WO2023100947A1 - Modified metal oxide colloidal particles, and method for producing same - Google Patents

Modified metal oxide colloidal particles, and method for producing same Download PDF

Info

Publication number
WO2023100947A1
WO2023100947A1 PCT/JP2022/044245 JP2022044245W WO2023100947A1 WO 2023100947 A1 WO2023100947 A1 WO 2023100947A1 JP 2022044245 W JP2022044245 W JP 2022044245W WO 2023100947 A1 WO2023100947 A1 WO 2023100947A1
Authority
WO
WIPO (PCT)
Prior art keywords
colloidal particles
metal oxide
group
oxide colloidal
mass
Prior art date
Application number
PCT/JP2022/044245
Other languages
French (fr)
Japanese (ja)
Inventor
欣也 小山
智規 古川
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2023100947A1 publication Critical patent/WO2023100947A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds

Definitions

  • the present invention provides a modified metal oxide in which the surfaces of metal oxide colloidal particles are coated with a coating layer comprising a composite oxide of Si and Al and at least one atom selected from the group consisting of Sn, Sb and W.
  • the present invention relates to a material colloidal particle, a method for producing the modified metal oxide colloidal particle, and a coating composition containing the modified metal oxide colloidal particle.
  • Plastic moldings are used in large quantities due to their advantages such as light weight, easy workability, and impact resistance. However, it has disadvantages such as insufficient heat resistance. Therefore, when plastic molded bodies are used as spectacle lenses, window materials, etc., there are practical drawbacks as described above, compared to inorganic glass molded bodies. Therefore, it has been proposed to apply a protective coat (protective coating) to the plastic molded article. A large variety of coating compositions have been proposed for use in protective coatings.
  • a coating composition containing an organosilicon compound or a hydrolyzate thereof as a main component (resin component or coating film-forming component) is used for spectacle lenses as a coating composition that provides a nearly inorganic hard coating (Patent Document 1). . Since the above coating composition is still unsatisfactory in scratch resistance, it has been proposed to add a colloidally dispersed silicon dioxide sol to the coating composition, which has been put to practical use for spectacle lenses (Patent Document 2).
  • a silane coupling agent and a colloidal particle (a) of a metal oxide having a primary particle diameter of 2 to 60 nm are used as nuclei, and the surface thereof is coated with a coating (b) composed of colloidal particles of an acidic oxide.
  • a coating composition comprising:
  • a modified titanium oxide-zirconium oxide-stannic oxide composite colloid coated with antimony pentoxide containing alkylamine is disclosed (Patent Document 7).
  • a titanium oxide-stannic oxide-zirconium oxide composite colloid stabilized with an alkylamine or an oxycarboxylic acid has been disclosed (Patent Document 8).
  • core particles composed of oxide fine particles or composite oxide fine particles containing, as a main component, one kind of metal element selected from the group consisting of zirconium, tin, titanium, niobium, tungsten, antimony, indium, and lanthanum; and (b) a shell layer covering the core particles and containing a composite oxide shell layer containing a composite oxide of silicon and aluminum as a main component, wherein the oxide conversion of silicon and aluminum contained in the shell layer A core-shell having a reference weight ratio (SiO 2 /Al 2 O 3 ) in the range of 30 to 2000, and a weight of the composite oxide shell layer in the range of 5 to 100 parts by weight with respect to 100 parts by weight of the core particles.
  • SiO 2 /Al 2 O 3 reference weight ratio
  • a dispersion containing type oxide fine particles and a dispersion medium has been proposed (Patent Document 9).
  • the composite oxide shell layer contains a metal element other than silicon and aluminum, the surface negative charge of the core-shell type oxide fine particles may decrease, or the coverage of the core particles with the shell layer may decrease.
  • rice field In the production of the above-mentioned core-shell type oxide microparticles, silicon alkoxide and/or silicon alkoxide and/or silica are used in order to suppress a decrease in the coating ratio of the core particles with the shell and a decrease in the amount of negative charge on the surface of the core-shell composite oxide microparticles. It was necessary to simultaneously add the acid-containing silicon compound solution and the aluminate aqueous solution to the aqueous dispersion of the core particles at a constant rate.
  • a coating film formed from a coating composition that uses metal oxide colloidal particles containing organic amines such as alkylamines has the problem of being prone to yellowing due to organic amines.
  • An object of the present invention is to provide modified metal oxide colloid particles that suppress yellowing of cured films when applied to coating compositions.
  • the inventors of the present invention have made intensive studies to solve the above problems, and as a result, the surface of the metal oxide colloidal particles serving as nuclei was coated with at least one atom selected from the group consisting of Si and Al and Sn, Sb and W.
  • the coating layer (B) made of a composite oxide with, especially Si and at least one atom selected from the group consisting of Sn, Sb and W, is modified with an aluminate.
  • the present invention provides, as a first aspect, a composite of Si and Al and at least one atom selected from the group consisting of Sn, Sb and W on the surface of which metal oxide colloidal particles (A) are used as nuclei.
  • the present invention relates to modified metal oxide colloidal particles (C) having an average particle diameter of 5 to 300 nm and coated with a coating layer (B) made of an oxide.
  • the coating layer (B) is formed by modifying an unmodified composite oxide of Si and at least one atom selected from the group consisting of Sn, Sb and W with an aluminate. It relates to the modified metal oxide colloidal particles (C) according to the first aspect, which is a layer.
  • the metal oxide colloidal particles (A) are composed of Ti, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, Sn, Sb, Ta, W, Pb, Bi and Ce
  • the modified metal oxide colloidal particles (C) according to the first aspect or the second aspect which are colloidal particles of at least one metal oxide selected from the group consisting of:
  • the Al content (in terms of Al 2 O 3 ) in the coating layer (B) is the total metal oxide of the metal oxide colloid particles (A) and the total composite oxide of the coating layer (B). It relates to the modified metal oxide colloid particles (C) according to any one of the first to fourth aspects, which is 0.05 to 0.5% by mass based on the total mass.
  • the Al content (in terms of Al 2 O 3 ) in the coating layer (B) is 0.1 to 10% by mass based on the mass of the total composite oxide of the coating layer (B). It relates to the modified metal oxide colloidal particles (C) according to any one of the first to fifth aspects.
  • the content of total nitrogen derived from organic amines in the modified colloidal metal oxide particles (C) is equal to It relates to the modified metal oxide colloidal particles (C) according to any one of the first to sixth aspects, which is 0.05% by mass or less based on the total mass of the composite oxide.
  • at least part of the surface of the modified metal oxide colloidal particles (C) is surface-modified with an organosilicon compound represented by general formula (1) or general formula (2). It relates to the modified metal oxide colloidal particles (C) according to any one of the aspect to the seventh aspect.
  • R 1′ and R 3' are alkyl groups, phenyl groups, vinyl groups, acryloxy groups, methacryloxy groups, epoxy groups, styryl groups, isocyanate groups, mercapto groups, ureido groups, acid anhydride groups, or carbon atoms containing functional groups thereof.
  • each R 1' and each R 3 ' may be the same or different
  • R 2' and R 4 ' each represents a hydrolyzable group consisting of an alkoxy group, an acyloxy group, or a halogen atom ; may be the same or different
  • Y represents an alkylene group, an arylene group, an NH group or an oxygen atom.
  • a′ represents an integer of 1 to 3
  • d represents an integer of 0 to 3
  • e represents an integer of 0 or 1.
  • a ninth aspect relates to a dispersion of modified metal oxide colloidal particles (C) in which the modified metal oxide colloidal particles (C) according to any one of the first to eighth aspects are dispersed in an aqueous medium or an organic solvent. .
  • (S) component an organosilicon compound and/or a silicon-containing substance that is a hydrolyzate thereof
  • component the modified metal oxidation according to any one of the first to eighth aspects
  • Colloidal particles (C) A coating composition comprising A coating composition in which the organosilicon compound as component (S) contains at least one organosilicon compound selected from the group consisting of compounds represented by the following formula (I) and compounds represented by the following formula (II): about things.
  • R 1 and R 3 each independently represent an alkyl group, an aryl group, a vinyl group, a halogenated alkyl group, a halogenated aryl group or an alkenyl group, or an epoxy group, an isocyanate group, an acryloyl group, a methacryloyl group, represents an organic group that is a monovalent organic group having a mercapto group, a ureido group, or a cyano group and is bonded to a silicon atom via a Si—C bond
  • R 2 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, an aralkyl group, an alkoxyalkyl group, or an acyl group; a and b each independently represent an integer of 0, 1, or 2, and a+b is an integer of 0, 1, or 2;
  • a twelfth aspect relates to a cured film produced using the coating composition according to the tenth or eleventh aspect.
  • a thirteenth aspect relates to an optical member having the cured film according to the twelfth aspect on the surface of an optical substrate.
  • a fourteenth aspect relates to an optical member having an antireflection film on the surface of the cured film according to the thirteenth aspect.
  • modified metal oxide colloidal particles including the following steps (a) to (d).
  • step (c) Heating the mixed solution obtained in step (b) with H Step (d) of contacting with a type cation exchange resin, mixing the mixed solution obtained in the step (c) and an aluminate aqueous solution, and heating at a temperature of 30 to 320 ° C. for 0.5 to 24 hours.
  • the mass of the total complex oxide of the unmodified complex oxide colloidal particles/the mass of the total metal oxide of the metal oxide colloidal particles (A) is 0.05 to 0.50.
  • the mixed solution obtained in the step (c) is adjusted so that the mass of the total composite oxide/the mass of the aluminate (in terms of Al 2 O 3 ) is 50 to 800 and an aluminate aqueous solution.
  • An eighteenth aspect relates to the method for producing modified metal oxide colloidal particles (C) according to any one of the fifteenth to seventeenth aspects, wherein the heat treatment in step (b) is performed under hydrothermal conditions.
  • the modified metal oxide colloidal particles of the present invention When blended in a coating composition, they can form a composition capable of forming a cured film that is resistant to yellowing. Also, the coating composition of the present invention can form a cured film that is resistant to yellowing. Therefore, an optical member having a cured film produced from the coating composition containing the modified metal oxide colloidal particles of the present invention can be used particularly as spectacles, display materials, and the like.
  • An aqueous dispersion obtained by dispersing the modified metal oxide colloidal particles of the present invention in an aqueous medium has excellent dispersion stability.
  • the surface of the modified metal oxide colloidal particles may or may not be surface-modified with an organic silicon compound. Even without it, the dispersion stability is excellent.
  • the modified metal oxide colloidal particle (C) of the present invention has the metal oxide colloidal particle (A) as a nucleus, and the surface of the metal oxide colloidal particle (A) is Si, Al, and at least one atom selected from the group consisting of Sn, Sb and W. Particles having an average particle diameter of 5 to 300 nm, which are coated with a coating layer (B) comprising a composite oxide of Further, as one of the preferred embodiments of the present invention, the metal oxide colloidal particles (A) are used as nuclei, and the surfaces thereof are unmodified with Si and at least one atom selected from the group consisting of Sn, Sb and W. Modified metal oxide colloid particles (C) having an average particle diameter of 5 to 300 nm, which are coated with a coating layer (B) obtained by modifying a complex oxide with an aluminate.
  • the metal oxide colloidal particles (A) are selected from the group consisting of Ti, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, Sn, Sb, Ta, W, Pb, Bi and Ce. colloidal particles of at least one metal oxide.
  • the colloidal particles (A) of metal oxides are colloidal particles of oxides of metals having a valence of 2-6 . , Y2O3 , ZrO2 , Nb2O5 , MoO3 , In2O3 , SnO2 , Sb2O5 , Ta2O5 , WO3 , PbO, Bi2O3 , CeO2 , etc. can do.
  • metal oxides can be used either singly or in combination.
  • Examples of the method of combination include a method of mixing several types of the metal oxides, a method of forming a composite of the metal oxides, and a method of forming a solid solution of the metal oxides at the atomic level.
  • the colloidal particles (A) of metal oxides are composed of a plurality of kinds of metal oxides, for example, TiO 2 -SnO in which TiO 2 particles and SnO 2 particles are chemically bonded at their interface to form a composite.
  • 2 composite oxide colloidal particles SnO 2 —WO 3 composite oxide colloidal particles in which SnO 2 particles and WO 3 particles are chemically bonded at their interface to form a composite, SnO 2 particles and ZrO 2 particles SnO 2 —ZrO 2 composite oxide colloidal particles composited by chemical bonding at their interfaces, TiO 2 —ZrO obtained by forming a solid solution of TiO 2 , ZrO 2 and SnO 2 at the atomic level 2 -SnO 2 composite oxide colloidal particles and the like.
  • these composite oxide colloidal particles are not just a mixture of metal oxide particles such as TiO2 particles, SnO2 particles.
  • the colloidal particles (A) of metal oxide can also be used as a compound by combining metal components such as ZnSb 2 O 6 , InSbO 4 and ZnSnO 3 .
  • the colloidal particles (A) of metal oxide can be produced by known methods such as ion exchange, peptization, hydrolysis, and reaction methods.
  • the ion exchange method include a method of treating an acid salt of the metal with a hydrogen-type ion exchange resin, or a method of treating a basic salt of the metal with a hydroxyl-type anion exchange resin.
  • deflocculation include washing the gel obtained by neutralizing the acid salt of the metal with a base or neutralizing the basic salt of the metal with an acid, followed by peptization with an acid or a base. method.
  • hydrolysis method examples include a method of hydrolyzing the alkoxide of the metal, or a method of hydrolyzing the basic salt of the metal under heating and then removing unnecessary acid.
  • reaction method examples include a method of reacting the metal powder with an acid.
  • composite metal oxide colloid particles can be obtained by mixing metal oxide colloid particles obtained by these known methods with a metal acid salt.
  • the particles may be amorphous or crystals such as anatase, rutile, and brookite. Further, it may be a perovskite titanium compound such as barium titanate (represented by BaTiO 3 or BaO.TiO 2 ).
  • the crystal type of the colloidal particles of the composite oxide containing titanium oxide as a main component is preferably the rutile type.
  • the colloidal particles (A) of the metal oxide contain zirconium oxide
  • the particles may be amorphous or may be crystals such as monoclinic, tetragonal, or cubic.
  • the average primary particle size of the core metal oxide colloidal particles (A) can be measured by observation with a transmission electron microscope.
  • the average primary particle size is, for example, in the range of 1-300 nm, or 3-200 nm, or 5-100 nm.
  • the coating layer (B) is a layer made of a composite oxide of Si and Al and at least one atom selected from the group consisting of Sn, Sb and W, preferably Si, Sn, Sb and W It is a layer obtained by modifying an unmodified composite oxide with at least one atom selected from the group consisting of with an aluminate.
  • the composite oxide is different from the metal oxide of the metal oxide colloidal particles (A).
  • the coating layer (B) for example, SiO 2 —SnO 2 composite oxide colloidal particles, in which SiO 2 particles and SnO 2 particles are chemically bonded at their interface to form a composite, are coated with an aluminate.
  • SiO 2 —SnO 2 —Al 2 O 3 coating layer SiO 2 —Sb 2 O 5 composite in which SiO 2 particles and Sb 2 O 5 particles are chemically bonded at their interfaces Oxide colloid particles form an aluminate-modified SiO 2 —Sb 2 O 5 —Al 2 O 3 coating layer, and SiO 2 particles and WO 3 particles form a chemical bond at the interface to form a composite.
  • SiO 2 —WO 3 —Al 2 O 3 coating layer obtained by modifying SiO 2 —WO 3 composite oxide colloidal particles with an aluminate.
  • the coating layer (B) is, for example, a metal oxide colloid (A), a SiO 2 —SnO 2 composite oxide in which SiO 2 particles and SnO 2 particles are chemically bonded at their interfaces. It can also be an aluminate-modified SiO 2 —SnO 2 —Al 2 O 3 coating layer after being coated with colloidal particles.
  • the coating layer (B) is a layer obtained by modifying an unmodified composite oxide of Si and at least one atom selected from the group consisting of Sn, Sb and W with an aluminate. preferable.
  • modified metal oxide colloid particles (C) provided with a coating layer (B) obtained by modifying an unmodified composite oxide with an aluminate are good even when they are dispersed in an organic solvent as a medium. It is possible to express a decent dispersion state.
  • the tetrahydroxidealuminate ion and the orthosilicate ion are geometrically similar, so that the tetrahydroxidealuminate ion is inserted between the Si—O bonds or the Al atom is exchanged with the Si atom on the SiO2 surface, It is presumed that Si atoms and Al atoms form bonds through O atoms, and the unmodified composite oxide is modified with aluminate.
  • the unmodified composite oxide colloidal particles can be produced by known methods such as ion exchange method and oxidation method.
  • An example of the ion exchange method is a method in which an acid salt of said atom is treated with a hydrogen ion exchange resin.
  • Examples of oxidation methods include reacting atomic or inorganic oxide powders with hydrogen peroxide.
  • the Al content contained in the coating layer (B) can be determined by measuring the modified metal oxide colloidal particles (C) using a wavelength dispersive X-ray fluorescence analyzer.
  • the Al content (in terms of Al 2 O 3 ) in the coating layer (B) is based on the total mass of all metal oxides in the metal oxide colloidal particles (A) and all composite oxides in the coating layer (B), For example, it ranges from 0.05 to 0.5 mass %, or from 0.08 to 0.5 mass %.
  • the total mass of all metal oxides in the metal oxide colloidal particles (A) and all composite oxides in the coating layer (B) can be quantified by a calcination method.
  • the Al content (in terms of Al 2 O 3 ) in the coating layer (B) is, for example, in the range of 0.1 to 10% by mass based on the mass of the total composite oxide in the coating layer (B). .
  • the modified metal oxide colloidal particles (C) are particles having an average particle size of 5 to 300 nm, which are formed by coating the surface of the metal oxide colloidal particles (A) with the coating layer (B).
  • the modified metal oxide colloidal particles (C) can be measured for the average particle size by a dynamic light scattering method (DLS method).
  • the average particle size is 5-300 nm, preferably 5-200 nm.
  • the modified metal oxide colloidal particles (C) are particles obtained by forming a chemical bond between the coating layer (B) and the surface of the metal oxide colloidal particles (A), the modified metal oxide
  • the average primary particle size of the colloidal particles (C) as measured by a transmission electron microscope is not necessarily larger than the average primary particle size of the metal oxide colloidal particles (A), and may vary somewhat depending on their chemical bonds.
  • the average primary particle size of the modified metal oxide colloidal particles (C) as measured by a transmission electron microscope ranges, for example, from 5 to 300 nm, or from 5 to 200 nm.
  • the mass ratio of the composite oxide to be the coating layer (B) to the metal oxide colloidal particles (A) [mass of the composite oxide/mass of the metal oxide in the metal oxide colloidal particles (A)] is, for example, 0. 0.05 to 0.50, or 0.05 to 0.30, or 0.03 to 0.30.
  • Modified metal oxide colloidal particles (C) contain substantially no organic amine. Specifically, the content of total nitrogen derived from organic amines in the modified colloidal metal oxide particles (C) is the total composite For example, 0.05% by weight or less, or 0.01% by weight or less, based on the total weight of the oxides.
  • the total nitrogen content derived from the organic amine in the modified metal oxide colloidal particles (C) is determined by quantifying the organic amine contained in the modified metal oxide colloidal particles (C) by a cation chromatography method. It can be obtained by calculating the total nitrogen content. Further, the total mass of all metal oxides in the metal oxide colloidal particles (A) and all composite oxides in the coating layer (B) can be quantified by a sintering method.
  • R 1′ and R 3' are alkyl groups, phenyl groups, vinyl groups, acryloxy groups, methacryloxy groups, epoxy groups, styryl groups, isocyanate groups, mercapto groups, ureido groups, acid anhydride groups, or carbon atoms containing functional groups thereof.
  • each R 1' and each R 3 ' may be the same or different
  • R 2' and R 4 ' each represents a hydrolyzable group consisting of an alkoxy group, an acyloxy group, or a halogen atom ; may be the same or different
  • Y represents an alkylene group, an arylene group, an NH group or an oxygen atom.
  • a ′ represents an integer of 1 to 3
  • d represents an integer of 0 to 3
  • e represents an integer of 0 or 1.
  • the alkyl group includes an alkyl group having 1 to 10 carbon atoms
  • the alkoxy group includes an alkoxy group having 1 to 10 carbon atoms
  • the acyloxy group includes an acyloxy group having 1 to 10 carbon atoms.
  • the halogen atom includes fluorine atom, chlorine atom, bromine atom and iodine atom
  • the arylene group includes an arylene group having 6 to 10 carbon atoms.
  • the epoxy group includes not only epoxy groups but also groups containing epoxy groups (glycidyl group, glycidoxy group, epoxycycloalkyl group, etc.).
  • organosilicon compound represented by formula (1) examples include methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane.
  • organosilicon compound represented by formula (2) examples include hexamethyldisiloxane and hexamethyldisilazane.
  • organosilicon compounds are used for the purpose of improving the dispersibility of the modified metal oxide colloidal particles (C) in organic solvents, or improving the compatibility with resins such as thermosetting resins, thermoplastic resins and ultraviolet curable resins. can be selected and used as appropriate.
  • resins such as thermosetting resins, thermoplastic resins and ultraviolet curable resins.
  • These organosilicon compounds are available from Shin-Etsu Chemical Co., Ltd. and Tokyo Chemical Industry Co., Ltd.
  • At least part of the surface of the modified metal oxide colloidal particles (C) is modified with an organosilicon compound represented by general formula (1) or general formula (2), that is, the modified metal oxide colloidal particles (C)
  • an organosilicon compound represented by general formula (1) or general formula (2) that is, the modified metal oxide colloidal particles (C)
  • the organosilicon compound represented by general formula (1) or general formula (2) to at least part of the surface of the modified metal oxide colloid particles (C) (for example, modified metal oxide colloid An alcohol-dispersed sol of particles (C)) and an organosilicon compound represented by general formula (1) or general formula (2) (or an alcohol solution thereof) are mixed in a predetermined amount, and (if necessary) a predetermined amount of After adding water and, if necessary, a hydrolysis catalyst such as dilute hydrochloric acid, the mixture is allowed to stand at normal temperature for a predetermined time, or heat treatment may be performed.
  • a hydrolysis catalyst such as dilute hydrochloric acid
  • the modified metal oxide colloidal particles (C) is surface-modified with an organosilicon compound represented by the general formula (1) or general formula (2), that is, the modified metal oxide colloidal particles (
  • Another method of bonding the organosilicon compound represented by general formula (1) or general formula (2) to at least part of the surface of C) is, for example, the modified metal oxide colloid particles (C) (for example, Aqueous dispersion of modified metal oxide colloidal particles (C)) and a solution of an organosilicon compound represented by general formula (1) or general formula (2) (for example, a hydrophilic organic solvent such as alcohol) are mixed in a predetermined amount.
  • the modified metal oxide colloid particles (C) for example, Aqueous dispersion of modified metal oxide colloidal particles (C)
  • a solution of an organosilicon compound represented by general formula (1) or general formula (2) for example, a hydrophilic organic solvent such as alcohol
  • an organic solvent dispersion of modified metal oxide colloidal particles (C) surface-modified with an organosilicon compound can be obtained by a distillation method in which water is distilled off. At this time, it is preferable to distill off water until the amount of water remaining in the organic solvent dispersion becomes 0.1% by mass to 15% by mass.
