WO2023106237A1 - 空間位置算出装置 - Google Patents

空間位置算出装置 Download PDF

Info

Publication number
WO2023106237A1
WO2023106237A1 PCT/JP2022/044581 JP2022044581W WO2023106237A1 WO 2023106237 A1 WO2023106237 A1 WO 2023106237A1 JP 2022044581 W JP2022044581 W JP 2022044581W WO 2023106237 A1 WO2023106237 A1 WO 2023106237A1
Authority
WO
WIPO (PCT)
Prior art keywords
points
spatial position
reception
calculation device
position calculation
Prior art date
Application number
PCT/JP2022/044581
Other languages
English (en)
French (fr)
Inventor
徹 石井
Original Assignee
徹 石井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徹 石井 filed Critical 徹 石井
Publication of WO2023106237A1 publication Critical patent/WO2023106237A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/14Systems for determining distance or velocity not using reflection or reradiation using ultrasonic, sonic, or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/808Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/26Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/30Determining absolute distances from a plurality of spaced points of known location

Definitions

  • the present invention is a spatial position calculation device using waves such as sound waves and ultrasonic waves.
  • a technology that measures the timing at which waves such as sound waves or ultrasonic waves sent from the transmitter reach the receiver, and calculates the position of the receiver relative to the transmitter, or the position of the transmitter relative to the receiver. is disclosed in Patent Document 1.
  • the transmitting unit and the receiving unit are arranged spatially close to each other. Radar technology that uses radio waves as waves and sonar technology that uses sound waves or ultrasonic waves are widely known.
  • Patent Document 1 there has been reported a technique for performing highly accurate three-dimensional positioning by using an ultrasonic signal modulated by a spread spectrum code.
  • the output waveform of the correlation calculation between the received signal and the transmitted signal performed on the receiver side theoretically shows a sharp peak only at the timing when the transmitted wave reaches the receiver. , and has the feature of enabling highly accurate positioning.
  • the received wave (hereinafter referred to as direct wave) propagating in a straight line distance from the transmitter to the receiver in the output waveform of the correlation calculation
  • direct wave the received wave propagating in a straight line distance from the transmitter to the receiver in the output waveform of the correlation calculation
  • Patent Document 2 pseudo-random sequence data with the smallest secondary peak appearing before the maximum peak on the correlation calculation waveform is selected as a signal to be used for measurement. Techniques are disclosed for mitigating the effects of interference in
  • Patent Document 3 a different M-sequence code is transmitted for each transmission cycle, and by detecting the first peak on the correlation calculation waveform within the measurement cycle, the direct wave is selectively discriminated and measured. Techniques are disclosed.
  • Non-Patent Document 1 discloses a technique of improving positioning accuracy by suppressing components other than a desired signal.
  • Patent Document 2 suppresses signals other than the desired transmission signal, it cannot prevent interference due to reflected waves of the desired transmission signal itself.
  • Patent Document 3 can eliminate the influence of the reflected wave, it cannot deal with the problem that the maximum position of the peak on the correlation waveform shifts due to interference and the measurement error increases.
  • Non-Patent Document 1 since the calculation for removing components other than the desired signal is repeatedly performed for one measurement, there is a problem that the calculation load is large and the processing time and power consumption increase.
  • the spatial position calculation apparatus of the present invention includes: a transmission unit that transmits a modulated audio signal obtained by modulating an original audio signal; a receiving unit that receives data at a plurality of points in space; and based on a cross-correlation calculation result between a reference signal generated from the modulated speech signal and a received signal at each of the plurality of points, either the transmitting unit or the receiving unit.
  • a calculating unit that calculates spatial position coordinates or a distance from the transmitting unit to the receiving unit, and is obtained by cross-correlation calculation between the received signals at any two of the plurality of receiving points and the reference signal.
  • each correlation waveform peaks that satisfy conditions for forming a triangle having three sides corresponding to the calculated distances from the transmitter to the two points and the distance between the two points. It is characterized by eliminating spurious peaks occurring at erroneous distances by extracting only combinations.
  • the reception section when the reception section performs cross-correlation calculation for specifying the arrival timing of the modulated audio signal from the transmission section to the reception section, the reception signal at a single point is reflected wave Even if the measurement error increases due to the maximum peak of the correlation waveform occurring at a position different from the original correct distance due to interference with the transmission waves of other transmission sources, the position of the transmitter and the reception position of the two points From the position of the transmitter in the correlation waveform to the reception position of the two points, in order to extract a combination that satisfies the constraint that triangles serving as vertices are formed in space from the peak group in the correlation waveform Even if the peak corresponding to the straight line distance does not necessarily show the maximum value, the straight line distance can be calculated. This makes it possible to calculate the position of the object to be measured in space with high accuracy.
  • FIG. 1 is a system functional block diagram of one embodiment according to the present invention
  • FIG. 4 is a timing chart showing the temporal relationship between modulated audio signals Y1, Y2, Y3 and received signal X41.
  • 4 is a timing chart showing the temporal relationship between modulated audio signal Y1 and received signals X41, X42, and X43.
  • 2 is a diagram showing an example of an internal configuration of a transmitter 1
  • FIG. 5 is a timing chart of internal signals in FIG. 4
  • FIG. 4 is a diagram showing an internal configuration example of a receiver 4.
  • FIG. 4 is an explanatory diagram of cross-correlation calculation performed by a correlation calculation unit 45;
  • FIG. 4 is an explanatory diagram of cross-correlation calculation performed by a correlation calculation unit 45;
  • FIG. 4 is an explanatory diagram of cross-correlation calculation performed by a correlation calculation unit 45;
