所述至少一个第二卫星信号中的两个第二卫星信号的相位测量值之间的差值,所述至少一个第二卫星信号中的任一个第二卫星信号的至少两个时刻的相位测量值之间的差值;
    所述第四信息包括以下至少一个信息:所述至少一个第二参考信号中的每个第二参考信号的相位测量值,所述至少一个第二参考信号中的两个第二参考信号的相位测量值之间的差值,所述至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值之间的差值。
  11. 根据权利要求8~10中任一项所述的方法,其特征在于,所述方法还包括:
    接收第一测量频率、第二测量频率、第三测量频率和/或第四测量频率,所述第一测量频率是所述至少一个第一卫星信号的频率,所述第二测量频率是所述至少一个第一参考信号的频率,所述第三测量频率是所述至少一个第二卫星信号的频率,所述第四测量频率是所述至少一个第二参考信号的频率。
  12. 根据权利要求8~11中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一设备发送第一配置信息和/或第二配置信息;
    其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第一信息的上报周期、所述第一信息的上报时延;
    所述第二配置信息包括以下至少一种信息:所述第二测量频率、所述第二信息的上报周 期、所述第二信息的上报时延。
  13. 根据权利要求8~12中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第二设备发送第三配置信息和/或第四配置信息;
    其中,所述第三配置信息包括以下至少一种信息:所述第三测量频率、所述第三信息的上报周期、所述第三信息的上报时延;
    所述第四配置信息包括以下至少一种信息:所述第四测量频率、所述第四信息的上报周期、所述第四信息的上报时延。
  14. 根据权利要求8~13中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一设备发送第一测量请求和/或第二测量请求;
    其中,所述第一测量请求用于请求测量接收到的所述至少一个第一卫星信号的相位;
    所述第二测量请求用于请求测量接收到的所述至少一个第一参考信号的相位。
  15. 根据权利要求8~14中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第二设备发送第三测量请求和/或第四测量请求;
    其中,所述第三测量请求用于请求测量接收到的所述至少一个第二卫星信号的相位;
    所述第四测量请求用于请求测量接收到的所述至少一个第二参考信号的相位。
  16. 根据权利要求8~15中任一项所述的方法,其特征在于,所述接收第三信息和第四信息,包括:
    接收定位协议消息,所述定位协议消息包括所述第一信息和所述第二信息;
    其中,所述定位协议消息为新无线定位协议NRPPa消息或长期演进定位协议LPP消息。
  17. 一种定位方法,其特征在于,所述方法包括:
    第一设备接收至少一个第一卫星信号和至少一个第一参考信号;
    所述第一设备接收第三信息和第四信息,所述第三信息是第二设备根据至少一个第二卫星信号确定的相位测量值,所述第四信息是所述第二设备根据至少一个第二参考信号确定的相位测量值;
    所述第一设备根据第一信息、第二信息、所述第三信息和所述第四信息,确定所述第一设备的位置,所述第一信息是所述第一设备根据所述至少一个第一卫星信号确定的相位测量值,所述第二信息是所述第一设备根据所述至少一个第一参考信号确定的相位测量值。
  18. 根据权利要求17所述的方法,其特征在于,所述第一设备接收至少一个第一卫星信号和至少一个第一参考信号之前,所述方法还包括:
    所述第一设备向服务器发送定位请求。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第一信息包括以下至少一个信息:所述至少一个第一卫星信号中的每个第一卫星信号的相位测量值,所述至少一个第一卫星信号中的两个第一卫星信号的相位测量值之间的差值,所述至少一个第一卫星信号中的任一个第一卫星信号的至少两个时刻的相位测量值之间的差值;
    所述第二信息包括以下至少一个信息:所述至少一个第一参考信号中的每个第一参考信号的相位测量值,所述至少一个第一参考信号中的两个第一参考信号的相位测量值之间的差值,所述至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值之间的差值;
    所述第三信息包括以下至少一个信息:所述至少一个第二卫星信号中的每个第二卫星信号的相位测量值,所述至少一个第二卫星信号中的两个第二卫星信号的相位测量值之间的差值,所述至少一个第二卫星信号中的任一个第二卫星信号的至少两个时刻的相位测量值之间的差值;