  • the organosilicon compound represented by general formula (1) or general formula (2) to be bound to the surface of the modified metal oxide colloidal particles (C) may be used alone or in combination of two or more. may be used. Further, when performing a surface modification treatment for binding the organosilicon compound represented by general formula (1) or general formula (2) to the surface of the modified metal oxide colloidal particles (C), the general formula The organosilicon compound represented by (1) or general formula (2) may be partially hydrolyzed, or the surface modification treatment may be performed without hydrolysis. Furthermore, after the surface modification treatment, the hydrolyzable groups of the organosilicon compound represented by general formula (1) or general formula (2) reacted with the hydroxy groups on the surface of the modified metal oxide colloidal particles (C). This state is preferable, but there is no problem even if some hydroxyl groups remain untreated.
  • the amount of bonding of the organosilicon compound represented by general formula (1) or general formula (2) to the surface of the modified metal oxide colloidal particles (C) is not particularly limited. For example, 0.01 to 20% by mass, preferably 0.1 to 20% by mass, based on the total mass (100% by mass) of all metal oxides in A) and all composite oxides in coating layer (B) and more preferably 0.1 to 15% by mass. Further, the total mass of all metal oxides in the metal oxide colloidal particles (A) and all composite oxides in the coating layer (B) can be quantified by a sintering method.
  • the modified metal oxide colloidal particles (C) can be used as a dispersion in an aqueous medium or an organic solvent.
  • a dispersion using an organic solvent as a dispersion medium can be made into an organic solvent dispersion by replacing water, which is the dispersion medium of the dispersion in an aqueous medium, with an organic solvent.
  • an organic solvent dispersion can be obtained by further substituting another type of organic solvent for the dispersion dispersed in the organic solvent. This substitution can be carried out by an ordinary method such as a distillation method or an ultrafiltration method.
  • organic solvent examples include alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol; ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethers such as propylene glycol monomethyl ether and propylene glycol monoethyl ether; Glycols such as ethylene glycol, and hydrocarbons such as hexane, toluene and cyclohexane can be used.
  • alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • ethers such as propylene glycol monomethyl ether and propylene glycol monoethyl ether
  • Glycols such as ethylene glycol
  • hydrocarbons such as hexane, toluene and cyclohexane
  • the concentration of the modified metal oxide colloidal particles (C) contained in the dispersion can be expressed as the total metal oxide concentration.
  • the total metal oxide concentration means the metal oxide contained in the metal oxide colloidal particles (A) and the composite oxide in the coating layer (B) (e.g., SiO 2 , Al 2 O 3 , SnO 2 , Sb 2 O 5 and WO 3 ), and can be quantified by a calcination method in which the dispersion is calculated from the calcination residue obtained by calcining the dispersion at 800° C. or higher for 30 minutes or longer.
  • the total metal oxide concentration in the dispersion ranges, for example, from 1 to 60 wt%, or from 20 to 60 wt%, or from 30 to 60 wt%.
  • the pH of the dispersion is, for example, in the range of 1-14, or 2-8, or 3-7.
  • the coating composition (also referred to as a coating liquid) of the present invention comprises (S) component: an organosilicon compound and/or a silicon-containing substance that is a hydrolyzate thereof, and (T) component: the modified metal oxide colloidal particles described above. (C).
  • the coating composition of the present invention includes component (K): at least one resin selected from the group consisting of thermosetting resins, thermoplastic resins and UV-curable resins, and component (T): the modified metal oxide described above. containing colloidal particles (C).
  • component (K) at least one resin selected from the group consisting of thermosetting resins, thermoplastic resins and UV-curable resins
  • component (T) the modified metal oxide described above. containing colloidal particles (C).
  • the (S) component according to the present invention is an organosilicon compound and/or a silicon-containing substance that is a hydrolyzate thereof.
  • the organosilicon compound includes at least one organosilicon compound selected from the group consisting of compounds represented by formula (I) and compounds represented by formula (II), which will be described later.
  • R 1 and R 3 each independently represent an alkyl group, an aryl group, a vinyl group, a halogenated alkyl group, a halogenated aryl group or an alkenyl group, or an epoxy group, an isocyanate group, an acryloyl group, a methacryloyl group, represents an organic group that is a monovalent organic group having a mercapto group, a ureido group or a cyano group and is bonded to a silicon atom via a Si—C bond, R 2 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, an aralkyl group, an alkoxyalkyl group, or an acyl group; a and b each independently represents an integer of 0, 1, or 2, and a+b is an
  • the organosilicon compound represented by the above formula (I) is an organosilicon compound in which R 1 and R 3 are the same organic group or different organic groups, or in which a and b are the same integer or different integers. including.
  • organosilicon compound represented by the above formula (I) examples include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetraacetoxysilane, methyltrimethoxysilane, Methyltripropoxysilane, Methyltributoxysilane, Methyltriacetoxysilane, Methyltriamyloxysilane, Methyltriphenoxysilane, Methyltribenzyloxysilane, Methyltriphenethyloxysilane, Glycidoxymethyltrimethoxysilane, Glycidoxymethyl Triethoxysilane, ⁇ -glycidoxyethyltrimethoxysilane, ⁇ -glycidoxyethyltriethoxysilane, ⁇ -glycidoxys
  • organosilicon compound represented by the formula (II) examples include methylenebismethyldimethoxysilane, ethylenebisethyldimethoxysilane, propylenebisethyldiethoxysilane, butylenebismethyldiethoxysilane, and the like. or in combination of two or more.
  • the (S) component is preferably an organosilicon compound represented by formula (I).
  • R 1 and R 3 is an organic group having an epoxy group
  • R 2 is an alkyl group or an aryl group
  • a and b are each independently 0 or 1
  • a+b is Organosilicon compounds of formula (I) satisfying condition 1 or 2 are preferred.
  • organosilicon compound represented by formula (I) include glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, ⁇ -glycidoxyethyltrimethoxysilane, ⁇ -glycidoxyethyltri Ethoxysilane, ⁇ -glycidoxyethyltrimethoxysilane, ⁇ -glycidoxyethyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltri Methoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrime
  • ⁇ -glycidoxypropyltrimethoxysilane More preferred are ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane and ⁇ -glycidoxypropylmethyldiethoxysilane, which can be used alone or as a mixture.
  • a functional compound may be used in combination.
  • tetrafunctional compounds include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-tert-butoxysilane, tetrasec-butoxysilane, and the like. be done.
  • the (S) component used in the coating composition of the present invention the hydrolyzate of the organosilicon compound is obtained by hydrolyzing the compound represented by the above formula (I) and the compound represented by the formula (II). As a result, a compound in which part or all of R 2 (formula (I)) and X (formula (II)) are substituted with hydrogen atoms is obtained.
  • organosilicon compound hydrolysates of formula (I) and formula (II) can be used alone or in combination of two or more. Hydrolysis is carried out by adding an acidic aqueous solution such as an aqueous hydrochloric acid solution, an aqueous sulfuric acid solution, an aqueous acetic acid solution, etc. to the organosilicon compound and stirring the mixture.
  • the ratio of the (S) component and the (T) component is not particularly limited.
  • Component (S) can be contained in a mass ratio of 25 to 400 parts by mass, preferably 25 to 300 parts by mass, per 100 parts by mass of C).
  • the component (K) according to the present invention is at least one resin selected from the group consisting of thermosetting resins, thermoplastic resins and UV-curable resins, and these resins serve as matrix-forming components.
  • the matrix-forming component include acrylic resins, melamine resins, urethane resins, polyester resins, epoxy resins, phosphagen resins, and the like. Among them, a polyester resin or a urethane resin is preferable.
  • the ratio of the component (K) and the component (T) is not particularly limited.
  • Component (K) can be contained at a mass ratio of 25 to 400 parts by mass with respect to 100 parts by mass of C).
  • the coating composition of the present invention may contain a curing catalyst (curing agent) to accelerate the curing reaction.
  • a curing catalyst for example, at least one selected from the group consisting of amino acids, metal alkoxides, metal chelate compounds, organic acid metal salts, perchloric acids or salts thereof, acids or salts thereof, and metal chlorides. It is a kind of curing catalyst.
  • a curing catalyst (curing agent) is used to accelerate curing of silanol groups (and optionally epoxy groups) of the (S) organosilicon compound contained in the coating composition. By using these curing catalysts (curing agents), it is possible to speed up the film-forming reaction.
  • amino acids such as glycine
  • alkoxides of metals such as aluminum, zirconium or titanium
  • metal chelate compounds such as aluminum acetylacetonate, chromium acetylacetonate, titanium acetylacetonate, cobalt acetylacetonate
  • Organic acid metal salts such as sodium, zinc naphthenate, cobalt naphthenate, zinc octylate, and tin octylate
  • perchloric acids such as perchloric acid, ammonium perchlorate, and magnesium perchlorate; , nitric acid, chromic acid, hypochlorous acid, boric acid, bromic acid, selenous acid, thiosulfuric acid, orthosilicic acid, thiocyanic acid, nitrous acid, aluminate, carbonic acid, organic carboxylic acid, p-toluenesulfonic acid, etc. Acids, organic acids, or
  • curing catalysts can be used by appropriately adjusting the type and amount used according to the composition of the coating composition of the present invention.
  • the upper limit of the amount used is desirably 5% by mass or less relative to the total solid content in the coating composition.
  • total solid content refers to all components of the coating composition excluding the solvent, and even if it is liquid, it is treated as "solid content" for the sake of convenience.
  • a solvent may also be used in the coating composition of the present invention for the purpose of imparting fluidity, adjusting the concentration of solids, adjusting surface tension, viscosity, evaporation rate, and the like.
  • the solvents used are water or organic solvents.
  • organic solvents used include alcohols such as methanol, ethanol, isopropyl alcohol and butanol; cellosolves such as methyl cellosolve and ethyl cellosolve; glycols such as ethylene glycol; esters such as methyl acetate, ethyl acetate and butyl acetate; Ethers such as diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether and tetrahydrofuran; ketones such as acetone and methyl ethyl ketone; halogenated hydrocarbons such as dichloroethane; and aromatic hydrocarbons such as toluene and xylene. mentioned.
  • the coating composition of the present invention is used for the purpose of improving the wettability to the substrate and improving the smoothness of the cured film when forming a cured film from the composition on the substrate.
  • Various surfactants can be included.
  • ultraviolet absorbers, antioxidants, antistatic agents, etc. can be added as long as they do not affect the physical properties of the cured film.
  • disperse dyes, oil-soluble dyes, fluorescent dyes, pigments, photochromic compounds, thixotropic agents, etc. may be added.
  • optical member The coating composition of the present invention can be applied to a substrate surface to form a cured film. Further, by using a transparent substrate (optical substrate) suitable for optical applications, an optical member having a cured film can be obtained.
  • the optical member is also an object of the present invention.
  • a cured film is formed from the coating composition of the present invention as a hard coat film on the substrate surface.
  • a hard coat film it may be formed as a primer film for plastic lenses or the like.
  • the coating composition can be cured by hot air drying or active energy ray irradiation.
  • hot air drying it is preferable to carry out in hot air at 70 to 200°C, particularly preferably 90 to 150°C.
  • active energy rays include infrared rays, ultraviolet rays, electron beams, and the like, and particularly far infrared rays can suppress damage due to heat.
  • the coating composition of the present invention As a method for applying the coating composition of the present invention to the surface of the base material, commonly used methods such as dipping, spinning, and spraying can be applied. Among them, the dipping method and the spin method are particularly preferable from the viewpoint of area degree.
  • the substrate surface is subjected to chemical treatment with acid, alkali, various organic solvents or detergents, physical treatment such as plasma, ultraviolet rays, etc., thereby curing the substrate.
  • Adhesion to the film can be improved.
  • the adhesiveness between the substrate and the cured film can be further improved by subjecting the surface of the substrate to a primer treatment using various resins.
  • the cured film formed from the coating composition of the present invention can be used as a reflective film as a high-refractive-index film, and can be used as a multifunctional film by adding functional components such as antifogging, photochromic, and antifouling properties. can also
  • Optical members having a cured film formed from the coating composition of the present invention can be used for spectacle lenses, camera lenses, automobile window glass, optical filters attached to liquid crystal displays, plasma displays, and the like. .
  • the optical member of the present invention has a cured film formed from the coating composition of the present invention on the surface of the optical substrate. can be formed.
  • the antireflection film is not particularly limited, and conventionally known single-layer or multi-layer deposition films of inorganic oxides can be used. Examples of the antireflection film include the antireflection films disclosed in JP-A-2-262104 and JP-A-56-116003.
  • the manufacturing method of the present invention includes the following steps (a) to (d). (a) a dispersion containing metal oxide colloidal particles (A) and a dispersion of unmodified composite oxide colloidal particles containing Si and at least one atom selected from the group consisting of Sn, Sb and W; Step (b) of mixing the mixed solution obtained in step (a) at a temperature of 30 to 320 ° C.
  • step (c) Heating the mixed solution obtained in step (b) with H A step of contacting with a type cation exchange resin
  • step (d) A step of mixing the mixed solution obtained in the step (c) and an aluminate aqueous solution, and heating at a temperature of 30 to 320 ° C. for 0.5 to 24 hours.
  • step (a) in the production method of the present invention a dispersion containing metal oxide colloidal particles (A) and a dispersion of unmodified composite oxide colloidal particles are mixed.
  • the metal oxide colloid particles (A) in the dispersion containing the metal oxide colloid particles (A) include Ti, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, Examples include colloidal particles of at least one metal oxide selected from the group consisting of Sn, Sb, Ta, W, Pb, Bi and Ce, and using known methods such as ion exchange, peptization, hydrolysis It can be produced by a method or a reaction method, and can be used in the form of a dispersion dispersed in an aqueous medium.
  • the metal oxide concentration of the dispersion is, for example, in the range of 1-50% by weight, or 1-30% by weight, or 1-20% by weight.
  • the metal oxide concentration of the metal oxide colloidal particles (A) can be quantified by a calcination method.
  • the pH of the dispersion containing the metal oxide colloidal particles (A) is in the range of 1-14 or 1-12, for example.
  • the unmodified colloidal colloidal oxide particles in the dispersion of the unmodified colloidal colloidal colloidal colloidal oxides are composed of, for example, SiO2 particles and SnO2 particles that are chemically bonded at their interfaces to form composites.
  • the unmodified composite oxide colloidal particles can be produced by a known method such as an ion exchange method or an oxidation method.
  • An example of the ion exchange method is a method in which an acid salt of said atom is treated with a hydrogen ion exchange resin.
  • Examples of oxidation methods include reacting atomic or inorganic oxide powders with hydrogen peroxide.
  • the dispersion can be used in the form of a dispersion in which these unmodified composite oxide colloidal particles are dispersed in an aqueous medium.
  • the unmodified complex oxide concentration of the dispersion is, for example, in the range of 1 to 30% by mass, 1 to 20% by mass, or 1 to 10% by mass.
  • the unmodified composite oxide concentration of the unmodified composite oxide colloidal particles can be quantified by a calcination method.
  • the mass of the total composite oxide of the unmodified colloidal composite oxide particles/the mass of the total metal oxide of the metal oxide colloidal particles (A) is 0.05 to 0.50, or 0.05 to 0.50.
  • 05 to 0.30, or 0.03 to 0.30 at least selected from the group consisting of a dispersion containing metal oxide colloidal particles (A), Si, and Sn, Sb and W It is preferable to mix a dispersion of unmodified composite oxide colloidal particles with one kind of atom.
  • step (b) in the production method of the present invention the mixed solution obtained in step (a) is heated at a temperature of 30 to 320° C. for 0.5 to 24 hours.
  • the heating temperature can be in the range of 30 to 320°C, 50 to 320°C, or 80 to 320°C.
  • the hydrothermal conditions refer to high temperature and high pressure conditions of 100° C. or higher and 1 atmospheric pressure or higher.
  • the heating time can be in the range of 0.5 to 24 hours, 0.5 to 15 hours, 0.5 to 10 hours, or 0.5 to 8 hours.
  • stirring and mixing can be performed using a known stirrer or stirring device.
  • the mixed solution obtained in the (b) step is brought into contact with an H-type cation exchange resin.
  • the H-type cation exchange resin is a cation exchange resin having functional groups capable of exchanging hydrogen ions with other cations.
  • a sulfonic acid type H-type strongly acidic cation exchange resin or a carboxylic acid type H-type weakly acidic cation exchange resin can be used.
  • As the sulfonic acid type strongly acidic cation exchange resin for example, Amberlite (registered trademark) IR-120B manufactured by Organo Corporation can be used.
  • step (d) in the production method of the present invention the mixed solution obtained in step (c) is mixed with an aluminate aqueous solution and heated at a temperature of 30 to 320° C. for 0.5 to 24 hours.
  • the aluminate is a compound containing an aluminate ion and an anion derived from an inorganic base.
  • Inorganic bases include, for example, sodium, potassium, lithium and the like.
  • Specific examples of the metal salt containing an aluminate ion and an anion derived from an inorganic base include sodium aluminate, potassium aluminate, lithium aluminate and the like, and commercially available ones can be used.
  • concentration of aluminate in the aluminate aqueous solution is, for example, in the range of 0.1 to 10% by mass or 0.1 to 5% by mass in terms of aluminum oxide.
  • the heating temperature is in the range of 30 to 320°C, or 40 to 180°C, or 40 to 150°C, or 40 to 100°C.
  • the heating time can be in the range of 0.5 to 24 hours, 0.5 to 15 hours, 0.5 to 10 hours, or 0.5 to 8 hours.
  • step (c) so that the mass of the total composite oxide/the mass of the aluminate (in terms of Al 2 O 3 ) is in the range of 50 to 800, or 100 to 700, or 150 to 700 It is preferable to mix the mixed solution obtained in the step with the aluminate aqueous solution.
  • the resulting aqueous solution was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B) to give an aqueous sol of acidic stannic oxide-silica composite colloidal particles (pH 2.4, 1240 g containing 0.44% by mass of SnO 2 and 0.87% by mass of SiO 2 with a SiO 2 /SnO 2 mass ratio of 2.0 was obtained.
  • 3.2 g of diisopropylamine was added to the resulting aqueous sol.
  • the obtained sol was an alkaline aqueous sol of stannic oxide-silica composite colloidal particles and had a pH of 8.0.
  • colloidal particles having an average primary particle diameter of 5 nm or less were observed with a transmission electron microscope.
  • the molar ratio of diisopropylamine/(SnO 2 +SiO 2 ) was 0.15.
  • the sol was washed and concentrated with an ultrafiltration device while adding pure water, and the zirconium oxide- 3215 kg of sol containing stannic oxide composite oxide colloidal particles was obtained.
  • the obtained colloidal particles of zirconium oxide-stannic oxide composite oxide had an average primary particle size of 5 to 15 nm.
  • oxalic acid dihydrate manufactured by Ube Industries, Ltd.
  • the obtained mixed solution had a molar ratio of oxalic acid/titanium atom of 0.5 and a molar ratio of tetraethylammonium hydroxide/oxalic acid of 1.43.
  • 1449 g of the mixed solution was kept in an open system under atmospheric pressure at 88 to 92° C. for 3 hours, and by-product isopropanol was removed by distillation to prepare 1240 g of a titanium-containing aqueous solution.
  • the TiO 2 conversion concentration of the obtained titanium-containing aqueous solution was adjusted to 5.0% by mass.
  • the resulting rutile-type titanium oxide sol had a specific gravity of 1.030, a pH of 11.7, an electrical conductivity of 1044 ⁇ S/cm, and a TiO 2 concentration of 3.8 mass %.
  • aqueous sol (pH 2.0) of acidic stannic oxide-silica-aluminum oxide composite colloidal particles .5, containing 1.09% by weight as SnO 2 and 2.2% by weight as SiO 2 , a SiO 2 /SnO 2 weight ratio of 2.0, and 0.02% by weight as Al 2 O 3 ) (1008 g). Then, 6.0 g of diisopropylamine was added to the resulting aqueous sol.
  • the obtained sol was an alkaline aqueous sol of stannic oxide-silica-aluminum oxide composite colloidal particles and had a pH of 8.2. Also, colloidal particles having an average primary particle diameter of 5 nm or less were observed with a transmission electron microscope.
  • Example 1 Preparation of modified metal oxide colloidal particles (C) 577 g of the aqueous sol of the alkaline stannic oxide-silica composite colloidal particles prepared in 1. was added and thoroughly stirred. Then, the mixture was heated and aged at 95° C. for 2 hours to obtain 1410 g of an aqueous sol of zirconium oxide-stannic oxide composite oxide colloidal particles coated with stannic oxide-silica composite colloidal particles. The resulting sol had a pH of 8.1 and a total metal oxide concentration of 4.1% by mass.
  • the obtained aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and an acidic zirconium oxide-oxidized 1880 g of aqueous sol of colloidal particles of stannic compound oxide was obtained.
  • the resulting sol had a pH of 3.3 and a total metal oxide concentration of 3.0% by mass.
  • An aqueous solution of sodium aluminate was added to the acidic sol so that the mass of the composite oxide of the acidic zirconium oxide-stannic oxide composite oxide colloidal particles/the mass of sodium aluminate (in terms of Al 2 O 3 ) was 650.
  • the obtained dispersion containing the modified zirconium oxide-stannic oxide composite oxide colloidal particles had a total metal oxide concentration of 30.5% by mass, a specific gravity of 1.332, a pH of 4.5, and a B-type viscosity of 5.0 mPa s. , and the average particle size was 17 nm. Also, the Al 2 O 3 content contained in the coating layer was 1.17% by mass based on the mass of all composite oxides in the coating layer. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
  • the resulting methanol-dispersed sol had a total metal oxide concentration of 31.0% by mass, a B-type viscosity of 12.5 mPa s, a pH of 5.7 (diluted with the same mass of water as the sol), a water content of 0.6%, and an average particle size of The diameter was 17 nm.
  • the obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
  • Example 2 Preparation of Modified Metal Oxide Colloidal Particles (C) 1388 g of the water-dispersed sol obtained in Production Example 3 was added to 769 g of the water-dispersed sol of the alkaline stannic oxide-silica composite colloidal particles prepared in Production Example 1. Added under stirring. Then, the solution was passed through a column packed with 500 mL of an anion exchange resin (Amberlite (registered trademark) IRA-410, manufactured by Organo Co., Ltd.). Next, the water-dispersed sol after passing the liquid was heated at 150° C. for 3 hours to obtain a water-dispersed sol of titanium oxide-zirconium oxide composite oxide colloidal particles coated with stannic oxide-silica composite colloidal particles.
  • an anion exchange resin Amberlite (registered trademark) IRA-410, manufactured by Organo Co., Ltd.
  • the resulting water-dispersed sol was 2788 g and had a total metal oxide concentration of 2.2% by mass.
  • the resulting water-dispersed sol was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B) to obtain 3427 g of an aqueous sol of acidic titanium oxide-zirconium oxide composite oxide colloidal particles. rice field.
  • the resulting sol had a pH of 2.4 and a total metal oxide concentration of 1.7 mass %.
  • the Al 2 O 3 content contained in the coating layer was 2.4% by mass based on the mass of all composite oxides in the coating layer.
  • the obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
  • 195 g of the obtained sol was charged into an evaporator equipped with an eggplant-shaped flask, 6.0 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and then methanol was gradually added to 600 Torr.
  • 208 g of a methanol-dispersed sol of aluminate-modified modified titanium oxide-zirconium oxide composite oxide colloidal particles was obtained.