  • FIG. 10 is an enlarged view of the vicinity of the maximum peak of the correlation calculation result when the maximum peak position is stable at one point;
  • FIG. 10 is an enlarged view of the vicinity of the maximum peak of the correlation calculation result when the maximum peak position varies between two adjacent peaks;
  • 10 is a graph of cross-correlation calculation results when there is a reflected wave with a higher intensity than the direct wave.
  • FIG. 4 is a diagram showing the positional relationship in space between a transmitter k and reception microphones M1, M2, and M3.
  • FIG. 4 is a diagram showing a triangle with three vertices of a transmitting unit k and receiving microphones M1 and M2.
  • FIG. 1 A system functional block diagram of one embodiment according to the present invention is shown in FIG. 1
  • the overall system consists of transmitters that are installed at different positions in space and that transmit binary phase-modulated audio signals Y1, Y2, and Y3 into space at predetermined time intervals using spread spectrum codes that use different pseudorandom number sequences.
  • a receiving unit 4 that outputs a reception timing signal Y4 indicating the timing at which the Y1, Y2, and Y3 each propagate through space and reach the receiving unit 4, and the receiving unit 4 based on the Y4
  • the position calculator 5 does not necessarily have to be separate from the receiver 4 and may be included in the same housing as the receiver 4 .
  • FIG. 2 shows the times of Y1, Y2, and Y3, Z11, Z21, and Z31, which are the signals propagated through space and reach the microphone M1 of the receiver 4, and X41, which is the received signal at the microphone M1. It is a timing chart showing the relationship.
  • the signals Y1, Y2, and Y3 are signals that are binary phase-modulated by mutually different code sequences and periodically transmitted at predetermined time intervals T from the transmitters 1, 2, and 3, respectively.
  • Y1 , Y2, and Y3 transmitted at times ty1, ty2 , and ty3 , respectively, are transmitted for propagation times ⁇ t 11 , ⁇ t 21 , and ⁇ t 31 proportional to the respective distances from transmitters 1, 2, and 3 to microphone M1.
  • a received signal X41 in which the delayed signals Z11, Z21, and Z31 are superimposed is received by the microphone M1.
  • T may be selected in any manner as long as the position calculation unit 5 can know the output timing of the modulated audio signals from the transmission units 1, 2, and 3.
  • a method in which the value of the transmission interval T is superimposed on the modulated audio signal and transmitted to the position calculation unit 5 can be adopted.
  • t y1 , t y2 , and t y3 may be selected in any way as long as the position calculation unit 5 can know them.
  • y2 , t y2 -t y3, t y3 -t y1 are set to different predetermined fixed values, respectively, and the output timing of each transmitter is shifted, or the values of t y1 , t y2 , t y3 are changed randomly each time, It is possible to adopt a method such as superimposing the modulated audio signals Y1, Y2, and Y3 on the above-mentioned modulated audio signals Y1, Y2, and Y3 and transmitting them to the position calculating section 5, or the like.
  • t 11 , t 21 , and t 31 in FIG. is measured by the receiving unit 4, and the propagation delay times ⁇ t 11 , ⁇ t 21 , ⁇ t 31 obtained by taking the difference between groups of (t y1 , t y2 , t y3 ) and (t 11 , t 21 , t 31 ) is multiplied by the speed of sound to obtain the distances between each of the transmitters 1, 2, and 3 and the microphone M1, and the position coordinates of the microphone M1 with respect to the transmitters 1, 2, and 3 are calculated based on the principle of trilateration. can be done.
  • FIG. 3 is a timing chart showing the time relationship of X41, X42, and X43, which are signals received by microphones M1, M2, and M3, respectively.
  • the reception microphones M1, M2, and M3 are arranged at close positions inside the reception unit 4, and the distances between them and the transmission unit 1 are different. , ⁇ t 12 , ⁇ t 13 as signals Z11, Z12, Z13, respectively, arriving at M1, M2, M3.
  • FIG. 4 shows a first embodiment of the internal configuration of the transmitter 1
  • FIG. 5 shows a timing chart of internal signals in FIG.
  • the transmission unit 1 is composed of an original speech signal generation unit 12, a pseudorandom number generation unit 13, a modulation unit 14, and a control timer 15.
  • FIG. 12 shows a first embodiment of the internal configuration of the transmitter 1
  • FIG. 5 shows a timing chart of internal signals in FIG.
  • the transmission unit 1 is composed of an original speech signal generation unit 12, a pseudorandom number generation unit 13, a modulation unit 14, and a control timer 15.
  • the original audio signal generator 12 is composed of, for example, a crystal oscillator or a built-in oscillator of a microcontroller, and generates an original audio signal Y12 of a constant frequency.
  • the control timer 15 outputs an operation control signal Y15 having a cycle of T to the pseudorandom number generator 13 and the modulator .
  • the pseudorandom number generator 13 generates a binary pseudorandom number Y13 of "1" or "0” according to a generally known pseudorandom number sequence such as the M sequence, Gold code, or Kasami code.
  • the modulation unit 14 receives the original audio signal Y12 and the pseudo-random number Y13. When the value of Y13 is "0", the phase is the same as that of the original audio signal Y12. A modulated audio signal Y1, which has undergone binary phase modulation so as to have a phase, is sent out into the air.
  • Both the pseudo-random number generator 13 and the modulator 14 are controlled by Y15 so that they operate while the control signal Y15 is Hi and stop while the control signal Y15 is Lo.
  • the pseudorandom number generator 13 is reset at the timing when Y15 next changes from Lo to Hi, and outputs the predetermined pseudorandom number Y13 again from the beginning.
  • the internally generated pseudo-random numbers are different from Y13.
  • FIG. 6 shows an example of the internal configuration of the receiving section 4. As shown in FIG.
  • the receiving unit 4 includes reception microphones M1, M2, M3, reception buffer memories 41, 42, 43, a reference signal generation unit 44, a correlation calculation unit 45, a relative velocity prediction unit 46, a magnification change unit 47, a reception signal selection unit 48, consists of
  • Received signals X41, X42, and X43 from the receiving microphones M1, M2, and M3 are temporarily held in respective receiving buffer memories 41, 42, and 43, respectively.
  • the reception selector 48 selects and reads out the respective reception record signals Y41, Y42, Y43 from the reception buffer memories 41, 42, 43 and outputs the selected reception record signal Y48 to the correlation calculator 45.
  • Y41, Y42, and Y43 are signals obtained by reading sections necessary for the correlation calculation in the correlation calculator 45 from the previously held X41, X42, and X43, respectively.
