WO2023106172A1 - Puncture needle - Google Patents

Puncture needle Download PDF

Info

Publication number
WO2023106172A1
WO2023106172A1 PCT/JP2022/044105 JP2022044105W WO2023106172A1 WO 2023106172 A1 WO2023106172 A1 WO 2023106172A1 JP 2022044105 W JP2022044105 W JP 2022044105W WO 2023106172 A1 WO2023106172 A1 WO 2023106172A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
needle
puncture needle
needle body
puncture
Prior art date
Application number
PCT/JP2022/044105
Other languages
French (fr)
Japanese (ja)
Inventor
神原佳世
藤間大貴
杉木努
岡村遼
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2023106172A1 publication Critical patent/WO2023106172A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light

Definitions

  • the present invention relates to a puncture needle.
  • Japanese Patent No. 3171525 discloses a configuration in which, in a puncture needle for injecting a drug solution into a patient, a concave portion is formed on the inner peripheral surface of the outer needle or the outer peripheral surface of the inner needle for reflecting ultrasonic waves under echo. there is Such a puncture needle makes it easier to visually recognize the puncture needle in an ultrasound image.
  • the puncture needle described in Japanese Patent No. 3171525 mentioned above has a concave portion formed on the inner peripheral surface of the outer needle or the outer peripheral surface of the inner needle, so that ultrasonic waves and reflected waves are attenuated when passing through the outer needle. do. Therefore, it is not possible to efficiently improve the intensity of the reflected wave received by the ultrasonic probe.
  • An object of the present invention is to solve the above-mentioned problems.
  • One aspect of the present invention includes a hollow needle body that is pierced into tissue inside the skin of a human body, and a shaft portion that is inserted into the lumen of the needle body.
  • the puncture needle is formed with a concave portion for reflecting ultrasound waves below.
  • a concave portion is formed on the outer surface of the needle body of the puncture needle for reflecting ultrasonic waves under echo. Therefore, it is possible to efficiently improve the intensity of the reflected wave received by the ultrasonic probe as compared with the case where the concave portion is formed on the inner peripheral surface of the needle or the outer peripheral surface of the shaft portion. Therefore, the puncture needle can be easily visually recognized in the ultrasound image.
  • FIG. 1 is a side view of a puncture needle according to one embodiment of the present invention.
  • 2 is an exploded side view of the puncture needle of FIG. 1;
  • FIG. 3 is a partially enlarged longitudinal sectional view of the puncture needle of FIG. 1.
  • FIG. 4 is a first explanatory diagram of photoimmunotherapy.
  • FIG. 5 is a second explanatory diagram of photoimmunotherapy.
  • FIG. 6 is a third explanatory diagram of photoimmunotherapy.
  • FIG. 7A is a partially omitted side view of a needle body according to a first modified example.
  • FIG. 7B is a partially omitted side view of the needle body according to the second modification.
  • FIG. 8 is a partially enlarged vertical cross-sectional view of a puncture needle provided with a needle body according to a third modified example.
  • FIG. 9 is a partially enlarged vertical cross-sectional view of a puncture needle provided with a needle body according to a fourth modification.
  • FIG. 10 is a partially omitted side view of a needle body according to a fifth modification.
  • FIG. 11A is a partially omitted side view of a needle body according to a sixth modification.
  • FIG. 11B is a partially omitted side view of the needle body according to the seventh modification.
  • FIG. 12A is a side view of the first sample.
  • FIG. 12B is a side view of the second sample.
  • FIG. 13A is a side view of the third sample.
  • FIG. 13B is a side view of the fourth sample.
  • FIG. 14 is a table showing test results relating to groove width.
  • FIG. 15 is an explanatory diagram of the sliding test.
  • FIG. 16 is a table showing test results relating to groove depth.
  • FIG. 17 is a table showing test results relating to pitch.
  • FIG. 18 is a table showing test results relating to groove length.
  • the puncture needle 10 can puncture a lesion 200 (see FIG. 4) such as cancer cells located in the tissue inside the skin of the human body.
  • the puncture needle 10 is a medical device for inserting a light irradiation section 314 (see FIG. 6) for irradiating light for treatment into the lesion 200 .
  • the puncture needle 10 is used, for example, after administering a drug containing a substance that binds to a lesion site such as cancer cells and a photosensitizer to the patient 202 (see FIG. 4), which will be described later in detail, and the lesion bound to the drug.
  • the puncture needle 10 can also be used as an interstitial irradiation treatment device that punctures a lesion 200 (tumor) such as cervical cancer or prostate cancer and irradiates the lesion 200 with radiation.
  • the puncture needle 10 includes an obturator 12 and a needle member 14.
  • the obturator 12 has a unidirectionally extending shaft portion 16 and an obturator hub 18 .
  • Needle member 14 has a hollow needle body 20 and a needle hub 22 .
  • the shaft portion 16 is removably inserted into the lumen 24 of the needle body 20 (see FIG. 3).
  • the shaft portion 16 is rigid, and supports the needle body 20 when the puncture needle 10 punctures the lesion 200 .
  • the shaft portion 16 extends like a bar. In other words, the shaft portion 16 is formed in a cylindrical shape.
  • the shaft portion 16 has a substantially constant outer diameter over its entire length.
  • the shaft portion 16 has a flat tip surface 26 (see FIG. 3) extending in a direction perpendicular to the axial direction of the shaft portion 16 . Note that the tip surface 26 is not limited to this example, which is a flat surface extending in a direction orthogonal to the axial direction of the shaft portion 16.
  • the tip surface 26 is gently inclined to a surface orthogonal to the axial direction of the shaft portion 16. It may be a flat surface. Also, the distal end surface 26 may be a curved surface protruding in a hemispherical shape toward the distal direction (leftward in FIG. 3). Furthermore, the distal end surface 26 may be a curved surface projecting conically toward the distal direction.
  • the shaft portion 16 is made of, for example, a metal material. Examples of metal materials include stainless steel.
  • the shaft portion 16 may be made of a metal material other than stainless steel. Also, the shaft portion 16 may be made of a resin material, a ceramic material, or the like.
  • the cross section of the shaft portion 16 may be polygonal (triangular, quadrangular, or the like).
  • the shaft portion 16 may be formed hollow (tubular).
  • the obturator hub 18 is attached to the proximal end of the shaft portion 16 .
  • the obturator hub 18 has a size and shape that facilitates manual manipulation.
  • the obturator hub 18 is made of hard resin material.
  • a needle hub 22 is detachable from the obturator hub 18 .
  • the obturator hub 18 has a female thread (not shown) for connecting the needle hub 22 .
  • the needle member 14 is an integrally molded product made of a resin material in this embodiment.
  • the needle hub 22 may be joined to the proximal end of the needle hub 22 .
  • the needle body 20 is punctured into tissue inside the skin of the human body.
  • the needle body 20 is rigid.
  • the resin material forming the needle body 20 is preferably polyacetal (POM), for example.
  • POM polyacetal
  • the bending strength of POM is, for example, 89 MPa when tested according to ISO 178.
  • the light output from the light irradiation section 314 see FIG. 6) can be efficiently transmitted through the needle 20 .
  • the resin material forming the needle body 20 may be, for example, polycarbonate, polypropylene, or the like. Needle body 20 and needle hub 22 may be constructed of different materials.
  • the length (effective length La) of the puncture portion 28 of the needle 20 is preferably set to 10 mm or more and 300 mm or less, more preferably 30 mm or more and 100 mm or less.
  • the effective length La of the needle 20 is set to 50 mm, 70 mm, or 100 mm, for example.
  • the user selects the puncture needle 10 having the needle body 20 with an appropriate effective length La according to the depth and size of the lesion 200 .
  • the needle body 20 includes a tubular needle body 30 and a needle tip portion 32 .
  • the cross-sectional shape of the outer peripheral surface 34 of the needle body 30 is circular.
  • the cross-sectional shape of the inner peripheral surface 36 of the needle body 30 is circular.
  • the inner diameter of the needle body 30 is set to a size that allows the light irradiation section 314 (see FIG. 6) to be inserted after the shaft section 16 is removed from the needle body 30 .
  • the inner diameter of needle body 30 is slightly larger than the outer diameter of shaft portion 16 . In other words, a gap is formed between the inner peripheral surface 36 of the needle body 30 and the outer peripheral surface of the shaft portion 16 as an air vent when the shaft portion 16 is inserted into the lumen 24 of the needle body 20 .
  • the outer diameter Da of the needle body 30 is preferably set to 1.0 mm or more and 2.0 mm or less, and more preferably set to 1.3 mm or more and 1.7 mm or less. Specifically, it is set to 1.5 mm, for example.
  • the thickness T of the needle body 30 is preferably set to 50 ⁇ m to 350 ⁇ m, more preferably 100 ⁇ m to 300 ⁇ m, and even more preferably 150 ⁇ m to 250 ⁇ m. Specifically, the thickness T of the needle body 30 is set to 200 ⁇ m.
  • An inner diameter Dc (diameter of the lumen) of the needle body 30 is set to 0.5 mm or more in order to secure a space for inserting the light irradiation section 314 into the lumen 24 .
  • the needle tip portion 32 is located at the tip (one end) of the needle body 30 .
  • Needle tip 32 has an inner surface 38 that closes the tip of lumen 24 of needle body 20 .
  • the inner surface 38 extends in a direction perpendicular to the axial direction of the needle body 30 . In the initial state, the inner surface 38 is close to or in contact with the distal end surface 26 of the shaft portion 16 .
  • the needle tip portion 32 has a tapered surface 40 whose diameter decreases toward the tip.
  • the inner surface 38 extends in the direction orthogonal to the axial direction of the needle body 30 so as to correspond to the flat distal end surface 26 extending in the direction orthogonal to the axial direction of the shaft portion 16 . , but not limited to these. It is preferable that the tip surface 26 has a shape corresponding to the inner surface 38 .
  • the needle hub 22 is provided at the proximal end of the needle body 20. As shown in FIG. Needle hub 22 has a size and shape that facilitates manual manipulation.
  • the needle hub 22 is hollow. That is, needle hub 22 includes a lumen that communicates with lumen 24 of needle body 20 .
  • Needle hub 22 has an unillustrated external thread that engages the internal thread of obturator hub 18 . That is, needle hub 22 is removably threaded to obturator hub 18 .
  • the outer surface 42 of the needle 20 is formed with a recess 44 for reflecting ultrasonic waves under echo.
  • the concave portion 44 is formed on the outer surface 42 of the needle body 20 by, for example, laser machining, cutting, rolling, press working, or the like.
  • the recessed portion 44 is formed, for example, only in a portion of the puncture portion 28 of the needle body 20 (see FIG. 1). Specifically, the recess 44 is formed at the tip of the needle body 30 . A recess 44 is formed in the outer peripheral surface 34 of the needle body 30 . However, the recessed portion 44 may be formed over the entire length of the puncture portion 28 of the needle body 20 . Alternatively, the recess 44 may be formed only on the tapered surface 40 .
  • the recess 44 has grooves 46 .
  • the groove portion 46 is formed narrower in the depth direction of the groove portion 46 .
  • the cross section of the groove portion 46 is V-shaped.
  • the groove portion 46 includes a spiral groove 48 with a single turn.
  • a groove width W of the spiral groove 48 is preferably set to 10 ⁇ m or more and 50 ⁇ m or less. Specifically, the groove width W is set to 25 ⁇ m, for example.
  • the groove width W of the spiral groove 48 refers to the width of the portion of the spiral groove 48 that opens to the outer surface 42 of the needle body 20 .
  • the groove depth Db of the spiral groove 48 is preferably set to 25 ⁇ m or more and 37.5% or less of the thickness T of the needle body 30, preferably 25% of the thickness T of the needle body 30. more preferred.
  • the pitch P of the spiral grooves 48 is preferably set to 100 ⁇ m or more, more preferably 300 ⁇ m.
  • the length of the spiral groove 48 (groove length Lb) along the axial direction of the needle body 20 is preferably set to 1 mm or more and 100 mm or less. Set to 10 mm.
  • photoimmunotherapy treats, for example, cancer cells located in the tissue of the head and neck (inside the skin).
  • the puncture needle 10 may be used when treating cancer cells in parts other than the head and neck region. That is, the puncture needle 10 may be used as an interstitial radiation therapy device that irradiates radiation to cancer cells such as cervical cancer or prostate cancer while being punctured.
  • the puncture needle 10 may also be used for treatment of lesions other than cancer cells.
  • a drug containing a substance that binds to the lesion 200 such as cancer cells and a photosensitizer is administered to the patient 202 (see FIG. 4) by intravenous drip or the like.
  • the drug for example, cetuximab sarotarocan sodium is used.
  • a predetermined period of time for example, 20 hours
  • the drug binds to the lesion 200 (cancer cells) in the head and neck region.
  • the user punctures the lesion 200 with the puncture needle 10 while viewing the ultrasonic image displayed on the ultrasonic diagnostic imaging apparatus 300 . That is, the puncture needle 10 is punctured into the lesion 200 under echo.
  • the needle body 20 is rigid, it hardly bends. That is, the needle body 20 is pierced into the tissue inside the skin of the human body in a substantially straight state.
  • the puncture needle 10 is punctured into the lesion 200 while transmitting ultrasonic waves from the ultrasound probe 302 pressed against the skin toward the lesion 200 .
  • the ultrasonic waves are reflected by grooves 46 formed on the outer surface 42 of the needle 20 .
  • a reflected wave of the ultrasonic waves reflected by the groove 46 of the needle body 20 is received by the ultrasonic probe 302 .
  • the ultrasonic diagnostic imaging apparatus 300 creates an ultrasonic image based on the reflected waves received by the ultrasonic probe 302 and displays it on a display unit (not shown). Accordingly, the user can easily determine whether or not the puncture needle 10 is punctured at the target position of the lesion 200 by viewing the ultrasound image. Since the tip of the lumen 24 of the needle body 20 is closed by the needle distal end portion 32 (see FIG. 3), blood does not flow into the lumen 24 of the needle body 20 .
  • the outer diameter Da of the needle body 20 of the puncture needle 10 used for photoimmunotherapy is larger than the outer diameter of the needle body of the needle body of the puncture needle for drug administration, which is usually thought of as a puncture needle. That is, the puncture resistance of the puncture needle 10 is greater than that of the puncture needle for drug administration.
  • the recess 44 is formed in the outer surface 42 of the needle body 20 of the puncture needle 10 with relatively high puncture resistance
  • the configuration is such that the recess is formed in the outer surface of the needle body of the drug administration puncture needle with relatively low puncture resistance. As compared with , it is difficult to feel an increase in puncture resistance due to the concave portion 44 .
  • the puncture needle 10 used for photoimmunotherapy it is difficult to feel that the recess 44 greatly changes the puncture resistance. Furthermore, in the case of a puncture needle for drug administration, the pain felt by the patient 202 also increases due to the increased puncture resistance. However, since the photoimmunotherapy puncture procedure is performed under anesthesia, the patient 202 hardly feels pain even if the puncture resistance increases, which is another difference from the puncture needle for drug administration.
  • the user After puncturing the lesion 200 with the puncture needle 10, the user removes the obturator 12 from the needle member 14 as shown in FIG.
  • the laser system 310 has a laser body (not shown) that oscillates laser light, an optical fiber 312 connected to the laser body, and a columnar light irradiation part 314 provided at the tip of the optical fiber 312 .
  • the laser body has a semiconductor laser element.
  • the light irradiation section 314 emits the laser light guided from the optical fiber 312 radially outward of the light irradiation section 314 .
  • the peak wavelength of laser light emitted from the laser body is, for example, 690 nm. However, the wavelength (wavelength range and peak wavelength) of the laser light can be appropriately set depending on the lesion 200, the type of drug, and the like.
  • the light irradiation section 314 of the laser system 310 is inserted into the lumen 24 of the needle body 20 from the proximal direction of the needle hub 22 .
  • laser light is oscillated from the laser body.
  • the laser light is guided to the light irradiation section 314 via the optical fiber 312 and emitted from the light irradiation section 314 outward in the radial direction of the light irradiation section 314 .
  • the lesion 200 is irradiated with laser light.
  • the photosensitizer bound to the lesion 200 reacts with the laser beam, destroying the lesion 200 (cancer cells).
  • the present embodiment has the following effects.
  • the outer surface 42 of the needle body 20 of the puncture needle 10 is formed with a recess 44 for reflecting ultrasonic waves under echo. Therefore, the intensity of the reflected wave received by the ultrasonic probe 302 can be efficiently improved compared to the case where the concave portion 44 is formed in the inner peripheral surface 36 of the needle 20 or the outer peripheral surface of the shaft portion 16 . Therefore, the puncture needle 10 can be easily visually recognized in the ultrasound image.
  • a light irradiation section 314 that irradiates therapeutic light can be inserted into the lumen 24 of the needle body 20 with the shaft section 16 removed from the needle body 20 .
  • the puncture needle 10 can be used as a therapeutic device for irradiating cancer cells with light (including radiation) emitted from the light emitting unit 314 inserted into the lumen 24 of the needle body 20. can.
  • the inner diameter Dc of the needle body 20 is 0.5 mm or more.
  • the needle body 20 can be inserted into the lumen 24 of the needle body 20.
  • the degree of freedom of the outer diameter of the light irradiation section 314 is increased.
  • a lumen 24 of the needle body 20 is sealed at the tip of the needle body 20 .
  • the recessed portion 44 has a groove portion 46 .
  • the groove portion 46 is formed narrower in the depth direction.
  • the resistance (puncture resistance) when the needle body 20 is punctured into the patient 202 can be reduced compared to the case where the groove 46 is widened in the depth direction. Thereby, the patient 202 can be smoothly punctured with the needle body 20 . Moreover, the pain felt by the patient 202 when the needle body 20 is punctured can be suppressed.
  • the groove portion 46 has a spiral groove 48 with one turn.
  • ultrasonic waves can be efficiently reflected by the spiral grooves 48 .
  • the groove width W of the groove portion 46 is set to 10 ⁇ m or more and 50 ⁇ m or less.
  • the groove width W is 10 ⁇ m or more, the groove portion 46 can be detected by a general ultrasonic diagnostic imaging apparatus 300 . Moreover, since the groove width W is 50 ⁇ m or less, it is possible to prevent the puncture resistance of the needle body 20 from becoming excessively large.
  • the groove depth Db of the groove portion 46 is set to 25 ⁇ m or more and 37.5% or less of the thickness T of the needle body 30 .
  • the groove 46 can efficiently reflect the ultrasonic waves to the probe side. Further, since the groove depth Db is 37.5% or less of the thickness T of the needle body 30, it is possible to prevent the strength of the needle body 20 from being excessively lowered.
  • the pitch P of the grooves 46 is set to 100 ⁇ m or more.
  • the groove 46 can efficiently reflect ultrasonic waves to the probe side.
  • a groove length Lb of the groove portion 46 along the axial direction of the needle body 20 is set to 1 mm or more.
  • a needle body 50 according to a first modified example will be described.
  • the same reference numerals are given to the same configurations as those of the needle body 20 described above, and detailed description thereof will be omitted.
  • the same effects as those of the needle body 20 described above are obtained.
  • the recess 54 formed in the outer surface 52 of the needle body 50 includes grooves 56 .
  • the groove portion 56 has a spiral groove 58 with multiple windings.
  • the number of spiral grooves 58 is preferably 2 or more and 50 or less, and more preferably 11 or more and 44 or less.
  • the groove width, groove depth, pitch, and groove length of the groove portion 56 (spiral groove 58) are set in the same manner as the groove portion 46 (spiral groove 48) described above.
  • the outer diameter and effective length of the needle body 50 are set in the same manner as the outer diameter Da and effective length La of the needle body 20 described above. The same applies to needle bodies 60, 80, 90, 100, 110, and 130, which will be described later.