  • the resulting methanol-dispersed sol had a total metal oxide concentration of 30.6% by mass, a B-type viscosity of 4.2 mPa s, a pH of 4.8 (diluted with the same mass of water as the sol), a water content of 1.7%, and an average particle size of The diameter was 16 nm.
  • the obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
  • Example 3 Preparation of Modified Metal Oxide Colloidal Particles (C) To 1880 g of aqueous sol of acidic zirconium oxide-stannic oxide colloidal particles obtained by the same procedure as in Example 1, zirconium oxide-oxidized 20 g of an aqueous sodium aluminate solution (0.087 g as Al 2 O 3 ) was added so that the mass of the composite oxide of the stannic composite oxide colloidal particles/the mass of sodium aluminate (in terms of Al 2 O 3 ) was 650. The mixture was added and heated at 95° C. for 2 hours, then concentrated using an ultrafiltration device.
  • aqueous sol of acidic zirconium oxide-stannic oxide colloidal particles obtained by the same procedure as in Example 1, zirconium oxide-oxidized 20 g of an aqueous sodium aluminate solution (0.087 g as Al 2 O 3 ) was added so that the mass of the composite oxide of the stannic composite oxide colloidal particles/the mass of sodium aluminate
  • the obtained dispersion containing the modified zirconium oxide-stannic oxide composite oxide colloidal particles had a total metal oxide concentration of 30.6% by mass, a pH of 5.4, a B-type viscosity of 13.4 mPa s, and an average particle diameter of 14 nm. Met. Also, the Al 2 O 3 content contained in the coating layer was 1.17% by mass based on the mass of all composite oxides in the coating layer. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
  • the resulting methanol-dispersed sol had a total metal oxide concentration of 31.0% by mass, a B-type viscosity of 5.3 mPa s, a pH of 5.6 (diluted with the same mass of water as the sol), a water content of 0.8%, and an average particle size of The diameter was 16 nm.
  • the obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
  • Example 4 Preparation of Modified Metal Oxide Colloidal Particles (C) To 1880 g of aqueous sol of acidic zirconium oxide-stannic oxide colloidal particles obtained by the same procedure as in Example 1, zirconium oxide-oxidized 20 g of an aqueous sodium aluminate solution (0.087 g as Al 2 O 3 ) was added so that the mass of the composite oxide of the stannic composite oxide colloidal particles/the mass of sodium aluminate (in terms of Al 2 O 3 ) was 650. The mixture was added and heated at 95° C. for 2 hours, then concentrated using an ultrafiltration device.
  • aqueous sol of acidic zirconium oxide-stannic oxide colloidal particles obtained by the same procedure as in Example 1, zirconium oxide-oxidized 20 g of an aqueous sodium aluminate solution (0.087 g as Al 2 O 3 ) was added so that the mass of the composite oxide of the stannic composite oxide colloidal particles/the mass of sodium aluminate
  • the obtained dispersion containing the modified zirconium oxide-stannic oxide composite oxide colloidal particles had a total metal oxide concentration of 30.6% by mass, a pH of 5.4, a B-type viscosity of 13.4 mPa s, and an average particle diameter of 14 nm. Met. Also, the Al 2 O 3 content contained in the coating layer was 1.17% by mass based on the mass of all composite oxides in the coating layer. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
  • 164 g of the obtained sol was put into an evaporator equipped with an eggplant-shaped flask, and water was distilled off at 600 Torr while methanol was gradually added, whereby a modified zirconium oxide-stannic oxide composite oxide modified with aluminate was obtained.
  • 149 g of a methanol-dispersed sol of colloidal particles was obtained.
  • the resulting methanol-dispersed sol had a total metal oxide concentration of 31.0% by mass, a B-type viscosity of 4.6 mPa s, a pH of 5.7 (diluted with the same mass of water as the sol), a water content of 0.8%, and an average particle size of The diameter was 16 nm.
  • the obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
  • Comparative example 1 The alkaline stannic oxide-silica composite colloidal particles prepared in Production Example 1 were added to 830 g of the aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles prepared in Production Example 2 (containing 50 g of all metal oxides). 577 g of aqueous sol was added and thoroughly stirred. Then, the mixture was heated and aged at 95° C. for 2 hours to obtain 1400 g of an aqueous sol of zirconium oxide-stannic oxide composite oxide colloidal particles coated with stannic oxide-silica composite colloidal particles. The resulting sol had a pH of 8.1 and a total metal oxide concentration of 4.6% by mass.
  • the obtained aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and an acidic zirconium oxide-oxidized 1910 g of an aqueous sol of colloidal particles of stannic compound oxide was obtained.
  • the resulting sol had a pH of 3.3 and a total metal oxide concentration of 3.4% by mass. Then, when an attempt was made to concentrate using an ultrafiltration device, the product thickened and gelled during the concentration.
  • Comparative example 2 830 g of the aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles prepared in Production Example 2 (containing 50 g of all metal oxides) was added to the aqueous sol of the stannic oxide-silica composite colloidal particles prepared in Production Example 1. 577 g was added and stirred well. Then, the mixture was heated and aged at 95° C. for 2 hours to obtain 1400 g of an aqueous sol of zirconium oxide-stannic oxide composite oxide colloidal particles coated with stannic oxide-silica composite colloidal particles. The resulting sol had a pH of 8.1 and a total metal oxide concentration of 4.6% by mass.
  • the obtained aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and an acidic zirconium oxide-oxidized 1910 g of an aqueous sol of colloidal particles of stannic compound oxide was obtained.
  • the resulting sol had a pH of 3.3 and a total metal oxide concentration of 3.4% by mass.
  • 0.40 g of diisobutylamine was added to the obtained acidic sol, and concentrated to a total metal oxide concentration of 20.6% by mass using an ultrafiltration device.
  • the resulting sol had a pH of 3.9, a B-type viscosity of 7.0 mPa ⁇ s, and an average particle size of 24 nm.
  • the obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
  • the obtained sol was put into an evaporator equipped with an eggplant-shaped flask, 5.0 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and then methanol was gradually added at 600 Torr. By distilling off water, 213 g of a methanol-dispersed sol of diisobutylamine-bonded zirconium oxide-stannic oxide composite oxide colloidal particles was obtained.
  • the resulting methanol-dispersed sol had a total metal oxide concentration of 30.5% by mass, a B-type viscosity of 4.3 mPa s, a pH of 4.9 (diluted with the same mass of water as the sol), a water content of 0.8%, and an average particle size of The diameter was 19 nm.
  • the obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
  • Comparative example 3 1306 g of the water-dispersed sol obtained in Production Example 3 was added to 1076 g of the water-dispersed sol of alkaline stannic oxide-silica composite colloidal particles prepared in Production Example 1 with stirring. Then, the solution was passed through a column packed with 500 mL of an anion exchange resin (Amberlite (registered trademark) IRA-410, manufactured by Organo Co., Ltd.). Next, the water-dispersed sol after passing the liquid was heated at 150° C. for 3 hours to obtain a water-dispersed sol of titanium oxide-zirconium oxide composite oxide colloidal particles coated with stannic oxide-silica composite colloidal particles.
  • an anion exchange resin Amberlite (registered trademark) IRA-410, manufactured by Organo Co., Ltd.
  • the resulting water-dispersed sol was 2788 g and had a total metal oxide concentration of 2.2% by mass.
  • the resulting water-dispersed sol of the colloidal particles of titanium oxide-zirconium oxide composite oxide was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B) to give an acidic titanium oxide-zirconium oxide.
  • 3427 g of a water-dispersed sol of colloidal composite oxide particles was obtained.
  • the resulting sol had a pH of 2.4 and a total metal oxide concentration of 1.8% by mass.
  • 1.54 g of diisobutylamine was added to the obtained acidic sol, and concentrated to a total metal oxide concentration of 17.6% by mass using an ultrafiltration device.
  • the resulting sol had a B-type viscosity of 4.8 mPa ⁇ s, a pH of 4.2 and an average particle size of 27 nm.
  • the obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
  • 337 g of the obtained sol was charged into an evaporator equipped with an eggplant-shaped flask, and then water was distilled off at 600 Torr while methanol was gradually added to obtain diisobutylamine-bonded titanium oxide-zirconium oxide composite oxide colloidal particles. 196 g of methanol-dispersed sol was obtained.
  • the resulting methanol-dispersed sol had a total metal oxide concentration of 30.0% by mass, a B-type viscosity of 3.9 mPa s, a pH of 5.0 (diluted with the same mass of water as the sol), a water content of 0.8%, and an average particle size of The diameter was 20 nm.
  • the obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
  • Comparative example 4 830 g of the aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles prepared in Production Example 2 (containing 50 g of all metal oxides) was added to the stannic oxide-silica-aluminum oxide composite colloidal particles prepared in Production Example 4. was added and thoroughly stirred. Then, the mixture was heated and aged at 95° C. for 2 hours to obtain 1334 g of aqueous sol of zirconium oxide-stannic oxide composite oxide colloidal particles coated with stannic oxide-silica-aluminum oxide composite colloidal particles. The resulting sol had a pH of 8.5 and a total metal oxide concentration of 4.5 mass %.
  • the obtained aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and an acidic zirconium oxide-oxidized 1348 g of aqueous sol of colloidal particles of stannic compound oxide was obtained.
  • the resulting sol had a pH of 3.1 and a total metal oxide concentration of 4.4% by mass.
  • the acidic sol thus obtained was concentrated using an ultrafiltration device, but thickened and gelled on the way.
  • Comparative example 5 830 g of the aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles prepared in Production Example 2 (containing 50 g of all metal oxides) was added to the stannic oxide-silica-aluminum oxide composite colloidal particles prepared in Production Example 4. was added and thoroughly stirred. Then, the mixture was heated and aged at 95° C. for 2 hours to obtain 1334 g of aqueous sol of zirconium oxide-stannic oxide composite oxide colloidal particles coated with stannic oxide-silica-aluminum oxide composite colloidal particles. The resulting sol had a pH of 8.5 and a total metal oxide concentration of 4.5 mass %.
  • the obtained aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and an acidic zirconium oxide-oxidized 1348 g of aqueous sol of colloidal particles of stannic compound oxide was obtained.
  • the resulting sol had a pH of 3.1 and a total metal oxide concentration of 4.4% by mass.
  • 10.1 g of a 5% sodium hydroxide aqueous solution was added to the resulting acidic sol to adjust the pH to 5.2, and then concentrated to a total metal oxide concentration of 22.4% by mass using an ultrafiltration device.
  • the resulting sol had a pH of 5.4, a B-type viscosity of 4.6 mPa ⁇ s, and an average particle size of 16 nm.
  • the obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
  • the obtained sol was put into an evaporator equipped with an eggplant-shaped flask, 5.6 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was heated at 60° C. for 2 hours.
  • methanol-dispersed sol had a total metal oxide concentration of 31.0% by mass, a B-type viscosity of 3.4 mPa ⁇ s, a pH of 5.7 (diluted with the same mass of water as the sol), and a water content of 1.0%. .
  • the average particle size was 69 nm and there was a tendency to aggregate.
  • the resulting sol was unstable and thickened when left at room temperature for one month.
  • the aqueous dispersion containing the modified metal oxide colloidal particles of the present invention was excellent in dispersion stability. Further, even if the surface of the modified metal oxide colloidal particles of the present invention is modified with an organosilicon compound or not, the organic solvent dispersion containing the modified metal oxide colloidal particles of the present invention can be , was excellent in dispersion stability. On the other hand, from the results shown in Table 2, the aqueous dispersion containing metal oxide colloidal particles in which the coating layer (B) was not modified with sodium aluminate thickened and gelled during concentration (Comparative Example 1 ).
  • an aqueous dispersion containing metal oxide colloidal particles using stannic oxide-silica-aluminum oxide composite colloidal particles as the coating layer (B) thickened and gelled during concentration (Comparative Example 4).
  • an organic solvent dispersion in which sodium hydroxide is added to metal oxide colloidal particles using stannic oxide-silica-aluminum oxide composite colloidal particles is thickened and dispersion stability is improved. It was inferior (Comparative Example 5).
  • the modified metal oxide colloidal particles of the present invention employ the coating layer (B) obtained by modifying the unmodified composite oxide with an aluminate, so that the modified metal oxide colloidal particles It is clear that the aqueous dispersion and the organic solvent dispersion of are excellent in dispersion stability.
  • a coating composition was prepared in the following procedure to produce an optical member. It was produced, and various physical properties were measured and evaluated.
  • Example 5 (Preparation of coating composition) 35.2 parts by mass of ⁇ -glycidoxypropyltrimethoxysilane and 94.6 parts by mass of methanol were added to a glass container equipped with a magnetic stirrer, and 8.5 parts by mass of 0.01N hydrochloric acid was added while stirring. Dropped in 30 minutes. After the dropwise addition was completed, stirring was carried out for 2.0 hours to obtain a partially hydrolyzate solution of ⁇ -glycidoxypropyltrimethoxysilane. Next, 106.7 parts by mass of the methanol-dispersed sol of the modified metal oxide colloidal particles of Example 1 (containing 31.0% by mass in terms of total metal oxide concentration), and aluminum acetylacetonate as a curing agent.
  • Example 6 a coating composition was prepared in the same manner as in Example 5, except that the methanol-dispersed sol of the modified metal oxide colloidal particles of Example 1 was changed to the methanol-dispersed sol of the modified metal oxide colloidal particles of Example 2. Preparation and production/evaluation of optical members were carried out.
  • Example 5 a coating composition was prepared in the same manner as in Example 5, except that the methanol-dispersed sol of modified metal oxide colloidal particles of Example 1 was changed to the methanol-dispersed sol of metal oxide colloidal particles of Comparative Example 2. And the production and evaluation of optical members were carried out.
  • Example 5 a coating composition was prepared in the same manner as in Example 5, except that the methanol-dispersed sol of the modified metal oxide colloidal particles of Example 1 was changed to the methanol-dispersed sol of the metal oxide colloidal particles of Comparative Example 3. And the production and evaluation of optical members were carried out.
  • the modified metal oxide colloidal particles of the present invention employ the coating layer (B) obtained by modifying the unmodified composite oxide with an aluminate.
  • Aqueous dispersions and organic solvent dispersions containing modified metal oxide colloidal particles are excellent in dispersion stability, and cured films formed from coating compositions containing the modified metal oxide colloidal particles do not yellow. It is clear that On the other hand, aqueous dispersions and organic solvent dispersions of metal oxide colloidal particles containing organic amines were excellent in dispersion stability, but cured films formed from coating compositions containing the metal oxide colloidal particles were , markedly yellowed.

Abstract

[Problem] To provide: modified metal oxide colloidal particles which suppress the occurrence of yellowing of a cured film when blended into a coating composition; and a method for producing same. [Solution] Modified metal oxide colloidal particles (C) have an average particle diameter of 5-300 nm and are formed by having metal oxide colloidal particles (A) as a core and coating the surfaces thereof with a coating layer (B) composed of a composite oxide of Si, Al and at least one atom selected from the group consisting of Sn, Sb and W. A method for producing the modified metal oxide colloidal particles (C) comprises the following steps (a) to (d) of: (a) mixing a dispersion containing metal oxide colloidal particles (A) with a dispersion of unmodified composite oxide colloidal particles of Si, and at least one atom selected from the group consisting of Sn, Sb and W; (b) heating the mixed solution obtained in step (a) at 30-320 °C for 0.5-24 hours; (c) bringing the mixed solution obtained in step (b) into contact with an H-type cation exchange resin; and (d) mixing the mixed solution obtained in step (c) and an aqueous aluminate solution and heating the mixture at 30-320 °C for 0.5-24 hours.

Description

変性金属酸化物コロイド粒子、およびその製造方法Modified metal oxide colloid particles and method for producing the same
 本発明は、金属酸化物コロイド粒子の表面をSi及びAlと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との複合酸化物からなる被覆層で被覆されてなる変性金属酸化物コロイド粒子、該変性金属酸化物コロイド粒子の製造方法、並びに該変性金属酸化物コロイド粒子を含むコーティング組成物に関する。 The present invention provides a modified metal oxide in which the surfaces of metal oxide colloidal particles are coated with a coating layer comprising a composite oxide of Si and Al and at least one atom selected from the group consisting of Sn, Sb and W. The present invention relates to a material colloidal particle, a method for producing the modified metal oxide colloidal particle, and a coating composition containing the modified metal oxide colloidal particle.
 プラスチック成形体は、軽量、易加工性、耐衝撃性等の長所を生かして多量に使用されている反面、硬度が不十分で傷が付き易い、溶媒に侵され易い、帯電して埃を吸着する、耐熱性が不十分である等といった短所を有する。そのため、プラスチック成形体を眼鏡レンズ、窓材等として使用するには、無機ガラス成形体に比べて、上述したような実用上の欠点があった。そこでプラスチック成形体に保護コート(保護被膜)を施すことが提案されている。保護コートに使用されるコーティング組成物は、実に多数の種類が提案されている。 Plastic moldings are used in large quantities due to their advantages such as light weight, easy workability, and impact resistance. However, it has disadvantages such as insufficient heat resistance. Therefore, when plastic molded bodies are used as spectacle lenses, window materials, etc., there are practical drawbacks as described above, compared to inorganic glass molded bodies. Therefore, it has been proposed to apply a protective coat (protective coating) to the plastic molded article. A large variety of coating compositions have been proposed for use in protective coatings.
 無機系に近い硬い被膜を与えるものとして、有機ケイ素化合物又はその加水分解物を主成分(樹脂成分又は塗膜形成成分)とするコーティング組成物が眼鏡レンズ用として使用されている(特許文献1)。
 上記コーティング組成物も未だ耐擦傷性が不満足であるため、更にこれにコロイド状に分散した二酸化珪素ゾルを添加したものが提案され、眼鏡レンズ用として実用化されている(特許文献2)。
A coating composition containing an organosilicon compound or a hydrolyzate thereof as a main component (resin component or coating film-forming component) is used for spectacle lenses as a coating composition that provides a nearly inorganic hard coating (Patent Document 1). .
Since the above coating composition is still unsatisfactory in scratch resistance, it has been proposed to add a colloidally dispersed silicon dioxide sol to the coating composition, which has been put to practical use for spectacle lenses (Patent Document 2).
 ところで、従来プラスチック製眼鏡レンズは、大半がジエチレングリコールビスアリルカーボネートを注型重合することによって製造されていた。しかし、このレンズは、屈折率が約1.50であり、ガラスレンズの屈折率約1.52に比べ低いことから、近視用レンズの場合、縁の厚さがより肉厚なものになるという欠点を有している。そのため近年、ジエチレングリコールビスアリルカーボネートより屈折率の高いモノマーの開発が進められ、屈折率1.54~1.76の範囲の高屈折率樹脂材料が提案されている(特許文献3及び4)。
 このような高屈折率樹脂レンズに対して、Sb、Tiの金属酸化物微粒子のコロイド分散体をコーティング材料に用いる方法も提案されている(特許文献5及び6)。
By the way, most conventional plastic spectacle lenses have been produced by cast polymerization of diethylene glycol bisallyl carbonate. However, because the lens has a refractive index of about 1.50, which is lower than the refractive index of glass lenses, which are about 1.52, the edge thickness is thicker for nearsighted lenses. has shortcomings. Therefore, in recent years, development of a monomer having a higher refractive index than diethylene glycol bisallyl carbonate has been promoted, and a high refractive index resin material having a refractive index in the range of 1.54 to 1.76 has been proposed (Patent Documents 3 and 4).
A method of using a colloidal dispersion of metal oxide fine particles of Sb and Ti as a coating material has also been proposed for such a high refractive index resin lens (Patent Documents 5 and 6).
 また、シランカップリング剤と、2~60nmの一次粒子径を有する金属酸化物のコロイド粒子(a)を核として、その表面を酸性酸化物のコロイド粒子からなる被覆物(b)で被覆して得られた粒子(c)を含有し、且つ(c)を金属酸化物に換算して2~50質量%の割合で含み、そして2~100nmの一次粒子径を有する安定な変性金属酸化物ゾルからなるコーティング組成物が開示されている。そして、用いられるコロイド粒子の具体例としては、アルキルアミン含有五酸化アンチモンで被覆された変性酸化チタン-酸化ジルコニウム-酸化第二スズ複合コロイド等が開示されている(特許文献7)。また、アルキルアミン、オキシカルボン酸で安定化された酸化チタン-酸化第二スズ-酸化ジルコニウム複合コロイド等が開示されている(特許文献8)。 In addition, a silane coupling agent and a colloidal particle (a) of a metal oxide having a primary particle diameter of 2 to 60 nm are used as nuclei, and the surface thereof is coated with a coating (b) composed of colloidal particles of an acidic oxide. A stable modified metal oxide sol containing the obtained particles (c), containing (c) in a proportion of 2 to 50% by mass in terms of metal oxide, and having a primary particle diameter of 2 to 100 nm. A coating composition is disclosed comprising: As a specific example of the colloid particles to be used, a modified titanium oxide-zirconium oxide-stannic oxide composite colloid coated with antimony pentoxide containing alkylamine is disclosed (Patent Document 7). Further, a titanium oxide-stannic oxide-zirconium oxide composite colloid stabilized with an alkylamine or an oxycarboxylic acid has been disclosed (Patent Document 8).
 さらに、(a)ジルコニウム、スズ、チタニウム、ニオブ、タングステン、アンチモン、インジウム、ランタニウムからなる群から選ばれた1種の金属元素を主成分として含む酸化物微粒子または複合酸化物微粒子からなるコア粒子と、(b)前記コア粒子を被覆する、ケイ素およびアルミニウムの複合酸化物を主成分として含む複合酸化物シェル層を含むシェル層とを有し、前記シェル層に含まれるケイ素およびアルミニウムの酸化物換算基準の重量比(SiO/Al)が30~2000の範囲にあり、前記複合酸化物シェル層の重量が前記コア粒子100重量部に対して5~100重量部の範囲にあるコアシェル型酸化物微粒子と分散媒とを含む分散液が提案されている(特許文献9)。
 しかし、上記複合酸化物シェル層は、ケイ素およびアルミニウム以外の金属元素を含むと、コアシェル型酸化物微粒子の表面負荷電量が減少する場合や、コア粒子に対するシェル層の被覆率が低下する場合があった。また、上記のコアシェル型酸化物微粒子を製造する際、コア粒子へのシェルの被覆率の低下やコアシェル型複合酸化物微粒子表面の負荷電量の減少を抑制するためには、シリコンアルコキシド及び/又はケイ酸を含むケイ素化合物溶液とアルミン酸塩の水溶液とを、コア粒子の水分散液に一定の速度で同時に添加する必要があった。
Furthermore, (a) core particles composed of oxide fine particles or composite oxide fine particles containing, as a main component, one kind of metal element selected from the group consisting of zirconium, tin, titanium, niobium, tungsten, antimony, indium, and lanthanum; and (b) a shell layer covering the core particles and containing a composite oxide shell layer containing a composite oxide of silicon and aluminum as a main component, wherein the oxide conversion of silicon and aluminum contained in the shell layer A core-shell having a reference weight ratio (SiO 2 /Al 2 O 3 ) in the range of 30 to 2000, and a weight of the composite oxide shell layer in the range of 5 to 100 parts by weight with respect to 100 parts by weight of the core particles. A dispersion containing type oxide fine particles and a dispersion medium has been proposed (Patent Document 9).