  • the interval required for this correlation calculation is the shortest-distance propagation time t min and the longest-distance propagation time t max that can be taken due to the positional relationship between the receiving unit 4 and the transmitting unit 2. It can be determined as the interval from t min to t max .
  • the reference signal generation unit 44 has the same function as the modulation unit 14 in FIG. , and is output to the magnification changing unit 47.
  • a relative velocity prediction unit 46 predicts relative velocities between the transmitters 1, 2, 3 and the receiver 4, and compensates for expansion and contraction in the received signal due to the Doppler effect due to the estimated relative velocities.
  • a magnification is set in the magnification changer 47 .
  • Magnification changing section 47 expands or contracts reference signal Y44 in the time direction according to the magnification specified by relative velocity prediction section 46, and outputs the result to correlation calculation section 45 as corrected reference signal Y47.
  • the correlation calculation unit 45 performs cross-correlation calculation between the selected reception recording signal Y48 and the correction reference signal Y47, whereby the reception unit 4 calculates the reception timing of the modulated audio signal from each transmission unit.
  • FIG. 7 is an explanatory diagram of the cross-correlation calculation performed by the correlation calculator 45. As shown in FIG. Here, an example of calculating the reception timing when Y41 is selected as Y48 in FIG. 6 is shown.
  • Y48 having the same waveform as the selected Y41 and the corrected reference signal Y47 obtained by changing the magnification of Y44, which is a replica of the modulated audio signal Y2, are input.
  • FIG. 7 shows an example in which the relative velocity between the transmitter 2 and the receiver 4 is zero and the predicted relative velocity described above is also zero, and Y47 has the same waveform as the reference signal Y44.
  • Correlation calculation unit 45 sequentially shifts Y47 from t min to t max with respect to Y48, performs cross-correlation calculation, obtains timing t21 at which the correlation reaches the maximum peak, and Z21 transmits this time point to reception unit 4. Calculated as the received timing.
  • FIG. 8 is a graph showing the result of the above cross-correlation calculation with the shift amount on the horizontal axis and the correlation value on the vertical axis.
  • the receiving unit 4 performs cross-correlation calculations similar to those shown in FIG . , t 31 are similarly calculated.
  • FIG. 9 and 10 respectively show the correlation calculation section for the received recording signal Y41 and the modulated audio signal Y2 when the receiving microphone M1 is installed at two points with different positional coordinates in space and separated from each other by a distance of several centimeters.
  • 45 is an enlarged view of the vicinity of the maximum peak of the waveform of the cross-correlation calculation at 45.
  • the graphs indicated by solid lines are the initial waveforms of the cross-correlation calculations performed multiple times by the correlation calculation unit 45, and the points on the graphs are the maximum peak points obtained in each of these multiple waveforms. is superimposed.
  • FIG. 9 shows an example in which the correlation waveform always shows the maximum peak at one point without the influence of interference, and the maximum peak is always shown at time t21 in any of the multiple waveforms.
  • FIG. 10 shows an example in which the sharpness of the maximum peak is dulled, and although the position of the receiving microphone M1 is stationary, the maximum peak position is between two adjacent peaks of t 21 and t 21 ′ due to the measurement times. There is a problem that it cannot be determined which one corresponds to the propagation distance of the direct wave.
  • FIG. 11 shows correlation calculation waveforms for the reception recording signal Y41 and the modulated audio signal Y2 in the correlation calculation section 45.
  • the reflected wave having a higher intensity than the direct wave is received by M1. Therefore, the difference from FIG. 8 is that the maximum peak is observed not at the arrival time t21 of the direct wave but at the arrival time t21 '' of the reflected wave.
  • the distance calculated based on the maximum peak position is the propagation distance of the reflected wave.
  • FIG. 12 is an explanatory diagram of the positional relationship in space between the transmitting unit k and a plurality of receiving microphones, where q k is the position of the transmitting unit k, p 1 , p 2 and p 3 are the receiving microphones M1, M2 and M2, respectively. It shows the position of the M3's microphone.
  • d 12 , d 23 and d 31 are the distances between p 1 and p 2 , between p 2 and p 3 and between p 3 and p 1 respectively, and r k1 , r k2 and r k3 are The distances between q k -p 1 , q k -p 2 , and q k -p 3 are shown.
  • v s be the speed of sound propagating in the air.
  • t ki and t kj are pi and This is the time at which the peak due to the direct wave from q k is observed at p j .
  • N peaks with the largest values are extracted in order from the maximum peak, and N 2 possible values for (t ki , t kj ) are extracted.
  • the combination that does not satisfy [Equation 2] can be excluded as an error.
  • the multiple peaks appearing in the cross-correlation waveform are separated by at least one wavelength of the ultrasonic wave, so the time of the peak due to the direct waves at the receiving microphones Mi and Mj is Denoting t ki_T and t kj_T respectively, and t ki_F and t kj_F representing times of false peaks not due to direct waves, the combination (t ki_T , t kj_T ) due to direct waves satisfies [Equation 2].
  • Setting d ij to less than half the wavelength of the ultrasonic wave can be achieved, for example, by mounting a small surface mount type microphone adjacently on the printed circuit board.
  • the times (t k1 , t k2 , t k3 ) at which the direct wave of the modulated audio signal from the transmitter k reaches the receiving microphones M1, M2, and M3 are obtained.
  • the arrival time tki at the receiving microphone i predetermined as the reference position is output as the arrival timing Y4 of the receiving unit 4 .
  • p2 is the reference position of the receiving unit 4, and p1 and p3 are respectively on the x-axis and the y-axis, which are two orthogonal axes with p2 as the origin. shall be placed.
  • Transmitting section 2 Transmitting section 3 Transmitting section 4 Receiving section 5 Position calculating section 12 Original audio signal generating section 13 Pseudo random number generating section 14 Modulating section 15 Control timer 41 Receiving buffer memory 42 Receiving buffer memory 43 Receiving buffer memory 44 Reference signal generating section 45 Correlation calculation unit 46 Relative velocity prediction unit 47 Magnification change unit 48 Received signal selection unit M1 Receiving microphone M2 Receiving microphone M3 Receiving microphone

