WO2023113174A1 - 용융염 원자로 및 이를 위한 피동적 연료 주입방법 - Google Patents

용융염 원자로 및 이를 위한 피동적 연료 주입방법 Download PDF

Info

Publication number
WO2023113174A1
WO2023113174A1 PCT/KR2022/015056 KR2022015056W WO2023113174A1 WO 2023113174 A1 WO2023113174 A1 WO 2023113174A1 KR 2022015056 W KR2022015056 W KR 2022015056W WO 2023113174 A1 WO2023113174 A1 WO 2023113174A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten salt
blanket
liquid
fuel
active core
Prior art date
Application number
PCT/KR2022/015056
Other languages
English (en)
French (fr)
Inventor
김용희
오태석
이은혁
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to CN202280006234.XA priority Critical patent/CN116615789A/zh
Publication of WO2023113174A1 publication Critical patent/WO2023113174A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/22Heterogeneous reactors, i.e. in which fuel and moderator are separated using liquid or gaseous fuel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/44Fluid or fluent reactor fuel
    • G21C3/54Fused salt, oxide or hydroxide compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a molten salt reactor and a passive fuel injection method therefor.
  • MSR molten salt reactor
  • the molten salt reactor operates at a state close to atmospheric pressure and uses a molten core, the possibility of a so-called serious accident is low enough to be excluded, and there is no risk of hydrogen explosion because hydrogen gas is not generated in any case.
  • MSR massive metal-oxide-semiconductor
  • MSR thermal neutron spectra using thorium-based salts as fuel at OakRidge National Laboratory (ORNL) in the United States in the 1960s.
  • MSR using thermal neutrons often involves online fuel reprocessing due to its unique characteristics.
  • this is a very sensitive technology in terms of proliferation resistance, it acts as a major factor limiting the commercialization of thermal neutron-based MSR.
  • the graphite moderator used to secure the thermal neutron spectrum has a short replacement cycle of about 5 years, which additionally causes problems related to replacement cost and graphite waste. Therefore, research on a high-speed spectrum-based molten salt fast reactor (MSFR) having a high conversion ratio (CR) while excluding moderators is also being actively conducted.
  • MSFR spectrum-based molten salt fast reactor
  • CR conversion ratio
  • a blanket composed of fertile such as U-238 is used to maximize the fuel conversion ratio.
  • the overall shape of the reactor vessel is a simplified cylinder, with reflectors placed outside the active core filled with liquid fuel to improve neutron economy.
  • a heat exchanger connected to the active core is located outside the reflector, and molten salt fuel circulates back and forth between the active core and the heat exchanger.
  • a process of separating fissile nuclear fuel grown in the blanket in real time and injecting it into an active core molten salt fuel system is required.
  • Republic of Korea Patent Publication No. 10-2014-0123089 is a technology related to an integrated molten salt reactor, specifically, as a nuclear power plant, the nuclear power plant includes a molten salt reactor (MSR) that generates heat; heat exchanger system; a radioactivity detector located outside the container; a blocking mechanism located outside the container; and an end use system, wherein the MSR includes a vessel, a graphite moderator core located in the vessel, and molten salt circulating in at least the vessel, wherein the molten salt transfers heat generated by the MSR to the heat exchanger system.
  • MSR molten salt reactor
  • the graphite moderator core defines one or more through holes
  • the heat exchanger system receives the heat generated by the MSR and provides the received heat to the end-use system
  • the heat exchanger system a plurality of heat exchangers in fluid communication with the one or more through holes of the graphite moderator core, each said heat exchanger being associated with a respective radiation detector, each said radiation detector being the coolant salt circulating in a respective heat exchanger; wherein each said blocking mechanism is configured to detect the radiation present in each of said heat exchangers, if radiation exceeding a threshold amount is detected by each said radiation detector in each of said heat exchangers, said coolant salt circulating in each said heat exchanger Disclosed is a nuclear power plant arranged to break the circulation.
  • the nuclear power plant has a problem in that a real-time molten salt reprocessing process must be performed and the graphite moderator must be replaced, for example, every five years.
  • the inventors of the present invention researched a molten salt reactor capable of stably operating for a long period with high efficiency without having to perform a real-time molten salt reprocessing process in a molten salt reactor, and a passive fuel injection method used therein to study the present invention. has been completed.
  • An object of the present invention is to provide a molten salt reactor and a passive fuel injection method therefor.
  • the active core part is disposed while forming a liquid-liquid interface with an upper part of the blanket part, which is a liquid metal phase,
  • molten salt reactor characterized in that fissile fuel is passively supplied from the lower blanket portion to the upper active core portion through the liquid-liquid interface, and convertible fuel is passively supplied from the upper active core portion to the lower blanket portion. do.
  • a passive fuel injection method for a molten salt reactor comprising: supplying convertible fuel from an active core part to a blanket part through a liquid-liquid interface.
  • FIG. 1 is a conceptual diagram of a high-speed molten salt reactor in which a general blanket concept is used;
  • FIG. 2 is a conceptual diagram showing one specific example of a molten salt reactor according to the present invention.
  • FIG. 3 is a schematic diagram showing a reaction in which plutonium and uranium are substituted at the liquid-liquid interface according to the method of the present invention
  • FIG. 4 is a comparative graph showing changes in reactor reactivity when using a molten salt reactor and a fuel injection method of the present invention
  • SSR stable salt reactor
  • FIG. 10 is a conceptual diagram showing the specifications of a nuclear reactor for conducting an experiment to confirm the reactivity according to the substitution ratio of plutonium and uranium in the molten salt reactor of the present invention
  • FIG. 11 is a conceptual diagram showing another embodiment of a molten salt reactor according to the present invention.
  • FIG. 12 is a conceptual diagram showing another specific example of a molten salt reactor according to the present invention.
  • the present invention provides a molten salt reactor.
  • the 'blanket' and 'blanket part' used in the present invention include U-238 as a convertible fuel and receive neutrons from an active core to generate Pu-239, a fissile fuel, which is naturally circulated inside the blanket.
  • U-238 as a convertible fuel and receive neutrons from an active core to generate Pu-239, a fissile fuel, which is naturally circulated inside the blanket.
  • a configuration that performs the function of supplying to the active reactor core through including a configuration that contains, for example, Pu-239 as a fissile fuel from the beginning, and supplies it to the active core while replacing it with uranium in the active core.
  • the active core part is disposed while forming a liquid-liquid interface with an upper part of the blanket part, which is a liquid metal phase,
  • molten salt reactor characterized in that fissile fuel is passively supplied from the lower blanket portion to the upper active core portion through the liquid-liquid interface, and convertible fuel is passively supplied from the upper active core portion to the lower blanket portion. do.
  • a conventional high-speed molten salt reactor has a structure in which a blanket is installed in a radial direction of the reactor and molten salt fuel circulates back and forth between an active core and a heat exchanger.
  • Existing molten salt reactors require the process of separating fissile nuclear fuel propagated in the blanket in real time and injecting it into the active core molten salt fuel system. difficult.
  • the present invention is an invention to solve such a problem.
  • the present invention is a molten salt reactor including an active core portion composed of molten salt fuel and a blanket portion in a liquid metal state. It is the same as the function performed by the adjunct.
  • the active core part forms a liquid-liquid interface with the upper part of the blanket part, which is a liquid metal phase, and is disposed. That is, in the molten salt reactor of the present invention, the blanket portion, unlike the existing molten salt reactor, is formed in a liquid metal phase, and forms an active core portion and a liquid-liquid interface at the upper portion thereof.
  • An exemplary structure of the molten salt reactor of the present invention can be more clearly confirmed through FIGS. 2, 11 and 12.
  • the structures of FIGS. 2, 11 and 12 show one example of the structures of the molten salt reactor of the present invention, and the scope of claims of the present invention is not limited to the structures of FIGS. 2, 11 and 12 .
  • fissile fuel is passively supplied from the lower blanket portion to the upper active core portion through the liquid-liquid interface
  • the convertible fuel is passively supplied from the upper active core portion to the lower blanket portion.
  • the blanket part of the present invention is not formed by a separate sealed structure unlike the existing molten salt reactor, but can be disposed below the molten salt reactor in the form of liquid metal. there is. Through this, the entire upper surface of the blanket unit may form a liquid-liquid interface with the entire lower surface of the active core unit.
  • the blanket portion may be composed of an alloy of iron (Fe) and 5% or less of low-enriched uranium or natural uranium.
  • Uranium in the blanket region has a very low concentration for effective propagation of fissile fuel in the blanket region while maintaining a high specific gravity of U-238, a convertible fuel, and uranium (U) and iron (Fe) It is preferable to include iron and uranium in a material composition ratio corresponding to the eutectic point.