  • the groove portion 56 has a spiral groove 58 with multiple windings.
  • ultrasonic waves can be efficiently reflected by the spiral grooves 58.
  • recess 64 formed in outer surface 62 of needle 60 includes groove 66 .
  • the groove portion 66 has a plurality of groove rows 68 .
  • the plurality of groove rows 68 are arranged at intervals in the circumferential direction of the needle body 60 .
  • the groove portion 66 includes four groove rows 68 .
  • the plurality of groove rows 68 are positioned with a 90° phase shift in the circumferential direction of the needle body 60 .
  • the number of groove rows 68 may be one. Further, two, three, or five or more groove rows 68 may be arranged in the circumferential direction of the needle body 60 on the outer surface 62 of the needle body 60 .
  • Each groove row 68 includes a plurality of short grooves 70.
  • the plurality of short grooves 70 are arranged at intervals in the axial direction of the needle body 60 .
  • the length of each short groove 70 along the circumferential direction of the needle body 60 is set according to the balance between the number of groove rows 68 and the angle ⁇ to be formed, which will be described later. is.
  • Each short groove 70 includes a first slanted groove 72 and a second slanted groove 74 .
  • the first inclined groove 72 is inclined in the first circumferential direction along the circumferential direction of the needle body 60 toward the tip of the needle body 60 .
  • the second inclined groove 74 is inclined toward the tip of the needle body 60 in the second circumferential direction opposite to the first circumferential direction.
  • the tip of the first slanted groove 72 and the tip of the second slanted groove 74 are connected to each other to form a V-shape in this modified example, but they do not have to be connected.
  • the angle ⁇ between the first inclined groove 72 and the second inclined groove 74 is set to an acute angle. However, the formed angle ⁇ may be set to a right angle or an obtuse angle.
  • the total length of the first inclined groove 72 is the same as the total length of the second inclined groove 74 . However, the total length of the first inclined grooves 72 may be shorter or longer than the total length of the second inclined grooves 74 .
  • each short groove 70 is set in the same manner as the groove width W of the spiral groove 48 described above.
  • the groove depth of each short groove 70 is set similarly to the groove depth Db of the spiral groove 48 described above.
  • the interval (pitch) between adjacent short grooves 70 in each groove row 68 is set in the same manner as the pitch P of the spiral grooves 48 described above.
  • the groove length along the axial direction of the needle body 60 in the plurality of groove rows 68 is set similarly to the groove length Lb of the spiral groove 48 described above.
  • the groove portion 66 has a groove row 68 including a plurality of short grooves 70 spaced apart in the axial direction of the needle body 60 .
  • Each of the plurality of short grooves 70 has a length along the circumferential direction of the needle body 60 that is 1/4 or less of the circumferential length of the needle body 60 .
  • ultrasonic waves can be efficiently reflected by the plurality of short grooves 70 .
  • a plurality of groove rows 68 are provided at intervals in the circumferential direction of the needle body 60 .
  • Each of the plurality of short grooves 70 includes a first inclined groove 72 and a second inclined groove 74.
  • the first inclined groove 72 is inclined in the first circumferential direction along the circumferential direction of the needle body 60 toward the tip of the needle body 60 .
  • the second inclined groove 74 is inclined toward the tip of the needle body 60 in the second circumferential direction opposite to the first circumferential direction.
  • the tip of the first inclined groove 72 and the tip of the second inclined groove 74 are connected to each other.
  • the puncture resistance can be made relatively small, the lesion 200 can be smoothly punctured by the needle body 60 .
  • the needle distal end portion 82 of the needle body 80 has an inner surface 84 tapered toward the distal end. That is, at the needle distal end portion 82, the cross-sectional area of the lumen 24 of the needle body 80 decreases toward the distal end.
  • the outer surface 86 of the needle body 80 is formed with the recess 44 described above. However, the recesses 54 and 64 described above may be formed on the outer surface 86 of the needle body 80 .
  • a needle body 90 according to a fourth modification will be described. As shown in FIG. 9, a tip opening 94 is formed in the needle tip portion 92 of the needle body 90 . That is, the lumen 24 of the needle body 90 communicates with the tip opening 94 .
  • the outer surface 96 of the needle body 90 is formed with the recess 44 described above. However, the recesses 54 and 64 described above may be formed on the outer surface 96 of the needle body 90 .
  • recess 104 formed in outer surface 102 of needle 100 includes groove 106 .
  • the groove portion 106 has a plurality of annular grooves 108 extending around the circumference of the needle body 100 .
  • Each annular groove 108 extends circularly.
  • the plurality of annular grooves 108 are spaced apart in the axial direction of the needle body 100 .
  • the groove width of the annular groove 108 is set similarly to the groove width W of the spiral groove 48 described above.
  • the groove depth of the annular groove 108 is set similarly to the groove depth Db of the spiral groove 48 described above.
  • the interval (pitch) between the annular grooves 108 adjacent to each other is set in the same manner as the pitch P of the spiral grooves 48 described above.
  • the groove length of the groove portion 106 which is the length from the annular groove 108 located at the distal end to the annular groove 108 located at the proximal end, is set in the same manner as the groove length Lb of the spiral groove 48 described above.
  • the groove portion 106 has an annular groove 108 that extends around the needle body 100 in the circumferential direction.
  • a plurality of annular grooves 108 are provided at intervals in the axial direction of the needle body 100 .
  • ultrasonic waves can be more efficiently reflected by the plurality of annular grooves 108 .
  • grooves 118 include a plurality of grooves 66 and a plurality of grooves 46 . In the example of FIG. 11A, there are two grooves 66 and two grooves 46 .
  • the grooves 66 and the grooves 46 are alternately arranged at intervals in the axial direction of the needle body 110 .
  • the groove length of the groove portion 118 along the axial direction of the needle body 110 is set similarly to the groove length Lb of the spiral groove 48 described above.
  • the groove length of the groove portion 118 is, for example, 10 mm.
  • the groove 46 is provided, for example, at a position shifted by 5 mm in the proximal direction from the tip of the groove 118 and at a position shifted by 10 mm in the proximal direction from the tip of the groove 118 .
  • the number, positions and lengths of the grooves 66 and 46 can be set as appropriate.
  • the groove portion 118 has a plurality of patterns of groove portions (the groove portions 66 and the groove portions 46). According to such a configuration, since the reflection intensity of ultrasonic waves in the groove portion 66 and the reflection intensity of ultrasonic waves in the groove portion 46 are different from each other, compared to the case where a single pattern of groove portions is provided, the needle body can be detected by an ultrasonic image. The puncture position and puncture length of 110 can be easily grasped.
  • the groove portion 118 is not limited to the combination of the groove portion 66 and the groove portion 46 described above.
  • the groove 118 may be formed by combining a plurality of the grooves 46, 56, 66, 106 described above.
  • a needle body 130 according to a seventh modified example As shown in FIG. 11B, recess 136 formed in outer surface 132 of needle 130 has groove 138 .
  • Groove 138 includes groove 106 and groove 56 .
  • the groove portion 106 is located at the needle tip portion 32 of the needle body 130 .
  • the groove portion 56 is located in the needle body 30 of the needle body 130 .
  • the groove length of the groove portion 56 is, for example, 10 mm.
  • the needle distal end portion 32 of the needle body 130 is provided with the groove portion 106
  • the needle main body 30 of the needle body 130 is provided with the groove portion 56 having a shape different from that of the groove portion 106 .
  • the appearance of the needle tip portion 32 of the needle body 130 differs from the appearance of the needle main body 30 of the needle body 130 in the ultrasonic image, so the position of the needle tip portion 32 of the needle body 130 can be easily grasped. can.
  • the groove portion 138 is not limited to the combination of the groove portion 106 and the groove portion 56 described above. At least one of the grooves 46 , 56 , 66 may be provided in the needle tip portion 32 of the needle body 130 instead of the groove 106 . At least one of the grooves 46 , 66 , and 106 may be provided in the needle body 30 of the needle body 130 instead of the groove 56 . Further, the needle body 30 of the needle body 130 may be provided with the groove portion 118 instead of the groove portion 56 .
  • sample As shown in FIGS. 12A-13B, a first sample 140, a second sample 142, a third sample 144 and a fourth sample 146 were prepared in this test.
  • the first sample 140 is used for the sliding tests of Examples 1-5 and the strength tests of Examples 6-9, as will be described later.
  • the second sample 142 is used for the sliding test in Comparative Example 1.
  • the third sample 144 is used for capturing ultrasound images of Examples 1, 2, 6-8, and 10-18.
  • a fourth sample 146 is used for capturing an ultrasound image of Comparative Example 1.
  • the first sample 140 has a resin tube 148 and an inner needle 150 inserted through the lumen of the resin tube 148.
  • the distal end of the resin tube 148 is open.
  • the resin tube 148 is made of POM.
  • the dimensions of the resin tube 148 are the same as the dimensions of the needle body 30 described above.
  • the spiral groove 48 described above is formed on the outer peripheral surface of the resin tube 148 .
  • the inner needle 150 is a so-called bevel needle of 21G (gauge) and has a sharp tip.
  • the inner needle 150 protrudes from the tip opening of the resin tube 148 .
  • the second sample 142 is constructed identically to the first sample 140 except that it does not have the spiral grooves 48 .
  • the first sample 140 has a shape different from that of the puncture needle 10 described above.
  • first sample 140 is a substitute for puncture needle 10 .
  • the object of evaluation is the sliding resistance of the portion of the needle body 30 of the puncture needle 10 where the spiral groove 48 is located. Therefore, if the material and dimensions of the resin tube 148 are the same as the material and dimensions of the needle body 30 of the puncture needle 10, even if the other shapes and the like are different from each other, they do not affect the measurement result of the sliding resistance. Therefore, in the sliding test, even when the first sample 140 is used, the same result as when the puncture needle 10 is used is obtained.
  • the strength of the portion where the spiral groove 48 formed in the needle body 30 of the puncture needle 10 is located is evaluated. Therefore, if the material and dimensions of the resin tube 148 are the same as the material and dimensions of the needle body 30 of the puncture needle 10, even if the other shapes and the like are different from each other, the strength measurement results are not affected. Therefore, in the strength test, even if the first sample 140 is used, the same results as when the puncture needle 10 is used can be obtained.
  • the third sample 144 has a resin tube 148, the shaft portion 16 described above, and a sealing portion 152.
  • the shaft portion 16 is inserted into the lumen of the resin tube 148 .
  • the sealing portion 152 seals the tip opening of the resin tube 148 . This can prevent water from entering the lumen of the resin tube 148 . Therefore, the appearance of the ultrasonic image does not change due to moisture that has entered the resin tube 148 .
  • the sealing portion 152 is a photocurable adhesive.
  • the sealing portion 152 is made of a material different from the material of the resin tube 148 .
  • the fourth sample 146 is constructed identically to the third sample 144 except that it does not have the spiral grooves 48 .
  • the third sample 144 has a shape different from that of the puncture needle 10 described above.
  • third sample 144 is a substitute for puncture needle 10 .
  • the visibility (average luminance) of the ultrasonic image of the portion of the needle body 30 of the puncture needle 10 where the spiral groove 48 is located is evaluated. Therefore, if the material and dimensions of the resin tube 148 are the same as the material and dimensions of the needle body 30 of the puncture needle 10, the evaluation of the ultrasonic image will not be affected even if the other shapes and the like are different from each other. Therefore, in the evaluation of the ultrasonic image, even if the third sample 144 is used, the same result as when the puncture needle 10 is used can be obtained.
  • the groove width W of the first sample 140 and the third sample 144 according to Example 1 is 10 ⁇ m.
  • the groove width W of the first sample 140 and the third sample 144 according to Example 2 is 25 ⁇ m.
  • the groove width W of the first sample 140 and the third sample 144 according to Example 3 is 40 ⁇ m.
  • the groove width W of the first sample 140 and the third sample 144 according to Example 4 is 50 ⁇ m.
  • the groove width W of the first sample 140 and the third sample 144 according to Example 5 is 55 ⁇ m.
  • the groove depth Db was 50 ⁇ m
  • the pitch P was 300 ⁇ m
  • the groove length Lb was 10 mm.
  • the size of an object that can be detected by the ultrasonic diagnostic imaging apparatus 300 is about 1/10 of the wavelength of the ultrasonic waves emitted from the ultrasonic diagnostic imaging apparatus 300.
  • the lower limit of the wavelength of ultrasonic waves emitted from a general ultrasonic diagnostic imaging apparatus 300 is 100 ⁇ m (15 MHz). Therefore, the lower limit of the groove width W is set to 10 ⁇ m, which is 1/10 of 100 ⁇ m.
  • ultrasonic images were taken when the gel phantom was punctured with the third sample 144 according to Examples 1 and 2, which had a sliding evaluation of A, and the fourth sample 146 according to Comparative Example 1.
  • a linear probe was used as the type of ultrasonic probe 302 .
  • the center frequency of ultrasound was set to 11 MHz.
  • the average luminance ratio (average luminance ratio) of the portion of the spiral groove 48 where the slide evaluation was A based on the average luminance of the puncture needle in the ultrasonic image of Comparative Example 1 was calculated.
  • the groove width W is preferably set to 10 ⁇ m or more and 50 ⁇ m or less, and more preferably set to 10 ⁇ m or more and 25 ⁇ m or less.
  • the groove depth Db of the first sample 140 and the third sample 144 according to Example 6 is 25 ⁇ m (13% of the thickness T of the resin tube 148).
  • the groove depth Db of the first sample 140 and the third sample 144 according to Example 7 is 50 ⁇ m (25% of the thickness T of the resin tube 148).
  • the groove depth Db of the first sample 140 and the third sample 144 according to Example 8 is 75 ⁇ m (37.5% of the thickness T of the resin tube 148).
  • the groove depth Db of the first sample 140 and the third sample 144 according to Example 9 is 80 ⁇ m (40% of the thickness T of the resin tube 148).
  • the groove width W is 25 ⁇ m
  • the pitch P is 300 ⁇ m
  • the groove length Lb is 10 mm
  • the thickness T of the needle body 30 is 200 ⁇ m.
  • the lower limit of the groove depth Db is set to 25 ⁇ m, which is 1/4 of the lower limit (100 ⁇ m) of the wavelength of ultrasonic waves emitted from a general ultrasonic diagnostic imaging apparatus 300 .
  • the groove depth Db is 37.5% or less of the thickness T of the resin tube 148, the decrease in the strength of the resin tube 148 can be suppressed.
  • the groove depth Db is preferably set to 25 ⁇ m or more from the viewpoint of scattering of reflected waves. Further, it was found that the groove depth Db is preferably set to 37.5% or less of the thickness T of the resin tube 148 from the viewpoint of strength reduction. Further, it was found that the groove depth Db is more preferably set to 50 ⁇ m from the viewpoint of visibility of the third sample 144 in the ultrasonic image.
  • the pitch P of the spiral grooves 48 of the third sample 144 according to Example 10 is 100 ⁇ m.
  • the pitch P of the spiral grooves 48 of the third sample 144 according to Example 11 is 200 ⁇ m.
  • the pitch P of the spiral grooves 48 of the third sample 144 according to Example 12 is 300 ⁇ m.
  • the pitch P of the spiral grooves 48 of the third sample 144 according to Example 13 is 500 ⁇ m.
  • the pitch P of the spiral grooves 48 of the third sample 144 according to Example 14 is 1000 ⁇ m.
  • the groove width W is 25 ⁇ m
  • the groove depth Db is 50 ⁇ m
  • the groove length Lb is 10 mm.
  • the lower limit of the pitch P of the spiral grooves 48 is set at 100 ⁇ m, which is the lower limit of the wavelength of ultrasonic waves emitted from a general ultrasonic diagnostic imaging apparatus 300 .
  • the third sample 144 was easier to visually recognize than in Comparative Example 1 described above.
  • the average brightness ratio of the portion of the spiral groove 48 was 2.1.
  • the average brightness ratio of the portion of the spiral groove 48 was 2.4.
  • the average brightness ratio of the spiral grooves 48 was 2.6.
  • the average brightness ratio of the spiral grooves 48 was 1.7.
  • the average brightness ratio of the spiral grooves 48 was 1.6. That is, among Examples 10 to 14, Example 12 had the highest average luminance value.
  • the lower limit of the pitch of the spiral grooves 48 is preferably set to 100 ⁇ m, and more preferably set to 300 ⁇ m.
  • the groove length Lb of the third sample 144 of Example 15 is 1 mm.
  • the groove length Lb of the third sample 144 of Example 16 is 3 mm.
  • the groove length Lb of the third sample 144 of Example 17 is 5 mm.
  • the groove length Lb of the third sample 144 of Example 18 is 10 mm.
  • the groove width W is 25 ⁇ m
  • the groove depth Db is 50 ⁇ m
  • the pitch P is 300 ⁇ m.
  • the third sample 144 was easier to visually recognize than in Comparative Example 1 described above.
  • the maximum length of the puncture portion 28 of the needle body 20 is 100 mm. Therefore, the groove length Lb is preferably set to 1 mm or more and 100 mm or less.
  • the recess formed on the outer surface of the needle body may be formed by dimple processing or blast processing.
  • This embodiment discloses the following contents.
  • the above embodiment includes a hollow needle body (20, 50, 60, 80, 90, 100, 110, 130) that is pierced into the tissue inside the skin of the human body, and a needle body that is inserted into the lumen (24) of the needle body. and a shaft portion (16) which is formed on the outer surface (42, 52, 62, 86, 96, 102, 112, 132) of the needle (42, 52, 62, 86, 96, 102, 112, 132) for reflecting ultrasonic waves under echo (44 , 54, 64, 104, 116, 136).
  • a light irradiation section (314) that emits therapeutic light may be inserted into the lumen of the needle body with the shaft section removed from the needle body.
  • the inner diameter of the needle body may be 0.5 mm or more.
  • the puncture needle may be used for photoimmunotherapy.
  • the lumen of the needle body may be sealed at the distal end of the needle body.
  • the recess may have grooves (46, 56, 66, 106, 118, 138).
  • the groove may be formed narrower in the depth direction of the groove.
  • the groove portion may have a single-wound or multi-wound spiral groove (48, 58).
  • the groove portion has a groove row (68) including a plurality of short grooves (70) spaced apart in the axial direction of the needle body, each of the plurality of short grooves , the length along the circumferential direction of the needle body may be 1/4 or less of the circumferential length of the needle body.
  • a plurality of groove rows may be provided at intervals in the circumferential direction of the needle body.
  • each of the plurality of short grooves includes a first inclined groove (72) inclined in a first circumferential direction along the circumferential direction of the needle body toward the distal end of the needle body; a second slanted groove (74) slanted in a second circumferential direction opposite to the first circumferential direction toward the tip of the body, wherein the tip of the first slanted groove and the second slanted groove The tips may be connected to each other.
  • the groove portion may have an annular groove (108) extending around the circumference of the needle body.
  • a plurality of the annular grooves may be provided at intervals in the axial direction of the needle body.
  • the groove width (W) of the groove portion may be set to 10 ⁇ m or more and 50 ⁇ m or less.
  • the needle body has a needle body (30) that encircles the inner lumen of the needle body, and the groove depth (Db) of the groove is 25 ⁇ m or more and the thickness of the needle body ( T) may be set to 37.5% or less.
  • the pitch (P) of the grooves may be set to 100 ⁇ m or more.
  • the groove length (Lb) of the groove along the axial direction of the needle body may be set to 1 mm or more.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