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

【課題】反射波や他の送信源との干渉や雑音の影響がある場合にも、測定対象の空間内の位置を高精度に算出する空間位置算出装置を提供する。【解決手段】変調音声信号を送信する送信部(1,2,3)と、前記変調音声信号を空間内の複数受信点(受信マイクM1,M2,M3)で受信する受信部(4)と、前記変調音声信号から生成した参照信号と、前記複数受信点でのそれぞれの受信信号との相互相関演算結果に基づいて、前記送信部と前記受信部のいずれかの空間位置座標、もしくは前記送信部から前記受信部に至る距離を算出する空間位置算出装置において、前記複数受信点の中の任意の2点それぞれでの受信信号と、前記参照信号との相互相関演算によって得られるそれぞれの相関波形の複数のピーク群の中から、算出した前記送信部から前記2点に至るそれぞれの距離と、前記2点間の距離を3辺とする三角形が形成される条件を満たすピークの組合せのみを抽出する。

Description

空間位置算出装置
本発明は、音波、超音波等の波動を利用した空間位置算出装置である。
送信部から送出された音波もしくは超音波等の波動が受信部に到達するタイミングを計測し、送信部を基準とする受信部の位置、もしくは受信部を基準とする送信部の位置を算出する技術が特許文献1に開示されている。また送信部と受信部が空間的近傍に配置され、送信部から送出された波動が対象物に反射されて受信部に戻るまでの往復時間を計測し対象物の位置を算出する技術として、前記波動に電波を用いるレーダー技術や、音波もしくは超音波を用いるソナー技術が広く知られている。
特許第4834293号 特許第5560711号 特許第5766903号
F. Seco et al., "Compensation of multiple access interference effects in CDMA-based acoustic positioning systems," IEEE Transactions on Instrumentation and Measurement., vol. 63, no. 10, pp. 2368-2378, 2014 [DOI: 10.1109/TIM.2014.2312511].
特許文献1に示されるよう、スペクトラム拡散符号により変調した超音波信号を用いることにより、高精度の三次元測位を行う技術が従来報告されている。 
スペクトラム拡散符号を用いた測位では、受信機側で行う受信信号と送信信号の相関演算の出力波形において、理論的には送信波が受信機に到達するタイミングの1点のみで鋭いピークを示すため、高精度な測位が可能となるという特徴を有している。 
しかしながら実環境下においては、壁や床等の近傍の反射物の影響により、前記相関演算の出力波形おいて、送信機から受信機に至る直線距離を伝搬する受信波(以降、直達波という)のピークよりも、より強度の強い反射波のピークが前記直線距離と異なる距離に観測されるという問題や、他の送信源との干渉や雑音の影響により前記直達波の相関波形上のピークの極大位置がずれ、測定誤差が増大するという問題が生じる場合があった。 
これに対し特許文献2では、相関演算波形上の最大ピークの発生時点より以前に現れる副次ピークが最小となる擬似ランダム系列データを、測定に用いる信号として選択することにより、他の送信源との干渉の影響を軽減する技術が開示されている。 
また特許文献3では、送信周期毎に異なるM系列符号を送信し、かつ、測定周期内の相関演算波形上の最初のピークを検出することにより、直達波を選択的に判別して測定するという技術が開示されている。 
また非特許文献1では、所望の信号以外の成分を抑圧することにより、測位精度を向上させるという技術が開示されている。 
しかしながら特許文献2は所望の送信信号以外の信号は抑圧されるものの所望の送信信号自身の反射波による干渉は防げない。また特許文献3は反射波の影響は排除できるが干渉により相関波形上のピークの極大位置がずれ測定誤差が増大する問題には対応できない。また非特許文献1は所望の信号以外の成分を除去する計算を一回の測定に対して繰り返し行うため、計算負荷が大きく処理時間や消費電力が増大してしまう、という課題があった。 
本発明は、干渉や雑音の影響により上記従来技術では正確な測定ができない環境下であっても、測定対象の空間内の位置を高精度に算出することを目的としたものである。
上記目的を達成するため、本発明の空間位置算出装置は、原音声信号に対して変調を施した変調音声信号を送信する送信部と、前記変調音声信号を相互の位置関係が予め定められた空間内の複数点で受信する受信部と、前記変調音声信号から生成した参照信号と前記複数点それぞれの受信信号との相互相関演算結果に基づいて、前記送信部と前記受信部のいずれかの空間位置座標もしくは前記送信部から前記受信部に至る距離を算出する算出部を備え、前記複数受信点の中の任意の2点それぞれの受信信号と、前記参照信号との相互相関演算によって得られるそれぞれの相関波形の複数のピーク群の中から、算出した前記送信部から前記2点に至るそれぞれの距離と、前記2点間の距離を3辺とする三角形が形成される条件を満たすピークの組合せのみを抽出することにより、誤った距離に生じる偽ピークを排除することを特徴とする。
本発明の空間位置算出装置によれば、送信部からの変調音声信号の受信部への到達タイミングを特定するための相互相関演算を受信部で行う際に、単一点での受信信号では反射波や他の送信源の送信波との干渉により、本来の正しい距離とは異なる位置に相関波形の最大ピークが生じるために測定誤差が増大する場合でも、送信部の位置と2点の受信位置を頂点とする三角形が空間内に形成されるという制約を満たす組合せを、前記相関波形内のピーク群の中から抽出するために、相関波形内における前記送信部の位置から前記2点の受信位置に至る直線距離に対応するピークが必ずしもで最大値を示さない場合であっても、前記直線距離を算出出来る。これにより、測定対象の空間内の位置を高精度に算出することが可能となる。