    所述第四信息包括以下至少一个信息:所述至少一个第二参考信号中的每个第二参考信号的相位测量值,所述至少一个第二参考信号中的两个第二参考信号的相位测量值之间的差值,所述至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值之间的差值。
  20. 根据权利要求17~19中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备发送第一测量频率和/或第二测量频率,所述第一测量频率是所述至少一个第一卫星信号的频率,所述第二测量频率是所述至少一个第一参考信号的频率。
  21. 根据权利要求17~20中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收第一配置信息和/或第二配置信息;
    其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第一信息的上报周期、所述第一信息的上报时延;
    所述第二配置信息包括以下至少一种信息:所述第二测量频率、所述第二信息的上报周期、所述第二信息的上报时延。
  22. 根据权利要求17~21中任一项所述的方法,其特征在于,所述第一设备接收至少一个第一卫星信号和至少一个第一参考信号之前,所述方法还包括:
    所述第一设备接收第一测量请求和/或第二测量请求;
    其中,所述第一测量请求用于请求测量接收到的所述至少一个第一卫星信号的相位;
    所述第二测量请求用于请求测量接收到的所述至少一个第一参考信号的相位。
  23. 根据权利要求17~22中任一项所述的方法,其特征在于,所述第一设备接收第三信息和第四信息,包括:
    所述第一设备接收无线资源控制消息,所述无线资源控制消息包括所述第三信息和所述第四信息;或
    所述第一设备接收长期演进新无线定位协议NRPPa消息,所述NRPPa消息包括所述第三信息和所述第四信息;或
    所述第一设备接收侧行链路消息,所述侧行链路消息包括所述第三信息和所述第四信息。
  24. 一种定位方法,其特征在于,所述方法包括:
    接收至少一个卫星信号;
    发送至少一个参考信号;
    发送第一信息,所述第一信息是根据所述至少一个卫星信号确定的相位测量值。
  25. 根据权利要求24所述的方法,其特征在于,所述至少一个卫星信号和所述至少一个参考信号用于定位。
  26. 根据权利要求24或25所述的方法,其特征在于,所述第一信息包括以下至少一个信息:所述至少一个卫星信号中的每个卫星信号的相位测量值,所述至少一个卫星信号中的两个卫星信号的相位测量值之间的差值,所述至少一个卫星信号中的任一个卫星信号的至少两个时刻的相位测量值之间的差值。
  27. 根据权利要求24~26中任一项所述的方法,其特征在于,所述方法还包括:
    发送第一测量频率和/或第二测量频率,所述第一测量频率是所述至少一个卫星信号的频率,所述第二测量频率是所述至少一个参考信号的频率。
  28. 根据权利要求24~27中任一项所述的方法,其特征在于,所述方法还包括:
    接收配置信息;
    其中,所述配置信息包括以下至少一种信息:所述第一测量频率、所述第二测量频率、所述第一信息的上报周期、所述第一信息的上报时延。
  29. 根据权利要求24~28中任一项所述的方法,其特征在于,所述方法还包括:
    接收测量请求和/或发送请求;
    其中,所述测量请求用于请求测量接收到的所述至少一个卫星信号的相位;
    所述发送请求用于请求发送所述至少一个参考信号。
  30. 根据权利要求24~29中任一项所述的方法,其特征在于,所述方法还包括:
    发送定位协议消息,所述定位协议消息包括所述第一信息;
    其中,所述定位协议消息为新无线定位协议NRPPa消息或长期演进定位协议LPP消息。
  31. 一种定位方法,其特征在于,所述方法包括:
    接收第一设备发送的第一信息、接入网设备发送的第二信息和第四信息、第二设备发送的第三信息;
    根据所述第一信息、所述第二信息、所述第三信息和所述第四信息,确定所述第一设备的位置;
    其中,所述第一信息是所述第一设备根据至少一个第一卫星信号确定的相位测量值,所述第二信息是所述接入网设备根据至少一个第一参考信号确定的相位测量值,所述第三信息是所述第二设备根据至少一个第二卫星信号确定的相位测量值,所述第四信息是所述接入网设备根据至少一个第二参考信号确定的相位测量值,所述至少一个第一参考信号是所述第一设备发送的,所述至少一个第二参考信号是所述第二设备发送的。
  32. 根据权利要求31所述的方法,其特征在于,所述接收第三信息和第四信息之前,所述方法还包括:
    确定所述第二设备。