A puncture needle (10) according to the present invention comprises a hollow needle body (20) that is to puncture tissue on the inside of the skin of the human body, and a shaft part (16) inserted into a lumen (24) of the needle body (20). Recesses (44) that reflect ultrasonic waves during echo guidance are formed on the outer surface (42) of the needle body (20). The lumen of the needle body (20) is sealed at the tip of the needle body (20). The recesses (44) each have a groove part (46), the groove parts (46) being formed so as to narrow on progression along the depth direction of the groove parts (46).

Description

穿刺針puncture needle
 本発明は、穿刺針に関する。 The present invention relates to a puncture needle.
 特許第3171525号公報には、薬液を患者に注入する穿刺針において、外針の内周面又は内針の外周面にエコー下において超音波を反射させるための凹部を形成する構成が開示されている。このような穿刺針によれば、超音波画像において穿刺針を視認し易くなる。 Japanese Patent No. 3171525 discloses a configuration in which, in a puncture needle for injecting a drug solution into a patient, a concave portion is formed on the inner peripheral surface of the outer needle or the outer peripheral surface of the inner needle for reflecting ultrasonic waves under echo. there is Such a puncture needle makes it easier to visually recognize the puncture needle in an ultrasound image.
 上述した特許第3171525号公報に記載の穿刺針は、外針の内周面又は内針の外周面に凹部を形成しているため、超音波及び反射波は、外針を透過する際に減衰する。そのため、超音波プローブによって受信される反射波の強度を効率よく向上させることができない。 The puncture needle described in Japanese Patent No. 3171525 mentioned above has a concave portion formed on the inner peripheral surface of the outer needle or the outer peripheral surface of the inner needle, so that ultrasonic waves and reflected waves are attenuated when passing through the outer needle. do. Therefore, it is not possible to efficiently improve the intensity of the reflected wave received by the ultrasonic probe.
 本発明は、上述した課題を解決することを目的とする。 An object of the present invention is to solve the above-mentioned problems.
 本発明の一態様は、人体の皮膚の内側の組織に穿刺される中空の針体と、前記針体の内腔に挿入されるシャフト部と、を備え、前記針体の外面には、エコー下において超音波を反射させるための凹部が形成されている、穿刺針である。 One aspect of the present invention includes a hollow needle body that is pierced into tissue inside the skin of a human body, and a shaft portion that is inserted into the lumen of the needle body. The puncture needle is formed with a concave portion for reflecting ultrasound waves below.
 本発明によれば、穿刺針の針体の外面にエコー下において超音波を反射させるための凹部を形成している。そのため、針体の内周面又はシャフト部の外周面に凹部を形成する場合と比較して、超音波プローブによって受信される反射波の強度を効率よく向上させることができる。従って、超音波画像において穿刺針を視認し易くできる。 According to the present invention, a concave portion is formed on the outer surface of the needle body of the puncture needle for reflecting ultrasonic waves under echo. Therefore, it is possible to efficiently improve the intensity of the reflected wave received by the ultrasonic probe as compared with the case where the concave portion is formed on the inner peripheral surface of the needle or the outer peripheral surface of the shaft portion. Therefore, the puncture needle can be easily visually recognized in the ultrasound image.
図1は、本発明の一実施形態に係る穿刺針の側面図である。FIG. 1 is a side view of a puncture needle according to one embodiment of the present invention. 図2は、図1の穿刺針の分解側面図である。2 is an exploded side view of the puncture needle of FIG. 1; FIG. 図3は、図1の穿刺針の一部拡大縦断面図である。3 is a partially enlarged longitudinal sectional view of the puncture needle of FIG. 1. FIG. 図4は、光免疫療法の第1説明図である。FIG. 4 is a first explanatory diagram of photoimmunotherapy. 図5は、光免疫療法の第2説明図である。FIG. 5 is a second explanatory diagram of photoimmunotherapy. 図6は、光免疫療法の第3説明図である。FIG. 6 is a third explanatory diagram of photoimmunotherapy. 図7Aは、第1変形例に係る針体の一部省略側面図である。図7Bは、第2変形例に係る針体の一部省略側面図である。FIG. 7A is a partially omitted side view of a needle body according to a first modified example. FIG. 7B is a partially omitted side view of the needle body according to the second modification. 図8は、第3変形例に係る針体を備えた穿刺針の一部拡大縦断面図である。FIG. 8 is a partially enlarged vertical cross-sectional view of a puncture needle provided with a needle body according to a third modified example. 図9は、第4変形例に係る針体を備えた穿刺針の一部拡大縦断面図である。FIG. 9 is a partially enlarged vertical cross-sectional view of a puncture needle provided with a needle body according to a fourth modification. 図10は、第5変形例に係る針体の一部省略側面図である。FIG. 10 is a partially omitted side view of a needle body according to a fifth modification. 図11Aは、第6変形例に係る針体の一部省略側面図である。図11Bは、第7変形例に係る針体の一部省略側面図である。FIG. 11A is a partially omitted side view of a needle body according to a sixth modification. FIG. 11B is a partially omitted side view of the needle body according to the seventh modification. 図12Aは、第1サンプルの側面図である。図12Bは、第2サンプルの側面図である。FIG. 12A is a side view of the first sample. FIG. 12B is a side view of the second sample. 図13Aは、第3サンプルの側面図である。図13Bは、第4サンプルの側面図である。FIG. 13A is a side view of the third sample. FIG. 13B is a side view of the fourth sample. 図14は、溝幅に関する試験結果を示す表である。FIG. 14 is a table showing test results relating to groove width. 図15は、摺動試験の説明図である。FIG. 15 is an explanatory diagram of the sliding test. 図16は、溝深さに関する試験結果を示す表である。FIG. 16 is a table showing test results relating to groove depth. 図17は、ピッチに関する試験結果を示す表である。FIG. 17 is a table showing test results relating to pitch. 図18は、溝長さに関する試験結果を示す表である。FIG. 18 is a table showing test results relating to groove length.
 図1及び図2に示すように、本発明の一実施形態に係る穿刺針10は、人体の皮膚の内側の組織内に位置するがん細胞等の病変部200(図4参照)に穿刺可能である。穿刺針10は、治療用の光を照射するための光照射部314(図6参照)を病変部200内に挿入させるための医療機器である。穿刺針10は、例えば、追って詳述する、がん細胞等の病変部に結合する物質と光感受性物質とを含む薬剤を患者202(図4参照)に投与した後で当該薬剤が結合した病変部200に光を照射することにより病変部200を治療する光免疫療法の治療用デバイスとして用いられる。また、穿刺針10は、子宮頸がん又は前立腺がん等の病変部200(腫瘍部)に穿刺して当該病変部200に放射線を照射する組織内照射治療用デバイスとして用いることもできる。 As shown in FIGS. 1 and 2, the puncture needle 10 according to one embodiment of the present invention can puncture a lesion 200 (see FIG. 4) such as cancer cells located in the tissue inside the skin of the human body. is. The puncture needle 10 is a medical device for inserting a light irradiation section 314 (see FIG. 6) for irradiating light for treatment into the lesion 200 . The puncture needle 10 is used, for example, after administering a drug containing a substance that binds to a lesion site such as cancer cells and a photosensitizer to the patient 202 (see FIG. 4), which will be described later in detail, and the lesion bound to the drug. It is used as a treatment device for photoimmunotherapy that treats a lesion 200 by irradiating the part 200 with light. The puncture needle 10 can also be used as an interstitial irradiation treatment device that punctures a lesion 200 (tumor) such as cervical cancer or prostate cancer and irradiates the lesion 200 with radiation.
 穿刺針10は、オブチュレーター12と針部材14とを備える。図2において、オブチュレーター12は、一方向に延在したシャフト部16と、オブチュレーターハブ18とを有する。針部材14は、中空の針体20と、針ハブ22とを有する。 The puncture needle 10 includes an obturator 12 and a needle member 14. In FIG. 2, the obturator 12 has a unidirectionally extending shaft portion 16 and an obturator hub 18 . Needle member 14 has a hollow needle body 20 and a needle hub 22 .
 使用前の状態(初期状態)において、シャフト部16は、針体20の内腔24に取り外し可能に挿入されている(図3参照)。シャフト部16は硬質であり、穿刺針10を病変部200に穿刺する際に針体20を支持する。シャフト部16は、棒状に延在している。換言すれば、シャフト部16は、円柱状に形成されている。シャフト部16は、全長に渡って略一定の外径を有する。シャフト部16は、シャフト部16の軸線方向と直交する方向に延在した平坦な先端面26(図3参照)を有する。なお、先端面26は、シャフト部16の軸線方向と直交する方向に延在した平坦面であるこの例に限定されず、例えば、シャフト部16の軸線方向と直交する面に対して緩やかに傾斜した平坦面であってもよい。また、先端面26は、先端方向(図3の左方向)に向かって半球状に突出した湾曲面であってもよい。さらに、先端面26は、先端方向に向かって円錐状に突出した湾曲面であってもよい。 In the state before use (initial state), the shaft portion 16 is removably inserted into the lumen 24 of the needle body 20 (see FIG. 3). The shaft portion 16 is rigid, and supports the needle body 20 when the puncture needle 10 punctures the lesion 200 . The shaft portion 16 extends like a bar. In other words, the shaft portion 16 is formed in a cylindrical shape. The shaft portion 16 has a substantially constant outer diameter over its entire length. The shaft portion 16 has a flat tip surface 26 (see FIG. 3) extending in a direction perpendicular to the axial direction of the shaft portion 16 . Note that the tip surface 26 is not limited to this example, which is a flat surface extending in a direction orthogonal to the axial direction of the shaft portion 16. For example, the tip surface 26 is gently inclined to a surface orthogonal to the axial direction of the shaft portion 16. It may be a flat surface. Also, the distal end surface 26 may be a curved surface protruding in a hemispherical shape toward the distal direction (leftward in FIG. 3). Furthermore, the distal end surface 26 may be a curved surface projecting conically toward the distal direction.
 シャフト部16は、例えば、金属材料によって構成されている。金属材料としては、例えば、ステンレス鋼が挙げられる。シャフト部16は、ステンレス鋼以外の金属材料で構成されてもよい。また、シャフト部16は、樹脂材料又はセラミックス材料等で構成されてもよい。シャフト部16の横断面は、多角形状(三角形状又は四角形状等)であってもよい。シャフト部16は、中空状(管状)に形成されてもよい。 The shaft portion 16 is made of, for example, a metal material. Examples of metal materials include stainless steel. The shaft portion 16 may be made of a metal material other than stainless steel. Also, the shaft portion 16 may be made of a resin material, a ceramic material, or the like. The cross section of the shaft portion 16 may be polygonal (triangular, quadrangular, or the like). The shaft portion 16 may be formed hollow (tubular).
 オブチュレーターハブ18は、シャフト部16の基端部に取り付けられている。オブチュレーターハブ18は、人手によって操作し易い大きさ及び形状を有する。オブチュレーターハブ18は、硬質な樹脂材料によって構成されている。オブチュレーターハブ18には、針ハブ22が着脱可能である。オブチュレーターハブ18は、針ハブ22を接続するための図示しない雌ねじ部を有する。 The obturator hub 18 is attached to the proximal end of the shaft portion 16 . The obturator hub 18 has a size and shape that facilitates manual manipulation. The obturator hub 18 is made of hard resin material. A needle hub 22 is detachable from the obturator hub 18 . The obturator hub 18 has a female thread (not shown) for connecting the needle hub 22 .
 図2に示すように、針部材14は、本実施形態では樹脂材料による一体成形品であるが、針部材14は、針体20と針ハブ22とを別々に構成した後で、針体20の基端部に針ハブ22を接合することにより構成してもよい。針体20は、人体の皮膚の内側の組織に穿刺される。針体20は、硬質である。針体20を構成する樹脂材料は、例えば、ポリアセタール(POM)が好ましい。具体的にPOMの曲げ強さは、例えば、ISO 178に準じた試験をした場合、89MPaである。この場合、光照射部314(図6参照)から出力した光を針体20に効率よく透過させることができる。ただし、針体20を構成する樹脂材料は、例えば、ポリカーボネート、ポリプロピレン等であってもよい。針体20と針ハブ22とは、互いに異なる材料で構成されてもよい。 As shown in FIG. 2, the needle member 14 is an integrally molded product made of a resin material in this embodiment. The needle hub 22 may be joined to the proximal end of the needle hub 22 . The needle body 20 is punctured into tissue inside the skin of the human body. The needle body 20 is rigid. The resin material forming the needle body 20 is preferably polyacetal (POM), for example. Specifically, the bending strength of POM is, for example, 89 MPa when tested according to ISO 178. In this case, the light output from the light irradiation section 314 (see FIG. 6) can be efficiently transmitted through the needle 20 . However, the resin material forming the needle body 20 may be, for example, polycarbonate, polypropylene, or the like. Needle body 20 and needle hub 22 may be constructed of different materials.
 図1において、針体20の穿刺部28の長さ(有効長La)は、10mm以上300mm以下に設定するのが好ましく、30mm以上100mm以下に設定するのがより好ましい。具体的に、針体20の有効長Laは、例えば、50mm、70mmあるいは100mmに設定される。ユーザは、病変部200の深さ及び大きさに応じて適切な有効長Laの針体20を有する穿刺針10を選択する。 In FIG. 1, the length (effective length La) of the puncture portion 28 of the needle 20 is preferably set to 10 mm or more and 300 mm or less, more preferably 30 mm or more and 100 mm or less. Specifically, the effective length La of the needle 20 is set to 50 mm, 70 mm, or 100 mm, for example. The user selects the puncture needle 10 having the needle body 20 with an appropriate effective length La according to the depth and size of the lesion 200 .
 図3において、針体20は、管状の針本体30と、針先端部32とを含む。針本体30の外周面34の横断面形状は、円形状である。針本体30の内周面36の横断面形状は、円形状である。針本体30の内径は、シャフト部16を針本体30から抜去した後で、光照射部314(図6参照)が挿入可能な大きさに設定されている。針本体30の内径は、シャフト部16の外径よりも若干大きい。つまり、針本体30の内周面36とシャフト部16の外周面との間には、シャフト部16を針体20の内腔24に挿入する際の空気抜きとしての隙間が形成されている。 In FIG. 3 , the needle body 20 includes a tubular needle body 30 and a needle tip portion 32 . The cross-sectional shape of the outer peripheral surface 34 of the needle body 30 is circular. The cross-sectional shape of the inner peripheral surface 36 of the needle body 30 is circular. The inner diameter of the needle body 30 is set to a size that allows the light irradiation section 314 (see FIG. 6) to be inserted after the shaft section 16 is removed from the needle body 30 . The inner diameter of needle body 30 is slightly larger than the outer diameter of shaft portion 16 . In other words, a gap is formed between the inner peripheral surface 36 of the needle body 30 and the outer peripheral surface of the shaft portion 16 as an air vent when the shaft portion 16 is inserted into the lumen 24 of the needle body 20 .
 針本体30の外径Daは、1.0mm以上2.0mm以下に設定されるのが好ましく、1.3mm以上1.7mm以下に設定されるのがより好ましい。具体的に、例えば1.5mmに設定される。針本体30の肉厚Tは、50μm以上350μm以下に設定されるのが好ましく、100μm以上300μm以下に設定されるのがより好ましく、150μm以上250μm以下に設定されるのがより一層好ましい。具体的に、針本体30の肉厚Tは200μmに設定される。針本体30の内径Dc(内腔の直径)は、光照射部314を内腔24に挿入するためのスペースを確保するために、0.5mm以上に設定される。 The outer diameter Da of the needle body 30 is preferably set to 1.0 mm or more and 2.0 mm or less, and more preferably set to 1.3 mm or more and 1.7 mm or less. Specifically, it is set to 1.5 mm, for example. The thickness T of the needle body 30 is preferably set to 50 μm to 350 μm, more preferably 100 μm to 300 μm, and even more preferably 150 μm to 250 μm. Specifically, the thickness T of the needle body 30 is set to 200 μm. An inner diameter Dc (diameter of the lumen) of the needle body 30 is set to 0.5 mm or more in order to secure a space for inserting the light irradiation section 314 into the lumen 24 .
 針先端部32は、針本体30の先端(一端)に位置する。針先端部32は、針体20の内腔24の先端を閉塞する内面38を有する。内面38は、針本体30の軸線方向と直交する方向に延在している。初期状態で、内面38は、シャフト部16の先端面26に近接又は接触している。針先端部32は、先端方向に向かって縮径したテーパ面40を有している。なお、ここではシャフト部16の軸線方向と直交する方向に延在した平坦な先端面26に対応するよう、内面38は針本体30の軸線方向と直交する方向に延在しているとしたが、これに限られることはない。先端面26は内面38に対応した形状であることが好ましい。 The needle tip portion 32 is located at the tip (one end) of the needle body 30 . Needle tip 32 has an inner surface 38 that closes the tip of lumen 24 of needle body 20 . The inner surface 38 extends in a direction perpendicular to the axial direction of the needle body 30 . In the initial state, the inner surface 38 is close to or in contact with the distal end surface 26 of the shaft portion 16 . The needle tip portion 32 has a tapered surface 40 whose diameter decreases toward the tip. Here, the inner surface 38 extends in the direction orthogonal to the axial direction of the needle body 30 so as to correspond to the flat distal end surface 26 extending in the direction orthogonal to the axial direction of the shaft portion 16 . , but not limited to these. It is preferable that the tip surface 26 has a shape corresponding to the inner surface 38 .
 図1及び図2において、針ハブ22は、針体20の基端部に設けられている。針ハブ22は、人手によって操作し易い大きさ及び形状を有する。針ハブ22は、中空状に形成されている。つまり、針ハブ22は、針体20の内腔24に連通する内腔を含む。針ハブ22は、オブチュレーターハブ18の雌ねじ部に螺合する図示しない雄ねじ部を有する。すなわち、針ハブ22は、オブチュレーターハブ18に取り外し可能にねじ接合する。  In FIGS. 1 and 2, the needle hub 22 is provided at the proximal end of the needle body 20. As shown in FIG. Needle hub 22 has a size and shape that facilitates manual manipulation. The needle hub 22 is hollow. That is, needle hub 22 includes a lumen that communicates with lumen 24 of needle body 20 . Needle hub 22 has an unillustrated external thread that engages the internal thread of obturator hub 18 . That is, needle hub 22 is removably threaded to obturator hub 18 .
 図2及び図3に示すように、針体20の外面42には、エコー下において超音波を反射させるための凹部44が形成されている。凹部44は、例えば、レーザ加工、切削加工、転造、プレス加工等によって針体20の外面42に形成される。 As shown in FIGS. 2 and 3, the outer surface 42 of the needle 20 is formed with a recess 44 for reflecting ultrasonic waves under echo. The concave portion 44 is formed on the outer surface 42 of the needle body 20 by, for example, laser machining, cutting, rolling, press working, or the like.
 凹部44は、例えば、針体20の穿刺部28の一部分にのみ形成される(図1参照)。具体的に、凹部44は、針本体30の先端部に形成されている。凹部44は、針本体30の外周面34に形成されている。ただし、凹部44は、針体20の穿刺部28の全長に渡って形成されてもよい。また、凹部44は、テーパ面40にのみ形成されてもよい。 The recessed portion 44 is formed, for example, only in a portion of the puncture portion 28 of the needle body 20 (see FIG. 1). Specifically, the recess 44 is formed at the tip of the needle body 30 . A recess 44 is formed in the outer peripheral surface 34 of the needle body 30 . However, the recessed portion 44 may be formed over the entire length of the puncture portion 28 of the needle body 20 . Alternatively, the recess 44 may be formed only on the tapered surface 40 .
 図3において、凹部44は、溝部46を有する。溝部46は、溝部46の深さ方向に向かって幅狭に形成されている。換言すれば、溝部46の横断面は、V字状に形成されている。溝部46は、一条巻きの螺旋溝48を含む。螺旋溝48の溝幅Wは、10μm以上50μm以下に設定されるのが好ましい。具体的に、溝幅Wは、例えば25μmに設定される。ここで、螺旋溝48の溝幅Wとは、螺旋溝48のうち針体20の外面42に開口している部分の幅をいう。螺旋溝48の溝深さDbは、25μm以上且つ針本体30の肉厚Tの37.5%以下に設定されるのが好ましく、針本体30の肉厚Tの25%に設定されるのがより好ましい。 In FIG. 3, the recess 44 has grooves 46 . The groove portion 46 is formed narrower in the depth direction of the groove portion 46 . In other words, the cross section of the groove portion 46 is V-shaped. The groove portion 46 includes a spiral groove 48 with a single turn. A groove width W of the spiral groove 48 is preferably set to 10 μm or more and 50 μm or less. Specifically, the groove width W is set to 25 μm, for example. Here, the groove width W of the spiral groove 48 refers to the width of the portion of the spiral groove 48 that opens to the outer surface 42 of the needle body 20 . The groove depth Db of the spiral groove 48 is preferably set to 25 μm or more and 37.5% or less of the thickness T of the needle body 30, preferably 25% of the thickness T of the needle body 30. more preferred.
 螺旋溝48のピッチPは、100μm以上に設定されるのが好ましく、300μmに設定されるのがより好ましい。図1において、針体20の軸線方向に沿った螺旋溝48の長さ(溝長さLb)は、1mm以上100mm以下に設定されるのが好ましく、具体的に、溝長さLbは、例えば10mmに設定される。 The pitch P of the spiral grooves 48 is preferably set to 100 μm or more, more preferably 300 μm. In FIG. 1, the length of the spiral groove 48 (groove length Lb) along the axial direction of the needle body 20 is preferably set to 1 mm or more and 100 mm or less. Set to 10 mm.
 次に、穿刺針10を用いた光免疫療法について説明する。本実施形態において、光免疫療法では、例えば、頭頸部の組織内(皮膚よりも内側)に位置するがん細胞を治療する。ただし、穿刺針10は、頭頸部以外の部分のがん細胞を治療する際に用いてもよい。すなわち、穿刺針10は、子宮頸がん又は前立腺がん等のがん細胞に穿刺した状態で放射線を当該がん細胞に照射する組織内照射治療用デバイスとして使用してもよい。また、穿刺針10は、がん細胞以外の病変部の治療に用いてもよい。 Next, photoimmunotherapy using the puncture needle 10 will be described. In this embodiment, photoimmunotherapy treats, for example, cancer cells located in the tissue of the head and neck (inside the skin). However, the puncture needle 10 may be used when treating cancer cells in parts other than the head and neck region. That is, the puncture needle 10 may be used as an interstitial radiation therapy device that irradiates radiation to cancer cells such as cervical cancer or prostate cancer while being punctured. The puncture needle 10 may also be used for treatment of lesions other than cancer cells.