本発明による一実施形態のシステム機能ブロック図である。 変調音声信号Y1、Y2、Y3及び受信信号X41の時間関係を示したタイミングチャートである。 変調音声信号Y1及び受信信号X41、X42、X43の時間関係を示したタイミングチャートである。 送信部1の内部構成の実施例を示す図である。 図4の内部信号のタイミングチャートである。 受信部4の内部構成例を示す図である。 相関演算部45で行う相互相関演算の説明図である。 相互相関演算の結果を、横軸をシフト量、縦軸を相関値として示したグラフである。 最大ピーク位置が1点で安定している場合の相関演算結果の最大ピーク付近の拡大図である。 最大ピーク位置が隣接する二つのピークの間でばらつく場合の相関演算結果の最大ピーク付近の拡大図である。 直達波よりも強度の強い反射波が存在する場合の相互相関演算の結果のグラフである。 送信部kと、受信マイクM1、M2、M3の空間内の位置関係を示した図である。 送信部k、受信マイクM1、M2の3点を頂点とする三角形を示した図である。
本発明による一実施形態のシステム機能ブロック図を図1に示す。 
全体のシステムは、空間内の異なる位置に設置され所定の時間間隔で、それぞれ異なる疑似乱数系列を用いたスペクトラム拡散符号による二値位相変調音声信号Y1、Y2、Y3を各々空間へ送出する送信部1、2、3と、前記Y1、Y2、Y3が各々空間を伝搬して受信部4に到達したタイミングを示す受信タイミング信号Y4を出力する受信部4と、前記Y4に基づいて受信部4の空間位置座標Y5を算出する位置算出部5、から構成されている。なお位置算出部5は受信部4と必ずしも別体である必要はなく、受信部4と同一の筐体に内包されていてもよい。 
図2は、前記Y1、Y2、Y3と、これらがそれぞれ空間を伝搬して受信部4のマイクM1に到達した信号である、Z11、Z21、Z31と、マイクM1における受信信号であるX41の時間関係を示したタイミングチャートである。 
前記Y1、Y2、Y3はお互いに異なる符号系列により二値位相変調され、それぞれ送信部1、2、3から所定の時間間隔Tで周期的に送信される信号である。 
それぞれ時刻ty1,ty2,ty3に送信されたY1、Y2、Y3は、送信部1、2、3からマイクM1に至る各々の距離に比例した伝搬時間Δt11、Δt21、Δt31だけ遅延した信号である、Z11、Z21、Z31が重畳された受信信号X41として、マイクM1で受信される。 
なおTは、送信部1、2、3からの変調音声信号の出力タイミングを位置算出部5が知り得る限りどのような選び方でもよく、一定の固定値である以外にも、例えば予め定めた規則に基づいて間隔を逐次変更するものや、あるいは送信間隔Tの値を都度、前記変調音声信号に重畳して位置算出部5に伝えるもの、等の方式を採用することができる。 
またty1,ty2,ty3についても、これらを位置置算出部5が知り得る限りどのような選び方でもよく、例えば、同時すなわちty1 = ty2 = ty3とする、あるいはty1-ty2, ty2-ty3, ty3-ty1をそれぞれ異なる所定の固定値として各々の送信部の出力タイミングをずらす、あるいはty1,ty2,ty3の値を都度ランダムに変更してそれぞれの前記変調音声信号Y1、Y2、Y3に重畳して位置算出部5に伝える、等の方式を採用することができる。 
図1の位置算出部5における空間位置座標の算出方法には複数の方法が存在する。 
例えば位置算出部5がty1,ty2,ty3を事前に知り得ている場合には、マイクM1にそれぞれの変調音声信号が到達する時刻である図2のt11,t21,t31を受信部4で計測し、(ty1,ty2,ty3)と(t11,t21,t31)のグループ間の差を取って得られる伝搬遅延時間Δt11、Δt21、Δt31に音速を乗じて送信部1、2、3それぞれとマイクM1との距離を求め、三辺測量の原理に基づいて送信部1、2、3を基準とするマイクM1の位置座標を算出することができる。 
あるいは位置算出部5がty1,ty2,ty3を知りえない場合であっても、ty1 = ty2 = ty3、すなわち送信部の全てが同時に変調音声信号を出力する系であれば、図2のt11、t21、t31の三者から二者を選ぶ三通りの組合せに対する差であるt31-t11、t11-t21、t21-t31はそれぞれ、伝搬遅延時間の差であるΔt31-Δt11、Δt11-Δt21、Δt21-Δt31に一致するため、これら用いて異なる空間位置から同時に送信された信号の到達時間差に基づいて位置算出するTDoA(Time Difference of Arrival)として一般に知られた原理により、マイクM1の位置座標を算出することが可能である。 
図3は、マイクM1、M2、M3におけるそれぞれの受信信号であるX41、X42、X43の時間関係を示したタイミングチャートである。 
受信マイクM1、M2、M3は受信部4内部の近接した位置に配置されており、各々と送信部1との距離が異なるため、前記Y1は、この各々の距離に応じて異なる伝搬時間Δt11、Δt12、Δt13だけ遅延した信号Z11、Z12、Z13として、それぞれM1、M2、M3に到達する。 
送信部2および送信部3から送出されるY2、Y3に関しても同様に、それぞれの伝搬距離に応じて遅延時間が異なる信号がM1、M2、M3に到達するため、それぞれの受信信号のX41、X42、X43には、前記Z11、Z12、Z13に加え、Y2の到達信号であるZ21、Z22、Z23と、Y3の到達信号であるZ31、Z32、Z33とが、それぞれ異なるタイミングで重畳された信号が受信される。 
図2および図3では説明の便宜上、Y1、Y2、Y3として1符号につき搬送波の1波長をあてた符号長2の短い符号を例として記載しているが、実用上は適宜、より長い符号長の疑似乱数系列のスペクトラム拡散符号を用いることで、受信信号の受信部4への到達タイミング算出の精度や、雑音や他信号に対する干渉耐性を高めるこ
とが可能である。 
次に送信部1の内部構成の第一の実施例を図4に、また図4の内部信号のタイミングチャートを図5に示す。送信部1は、原音声信号生成部12、疑似乱数生成部13、変調部14、制御タイマ15からなる。 
原音声信号生成部12は、例えば水晶発振器やマイクロコントローラの内蔵発振器等で構成され、一定周波数の原音声信号Y12を発生する。 
制御タイマ15は、前記Tを周期とする動作制御信号Y15を、疑似乱数生成部13と変調部14に対して出力する。 
疑似乱数生成部13は、M系列やGold符号あるいはKasami符号等の、一般に知られた疑似乱数系列に従い「1」または「0」の二値の疑似乱数Y13を発生する。 
変調部14は原音声信号Y12と疑似乱数Y13を入力し、Y13の値が「0」の時は原音声信号Y12と同位相、Y13の値が「1」の時は原音声信号Y12と逆位相となるよう二値位相変調が施された変調音声信号Y1を空中に送出する。 