  • the eutectic point refers to the mixing conditions of materials when the melting point of the mixture is the lowest, and FIG. 6 shows that the eutectic melting point of U and Fe is about 700 °C when the mole (mole, number of atoms) ratio of U and Fe is about 67:33.
  • the blanket portion is formed by a separate structure, disposed along the circumferential direction on the inner surface of the molten salt reactor, and only the upper surface of the blanket portion is open so that the upper portion and the active core portion form a liquid-liquid interface. It can be configured (see Fig. 11).
  • this structure while forming a liquid-liquid interface between the blanket part and the active core part, there is an advantage of greatly increasing the propagation efficiency of fissile fuel using neutrons leaking in the radial direction, and also the radial leakage of neutrons. and has the advantage of having an effective gamma-ray shielding effect.
  • the upper half of the blanket portion disposed in the circumferential direction on the inner surface of the molten salt reactor is opened so that the upper portion and the active core portion form a liquid-liquid interface. It is preferable to control the reaction. For example, as shown in FIG. 12, the area of the open upper surface of the blanket part can be adjusted, and through this, the speed at which the fissile fuel generated in the blanket part moves to the active core part can be controlled. Accordingly, it becomes possible to control the reaction of the nuclear reactor.
  • At least one molten salt selected from the group consisting of NaCl, KCl, MgCl 2 , UCl 3 , PuCl 3 , NpCl 3, AmCl 3, and CmCl 3 may be used as the active core molten salt fuel forming the liquid-liquid boundary at the top of the blanket, and ,
  • the present invention considers a mixture of KCl and UCl 3 under eutectic conditions as an example of a fuel, but in a molten salt fast reactor (MSFR) design composed of a double or triple mixed molten salt such as a mixture of NaCl, MgCl 2 and UCl 3 Again the present invention can be applied.
  • MSFR molten salt fast reactor
  • the eutectic melting point of KCl-UCl 3 and NaCl-UCl 3 is shown at a molar ratio of 47:53 and 65:35, respectively, as shown in FIG. 8 and FIG. 9 (FIG. 8 and FIG. 9 are Yin, H. et al., (2020 ).Thermodynamic description of the constitutive binaries of the NaCl-KCl-UCl 3 -PuCl 3 system. Cited in Calphad , 70 , 101783).
  • the maximum enrichment of uranium used in active core fuel in MSFR is 19.75, and it is also possible to use other types of salts such as chlorides or fluorides as molten salt fuels.
  • the Pu-239 fuel grown in the liquid blanket can spontaneously move to the molten salt fuel region of the upper active core due to chemical reactions that occur due to the Gibbs free energy ( G ) difference.
  • G Gibbs free energy
  • Gibbs free energy is defined as follows, and means the energy that can be theoretically extracted from a system under constant temperature and pressure. It is used to predict the direction in which a reaction proceeds spontaneously at a constant temperature and pressure.
  • Equation 1 H is enthalpy, T is temperature, and S is entropy
  • ⁇ G is the change in Gibbs free energy before and after a chemical reaction
  • a positive value indicates that the reverse reaction of a chemical reaction is spontaneous
  • a value of 0 indicates equilibrium
  • a negative value indicates that the forward reaction is spontaneous. That is, the chemical reaction occurs in the direction of decreasing G.
  • plutonium is produced in the fuel or blanket.
  • fissile fuels such as Pu-239 and Pu-241 may already be included before fuel combustion occurs in the active core, that is, before the molten salt reactor starts operating.
  • the chemical reaction occurring at the interface between the liquid blanket and molten salt fuel, where plutonium is mainly propagated, is as follows.
  • ⁇ G is negative, which means that the system composed of U and PuCl 3 is more stable than the system composed of Pu and UCl 3 .
  • the forward reaction in the reaction equation above is a spontaneous reaction, Pu generated in the liquid blanket is ionized to Pu 3+ and moves toward the molten salt, and U 3+ in the molten salt is reduced to U and moves to the liquid blanket. Substitutions can be made. The corresponding contents may be modeled through FIG. 3 .
  • Table 1 shows the potential difference between a metal element and its chlorine-based salt (Table 1 is Koyama, T. et al., (1997). An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing. Cited in Journal of nuclear science and technology, 34(4), 384-393). In Table 1, all values are negative, which means that the salt of the metal is more stable than the metal, and the lower the value, the stronger the tendency of the metal to become a chlorine-based salt. . As in the Gibbs free energy point of view, the potential of PuCl 3 is more negative than that of UCl 3 , indicating that a substitution reaction between Pu and U is possible in that Pu has a stronger tendency to ionize than U. can
  • the effect of the Pu-U substitution reaction occurring in the blanket portion which is the liquid metal phase, will be described as follows. If the Pu-U substitution reaction occurs whenever plutonium is produced in the blanket region, instead of consuming U-235 in the molten salt fuel, Pu-239 is supplied from the liquid blanket, and U-238 is consumed in the liquid blanket and at the same time molten salt Additional U-238 is supplied from the fuel. As a result, the reactivity of the MSFR can be optimized to achieve long lifetime while remaining very flat throughout the lifetime of the reactor.
  • the molten salt reactor according to the present invention defines a blanket portion of a liquid metal phase and an active core portion forming a liquid-liquid interface at the upper portion thereof, and further, content in which fissile fuel and convertible fuel are passively replaced through the liquid-liquid interface. Since it is limited only to molten salt reactors of various structures, it is possible to apply it to molten salt reactors of various structures, specifically applied to high-speed spectrum-based molten salt reactors (MSFR) or high-speed spectrum-based stable salt reactors (SSR). It is possible.
  • FIG. 5 illustrates a conventional SSR nuclear reactor fuel rod structure and an SSR nuclear reactor fuel rod structure including a structure according to the present invention.
  • the insertion and withdrawal of fuel assemblies during operation of an SSR reactor has the disadvantage of causing potential safety problems.
  • the nuclear fuel rod of an SSR nuclear reactor having a structure according to the present invention includes a liquid metal blanket portion at the bottom thereof, so it can be easily applied to an SSR nuclear reactor, and the frequency of real-time reloading is reduced or exclusion can be expected. That is, there is an effect of enabling stable long-cycle operation without repetitive replacement of nuclear fuel rods.
  • a passive fuel injection method for a molten salt reactor comprising: supplying convertible fuel from an active core part to a blanket part through a liquid-liquid interface.
  • the passive fuel injection method of the present invention when the blanket part already contains fissile fuel such as Pu-239, neutrons generated from the active core part move to the blanket part during the injection method, and the neutrons are transferred to the convertible fuel.
  • the step of absorbing and forming fissile fuel can be omitted.
  • the active core of a molten salt reactor contains fissile fuel such as U-235 or Pu-239, and neutrons are produced as they undergo nuclear fission.
  • Some of the neutrons generated in this way move to the blanket portion via the liquid-liquid interface between the active core and the blanket portion of the liquid metal forming the liquid-liquid interface.
  • fissile fuels such as Pu-239 and Pu-241 may already be included before fuel combustion occurs in the active core, that is, before the molten salt reactor starts operating.
  • the formed fissile fuel such as Pu-239 moves to the upper active core through the liquid-liquid interface due to chemical reactions caused by the difference in Gibbs free energy.
  • convertible fuel such as U-238 present in the upper active core part is supplied to the blanket part through the liquid-liquid interface.
  • Pu-U substitution reaction occurs while plutonium is produced in the blanket part region through the above process, instead of consuming U-235 in the active reactor core containing molten salt fuel, Pu-239 is supplied from the blanket part of the liquid metal phase, and liquid At the same time that U-238 is consumed in the blanket portion of the metal phase, additional U-238 is supplied from the active core.
  • a step of forming fissile fuel by absorbing neutrons generated by nuclear fission in the blanket part by the convertible fuel may be further included. That is, not only neutrons formed by nuclear fission in the active core part, but also neutrons formed by nuclear fission of fissile fuel such as U-235 or Pu-239 present in the blanket part are absorbed by U-238, a convertible fuel, and are absorbed by Pu-238. It is possible to form -239.
  • some of the fissile fuel formed in the blanket part may move to the active core part through the liquid-liquid interface.
  • This replacement rate depends on the ratio of surface area to blanket volume, and the preferred range of replacement rates depends on the characteristics of the designed core.
  • the reaction rate per unit area of the substitution reaction is determined physicochemically, but since its exact value is not provided, the effect of the present invention will be confirmed through the following three experimental examples.
  • Figure 4 shows the change in reactivity when the MSFR is operated for 50 years with a heat output of 300 MW.
  • the fuel substitution of FIG. 4 does not occur (Comparative Example 1), a phenomenon in which the reactivity slowly decreases in the initial about 10 years and greatly increases after 10 years is observed.
  • U-235 a fissile material
  • Pu-239 proliferation does not sufficiently occur in the entire core including the liquid blanket region, causing a decrease in reactivity.
  • the proliferation of Pu-239 in the blanket region increases rapidly, and as a result, the output of the blanket region also increases, resulting in an excessive increase in the reactivity of the core.
  • the lifetime of the core is very short, about 2 years.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