  33. 根据权利要求31或32所述的方法,其特征在于,所述第一信息包括以下至少一个信息:所述至少一个第一卫星信号中的每个第一卫星信号的相位测量值,所述至少一个第一卫星信号中的两个第一卫星信号的相位测量值之间的差值,所述至少一个第一卫星信号中的任一个第一卫星信号的至少两个时刻的相位测量值之间的差值;
    所述第二信息包括以下至少一个信息:所述至少一个第一参考信号中的每个第一参考信号的相位测量值,所述至少一个第一参考信号中的两个第一参考信号的相位测量值之间的差值,所述至少一个第一参考信号中的任一个第一参考信号的至少两个时刻的相位测量值之间的差值;
    所述第三信息包括以下至少一个信息:所述至少一个第二卫星信号中的每个第二卫星信号的相位测量值,所述至少一个第二卫星信号中的两个第二卫星信号的相位测量值之间的差值,所述至少一个第二卫星信号中的任一个第二卫星信号的至少两个时刻的相位测量值之间的差值;
    所述第四信息包括以下至少一个信息:所述至少一个第二参考信号中的每个第二参考信号的相位测量值,所述至少一个第二参考信号中的两个第二参考信号的相位测量值之间的差值,所述至少一个第二参考信号中的任一个第二参考信号的至少两个时刻的相位测量值之间的差值。
  34. 根据权利要求31~33中任一项所述的方法,其特征在于,所述方法还包括:
    接收第一测量频率、第二测量频率、第三测量频率和/或第四测量频率,所述第一测量频率是所述至少一个第一卫星信号的频率,所述第二测量频率是所述至少一个第一参考信号的频率,所述第三测量频率是所述至少一个第二卫星信号的频率,所述第四测量频率是所述至少一个第二参考信号的频率。
  35. 根据权利要求31~34中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一设备发送第一配置信息;
    其中,所述第一配置信息包括以下至少一种信息:所述第一测量频率、所述第二测量频率、所述第一信息的上报周期、所述第一信息的上报时延。
  36. 根据权利要求31~35中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第二设备发送第二配置信息;
    其中,所述第二配置信息包括以下至少一种信息:所述第三测量频率、所述第四测量频率、所述第三信息的上报周期、所述第三信息的上报时延。
  37. 根据权利要求31~36中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一设备发送第一测量请求和/或第一发送请求;
    其中,所述第一测量请求用于请求测量接收到的所述至少一个第一卫星信号的相位;
    所述第一发送请求用于请求发送所述至少一个第一参考信号。
  38. 根据权利要求31~37中任一项所述的方法,其特征在于,所述方法还包括:
    向所述第二设备发送第二测量请求和/或第二发送请求;
    其中,所述第二测量请求用于请求测量接收到的所述至少一个第二卫星信号的相位;
    所述第二发送请求用于请求发送所述至少一个第二参考信号。
  39. 根据权利要求31~38中任一项所述的方法,其特征在于,所述接收第三信息,包括:
    接收定位协议消息,所述定位协议消息包括所述第三信息;
    其中,所述定位协议消息为新无线定位协议NRPPa消息或长期演进定位协议LPP消息。
  40. 一种定位装置,其特征在于,包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如权利要求1~7中任一项所述的方法,或实现如权利要求8~16中任一项所述的方法,或实现如权利要求17~23中任一项所述的方法,或实现如权利要求24~30中任一项所述的方法,或实现如权利要求31~39中任一项所述的方法。
  41. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1~7中任一项所述的方法,或实现如权利要求8~16中任一项所述的方法,或实现如权利要求17~23中任一项所述的方法,或实现如权利要求24~30中任一项所述的方法,或实现如权利要求31~39中任一项所述的方法。
  42. 一种计算机程序产品,其特征在于,用于当所述计算机程序产品在计算设备上执行时,实现如权利要求1~7中任一项所述的方法,或实现如权利要求8~16中任一项所述的方法,或实现如权利要求17~23中任一项所述的方法,或实现如权利要求24~30中任一项所述的方法,或实现如权利要求31~39中任一项所述的方法。
PCT/CN2022/132261 2021-12-21 2022-11-16 定位方法及装置、存储介质、程序产品 WO2023116273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111576791.9 2021-12-21
CN202111576791.9A CN116320991A (zh) 2021-12-21 2021-12-21 定位方法及装置、存储介质、程序产品