疑似乱数生成部13と変調部14はいずれも、制御信号Y15がHiの期間は動作し、Loの期間は停止するよう、Y15により制御される。またY15が次にLoからHiになるタイミングで疑似乱数生成部13はリセットされ、あらかじめ定められた疑似乱数Y13を再び先頭から出力する。 
図5において、Y15がLoからHiに遷移する立ち上がりエッジの間隔が、前記Tに相当する。 
送信部2、送信部3においても、内部構成は図4、内部信号のタイミングは図5に示した送信部1と同様であるが、それぞれ内部で生成する疑似乱数がY13とは異なる。 
送信部2、送信部3の内部で生成する疑似乱数をそれぞれY23、Y33とすると、疑似乱数Y13、Y23、Y33のいずれの組合せを取って相互相関演算を行っても明確なピークを示さない、いわゆる直交性の高い疑似乱数が選ぶことにより、受信部4における後述の相互相関演算において各々の送信部の変調音声信号を他のものと間違うことなく抽出することが可能となる。 
続いて受信部4の内部構成例を図6に示す。 
受信部4は、受信マイクM1、M2、M3、受信バッファメモリ41、42、43、参照信号生成部44、相関演算部45、相対速度予測部46、倍率変更部47、受信信号選択部48、よりなる。 
受信マイクM1、M2、M3におけるそれぞれの受信信号X41、X42、X43は、それぞれの受信バッファメモリ41、42、43に一旦保持される。 
受信選択部48は、受信バッファメモリ41、42、43から、それぞれの受信記録信号Y41、Y42、Y43を選択して読出した信号である選択受信記録信号Y48を、相関演算部45に出力する。なおY41、Y42、Y43はそれぞれ、前述の一旦保持されたX41、X42、X43に対し、相関演算部45での相関演算に必要な区間が読みだされた信号である。 
この相関演算に必要な区間とは、受信部4と送信部2の位置関係上取りうる、最も近距離の伝搬時間をtmin、逆に最も遠距離の伝搬時間をtmaxと表した時、tminからtmaxに至る区間として決定できる。 
参照信号生成部44は、図4の変調部14と同様の機能を有しており、送信部1、2、3各々の変調音声信号Y1、Y2、Y3と同一の信号を逐次、参照信号Y44として倍率変更部47に出力する。 
相対速度予測部46は送信部1、2、3と受信部4とのそれぞれの間の相対速度を予測し、この予測した相対速度によるドップラー効果により前記受信信号に生じる時間方向の伸縮を補償する倍率を倍率変更部47に設定する。 
倍率変更部47は、参照信号Y44を相対速度予測部46に指定された倍率に従って時間方向に伸縮して、補正参照信号Y47として、相関演算部45に出力する。 
相関演算部45は、選択受信記録信号Y48と補正参照信号Y47の相互相関演算を行うことにより、受信部4が各々の送信部からの変調音声信号の受信タイミングを算出する。 
図7は、相関演算部45で行う相互相関演算の説明図である。ここでは図6におけるY48としてY41を選択した際の、前記受信タイミングを算出する例を示している。 
今、相関演算部45には、選択されたY41と同波形であるY48と、変調音声信号Y2のレプリカであるY44に対し前述の倍率変更を施した補正参照信号Y47とが、入力される。 
なお図7では送信部2と受信部4との相対速度がゼロかつ前述の予測相対速度もゼロの例を示しており、Y47は参照信号Y44と同波形である。 
相関演算部45は、Y48に対し、Y47をtminからtmaxに渡り順次シフトして相互相関演算を行い、相関が最大ピークを示すタイミングt21を求め、この時点をZ21が受信部4に受信されたタイミングとして算出する。 
図8は上記の相互相関演算の結果を、横軸をシフト量、縦軸を相関値として示したグラフである。 
さらに受信部4は、図7に示したのと同様の相互相関演算を、送信部1、送信部3に関しても行うことで、Z11、Z31がそれぞれ受信部4に受信されたタイミングであるt11、t31も同様に算出する。 
次に受信選択部48において、受信記録信号Y41、Y42、Y43を用いて、何らかの理由により相関演算波形上において直達波のピークが必ずしも最大値を示さない問題が生じている状況でも、直達波の受信タイミングを正しく求める手法について述べる。 
まずこの問題の一例である、干渉や雑音の影響により直達波の相関波形上のピークの極大位置がずれ、測定誤差が増大する現象を、図9と図10を用いて説明する。 
図9と図10はそれぞれ、空間内の位置座標が異なる相互の距離が数cm程度離れたある2点に受信マイクM1を設置した場合の、受信記録信号Y41と変調音声信号Y2に対する相関演算部45における相互相関演算の波形の最大ピーク付近の拡大図である。 
図9、図10において、実線で示すグラフは相関演算部45で複数回行った相互相関演算の初回の波形であり、グラフ上の点はこの複数回のそれぞれの波形で得られた最大ピーク点を重畳したものである。 
図9は干渉の影響がなく1点において相関波形が常に最大ピークを示す例であり、複数回のいずれの波形においても常に時刻t21で最大ピークを示している。 
一方、図10は最大ピークの鋭さが鈍る例であり、受信マイクM1の位置が静止しているにも関わらず最大ピーク位置が測定回によりt21とt21’の隣接する二つのピーク間でばらついており、いずれが直達波の伝搬距離に相当するのかを判別できないという問題が生じている。 
なおここで、図9および図10における波形の周期は、変調音声信号の搬送波に用いる超音波の周期に一致しているため、図9の場合はこの超音波の波長よりも高精度な測位が出来ているのに対し、図10の場合は測定回によっては1波長の誤差が生じることを意味している。 
続いて、相関演算波形上において直達波のピークが必ずしも最大値を示さない別の事例である、強度の強い反射波のピークが直達波の伝搬距離とは異なる距離に観測される問題について、図11を用いて説明する。 
図11は、図8と同様、相関演算部45における受信記録信号Y41と変調音声信号Y2に対する相関演算波形を示したものであるが、直達波よりも強度の強い反射波がM1に受信されているために、直達波の到達時刻t21ではなく反射波の到達時刻t21’’にて最大ピークが観測されている点が図8との相違点である。 