본 발명의 목적은 용융염 원자로 및 이를 위한 피동적 연료 주입방법을 제공하는데 있다. 이를 위하여 본 발명은 활성 노심부와 블랭킷부를 포함하는 용융염 원자로에 있어서, 상기 활성 노심부는 액체 금속상인 상기 블랭킷부의 상부와 액액 경계면을 형성하며 배치되고, 상기 액액 경계면을 통하여 하부의 블랭킷부에서 상부의 활성 노심부로 핵분열성 연료가 자연순환을 거쳐 피동적으로 공급되고, 상부의 활성 노심부로부터 하부의 블랭킷부로 전환성 연료가 피동적으로 공급되는 것을 특징으로 하는 용융염 원자로를 제공하고, 이를 사용하는 피동적 연료 주입방법을 제공한다. 본 발명에 따르면, 용융염 재처리 과정을 거치지 않고도, 용융염 원자로를 고효율로 안정적으로 장주기 운전하는 것이 가능하고, 다양한 구조의 용융염 원자로에 적용하는 것이 가능한 장점이 있다.

Description

용융염 원자로 및 이를 위한 피동적 연료 주입방법
본 발명은 용융염 원자로 및 이를 위한 피동적 연료 주입방법에 관한 것이다.
원자로는 통제된 핵반응을 통하여 일정량의 에너지를 생산하는 장치이며 3세대에 걸쳐 안전성과 경제성을 강화하는 방향으로 발전되어 왔다. 최근, 더욱 안전하고 지속가능한 소위 4세대 원자로 연구개발이 활발히 진행되고 있으며 그 중 하나로 용융염 원자로(Molten Salt Reactor, MSR)가 많은 관심을 받고 있다. MSR은 염으로 치환된 연료를 고온에서 용융된 염에 용해하여 핵연료 및 냉각재로 사용하는 원자로를 지칭한다. MSR은 통상 불소(F) 또는 염소(Cl) 계열의 염을 용매로 사용하고, 구조재로는 부식에 저항이 강한 Hastelloy-N과 같은 합금재료가 주로 사용된다. 용융염 원자로는 대기압에 가까운 상태로 운전되고 용융된 노심을 사용하므로 소위 중대사고의 가능성이 배제될 정도로 낮으며, 어떤 경우에도 수소 가스가 생성되지 않으므로 수소폭발의 위험이 없다. 또한 MSR의 경우 비상 상황 시의 잔열 제거가 고체연료 원자로에 비해 매우 용이하다는 이점이 있고, 액체 상태 연료를 사용하기 때문에, 고체에 비해 큰 열팽창으로 인한 음의 궤환효과가 강하여 고유 안전성이 극도로 높다는 이점이 있다.
가장 많이 알려진 MSR 선행 연구는 1960년대 미국의 OakRidge 국립 연구소(ORNL)에서 토륨 기반의 염을 연료로 활용하는 열중성자 스펙트럼의 MSR이다. 열중성자를 이용하는 MSR은 고유특성으로 인하여 실시간 용융염 재처리 과정(online fuel reprocessing)이 흔히 수반된다. 그러나 이는 핵확산 저항성 관점에서 매우 민감한 기술이기에 열중성자 기반 MSR의 상용화를 제한하는 큰 요인으로 작용한다. 또한, 열중성자 스펙트럼 확보를 위해 사용되는 흑연 감속재는 교체 주기가 5년 정도로 짧기에, 교환 비용 및 흑연폐기물과 관련된 문제들을 추가적으로 야기한다. 그렇기에, 감속재의 배제와 동시에 높은 전환비(conversion ratio, CR)를 가지는 고속 스펙트럼 기반의 용융염 원자로 (Molten Salt Fast Reactor, MSFR)에 대한 연구도 활발히 진행되고 있다.
고속 스펙트럼 MSFR의 경우 연료 전환비를 극대화하기 위해서 U-238과 같은 전환성연료(fertile)로 구성된 블랭킷(blanket)을 활용하는데, 도 1은 반경방향 블랭킷이 설치된 MSFR의 구조를 간단하게 나타낸 개념도이다. 원자로 용기의 전체적인 모양은 단순화된 원기둥이며, 액체 연료로 채워진 활성노심 바깥에 반사체를 둘러 중성자 경제성(neutron economy)을 제고한다. 반사체 외부에는 활성노심과 연결된 열교환기가 자리하고 있으며, 용융염 연료가 활성노심과 열교환기를 오가며 순환한다. 도 1과 같이 블랭킷을 사용하는 MSFR의 경우, 블랭킷에서 증식되는 핵분열성(fissile) 핵연료를 실시간으로 분리하여 활성노심 용융염 연료계통에 주입하는 과정이 필요하다. 그러나, 해당 실시간 연료 재처리 과정은 핵확산 저항성 관점에서 매우 민감한 기술이라 상용화가 어려울뿐더러, 재처리 공정으로 인한 시스템 복잡성 악화는 경제성 저하 문제를 수반하여 차세대 원자로로서의 충분한 경쟁력을 확보하기 어렵게 만든다. 그러므로 높은 경쟁력을 가진 MSFR 개발을 위해서는 블랭킷에서 증식되는 연료를 실시간 재처리를 하지 않고 극히 단순하고 100% 신뢰할 수 있는 피동적인 방식으로 활성노심에 주입할 수 있는 새로운 방법이 요구된다.
예를 들어 대한민국 공개특허 제10-2014-0123089호는 일체형 용융염 원자로에 관한 기술로, 구체적으로는 원자력 발전 설비로서, 상기 원자력 발전 설비는 열을 생성하는 용융염 원자로(MSR); 열교환기 시스템; 용기의 외부에 위치한 방사능 검출기; 상기 용기의 외부에 위치한 차단 메커니즘; 및 최종 용도 시스템을 포함하고, 상기 MSR이 용기, 상기 용기에 위치한 흑연 감속재 코어, 및 적어도 상기 용기에서 순환하는 용융염을 포함하며, 상기 용융염은 상기 MSR에 의해 생성된 열을 상기 열교환기 시스템으로 전달하고, 상기 흑연 감속재코어가 하나 이상의 관통 홀을 한정하고, 상기 열교환기 시스템이 상기 MSR에 의해 생성된 열을 수용하고 수용된 상기 열을 상기 최종 용도 시스템에 제공하며, 상기 열교환기 시스템이 상기 흑연 감속재 코어의 상기 하나 이상의 관통 홀과 유체 연통하는 복수개의 열교환기를 포함하고, 각각의 상기 열교환기는 각각의 방사능 검출기에 연계되며, 각각의 상기 방사능 검출기는 각각의 상기 열교환기에서 순환하는 상기 냉각재 염에 존재하는 방사능을 검지하도록 배열되며, 각각의 상기 차단 메커니즘이 각각의 상기 열교환기에서 각각의 상기 방사능 검출기에 의해 한계량을 초과하는 방사능이 검지되는 경우, 각각의 상기 열교환기에서 순환하는 상기 냉각재 염의 순환을 차단하도록 배열되는 원자력 발전 설비를 개시하고 있다. 그러나, 상기 원자력 발전 설비는 실시간 용융염 재처리 과정을 수행해야 하고, 흑연 감속재를 예를 들어 5년 정도마다 교체해줘야 하는 문제점이 있다.
이에 본 발명의 발명자들은 용융염 원자로에 있어서, 실시간 용융염의 재처리 과정을 수행할 필요가 없으면서도 고효율로 안정적으로 장주기 운전이 가능한 용융염 원자로, 및 이에 사용되는 피동적 연료 주입방법을 연구하여 본 발명을 완성하였다.
본 발명의 목적은 용융염 원자로 및 이를 위한 피동적 연료 주입방법을 제공하는데 있다.
이를 위하여 본 발명은
활성 노심부와 블랭킷부를 포함하는 용융염 원자로에 있어서,
상기 활성 노심부는 액체 금속상인 상기 블랭킷부의 상부와 액액 경계면을 형성하며 배치되고,
상기 액액 경계면을 통하여 하부의 블랭킷부에서 상부의 활성 노심부로 핵분열성 연료가 피동적으로 공급되고, 상부의 활성 노심부로부터 하부의 블랭킷부로 전환성 연료가 피동적으로 공급되는 것을 특징으로 하는 용융염 원자로를 제공한다.
이때 하부의 블랭킷부 내부에서 자연순환을 거쳐 생성된 핵분열성 연료가 액액 경계면으로 이동한다.
또한 본 발명은
상기 용융염 원자로 중 활성 노심부에서 핵분열이 발생하여 중성자가 생성되는 단계;
상기 생성된 중성자가 액액 경계면을 거쳐 블랭킷부로 이동하는 단계;
블랭킷부로 이동한 중성자를 전환성 연료가 흡수하여 블랭킷부 내부에서 핵분열성 연료가 형성되는 단계;
상기 생성된 핵분열성 연료는 블랭킷부 내부에서 자연순환을 거쳐 액액 경계면으로 이동하는 단계;
상기 자연순환에 의해 액액 경계면으로 이동한 핵분열성 연료가 액액 경계면을 거쳐 활성 노심부로 이동하는 단계; 및