Publications (1)

Publication Number Publication Date
WO2023116273A1 true WO2023116273A1 (zh) 2023-06-29

Family

ID=86778410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132261 WO2023116273A1 (zh) 2021-12-21 2022-11-16 定位方法及装置、存储介质、程序产品

Country Status (2)

Country Link
CN (1) CN116320991A (zh)
WO (1) WO2023116273A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842260A (zh) * 2017-01-20 2017-06-13 大连理工大学 一种基于多层卫星信号中继器的室内定位方法
CN111343579A (zh) * 2018-12-19 2020-06-26 电信科学技术研究院有限公司 一种定位方法和相关设备
US20200408871A1 (en) * 2018-01-19 2020-12-31 China Academy Of Telecommunications Technology Positioning method and positioning device
CN112526568A (zh) * 2019-09-19 2021-03-19 大唐移动通信设备有限公司 一种终端定位方法、装置及接收机
CN113093232A (zh) * 2021-03-19 2021-07-09 上海交通大学 基于相关域的gnss多频联合捕获方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842260A (zh) * 2017-01-20 2017-06-13 大连理工大学 一种基于多层卫星信号中继器的室内定位方法
US20200408871A1 (en) * 2018-01-19 2020-12-31 China Academy Of Telecommunications Technology Positioning method and positioning device
CN111343579A (zh) * 2018-12-19 2020-06-26 电信科学技术研究院有限公司 一种定位方法和相关设备
CN112526568A (zh) * 2019-09-19 2021-03-19 大唐移动通信设备有限公司 一种终端定位方法、装置及接收机
CN113093232A (zh) * 2021-03-19 2021-07-09 上海交通大学 基于相关域的gnss多频联合捕获方法

Also Published As

Publication number Publication date
CN116320991A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US9247446B2 (en) Mobile station use of round trip time measurements
US20210345285A1 (en) Method and Device for User Equipment Positioning
CN115104348A (zh) 一种定位信息上报的方法及通信装置
JP2024505031A (ja) 共同測位のための測位基準信号測定
WO2021227901A1 (zh) 一种定位方法、定位管理装置、接入网设备以及终端
WO2020177041A1 (zh) 信息处理的方法和终端设备
US20220330041A1 (en) Method for angle based positioning measurement and apparatus therefor
EP4345490A2 (en) Enhanced sidelink-aided hybrid network positioning
KR20230132456A (ko) 이중 차이 포지셔닝을 위한 레퍼런스 선택
CN114095855A (zh) 一种定位方法及装置
WO2023116273A1 (zh) 定位方法及装置、存储介质、程序产品
US20240089894A1 (en) On-demand positioning reference signal selection for double difference positioning schemes
US20220231805A1 (en) Reference selection for double difference positioning
TW202312768A (zh) 提高超寬頻測距精度
WO2023151469A1 (zh) 定位方法及装置
WO2023216974A1 (zh) 一种定位方法和定位装置
WO2023185526A1 (zh) 通信方法和通信装置
WO2023185420A1 (zh) 用于定位的方法和通信装置
WO2022218235A1 (zh) 时间同步方法及装置
EP4228345A1 (en) Method of transmitting and receiving information for measurement of prs in wireless communication system and apparatus therefor
WO2021233443A1 (zh) 一种上行传输方法及装置
WO2023151434A1 (zh) 通信方法和通信装置
EP4340477A1 (en) Method and device for positioning in wireless communication system
WO2023280052A1 (zh) 一种定位方法及装置
KR20240019108A (ko) 기준 로케이션 디바이스 능력 구성

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909589

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022909589

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022909589

Country of ref document: EP

Effective date: 20240618