図11の状況では、最大ピーク位置に基づいて算出する距離は反射波の伝搬距離となるために、図10に示した最大ピークの鋭さが鈍る現象に起因して生じる超音波の1波長分の誤差よりもさらに大きな誤差が生じるという問題が発生する。 
次に、上述の問題に対処し、受信部4の位置座標を正確に求める本発明の原理について説明する。 
図12は、送信部kと、複数の受信マイクの空間内の位置関係の説明図であり、qkは送信部kの位置、p1、p2、p3はそれぞれ受信マイクM1、M2、M3のマイクの位置を示している。 
図中、d12、d23、d31はそれぞれ p1-p2間、p2-p3間、p3-p1間の距離であり、またrk1、rk2、rk3はそれぞれ、qk-p1間、qk-p2間、qk-p3間の距離を示している。 
今、pi、 pj、qk(但しi,jは1,2,3から任意の2つを選ぶ組合せ)の3点は空間内において三角形を形成するため、dij, rki, rkj は以下の式を満たす。  
Figure JPOXMLDOC01-appb-M000001
今、空中を伝搬する音速をvsとすると、前記[数1]は以下のように書き換えられる。  
Figure JPOXMLDOC01-appb-M000002
ただしここで、tki、tkjはそれぞれ、受信マイクMi、Mjで観測された各々の受信記録信号と送信部kが送信する変調音声信号との相互相関演算結果の波形上において、piとpjにおけるqk からの直達波によるピークが観測される時刻である。 
[数2]を用いることにより、図10や図11に示した問題が生じているために相互相関演算結果の波形上に直達波のピーク候補が複数存在する場合であっても、正しい候補を絞りこむことができる。 
例えば、受信マイクiおよび受信マイクjの各々の相互相関波形において、それぞれ最大ピークから順に値が大きいN個ずつのピークを各々抽出し、(tki、tkj)に対して取りうるN2通りの組合せのうち、[数2]を満たさない組合せは間違いとして排除できる。 
今、受信マイクの相互間の距離dijを、測定に用いる超音波の波長の2分の1以下に設定すれば、[数2]を満たす(tki、tkj)の組合せを、直達波による正しい組合せのみに限定することができる。 
この理由は、相互相関演算波形に現れる複数のピークどうしは、図10に示すように、少なくとも超音波の1波長相当の時間以上に離れるため、受信マイクMi、Mjにおける直達波によるピークの時刻をそれぞれtki_T、tkj_T、また、直達波によるものではない偽ピークの時刻をそれぞれtki_F、tkj_Fと表すと、直達波による組合せ (tki_T、tkj_T) が[数2]を満たしている限りにおいて、いずれか一方が直達波によらない組合せである (tki_F、tkj_T)、(tki_T、tkj_F)はいずれも、原理上[数2]を満たさなくなるためである。 
dijを超音波の波長の2分の1以下に設定するには、例えば面実装タイプの小型マイクをプリント回路基板上に隣接して実装すること等により実現できる。 
またdijを超音波の波長の2分の1以下とする事ができない場合でも、[数2]を満たすピークの組合せが一つしかなければ、これを正しい組合せとして選別できる。 
なお、[数1]もしくは[数2]による判定は、受信マイクが2個の場合にも用いることができるが、この場合には(i, j)として取りうる組合せが
1通りしかないために[数2]による判定式も1つしか存在しないのに対し、図12に示したように3個の受信マイクが直線上に並ばないように配置されている場合には、取りうる(i, j)の組合せが3通りあるために[数2]による判定式も3つ存在し、これら3つの式のいずれをも満たすものが前述の複数の候補の中から最終候補として絞り込まれるため、受信マイクが2個の際と比べて、より偽ピークを排除する効率を高めることができる。 
今、受信マイクが3個あり、それぞれのマイク毎に最大ピークから順にN個のピークを抽出したするとピークの組合せはN3通りとなるが、各マイクからピーク抽出する際に、最大ピーク値と比較してピーク値が2分の1未満のものは抽出しない等の制約を設け、明らかに直達波とはみなせないものは抽出しない等の処理を施すことにより、[数2]による判定を行う前記組合せの数を予め減らし、処理負荷を軽減することが可能である。 
上述の全ての処理を統合し、取りうる(i, j)の全ての組合せにおいて[数2]を満たす直達波のピーク候補がなお複数存在する場合には、最終解の決定方法として、例えば、直達波のピークを唯一に特定できた前回や前々回の過去の測定からの予測位置に一番近いものを選ぶ、あるいは、残ったピーク候補の組合せの中で、同一の組合せ内のピーク値の合計値が最も高いものを選ぶ、という方法を取ることができる。 
以上により、送信部kからの変調音声信号の直達波が受信マイクM1、M2、M3それぞれに到達した時刻(tk1、tk2、tk3)が求められ、この組合せ自体、もしくは受信部4の基準位置として予め定めた受信マイクiにおける到達時刻tkiが、受信部4の到達タイミングY4として出力される。 
次に本発明における、送信部kの到来角を求める実施例について説明する。 
今、図12において、各々の受信マイク位置に関し、p2が前記受信部4の基準位置であり、p2を原点として直交する2軸であるx軸とy軸上にそれぞれp1、p3が配置されているものとする。 
図13に示すよう、三角形qk p2 p1において、辺qk p1、辺qk p2の長さをそれぞれrk1、rk2とし、辺qk p2と辺p2 p1がなす角、すなわち、p2におけるqkの方位とx軸がなす角を
Figure JPOXMLDOC01-appb-I000003
とすると、
Figure JPOXMLDOC01-appb-I000004
は余弦定理により、以下の式で求めることが出来る。  
Figure JPOXMLDOC01-appb-M000005
同様に、p2におけるqkの方位とy軸がなす角
Figure JPOXMLDOC01-appb-I000006
についても、以下の式により求められる。  
Figure JPOXMLDOC01-appb-M000007
1    送信部2   送信部3   送信部4   受信部5   位置算出部12  原音声信号生成部13  疑似乱数生成部14  変調部15  制御タイマ41  受信バッファメモリ42  受信バッファメモリ43  受信バッファメモリ44  参照信号生成部45  相関演算部46  相対速度予測部47  倍率変更部48  受信信号選択部M1  受信マイクM2  受信マイクM3  受信マイク 