활성 노심부로부터 블랭킷부로 액액 경계면을 거쳐 전환성 연료가 공급되는 단계;를 포함하는 용융염 원자로를 위한 피동적 연료 주입방법을 제공한다.
본 발명에 따르면, 용융염 재처리 과정을 거치지 않고도, 용융염 원자로를 고효율로 안정적으로 장주기 운전하는 것이 가능하고, 다양한 구조의 용융염 원자로에 적용하는 것이 가능한 장점이 있다.
도 1은 일반적인 블랭킷 개념이 사용된 고속 용융염 원자로의 개념도이고,
도 2는 본 발명에 따른 용융염 원자로의 일 구체예를 보여주는 개념도이고,
도 3은 본 발명의 방법에 따라 액액 경계면에서 플루토늄과 우라늄이 치환되는 반응을 보여주는 모식도이고,
도 4는 본 발명의 용융염 원자로 및 연료 주입방법을 사용하는 경우의 원자로 반응도 변화를 보여주는 비교 그래프이고,
도 5는 스테이블 솔트 리엑터(SSR)에 본 발명의 구조가 적용된 예를 보여주는 개념도이고,
도 6은 우라늄과 철 혼합물의 상평형도이고,
도 7은 플루토늄과 철 혼합물의 상평형도이고,
도 8은 KCl과 UCl3 혼합물의 상평형도이고,
도 9는 NaCl과 UCl3 혼합물의 상평형도이고,
도 10은 본 발명의 용융염 원자로의 플루토늄과 우라늄의 치환비에 따른 반응도를 확인하는 실험을 수행하기 위한 원자로의 규격이 표시된 개념도이고,
도 11은 본 발명에 따른 용융염 원자로의 다른 일 구체예를 보여주는 개념도이고, 및
도 12는 본 발명에 따른 용융염 원자로의 또 다른 일 구체예를 보여주는 개념도이다.
본 발명은 용융염 원자로를 제공한다.
본 발명에서 사용된 '블랭킷' 및 '블랭킷부'는 예를 들어 전환성 연료로 U-238을 포함하면서 활성노심으로부터 중성자를 받아 핵분열성 연료인 Pu-239를 생성하고, 이를 블랭킷 내부에서의 자연순환을 통하여 활성노심으로 공급하는 기능을 수행하는 구성뿐만 아니라, 처음부터 핵분열성 연료로 예를 들어 Pu-239를 포함하고 있으면서, 이를 활성노심의 우라늄과 치환하면서 활성노심으로 공급하는 구성을 포함한다.
보다 구체적으로 본 발명은
활성 노심부와 블랭킷부를 포함하는 용융염 원자로에 있어서,
상기 활성 노심부는 액체 금속상인 상기 블랭킷부의 상부와 액액 경계면을 형성하며 배치되고,
상기 액액 경계면을 통하여 하부의 블랭킷부에서 상부의 활성 노심부로 핵분열성 연료가 피동적으로 공급되고, 상부의 활성 노심부로부터 하부의 블랭킷부로 전환성 연료가 피동적으로 공급되는 것을 특징으로 하는 용융염 원자로를 제공한다.
이하 본 발명의 용융염 원자로를 각 구성별로 상세히 설명한다.
기존의 고속 용융염 원자로는 도 1에 도시된 바와 같이 원자로의 반경방향으로 블랭킷이 설치되어 있고, 용융염 연료가 활성 노심과 열교환기를 오가며 순환하는 구조를 가지고 있다. 기존의 용융염 원자로는 블랭킷에서 증식되는 핵분열성(fissile) 핵연료를 실시간으로 분리하여 활성 노심 용융염 연료계통에 주입하는 과정이 필요한데, 이는 핵확산 저항성 관점에서 매우 민감한 기술이기 때문에 상용 시스템에 적용되기 어렵다. 본 발명은 이와 같은 문제점을 해결하고자 하는 발명이다.
본 발명은 용융염 연료로 구성된 활성 노심부와 액체금속 상태인 블랭킷부를 포함하는 용융염 원자로로, 본 발명의 활성 노심부와 블랭킷부가 수행하는 기능은 기존의 고속 용융염 원자로에서 활성 노심부와 블랭킷부가 수행하는 기능과 동일하다.
본 발명의 용융염 원자로에서, 상기 활성 노심부는 액체 금속상인 상기 블랭킷부의 상부와 액액 경계면을 형성하며 배치된다. 즉, 본 발명의 용융염 원자로에서는 블랭킷부가 기존의 용융염 원자로와는 달리, 액체 금속상으로 형성되고, 그 상부에서 활성 노심부와 액액 경계면을 형성한다. 본 발명의 용융염 원자로의 예시적인 구조는 도 2, 도 11 및 도 12를 통하여 보다 명확하게 확인이 가능하다. 도 2, 도 11 및 도 12의 구조는 본 발명의 용융염 원자로 구조 중, 하나의 예시를 보여주는 것으로, 본 발명이 청구하는 권리범위가 도 2, 도 11 및 도 12의 구조에 한정되는 것은 아니다.
본 발명의 용융염 원자로에서는 상기 액액 경계면을 통하여 하부의 블랭킷부에서 상부의 활성 노심부로 핵분열성 연료가 피동적으로 공급되고, 상부의 활성 노심부로부터 하부의 블랭킷부로 전환성 연료가 피동적으로 공급되도록 구성된다. 즉, 하부의 블랭킷부와 상부의 활성 노심부 사이에 존재하는 액액 경계면을 기준으로, 핵분열성 연료는 자연순환을 거쳐 하부의 블랭킷부에서 상부의 활성 노심부로 이동하고, 전환성 연료는 상부의 활성 노심부에서 하부의 블랭킷부로 이동하는 치환 과정을 거치게 된다.
이상의 내용을 설명하면, 우선 상기한 바와 같이, 본 발명의 블랭킷부는 기존의 용융염 원자로와는 달리 별도의 밀폐된 구조물에 의하여 형성되는 것이 아니라, 액체 금속상으로 용융염 원자로의 하부에 배치될 수 있다. 이를 통하여, 블랭킷부 상부면 전체가 활성 노심부의 하부면 전체와 액액 경계면을 형성할 수 있다. 블랭킷부는 철(Fe)과 5% 이하 저농축 우라늄 또는 천연우라늄 합금으로 조성될 수 있다. 전환성 연료인 U-238의 높은 비중을 유지하면서 블랭킷부 내의 핵분열성 연료의 효과적인 증식을 위해 블랭킷부 영역 우라늄은 매우 낮은 농축도를 가지며, 액체 상태를 유지하기 위해 우라늄(U)과 철(Fe)의 공융점(eutectic point)에 해당하는 물질 조성비로 철과 우라늄을 포함하는 것이 바람직하다. 공융점이란 혼합물의 녹는점이 가장 낮을 때 물질들의 혼합 조건을 의미하며, 도 6은 U와 Fe의 공융점이 U와 Fe의 몰(mole, 원자의 개수 단위)비가 약 67:33일 때에 약 700 ℃에서 나타남을 보여준다. 도 7은 플루토늄(Pu)과 철(Fe)의 공융점이 Pu와 Fe의 몰비가 약 90:10일 때에 약 400 ℃에서 나타남을 알려준다(도 6 및 도 7은 Moore, E. E. et al., (2019). Development of a CALPHAD thermodynamic database for Pu-U-Fe-Ga alloys. Applied Sciences, 9(23), 5040에서 인용됨).
또는 본 발명에 따른 용융염 원자로에서 블랭킷부가 별도의 구조물에 의하여 형성되되, 용융염 원자로 내측면에 원주방향으로 따라 배치되고, 블랭킷부의 상면만이 개방되어 이의 상부와 활성 노심부가 액액 경계면을 형성하도록 구성될 수 있다(도 11 참조). 이와 같은 구조를 통하여, 블랭킷부와 활성 노심부 사이의 액액 경계면을 형성하면서도, 반경방향으로 누설되는 중성자를 이용한 핵분열성 연료의 증식 효율을 크게 증가시킬 수 있는 장점이 있고, 또한 중성자의 반경방향 누설을 막고, 효과적인 감마선 차폐 효과를 갖는 장점이 있다.
상기와 같은 구성에서, 용융염 원자로 내측면에 원주방향으로 배치되는 블랭킷부는 이의 상면반이 개방되어 이의 상부와 활성 노심부가 액액 경계면을 형성하게 되는데, 블랭킷부의 개방된 상면의 면적을 조절하여 원자로의 반응을 조절하는 것이 바람직하며, 예를 들어 도 12와 같이 블랭킷부의 개방된 상면의 면적을 조절할 수 있고, 이를 통하여 블랭킷부에서 생성된 핵분열성 연료가 활성 노심부로 이동하는 속도를 조절할 수 있고, 이에 따라 원자로의 반응을 조절하는 것이 가능하게 된다.