However, if the composite oxide shell layer contains a metal element other than silicon and aluminum, the surface negative charge of the core-shell type oxide fine particles may decrease, or the coverage of the core particles with the shell layer may decrease. rice field. In the production of the above-mentioned core-shell type oxide microparticles, silicon alkoxide and/or silicon alkoxide and/or silica are used in order to suppress a decrease in the coating ratio of the core particles with the shell and a decrease in the amount of negative charge on the surface of the core-shell composite oxide microparticles. It was necessary to simultaneously add the acid-containing silicon compound solution and the aluminate aqueous solution to the aqueous dispersion of the core particles at a constant rate.
特開昭52-16586号公報JP-A-52-16586 特開昭53-111336号公報JP-A-53-111336 特開昭55-13747号公報JP-A-55-13747 特開昭64-54021号公報JP-A-64-54021 特開昭62-151801号公報JP-A-62-151801 特開昭63-275682号公報JP-A-63-275682 特開2001-123115号公報Japanese Patent Application Laid-Open No. 2001-123115 特開平10-306258号公報JP-A-10-306258 特開2015-143297号公報JP 2015-143297 A
 アルキルアミンなどの有機アミンを含有する金属酸化物コロイド粒子を用いたコーディング組成物から形成される塗膜は、有機アミンに起因する黄変が生じやすいという問題点があった。 A coating film formed from a coating composition that uses metal oxide colloidal particles containing organic amines such as alkylamines has the problem of being prone to yellowing due to organic amines.
 本発明の課題は、コーディング組成物に適用した場合に、硬化膜の黄変の発生を抑制する変性金属酸化物コロイド粒子を提供することにある。 An object of the present invention is to provide modified metal oxide colloid particles that suppress yellowing of cured films when applied to coating compositions.
 本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、核となる金属酸化物コロイド粒子の表面をSi及びAlと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との複合酸化物からなる被覆層(B)、とりわけSiと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との未改質複合酸化物をアルミン酸塩で改質してなる被覆層(B)で被覆することにより、この粒子をコーディング組成物に配合した際、黄変しにくい硬化膜を形成できること、及びこの粒子を有機溶媒に分散した際、分散安定性に優れた有機溶媒分散液を得られることを見出し、本発明を完成させた。 The inventors of the present invention have made intensive studies to solve the above problems, and as a result, the surface of the metal oxide colloidal particles serving as nuclei was coated with at least one atom selected from the group consisting of Si and Al and Sn, Sb and W. The coating layer (B) made of a composite oxide with, especially Si and at least one atom selected from the group consisting of Sn, Sb and W, is modified with an aluminate. By coating with the coating layer (B), when the particles are blended in a coating composition, a cured film that is resistant to yellowing can be formed, and when the particles are dispersed in an organic solvent, the particles have excellent dispersion stability. The inventors have found that an organic solvent dispersion can be obtained, and completed the present invention.
 すなわち、本発明は、第1観点として、金属酸化物コロイド粒子(A)を核として、その表面をSi及びAlと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との複合酸化物からなる被覆層(B)で被覆されてなる、平均粒子径5~300nmの変性金属酸化物コロイド粒子(C)に関する。
 第2観点として、前記被覆層(B)が、Siと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との未改質複合酸化物をアルミン酸塩で改質してなる層である、第1観点に記載の変性金属酸化物コロイド粒子(C)に関する。
 第3観点として、前記金属酸化物コロイド粒子(A)が、Ti、Mn、Fe、Cu、Zn、Y、Zr、Nb、Mo、In、Sn、Sb、Ta、W、Pb、Bi及びCeからなる群から選ばれる少なくとも1種の金属の酸化物のコロイド粒子である、第1観点又は第2観点に記載の変性金属酸化物コロイド粒子(C)に関する。
 第4観点として、前記金属酸化物コロイド粒子(A)の平均一次粒子径が1~300nmである、第1観点乃至第3観点のいずれか一に記載の変性金属酸化物コロイド粒子(C)に関する。
 第5観点として、前記被覆層(B)中のAl含有量(Al換算)が、金属酸化物コロイド粒子(A)の全金属酸化物及び被覆層(B)の全複合酸化物の合計質量に基づいて0.05~0.5質量%である、第1観点乃至第4観点のいずれか一に記載の変性金属酸化物コロイド粒子(C)に関する。
 第6観点として、前記被覆層(B)中のAl含有量(Al換算)が、被覆層(B)の全複合酸化物の質量に基づいて0.1~10質量%である、第1観点乃至第5観点のいずれか一に記載の変性金属酸化物コロイド粒子(C)に関する。
 第7観点として、前記変性金属酸化物コロイド粒子(C)中の有機アミンに由来する全窒素の含有量が、金属酸化物コロイド粒子(A)の全金属酸化物及び被覆層(B)の全複合酸化物の合計質量に基づいて0.05質量%以下である、第1観点乃至第6観点のいずれか一に記載の変性金属酸化物コロイド粒子(C)に関する。
 第8観点として、前記変性金属酸化物コロイド粒子(C)の表面の少なくとも一部が、一般式(1)又は一般式(2)で表される有機ケイ素化合物で表面修飾されている、第1観点乃至第7観点のいずれか一に記載の変性金属酸化物コロイド粒子(C)に関する。
 (R1’a’Si(R2’4-a’      式(1)
 [(R3’Si(R4’3-d   式(2)
(式(1)、式(2)中、
 R1’及びR3’はアルキル基、フェニル基、ビニル基、アクリロキシ基、メタクリロキシ基、エポキシ基、スチリル基、イソシアネート基、メルカプト基、ウレイド基、酸無水物基又はそれら官能基を含む炭素原子数1乃至10のアルキレン基であり且つSi-C結合によりケイ素原子と結合しているアルキレン基を示し、R1’及びR3’がそれぞれ複数存在する場合は、各R1’及び各R3’はそれぞれ同一でも異なっていてもよく、
 R2’及びR4’はアルコキシ基、アシルオキシ基、又はハロゲン原子からなる加水分解性基を示し、R2’及びR4’がそれぞれ複数存在する場合は、各R2’及び各R4’はそれぞれ同一でも異なっていてもよく、
 Yはアルキレン基、アリーレン基、NH基又は酸素原子を示す。
 a’は1乃至3の整数を示し、dは0乃至3の整数を示し、eは0又は1の整数を示す。)
That is, the present invention provides, as a first aspect, a composite of Si and Al and at least one atom selected from the group consisting of Sn, Sb and W on the surface of which metal oxide colloidal particles (A) are used as nuclei. The present invention relates to modified metal oxide colloidal particles (C) having an average particle diameter of 5 to 300 nm and coated with a coating layer (B) made of an oxide.
As a second aspect, the coating layer (B) is formed by modifying an unmodified composite oxide of Si and at least one atom selected from the group consisting of Sn, Sb and W with an aluminate. It relates to the modified metal oxide colloidal particles (C) according to the first aspect, which is a layer.
As a third aspect, the metal oxide colloidal particles (A) are composed of Ti, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, Sn, Sb, Ta, W, Pb, Bi and Ce The modified metal oxide colloidal particles (C) according to the first aspect or the second aspect, which are colloidal particles of at least one metal oxide selected from the group consisting of:
As a fourth aspect, the modified metal oxide colloidal particles (C) according to any one of the first to third aspects, wherein the metal oxide colloidal particles (A) have an average primary particle size of 1 to 300 nm. .
As a fifth aspect, the Al content (in terms of Al 2 O 3 ) in the coating layer (B) is the total metal oxide of the metal oxide colloid particles (A) and the total composite oxide of the coating layer (B). It relates to the modified metal oxide colloid particles (C) according to any one of the first to fourth aspects, which is 0.05 to 0.5% by mass based on the total mass.
As a sixth aspect, the Al content (in terms of Al 2 O 3 ) in the coating layer (B) is 0.1 to 10% by mass based on the mass of the total composite oxide of the coating layer (B). It relates to the modified metal oxide colloidal particles (C) according to any one of the first to fifth aspects.
As a seventh aspect, the content of total nitrogen derived from organic amines in the modified colloidal metal oxide particles (C) is equal to It relates to the modified metal oxide colloidal particles (C) according to any one of the first to sixth aspects, which is 0.05% by mass or less based on the total mass of the composite oxide.
As an eighth aspect, at least part of the surface of the modified metal oxide colloidal particles (C) is surface-modified with an organosilicon compound represented by general formula (1) or general formula (2). It relates to the modified metal oxide colloidal particles (C) according to any one of the aspect to the seventh aspect.
(R 1′ ) a′ Si(R 2′ ) 4-a′ Formula (1)
[(R 3′ ) d Si(R 4′ ) 3-d ] 2 Y e Formula (2)
(In formulas (1) and (2),
R 1' and R 3' are alkyl groups, phenyl groups, vinyl groups, acryloxy groups, methacryloxy groups, epoxy groups, styryl groups, isocyanate groups, mercapto groups, ureido groups, acid anhydride groups, or carbon atoms containing functional groups thereof. It is an alkylene group of numbers 1 to 10 and represents an alkylene group bonded to a silicon atom via a Si—C bond, and when there are a plurality of each of R 1' and R 3' , each R 1' and each R 3 ' may be the same or different,
R 2' and R 4 ' each represents a hydrolyzable group consisting of an alkoxy group, an acyloxy group, or a halogen atom ; may be the same or different,
Y represents an alkylene group, an arylene group, an NH group or an oxygen atom.
a′ represents an integer of 1 to 3, d represents an integer of 0 to 3, and e represents an integer of 0 or 1. )
 第9観点として、第1観点乃至第8観点のいずれか一に記載の変性金属酸化物コロイド粒子(C)を水性媒体又は有機溶媒に分散した変性金属酸化物コロイド粒子(C)の分散液に関する。 A ninth aspect relates to a dispersion of modified metal oxide colloidal particles (C) in which the modified metal oxide colloidal particles (C) according to any one of the first to eighth aspects are dispersed in an aqueous medium or an organic solvent. .
 第10観点として、(S)成分:有機ケイ素化合物、及び/又はその加水分解物であるケイ素含有物質、並びに
 (T)成分:第1観点乃至第8観点のいずれか一に記載の変性金属酸化物コロイド粒子(C)
を含むコーティング組成物であって、
 前記(S)成分の有機ケイ素化合物が、下記式(I)で表される化合物及び下記式(II)で表される化合物からなる群より選ばれる少なくとも1種の有機ケイ素化合物を含む、コーティング組成物に関する。
 (R(RSi(OR4-(a+b)     (I)
(式中、
 R及びRは、それぞれ独立して、アルキル基、アリール基、ビニル基、ハロゲン化アルキル基、ハロゲン化アリール基若しくはアルケニル基を表すか、又は
エポキシ基、イソシアネート基、アクリロイル基、メタクリロイル基、メルカプト基、ウレイド基、若しくはシアノ基を有する1価の有機基であり且つSi-C結合によりケイ素原子と結合している有機基を表し、
 Rは、炭素原子数1乃至8のアルキル基、アリール基、アラルキル基、アルコキシアルキル基、又はアシル基を表し、
 a及びbは、それぞれ独立して、0、1、又は2の整数を表し、且つa+bは0、1、又は2の整数である。)
 〔(RSi(OX)3-cY        (II)
(式中、
 Rは炭素原子数1乃至5のアルキル基を表し、
 Xは炭素原子数1乃至4のアルキル基又はアシル基を表し、
 Yはメチレン基又は炭素原子数2乃至20のアルキレン基を表し、
 cは0又は1の整数を表す。)
 第11観点として、(K)成分:熱硬化性樹脂、熱可塑性樹脂及び紫外線硬化樹脂からなる群から選ばれる少なくとも1種の樹脂、並びに
 (T)成分:第1観点乃至第8観点のいずれか一に記載の変性金属酸化物コロイド粒子(C)
を含むコーティング組成物に関する。
As a tenth aspect, (S) component: an organosilicon compound and/or a silicon-containing substance that is a hydrolyzate thereof, and (T) component: the modified metal oxidation according to any one of the first to eighth aspects Colloidal particles (C)
A coating composition comprising
A coating composition in which the organosilicon compound as component (S) contains at least one organosilicon compound selected from the group consisting of compounds represented by the following formula (I) and compounds represented by the following formula (II): about things.
(R 1 ) a (R 3 ) b Si(OR 2 ) 4-(a+b) (I)
(In the formula,
R 1 and R 3 each independently represent an alkyl group, an aryl group, a vinyl group, a halogenated alkyl group, a halogenated aryl group or an alkenyl group, or an epoxy group, an isocyanate group, an acryloyl group, a methacryloyl group, represents an organic group that is a monovalent organic group having a mercapto group, a ureido group, or a cyano group and is bonded to a silicon atom via a Si—C bond,
R 2 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, an aralkyl group, an alkoxyalkyl group, or an acyl group;
a and b each independently represent an integer of 0, 1, or 2, and a+b is an integer of 0, 1, or 2; )
[(R 4 ) c Si(OX) 3-c ] 2 Y (II)
(In the formula,
R 4 represents an alkyl group having 1 to 5 carbon atoms,
X represents an alkyl group or acyl group having 1 to 4 carbon atoms,
Y represents a methylene group or an alkylene group having 2 to 20 carbon atoms,
c represents an integer of 0 or 1; )
As an eleventh aspect, (K) component: at least one resin selected from the group consisting of thermosetting resins, thermoplastic resins and ultraviolet curable resins, and (T) component: any one of the first to eighth aspects Modified metal oxide colloid particles according to 1 (C)
It relates to a coating composition comprising
 第12観点として、第10観点又は第11観点に記載のコーティング組成物を用いて作製された硬化膜に関する。
 第13観点として、光学基材表面に第12観点に記載の硬化膜を有する光学部材に関する。
 第14観点として、第13観点に記載の硬化膜の表面に、更に反射防止膜を有する光学部材に関する。
A twelfth aspect relates to a cured film produced using the coating composition according to the tenth or eleventh aspect.
A thirteenth aspect relates to an optical member having the cured film according to the twelfth aspect on the surface of an optical substrate.
A fourteenth aspect relates to an optical member having an antireflection film on the surface of the cured film according to the thirteenth aspect.
 第15観点として、下記(a)工程乃至(d)工程を含む変性金属酸化物コロイド粒子(C)の製造方法に関する。
(a)金属酸化物コロイド粒子(A)を含む分散液と、Siと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との未改質複合酸化物コロイド粒子の分散液とを混合する工程
(b)(a)工程で得られた混合溶液を30~320℃の温度で、0.5~24時間加熱する工程
(c)(b)工程で得られた混合溶液をH型陽イオン交換樹脂と接触させる工程
(d)(c)工程で得られた混合溶液とアルミン酸塩水溶液とを混合し、30~320℃の温度で、0.5~24時間加熱する工程
 第16観点として、前記(a)工程は、未改質複合酸化物コロイド粒子の全複合酸化物の質量/金属酸化物コロイド粒子(A)の全金属酸化物の質量が0.05~0.50となるように、金属酸化物コロイド粒子(A)を含む分散液と、Siと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との未改質複合酸化物コロイド粒子の分散液とを混合する工程である、第15観点に記載の変性金属酸化物コロイド粒子(C)の製造方法に関する。
 第17観点として、前記(d)工程は、全複合酸化物の質量/アルミン酸塩の質量(Al換算)が50~800となるように、(c)工程で得られた混合溶液とアルミン酸塩水溶液とを混合する工程である、第15観点又は第16観点に記載の変性金属酸化物コロイド粒子(C)の製造方法に関する。
 第18観点として、前記(b)工程の加熱処理を水熱条件下で行なう、第15観点乃至第17観点のいずれか一に記載の変性金属酸化物コロイド粒子(C)の製造方法に関する。
As a fifteenth aspect, it relates to a method for producing modified metal oxide colloidal particles (C) including the following steps (a) to (d).
(a) a dispersion containing metal oxide colloidal particles (A) and a dispersion of unmodified composite oxide colloidal particles containing Si and at least one atom selected from the group consisting of Sn, Sb and W; Step (b) of mixing the mixed solution obtained in step (a) at a temperature of 30 to 320 ° C. for 0.5 to 24 hours (c) Heating the mixed solution obtained in step (b) with H Step (d) of contacting with a type cation exchange resin, mixing the mixed solution obtained in the step (c) and an aluminate aqueous solution, and heating at a temperature of 30 to 320 ° C. for 0.5 to 24 hours. As a 16th aspect, in the step (a), the mass of the total complex oxide of the unmodified complex oxide colloidal particles/the mass of the total metal oxide of the metal oxide colloidal particles (A) is 0.05 to 0.50. Dispersion of unmodified composite oxide colloid particles with a dispersion containing metal oxide colloid particles (A) and Si and at least one atom selected from the group consisting of Sn, Sb and W so that It relates to the method for producing modified metal oxide colloidal particles (C) according to the fifteenth aspect, which is a step of mixing with a liquid.
As a seventeenth aspect, in the step (d), the mixed solution obtained in the step (c) is adjusted so that the mass of the total composite oxide/the mass of the aluminate (in terms of Al 2 O 3 ) is 50 to 800 and an aluminate aqueous solution.
An eighteenth aspect relates to the method for producing modified metal oxide colloidal particles (C) according to any one of the fifteenth to seventeenth aspects, wherein the heat treatment in step (b) is performed under hydrothermal conditions.
 本発明の変性金属酸化物コロイド粒子はコーティング組成物に配合した場合、黄変しにくい硬化膜を形成できる組成物を為すことができる。
 また、本発明のコーディング組成物は、黄変しにくい硬化膜を形成することができる。それ故、本発明の変性金属酸化物コロイド粒子を含有するコーディング組成物から作製される硬化膜を有する光学部材は、特に眼鏡やディスプレイ材料などとして使用することができる。
When the modified metal oxide colloidal particles of the present invention are blended in a coating composition, they can form a composition capable of forming a cured film that is resistant to yellowing.
Also, the coating composition of the present invention can form a cured film that is resistant to yellowing. Therefore, an optical member having a cured film produced from the coating composition containing the modified metal oxide colloidal particles of the present invention can be used particularly as spectacles, display materials, and the like.
 本発明の変性金属酸化物コロイド粒子を水媒体に分散させた水分散液は、分散安定性に優れるものである。
 また、本発明の変性金属酸化物コロイド粒子を有機溶媒に分散させた有機溶媒分散液は、該変性金属酸化物コロイド粒子の表面が有機ケイ素化合物で表面修飾されていても、又は表面修飾されていなくても、分散安定性に優れるものである。
An aqueous dispersion obtained by dispersing the modified metal oxide colloidal particles of the present invention in an aqueous medium has excellent dispersion stability.
In addition, in the organic solvent dispersion obtained by dispersing the modified metal oxide colloidal particles of the present invention in an organic solvent, the surface of the modified metal oxide colloidal particles may or may not be surface-modified with an organic silicon compound. Even without it, the dispersion stability is excellent.
[変性金属酸化物コロイド粒子(C)]
 本発明の変性金属酸化物コロイド粒子(C)は、金属酸化物コロイド粒子(A)を核として、その表面をSi及びAlと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との複合酸化物からなる被覆層(B)で被覆されてなる、平均粒子径5~300nmの粒子である。
 また、本発明の好ましい態様の1つとして、金属酸化物コロイド粒子(A)を核として、その表面をSiと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との未改質複合酸化物をアルミン酸塩で改質してなる被覆層(B)で被覆されてなる、平均粒子径5~300nmの変性金属酸化物コロイド粒子(C)が挙げられる。
[Modified metal oxide colloidal particles (C)]
The modified metal oxide colloidal particle (C) of the present invention has the metal oxide colloidal particle (A) as a nucleus, and the surface of the metal oxide colloidal particle (A) is Si, Al, and at least one atom selected from the group consisting of Sn, Sb and W. Particles having an average particle diameter of 5 to 300 nm, which are coated with a coating layer (B) comprising a composite oxide of
Further, as one of the preferred embodiments of the present invention, the metal oxide colloidal particles (A) are used as nuclei, and the surfaces thereof are unmodified with Si and at least one atom selected from the group consisting of Sn, Sb and W. Modified metal oxide colloid particles (C) having an average particle diameter of 5 to 300 nm, which are coated with a coating layer (B) obtained by modifying a complex oxide with an aluminate.
<金属酸化物コロイド粒子(A)>
 前記金属酸化物コロイド粒子(A)としては、Ti、Mn、Fe、Cu、Zn、Y、Zr、Nb、Mo、In、Sn、Sb、Ta、W、Pb、Bi及びCeからなる群から選ばれる少なくとも1種の金属の酸化物のコロイド粒子が挙げられる。この金属酸化物のコロイド粒子(A)は原子価2~6の金属の酸化物のコロイド粒子であり、それら金属の酸化物の形態として、例えばTiO、MnO、Fe、CuO、ZnO、Y、ZrO、Nb、MoO、In、SnO、Sb、Ta、WO、PbO、Bi、CeO等を例示することができる。そしてこれらの金属酸化物は単独で用いることも複数種を組み合わせて用いることもできる。組み合わせ方法としては、前記金属酸化物を数種類混合する方法や、前記金属酸化物を複合化させる方法、又は前記金属酸化物を原子レベルで固溶体化する方法が挙げられる。
<Metal oxide colloidal particles (A)>
The metal oxide colloidal particles (A) are selected from the group consisting of Ti, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, Sn, Sb, Ta, W, Pb, Bi and Ce. colloidal particles of at least one metal oxide. The colloidal particles (A) of metal oxides are colloidal particles of oxides of metals having a valence of 2-6 . , Y2O3 , ZrO2 , Nb2O5 , MoO3 , In2O3 , SnO2 , Sb2O5 , Ta2O5 , WO3 , PbO, Bi2O3 , CeO2 , etc. can do. These metal oxides can be used either singly or in combination. Examples of the method of combination include a method of mixing several types of the metal oxides, a method of forming a composite of the metal oxides, and a method of forming a solid solution of the metal oxides at the atomic level.
 前記金属酸化物のコロイド粒子(A)が複数種の金属酸化物からなる場合、例えば、TiO粒子とSnO粒子とがその界面で化学的な結合を生じて複合化されたTiO-SnO複合酸化物コロイド粒子、SnO粒子とWO粒子とがその界面で化学的な結合を生じて複合化されたSnO-WO複合酸化物コロイド粒子、SnO粒子とZrO粒子とがその界面で化学的な結合を生じて複合化されたSnO-ZrO複合酸化物コロイド粒子、TiOとZrOとSnOとが原子レベルで固溶体を形成して得られたTiO-ZrO-SnO複合酸化物コロイド粒子などが挙げられる。従って、これら複合酸化物コロイド粒子は、TiO粒子、SnO粒子などの金属酸化物粒子の単なる混合物ではない。
 また前記金属酸化物のコロイド粒子(A)は、金属成分の組み合わせにより化合物として用いることもでき、例えばZnSb、InSbO、ZnSnOが挙げられる。
When the colloidal particles (A) of metal oxides are composed of a plurality of kinds of metal oxides, for example, TiO 2 -SnO in which TiO 2 particles and SnO 2 particles are chemically bonded at their interface to form a composite. 2 composite oxide colloidal particles, SnO 2 —WO 3 composite oxide colloidal particles in which SnO 2 particles and WO 3 particles are chemically bonded at their interface to form a composite, SnO 2 particles and ZrO 2 particles SnO 2 —ZrO 2 composite oxide colloidal particles composited by chemical bonding at their interfaces, TiO 2 —ZrO obtained by forming a solid solution of TiO 2 , ZrO 2 and SnO 2 at the atomic level 2 -SnO 2 composite oxide colloidal particles and the like. Therefore, these composite oxide colloidal particles are not just a mixture of metal oxide particles such as TiO2 particles, SnO2 particles.