 光免疫療法を行う場合、まず、がん細胞等の病変部200に結合する物質と光感受性物質とを含む薬剤を患者202(図4参照)に点滴等によって投与する。薬剤としては、例えば、セツキシマブ サロタロカンナトリウムが用いられる。薬剤投与後、所定時間(例えば、20時間)経過すると、薬剤は、頭頸部の病変部200(がん細胞)に結合する。 When performing photoimmunotherapy, first, a drug containing a substance that binds to the lesion 200 such as cancer cells and a photosensitizer is administered to the patient 202 (see FIG. 4) by intravenous drip or the like. As the drug, for example, cetuximab sarotarocan sodium is used. After a predetermined period of time (for example, 20 hours) has passed after administration of the drug, the drug binds to the lesion 200 (cancer cells) in the head and neck region.
 その後、図4に示すように、ユーザは、超音波画像診断装置300に表示される超音波画像を見ながら病変部200に穿刺針10を穿刺する。すなわち、エコー下で穿刺針10を病変部200に穿刺する。この際、針体20は、硬質であるため、ほとんど撓まない。つまり、針体20は、略真直ぐな状態で人体の皮膚の内側の組織に穿刺される。 After that, as shown in FIG. 4 , the user punctures the lesion 200 with the puncture needle 10 while viewing the ultrasonic image displayed on the ultrasonic diagnostic imaging apparatus 300 . That is, the puncture needle 10 is punctured into the lesion 200 under echo. At this time, since the needle body 20 is rigid, it hardly bends. That is, the needle body 20 is pierced into the tissue inside the skin of the human body in a substantially straight state.
 具体的に、皮膚に押し当てた超音波プローブ302から病変部200に向けて超音波を発信させながら穿刺針10を病変部200に穿刺する。この際、超音波は、針体20の外面42に形成された溝部46で反射する。超音波のうち針体20の溝部46で反射した反射波は、超音波プローブ302で受信される。超音波画像診断装置300は、超音波プローブ302によって受信された反射波に基づいて超音波画像を作成して図示しない表示部に表示する。これにより、ユーザは、超音波画像を見ることにより、穿刺針10が病変部200の目標位置に穿刺されているか否かを容易に判断することができる。なお、針体20の内腔24の先端が針先端部32によって閉塞されているため(図3参照)、針体20の内腔24に血液が流入することはない。 Specifically, the puncture needle 10 is punctured into the lesion 200 while transmitting ultrasonic waves from the ultrasound probe 302 pressed against the skin toward the lesion 200 . At this time, the ultrasonic waves are reflected by grooves 46 formed on the outer surface 42 of the needle 20 . A reflected wave of the ultrasonic waves reflected by the groove 46 of the needle body 20 is received by the ultrasonic probe 302 . The ultrasonic diagnostic imaging apparatus 300 creates an ultrasonic image based on the reflected waves received by the ultrasonic probe 302 and displays it on a display unit (not shown). Accordingly, the user can easily determine whether or not the puncture needle 10 is punctured at the target position of the lesion 200 by viewing the ultrasound image. Since the tip of the lumen 24 of the needle body 20 is closed by the needle distal end portion 32 (see FIG. 3), blood does not flow into the lumen 24 of the needle body 20 .
 ところで、光免疫療法に用いられる穿刺針10の針体20の外径Daは、通常穿刺針として想起される薬剤投与用の穿刺針の針体の外径よりも太い。すなわち、穿刺針10の穿刺抵抗は、薬剤投与用の穿刺針の穿刺抵抗よりも大きい。このように穿刺抵抗の比較的大きな穿刺針10の針体20の外面42に凹部44を形成する場合、穿刺抵抗の比較的小さな薬剤投与用の穿刺針の針体の外面に凹部を形成する構成と比較して、凹部44による穿刺抵抗の増大を感じ難いと考えられる。つまり、光免疫療法に用いられる穿刺針10の場合、凹部44によって穿刺抵抗が大きく変化したとは感じ難いと考えられる。さらに、薬剤投与用の穿刺針の場合は、穿刺抵抗の増大により患者202が感じる痛みも増大する。しかしながら、光免疫療法の穿刺手技は麻酔下で行われるため、穿刺抵抗が増大しても患者202は痛みを感じ難いという点も、薬剤投与用の穿刺針との違いである。 By the way, the outer diameter Da of the needle body 20 of the puncture needle 10 used for photoimmunotherapy is larger than the outer diameter of the needle body of the needle body of the puncture needle for drug administration, which is usually thought of as a puncture needle. That is, the puncture resistance of the puncture needle 10 is greater than that of the puncture needle for drug administration. When the recess 44 is formed in the outer surface 42 of the needle body 20 of the puncture needle 10 with relatively high puncture resistance, the configuration is such that the recess is formed in the outer surface of the needle body of the drug administration puncture needle with relatively low puncture resistance. As compared with , it is difficult to feel an increase in puncture resistance due to the concave portion 44 . In other words, in the case of the puncture needle 10 used for photoimmunotherapy, it is difficult to feel that the recess 44 greatly changes the puncture resistance. Furthermore, in the case of a puncture needle for drug administration, the pain felt by the patient 202 also increases due to the increased puncture resistance. However, since the photoimmunotherapy puncture procedure is performed under anesthesia, the patient 202 hardly feels pain even if the puncture resistance increases, which is another difference from the puncture needle for drug administration.
 病変部200に穿刺針10を穿刺した後、図5に示すように、ユーザは、オブチュレーター12を針部材14から抜去する。 After puncturing the lesion 200 with the puncture needle 10, the user removes the obturator 12 from the needle member 14 as shown in FIG.
 続いて、図6において、レーザシステム310を準備する。レーザシステム310は、レーザ光を発振する図示しないレーザ本体部と、レーザ本体部に接続された光ファイバ312と、光ファイバ312の先端部に設けられた円柱状の光照射部314とを有する。レーザ本体部は、半導体レーザ素子を有する。光照射部314は、光ファイバ312から導かれたレーザ光を光照射部314の径方向外方に出射する。レーザ本体部から発振されるレーザ光のピーク波長は、例えば、690nmである。ただし、レーザ光の波長(波長範囲及びピーク波長)は、病変部200及び薬剤の種類等によって適宜設定可能である。 Subsequently, in FIG. 6, the laser system 310 is prepared. The laser system 310 has a laser body (not shown) that oscillates laser light, an optical fiber 312 connected to the laser body, and a columnar light irradiation part 314 provided at the tip of the optical fiber 312 . The laser body has a semiconductor laser element. The light irradiation section 314 emits the laser light guided from the optical fiber 312 radially outward of the light irradiation section 314 . The peak wavelength of laser light emitted from the laser body is, for example, 690 nm. However, the wavelength (wavelength range and peak wavelength) of the laser light can be appropriately set depending on the lesion 200, the type of drug, and the like.
 レーザシステム310の準備後、レーザシステム310の光照射部314を針ハブ22の基端方向から針体20の内腔24に挿入する。次いで、レーザ本体部からレーザ光を発振する。そうすると、レーザ光は、光ファイバ312を介して光照射部314に導かれ、光照射部314から光照射部314の径方向外方に向かって出射される。これにより、病変部200にレーザ光が照射される。そうすると、病変部200に結合した光感受性物質がレーザ光と反応するため、病変部200(がん細胞)が破壊される。 After preparing the laser system 310 , the light irradiation section 314 of the laser system 310 is inserted into the lumen 24 of the needle body 20 from the proximal direction of the needle hub 22 . Next, laser light is oscillated from the laser body. Then, the laser light is guided to the light irradiation section 314 via the optical fiber 312 and emitted from the light irradiation section 314 outward in the radial direction of the light irradiation section 314 . As a result, the lesion 200 is irradiated with laser light. Then, the photosensitizer bound to the lesion 200 reacts with the laser beam, destroying the lesion 200 (cancer cells).
 本実施形態は、以下の効果を奏する。 The present embodiment has the following effects.
 本実施形態によれば、穿刺針10の針体20の外面42にエコー下において超音波を反射させるための凹部44を形成している。そのため、針体20の内周面36又はシャフト部16の外周面に凹部44を形成する場合と比較して、超音波プローブ302によって受信される反射波の強度を効率よく向上させることができる。従って、超音波画像において穿刺針10を視認し易くできる。 According to this embodiment, the outer surface 42 of the needle body 20 of the puncture needle 10 is formed with a recess 44 for reflecting ultrasonic waves under echo. Therefore, the intensity of the reflected wave received by the ultrasonic probe 302 can be efficiently improved compared to the case where the concave portion 44 is formed in the inner peripheral surface 36 of the needle 20 or the outer peripheral surface of the shaft portion 16 . Therefore, the puncture needle 10 can be easily visually recognized in the ultrasound image.
 針体20の内腔24には、シャフト部16を針体20から抜去した状態で治療用の光を照射する光照射部314を挿入可能である。 A light irradiation section 314 that irradiates therapeutic light can be inserted into the lumen 24 of the needle body 20 with the shaft section 16 removed from the needle body 20 .
 このような構成によれば、針体20の内腔24に挿入した光照射部314から照射される光(放射線を含む)をがん細胞に照射する治療用デバイスとして穿刺針10を用いることができる。 According to such a configuration, the puncture needle 10 can be used as a therapeutic device for irradiating cancer cells with light (including radiation) emitted from the light emitting unit 314 inserted into the lumen 24 of the needle body 20. can.
 針体20の内径Dcは、0.5mm以上である。 The inner diameter Dc of the needle body 20 is 0.5 mm or more.
 このような構成によれば、一般的な薬剤投与用の穿刺針の外針の内径(0.41mm)に比べて針体20の内径Dcが大きいため、針体20の内腔24に挿入される光照射部314の外径の自由度が高くなる。 According to such a configuration, since the inner diameter Dc of the needle body 20 is larger than the inner diameter (0.41 mm) of the outer needle of a general puncture needle for drug administration, the needle body 20 can be inserted into the lumen 24 of the needle body 20. The degree of freedom of the outer diameter of the light irradiation section 314 is increased.
 針体20の内腔24は、針体20の先端部において封止されている。 A lumen 24 of the needle body 20 is sealed at the tip of the needle body 20 .
 このような構成によれば、穿刺針10を患者202に穿刺した際に、針体20の内腔24に血液が流入することを阻止することができる。 According to such a configuration, it is possible to prevent blood from flowing into the lumen 24 of the needle body 20 when the puncture needle 10 is punctured into the patient 202 .
 凹部44は、溝部46を有する。溝部46は、深さ方向に向かって幅狭に形成されている。 The recessed portion 44 has a groove portion 46 . The groove portion 46 is formed narrower in the depth direction.
 このような構成によれば、溝部46を深さ方向に向かって幅広に形成した場合と比較して、針体20を患者202に穿刺した際の抵抗(穿刺抵抗)を小さくすることができる。これにより、針体20を患者202に円滑に穿刺することができる。また、針体20の穿刺時に患者202が感じる痛みを抑えることができる。 According to such a configuration, the resistance (puncture resistance) when the needle body 20 is punctured into the patient 202 can be reduced compared to the case where the groove 46 is widened in the depth direction. Thereby, the patient 202 can be smoothly punctured with the needle body 20 . Moreover, the pain felt by the patient 202 when the needle body 20 is punctured can be suppressed.
 溝部46は、1条巻きの螺旋溝48を有する。 The groove portion 46 has a spiral groove 48 with one turn.
 このような構成によれば、超音波を螺旋溝48によって効率的に反射させることができる。 According to such a configuration, ultrasonic waves can be efficiently reflected by the spiral grooves 48 .
 溝部46の溝幅Wは、10μm以上50μm以下に設定されている。 The groove width W of the groove portion 46 is set to 10 μm or more and 50 μm or less.
 このような構成によれば、溝幅Wが10μm以上であるため、一般的な超音波画像診断装置300によって溝部46を検出することができる。また、溝幅Wが50μm以下であるため、針体20の穿刺抵抗が過度に大きくなることを抑えることができる。 According to such a configuration, since the groove width W is 10 μm or more, the groove portion 46 can be detected by a general ultrasonic diagnostic imaging apparatus 300 . Moreover, since the groove width W is 50 μm or less, it is possible to prevent the puncture resistance of the needle body 20 from becoming excessively large.
 溝部46の溝深さDbは、25μm以上且つ針本体30の肉厚Tの37.5%以下に設定されている。 The groove depth Db of the groove portion 46 is set to 25 μm or more and 37.5% or less of the thickness T of the needle body 30 .
 このような構成によれば、溝深さDbが25μm以上であるため、溝部46で超音波を効率的にプローブ側まで反射させることができる。また、溝深さDbが針本体30の肉厚Tの37.5%以下であるため、針体20の強度低下が過度に低下することを抑えることができる。 According to such a configuration, since the groove depth Db is 25 μm or more, the groove 46 can efficiently reflect the ultrasonic waves to the probe side. Further, since the groove depth Db is 37.5% or less of the thickness T of the needle body 30, it is possible to prevent the strength of the needle body 20 from being excessively lowered.
 溝部46のピッチPは、100μm以上に設定されている。 The pitch P of the grooves 46 is set to 100 μm or more.
 このような構成によれば、溝部46で超音波を効率的にプローブ側まで反射させることができる。 With such a configuration, the groove 46 can efficiently reflect ultrasonic waves to the probe side.
 溝部46の針体20の軸線方向に沿った溝長さLbは、1mm以上に設定されている。 A groove length Lb of the groove portion 46 along the axial direction of the needle body 20 is set to 1 mm or more.
 このような構成によれば、超音波画像において溝部46を視認し易くすることができる。 According to such a configuration, it is possible to make it easier to visually recognize the groove portion 46 in the ultrasonic image.
(第1変形例)
 次に、第1変形例に係る針体50について説明する。本変形例に係る針体50において、上述した針体20と同一の構成については同一の参照符号を付し、その詳細な説明は省略する。後述する第2~第7変形例に係る針体60、80、90、100、110、130についても同様である。また、第1~第7変形例において、上述した針体20と同様の構成については同様の効果を奏する。
(First modification)
Next, a needle body 50 according to a first modified example will be described. In the needle body 50 according to this modified example, the same reference numerals are given to the same configurations as those of the needle body 20 described above, and detailed description thereof will be omitted. The same applies to needle bodies 60, 80, 90, 100, 110, and 130 according to second to seventh modifications described later. In addition, in the first to seventh modifications, the same effects as those of the needle body 20 described above are obtained.
 図7Aに示すように、針体50の外面52に形成された凹部54は、溝部56を含む。溝部56は、多条巻きの螺旋溝58を有する。この場合、例えば、環状溝を針体50の軸線方向に間隔を空けて複数設ける構成と比較して、針体50の曲げ強さを向上させることができる。螺旋溝58は、2条以上50条以下に設定されるのが好ましく、11条以上44条以下に設定されるのがより好ましい。溝部56(螺旋溝58)の溝幅、溝深さ、ピッチ、溝長さは、上述した溝部46(螺旋溝48)と同様に設定される。なお、針体50の外径及び有効長は、上述した針体20の外径Da及び有効長Laと同様に設定される。後述する針体60、80、90、100、110、130についても同様である。 As shown in FIG. 7A, the recess 54 formed in the outer surface 52 of the needle body 50 includes grooves 56 . The groove portion 56 has a spiral groove 58 with multiple windings. In this case, for example, the bending strength of the needle body 50 can be improved compared to a configuration in which a plurality of annular grooves are provided at intervals in the axial direction of the needle body 50 . The number of spiral grooves 58 is preferably 2 or more and 50 or less, and more preferably 11 or more and 44 or less. The groove width, groove depth, pitch, and groove length of the groove portion 56 (spiral groove 58) are set in the same manner as the groove portion 46 (spiral groove 48) described above. The outer diameter and effective length of the needle body 50 are set in the same manner as the outer diameter Da and effective length La of the needle body 20 described above. The same applies to needle bodies 60, 80, 90, 100, 110, and 130, which will be described later.
 本変形例によれば、溝部56は、多条巻きの螺旋溝58を有する。 According to this modified example, the groove portion 56 has a spiral groove 58 with multiple windings.
 このような構成によれば、超音波を螺旋溝58によって効率的に反射させることができる。 According to such a configuration, ultrasonic waves can be efficiently reflected by the spiral grooves 58.
(第2変形例)
 次に、第2変形例に係る針体60について説明する。図7Bに示すように、針体60の外面62に形成された凹部64は、溝部66を含む。溝部66は、複数の溝列68を有する。複数の溝列68は、針体60の周方向に間隔を空けて配置されている。本実施形態では、溝部66は、4つの溝列68を含む。複数の溝列68は、針体60の周方向に90°位相をずらして位置している。溝列68は、1つであってもよい。また、針体60の外面62には、針体60の周方向に2つ、3つ、又は5つ以上の溝列68が配置されてもよい。
(Second modification)
Next, a needle body 60 according to a second modified example will be described. As shown in FIG. 7B, recess 64 formed in outer surface 62 of needle 60 includes groove 66 . The groove portion 66 has a plurality of groove rows 68 . The plurality of groove rows 68 are arranged at intervals in the circumferential direction of the needle body 60 . In this embodiment, the groove portion 66 includes four groove rows 68 . The plurality of groove rows 68 are positioned with a 90° phase shift in the circumferential direction of the needle body 60 . The number of groove rows 68 may be one. Further, two, three, or five or more groove rows 68 may be arranged in the circumferential direction of the needle body 60 on the outer surface 62 of the needle body 60 .
 各溝列68は、複数の短溝70を含む。複数の短溝70は、針体60の軸線方向に間隔を空けて配置されている。各短溝70における針体60の周方向に沿った長さは、溝列68の数と後述するなす角度θとの兼ね合いによる設定されるが、概ね針体60の周長の1/4以下である。 Each groove row 68 includes a plurality of short grooves 70. The plurality of short grooves 70 are arranged at intervals in the axial direction of the needle body 60 . The length of each short groove 70 along the circumferential direction of the needle body 60 is set according to the balance between the number of groove rows 68 and the angle θ to be formed, which will be described later. is.
 各短溝70は、第1傾斜溝72と第2傾斜溝74とを含む。第1傾斜溝72は、針体60の先端に向かって針体60の周方向に沿った第1周方向に傾斜している。第2傾斜溝74は、針体60の先端に向かって第1周方向とは反対方向である第2周方向に傾斜している。 Each short groove 70 includes a first slanted groove 72 and a second slanted groove 74 . The first inclined groove 72 is inclined in the first circumferential direction along the circumferential direction of the needle body 60 toward the tip of the needle body 60 . The second inclined groove 74 is inclined toward the tip of the needle body 60 in the second circumferential direction opposite to the first circumferential direction.
 第1傾斜溝72の先端と第2傾斜溝74の先端とは本変形例においては互いに繋がっていてV字状をなしているが繋がっていなくても構わない。第1傾斜溝72と第2傾斜溝74とのなす角度θは、鋭角に設定されている。ただし、なす角度θは、直角又は鈍角に設定されてもよい。第1傾斜溝72の全長は、第2傾斜溝74の全長と同じである。ただし、第1傾斜溝72の全長は、第2傾斜溝74の全長よりも短くても長くてもよい。 The tip of the first slanted groove 72 and the tip of the second slanted groove 74 are connected to each other to form a V-shape in this modified example, but they do not have to be connected. The angle θ between the first inclined groove 72 and the second inclined groove 74 is set to an acute angle. However, the formed angle θ may be set to a right angle or an obtuse angle. The total length of the first inclined groove 72 is the same as the total length of the second inclined groove 74 . However, the total length of the first inclined grooves 72 may be shorter or longer than the total length of the second inclined grooves 74 .
 各短溝70の溝幅は、上述した螺旋溝48の溝幅Wと同様に設定される。各短溝70の溝深さは、上述した螺旋溝48の溝深さDbと同様に設定される。各溝列68の互いに隣接する短溝70の間隔(ピッチ)は、上述した螺旋溝48のピッチPと同様に設定される。複数の溝列68における針体60の軸線方向に沿った溝長さは、上述した螺旋溝48の溝長さLbと同様に設定される。 The groove width of each short groove 70 is set in the same manner as the groove width W of the spiral groove 48 described above. The groove depth of each short groove 70 is set similarly to the groove depth Db of the spiral groove 48 described above. The interval (pitch) between adjacent short grooves 70 in each groove row 68 is set in the same manner as the pitch P of the spiral grooves 48 described above. The groove length along the axial direction of the needle body 60 in the plurality of groove rows 68 is set similarly to the groove length Lb of the spiral groove 48 described above.
 本変形例において、溝部66は、針体60の軸線方向に間隔を空けて配置された複数の短溝70を含む溝列68を有している。複数の短溝70の各々は、針体60の周方向に沿った長さが当該針体60の周長の1/4以下である。 In this modified example, the groove portion 66 has a groove row 68 including a plurality of short grooves 70 spaced apart in the axial direction of the needle body 60 . Each of the plurality of short grooves 70 has a length along the circumferential direction of the needle body 60 that is 1/4 or less of the circumferential length of the needle body 60 .
 このような構成によれば、超音波を複数の短溝70によって効率的に反射させることができる。 With such a configuration, ultrasonic waves can be efficiently reflected by the plurality of short grooves 70 .
 溝列68は、針体60の周方向に間隔を空けて複数設けられている。 A plurality of groove rows 68 are provided at intervals in the circumferential direction of the needle body 60 .
 このような構成によれば、針体60の周方向の向きによって反射波の強度が変化することを抑えることができる。 According to such a configuration, it is possible to suppress the intensity of the reflected wave from changing depending on the orientation of the needle 60 in the circumferential direction.