블랭킷 상부에서 액액 경계를 이루는 활성노심 용융염 연료로서 NaCl, KCl, MgCl2, UCl3, PuCl3, NpCl3, AmCl3, 및 CmCl3으로 이루어진 군으로부터 선택되는 1종 이상의 용융염이 사용될 수 있고, 본 발명은 연료의 한 예시로 공융 조건의 KCl과 UCl3의 혼합물을 고려하지만, NaCl, MgCl2 와 UCl3의 혼합물과 같은 이중 혹은 삼중 혼합 용융염으로 구성된 MSFR(molten salt fast reactor) 설계에서 역시 본 발명은 적용될 수 있다.
KCl-UCl3와 NaCl-UCl3의 공융점은 도 8, 및 도 9와 같이 각각 47:53, 65:35의 몰비에서 나타난다(도 8 및 도 9는 Yin, H. et al., (2020). Thermodynamic description of the constitutive binaries of the NaCl-KCl-UCl3-PuCl3 system. Calphad, 70, 101783에서 인용됨). MSFR에서 활성노심 연료에 사용되는 우라늄 농축도는 최대 19.75이며, 용융염 연료로서 다른 종류의 염화물이나 불화물 등의 염을 사용하는 것도 가능하다. 활성노심 영역에서 핵분열 반응에 의해서 만들어진 중성자의 상당수는 하부 액체인 블랭킷부 영역으로 누설되고 이들 중성자를 블랭킷부 영역의 전환성 연료인 U-238이 흡수하여 핵분열성 연료인 Pu-239가 증식될 수 있다. 물론, 블랭킷부 영역에서도 핵분열이 일어날 수 있으며, 이 과정에서 생성된 중성자에 의해서도 핵분열성 연료인 Pu-239가 증식될 수도 있다.
액체 블랭킷에서 증식된 Pu-239 연료는 깁스 자유에너지(Gibbs free energy, G) 차로 인해 일어나는 화학반응에 기인하여 자발적으로 상부 활성노심부의 용융염 연료 영역으로 이동될 수 있다. 깁스 자유에너지는 다음과 같이 정의되는데, 일정한 온도와 압력하의 시스템에서 이론적으로 최대한 추출할 수 있는 에너지를 의미하며, 어떠한 반응이 일정한 온도와 압력에서 자발적으로 진행되는 방향을 예측하는 데 쓰인다.
<식 1>
G = H - TS
(상기 식 1에서 H는 엔탈피, T는 온도, S는 엔트로피임)
어떤 화학반응 전과 후의 깁스 자유에너지의 변화를 ΔG라 할 때, ΔG가 양수이면 화학반응의 역반응이 자발적임을 나타내고, 0이면 평형임을, 음수이면 정반응이 자발적임을 나타낸다. 즉, 화학반응은 G가 감소하는 방향으로 일어난다.
활성노심 내에서 연료 연소가 일어나면, 위에서 기술한 바와 같이, 연료나 블랭킷 내에서 플루토늄이 생성된다. 또는 본 발명의 일 구체예에서는 활성노심 내에서 연료 연소가 일어나기 이전부터, 즉 용융염 원자로가 가동되기 이전부터 이미 Pu-239, Pu-241과 같은 핵분열성 연료가 포함될 수 있다. 플루토늄이 주로 증식되는 액체 블랭킷과 용융염 연료의 경계면에서 일어나는 화학반응은 다음과 같다.
<식 2>
Pu + UCl3 ↔ U + PuCl3
반응이 일어날 때 온도를 923K로 가정했을 때,
△GUCl3 = GU - GuCl3 = -691.6 kJ/mol,
△GPuCl3 = GPU - GPuCl3 = -772.0 kJ/mol이 나오고
전체 시스템에서는,
△G = GPuCl3 - GuCl3 = -80.4 kJ/mol이 된다.
이 반응에서 △G가 음수가 나오는데 그것은 Pu와 UCl3로 이루어진 시스템보다 U와 PuCl3로 이루어진 시스템이 더 안정함을 의미한다. 위 반응식의 정반응은 자발적인 반응이므로, 액체 블랭킷에서 생성되는 Pu는 Pu3+로 이온화되어 용융염 쪽으로 이동하고, 용융염 내의 U3+는 U로 환원되어 액체 블랭킷으로 이동하는 식으로 Pu와 U의 치환이 이루어질 수 있다. 해당 내용은 도 3을 통하여 모식화될 수 있다.
한편, 이하의 표 1은 금속 원소와 그 염소 계열 염과의 전위차를 나타낸다 (표 1은 Koyama, T. et al., (1997). An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing. Journal of nuclear science and technology, 34(4), 384-393에서 인용됨). 표 1을 보면 모든 값이 음수로 나타나고 있는데, 이는 금속보다 그 금속의 염이 더 안정함을 의미하고, 그 값이 더 낮은 값일수록 그 금속이 염소 계열의 염이 되려는 경향이 더 강함을 의미한다. 깁스 자유에너지 관점에서 보았을 때와 마찬가지로, UCl3의 전위보다 PuCl3의 전위가 더 음의 값을 가져서 Pu가 U보다 더 이온화하려는 경향이 강하다는 측면에서 Pu와 U 사이의 치환 반응이 가능함을 알 수 있다.
표 1에서 La, Y, Ce 등은 전위가 Pu보다 낮아 이온화하려는 경향이 더 강하기에 Pu보다 우선적으로 U와 치환반응하여 용융염으로 이동하게 된다. 위 원소들은 핵분열생성물의 일부를 이루는 원소들이므로 액체 블랭킷에서 생성되는 핵분열생성물이 너무 많으면 용융염으로의 플루토늄 공급에 지장이 있을 수 있음을 의미한다. 그렇기에 액체 블랭킷 내의 출력은 될 수 있으면 낮게 하는 편이 바람직하며, 이는 액체 블랭킷부의 우라늄 농축도를 낮게 하고자 하는 다른 이유 중 하나이다. 반대로, 표 1에서 U보다 전위가 높은 핵분열생성물은 환원되어 액체 블랭킷으로 축적될 수 있는데, 이는 액체 블랭킷이 소위 노블메탈(noble metal)과 같은 비용해성 핵분열생성물을 잡아두는 역할을 할 수 있음을 시사한다.
673K 723K 773K
Li(I)/Li(0) -2.353
Na(I)/Na(0) -2.083
La(III)/La(0) -1.914 -1.868 -1.821
Y(III)/Y(0) -1.875 -1.833 -1.790
Ce(III)/Ce(0) -1.867 -1.821 -1.774
Nd(III)/Nd(0) -1.855 -1.812 -1.768
Gd(III)/Gd(0) -1.798 -1.754 -1.710
Am(II)/Am(0) -1.592
Pu(III)/Pu(0) -1.591 -1.543 -1.497
Np(III)/Np(0) -1.472 -1.434 -1.390
U(III)/U(0) -1.274 -1.233 -1.190
Zr(II)/Zr(0) -0.693
Cd(II)/Cd(0) -0.259
Fe(II)/Fe(0) -0.115
액체 금속상인 블랭킷부 내에서 일어나는 Pu-U 치환 반응의 효과를 설명하면 다음과 같다. 블랭킷 영역에서 플루토늄이 생성될 때마다 Pu-U 치환 반응이 일어나면, 용융염 연료에서는 U-235가 소비되는 대신 액체 블랭킷으로부터 Pu-239가 공급되고, 액체 블랭킷에서는 U-238이 소비됨과 동시에 용융염 연료로부터 추가적인 U-238이 공급된다. 결과적으로 MSFR의 반응도가 원자로 수명 전체 기간에서 매우 평탄하게 유지되면서 장수명을 달성할 수 있도록 최적화될 수 있다.
이상과 같은 본 발명에 따른 용융염 원자로는 액체 금속상의 블랭킷부와 이의 상부에서 액액 경계면을 형성하는 활성 노심부를 한정하고 있고, 또한 그 액액 경계면을 통하여 핵분열성 연료와 전환성 연료가 피동적으로 치환되는 내용만을 한정하고 있기 때문에, 다양한 구조의 용융염 원자로에 적용하는 것이 가능하고, 구체적으로는 고속 스펙트럼 기반의 용융염 원자로(MSFR) 또는 고속 스펙트럼 기반의 스테이블 솔트 리엑터(Stable Salt Reactor, SSR) 등에 적용하는 것이 가능하다. 예를 들어, 도 5는 통상적인 SSR 원자로의 핵연료봉 구조와 본 발명에 따른 구조를 포함하는 SSR 원자로의 핵연료봉을 도시하고 있다. SSR 원자로의 가동 중 핵연료 집합체의 삽입 및 인출은 잠재적인 안전성 문제를 초래할 수 있다는 단점을 가진다. 본 발명에 따른 구조를 갖는 SSR 원자로의 핵연료봉은 그 하단에 액체 금속상의 블랭킷부를 포함함으로써 SSR 원자로에도 쉬이 적용할 수 있으며, 연료의 재공급을 통한 반응도 변화의 최소화를 통하여 실시간 재장전의 빈도수 감소 혹은 배제를 기대할 수 있다. 즉, 반복적인 핵연료봉 교체 없이도 안정적인 장주기 운전이 가능한 효과가 있다.