The colloidal particles (A) of metal oxide can also be used as a compound by combining metal components such as ZnSb 2 O 6 , InSbO 4 and ZnSnO 3 .
 前記金属酸化物のコロイド粒子(A)は、公知の方法、例えば、イオン交換法、解膠法、加水分解法、反応法により製造することができる。イオン交換法の例としては、前記金属の酸性塩を水素型イオン交換樹脂で処理する方法、あるいは前記金属の塩基性塩を水酸基型陰イオン交換樹脂で処理する方法が挙げられる。解膠法の例としては、前記金属の酸性塩を塩基で中和するか、あるいは前記金属の塩基性塩を酸で中和させることによって得られるゲルを洗浄した後、酸又は塩基で解膠する方法が挙げられる。加水分解法の例としては、前記金属のアルコキシドを加水分解する方法、あるいは前記金属の塩基性塩を加熱下加水分解した後、不要の酸を除去する方法が挙げられる。反応法の例としては、前記金属の粉末と酸とを反応させる方法が挙げられる。
 また、例えば、これら公知の方法で得られた金属酸化物コロイド粒子と、金属の酸性塩とを混合することで複合金属酸化物コロイド粒子を得ることができる。
The colloidal particles (A) of metal oxide can be produced by known methods such as ion exchange, peptization, hydrolysis, and reaction methods. Examples of the ion exchange method include a method of treating an acid salt of the metal with a hydrogen-type ion exchange resin, or a method of treating a basic salt of the metal with a hydroxyl-type anion exchange resin. Examples of deflocculation include washing the gel obtained by neutralizing the acid salt of the metal with a base or neutralizing the basic salt of the metal with an acid, followed by peptization with an acid or a base. method. Examples of the hydrolysis method include a method of hydrolyzing the alkoxide of the metal, or a method of hydrolyzing the basic salt of the metal under heating and then removing unnecessary acid. Examples of the reaction method include a method of reacting the metal powder with an acid.
Also, for example, composite metal oxide colloid particles can be obtained by mixing metal oxide colloid particles obtained by these known methods with a metal acid salt.
 なお、前記金属酸化物のコロイド粒子(A)が酸化チタンを含有する場合、該粒子は無定形でも、アナタース型、ルチル型、ブルッカイト型等の結晶であってもよい。更には、チタン酸バリウム(BaTiO又はBaO・TiOで表される。)のようなペロブスカイト型チタン化合物であってもよい。中でも、酸化チタンを主成分とする複合酸化物のコロイド粒子の結晶型はルチル型であることが好ましい。
 また、前記金属酸化物のコロイド粒子(A)が酸化ジルコニウムを含有する場合、該粒子は無定形でも、単斜晶、正方晶、立方晶などの結晶であってもよい。
When the colloidal particles (A) of the metal oxide contain titanium oxide, the particles may be amorphous or crystals such as anatase, rutile, and brookite. Further, it may be a perovskite titanium compound such as barium titanate (represented by BaTiO 3 or BaO.TiO 2 ). Among them, the crystal type of the colloidal particles of the composite oxide containing titanium oxide as a main component is preferably the rutile type.
Moreover, when the colloidal particles (A) of the metal oxide contain zirconium oxide, the particles may be amorphous or may be crystals such as monoclinic, tetragonal, or cubic.
 核となる金属酸化物コロイド粒子(A)は、その平均一次粒子径を透過型電子顕微鏡による観察にて測定することができる。平均一次粒子径は、例えば、1~300nm、又は3~200nm、又は5~100nmの範囲である。 The average primary particle size of the core metal oxide colloidal particles (A) can be measured by observation with a transmission electron microscope. The average primary particle size is, for example, in the range of 1-300 nm, or 3-200 nm, or 5-100 nm.
<被覆層(B)>
 前記被覆層(B)は、Si及びAlと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との複合酸化物からなる層であり、好ましくはSiと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との未改質複合酸化物をアルミン酸塩で改質してなる層である。ただし、前記複合酸化物は前記金属酸化物コロイド粒子(A)の金属酸化物と相違するものである。
 前記被覆層(B)としては、例えば、SiO粒子とSnO粒子とがその界面で化学的な結合を生じて複合化されたSiO-SnO複合酸化物コロイド粒子が、アルミン酸塩で改質されたSiO-SnO-Al被覆層、SiO粒子とSb粒子とがその界面で化学的な結合を生じて複合化されたSiO-Sb複合酸化物コロイド粒子が、アルミン酸塩で改質されたSiO-Sb-Al被覆層、SiO粒子とWO粒子とがその界面で化学的な結合を生じて複合化されたSiO-WO複合酸化物コロイド粒子がアルミン酸塩で改質されたSiO-WO-Al被覆層などが挙げられる。
 また被覆層(B)は、例えば、金属酸化物コロイド(A)を、SiO粒子とSnO粒子とがその界面で化学的な結合を生じて複合化されたSiO-SnO複合酸化物コロイド粒子で被覆した後に、アルミン酸塩で改質した、SiO-SnO-Al被覆層とすることもできる。
 被覆層(B)としては、Siと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との未改質複合酸化物をアルミン酸塩で改質してなる層であることが好ましい。また、未改質複合酸化物の一部又は全部がアルミン酸塩で改質されていればよく、未改質複合酸化物の全部がアルミン酸塩で改質されていることが好ましい。このような、未改質複合酸化物をアルミン酸塩で改質した被覆層(B)を設けた変性金属酸化物コロイド粒子(C)は、有機溶媒を媒体とした分散液にした場合でも良好な分散状態を発現することができる。
<Coating layer (B)>
The coating layer (B) is a layer made of a composite oxide of Si and Al and at least one atom selected from the group consisting of Sn, Sb and W, preferably Si, Sn, Sb and W It is a layer obtained by modifying an unmodified composite oxide with at least one atom selected from the group consisting of with an aluminate. However, the composite oxide is different from the metal oxide of the metal oxide colloidal particles (A).
As the coating layer (B), for example, SiO 2 —SnO 2 composite oxide colloidal particles, in which SiO 2 particles and SnO 2 particles are chemically bonded at their interface to form a composite, are coated with an aluminate. Modified SiO 2 —SnO 2 —Al 2 O 3 coating layer, SiO 2 —Sb 2 O 5 composite in which SiO 2 particles and Sb 2 O 5 particles are chemically bonded at their interfaces Oxide colloid particles form an aluminate-modified SiO 2 —Sb 2 O 5 —Al 2 O 3 coating layer, and SiO 2 particles and WO 3 particles form a chemical bond at the interface to form a composite. SiO 2 —WO 3 —Al 2 O 3 coating layer obtained by modifying SiO 2 —WO 3 composite oxide colloidal particles with an aluminate.
The coating layer (B) is, for example, a metal oxide colloid (A), a SiO 2 —SnO 2 composite oxide in which SiO 2 particles and SnO 2 particles are chemically bonded at their interfaces. It can also be an aluminate-modified SiO 2 —SnO 2 —Al 2 O 3 coating layer after being coated with colloidal particles.
The coating layer (B) is a layer obtained by modifying an unmodified composite oxide of Si and at least one atom selected from the group consisting of Sn, Sb and W with an aluminate. preferable. Further, it is sufficient that part or all of the unmodified composite oxide is modified with an aluminate, and it is preferable that the entire unmodified composite oxide is modified with an aluminate. Such modified metal oxide colloid particles (C) provided with a coating layer (B) obtained by modifying an unmodified composite oxide with an aluminate are good even when they are dispersed in an organic solvent as a medium. It is possible to express a decent dispersion state.
 アルミン酸塩による改質の詳細なメカニズムは解明されていないが、RALPH K.ILER,THE CHEMISTRY OF SILICA,JOHN WILEY & SONSによれば、Si原子とAl原子はO原子に対して4または6配位数を取ることができ、両者ともほぼ同じ原子半径を有している。そのため、テトラヒドロキシドアルミン酸イオンとオルトケイ酸イオンは幾何学的に類似していることから、SiO表面でテトラヒドロキシドアルミン酸イオンがSi-O結合間に挿入またはAl原子がSi原子と交換され、Si原子とAl原子とがO原子を介して結合を生成し、未改質複合酸化物がアルミン酸塩で改質されるものと推測される。 Although the detailed mechanism of modification by aluminate has not been elucidated, RALPH K. et al. According to ILER, THE CHEMISTRY OF SILICA, JOHN WILEY & SONS, Si and Al atoms can have 4 or 6 coordination numbers to the O atom and both have approximately the same atomic radius. Therefore, the tetrahydroxidealuminate ion and the orthosilicate ion are geometrically similar, so that the tetrahydroxidealuminate ion is inserted between the Si—O bonds or the Al atom is exchanged with the Si atom on the SiO2 surface, It is presumed that Si atoms and Al atoms form bonds through O atoms, and the unmodified composite oxide is modified with aluminate.
 前記未改質複合酸化物コロイド粒子は、公知の方法、例えば、イオン交換法、酸化法により製造することができる。イオン交換法の例としては、前記原子の酸性塩を水素型イオン交換樹脂で処理する方法が挙げられる。酸化法の例としては、原子又は無機酸化物の粉末と過酸化水素とを反応させる方法が挙げる。 The unmodified composite oxide colloidal particles can be produced by known methods such as ion exchange method and oxidation method. An example of the ion exchange method is a method in which an acid salt of said atom is treated with a hydrogen ion exchange resin. Examples of oxidation methods include reacting atomic or inorganic oxide powders with hydrogen peroxide.
 被覆層(B)に含まれるAl含有量は、波長分散型蛍光X線分析装置を用いて、変性金属酸化物コロイド粒子(C)を測定することで求めることができる。
 被覆層(B)中のAl含有量(Al換算)は、金属酸化物コロイド粒子(A)の全金属酸化物及び被覆層(B)の全複合酸化物の合計質量に基づいて、例えば、0.05~0.5質量%、又は0.08~0.5質量%の範囲である。ここで、金属酸化物コロイド粒子(A)の全金属酸化物及び被覆層(B)の全複合酸化物の合計質量は、焼成法により定量することができる。
 また、被覆層(B)中のAl含有量(Al換算)は、被覆層(B)の全複合酸化物の質量に基づいて、例えば、0.1~10質量%の範囲である。
The Al content contained in the coating layer (B) can be determined by measuring the modified metal oxide colloidal particles (C) using a wavelength dispersive X-ray fluorescence analyzer.
The Al content (in terms of Al 2 O 3 ) in the coating layer (B) is based on the total mass of all metal oxides in the metal oxide colloidal particles (A) and all composite oxides in the coating layer (B), For example, it ranges from 0.05 to 0.5 mass %, or from 0.08 to 0.5 mass %. Here, the total mass of all metal oxides in the metal oxide colloidal particles (A) and all composite oxides in the coating layer (B) can be quantified by a calcination method.
Further, the Al content (in terms of Al 2 O 3 ) in the coating layer (B) is, for example, in the range of 0.1 to 10% by mass based on the mass of the total composite oxide in the coating layer (B). .
<変性金属酸化物コロイド粒子(C)>
 前記変性金属酸化物コロイド粒子(C)は、金属酸化物コロイド粒子(A)を核として、その表面を前記被覆層(B)で被覆されてなる、平均粒子径5~300nmの粒子である。
 変性金属酸化物コロイド粒子(C)は、その平均粒子径を動的光散乱法(DLS法)により測定することができる。平均粒子径は、5~300nmであり、5~200nmが好ましい。
 また、変性金属酸化物コロイド粒子(C)は、金属酸化物コロイド粒子(A)の表面で被覆層(B)が化学的な結合を形成することで得られる粒子であるため、変性金属酸化物コロイド粒子(C)の透過型電子顕微鏡による平均一次粒子径は、金属酸化物コロイド粒子(A)の平均一次粒子径より必ずしも増大した値ではなく、また、その化学結合により幾分変化し得る。
 変性金属酸化物コロイド粒子(C)の透過型電子顕微鏡による平均一次粒子径は、例えば、5~300nm、又は5~200nmの範囲である。
<Modified metal oxide colloidal particles (C)>
The modified metal oxide colloidal particles (C) are particles having an average particle size of 5 to 300 nm, which are formed by coating the surface of the metal oxide colloidal particles (A) with the coating layer (B).
The modified metal oxide colloidal particles (C) can be measured for the average particle size by a dynamic light scattering method (DLS method). The average particle size is 5-300 nm, preferably 5-200 nm.
In addition, since the modified metal oxide colloidal particles (C) are particles obtained by forming a chemical bond between the coating layer (B) and the surface of the metal oxide colloidal particles (A), the modified metal oxide The average primary particle size of the colloidal particles (C) as measured by a transmission electron microscope is not necessarily larger than the average primary particle size of the metal oxide colloidal particles (A), and may vary somewhat depending on their chemical bonds.
The average primary particle size of the modified metal oxide colloidal particles (C) as measured by a transmission electron microscope ranges, for example, from 5 to 300 nm, or from 5 to 200 nm.
 前記被覆層(B)となる複合酸化物の金属酸化物コロイド粒子(A)に対する質量比[複合酸化物の質量/金属酸化物コロイド粒子(A)の金属酸化物の質量]は、例えば、0.05~0.50、又は0.05~0.30、又は0.03~0.30の範囲である。 The mass ratio of the composite oxide to be the coating layer (B) to the metal oxide colloidal particles (A) [mass of the composite oxide/mass of the metal oxide in the metal oxide colloidal particles (A)] is, for example, 0. 0.05 to 0.50, or 0.05 to 0.30, or 0.03 to 0.30.
 変性金属酸化物コロイド粒子(C)は実質的に有機アミンを含有しない。具体的には、変性金属酸化物コロイド粒子(C)中の有機アミンに由来する全窒素の含有量は、金属酸化物コロイド粒子(A)の全金属酸化物及び被覆層(B)の全複合酸化物の合計質量に基づいて、例えば、0.05質量%以下、または0.01質量%以下である。
 変性金属酸化物コロイド粒子(C)中の有機アミンに由来する全窒素の含有量は、変性金属酸化物コロイド粒子(C)に含まれる有機アミンをカチオンクロマト法により定量し、有機アミンに由来する全窒素量を算出することで求めることができる。
 また、金属酸化物コロイド粒子(A)の全金属酸化物及び被覆層(B)の全複合酸化物の合計質量は、焼成法により定量することができる。
Modified metal oxide colloidal particles (C) contain substantially no organic amine. Specifically, the content of total nitrogen derived from organic amines in the modified colloidal metal oxide particles (C) is the total composite For example, 0.05% by weight or less, or 0.01% by weight or less, based on the total weight of the oxides.
The total nitrogen content derived from the organic amine in the modified metal oxide colloidal particles (C) is determined by quantifying the organic amine contained in the modified metal oxide colloidal particles (C) by a cation chromatography method. It can be obtained by calculating the total nitrogen content.
Further, the total mass of all metal oxides in the metal oxide colloidal particles (A) and all composite oxides in the coating layer (B) can be quantified by a sintering method.
<有機ケイ素化合物で表面修飾された変性金属酸化物コロイド粒子(C)>
 前記変性金属酸化物コロイド粒子(C)は、その表面の少なくとも一部を一般式(1)又は一般式(2)で表される有機ケイ素化合物で表面修飾することができる。
 (R1’a’Si(R2’4-a’      式(1)
 [(R3’Si(R4’3-d   式(2)
(式(1)、式(2)中、
 R1’及びR3’はアルキル基、フェニル基、ビニル基、アクリロキシ基、メタクリロキシ基、エポキシ基、スチリル基、イソシアネート基、メルカプト基、ウレイド基、酸無水物基又はそれら官能基を含む炭素原子数1乃至10のアルキレン基であり且つSi-C結合によりケイ素原子と結合しているアルキレン基を示し、R1’及びR3’がそれぞれ複数存在する場合は、各R1’及び各R3’はそれぞれ同一でも異なっていてもよく、
 R2’及びR4’はアルコキシ基、アシルオキシ基、又はハロゲン原子からなる加水分解性基を示し、R2’及びR4’がそれぞれ複数存在する場合は、各R2’及び各R4’はそれぞれ同一でも異なっていてもよく、
 Yはアルキレン基、アリーレン基、NH基又は酸素原子を示す。
 aは1乃至3の整数を示し、dは0乃至3の整数を示し、eは0又は1の整数を示す。)
<Modified Metal Oxide Colloidal Particles (C) Surface-Modified with Organosilicon Compound>
At least part of the surface of the modified metal oxide colloidal particles (C) can be modified with an organosilicon compound represented by general formula (1) or general formula (2).
(R 1′ ) a′ Si(R 2′ ) 4-a′ Formula (1)
[(R 3′ ) d Si(R 4′ ) 3-d ] 2 Y e Formula (2)
(In formulas (1) and (2),
R 1' and R 3' are alkyl groups, phenyl groups, vinyl groups, acryloxy groups, methacryloxy groups, epoxy groups, styryl groups, isocyanate groups, mercapto groups, ureido groups, acid anhydride groups, or carbon atoms containing functional groups thereof. It is an alkylene group of numbers 1 to 10 and represents an alkylene group bonded to a silicon atom via a Si—C bond, and when there are a plurality of each of R 1' and R 3' , each R 1' and each R 3 ' may be the same or different,
R 2' and R 4 ' each represents a hydrolyzable group consisting of an alkoxy group, an acyloxy group, or a halogen atom ; may be the same or different,
Y represents an alkylene group, an arylene group, an NH group or an oxygen atom.
a represents an integer of 1 to 3, d represents an integer of 0 to 3, and e represents an integer of 0 or 1. )
 前記アルキル基としては炭素原子数1乃至10のアルキル基が挙げられ、前記アルコキシ基としては炭素原子数1乃至10のアルコキシ基が挙げられ、前記アシルオキシ基としては炭素原子数1乃至10のアシルオキシ基が挙げられ、前記ハロゲン原子としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、前記アリーレン基としては炭素原子数6乃至10のアリーレン基が挙げられる。また、前記エポキシ基は、エポキシ基だけでなく、エポキシ基を含有する基(グリシジル基、グリシドキシ基及びエポキシシクロアルキル基など)をも包含するものである。 The alkyl group includes an alkyl group having 1 to 10 carbon atoms, the alkoxy group includes an alkoxy group having 1 to 10 carbon atoms, and the acyloxy group includes an acyloxy group having 1 to 10 carbon atoms. The halogen atom includes fluorine atom, chlorine atom, bromine atom and iodine atom, and the arylene group includes an arylene group having 6 to 10 carbon atoms. The epoxy group includes not only epoxy groups but also groups containing epoxy groups (glycidyl group, glycidoxy group, epoxycycloalkyl group, etc.).
 前記式(1)で表される有機ケイ素化合物の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、へキシルトリメトキシシラン、へキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトキシジフェニルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシオクチルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン(γ-グリシドキシプロピルトリメトキシシラン)、3-グリシドキシプロピルメチルジエトキシシラン、p-スチリルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランなどが挙げられる。 Specific examples of the organosilicon compound represented by formula (1) include methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane. , hexyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethoxydiphenylsilane, vinyltrimethoxysilane, vinyltriethoxysilane, methylvinyldimethoxysilane Silane, methylvinyldiethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxyoctyl trimethoxysilane, 3-acryloxypropyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane ( γ-glycidoxypropyltrimethoxysilane), 3-glycidoxypropylmethyldiethoxysilane, p-styryltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-mercaptopropylmethyl dimethoxysilane, 3-mercaptopropyltrimethoxysilane, and the like.
 前記式(2)で表される有機ケイ素化合物の具体例としては、ヘキサメチルジシロキサン、ヘキサメチルジシラザンなどが挙げられる。 Specific examples of the organosilicon compound represented by formula (2) include hexamethyldisiloxane and hexamethyldisilazane.
 これら有機ケイ素化合物は、変性金属酸化物コロイド粒子(C)の有機溶媒への分散性の向上、あるいは熱硬化性樹脂、熱可塑性樹脂及び紫外線硬化樹脂などの樹脂との相溶性の向上などを目的として適宜選択し、使用することができる。
 これら有機ケイ素化合物は、信越化学工業株式会社や東京化成工業株式会社から入手することができる。
These organosilicon compounds are used for the purpose of improving the dispersibility of the modified metal oxide colloidal particles (C) in organic solvents, or improving the compatibility with resins such as thermosetting resins, thermoplastic resins and ultraviolet curable resins. can be selected and used as appropriate.
These organosilicon compounds are available from Shin-Etsu Chemical Co., Ltd. and Tokyo Chemical Industry Co., Ltd.
 変性金属酸化物コロイド粒子(C)の表面の少なくとも一部を、一般式(1)又は一般式(2)で表される有機ケイ素化合物で表面修飾させる、すなわち変性金属酸化物コロイド粒子(C)の表面の少なくとも一部に一般式(1)又は一般式(2)で表される有機ケイ素化合物を結合させるには、例えば、前記変性金属酸化物コロイド粒子(C)(例えば変性金属酸化物コロイド粒子(C)のアルコール分散ゾル)と、一般式(1)又は一般式(2)で表される有機ケイ素化合物(又はそのアルコール溶液)を所定量混合し、(必要であれば)所定量の水、必要に応じて希塩酸等の加水分解触媒を加えた後、所定時間常温で放置する、あるいは、加熱処理を行えばよい。 At least part of the surface of the modified metal oxide colloidal particles (C) is modified with an organosilicon compound represented by general formula (1) or general formula (2), that is, the modified metal oxide colloidal particles (C) In order to bond the organosilicon compound represented by general formula (1) or general formula (2) to at least part of the surface of the modified metal oxide colloid particles (C) (for example, modified metal oxide colloid An alcohol-dispersed sol of particles (C)) and an organosilicon compound represented by general formula (1) or general formula (2) (or an alcohol solution thereof) are mixed in a predetermined amount, and (if necessary) a predetermined amount of After adding water and, if necessary, a hydrolysis catalyst such as dilute hydrochloric acid, the mixture is allowed to stand at normal temperature for a predetermined time, or heat treatment may be performed.
 また、変性金属酸化物コロイド粒子(C)の表面の少なくとも一部を、一般式(1)又は一般式(2)で表される有機ケイ素化合物で表面修飾させる、すなわち変性金属酸化物コロイド粒子(C)の表面の少なくとも一部に一般式(1)又は一般式(2)で表される有機ケイ素化合物を結合させる別の方法としては、例えば、前記変性金属酸化物コロイド粒子(C)(例えば変性金属酸化物コロイド粒子(C)の水分散)と、一般式(1)又は一般式(2)で表される有機ケイ素化合物の溶液(例えばアルコール等の親水性有機溶媒)を所定量混合し、水を留去する蒸留法により、有機ケイ素化合物で表面修飾された変性金属酸化物コロイド粒子(C)の有機溶媒分散液を得ることができる。
 この時、有機溶媒分散液に残存する水分量として、0.1質量乃至15質量%になるまで水を留去することが好ましい。
In addition, at least part of the surface of the modified metal oxide colloidal particles (C) is surface-modified with an organosilicon compound represented by the general formula (1) or general formula (2), that is, the modified metal oxide colloidal particles ( Another method of bonding the organosilicon compound represented by general formula (1) or general formula (2) to at least part of the surface of C) is, for example, the modified metal oxide colloid particles (C) (for example, Aqueous dispersion of modified metal oxide colloidal particles (C)) and a solution of an organosilicon compound represented by general formula (1) or general formula (2) (for example, a hydrophilic organic solvent such as alcohol) are mixed in a predetermined amount. , an organic solvent dispersion of modified metal oxide colloidal particles (C) surface-modified with an organosilicon compound can be obtained by a distillation method in which water is distilled off.