 複数の短溝70の各々は、第1傾斜溝72と第2傾斜溝74とを含む。第1傾斜溝72は、針体60の先端に向かって当該針体60の周方向に沿った第1周方向に傾斜している。第2傾斜溝74は、針体60の先端に向かって第1周方向とは反対方向である第2周方向に傾斜している。第1傾斜溝72の先端と第2傾斜溝74の先端とは、互いに繋がっている。 Each of the plurality of short grooves 70 includes a first inclined groove 72 and a second inclined groove 74. The first inclined groove 72 is inclined in the first circumferential direction along the circumferential direction of the needle body 60 toward the tip of the needle body 60 . The second inclined groove 74 is inclined toward the tip of the needle body 60 in the second circumferential direction opposite to the first circumferential direction. The tip of the first inclined groove 72 and the tip of the second inclined groove 74 are connected to each other.
 このような構成によれば、穿刺抵抗を比較的小さくできるため、針体60を病変部200に円滑に穿刺することができる。 According to such a configuration, since the puncture resistance can be made relatively small, the lesion 200 can be smoothly punctured by the needle body 60 .
(第3変形例)
 次に、第3変形例に係る針体80について説明する。図8に示すように、針体80の針先端部82は、先端方向に向かってテーパ状に縮径した内面84を有している。すなわち、針先端部82において、針体80の内腔24の横断面積は、先端方向に向かって小さくなっている。針体80の外面86には、上述した凹部44が形成されている。ただし、針体80の外面86には、上述した凹部54、64が形成されてもよい。
(Third modification)
Next, a needle body 80 according to a third modification will be described. As shown in FIG. 8, the needle distal end portion 82 of the needle body 80 has an inner surface 84 tapered toward the distal end. That is, at the needle distal end portion 82, the cross-sectional area of the lumen 24 of the needle body 80 decreases toward the distal end. The outer surface 86 of the needle body 80 is formed with the recess 44 described above. However, the recesses 54 and 64 described above may be formed on the outer surface 86 of the needle body 80 .
(第4変形例)
 次に、第4変形例に係る針体90について説明する。図9に示すように、針体90の針先端部92には、先端開口94が形成されている。つまり、針体90の内腔24は、先端開口94に連通している。針体90の外面96には、上述した凹部44が形成されている。ただし、針体90の外面96には、上述した凹部54、64が形成されてもよい。
(Fourth modification)
Next, a needle body 90 according to a fourth modification will be described. As shown in FIG. 9, a tip opening 94 is formed in the needle tip portion 92 of the needle body 90 . That is, the lumen 24 of the needle body 90 communicates with the tip opening 94 . The outer surface 96 of the needle body 90 is formed with the recess 44 described above. However, the recesses 54 and 64 described above may be formed on the outer surface 96 of the needle body 90 .
(第5変形例)
 次に、第5変形例に係る針体100について説明する。図10に示すように、針体100の外面102に形成された凹部104は、溝部106を含む。溝部106は、針体100の周方向に一周延在した複数の環状溝108を有する。各環状溝108は、円形状に延在している。複数の環状溝108は、針体100の軸線方向に間隔を空け設けられている。環状溝108の溝幅は、上述した螺旋溝48の溝幅Wと同様に設定される。環状溝108の溝深さは、上述した螺旋溝48の溝深さDbと同様に設定される。互いに隣接する環状溝108の間隔(ピッチ)は、上述した螺旋溝48のピッチPと同様に設定される。最先端に位置する環状溝108から最基端に位置する環状溝108までの長さである溝部106の溝長さは、上述した螺旋溝48の溝長さLbと同様に設定される。
(Fifth modification)
Next, a needle body 100 according to a fifth modification will be described. As shown in FIG. 10 , recess 104 formed in outer surface 102 of needle 100 includes groove 106 . The groove portion 106 has a plurality of annular grooves 108 extending around the circumference of the needle body 100 . Each annular groove 108 extends circularly. The plurality of annular grooves 108 are spaced apart in the axial direction of the needle body 100 . The groove width of the annular groove 108 is set similarly to the groove width W of the spiral groove 48 described above. The groove depth of the annular groove 108 is set similarly to the groove depth Db of the spiral groove 48 described above. The interval (pitch) between the annular grooves 108 adjacent to each other is set in the same manner as the pitch P of the spiral grooves 48 described above. The groove length of the groove portion 106, which is the length from the annular groove 108 located at the distal end to the annular groove 108 located at the proximal end, is set in the same manner as the groove length Lb of the spiral groove 48 described above.
 本変形例によれば、溝部106は、針体100の周方向に一周延在した環状溝108を有する。 According to this modification, the groove portion 106 has an annular groove 108 that extends around the needle body 100 in the circumferential direction.
 このような構成によれば、超音波を環状溝108によって効率的に反射させることができる。 With such a configuration, ultrasonic waves can be efficiently reflected by the annular groove 108 .
 環状溝108は、針体100の軸線方向に間隔を空けて複数設けられている。 A plurality of annular grooves 108 are provided at intervals in the axial direction of the needle body 100 .
 このような構成によれば、複数の環状溝108によって超音波を一層効率的に反射させることができる。 According to such a configuration, ultrasonic waves can be more efficiently reflected by the plurality of annular grooves 108 .
(第6変形例)
 次に、第6変形例に係る針体110について説明する。図11Aに示すように、針体110の外面112に形成された凹部116は、溝部118を有する。溝部118は、複数の溝部66と、複数の溝部46とを含む。図11Aの例において、溝部66は2つであり、溝部46は2つである。
(Sixth modification)
Next, a needle body 110 according to a sixth modification will be described. As shown in FIG. 11A, recess 116 formed in outer surface 112 of needle 110 has groove 118 . Grooves 118 include a plurality of grooves 66 and a plurality of grooves 46 . In the example of FIG. 11A, there are two grooves 66 and two grooves 46 .
 溝部66と溝部46とは、針体110の軸線方向に間隔を空けて交互に配置されている。針体110の軸線方向に沿った溝部118の溝長さは、上述した螺旋溝48の溝長さLbと同様に設定される。具体的に、溝部118の溝長さは、例えば、10mmである。この場合、溝部46は、例えば、溝部118の先端から基端方向に5mmずれた位置と、溝部118の先端から基端方向に10mmずれた位置とに設けられる。溝部66及び溝部46の数、位置及び長さは、適宜設定可能である。 The grooves 66 and the grooves 46 are alternately arranged at intervals in the axial direction of the needle body 110 . The groove length of the groove portion 118 along the axial direction of the needle body 110 is set similarly to the groove length Lb of the spiral groove 48 described above. Specifically, the groove length of the groove portion 118 is, for example, 10 mm. In this case, the groove 46 is provided, for example, at a position shifted by 5 mm in the proximal direction from the tip of the groove 118 and at a position shifted by 10 mm in the proximal direction from the tip of the groove 118 . The number, positions and lengths of the grooves 66 and 46 can be set as appropriate.
 本変形例によれば、溝部118は、複数パターンの溝部(溝部66及び溝部46)を有する。このような構成によれば、溝部66における超音波の反射強度と溝部46における超音波の反射強度とが互いに異なるため、単一パターンの溝部を設ける場合と比較して、超音波画像により針体110の穿刺位置及び穿刺長さが把握し易くなる。 According to this modified example, the groove portion 118 has a plurality of patterns of groove portions (the groove portions 66 and the groove portions 46). According to such a configuration, since the reflection intensity of ultrasonic waves in the groove portion 66 and the reflection intensity of ultrasonic waves in the groove portion 46 are different from each other, compared to the case where a single pattern of groove portions is provided, the needle body can be detected by an ultrasonic image. The puncture position and puncture length of 110 can be easily grasped.
 本変形例において、溝部118は、上述した溝部66と溝部46とを組み合わせた構成に限定されない。溝部118は、上述した溝部46、56、66、106を複数組み合わせてよい。 In this modified example, the groove portion 118 is not limited to the combination of the groove portion 66 and the groove portion 46 described above. The groove 118 may be formed by combining a plurality of the grooves 46, 56, 66, 106 described above.
(第7変形例)
 次に、第7変形例に係る針体130について説明する。図11Bに示すように、針体130の外面132に形成された凹部136は、溝部138を有する。溝部138は、溝部106と溝部56とを含む。溝部106は、針体130の針先端部32に位置する。溝部56は、針体130の針本体30に位置する。溝部56の溝長さは、例えば、10mmである。
(Seventh modification)
Next, a needle body 130 according to a seventh modified example will be described. As shown in FIG. 11B, recess 136 formed in outer surface 132 of needle 130 has groove 138 . Groove 138 includes groove 106 and groove 56 . The groove portion 106 is located at the needle tip portion 32 of the needle body 130 . The groove portion 56 is located in the needle body 30 of the needle body 130 . The groove length of the groove portion 56 is, for example, 10 mm.
 このような構成によれば、針体130の針先端部32に溝部106を設けるとともに針体130の針本体30に溝部106とは形状の異なる溝部56を設けている。この場合、超音波画像において針体130の針先端部32の見え方が針体130の針本体30の見え方と異なるため、針体130の針先端部32の位置を容易に把握することができる。 According to such a configuration, the needle distal end portion 32 of the needle body 130 is provided with the groove portion 106 , and the needle main body 30 of the needle body 130 is provided with the groove portion 56 having a shape different from that of the groove portion 106 . In this case, the appearance of the needle tip portion 32 of the needle body 130 differs from the appearance of the needle main body 30 of the needle body 130 in the ultrasonic image, so the position of the needle tip portion 32 of the needle body 130 can be easily grasped. can.
 本変形例において、溝部138は、上述した溝部106と溝部56とを組み合わせた構成に限定されない。針体130の針先端部32には、溝部106に代えて溝部46、56、66の少なくともいずれかが設けられてもよい。また、針体130の針本体30には、溝部56に代えて、溝部46、66、106の少なくともいずれかが設けられてもよい。さらに、針体130の針本体30には、溝部56に代えて、溝部118が設けられてもよい。 In this modified example, the groove portion 138 is not limited to the combination of the groove portion 106 and the groove portion 56 described above. At least one of the grooves 46 , 56 , 66 may be provided in the needle tip portion 32 of the needle body 130 instead of the groove 106 . At least one of the grooves 46 , 66 , and 106 may be provided in the needle body 30 of the needle body 130 instead of the groove 56 . Further, the needle body 30 of the needle body 130 may be provided with the groove portion 118 instead of the groove portion 56 .
 次に、本発明の効果を確認するために実施した試験について説明する。以下では、螺旋溝48に関する試験を代表的に示すが、螺旋溝58及び溝部66についても螺旋溝48と同様の試験結果を得ている。 Next, the test conducted to confirm the effect of the present invention will be explained. Although the test for the spiral groove 48 is representatively shown below, the same test results as for the spiral groove 48 are obtained for the spiral groove 58 and the groove portion 66 as well.
[サンプル]
 図12A~図13Bに示すように、本試験では、第1サンプル140、第2サンプル142、第3サンプル144及び第4サンプル146を用意した。第1サンプル140は、後述するように、実施例1~5の摺動試験と、実施例6~9の強度試験とに用いられる。第2サンプル142は、比較例1における摺動試験に用いられる。第3サンプル144は、実施例1、2、6~8、10~18の超音波画像の撮影に用いられる。第4サンプル146は、比較例1の超音波画像の撮影に用いられる。
[sample]
As shown in FIGS. 12A-13B, a first sample 140, a second sample 142, a third sample 144 and a fourth sample 146 were prepared in this test. The first sample 140 is used for the sliding tests of Examples 1-5 and the strength tests of Examples 6-9, as will be described later. The second sample 142 is used for the sliding test in Comparative Example 1. The third sample 144 is used for capturing ultrasound images of Examples 1, 2, 6-8, and 10-18. A fourth sample 146 is used for capturing an ultrasound image of Comparative Example 1. FIG.
 図12Aに示すように、第1サンプル140は、樹脂チューブ148と、樹脂チューブ148の内腔に挿通された内針150とを有する。樹脂チューブ148の先端は、開口している。樹脂チューブ148は、POMによって構成されている。樹脂チューブ148の寸法は、上述した針本体30の寸法と同じである。樹脂チューブ148の外周面には、上述した螺旋溝48が形成されている。内針150は、21G(ゲージ)のいわゆるベベル針であって、鋭利な針先を有する。内針150は、樹脂チューブ148の先端開口から突出している。図12Bに示すように、第2サンプル142は、螺旋溝48を有していない点以外、第1サンプル140と同一に構成される。 As shown in FIG. 12A, the first sample 140 has a resin tube 148 and an inner needle 150 inserted through the lumen of the resin tube 148. The distal end of the resin tube 148 is open. The resin tube 148 is made of POM. The dimensions of the resin tube 148 are the same as the dimensions of the needle body 30 described above. The spiral groove 48 described above is formed on the outer peripheral surface of the resin tube 148 . The inner needle 150 is a so-called bevel needle of 21G (gauge) and has a sharp tip. The inner needle 150 protrudes from the tip opening of the resin tube 148 . As shown in FIG. 12B, the second sample 142 is constructed identically to the first sample 140 except that it does not have the spiral grooves 48 .
 このように、第1サンプル140は、上述した穿刺針10とは異なる形状を有する。換言すれば、第1サンプル140は、穿刺針10の代用品である。しかしながら、摺動試験では、穿刺針10の針本体30のうち螺旋溝48が位置する部分の摺動抵抗を評価対象としている。そのため、樹脂チューブ148の材質及び寸法が穿刺針10の針本体30の材質及び寸法と同じであれば、それ以外の形状等が互いに異なっていても、摺動抵抗の測定結果に影響しない。よって、摺動試験では、第1サンプル140を用いても穿刺針10を用いた場合と同じ結果が得られる。 Thus, the first sample 140 has a shape different from that of the puncture needle 10 described above. In other words, first sample 140 is a substitute for puncture needle 10 . However, in the sliding test, the object of evaluation is the sliding resistance of the portion of the needle body 30 of the puncture needle 10 where the spiral groove 48 is located. Therefore, if the material and dimensions of the resin tube 148 are the same as the material and dimensions of the needle body 30 of the puncture needle 10, even if the other shapes and the like are different from each other, they do not affect the measurement result of the sliding resistance. Therefore, in the sliding test, even when the first sample 140 is used, the same result as when the puncture needle 10 is used is obtained.
 また、後述する強度試験では、穿刺針10の針本体30に形成した螺旋溝48が位置する部分の強度を評価対象としている。そのため、樹脂チューブ148の材質及び寸法が穿刺針10の針本体30の材質及び寸法と同じであれば、それ以外の形状等が互いに異なっていても、強度の測定結果に影響しない。よって、強度試験では、第1サンプル140を用いても穿刺針10を用いた場合と同じ結果が得られる。 In addition, in the strength test described later, the strength of the portion where the spiral groove 48 formed in the needle body 30 of the puncture needle 10 is located is evaluated. Therefore, if the material and dimensions of the resin tube 148 are the same as the material and dimensions of the needle body 30 of the puncture needle 10, even if the other shapes and the like are different from each other, the strength measurement results are not affected. Therefore, in the strength test, even if the first sample 140 is used, the same results as when the puncture needle 10 is used can be obtained.
 図13Aに示すように、第3サンプル144は、樹脂チューブ148と、上述したシャフト部16と、封止部152とを有する。シャフト部16は、樹脂チューブ148の内腔に挿入されている。封止部152は、樹脂チューブ148の先端開口部を封止する。これにより、樹脂チューブ148の内腔への水分の浸入を防止できる。よって、樹脂チューブ148に浸入した水分によって超音波画像の見え方が変化することがない。封止部152は、光硬化型接着剤である。封止部152は、樹脂チューブ148の構成材料とは異なる材料によって構成されている。なお、本試験は、樹脂チューブ148(特に、螺旋溝48)が形成されている部分の超音波画像の見え方を評価するものであるため、封止部152の構成材料と樹脂チューブ148の構成材料とが互いに異なっていても評価に影響を与えることはない。図13Bに示すように、第4サンプル146は、螺旋溝48を有していない点以外、第3サンプル144と同一に構成される。 As shown in FIG. 13A, the third sample 144 has a resin tube 148, the shaft portion 16 described above, and a sealing portion 152. The shaft portion 16 is inserted into the lumen of the resin tube 148 . The sealing portion 152 seals the tip opening of the resin tube 148 . This can prevent water from entering the lumen of the resin tube 148 . Therefore, the appearance of the ultrasonic image does not change due to moisture that has entered the resin tube 148 . The sealing portion 152 is a photocurable adhesive. The sealing portion 152 is made of a material different from the material of the resin tube 148 . In addition, since this test evaluates the appearance of the ultrasonic image of the portion where the resin tube 148 (especially the spiral groove 48) is formed, Even if the materials are different from each other, it does not affect the evaluation. As shown in FIG. 13B, the fourth sample 146 is constructed identically to the third sample 144 except that it does not have the spiral grooves 48 .
 このように、第3サンプル144は、上述した穿刺針10とは異なる形状を有する。換言すれば、第3サンプル144は、穿刺針10の代用品である。しかしながら、本試験では、穿刺針10の針本体30のうち螺旋溝48が位置する部分の超音波画像の見え易さ(平均輝度)を評価対象としている。そのため、樹脂チューブ148の材質及び寸法が穿刺針10の針本体30の材質及び寸法と同じであれば、それ以外の形状等が互いに異なっていても、超音波画像の評価に影響しない。よって、超音波画像の評価では、第3サンプル144を用いても穿刺針10を用いた場合と同じ結果が得られる。 Thus, the third sample 144 has a shape different from that of the puncture needle 10 described above. In other words, third sample 144 is a substitute for puncture needle 10 . However, in this test, the visibility (average luminance) of the ultrasonic image of the portion of the needle body 30 of the puncture needle 10 where the spiral groove 48 is located is evaluated. Therefore, if the material and dimensions of the resin tube 148 are the same as the material and dimensions of the needle body 30 of the puncture needle 10, the evaluation of the ultrasonic image will not be affected even if the other shapes and the like are different from each other. Therefore, in the evaluation of the ultrasonic image, even if the third sample 144 is used, the same result as when the puncture needle 10 is used can be obtained.
(溝幅Wの設定に関する試験)
 図14に示すように、溝幅Wの設定に関する試験では、実施例1~5及び比較例1に対して摺動試験を行い、実施例1、2及び比較例1に対して超音波画像の撮影を行った。実施例1に係る第1サンプル140及び第3サンプル144の溝幅Wは、10μmである。実施例2に係る第1サンプル140及び第3サンプル144の溝幅Wは、25μmである。実施例3に係る第1サンプル140及び第3サンプル144の溝幅Wは、40μmである。実施例4に係る第1サンプル140及び第3サンプル144の溝幅Wは、50μmである。実施例5に係る第1サンプル140及び第3サンプル144の溝幅Wは、55μmである。なお、実施例1~5において、溝深さDbは50μm、ピッチPは300μm、溝長さLbは10mmとした。
(Test for setting groove width W)
As shown in FIG. 14, in the test for setting the groove width W, a sliding test was performed on Examples 1 to 5 and Comparative Example 1, and ultrasonic images were obtained for Examples 1 and 2 and Comparative Example 1. I took a picture. The groove width W of the first sample 140 and the third sample 144 according to Example 1 is 10 μm. The groove width W of the first sample 140 and the third sample 144 according to Example 2 is 25 μm. The groove width W of the first sample 140 and the third sample 144 according to Example 3 is 40 μm. The groove width W of the first sample 140 and the third sample 144 according to Example 4 is 50 μm. The groove width W of the first sample 140 and the third sample 144 according to Example 5 is 55 μm. In Examples 1 to 5, the groove depth Db was 50 μm, the pitch P was 300 μm, and the groove length Lb was 10 mm.
 一般的に、超音波画像診断装置300によって検出することができる物の寸法は、超音波画像診断装置300から発信される超音波の波長の1/10程度である。一般的な超音波画像診断装置300から発信される超音波の波長の下限値は、100μm(15MHz)である。そのため、100μmの1/10である10μmを溝幅Wの下限値とした。 Generally, the size of an object that can be detected by the ultrasonic diagnostic imaging apparatus 300 is about 1/10 of the wavelength of the ultrasonic waves emitted from the ultrasonic diagnostic imaging apparatus 300. The lower limit of the wavelength of ultrasonic waves emitted from a general ultrasonic diagnostic imaging apparatus 300 is 100 μm (15 MHz). Therefore, the lower limit of the groove width W is set to 10 μm, which is 1/10 of 100 μm.
[試験方法]
 図15に示すように、摺動試験では、実施例1~5に係る第1サンプル140と比較例1に係る第2サンプル142とを、円筒状の支持台162の一端面に配置された厚さ0.5mmのシリコーンシート164に所定の穿刺速度で穿刺した。摺動試験では、この時の樹脂チューブ148における螺旋溝48が設けられた部分の摺動抵抗を測定した。摺動評価については、A~Dの4段階で評価した。具体的に、比較例1と同等の摺動抵抗である場合の摺動評価をAとした。摺動抵抗が第1閾値よりも大きい場合の摺動評価をBとした。摺動抵抗が第2閾値よりも大きい場合の摺動評価をCとした。摺動抵抗が第3閾値よりも大きい場合の摺動評価をDとした。第1閾値は、比較例1の摺動抵抗よりも大きい。第2閾値は、第1閾値よりも大きい。第3閾値は、第2閾値よりも大きい。
[Test method]
As shown in FIG. 15, in the sliding test, a first sample 140 according to Examples 1 to 5 and a second sample 142 according to Comparative Example 1 were placed on one end surface of a cylindrical support base 162 and placed on one end surface. A silicone sheet 164 with a thickness of 0.5 mm was punctured at a predetermined puncture speed. In the sliding test, the sliding resistance of the portion of the resin tube 148 provided with the spiral groove 48 at this time was measured. Sliding evaluation was evaluated on a four-grade scale from A to D. Specifically, A is the sliding evaluation when the sliding resistance is equivalent to that of Comparative Example 1. B was the sliding evaluation when the sliding resistance was greater than the first threshold. C is the sliding evaluation when the sliding resistance is greater than the second threshold. D was the sliding evaluation when the sliding resistance was greater than the third threshold. The first threshold is greater than the sliding resistance of Comparative Example 1. The second threshold is greater than the first threshold. The third threshold is greater than the second threshold.