또한 본 발명은
상기의 용융염 원자로 중 활성 노심부에서 핵분열이 발생하여 중성자가 생성되는 단계;
상기 생성된 중성자가 액액 경계면을 거쳐 블랭킷부로 이동하는 단계;
블랭킷부로 이동한 중성자를 전환성 연료가 흡수하여 블랭킷부 내부에서 핵분열성 연료가 형성되는 단계;
상기 생성된 핵분열성 연료는 블랭킷부 내부에서 자연순환을 거쳐 액액 경계면으로 이동하는 단계;
상기 자연순환에 의해 액액 경계면으로 이동한 핵분열성 연료가 액액 경계면을 거쳐 활성 노심부로 이동하는 단계; 및
활성 노심부로부터 블랭킷부로 액액 경계면을 거쳐 전환성 연료가 공급되는 단계;를 포함하는 용융염 원자로를 위한 피동적 연료 주입방법을 제공한다.
이하 본 발명의 연료 주입방법을 상세히 설명한다. 이하에서 설명되지 않는 부분은 통상의 용융염 원자로에서 수행되는 공정과 동일하거나 또는 그와 같은 공정으로부터 자명하여 생략된 것이다.
한편, 본 발명의 피동적 연료 주입방법에서 블랭킷부에 이미 Pu-239와 같은 핵분열성 연료가 포함되어 있는 경우에는 상기 주입방법 중, 활성 노심부로부터 발생한 중성자가 블랭킷부로 이동하고, 해당 중성자를 전환성 연료가 흡수하여 핵분열성 연료가 형성되는 단계는 생략될 수 있다.
용융염 원자로의 활성 노심부에는 U-235나 Pu-239와 같은 핵분열성 연료가 포함되며, 이들이 핵분열함에 따라 중성자가 생성된다.
이와 같이 생성된 중성자의 일부는 활성 노심부와 이와 액액경계면을 이루는 액체 금속상의 블랭킷부 사이의 액액 경계면을 거쳐 블랭킷부로 이동하게 된다.
블랭킷부로 이동한 중성자는 블랭킷부에 존재하는 U-238과 같은 전환성 연료에 의하여 흡수되고, 이에 의하여 Pu-239와 같은 핵분열성 연료가 형성되게 된다. 이때 형성된 핵분열성 연료는 자연순환을 거쳐 액액 경계면으로 이동하게 된다. 또는 본 발명의 일 구체예에서는 활성노심 내에서 연료 연소가 일어나기 이전부터, 즉 용융염 원자로가 가동되기 이전부터 이미 Pu-239, Pu-241과 같은 핵분열성 연료가 포함될 수 있다.
형성된 Pu-239와 같은 핵분열성 연료는 상기 설명된 바와 같이 깁스 자유에너지의 차로 인하여 일어나는 화학반응에 기인하여 액액 경계면을 거쳐 상부의 활성 노심부로 이동하게 된다.
또한, 동일한 이유로 상부의 활성 노심부에 존재하는 U-238과 같은 전환성 연료는 액액 경계면을 거쳐 블랭킷부로 공급되게 된다.
이상의 과정을 통하여 블랭킷부 영역에서 플루토늄이 생성되면서 Pu-U 치환 반응이 일어나면, 용융염 연료를 포함하는 활성노심에서는 U-235가 소비되는 대신 액체 금속상의 블랭킷부로부터 Pu-239가 공급되고, 액체 금속상의 블랭킷부에서는 U-238이 소비됨과 동시에 활성노심으로부터 추가적인 U-238이 공급된다. 결과적으로 이와 같은 피동적인 연료 주입방법을 통하여 MSFR의 반응도가 원자로 수명 전체 기간에서 매우 평탄하게 유지되면서 장수명을 달성할 수 있는 효과가 있다.
한편, 본 발명의 피동적 연료 주입방법에서, 블랭킷부에서 핵분열이 발생하여 생성된 중성자를 블랭킷부의 전환성 연료가 흡수하여 핵분열성 연료가 형성되는 단계가 더 포함될 수 있다. 즉, 활성노심부에서의 핵분열에 의하여 형성된 중성자뿐만 아니라, 블랭킷부에 존재하는 U-235나 Pu-239와 같은 핵분열성 연료의 핵분열에 의하여 형성되는 중성자도 전환성 연료인 U-238에 흡수되어 Pu-239를 형성하는 것이 가능하다.
이때, 본 발명의 피동적 연료 주입방법에서, 상기 블랭킷부에서 형성되는 핵분열성 연료 중 일부가 액액 경계면을 거쳐 활성 노심부로 이동할 수도 있다. 이 치환율은 블랭킷 부피 대비 표면적의 비에 따라서 달라지며, 바람직한 치환율의 범위는 설계된 노심의 특성에 따라서 달라진다. 치환 반응의 단위면적당 반응율은 물리화학적으로 결정되는데 이의 정확한 수치는 제공되지 않았기에 이하 세 가지의 실험예를 통하여 본 발명의 효과를 확인하고자 한다.
이하 본 발명을 실험예를 통하여 보다 구체적으로 설명한다. 다만, 이하의 설명은 본 발명을 구체적으로 설명하고 이의 효과를 보고자 하는 것일 뿐, 이하 기재된 내용에 의하여 본 발명이 청구하는 권리범위가 한정되어 해석되는 것을 의도하는 것은 아니다.
<실험예>
액체 블랭킷과 용융염 연료의 치환 반응이 반응도에 변화에 미치는 영향을 확인하기 위해 몬테카를로 기반의 노심 해석코드인 서펀트(Serpent 2)를 이용한 전산계산을 시행하였다. 계산에 사용되는 MSFR의 개념도는 도 10과 같으며 열출력은 300 MWth이다. 원자로 용기 내부 반지름을 109 cm, 원자로 용기의 두께는 10 cm, 스테인리스강 기반의 반사체 두께는 40 cm 이며, 열교환기를 포함한 비활성 노심의 부피가 활성노심 부피와 같도록 하였다. 노심의 높이는 200 cm, 액체 블랭킷의 높이는 70 cm로 상정하였으며, 입구와 출구 용융염의 온도는 각각 600 ℃와 700 ℃를 가정하여 노심해석을 시행하였다.
Pu-U 사이의 치환 반응이 일어나지 않을 때의 결과를 비교예로 두어, 액체 금속상의 블랭킷부 내에서 생성되는 Pu의 100%가 상부 용융염 영역의 U와 치환될 때(실시예 1), 50%만 치환될 때(실시예 2) 및 20%만 치환될 때(실시예 3)를 가정했다. 고려된 세 가지 Pu-U 치환율은 실제로 일어나는 화학반응과 다를 수 있지만, Pu-U 치환 반응으로 인한 반응도의 평탄화 여부 및 원자로의 장주기 운전 가능성을 평가할 수 있다.
도 4는 위 MSFR이 300MW의 열출력으로 50년 동안 운전될 때의 반응도 변화를 보여준다. 도 4의 연료 치환이 일어나지 않는 경우(비교예 1), 초기 약 10년 동안 반응도가 천천히 감소하고 10년 이후에 크게 증가하는 현상이 관찰된다. 초기 약 10년 동안 활성노심 용융염 연료 영역에서 핵분열 물질인 U-235가 꾸준히 줄어드는 반면 액체 블랭킷 영역을 포함한 전 노심에서 Pu-239 증식이 충분히 일어나지 않기에 반응도의 감소가 야기된다. 하지만 10년 후부턴 블랭킷 영역에서의 Pu-239 증식이 빠르게 증가하여 결과적으로 블랭킷 영역 출력도 증가하여 노심의 반응도가 과하게 증가한다. 결과적으로 Pu-U 치환이 없는 경우 해당 노심의 수명은 약 2 년으로서 매우 짧다.
한편 블랭킷과 용융염 사이 Pu-U 치환이 발생하면 노심의 반응도 변화는 도 4에서 보듯이 크게 달라진다. Pu-U 연료 치환이 100%일 때(실시예 1)와 연료 치환이 50%일 때(실시예 2)의 반응도를 보면, 연료 치환이 일어나지 않았을 때와 비교해서 반응도가 장기간 2,000 pcm 안팎의 범위로 유지되는 것을 확인할 수 있다. 특히 블랭킷에서 증식된 Pu-239의 50%만이 치환되는 경우(실시예 2)엔 50년 동안 반응도 변화가 매우 적으면서 실질적으로 50년 이상 초장수명을 달성할 수 있음을 알 수 있다. 이러한 반응도 변화 현상은 상부 용융염에서 연료가 소비될 때마다 하부 블랭킷으로부터의 연료 공급이 적절하게 이루어졌음을 의미한다. 결과적으로 액체연료 블랭킷 영역에서 증식된 Pu 일부를 피동적인 화학반응에 기초하여 상부 활성노심으로 공급함으로써 극히 안전하고 안정적이면서 효율적인 방식으로 MSFR 운전이 가능함을 알 수 있다.