At this time, it is preferable to distill off water until the amount of water remaining in the organic solvent dispersion becomes 0.1% by mass to 15% by mass.
 変性金属酸化物コロイド粒子(C)の表面に結合させる一般式(1)又は一般式(2)で表される有機ケイ素化合物は、1種を単独で使用しても2種以上を混合して使用してもよい。
 また、前記変性金属酸化物コロイド粒子(C)の表面に一般式(1)又は一般式(2)で表される有機ケイ素化合物を結合させる表面改質処理を行う際に、事前に前記一般式(1)又は一般式(2)で表される有機ケイ素化合物の部分的な加水分解を行ってもよいし、加水分解を行わないままで表面改質処理を行ってもよい。
 さらに表面改質処理後は、一般式(1)又は一般式(2)で表される有機ケイ素化合物の加水分解性基が前記変性金属酸化物コロイド粒子(C)の表面のヒドロキシ基と反応した状態が好ましいが、一部のヒドロキシ基が未処理のまま残存した状態でも何ら差し支えない。
The organosilicon compound represented by general formula (1) or general formula (2) to be bound to the surface of the modified metal oxide colloidal particles (C) may be used alone or in combination of two or more. may be used.
Further, when performing a surface modification treatment for binding the organosilicon compound represented by general formula (1) or general formula (2) to the surface of the modified metal oxide colloidal particles (C), the general formula The organosilicon compound represented by (1) or general formula (2) may be partially hydrolyzed, or the surface modification treatment may be performed without hydrolysis.
Furthermore, after the surface modification treatment, the hydrolyzable groups of the organosilicon compound represented by general formula (1) or general formula (2) reacted with the hydroxy groups on the surface of the modified metal oxide colloidal particles (C). This state is preferable, but there is no problem even if some hydroxyl groups remain untreated.
 また前記変性金属酸化物コロイド粒子(C)の表面への一般式(1)又は一般式(2)で表される有機ケイ素化合物の結合量は特に限定されないが、例えば、金属酸化物コロイド粒子(A)の全金属酸化物及び被覆層(B)の全複合酸化物の合計質量(100質量%)に対して、例えば0.01~20質量%であり、好ましくは0.1~20質量%であり、より好ましくは0.1~15質量%である。
 また、金属酸化物コロイド粒子(A)の全金属酸化物及び被覆層(B)の全複合酸化物の合計質量は、焼成法により定量することができる。
The amount of bonding of the organosilicon compound represented by general formula (1) or general formula (2) to the surface of the modified metal oxide colloidal particles (C) is not particularly limited. For example, 0.01 to 20% by mass, preferably 0.1 to 20% by mass, based on the total mass (100% by mass) of all metal oxides in A) and all composite oxides in coating layer (B) and more preferably 0.1 to 15% by mass.
Further, the total mass of all metal oxides in the metal oxide colloidal particles (A) and all composite oxides in the coating layer (B) can be quantified by a sintering method.
[変性金属酸化物コロイド粒子(C)の分散液]
 前記変性金属酸化物コロイド粒子(C)は水性媒体又は有機溶媒に分散させた分散液として用いることができる。有機溶媒を分散媒とした分散液は、水性媒体に分散した分散液の分散媒である水を有機溶媒で置換することにより、有機溶媒分散液とすることができる。また、有機溶媒に分散した分散液をさらに別の種類の有機溶媒に置換することにより、有機溶媒分散液とすることもできる。この置換は、蒸留法、限外濾過法等通常の方法により行うことができる。
[Dispersion of Modified Metal Oxide Colloidal Particles (C)]
The modified metal oxide colloidal particles (C) can be used as a dispersion in an aqueous medium or an organic solvent. A dispersion using an organic solvent as a dispersion medium can be made into an organic solvent dispersion by replacing water, which is the dispersion medium of the dispersion in an aqueous medium, with an organic solvent. Alternatively, an organic solvent dispersion can be obtained by further substituting another type of organic solvent for the dispersion dispersed in the organic solvent. This substitution can be carried out by an ordinary method such as a distillation method or an ultrafiltration method.
 この有機溶媒の例としてはメチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール類、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のエーテル類、エチルセロソルブ、エチレングリコール等のグリコール類、ヘキサン、トルエン、シクロヘキサン等の炭化水素類が挙げられる。 Examples of the organic solvent include alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol; ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethers such as propylene glycol monomethyl ether and propylene glycol monoethyl ether; Glycols such as ethylene glycol, and hydrocarbons such as hexane, toluene and cyclohexane can be used.
 分散液に含まれる変性金属酸化物コロイド粒子(C)の濃度は、全金属酸化物濃度として表すことができる。ここで、全金属酸化物濃度とは、金属酸化物コロイド粒子(A)の金属酸化物、及び被覆層(B)の複合酸化物に含まれる金属酸化物(例えば、SiO、Al、SnO、Sb及びWOなど)の濃度として定義され、分散液を800℃以上で30分間以上焼成して得られる焼成残分から算出する焼成法により定量することができる。
 該分散液における全金属酸化物濃度は、例えば、1~60質量%、又は20~60質量%、又は30~60質量%の範囲である。
The concentration of the modified metal oxide colloidal particles (C) contained in the dispersion can be expressed as the total metal oxide concentration. Here, the total metal oxide concentration means the metal oxide contained in the metal oxide colloidal particles (A) and the composite oxide in the coating layer (B) (e.g., SiO 2 , Al 2 O 3 , SnO 2 , Sb 2 O 5 and WO 3 ), and can be quantified by a calcination method in which the dispersion is calculated from the calcination residue obtained by calcining the dispersion at 800° C. or higher for 30 minutes or longer.
The total metal oxide concentration in the dispersion ranges, for example, from 1 to 60 wt%, or from 20 to 60 wt%, or from 30 to 60 wt%.
 また、分散液のpHは、例えば、1~14、又は2~8、又は3~7の範囲である。 Also, the pH of the dispersion is, for example, in the range of 1-14, or 2-8, or 3-7.
[コーティング組成物]
 本発明のコーティング組成物(コーティング液ともいう)は(S)成分:有機ケイ素化合物、及び/又はその加水分解物であるケイ素含有物質、並びに、(T)成分:前述の変性金属酸化物コロイド粒子(C)を含みて構成される。
 あるいは、本発明のコーティング組成物は(K)成分:熱硬化性樹脂、熱可塑性樹脂及び紫外線硬化樹脂からなる群から選ばれる少なくとも1種の樹脂、並びに、(T)成分:前述の変性金属酸化物コロイド粒子(C)を含みて構成される。
 以下、本発明のコーティング組成物を構成する各成分、特に(S)成分及び(K)成分について詳述する。
[Coating composition]
The coating composition (also referred to as a coating liquid) of the present invention comprises (S) component: an organosilicon compound and/or a silicon-containing substance that is a hydrolyzate thereof, and (T) component: the modified metal oxide colloidal particles described above. (C).
Alternatively, the coating composition of the present invention includes component (K): at least one resin selected from the group consisting of thermosetting resins, thermoplastic resins and UV-curable resins, and component (T): the modified metal oxide described above. containing colloidal particles (C).
Each component, particularly the (S) component and the (K) component, constituting the coating composition of the present invention will be described in detail below.
《(S)成分》
 本発明に係る(S)成分は、有機ケイ素化合物、及び/又はその加水分解物であるケイ素含有物質である。具体的には、前記有機ケイ素化合物は、後述する式(I)で表される化合物及び式(II)で表される化合物からなる群より選ばれる少なくとも1種の有機ケイ素化合物を含む。
<<(S) component>>
The (S) component according to the present invention is an organosilicon compound and/or a silicon-containing substance that is a hydrolyzate thereof. Specifically, the organosilicon compound includes at least one organosilicon compound selected from the group consisting of compounds represented by formula (I) and compounds represented by formula (II), which will be described later.
<式(I)で表される化合物>
(R(RSi(OR4-(a+b)   (I)
式中、
 R及びRは、それぞれ独立して、アルキル基、アリール基、ビニル基、ハロゲン化アルキル基、ハロゲン化アリール基若しくはアルケニル基を表すか、又は
エポキシ基、イソシアネート基、アクリロイル基、メタクリロイル基、メルカプト基、ウレイド基若しくはシアノ基を有する1価の有機基であり且つSi-C結合によりケイ素原子と結合している有機基を表し、
 Rは炭素原子数1乃至8のアルキル基、アリール基、アラルキル基、アルコキシアルキル基、又はアシル基を表し、
 a及びbは、それぞれ独立して、0、1、又は2の整数を表し、且つ、a+bは0、1、又は2の整数である。
<Compound Represented by Formula (I)>
(R 1 ) a (R 3 ) b Si(OR 2 ) 4-(a+b) (I)
During the ceremony,
R 1 and R 3 each independently represent an alkyl group, an aryl group, a vinyl group, a halogenated alkyl group, a halogenated aryl group or an alkenyl group, or an epoxy group, an isocyanate group, an acryloyl group, a methacryloyl group, represents an organic group that is a monovalent organic group having a mercapto group, a ureido group or a cyano group and is bonded to a silicon atom via a Si—C bond,
R 2 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, an aralkyl group, an alkoxyalkyl group, or an acyl group;
a and b each independently represents an integer of 0, 1, or 2, and a+b is an integer of 0, 1, or 2;
 上記式(I)で表される有機ケイ素化合物は、RとRが同一の有機基又は異なる有機基である場合や、aとbが同一の整数又は異なる整数である場合の有機ケイ素化合物を含む。 The organosilicon compound represented by the above formula (I) is an organosilicon compound in which R 1 and R 3 are the same organic group or different organic groups, or in which a and b are the same integer or different integers. including.
 上記式(I)で示される有機ケイ素化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラアセトキシシラン、メチルトリメトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、メチルトリアセトキシシラン、メチルトリアミロキシシラン、メチルトリフェノキシシラン、メチルトリベンジルオキシシラン、メチルトリフェネチルオキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリフェノキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、グリシドキシメチルメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルエチルジメトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、γ-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジフェノキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン、イソシアネートプロピルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルトリアセトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、γ-メタクリルオキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、β-シアノエチルトリエトキシシラン、クロロメチルトリメトキシシラン、クロロメチルトリエトキシシラン、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ-メタクリルオキシプロピルメチルジメトキシシラン、γ-メタクリルオキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、3-ウレイドプロピルトリエトキシシラン、ウレイドメチルトリメトキシシラン、2-ウレイドエチルトリメトキシシラン、3-ウレイドプロピルトリメトキシシラン、ウレイドメチルトリエトキシシラン、2-ウレイドエチルトリエトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン等が挙げられ、これらを単独で又は2種以上組み合わせて使用することができる。 Examples of the organosilicon compound represented by the above formula (I) include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetraacetoxysilane, methyltrimethoxysilane, Methyltripropoxysilane, Methyltributoxysilane, Methyltriacetoxysilane, Methyltriamyloxysilane, Methyltriphenoxysilane, Methyltribenzyloxysilane, Methyltriphenethyloxysilane, Glycidoxymethyltrimethoxysilane, Glycidoxymethyl Triethoxysilane, α-glycidoxyethyltrimethoxysilane, α-glycidoxyethyltriethoxysilane, β-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, α-glycidoxypropyl Trimethoxysilane, α-glycidoxypropyltriethoxysilane, β-glycidoxypropyltrimethoxysilane, β-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyl Triethoxysilane, γ-glycidoxypropyltripropoxysilane, γ-glycidoxypropyltributoxysilane, γ-glycidoxypropyltriphenoxysilane, α-glycidoxybutyltrimethoxysilane, α-glycidoxybutyl Triethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyltrimethoxysilane, γ-glycidoxybutyltriethoxysilane, δ-glycidoxybutyltrimethoxysilane, δ-glycidoxybutyl triethoxysilane, (3,4-epoxycyclohexyl)methyltrimethoxysilane, (3,4-epoxycyclohexyl)methyltriethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, β-(3, 4-epoxycyclohexyl)ethyltriethoxysilane, β-(3,4-epoxycyclohexyl)ethyltripropoxysilane, β-(3,4-epoxycyclohexyl)ethyltributoxysilane, β-(3,4-epoxycyclohexyl) ethyltriphenoxysilane, γ-(3,4-epoxycyclohexyl)propyltrimethoxysilane, γ-(3,4-epoxycyclohexyl)propyltriethoxysilane, δ-(3,4-epoxycyclohexyl)butyltrimethoxysilane, δ-(3,4-epoxycyclohexyl)butyltriethoxysilane, glycidoxymethylmethyldimethoxysilane, glycidoxymethylmethyldiethoxysilane, α-glycidoxyethylmethyldimethoxysilane, α-glycidoxyethylmethyldimethoxysilane Ethoxysilane, β-glycidoxyethylmethyldimethoxysilane, β-glycidoxyethylethyldimethoxysilane, α-glycidoxypropylmethyldimethoxysilane, α-glycidoxypropylmethyldiethoxysilane, β-glycidoxypropyl methyldimethoxysilane, β-glycidoxypropylethyldimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldipropoxysilane, γ-glycid xypropylmethyldibutoxysilane, γ-glycidoxypropylmethyldiphenoxysilane, γ-glycidoxypropylethyldimethoxysilane, γ-glycidoxypropylethyldiethoxysilane, γ-glycidoxypropylvinyldimethoxysilane, γ - glycidoxypropylvinyldiethoxysilane, isocyanatopropyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane. , phenyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltriacetoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane Silane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, β-cyanoethyltriethoxysilane, chloromethyltrimethoxysilane, chloromethyltriethoxysilane, dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane , phenylmethyldiethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-chloropropylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ- Mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, 3-ureidopropyltriethoxysilane, ureidomethyltrimethoxysilane, 2-ureidoethyltrimethoxysilane, 3-ureidopropyltrimethoxysilane, ureidomethyltriethoxysilane , 2-ureidoethyltriethoxysilane, methylvinyldimethoxysilane, methylvinyldiethoxysilane, etc., and these can be used alone or in combination of two or more.
<式(II)で表される化合物>
〔(RSi(OX)3-cY      (II)
式中、
は炭素原子数1乃至5のアルキル基を表し、
Xは炭素原子数1乃至4のアルキル基又はアシル基を表し、
Yはメチレン基又は炭素原子数2乃至20のアルキレン基を表し、
cは0又は1の整数を表す。
<Compound Represented by Formula (II)>
[(R 4 ) c Si(OX) 3-c ] 2 Y (II)
During the ceremony,
R 4 represents an alkyl group having 1 to 5 carbon atoms,
X represents an alkyl group or acyl group having 1 to 4 carbon atoms,
Y represents a methylene group or an alkylene group having 2 to 20 carbon atoms,
c represents an integer of 0 or 1;
 上記式(II)で表される有機ケイ素化合物としては、例えば、メチレンビスメチルジメトキシシラン、エチレンビスエチルジメトキシシラン、プロピレンビスエチルジエトキシシラン、ブチレンビスメチルジエトキシシラン等が挙げられ、これらを単独で又は2種以上組み合わせて使用することができる。 Examples of the organosilicon compound represented by the formula (II) include methylenebismethyldimethoxysilane, ethylenebisethyldimethoxysilane, propylenebisethyldiethoxysilane, butylenebismethyldiethoxysilane, and the like. or in combination of two or more.
 上記(S)成分は、好ましくは式(I)で表される有機ケイ素化合物である。特に、R及びRのうちいずれか一方がエポキシ基を有する有機基であり、Rがアルキル基又はアリール基であり、且つa及びbがそれぞれ独立して0又は1であり、a+bが1又は2の条件を満たす式(I)の有機ケイ素化合物が好ましい。 The (S) component is preferably an organosilicon compound represented by formula (I). In particular, either one of R 1 and R 3 is an organic group having an epoxy group, R 2 is an alkyl group or an aryl group, a and b are each independently 0 or 1, and a+b is Organosilicon compounds of formula (I) satisfying condition 1 or 2 are preferred.
 式(I)で表される有機ケイ素化合物の好ましい例としては、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリフェノキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、グリシドキシメチルメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルエチルジメトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、γ-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジフェノキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシランである。更に好ましくは、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシランであり、これらを単独で又は混合物として使用することができる。 Preferred examples of the organosilicon compound represented by formula (I) include glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, α-glycidoxyethyltrimethoxysilane, α-glycidoxyethyltri Ethoxysilane, β-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, α-glycidoxypropyltrimethoxysilane, α-glycidoxypropyltriethoxysilane, β-glycidoxypropyltri Methoxysilane, β-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltripropoxysilane, γ-glycidoxypropyltriethoxysilane butoxysilane, γ-glycidoxypropyltriphenoxysilane, α-glycidoxybutyltrimethoxysilane, α-glycidoxybutyltriethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyltri methoxysilane, γ-glycidoxybutyltriethoxysilane, δ-glycidoxybutyltrimethoxysilane, δ-glycidoxybutyltriethoxysilane, glycidoxymethylmethyldimethoxysilane, glycidoxymethylmethyldiethoxysilane, α-Glycidoxyethylmethyldimethoxysilane, α-glycidoxyethylmethyldiethoxysilane, β-glycidoxyethylmethyldimethoxysilane, β-glycidoxyethylethyldimethoxysilane, α-glycidoxypropylmethyldimethoxysilane , α-glycidoxypropylmethyldiethoxysilane, β-glycidoxypropylmethyldimethoxysilane, β-glycidoxypropylethyldimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, Ethoxysilane, γ-glycidoxypropylmethyldipropoxysilane, γ-glycidoxypropylmethyldibutoxysilane, γ-glycidoxypropylmethyldiphenoxysilane, γ-glycidoxypropylethyldimethoxysilane, γ-glycid xypropylethyldiethoxysilane, γ-glycidoxypropylvinyldimethoxysilane, and γ-glycidoxypropylvinyldiethoxysilane. More preferred are γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane and γ-glycidoxypropylmethyldiethoxysilane, which can be used alone or as a mixture.
 また、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシランを使用する場合、更に式(I)においてa+b=0に相当する4官能の化合物を併用してもよい。4官能に相当する化合物の例としては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラn-プロポキシシラン、テトラn-ブトキシシラン、テトラtert-ブトキシシラン、テトラsec-ブトキシシラン等が挙げられる。 Further, when γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, or γ-glycidoxypropylmethyldiethoxysilane is used, 4 corresponding to a+b=0 in formula (I) A functional compound may be used in combination. Examples of tetrafunctional compounds include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-tert-butoxysilane, tetrasec-butoxysilane, and the like. be done.
 なお、本発明のコーティング組成物に使用される(S)成分:有機ケイ素化合物の加水分解物は、上記式(I)で表される化合物及び式(II)で表される化合物が加水分解されることにより、上記R(式(I))、X(式(II))の一部又は全部が水素原子に置換された化合物となる。これらの式(I)及び式(II)の有機ケイ素化合物の加水分解物は、それぞれ単独で又は2種以上組み合わせて使用することができる。加水分解は、上記の有機ケイ素化合物に、塩酸水溶液、硫酸水溶液、酢酸水溶液等の酸性水溶液を添加し撹拌することにより行われる。 The (S) component used in the coating composition of the present invention: the hydrolyzate of the organosilicon compound is obtained by hydrolyzing the compound represented by the above formula (I) and the compound represented by the formula (II). As a result, a compound in which part or all of R 2 (formula (I)) and X (formula (II)) are substituted with hydrogen atoms is obtained. These organosilicon compound hydrolysates of formula (I) and formula (II) can be used alone or in combination of two or more. Hydrolysis is carried out by adding an acidic aqueous solution such as an aqueous hydrochloric acid solution, an aqueous sulfuric acid solution, an aqueous acetic acid solution, etc. to the organosilicon compound and stirring the mixture.
《(S)成分及び(T)成分を含有するコーティング組成物》
 上記(S)成分及び(T)成分を含有するコーティング組成物において、上記(S)成分と(T)成分の割合は特に限定されないが、例えば、(T)成分の変性金属酸化物コロイド粒子(C)100質量部に対して、(S)成分が25~400質量部の質量割合にて含むことができ、好適には25~300質量部にて含むことが好ましい。
<<Coating Composition Containing Component (S) and Component (T)>>
In the coating composition containing the (S) component and the (T) component, the ratio of the (S) component and the (T) component is not particularly limited. Component (S) can be contained in a mass ratio of 25 to 400 parts by mass, preferably 25 to 300 parts by mass, per 100 parts by mass of C).
《(K)成分》
 本発明に係る(K)成分は、熱硬化性樹脂、熱可塑性樹脂及び紫外線硬化樹脂からなる群から選ばれる少なくとも1種の樹脂であり、これら樹脂はマトリックス形成成分としての役割を果たす。
 前記マトリックス形成成分としては、アクリル系樹脂、メラミン系樹脂、ウレタン系樹脂、ポリエステル樹脂、エポキシ樹脂、フォスファーゲン系樹脂等が用いられる。中でもポリエステル樹脂又はウレタン系樹脂であることが好ましい。
<<(K) component>>
The component (K) according to the present invention is at least one resin selected from the group consisting of thermosetting resins, thermoplastic resins and UV-curable resins, and these resins serve as matrix-forming components.
Examples of the matrix-forming component include acrylic resins, melamine resins, urethane resins, polyester resins, epoxy resins, phosphagen resins, and the like. Among them, a polyester resin or a urethane resin is preferable.
《(K)成分及び(T)成分を含有するコーティング組成物》
 上記(K)成分及び(T)成分を含有するコーティング組成物において、上記(K)成分と(T)成分の割合は特に限定されないが、例えば、(T)成分の変性金属酸化物コロイド粒子(C)100質量部に対して、(K)成分が25~400質量部の質量割合にて含むことができる。
<<Coating composition containing component (K) and component (T)>>
In the coating composition containing the component (K) and the component (T), the ratio of the component (K) and the component (T) is not particularly limited. Component (K) can be contained at a mass ratio of 25 to 400 parts by mass with respect to 100 parts by mass of C).
《その他成分》
 本発明のコーティング組成物には、硬化反応を促進するために硬化触媒(硬化剤)を含有させることができる。硬化触媒(硬化剤)としては、たとえば、アミノ酸類、金属アルコキシド、金属キレート化合物、有機酸金属塩、過塩素酸類又はその塩、酸類又はその塩、及び金属塩化物からなる群より選ばれる少なくとも1種の硬化触媒である。
 硬化触媒(硬化剤)は、コーティング組成物に含まれる(S)有機ケイ素化合物が有するシラノール基(場合によりさらにエポキシ基)の硬化を促進するために用いられる。これらの硬化触媒(硬化剤)を用いることにより、被膜形成反応を速めることが可能となる。
《Other ingredients》
The coating composition of the present invention may contain a curing catalyst (curing agent) to accelerate the curing reaction. As the curing catalyst (curing agent), for example, at least one selected from the group consisting of amino acids, metal alkoxides, metal chelate compounds, organic acid metal salts, perchloric acids or salts thereof, acids or salts thereof, and metal chlorides. It is a kind of curing catalyst.
A curing catalyst (curing agent) is used to accelerate curing of silanol groups (and optionally epoxy groups) of the (S) organosilicon compound contained in the coating composition. By using these curing catalysts (curing agents), it is possible to speed up the film-forming reaction.