 また、摺動評価がAであった実施例1及び2に係る第3サンプル144と比較例1に係る第4サンプル146とをゲルファントムに穿刺した時の超音波画像を撮影した。超音波プローブ302の種類は、リニアプローブを使用した。超音波の中心周波数は、11MHzに設定した。また、比較例1の超音波画像の穿刺針の平均輝度を基準にした摺動評価がAであった螺旋溝48の部分の平均輝度の比率(平均輝度比)を算出した。 In addition, ultrasonic images were taken when the gel phantom was punctured with the third sample 144 according to Examples 1 and 2, which had a sliding evaluation of A, and the fourth sample 146 according to Comparative Example 1. A linear probe was used as the type of ultrasonic probe 302 . The center frequency of ultrasound was set to 11 MHz. In addition, the average luminance ratio (average luminance ratio) of the portion of the spiral groove 48 where the slide evaluation was A based on the average luminance of the puncture needle in the ultrasonic image of Comparative Example 1 was calculated.
[結果]
 図14に示すように、比較例1、実施例1及び実施例2の穿刺評価はA、実施例3の穿刺評価はB、実施例4の穿刺評価はC、実施例5の穿刺評価はDであった。超音波画像では、実施例1及び実施例2において、比較例1に比べて視認し易くなった。実施例1の超音波画像において、螺旋溝48の部分の平均輝度比は、2.6であった。実施例2の超音波画像において、螺旋溝48の部分の平均輝度比は、実施例1と同じく2.6であった。
[result]
As shown in FIG. 14, the puncture evaluation of Comparative Example 1, Examples 1 and 2 is A, the puncture evaluation of Example 3 is B, the puncture evaluation of Example 4 is C, and the puncture evaluation of Example 5 is D. Met. In the ultrasonic image, in Examples 1 and 2, it became easier to visually recognize than in Comparative Example 1. In the ultrasonic image of Example 1, the average brightness ratio of the portion of the spiral groove 48 was 2.6. In the ultrasonic image of Example 2, the average brightness ratio of the portion of the spiral groove 48 was 2.6, the same as in Example 1.
 このように、摺動評価では、溝幅Wが広くなるほど摺動抵抗が高くなった。具体的に、溝幅Wが10μm以上50μm以下で摺動抵抗を抑えることができた。特に、溝幅Wが10μm以上25μm以下で摺動抵抗を一層抑えることができた。また、実施例1と実施例2とでは、平均輝度比が同じであった。以上より、溝幅Wは、10μm以上50μm以下に設定されるのが好ましく、10μm以上25μm以下に設定されるのがより好ましいという結果を得た。 Thus, in the sliding evaluation, the wider the groove width W, the higher the sliding resistance. Specifically, the sliding resistance could be suppressed when the groove width W was 10 μm or more and 50 μm or less. In particular, the sliding resistance could be further suppressed when the groove width W was 10 μm or more and 25 μm or less. Moreover, the average luminance ratio was the same between Example 1 and Example 2. FIG. From the above results, it was found that the groove width W is preferably set to 10 μm or more and 50 μm or less, and more preferably set to 10 μm or more and 25 μm or less.
(溝深さDbの設定に関する試験)
 図16に示すように、溝深さDbの設定に関する試験では、実施例6~9に対して強度試験を行い、実施例6~8に対して超音波画像の撮影を行った。実施例6に係る第1サンプル140及び第3サンプル144の溝深さDbは、25μm(樹脂チューブ148の肉厚Tの13%)である。実施例7に係る第1サンプル140及び第3サンプル144の溝深さDbは、50μm(樹脂チューブ148の肉厚Tの25%)である。実施例8に係る第1サンプル140及び第3サンプル144の溝深さDbは、75μm(樹脂チューブ148の肉厚Tの37.5%)である。実施例9に係る第1サンプル140及び第3サンプル144の溝深さDbは、80μm(樹脂チューブ148の肉厚Tの40%)である。なお、実施例6~9において、溝幅Wは25μm、ピッチPは300μm、溝長さLbは10mm、針本体30の肉厚Tは200μmである。
(Test for setting groove depth Db)
As shown in FIG. 16, in the test for setting the groove depth Db, strength tests were performed on Examples 6-9, and ultrasonic images were taken on Examples 6-8. The groove depth Db of the first sample 140 and the third sample 144 according to Example 6 is 25 μm (13% of the thickness T of the resin tube 148). The groove depth Db of the first sample 140 and the third sample 144 according to Example 7 is 50 μm (25% of the thickness T of the resin tube 148). The groove depth Db of the first sample 140 and the third sample 144 according to Example 8 is 75 μm (37.5% of the thickness T of the resin tube 148). The groove depth Db of the first sample 140 and the third sample 144 according to Example 9 is 80 μm (40% of the thickness T of the resin tube 148). In Examples 6 to 9, the groove width W is 25 μm, the pitch P is 300 μm, the groove length Lb is 10 mm, and the thickness T of the needle body 30 is 200 μm.
 一般的に、溝深さDbが超音波の波長よりも小さい場合に超音波は散乱し易くなる。また、溝深さDbが超音波の波長の1/4以上で後方散乱(超音波プローブ302に戻る反射波)が多くなる。そのため、一般的な超音波画像診断装置300から発信される超音波の波長の下限値(100μm)の1/4である25μmを溝深さDbの下限値とした。 Generally, when the groove depth Db is smaller than the wavelength of the ultrasonic waves, the ultrasonic waves tend to scatter. Also, when the groove depth Db is 1/4 or more of the wavelength of the ultrasonic wave, backscattering (reflected waves returning to the ultrasonic probe 302) increases. Therefore, the lower limit of the groove depth Db is set to 25 μm, which is 1/4 of the lower limit (100 μm) of the wavelength of ultrasonic waves emitted from a general ultrasonic diagnostic imaging apparatus 300 .
[試験方法]
 実施例6~9において、強度評価を行った。具体的に、実施例6~9に係る第1サンプル140を螺旋溝48の溝長さ方向の中央位置まで豚肉に穿刺した状態で内針150を樹脂チューブ148から抜去し、穿刺状態の樹脂チューブ148を豚肉に向かって屈曲させる動作を行った。樹脂チューブ148が1回の屈曲動作で破断しなかった第1サンプル140の強度評価をAとし、樹脂チューブ148が1回の屈曲動作で破断した第1サンプル140の強度評価をBとした。また、強度評価がAであった実施例6~8の第3サンプル144において、超音波画像の撮影を行った。この超音波画像は、上述した実施例1及び実施例2の超音波画像と同様の方法により撮影した。
[Test method]
In Examples 6 to 9, strength evaluation was performed. Specifically, the inner needle 150 is removed from the resin tube 148 in a state in which the first sample 140 according to Examples 6 to 9 is pierced into the pork to the center position in the groove length direction of the spiral groove 48, and the resin tube in the punctured state An operation was performed to bend 148 toward the pork. The strength evaluation of the first sample 140 in which the resin tube 148 did not break in one bending motion was given as A, and the strength evaluation of the first sample 140 in which the resin tube 148 broke in one bending motion was given as B. In addition, for the third sample 144 of Examples 6 to 8, whose strength evaluation was A, an ultrasonic image was taken. This ultrasonic image was captured by the same method as the ultrasonic images of the first and second embodiments described above.
[結果]
 実施例6~8の強度評価はA、実施例9の強度評価はBであった。超音波画像では、実施例6~8において、上述した比較例1に比べて第3サンプル144を視認し易くなった。実施例6の超音波画像において、螺旋溝48の部分の平均輝度比は、1.9であった。実施例7の超音波画像において、螺旋溝48の部分の平均輝度比は、2.1であった。実施例8の超音波画像において、螺旋溝48の平均輝度比は、2.1であった。つまり、実施例6よりも実施例7及び実施例8の平均輝度値が高かった。
[result]
The strength evaluation of Examples 6 to 8 was A, and the strength evaluation of Example 9 was B. In the ultrasonic images, in Examples 6 to 8, the third sample 144 was easier to visually recognize than in Comparative Example 1 described above. In the ultrasonic image of Example 6, the average brightness ratio of the portion of the spiral groove 48 was 1.9. In the ultrasonic image of Example 7, the average brightness ratio of the portion of the spiral groove 48 was 2.1. In the ultrasonic image of Example 8, the average brightness ratio of the spiral grooves 48 was 2.1. That is, the average luminance values of Examples 7 and 8 were higher than those of Example 6.
 このように、溝深さDbが樹脂チューブ148の肉厚Tの37.5%以下で樹脂チューブ148の強度の低下を抑えることができた。以上より、溝深さDbは、反射波の散乱の観点より25μm以上に設定されるのが好ましい。また、溝深さDbは、強度低下の観点から樹脂チューブ148の肉厚Tの37.5%以下に設定されるのが好ましいという結果を得た。さらに、溝深さDbは、超音波画像における第3サンプル144の見え易さの観点から50μmに設定されるのがより好ましいという結果を得た。 As described above, when the groove depth Db is 37.5% or less of the thickness T of the resin tube 148, the decrease in the strength of the resin tube 148 can be suppressed. From the above, the groove depth Db is preferably set to 25 μm or more from the viewpoint of scattering of reflected waves. Further, it was found that the groove depth Db is preferably set to 37.5% or less of the thickness T of the resin tube 148 from the viewpoint of strength reduction. Further, it was found that the groove depth Db is more preferably set to 50 μm from the viewpoint of visibility of the third sample 144 in the ultrasonic image.
(ピッチPの設定に関する試験)
 図17に示すように、ピッチPの設定に関する試験では、実施例10~14に対して超音波画像の撮影を行った。実施例10に係る第3サンプル144の螺旋溝48のピッチPは、100μmである。実施例11に係る第3サンプル144の螺旋溝48のピッチPは、200μmである。実施例12に係る第3サンプル144の螺旋溝48のピッチPは、300μmである。実施例13に係る第3サンプル144の螺旋溝48のピッチPは、500μmである。実施例14に係る第3サンプル144の螺旋溝48のピッチPは、1000μmである。なお、実施例10~14において、溝幅Wは25μm、溝深さDbは50μm、溝長さLbは10mmである。
(Test for setting pitch P)
As shown in FIG. 17, in the test for setting the pitch P, ultrasonic images were taken for Examples 10-14. The pitch P of the spiral grooves 48 of the third sample 144 according to Example 10 is 100 μm. The pitch P of the spiral grooves 48 of the third sample 144 according to Example 11 is 200 μm. The pitch P of the spiral grooves 48 of the third sample 144 according to Example 12 is 300 μm. The pitch P of the spiral grooves 48 of the third sample 144 according to Example 13 is 500 μm. The pitch P of the spiral grooves 48 of the third sample 144 according to Example 14 is 1000 μm. In Examples 10 to 14, the groove width W is 25 μm, the groove depth Db is 50 μm, and the groove length Lb is 10 mm.
 一般的に、凹部の間隔が超音波の波長と同程度又はそれよりも大きい場合に超音波は散乱し易くなる。また、凹部が規則正しく存在する場合、超音波を比較的よく反射する。そのため、一般的な超音波画像診断装置300から発信される超音波の波長の下限値である100μmを螺旋溝48のピッチPの下限値とした。 In general, when the distance between the recesses is about the same as or larger than the wavelength of the ultrasonic waves, the ultrasonic waves tend to scatter. In addition, when concave portions are regularly present, ultrasonic waves are reflected relatively well. Therefore, the lower limit of the pitch P of the spiral grooves 48 is set at 100 μm, which is the lower limit of the wavelength of ultrasonic waves emitted from a general ultrasonic diagnostic imaging apparatus 300 .
[試験方法]
 実施例10~14において、超音波画像の撮影を行った。この超音波画像は、上述した実施例1及び実施例2の超音波画像と同様の方法により撮影した。
[Test method]
In Examples 10 to 14, ultrasound images were taken. This ultrasonic image was captured by the same method as the ultrasonic images of the first and second embodiments described above.
[結果]
 超音波画像では、実施例10~14において、上述した比較例1に比べて第3サンプル144を視認し易くなった。実施例10の超音波画像において、螺旋溝48の部分の平均輝度比は、2.1であった。実施例11の超音波画像において、螺旋溝48の部分の平均輝度比は、2.4であった。実施例12の超音波画像において、螺旋溝48の平均輝度比は、2.6であった。実施例13の超音波画像において、螺旋溝48の平均輝度比は、1.7であった。実施例14の超音波画像において、螺旋溝48の平均輝度比は、1.6であった。つまり、実施例10~14のうち実施例12の平均輝度値が最も高かった。
[result]
In the ultrasonic images, in Examples 10 to 14, the third sample 144 was easier to visually recognize than in Comparative Example 1 described above. In the ultrasonic image of Example 10, the average brightness ratio of the portion of the spiral groove 48 was 2.1. In the ultrasonic image of Example 11, the average brightness ratio of the portion of the spiral groove 48 was 2.4. In the ultrasonic image of Example 12, the average brightness ratio of the spiral grooves 48 was 2.6. In the ultrasonic image of Example 13, the average brightness ratio of the spiral grooves 48 was 1.7. In the ultrasonic image of Example 14, the average brightness ratio of the spiral grooves 48 was 1.6. That is, among Examples 10 to 14, Example 12 had the highest average luminance value.
 このように、螺旋溝48のピッチの下限値は、100μmに設定されるのが好ましく、300μmに設定されるのがより好ましいという結果を得た。 Thus, it was found that the lower limit of the pitch of the spiral grooves 48 is preferably set to 100 μm, and more preferably set to 300 μm.
(溝長さLbの設定に関する試験)
 図18に示すように、溝長さLbの設定に関する試験では、実施例15~18に対して超音波画像の撮影を行った。実施例15の第3サンプル144の溝長さLbは、1mmである。実施例16の第3サンプル144の溝長さLbは、3mmである。実施例17の第3サンプル144の溝長さLbは5mmである。実施例18の第3サンプル144の溝長さLbは、10mmである。なお、実施例15~18において、溝幅Wは25μm、溝深さDbは50μm、ピッチPは300μmである。
(Test for setting groove length Lb)
As shown in FIG. 18, in the test for setting the groove length Lb, ultrasonic images were taken for Examples 15-18. The groove length Lb of the third sample 144 of Example 15 is 1 mm. The groove length Lb of the third sample 144 of Example 16 is 3 mm. The groove length Lb of the third sample 144 of Example 17 is 5 mm. The groove length Lb of the third sample 144 of Example 18 is 10 mm. In Examples 15 to 18, the groove width W is 25 μm, the groove depth Db is 50 μm, and the pitch P is 300 μm.
[試験方法]
 実施例15~18において、超音波画像の撮影を行った。この超音波画像は、上述した実施例1及び実施例2の超音波画像と同様の方法により撮影した。
[Test method]
In Examples 15 to 18, ultrasound images were taken. This ultrasonic image was captured by the same method as the ultrasonic images of the first and second embodiments described above.
[結果]
 超音波画像では、実施例15~18において、上述した比較例1に比べて第3サンプル144を視認し易くなった。一般的に、光免疫療法に用いられる穿刺針10において、針体20の穿刺部28の長さの最大値は100mmである。そのため、溝長さLbは、1mm以上100mm以下に設定されるのが好ましい。
[result]
In the ultrasonic images, in Examples 15 to 18, the third sample 144 was easier to visually recognize than in Comparative Example 1 described above. Generally, in the puncture needle 10 used for photoimmunotherapy, the maximum length of the puncture portion 28 of the needle body 20 is 100 mm. Therefore, the groove length Lb is preferably set to 1 mm or more and 100 mm or less.
 本発明において、針体の外面に形成される凹部は、ディンプル加工又はブラスト加工によって形成してもよい。 In the present invention, the recess formed on the outer surface of the needle body may be formed by dimple processing or blast processing.
 なお、本発明は、上述した実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を取り得る。 It should be noted that the present invention is not limited to the above-described embodiments, and can take various configurations without departing from the gist of the present invention.
 本実施形態は、以下の内容を開示している。 This embodiment discloses the following contents.
 上記実施形態は、人体の皮膚の内側の組織に穿刺される中空の針体(20、50、60、80、90、100、110、130)と、前記針体の内腔(24)に挿入されるシャフト部(16)と、を備え、前記針体の外面(42、52、62、86、96、102、112、132)には、エコー下において超音波を反射させるための凹部(44、54、64、104、116、136)が形成されている、穿刺針を開示している。 The above embodiment includes a hollow needle body (20, 50, 60, 80, 90, 100, 110, 130) that is pierced into the tissue inside the skin of the human body, and a needle body that is inserted into the lumen (24) of the needle body. and a shaft portion (16) which is formed on the outer surface (42, 52, 62, 86, 96, 102, 112, 132) of the needle (42, 52, 62, 86, 96, 102, 112, 132) for reflecting ultrasonic waves under echo (44 , 54, 64, 104, 116, 136).
 上記の穿刺針において、前記針体の前記内腔には、前記シャフト部を前記針体から抜去した状態で治療用の光を照射する光照射部(314)を挿入可能であってもよい。 In the puncture needle described above, a light irradiation section (314) that emits therapeutic light may be inserted into the lumen of the needle body with the shaft section removed from the needle body.
 上記の穿刺針において、前記針体の内径は、0.5mm以上であってもよい。 In the above puncture needle, the inner diameter of the needle body may be 0.5 mm or more.
 上記の穿刺針において、前記穿刺針は、光免疫療法に用いられてもよい。 In the puncture needle described above, the puncture needle may be used for photoimmunotherapy.
 上記の穿刺針において、前記針体の前記内腔は、当該針体の先端部において封止されてもよい。 In the above puncture needle, the lumen of the needle body may be sealed at the distal end of the needle body.
 上記の穿刺針において、前記凹部は、溝部(46、56、66、106、118、138)を有してもよい。 In the puncture needle described above, the recess may have grooves (46, 56, 66, 106, 118, 138).
 上記の穿刺針において、前記溝部は、当該溝部の深さ方向に向かって幅狭に形成されてもよい。 In the puncture needle described above, the groove may be formed narrower in the depth direction of the groove.
 上記の穿刺針において、前記溝部は、1条巻き又は多条巻きの螺旋溝(48、58)を有してもよい。 In the puncture needle described above, the groove portion may have a single-wound or multi-wound spiral groove (48, 58).
 上記の穿刺針において、前記溝部は、前記針体の軸線方向に間隔を空けて配置された複数の短溝(70)を含む溝列(68)を有し、前記複数の短溝の各々は、前記針体の周方向に沿った長さが当該針体の周長の1/4以下であってもよい。 In the puncture needle described above, the groove portion has a groove row (68) including a plurality of short grooves (70) spaced apart in the axial direction of the needle body, each of the plurality of short grooves , the length along the circumferential direction of the needle body may be 1/4 or less of the circumferential length of the needle body.
 上記の穿刺針において、前記溝列は、前記針体の周方向に間隔を空けて複数設けられてもよい。 In the puncture needle described above, a plurality of groove rows may be provided at intervals in the circumferential direction of the needle body.
 上記の穿刺針において、前記複数の短溝の各々は、前記針体の先端に向かって当該針体の周方向に沿った第1周方向に傾斜した第1傾斜溝(72)と、前記針体の先端に向かって前記第1周方向とは反対方向である第2周方向に傾斜した第2傾斜溝(74)と、を含み、前記第1傾斜溝の先端と前記第2傾斜溝の先端とは、互いに繋がってもよい。 In the puncture needle described above, each of the plurality of short grooves includes a first inclined groove (72) inclined in a first circumferential direction along the circumferential direction of the needle body toward the distal end of the needle body; a second slanted groove (74) slanted in a second circumferential direction opposite to the first circumferential direction toward the tip of the body, wherein the tip of the first slanted groove and the second slanted groove The tips may be connected to each other.
 上記の穿刺針において、前記溝部は、前記針体の周方向に一周延在した環状溝(108)を有してもよい。 In the above-described puncture needle, the groove portion may have an annular groove (108) extending around the circumference of the needle body.
 上記の穿刺針において、前記環状溝は、前記針体の軸線方向に間隔を空けて複数設けられてもよい。 In the puncture needle described above, a plurality of the annular grooves may be provided at intervals in the axial direction of the needle body.
 上記の穿刺針において、前記溝部の溝幅(W)は、10μm以上50μm以下に設定されてもよい。 In the puncture needle described above, the groove width (W) of the groove portion may be set to 10 μm or more and 50 μm or less.
 上記の穿刺針において、前記針体は、当該針体の内腔を周回する針本体(30)を有し、前記溝部の溝深さ(Db)は、25μm以上且つ前記針本体の肉厚(T)の37.5%以下に設定されてもよい。 In the puncture needle described above, the needle body has a needle body (30) that encircles the inner lumen of the needle body, and the groove depth (Db) of the groove is 25 μm or more and the thickness of the needle body ( T) may be set to 37.5% or less.
 上記の穿刺針において、前記溝部のピッチ(P)は、100μm以上に設定されてもよい。 In the puncture needle described above, the pitch (P) of the grooves may be set to 100 μm or more.
 上記の穿刺針において、前記溝部の前記針体の軸線方向に沿った溝長さ(Lb)は、1mm以上に設定されてもよい。 In the puncture needle described above, the groove length (Lb) of the groove along the axial direction of the needle body may be set to 1 mm or more.
10…穿刺針              16…シャフト部
20、50、60、80、90、100、110、130…針体
24…内腔               30…針本体
32…針先端部
44、54、64、104、116、136…凹部
46、56、66、106、118、138…溝部
48、58…螺旋溝           68…溝列
70…短溝               72…第1傾斜溝
74…第2傾斜溝            108…環状溝
314…光照射部            Db…溝深さ
Lb…溝長さ              P…ピッチ
W…溝幅
DESCRIPTION OF SYMBOLS 10... Puncture needle 16... Shaft part 20, 50, 60, 80, 90, 100, 110, 130... Needle body 24... Bore 30... Needle body 32... Needle tip part 44, 54, 64, 104, 116, 136 ... concave portions 46, 56, 66, 106, 118, 138 ... grooves 48, 58 ... spiral grooves 68 ... groove row 70 ... short grooves 72 ... first inclined grooves 74 ... second inclined grooves 108 ... annular grooves 314 ... light irradiation portions Db... Groove depth Lb... Groove length P... Pitch W... Groove width