Claims (5)

  1. 原音声信号に対して変調を施した変調音声信号を送信する送信部と、前記変調音声信号を空間内の複数受信点で受信する受信部と、前記変調音声信号から生成した参照信号と、前記複数受信点でのそれぞれの受信信号との相互相関演算結果に基づいて、前記送信部と前記受信部のいずれかの空間位置座標、もしくは前記送信部から前記受信部に至る距離を算出する空間位置算出装置において、前記複数受信点の中の任意の2点それぞれの受信信号と、前記参照信号との相互相関演算によって得られるそれぞれの相関波形の複数のピーク群の中から、算出した前記送信部から前記2点に至るそれぞれの距離と、前記2点間の距離を3辺とする三角形が形成される条件を満たすピークの組合せのみを抽出することにより、誤った距離に生じる偽ピークを排除することを特徴とする空間位置算出装置。
  2. 請求項1に記載の空間位置算出装置において、前記三角形が形成される条件として、前記送信部から前記2点に至るそれぞれの距離の差が、前記2点間の距離よりも小さくなる、という条件を用いることを特徴とする空間位置算出装置。
  3. 請求項1又は請求項2に記載の空間位置算出装置において、前記2点間の距離のうち少なくとも一つが、前記原音声信号の波長の2分の1以下となるように、前記複数受信点が配置されていることを特徴とする空間位置算出装置。
  4. 請求項1ないし請求項3のいずれか1項に記載の空間位置算出装置において、前記複数受信点は、同一直線上にない3点の組合せを少なくとも一つ以上含むことを特徴とする空間位置算出装置。
  5. 請求項4に記載の空間位置算出装置において、前記算出部で得られる、前記送信部と前記複数受信点それぞれとの距離に基づいて、前記送信部に対して前記受信部が相対的になす角度を求めることを特徴とする、空間位置算出装置。 
PCT/JP2022/044581 2021-12-06 2022-12-02 空間位置算出装置 WO2023106237A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-198038 2021-12-06
JP2021198038A JP2023083991A (ja) 2021-12-06 2021-12-06 空間位置算出装置

Publications (1)

Publication Number Publication Date
WO2023106237A1 true WO2023106237A1 (ja) 2023-06-15

Family

ID=86730465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044581 WO2023106237A1 (ja) 2021-12-06 2022-12-02 空間位置算出装置

Country Status (2)

Country Link
JP (1) JP2023083991A (ja)
WO (1) WO2023106237A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062348A (ja) * 2000-08-24 2002-02-28 Sony Corp 信号処理装置及び信号処理方法
JP2005351786A (ja) * 2004-06-11 2005-12-22 Oki Electric Ind Co Ltd パルス音の到来時間差推定方法及びその装置
JP2006317161A (ja) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd 追尾システム
WO2009084490A1 (ja) * 2007-12-28 2009-07-09 Nec Corporation 位置決定システム、送信装置、受信装置及び位置決定方法
CN112098929A (zh) * 2020-01-20 2020-12-18 苏州触达信息技术有限公司 智能设备间的相对角度确定方法、装置、***和智能设备
WO2021039606A1 (ja) * 2019-08-29 2021-03-04 石井 徹 空間位置算出装置
WO2021130818A1 (ja) * 2019-12-23 2021-07-01 三菱電機株式会社 検出装置、検出方法、及び、検出プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062348A (ja) * 2000-08-24 2002-02-28 Sony Corp 信号処理装置及び信号処理方法
JP2005351786A (ja) * 2004-06-11 2005-12-22 Oki Electric Ind Co Ltd パルス音の到来時間差推定方法及びその装置
JP2006317161A (ja) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd 追尾システム
WO2009084490A1 (ja) * 2007-12-28 2009-07-09 Nec Corporation 位置決定システム、送信装置、受信装置及び位置決定方法
WO2021039606A1 (ja) * 2019-08-29 2021-03-04 石井 徹 空間位置算出装置
WO2021130818A1 (ja) * 2019-12-23 2021-07-01 三菱電機株式会社 検出装置、検出方法、及び、検出プログラム
CN112098929A (zh) * 2020-01-20 2020-12-18 苏州触达信息技术有限公司 智能设备间的相对角度确定方法、装置、***和智能设备

Also Published As

Publication number Publication date
JP2023083991A (ja) 2023-06-16

Similar Documents

Publication Publication Date Title
EP1540365B1 (en) Underwater location apparatus
CN104007418B (zh) 一种基于时间同步的大基阵水下宽带扩频信标导航定位***及方法
CN104272132B (zh) 确定水下节点的位置
CN114072688A (zh) 用于多雷达共存的干扰抑制
EP2081050B1 (en) Multiple object localisation with a network of receivers
CN112470023B (zh) 通过使用基于波的信号定位至少一个对象的测位方法以及测位***
US9213099B1 (en) Sonar-based underwater target detection system
US8400875B2 (en) Active sonar system and active sonar method using a pulse sorting transform
JP4507245B2 (ja) 時間測定システム、物体検出システム、シフト測定方法
WO2021039606A1 (ja) 空間位置算出装置
JP4815840B2 (ja) 音波伝搬距離推定方法及び音波伝搬距離推定装置
JP5454475B2 (ja) 位置検出システム、送信装置、受信装置、位置検出方法、位置検出プログラム
JP6587564B2 (ja) 音響測定装置、音響測定方法、マルチビーム音響測定装置及び開口合成ソナー
JP6207817B2 (ja) 水中位置関係情報取得システム
US6028823A (en) Geodetic position estimation for underwater acoustic sensors
WO2023106237A1 (ja) 空間位置算出装置
JP5757303B2 (ja) 水中音響測位システム
Bonito Acoustic system for ground truth underwater positioning in DEEC's test tank
RU2308054C2 (ru) Гидроакустическая синхронная дальномерная навигационная система
KR101917503B1 (ko) 직교 코드가 포함된 수중음향신호를 이용한 다중 수중표적 거리 추정 방법 및 시스템
CN111337881B (zh) 一种利用螺旋桨噪声的水下目标探测方法
RU2739478C1 (ru) Способ обработки псевдошумового сигнала в гидролокации
Ghiotto et al. Mobile submarine target strength measurement
RU2289149C2 (ru) Гидроакустическая синхронная дальномерная навигационная система дальнего действия
RU2104486C1 (ru) Способ определения расстояния до объекта с подвижного наблюдателя

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904166

Country of ref document: EP

Kind code of ref document: A1