 これらの具体例としては、グリシン等のアミノ酸類;アルミニウム、ジルコニウム又はチタニウム等の金属のアルコキシド;アルミニウムアセチルアセトネート、クロムアセチルアセトネート、チタニウムアセチルアセトネート、コバルトアセチルアセトネート等の金属キレート化合物;酢酸ナトリウム、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸亜鉛、オクチル酸スズ等の有機酸金属塩類;過塩素酸、過塩素酸アンモニウム、過塩素酸マグネシウム等の過塩素酸類又はその塩;塩酸、リン酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、臭素酸、亜セレン酸、チオ硫酸、オルトケイ酸、チオシアン酸、亜硝酸、アルミン酸、炭酸、有機カルボン酸、p-トルエンスルホン酸等の無機酸、有機酸、又はそれらの塩;SnCl、AlCl、FeCl、TiCl、ZnCl、SbCl等のルイス酸である金属塩化物等が挙げられる。 Specific examples thereof include amino acids such as glycine; alkoxides of metals such as aluminum, zirconium or titanium; metal chelate compounds such as aluminum acetylacetonate, chromium acetylacetonate, titanium acetylacetonate, cobalt acetylacetonate; Organic acid metal salts such as sodium, zinc naphthenate, cobalt naphthenate, zinc octylate, and tin octylate; perchloric acids such as perchloric acid, ammonium perchlorate, and magnesium perchlorate; , nitric acid, chromic acid, hypochlorous acid, boric acid, bromic acid, selenous acid, thiosulfuric acid, orthosilicic acid, thiocyanic acid, nitrous acid, aluminate, carbonic acid, organic carboxylic acid, p-toluenesulfonic acid, etc. Acids, organic acids, or salts thereof; Metal chlorides that are Lewis acids such as SnCl 2 , AlCl 3 , FeCl 3 , TiCl 4 , ZnCl 2 and SbCl 3 .
 これらの硬化触媒(硬化剤)は、本発明のコーティング組成物の組成等によりその種類と使用量を適宜調整して用いることができる。硬化触媒(硬化剤)を使用する場合、その使用量の上限としては、前記コーティング組成物中の全固形分に対して5質量%以下で用いるのが望ましい。なお本明細書において、“全固形分”とは、コーティング組成物から溶媒を除いた全成分を言及し、液状であっても便宜的に“固形分”として扱うものとする。 These curing catalysts (curing agents) can be used by appropriately adjusting the type and amount used according to the composition of the coating composition of the present invention. When a curing catalyst (curing agent) is used, the upper limit of the amount used is desirably 5% by mass or less relative to the total solid content in the coating composition. In the present specification, the term "total solid content" refers to all components of the coating composition excluding the solvent, and even if it is liquid, it is treated as "solid content" for the sake of convenience.
 また本発明のコーティング組成物には、流動性の付与、固形分濃度の調整、表面張力、粘度、蒸発速度等を調整する目的で溶媒を用いてもよい。用いられる溶媒は、水又は有機溶媒である。
 用いられる有機溶媒としては、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、エチレングリコール等のグリコール類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、テトラヒドロフラン等のエーテル類、アセトン、メチルエチルケトン等のケトン類、ジクロロエタン等のハロゲン化炭化水素類、及びトルエン、キシレン等の芳香族炭化水素類等が挙げられる。
 なお、本発明のコーティング組成物における全固形分の濃度は、例えば20~40質量%とすることができる。
A solvent may also be used in the coating composition of the present invention for the purpose of imparting fluidity, adjusting the concentration of solids, adjusting surface tension, viscosity, evaporation rate, and the like. The solvents used are water or organic solvents.
Examples of organic solvents used include alcohols such as methanol, ethanol, isopropyl alcohol and butanol; cellosolves such as methyl cellosolve and ethyl cellosolve; glycols such as ethylene glycol; esters such as methyl acetate, ethyl acetate and butyl acetate; Ethers such as diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether and tetrahydrofuran; ketones such as acetone and methyl ethyl ketone; halogenated hydrocarbons such as dichloroethane; and aromatic hydrocarbons such as toluene and xylene. mentioned.
In addition, the concentration of the total solid content in the coating composition of the present invention can be, for example, 20 to 40% by mass.
 更に、本発明のコーティング組成物には、後述するように、基材上に該組成物より硬化膜を形成する際、基材に対する濡れ性を向上させ、硬化膜の平滑性を向上させる目的で各種の界面活性剤を含有させることができる。さらに、紫外線吸収剤、酸化防止剤、帯電防止剤等も硬化膜の物性に影響を与えない限り添加することが可能である。さらには、分散染料、油溶染料、蛍光染料、顔料、フォトクロミック化合物、チキソトロピー剤等を添加してもよい。 Furthermore, as will be described later, the coating composition of the present invention is used for the purpose of improving the wettability to the substrate and improving the smoothness of the cured film when forming a cured film from the composition on the substrate. Various surfactants can be included. Furthermore, ultraviolet absorbers, antioxidants, antistatic agents, etc. can be added as long as they do not affect the physical properties of the cured film. Furthermore, disperse dyes, oil-soluble dyes, fluorescent dyes, pigments, photochromic compounds, thixotropic agents, etc. may be added.
<硬化膜、光学部材>
 本発明のコーティング組成物は、基材表面に塗布し、硬化膜を形成させることができる。そして、更に光学用途に適した透明性の基材(光学基材)を用いることにより、硬化膜を有する光学部材を得ることができる。該光学部材も本発明の対象である。
<Cured film, optical member>
The coating composition of the present invention can be applied to a substrate surface to form a cured film. Further, by using a transparent substrate (optical substrate) suitable for optical applications, an optical member having a cured film can be obtained. The optical member is also an object of the present invention.
 用いられる基材としては、ガラス、プラスチック等からなる各種基材が用いられ、具体的には、眼鏡レンズ、カメラ等の各種光学レンズ、各種表示素子フィルター、ルッキンググラス、窓ガラス、自動車等の塗料膜、自動車等に用いられるライトカバー等が挙げられる。この基材表面に、ハードコート膜として、本発明のコーティング組成物から硬化膜(透明被膜)が形成される。又はハードコート膜としての用途以外にも、プラスチックレンズのプライマー用膜等として形成されることがある。 Various substrates made of glass, plastic, etc. are used as substrates, and specifically, spectacle lenses, various optical lenses such as cameras, various display element filters, looking glass, window glass, paints for automobiles, etc. Membranes, light covers used in automobiles and the like can be mentioned. A cured film (transparent film) is formed from the coating composition of the present invention as a hard coat film on the substrate surface. Alternatively, in addition to the application as a hard coat film, it may be formed as a primer film for plastic lenses or the like.
 コーティング組成物の硬化は、熱風乾燥又は活性エネルギー線照射によって行うことができる。熱風乾燥の硬化条件としては70~200℃の熱風中で行うことがよく、特に90~150℃が好ましい。また、活性エネルギー線としては赤外線、紫外線、電子線等が挙げられ、特に遠赤外線は熱による損傷を低く抑えることができる。 The coating composition can be cured by hot air drying or active energy ray irradiation. As the curing conditions for hot air drying, it is preferable to carry out in hot air at 70 to 200°C, particularly preferably 90 to 150°C. Further, active energy rays include infrared rays, ultraviolet rays, electron beams, and the like, and particularly far infrared rays can suppress damage due to heat.
 本発明のコーティング組成物を基材表面に塗布する方法としてはディッピング法、スピン法、スプレー法等の通常行われる方法が適用できる。中でも面積度の観点からディッピング法、スピン法が特に好ましい。 As a method for applying the coating composition of the present invention to the surface of the base material, commonly used methods such as dipping, spinning, and spraying can be applied. Among them, the dipping method and the spin method are particularly preferable from the viewpoint of area degree.
 また前記コーティング組成物を基材表面に塗布する前に、基材表面を酸、アルカリ又は各種有機溶剤若しくは洗剤による化学的処理、プラズマ、紫外線等による物理的処理を行うことにより、基材と硬化膜との密着性を向上させることができる。さらに基材表面を各種樹脂を用いたプライマー処理を行うことにより、基材と硬化膜との密着性をより向上させることができる。 In addition, before applying the coating composition to the substrate surface, the substrate surface is subjected to chemical treatment with acid, alkali, various organic solvents or detergents, physical treatment such as plasma, ultraviolet rays, etc., thereby curing the substrate. Adhesion to the film can be improved. Furthermore, the adhesiveness between the substrate and the cured film can be further improved by subjecting the surface of the substrate to a primer treatment using various resins.
 また本発明のコーティング組成物より形成される硬化膜は、高屈折率膜として反射膜に使用でき、さらに、防曇、フォトクロミック、防汚等の機能成分を加えることにより、多機能膜として使用することもできる。 The cured film formed from the coating composition of the present invention can be used as a reflective film as a high-refractive-index film, and can be used as a multifunctional film by adding functional components such as antifogging, photochromic, and antifouling properties. can also
 本発明のコーティング組成物より形成される硬化膜を有する光学部材は、眼鏡レンズのほか、カメラ用レンズ、自動車の窓ガラス、液晶ディスプレイやプラズマディスプレイなどに付設する光学フィルターなどに使用することができる。 Optical members having a cured film formed from the coating composition of the present invention can be used for spectacle lenses, camera lenses, automobile window glass, optical filters attached to liquid crystal displays, plasma displays, and the like. .
 また本発明の光学部材は、光学基材の表面に本発明のコーティング組成物から形成される硬化膜を有しているが、その硬化膜上に無機酸化物の蒸着膜からなる反射防止膜を形成させることができる。該反射防止膜は特に限定されず、従来から知られている無機酸化物の単層又は多層の蒸着膜を使用することができる。反射防止膜の例としては、特開平2-262104号公報、特開昭56-116003号公報に開示されている反射防止膜などが挙げられる。 The optical member of the present invention has a cured film formed from the coating composition of the present invention on the surface of the optical substrate. can be formed. The antireflection film is not particularly limited, and conventionally known single-layer or multi-layer deposition films of inorganic oxides can be used. Examples of the antireflection film include the antireflection films disclosed in JP-A-2-262104 and JP-A-56-116003.
<変性金属酸化物コロイド粒子(C)の製造方法>
 本発明の製造方法は、下記(a)工程乃至(d)工程を含むものである。
(a)金属酸化物コロイド粒子(A)を含む分散液と、Siと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との未改質複合酸化物コロイド粒子の分散液とを混合する工程
(b)(a)工程で得られた混合溶液を30~320℃の温度で、0.5~24時間加熱する工程
(c)(b)工程で得られた混合溶液をH型陽イオン交換樹脂と接触させる工程
(d)(c)工程で得られた混合溶液とアルミン酸塩水溶液とを混合し、30~320℃の温度で、0.5~24時間加熱する工程
<Method for Producing Modified Metal Oxide Colloidal Particles (C)>
The manufacturing method of the present invention includes the following steps (a) to (d).
(a) a dispersion containing metal oxide colloidal particles (A) and a dispersion of unmodified composite oxide colloidal particles containing Si and at least one atom selected from the group consisting of Sn, Sb and W; Step (b) of mixing the mixed solution obtained in step (a) at a temperature of 30 to 320 ° C. for 0.5 to 24 hours (c) Heating the mixed solution obtained in step (b) with H A step of contacting with a type cation exchange resin (d) A step of mixing the mixed solution obtained in the step (c) and an aluminate aqueous solution, and heating at a temperature of 30 to 320 ° C. for 0.5 to 24 hours.
 本発明の製造方法における(a)工程は、金属酸化物コロイド粒子(A)を含む分散液と、未改質複合酸化物コロイド粒子の分散液とを混合する。 In step (a) in the production method of the present invention, a dispersion containing metal oxide colloidal particles (A) and a dispersion of unmodified composite oxide colloidal particles are mixed.
 前記金属酸化物コロイド粒子(A)を含む分散液中の金属酸化物コロイド粒子(A)としては、前述の通り、Ti、Mn、Fe、Cu、Zn、Y、Zr、Nb、Mo、In、Sn、Sb、Ta、W、Pb、Bi及びCeからなる群から選ばれる少なくとも1種の金属の酸化物のコロイド粒子が挙げられ、公知の方法、例えば、イオン交換法、解膠法、加水分解法、反応法により製造することができ、水性媒体に分散した分散液の形態で用いることができる。
 該分散液の金属酸化物濃度は、例えば、1~50質量%、又は1~30質量%、又は1~20質量%の範囲である。なお、金属酸化物コロイド粒子(A)の金属酸化物濃度は焼成法により定量することができる。
 また、金属酸化物コロイド粒子(A)を含む分散液のpHは、例えば、1~14、又は1~12の範囲である。
As described above, the metal oxide colloid particles (A) in the dispersion containing the metal oxide colloid particles (A) include Ti, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, Examples include colloidal particles of at least one metal oxide selected from the group consisting of Sn, Sb, Ta, W, Pb, Bi and Ce, and using known methods such as ion exchange, peptization, hydrolysis It can be produced by a method or a reaction method, and can be used in the form of a dispersion dispersed in an aqueous medium.
The metal oxide concentration of the dispersion is, for example, in the range of 1-50% by weight, or 1-30% by weight, or 1-20% by weight. The metal oxide concentration of the metal oxide colloidal particles (A) can be quantified by a calcination method.
Further, the pH of the dispersion containing the metal oxide colloidal particles (A) is in the range of 1-14 or 1-12, for example.
 前記未改質複合酸化物コロイド粒子の分散液中の未改質複合酸化物コロイド粒子は、前述の通り、例えば、SiO粒子とSnO粒子とがその界面で化学的な結合を生じて複合化されたSiO-SnO複合酸化物コロイド粒子、SiO粒子とSb粒子とがその界面で化学的な結合を生じて複合化されたSiO-Sb複合酸化物コロイド粒子、SiO粒子とWO粒子とがその界面で化学的な結合を生じて複合化されたSiO-WO複合酸化物コロイド粒子などが挙げられる。
 前記未改質複合酸化物コロイド粒子は、公知の方法、例えば、イオン交換法、酸化法により製造することができる。イオン交換法の例としては、前記原子の酸性塩を水素型イオン交換樹脂で処理する方法が挙げられる。酸化法の例としては、原子又は無機酸化物の粉末と過酸化水素とを反応させる方法が挙げられる。
 該分散液はこれら未改質複合酸化物コロイド粒子が水性媒体に分散した分散液の形態で用いることができる。
 該分散液の未改質複合酸化物濃度は、例えば、1~30質量%、又は1~20質量%、又は1~10質量%の範囲である。なお、未改質複合酸化物コロイド粒子の未改質複合酸化物濃度は焼成法により定量することができる。
As described above, the unmodified colloidal colloidal oxide particles in the dispersion of the unmodified colloidal colloidal colloidal colloidal colloidal oxides are composed of, for example, SiO2 particles and SnO2 particles that are chemically bonded at their interfaces to form composites. SiO 2 —Sb 2 O 5 composite oxide colloid particles formed by SiO 2 —Sb 2 O 5 composite oxide particles, and SiO 2 —Sb 2 O 5 composite oxide colloids in which SiO 2 particles and Sb 2 O 5 particles are chemically bonded at their interfaces. particles, and SiO 2 —WO 3 composite oxide colloidal particles in which SiO 2 particles and WO 3 particles are chemically bonded at their interface to form a composite.
The unmodified composite oxide colloidal particles can be produced by a known method such as an ion exchange method or an oxidation method. An example of the ion exchange method is a method in which an acid salt of said atom is treated with a hydrogen ion exchange resin. Examples of oxidation methods include reacting atomic or inorganic oxide powders with hydrogen peroxide.
The dispersion can be used in the form of a dispersion in which these unmodified composite oxide colloidal particles are dispersed in an aqueous medium.
The unmodified complex oxide concentration of the dispersion is, for example, in the range of 1 to 30% by mass, 1 to 20% by mass, or 1 to 10% by mass. The unmodified composite oxide concentration of the unmodified composite oxide colloidal particles can be quantified by a calcination method.
 前記(a)工程では、未改質複合酸化物コロイド粒子の全複合酸化物の質量/金属酸化物コロイド粒子(A)の全金属酸化物の質量が0.05~0.50、又は0.05~0.30、又は0.03~0.30の範囲となるように、金属酸化物コロイド粒子(A)を含む分散液と、Siと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との未改質複合酸化物コロイド粒子の分散液とを混合することが好ましい。 In the step (a), the mass of the total composite oxide of the unmodified colloidal composite oxide particles/the mass of the total metal oxide of the metal oxide colloidal particles (A) is 0.05 to 0.50, or 0.05 to 0.50. 05 to 0.30, or 0.03 to 0.30, at least selected from the group consisting of a dispersion containing metal oxide colloidal particles (A), Si, and Sn, Sb and W It is preferable to mix a dispersion of unmodified composite oxide colloidal particles with one kind of atom.
 本発明の製造方法における(b)工程は、(a)工程で得られた混合溶液を30~320℃の温度で、0.5~24時間加熱する。
 前記加熱温度は、30~320℃、又は50~320℃、又は80~320℃の範囲にて行なうことができる。特に、100℃以上で加熱を行なう場合、耐圧容器を用いて水熱条件下にて行なうことができる。ここで、水熱条件とは、100℃以上で1気圧以上の高温高圧条件のことを指す。
 前記加熱時間は、0.5~24時間、又は0.5~15時間、又は0.5~10時間、又は0.5~8時間の範囲にて行なうことができる。
 また、該工程(b)は公知の撹拌機や撹拌装置を用いて撹拌混合することができる。
In step (b) in the production method of the present invention, the mixed solution obtained in step (a) is heated at a temperature of 30 to 320° C. for 0.5 to 24 hours.
The heating temperature can be in the range of 30 to 320°C, 50 to 320°C, or 80 to 320°C. In particular, when heating at 100° C. or higher, it can be carried out under hydrothermal conditions using a pressure vessel. Here, the hydrothermal conditions refer to high temperature and high pressure conditions of 100° C. or higher and 1 atmospheric pressure or higher.
The heating time can be in the range of 0.5 to 24 hours, 0.5 to 15 hours, 0.5 to 10 hours, or 0.5 to 8 hours.
Further, in the step (b), stirring and mixing can be performed using a known stirrer or stirring device.
 本発明の製造方法における(c)工程は、(b)工程で得られた混合溶液をH型陽イオン交換樹脂と接触させる。
 前記H型陽イオン交換樹脂は、水素イオンをその他の陽イオンと交換できる官能基を有する陽イオン交換樹脂である。スルホン酸型のH型強酸性陽イオン交換樹脂、又はカルボン酸型のH型弱酸性陽イオン交換樹脂を用いることができる。スルホン酸型の強酸性陽イオン交換樹脂としては、例えば、オルガノ株式会社製、商品名アンバーライト(登録商標)IR-120Bなどを用いることができる。
In the (c) step in the production method of the present invention, the mixed solution obtained in the (b) step is brought into contact with an H-type cation exchange resin.
The H-type cation exchange resin is a cation exchange resin having functional groups capable of exchanging hydrogen ions with other cations. A sulfonic acid type H-type strongly acidic cation exchange resin or a carboxylic acid type H-type weakly acidic cation exchange resin can be used. As the sulfonic acid type strongly acidic cation exchange resin, for example, Amberlite (registered trademark) IR-120B manufactured by Organo Corporation can be used.
 本発明の製造方法における(d)工程は、(c)工程で得られた混合溶液とアルミン酸塩水溶液とを混合し、30~320℃の温度で、0.5~24時間加熱する。
 前記アルミン酸塩は、アルミン酸イオンと無機塩基を由来とするアニオンとを含む化合物である。無機塩基としては、例えば、ナトリウム、カリウム、リチウムなどが挙げられる。アルミン酸イオンと無機塩基を由来とするアニオンとを含む金属塩の具体例としては、アルミン酸ナトリウム、アルミン酸カリウム、アルミン酸リチウムなどが挙げられ、市販のものを用いることができる。例えば、アルミン酸ナトリウムの市販品としては、浅田化学工業株式会社製のアルミン酸ナトリウム♯1219、♯1819、♯1919、♯2019などが挙げられる。
 前記アルミン酸塩水溶液のアルミン酸濃度は、酸化アルミニウム換算で、例えば、0.1~10質量%、又は0.1~5質量%の範囲である。
 前記加熱温度は、30~320℃、又は40~180℃、又は40~150℃、又は40~100℃の範囲である。
 前記加熱時間は、0.5~24時間、又は0.5~15時間、又は0.5~10時間、又は0.5~8時間の範囲にて行なうことができる。
 前記(d)工程では、全複合酸化物の質量/アルミン酸塩の質量(Al換算)が50~800、又は100~700、又は150~700の範囲となるように、(c)工程で得られた混合溶液とアルミン酸塩水溶液とを混合することが好ましい。
In step (d) in the production method of the present invention, the mixed solution obtained in step (c) is mixed with an aluminate aqueous solution and heated at a temperature of 30 to 320° C. for 0.5 to 24 hours.
The aluminate is a compound containing an aluminate ion and an anion derived from an inorganic base. Inorganic bases include, for example, sodium, potassium, lithium and the like. Specific examples of the metal salt containing an aluminate ion and an anion derived from an inorganic base include sodium aluminate, potassium aluminate, lithium aluminate and the like, and commercially available ones can be used. For example, commercially available products of sodium aluminate include sodium aluminate #1219, #1819, #1919, #2019 manufactured by Asada Chemical Industry Co., Ltd., and the like.
The concentration of aluminate in the aluminate aqueous solution is, for example, in the range of 0.1 to 10% by mass or 0.1 to 5% by mass in terms of aluminum oxide.
The heating temperature is in the range of 30 to 320°C, or 40 to 180°C, or 40 to 150°C, or 40 to 100°C.
The heating time can be in the range of 0.5 to 24 hours, 0.5 to 15 hours, 0.5 to 10 hours, or 0.5 to 8 hours.
In the step (d), (c) so that the mass of the total composite oxide/the mass of the aluminate (in terms of Al 2 O 3 ) is in the range of 50 to 800, or 100 to 700, or 150 to 700 It is preferable to mix the mixed solution obtained in the step with the aluminate aqueous solution.
 以下に本発明の実施例を示す。尚、本発明はこれらの実施例に限定されるものではない。 Examples of the present invention are shown below. However, the present invention is not limited to these examples.
 物性は以下の測定方法により求めた。
〔水分〕カールフィッシャー滴定法にて求めた。
〔平均一次粒子径(透過型電子顕微鏡による粒子径)〕分散液を銅メッシュ上に滴下し乾燥させ、透過型電子顕微鏡(日本電子社製 JEM-1010)を用いて100個の粒子を観察し、その一次粒子径の平均値を算出した。
〔平均粒子径(動的光散乱法粒子径)〕ゾルを分散溶媒で希釈し、溶媒のパラメーターを用いて、動的光散乱法測定装置:ゼータサイザーナノS(商品名:MARVERN社製)で測定した。
〔比重〕浮き秤法にて求めた(25℃)。
〔粘度〕B型粘度計にて求めた(25℃)。
〔pH〕pHメーターにて求めた。分散媒が有機溶媒の場合は、分散液と同質量の純水で希釈した溶液にて測定した。
〔安定性評価〕分散液を室温で一か月間保管し、変性金属酸化物コロイド粒子の動的光散乱法による粒子径変化、分散液の粘度変化、沈降物の有無を目視にて確認し、以下の指標に従い分散安定性を評価した。
A:粒子径、粘度ともに変化無し、且つ、沈降物無し
B:わずかに変化(わずかな粒子径の増加及び粘度上昇)、且つ沈降物無し
C:著しい変化(粒子径の増大、増粘、ゲル化)あるいは、沈降物あり
〔有機アミン由来の全窒素量〕イオンクロマトグラフ 761Compact IC(Metrohm社製)にて、陽イオン分析用カラム Shodex IC YK-421(昭和電工(株)製)を使用し、有機アミンを定量した。得られた有機アミン量を元に全窒素量を算出した。
〔Al含有量〕得られた水性ゾルを乾燥させて乾燥粉を作製し、小型蛍光X線分析装置 Supermini200((株)リガク製)にて求めた。
Physical properties were obtained by the following measuring methods.