Claims (17)

  1.  人体の皮膚の内側の組織に穿刺される中空の針体と、
     前記針体の内腔に挿入されるシャフト部と、を備え、
     前記針体の外面には、エコー下において超音波を反射させるための凹部が形成されている、穿刺針。
    a hollow needle body to be pierced into the tissue inside the skin of the human body;
    a shaft portion inserted into the lumen of the needle body,
    The puncture needle, wherein the outer surface of the needle body is formed with a concave portion for reflecting ultrasonic waves under echo.
  2.  請求項1記載の穿刺針であって、
     前記針体の前記内腔には、前記シャフト部を前記針体から抜去した状態で治療用の光を照射する光照射部を挿入可能である、穿刺針。
    The puncture needle according to claim 1,
    A puncture needle, wherein a light irradiation section that irradiates light for treatment can be inserted into the lumen of the needle body with the shaft section removed from the needle body.
  3.  請求項2記載の穿刺針であって、
     前記針体の内径は、0.5mm以上である、穿刺針。
    The puncture needle according to claim 2,
    The puncture needle, wherein the inner diameter of the needle body is 0.5 mm or more.
  4.  請求項1~3のいずれか1項に記載の穿刺針であって、
     前記穿刺針は、光免疫療法に用いられる、穿刺針。
    The puncture needle according to any one of claims 1 to 3,
    The puncture needle is a puncture needle used for photoimmunotherapy.
  5.  請求項1~4のいずれか1項に記載の穿刺針であって、
     前記針体の前記内腔は、当該針体の先端部において封止されている、穿刺針。
    The puncture needle according to any one of claims 1 to 4,
    The puncture needle, wherein the inner lumen of the needle body is sealed at the distal end of the needle body.
  6.  請求項1~5のいずれか1項に記載の穿刺針であって、
     前記凹部は、溝部を有する、穿刺針。
    The puncture needle according to any one of claims 1 to 5,
    The puncture needle, wherein the recess has a groove.
  7.  請求項6記載の穿刺針であって、
     前記溝部は、当該溝部の深さ方向に向かって幅狭に形成されている、穿刺針。
    The puncture needle according to claim 6,
    The puncture needle, wherein the groove is narrow in the depth direction of the groove.
  8.  請求項6又は7に記載の穿刺針であって、
     前記溝部は、1条巻き又は多条巻きの螺旋溝を有する、穿刺針。
    The puncture needle according to claim 6 or 7,
    The puncture needle, wherein the groove portion has a single-wound or multi-wound spiral groove.
  9.  請求項6~8のいずれか1項に記載の穿刺針であって、
     前記溝部は、前記針体の軸線方向に間隔を空けて配置された複数の短溝を含む溝列を有し、
     前記複数の短溝の各々は、前記針体の周方向に沿った長さが当該針体の周長の1/4以下である、穿刺針。
    The puncture needle according to any one of claims 6 to 8,
    the groove portion has a groove row including a plurality of short grooves spaced apart in the axial direction of the needle body;
    A puncture needle, wherein each of the plurality of short grooves has a length along the circumferential direction of the needle body that is 1/4 or less of the circumferential length of the needle body.
  10.  請求項9記載の穿刺針であって、
     前記溝列は、前記針体の周方向に間隔を空けて複数設けられている、穿刺針。
    The puncture needle according to claim 9,
    The puncture needle, wherein a plurality of the groove rows are provided at intervals in the circumferential direction of the needle body.
  11.  請求項9又は10に記載の穿刺針であって、
     前記複数の短溝の各々は、
     前記針体の先端に向かって当該針体の周方向に沿った第1周方向に傾斜した第1傾斜溝と、
     前記針体の先端に向かって前記第1周方向とは反対方向である第2周方向に傾斜した第2傾斜溝と、を含み、
     前記第1傾斜溝の先端と前記第2傾斜溝の先端とは、互いに繋がっている、穿刺針。
    The puncture needle according to claim 9 or 10,
    each of the plurality of short grooves,
    a first inclined groove inclined in a first circumferential direction along the circumferential direction of the needle body toward the tip of the needle body;
    a second inclined groove inclined in a second circumferential direction opposite to the first circumferential direction toward the tip of the needle,
    The puncture needle, wherein the tip of the first inclined groove and the tip of the second inclined groove are connected to each other.
  12.  請求項6~11のいずれか1項に記載の穿刺針であって、
     前記溝部は、前記針体の周方向に一周延在した環状溝を有する、穿刺針。
    The puncture needle according to any one of claims 6 to 11,
    The puncture needle, wherein the groove portion has an annular groove extending around in the circumferential direction of the needle body.
  13.  請求項12記載の穿刺針であって、
     前記環状溝は、前記針体の軸線方向に間隔を空けて複数設けられている、穿刺針。
    The puncture needle according to claim 12,
    The puncture needle, wherein a plurality of the annular grooves are provided at intervals in the axial direction of the needle body.
  14.  請求項6~13のいずれか1項に記載の穿刺針であって、
     前記溝部の溝幅は、10μm以上50μm以下に設定されている、穿刺針。
    The puncture needle according to any one of claims 6 to 13,
    The puncture needle, wherein the groove width of the groove is set to 10 μm or more and 50 μm or less.
  15.  請求項6~14のいずれか1項に記載の穿刺針であって、
     前記針体は、当該針体の内腔を周回する針本体を有し、
     前記溝部の溝深さは、25μm以上且つ前記針本体の肉厚の37.5%以下に設定されている、穿刺針。
    The puncture needle according to any one of claims 6 to 14,
    The needle body has a needle body that surrounds the lumen of the needle body,
    The puncture needle, wherein the groove depth of the groove is set to 25 μm or more and 37.5% or less of the thickness of the needle body.
  16.  請求項6~15のいずれか1項に記載の穿刺針であって、
     前記溝部のピッチは、100μm以上に設定されている、穿刺針。
    The puncture needle according to any one of claims 6 to 15,
    The puncture needle, wherein the pitch of the grooves is set to 100 μm or more.
  17.  請求項6~16のいずれか1項に記載の穿刺針であって、
     前記溝部の前記針体の軸線方向に沿った溝長さは、1mm以上に設定されている、穿刺針。
    The puncture needle according to any one of claims 6 to 16,
    The puncture needle, wherein the groove length of the groove portion along the axial direction of the needle body is set to 1 mm or more.
PCT/JP2022/044105 2021-12-06 2022-11-30 Puncture needle WO2023106172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021197903 2021-12-06
JP2021-197903 2021-12-06