Claims (16)

  1. 활성 노심부와 블랭킷부를 포함하는 용융염 원자로에 있어서,
    상기 활성 노심부는 액체 금속상인 상기 블랭킷부의 상부와 액액 경계면을 형성하며 배치되고,
    상기 액액 경계면을 통하여 하부의 블랭킷부에서 상부의 활성 노심부로 핵분열성 연료가 피동적으로 공급되고, 상부의 활성 노심부로부터 하부의 블랭킷부로 전환성 연료가 피동적으로 공급되는 것을 특징으로 하는 용융염 원자로.
  2. 제1항에 있어서, 상기 블랭킷부 상부면 전체가 상기 활성 노심부의 하부면 전체와 액액 경계면을 형성하는 것을 특징으로 하는 용융염 원자로.
  3. 제1항에 있어서, 상기 블랭킷부는 용융염 원자로 내측면에 원주방향을 따라 배치되고, 블랭킷부의 상면만이 개방되어 이의 상부와 활성 노심부가 액액 경계면을 형성하는 것을 특징으로 하는 용융염 원자로.
  4. 제3항에 있어서, 상기 블랭킷부의 개방된 상면의 면적을 조절하여 원자로의 반응을 조절하는 것을 특징으로 하는 용융염 원자로.
  5. 제1항에 있어서, 상기 활성 노심부는 NaCl, KCl, MgCl2, UCl3, PuCl3, NpCl3, AmCl3, 및 CmCl3으로 이루어진 군으로부터 선택되는 1종 이상의 용융염을 포함하는 것을 특징으로 하는 용융염 원자로.
  6. 제1항에 있어서, 상기 활성 노심부의 우라늄 농축도는 19.75 이하인 것을 특징으로 하는 용융염 원자로.
  7. 제1항에 있어서, 상기 블랭킷부는 철과 5% 이하의 저농축 우라늄 또는 천연 우라늄의 합금을 포함하는 것을 특징으로 하는 용융염 원자로.
  8. 제7항에 있어서, 상기 블랭킷부는 철과 우라늄의 공융점에 해당하는 철과 우라늄을 포함하는 것을 특징으로 하는 용융염 원자로.
  9. 제1항에 있어서, 상기 블랭킷부는 용융염 원자로가 가동되기 이전에 이미 핵분열성 연료를 포함하는 것을 특징으로 하는 용융염 원자로.
  10. 제1항에 있어서, 하부의 블랭킷부에서 자연순환을 거쳐 상기 액액 경계면을 통하여 상부의 활성 노심부로 피동적으로 공급되는 핵분열성 연료는 Pu-239이고, 상기 상부의 활성 노심부로부터 하부의 블랭킷부로 피동적으로 공급되는 전환성 연료는 U-238인 것을 특징으로 하는 용융염 원자로.
  11. 제1항에 있어서, 상기 핵분열성 연료와 상기 전환성 연료의 피동적인 공급은 깁스 자유에너지 차로 인하여 발생하는 화학반응에 의하여 수행되는 것을 특징으로 하는 용융염 원자로.
  12. 제1항에 있어서, 상기 용융염 원자로는 고속 스펙트럼 기반의 용융염 원자로(MSFR) 또는 고속 스펙트럼 기반의 스테이블 솔트 리엑터(Stable Salt Reactor, SSR)인 것을 특징으로 하는 용융염 원자로.
  13. 제1항의 용융염 원자로 중 활성 노심부에서 핵분열이 발생하여 중성자가 생성되는 단계;
    상기 생성된 중성자가 액액 경계면을 거쳐 블랭킷부로 이동하는 단계;
    블랭킷부로 이동한 중성자를 전환성 연료가 흡수하여 블랭킷 내부에서 핵분열성 연료가 형성되는 단계;
    상기 생성된 핵분열성 연료는 블랭킷부 내부에서 자연순환을 거쳐 액액 경계면으로 이동하는 단계;
    상기 자연순환에 의해 액액 경계면으로 이동한 핵분열성 연료가 액액 경계면을 거쳐 활성 노심부로 이동하는 단계; 및
    활성 노심부로부터 블랭킷부로 액액 경계면을 거쳐 전환성 연료가 공급되는 단계;를 포함하는 용융염 원자로를 위한 피동적 연료 주입방법.
  14. 제13항에 있어서, 블랭킷부에서 핵분열이 발생하여 생성된 중성자를 블랭킷부의 전환성 연료가 흡수하여 핵분열성 연료가 형성되는 단계를 더 포함하는 것을 특징으로 하는 용융염 원자로를 위한 피동적 연료 주입방법.
  15. 제13항에 있어서, 상기 핵분열성 연료가 액액 경계면을 거쳐 활성 노심부로 이동하는 단계와 활성 노심부로부터 블랭킷부로 액액 경계면을 거쳐 전환성 연료가 공급되는 단계는 깁스 자유에너지 차로 인하여 발생하는 화학반응에 의하여 피동적으로 수행되는 것을 특징으로 하는 용융염 원자로를 위한 피동적 연료 주입방법.
  16. 제13항에 있어서, 상기 블랭킷부는 활성 노심부로부터 이동된 중성자에 의하여 핵분열성 연료가 형성되기 이전부터 핵분열성 연료를 포함하고 있는 것을 특징으로 하는 용융염 원자로를 위한 피동적 연료 주입방법.
PCT/KR2022/015056 2021-12-16 2022-10-06 용융염 원자로 및 이를 위한 피동적 연료 주입방법 WO2023113174A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280006234.XA CN116615789A (zh) 2021-12-16 2022-10-06 熔盐反应堆及其被动燃料注入方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210180216 2021-12-16
KR10-2021-0180216 2021-12-16
KR1020220117142A KR102523857B1 (ko) 2021-12-16 2022-09-16 용융염 원자로 및 이를 위한 피동적 연료 주입방법
KR10-2022-0117142 2022-09-16

Publications (1)

Publication Number Publication Date
WO2023113174A1 true WO2023113174A1 (ko) 2023-06-22

Family

ID=86143981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015056 WO2023113174A1 (ko) 2021-12-16 2022-10-06 용융염 원자로 및 이를 위한 피동적 연료 주입방법

Country Status (3)

Country Link
KR (1) KR102523857B1 (ko)
CN (1) CN116615789A (ko)
WO (1) WO2023113174A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220325A (ja) * 2011-04-07 2012-11-12 Toshiba Corp 高速炉
KR20140051622A (ko) * 2012-10-23 2014-05-02 국립대학법인 울산과학기술대학교 산학협력단 액체금속층을 이용한 노심용융물 냉각방법 및 이를 이용한 원자로 냉각시스템
JP2018500574A (ja) * 2014-12-29 2018-01-11 テラパワー, エルエルシー 溶融核燃料塩および関連するシステムおよび方法
JP2019105542A (ja) * 2017-12-13 2019-06-27 日立Geニュークリア・エナジー株式会社 高速炉の燃料要素および高速炉の炉心
WO2020088707A1 (de) * 2018-11-01 2020-05-07 Huke Armin DUAL FLUID REAKTOR - VARIANTE MIT FLÜSSIGMETALLSPALTSTOFF (DFR/ m)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220325A (ja) * 2011-04-07 2012-11-12 Toshiba Corp 高速炉
KR20140051622A (ko) * 2012-10-23 2014-05-02 국립대학법인 울산과학기술대학교 산학협력단 액체금속층을 이용한 노심용융물 냉각방법 및 이를 이용한 원자로 냉각시스템
JP2018500574A (ja) * 2014-12-29 2018-01-11 テラパワー, エルエルシー 溶融核燃料塩および関連するシステムおよび方法
JP2019105542A (ja) * 2017-12-13 2019-06-27 日立Geニュークリア・エナジー株式会社 高速炉の燃料要素および高速炉の炉心
WO2020088707A1 (de) * 2018-11-01 2020-05-07 Huke Armin DUAL FLUID REAKTOR - VARIANTE MIT FLÜSSIGMETALLSPALTSTOFF (DFR/ m)

Also Published As

Publication number Publication date
CN116615789A (zh) 2023-08-18
KR102523857B1 (ko) 2023-04-20

Similar Documents

Publication Publication Date Title
Chang The integral fast reactor
RU2486612C1 (ru) Двухфлюидный реактор на расплавленных солях
JP2014119429A (ja) 熔融塩炉
Şahin et al. LWR spent fuel transmutation in a high power density fusion reactor
WO2023113174A1 (ko) 용융염 원자로 및 이를 위한 피동적 연료 주입방법
Scott Stable salt fast reactor
Chang et al. Thorium-based fuel cycles in the modular high temperature reactor
Venneri The physics design of accelerator‐driven transmutation systems
Taube The transmutation of strontium-90 and cesium-137 in a high-flux fast reactor with a thermalized central region
Ashraf et al. Preliminary design of control rods in the single-fluid double-zone thorium molten salt reactor (SD-TMSR)
Peggs et al. Thorium energy futures
Engel et al. Molten-salt reactors for efficient nuclear fuel utilization without plutonium separation
Pope et al. Experimental Breeder Reactor II
Dolan Molten Salt Reactors
Asif et al. Advancement of Integral Fast Reactor
Rojas Sodium-Cooled Fast Reactors as a Generation IV Nuclear Reactor
Jung Gas-cooled fast reactor
RU2088981C1 (ru) Ядерный реактор на быстрых нейтронах с жидкометаллическим теплоносителем
KR102556952B1 (ko) 초소형 원자로 구현을 위한 용융염-금속 원자로
Scott Static liquid fuel reactors
US20240203611A1 (en) Molten salt nuclear reactor of the fast neutron reactor type, having a vessel filled with inert liquid salts around the reactor vessel by way of reactor decay heat removal (dhr) system
Houghton Molten Salt Reactors: Overview and Comparison of Uranium and Thorium Fuel Cycles
Kim Current Status on Development of P & T in Korea
JP2014013149A (ja) ウラン・トリウムハイブリッドシステム
Sailor et al. Comparison of accelerator-based with reactor-based waste transmutation schemes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280006234.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18016923

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907645

Country of ref document: EP

Kind code of ref document: A1