Publications (1)

Publication Number Publication Date
WO2023106172A1 true WO2023106172A1 (en) 2023-06-15

Family

ID=86730301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044105 WO2023106172A1 (en) 2021-12-06 2022-11-30 Puncture needle

Country Status (1)

Country Link
WO (1) WO2023106172A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09502904A (en) * 1993-09-29 1997-03-25 メディカル カレッジ オブ オハイオ Use of photodynamic therapy to treat prostate cells
JP2009165822A (en) * 2008-01-14 2009-07-30 Olympus Medical Systems Corp Endoscope treatment instrument
US20110054459A1 (en) * 2009-08-27 2011-03-03 Vivant Medical, Inc. Ecogenic Cooled Microwave Ablation Antenna
US20110160592A1 (en) * 2008-07-29 2011-06-30 Coco Research PTY Ltd. Echogenic medical needle
WO2011126109A1 (en) * 2010-04-08 2011-10-13 学校法人久留米大学 Puncture aspiration method and puncture aspiration device
WO2020049629A1 (en) * 2018-09-04 2020-03-12 オリンパス株式会社 Light irradiation device delivery apparatus and phototherapy method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09502904A (en) * 1993-09-29 1997-03-25 メディカル カレッジ オブ オハイオ Use of photodynamic therapy to treat prostate cells
JP2009165822A (en) * 2008-01-14 2009-07-30 Olympus Medical Systems Corp Endoscope treatment instrument
US20110160592A1 (en) * 2008-07-29 2011-06-30 Coco Research PTY Ltd. Echogenic medical needle
US20110054459A1 (en) * 2009-08-27 2011-03-03 Vivant Medical, Inc. Ecogenic Cooled Microwave Ablation Antenna
WO2011126109A1 (en) * 2010-04-08 2011-10-13 学校法人久留米大学 Puncture aspiration method and puncture aspiration device
WO2020049629A1 (en) * 2018-09-04 2020-03-12 オリンパス株式会社 Light irradiation device delivery apparatus and phototherapy method

Similar Documents

Publication Publication Date Title
EP2620111B1 (en) Echogenic medical device
US20090131790A1 (en) Systems and methods for deploying echogenic components in ultrasonic imaging fields
EP2931132B1 (en) System for targeted cannulation
US8657749B2 (en) Ultrasonic puncture needle
US10751124B2 (en) Methods for implanting and reversing stimuli-responsive implants
CN203619634U (en) Special peripheral nerve block needle and trocar for ultrasonic guidance
US9980699B2 (en) Shaped echogenic needle groove
EP2672912B1 (en) Fiber embedded hollow needle for percutaneous delivery of laser energy
US20210052861A1 (en) Echogenic balloon dilation catheter and balloon thereof
WO2023106172A1 (en) Puncture needle
US20210379395A1 (en) Treatment Method and Treatment System
JP5191823B2 (en) Indwelling needle and puncture needle
WO2023120082A1 (en) Puncture needle
KR101095466B1 (en) Needle for interventional injection procedure by ultrasound guidance
US20110270090A1 (en) Needle having ultrasound opaque elements
US20230034291A1 (en) Apparatus and methods for bending a needle
WO2021029169A1 (en) Endoscope treatment tool and method for operating same
JP2014176429A (en) Trans-body cavity cauterization device
US9622719B2 (en) Color ultrasound needle
US20210379396A1 (en) Treatment method and treatment system
KR101861234B1 (en) The strengthening thin-needle for visibility of ultrasound biopsy induction video
US20210379398A1 (en) Treatment method and treatment system
WO2022202282A1 (en) Delivery device
US20200179001A1 (en) Medical needle comprising echogenic enhancements
US11517667B2 (en) Puncture needle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904103

Country of ref document: EP

Kind code of ref document: A1