[Moisture content] Moisture content was obtained by Karl Fischer titration method.
[Average primary particle size (particle size determined by transmission electron microscope)] The dispersion was dropped onto a copper mesh, dried, and 100 particles were observed using a transmission electron microscope (manufactured by JEOL Ltd., JEM-1010). , the average value of the primary particle diameter was calculated.
[Average particle size (dynamic light scattering particle size)] The sol was diluted with a dispersion solvent, and measured using the parameters of the solvent with a dynamic light scattering measurement device: Zetasizer Nano S (trade name: manufactured by MARVERN). It was measured.
[Specific Gravity] Determined by the floating balance method (25°C).
[Viscosity] Determined with a Brookfield viscometer (25°C).
[pH] Measured with a pH meter. When the dispersion medium was an organic solvent, the measurement was performed with a solution diluted with the same mass of pure water as the dispersion.
[Evaluation of stability] The dispersion was stored at room temperature for one month, and the change in particle size of the modified metal oxide colloidal particles by the dynamic light scattering method, the change in viscosity of the dispersion, and the presence or absence of sediment were visually confirmed. Dispersion stability was evaluated according to the following indices.
A: No change in particle size and viscosity, and no sediment B: Slight change (slight increase in particle size and viscosity increase), and no sediment C: Significant change (increase in particle size, thickening, gel ) or sedimentation [total nitrogen content derived from organic amine] ion chromatograph 761 Compact IC (manufactured by Metrohm) using a column for cation analysis Shodex IC YK-421 (manufactured by Showa Denko K.K.) , to quantify organic amines. The total nitrogen content was calculated based on the obtained organic amine content.
[Al 2 O 3 content] The resulting aqueous sol was dried to prepare a dry powder, and the content was determined using a compact fluorescent X-ray analyzer Supermini 200 (manufactured by Rigaku Corporation).
製造例1:被覆層(B)となる未改質複合酸化物の調製
 JIS3号珪酸ナトリウム(SiOとして29.8質量%含有、富士化学(株)製)36gを純水400gに溶解し、次いでスズ酸ナトリウムNaSnO・HO(SnOとして55.1質量%含有、昭和化工(株)製)9.8gを溶解した。得られた水溶液を水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通すことにより、酸性の酸化第二スズ-シリカ複合コロイド粒子の水性ゾル(pH2.4、SnOとして0.44質量%、SiOとして0.87質量%を含有、SiO/SnO質量比2.0)1240gを得た。次いで得られた水性ゾルにジイソプロピルアミンを3.2g添加した。得られたゾルはアルカリ性の酸化第二スズ-シリカ複合コロイド粒子の水性ゾルであり、pH8.0であった。また、透過型電子顕微鏡により平均一次粒子径5nm以下のコロイド粒子が観察された。また、ジイソプロピルアミン/(SnO+SiO)のモル比は、0.15であった。
Production Example 1 Preparation of Unmodified Composite Oxide for Coating Layer (B) 36 g of JIS No. 3 sodium silicate (containing 29.8% by mass of SiO 2 , manufactured by Fuji Chemical Co., Ltd.) was dissolved in 400 g of pure water, Then, 9.8 g of sodium stannate NaSnO 3 .H 2 O (contains 55.1% by mass as SnO 2 , manufactured by Showa Kako Co., Ltd.) was dissolved. The resulting aqueous solution was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B) to give an aqueous sol of acidic stannic oxide-silica composite colloidal particles (pH 2.4, 1240 g containing 0.44% by mass of SnO 2 and 0.87% by mass of SiO 2 with a SiO 2 /SnO 2 mass ratio of 2.0 was obtained. Then, 3.2 g of diisopropylamine was added to the resulting aqueous sol. The obtained sol was an alkaline aqueous sol of stannic oxide-silica composite colloidal particles and had a pH of 8.0. Also, colloidal particles having an average primary particle diameter of 5 nm or less were observed with a transmission electron microscope. Moreover, the molar ratio of diisopropylamine/(SnO 2 +SiO 2 ) was 0.15.
製造例2:核となる金属酸化物コロイド粒子(A)(ZrO-SnO複合酸化物コロイド粒子)の調製
 1mのベッセルに、炭酸水素テトラメチルアンモニウム(多摩化学工業(株)製、水酸化テトラメチルアンモニウムに換算して42.4質量%を含有する。)水溶液251.85kgと、純水95.6kgとを投入し希釈水溶液とした。この水溶液を攪拌しながら、オキシ炭酸ジルコニウム粉末(ZrOCO、AMR製、ZrOとして40.11質量%を含有する。)を水溶液中に徐々に添加し、合計で491.85kg投入した。添加終了後、85℃に加温後、メタスズ酸8.23kg(昭和化工(株)製、SnOとして7.08kg含有する。)を徐々に添加し、105℃にて5時間加温熟成を行った。この加熱熟成終了時点では混合液はゾル状であった。更に145℃にて5時間の水熱処理を行った。水熱処理後に得られたものは、酸化ジルコニウム-酸化第二スズ複合酸化物のコロイド粒子を含有するゾルであり、(ZrO+SnO)濃度として12.86質量%、比重1.180、pH10.62であった。次いでこのゾルを限外ろ過装置にて純水を添加しながら、ゾルを洗浄、濃縮したところ、(ZrO+SnO)濃度6.03質量%、比重1.052、pH9.43の酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子を含むゾル3215kgが得られた。得られた酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の平均一次粒子径は5乃至15nmであった。
Production Example 2: Preparation of Colloidal Metal Oxide Particles (A) (ZrO 2 —SnO 2 Composite Oxide Colloidal Particles) as Cores It contains 42.4% by mass in terms of tetramethylammonium oxide.) 251.85 kg of the aqueous solution and 95.6 kg of pure water were added to prepare a diluted aqueous solution. While stirring this aqueous solution, zirconium oxycarbonate powder (ZrOCO 3 , manufactured by AMR, containing 40.11% by mass as ZrO 2 ) was gradually added to the aqueous solution, and a total of 491.85 kg was added. After completion of the addition, after heating to 85°C, 8.23 kg of metastannic acid (manufactured by Showa Kako Co., Ltd., containing 7.08 kg of SnO 2 ) was gradually added, and heat aging was carried out at 105°C for 5 hours. gone. At the end of this heat aging, the liquid mixture was in the form of a sol. Furthermore, hydrothermal treatment was performed at 145° C. for 5 hours. The product obtained after the hydrothermal treatment was a sol containing colloidal particles of zirconium oxide-stannic oxide composite oxide, having a (ZrO 2 +SnO 2 ) concentration of 12.86% by mass, a specific gravity of 1.180, and a pH of 10.0. was 62. Next , the sol was washed and concentrated with an ultrafiltration device while adding pure water, and the zirconium oxide- 3215 kg of sol containing stannic oxide composite oxide colloidal particles was obtained. The obtained colloidal particles of zirconium oxide-stannic oxide composite oxide had an average primary particle size of 5 to 15 nm.
製造例3:核となる金属酸化物コロイド粒子(A)(TiO-ZrO複合酸化物コロイド粒子)の調製
 2Lセパラブルフラスコに純水368.6gと35%水酸化テトラエチルアンモニウム487.7gをいれ、混合後にメタスズ酸(昭和化工(株)製)14.6gを添加し溶解した。次いでチタンテトライソプロポキシド469.7g(TiO換算して132.0g含有、関東化学(株)製)を攪拌下に添加し、60℃で加熱溶解した。次いでシュウ酸二水和物108.4g(宇部興産(株)製)を添加し溶解した。得られた混合溶液は、シュウ酸/チタン原子のモル比0.5、水酸化テトラエチルアンモニウム/シュウ酸のモル比1.43であった。該混合溶液1449gを大気圧下、開放系で88乃至92℃で3時間保持し、副生するイソプロパノールを蒸留除去して、チタン含有水溶液1240gを調製した。得られたチタン含有水溶液のTiO換算濃度を5.0質量%に調整した。3Lのグラスライニング性オートクレーブ容器に上記チタン含有水溶液2000gを投入し、140℃で5時間水熱処理を行った。室温に冷却後、限外濾過装置を用いて純水(PW)で注水洗浄を行い、シュウ酸を除去した。得られたルチル型酸化チタンゾルは、比重1.030、pH11.7、電導度1044μS/cm、TiO濃度3.8質量%であった。
 オキシ塩化ジルコニウム(ZrOとして21.19質量%含有、第一稀元素化学工業(株)製)35.9gを純水217gで希釈して、オキシ塩化ジルコニウム水溶液253g(ZrOとして3.0質量%含有)を調製し、上記ルチル型酸化チタンゾルの水分散ゾル1053gを攪拌下に添加した。次いで95℃に加熱することにより加水分解を行って、酸化チタン-酸化ジルコニウム複合酸化物コロイド粒子を含有するゾルが得られた。
 得られたゾルのpHは1.2、全金属酸化物濃度は3.6質量%であり、酸化チタン-酸化ジルコニウム複合酸化物コロイド粒子の平均一次粒子径は5乃至15nmであった。
Production Example 3: Preparation of Metal Oxide Colloidal Particles (A) (TiO 2 —ZrO 2 Composite Oxide Colloidal Particles) as Cores 368.6 g of pure water and 487.7 g of 35% tetraethylammonium hydroxide were placed in a 2 L separable flask. After mixing, 14.6 g of metastannic acid (manufactured by Showa Kako Co., Ltd.) was added and dissolved. Then, 469.7 g of titanium tetraisopropoxide (contains 132.0 g of TiO2 , manufactured by Kanto Kagaku Co., Ltd.) was added with stirring and dissolved by heating at 60°C. Then, 108.4 g of oxalic acid dihydrate (manufactured by Ube Industries, Ltd.) was added and dissolved. The obtained mixed solution had a molar ratio of oxalic acid/titanium atom of 0.5 and a molar ratio of tetraethylammonium hydroxide/oxalic acid of 1.43. 1449 g of the mixed solution was kept in an open system under atmospheric pressure at 88 to 92° C. for 3 hours, and by-product isopropanol was removed by distillation to prepare 1240 g of a titanium-containing aqueous solution. The TiO 2 conversion concentration of the obtained titanium-containing aqueous solution was adjusted to 5.0% by mass. 2000 g of the titanium-containing aqueous solution was placed in a 3-liter glass-lined autoclave container and hydrothermally treated at 140° C. for 5 hours. After cooling to room temperature, the oxalic acid was removed by washing with pure water (PW) using an ultrafiltration device. The resulting rutile-type titanium oxide sol had a specific gravity of 1.030, a pH of 11.7, an electrical conductivity of 1044 μS/cm, and a TiO 2 concentration of 3.8 mass %.
35.9 g of zirconium oxychloride (containing 21.19% by mass as ZrO2 , manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd.) was diluted with 217 g of pure water to give 253 g of an aqueous zirconium oxychloride solution (3.0 mass % as ZrO2 ). % content) was prepared, and 1053 g of the water-dispersed sol of the rutile type titanium oxide sol was added with stirring. Then, hydrolysis was performed by heating to 95° C. to obtain a sol containing titanium oxide-zirconium oxide composite oxide colloidal particles.
The obtained sol had a pH of 1.2, a total metal oxide concentration of 3.6% by mass, and an average primary particle size of the titanium oxide-zirconium oxide composite oxide colloidal particles of 5 to 15 nm.
製造例4:被覆層(B)となる複合酸化物の調製
 JIS3号珪酸ナトリウム(SiOとして29.8質量%含有、富士化学(株)製)69gを純水865gに溶解し、次いでスズ酸ナトリウムNaSnO・HO(SnOとして55.1質量%含有、昭和化工(株)製)18.5gを溶解し、さらに液体アルミン酸ソーダ1.35g(Alとして0.27g)を溶解した。得られた水溶液を水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通すことにより、酸性の酸化第二スズ-シリカ-酸化アルミニウム複合コロイド粒子の水性ゾル(pH2.5、SnOとして1.09質量%、SiOとして2.2質量%を含有、SiO/SnO質量比2.0、Alとして0.02質量%)1008gを得た。次いで得られた水性ゾルにジイソプロピルアミンを6.0g添加した。得られたゾルはアルカリ性の酸化第二スズ-シリカ-酸化アルミニウム複合コロイド粒子の水性ゾルであり、pH8.2であった。また、透過型電子顕微鏡により平均一次粒子径5nm以下のコロイド粒子が観察された。
Production Example 4 Preparation of Composite Oxide for Coating Layer (B) 69 g of JIS No. 3 sodium silicate (containing 29.8% by mass of SiO 2 , manufactured by Fuji Chemical Co., Ltd.) was dissolved in 865 g of pure water, and then stannic acid was added. 18.5 g of sodium NaSnO 3 ·H 2 O (containing 55.1% by mass as SnO 2 , manufactured by Showa Kako Co., Ltd.) was dissolved, and 1.35 g of liquid sodium aluminate (0.27 g as Al 2 O 3 ) was dissolved. was dissolved. The resulting aqueous solution was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B) to give an aqueous sol (pH 2.0) of acidic stannic oxide-silica-aluminum oxide composite colloidal particles .5, containing 1.09% by weight as SnO 2 and 2.2% by weight as SiO 2 , a SiO 2 /SnO 2 weight ratio of 2.0, and 0.02% by weight as Al 2 O 3 ) (1008 g). Then, 6.0 g of diisopropylamine was added to the resulting aqueous sol. The obtained sol was an alkaline aqueous sol of stannic oxide-silica-aluminum oxide composite colloidal particles and had a pH of 8.2. Also, colloidal particles having an average primary particle diameter of 5 nm or less were observed with a transmission electron microscope.
実施例1:変性金属酸化物コロイド粒子(C)の調製
 製造例2で調製した酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル830g(全金属酸化物として50g含有)に製造例1で調製したアルカリ性の酸化第二スズ-シリカ複合コロイド粒子の水性ゾル577gを添加し、十分に攪拌した。
 次いで95℃で2時間加熱熟成して、酸化第二スズ-シリカ複合コロイド粒子で被覆された酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル1410gを得た。得られたゾルのpHは8.1、全金属酸化物濃度は4.1質量%であった。
 得られた酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾルを、水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通し、酸性の酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル1880gを得た。得られたゾルのpHは3.3、全金属酸化物濃度は3.0質量%であった。
 酸性の酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の複合酸化物の質量/アルミン酸ソーダの質量(Al換算)が650になるように、得られた酸性ゾルにアルミン酸ソーダ水溶液20g(Alとして0.087g)を添加して95℃にて2時間加熱し、次いで限外ろ過装置を用いて濃縮した。得られた変性酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子を含む分散液は、全金属酸化物濃度30.5質量%、比重1.332、pH4.5、B型粘度5.0mPa・s、平均粒子径17nmであった。また、被覆層に含まれるAl含有量は被覆層中の全複合酸化物の質量に基づいて1.17質量%であった。得られたゾルは室温に1か月放置しても物性に変化はなく安定であった。
 得られたゾル164gをナス型フラスコ付きエバポレーターに投入して、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM-503)を5.0g添加し、次いでメタノールを徐々に添加しながら600Torrで水を留去することにより、アルミン酸塩で改質した変性酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子のメタノール分散ゾルを213g得た。得られたメタノール分散ゾルは、全金属酸化物濃度31.0質量%、B型粘度12.5mPa・s、pH5.7(ゾルと同質量の水で希釈)、水分0.6%、平均粒子径17nmであった。得られたゾルは室温に1か月放置しても物性に変化はなく安定であった。
Example 1: Preparation of modified metal oxide colloidal particles (C) 577 g of the aqueous sol of the alkaline stannic oxide-silica composite colloidal particles prepared in 1. was added and thoroughly stirred.
Then, the mixture was heated and aged at 95° C. for 2 hours to obtain 1410 g of an aqueous sol of zirconium oxide-stannic oxide composite oxide colloidal particles coated with stannic oxide-silica composite colloidal particles. The resulting sol had a pH of 8.1 and a total metal oxide concentration of 4.1% by mass.
The obtained aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and an acidic zirconium oxide-oxidized 1880 g of aqueous sol of colloidal particles of stannic compound oxide was obtained. The resulting sol had a pH of 3.3 and a total metal oxide concentration of 3.0% by mass.
An aqueous solution of sodium aluminate was added to the acidic sol so that the mass of the composite oxide of the acidic zirconium oxide-stannic oxide composite oxide colloidal particles/the mass of sodium aluminate (in terms of Al 2 O 3 ) was 650. 20 g (0.087 g as Al 2 O 3 ) was added and heated at 95° C. for 2 hours, then concentrated using an ultrafiltration device. The obtained dispersion containing the modified zirconium oxide-stannic oxide composite oxide colloidal particles had a total metal oxide concentration of 30.5% by mass, a specific gravity of 1.332, a pH of 4.5, and a B-type viscosity of 5.0 mPa s. , and the average particle size was 17 nm. Also, the Al 2 O 3 content contained in the coating layer was 1.17% by mass based on the mass of all composite oxides in the coating layer. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
164 g of the obtained sol was charged into an evaporator equipped with an eggplant-shaped flask, 5.0 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and then methanol was gradually added. Water was distilled off at 600 Torr to obtain 213 g of a methanol-dispersed sol of aluminate-modified modified zirconium oxide-stannic oxide composite oxide colloidal particles. The resulting methanol-dispersed sol had a total metal oxide concentration of 31.0% by mass, a B-type viscosity of 12.5 mPa s, a pH of 5.7 (diluted with the same mass of water as the sol), a water content of 0.6%, and an average particle size of The diameter was 17 nm. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
実施例2:変性金属酸化物コロイド粒子(C)の調製
 製造例3で得られた水分散ゾル1388gを製造例1で調製したアルカリ性の酸化第二スズ-シリカ複合コロイド粒子の水分散ゾル769gに撹拌下で添加した。次いでアニオン交換樹脂(アンバーライト(登録商標)IRA-410、オルガノ(株)製)500mLを詰めたカラムに通液した。
 次いで通液後の水分散ゾルを150℃で3時間加熱して、酸化第二スズ-シリカ複合コロイド粒子で被覆された、酸化チタン-酸化ジルコニウム複合酸化物コロイド粒子の水分散ゾルを得た。得られた水分散ゾルは2788gで全金属酸化物濃度は2.2質量%であった。
 得られた水分散ゾルを、水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通し、酸性の酸化チタン-酸化ジルコニウム複合酸化物コロイド粒子の水性ゾル3427gを得た。得られたゾルのpHは2.4、全金属酸化物濃度は1.7質量%であった。
 酸性の酸化チタン-酸化ジルコニウム複合酸化物コロイド粒子の複合酸化物の質量/アルミン酸ソーダの質量(Al換算)が244になるように、得られた酸性ゾルにアルミン酸ソーダ水溶液25g(Alとして0.24g)を添加して95℃にて2時間加熱し、次いで限外ろ過装置を用いて濃縮した。得られた変性酸化チタン-酸化ジルコニウム複合酸化物コロイド粒子を含む分散液は、全金属酸化物濃度30.8質量%、pH4.6、B型粘度7.0mPa・s、平均粒子径21.0nmであった。被覆層に含まれるAl含有量は被覆層中の全複合酸化物の質量に基づいて2.4質量%であった。得られたゾルは室温に1か月放置しても物性に変化はなく安定であった。
 得られたゾル195gをナス型フラスコ付きエバポレーターに投入して、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM-503)を6.0g添加、次いでメタノールを徐々に添加しながら600Torrで水を留去することにより、アルミン酸塩で改質した変性酸化チタン-酸化ジルコニウム複合酸化物コロイド粒子のメタノール分散ゾルを208g得た。得られたメタノール分散ゾルは、全金属酸化物濃度30.6質量%、B型粘度4.2mPa・s、pH4.8(ゾルと同質量の水で希釈)、水分1.7%、平均粒子径16nmであった。得られたゾルは室温に1か月放置しても物性に変化はなく安定であった。
Example 2 Preparation of Modified Metal Oxide Colloidal Particles (C) 1388 g of the water-dispersed sol obtained in Production Example 3 was added to 769 g of the water-dispersed sol of the alkaline stannic oxide-silica composite colloidal particles prepared in Production Example 1. Added under stirring. Then, the solution was passed through a column packed with 500 mL of an anion exchange resin (Amberlite (registered trademark) IRA-410, manufactured by Organo Co., Ltd.).
Next, the water-dispersed sol after passing the liquid was heated at 150° C. for 3 hours to obtain a water-dispersed sol of titanium oxide-zirconium oxide composite oxide colloidal particles coated with stannic oxide-silica composite colloidal particles. The resulting water-dispersed sol was 2788 g and had a total metal oxide concentration of 2.2% by mass.
The resulting water-dispersed sol was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B) to obtain 3427 g of an aqueous sol of acidic titanium oxide-zirconium oxide composite oxide colloidal particles. rice field. The resulting sol had a pH of 2.4 and a total metal oxide concentration of 1.7 mass %.
25 g of an aqueous sodium aluminate solution was added to the resulting acidic sol so that the mass of the composite oxide of the acidic titanium oxide-zirconium oxide composite oxide colloidal particles/the mass of sodium aluminate (in terms of Al 2 O 3 ) was 244 ( 0.24 g as Al 2 O 3 ) was added and heated at 95° C. for 2 hours, then concentrated using an ultrafiltration device. The obtained dispersion containing the modified titanium oxide-zirconium oxide composite oxide colloidal particles had a total metal oxide concentration of 30.8% by mass, a pH of 4.6, a B-type viscosity of 7.0 mPa·s, and an average particle diameter of 21.0 nm. Met. The Al 2 O 3 content contained in the coating layer was 2.4% by mass based on the mass of all composite oxides in the coating layer. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
195 g of the obtained sol was charged into an evaporator equipped with an eggplant-shaped flask, 6.0 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and then methanol was gradually added to 600 Torr. 208 g of a methanol-dispersed sol of aluminate-modified modified titanium oxide-zirconium oxide composite oxide colloidal particles was obtained. The resulting methanol-dispersed sol had a total metal oxide concentration of 30.6% by mass, a B-type viscosity of 4.2 mPa s, a pH of 4.8 (diluted with the same mass of water as the sol), a water content of 1.7%, and an average particle size of The diameter was 16 nm. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
実施例3:変性金属酸化物コロイド粒子(C)の調製
 実施例1と同様の手順で得られた酸性の酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル1880gに、酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の複合酸化物の質量/アルミン酸ソーダの質量(Al換算)が650になるように、アルミン酸ソーダ水溶液20g(Alとして0.087g)を添加して95℃にて2時間加熱し、次いで限外ろ過装置を用いて濃縮した。得られた変性酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子を含む分散液は、全金属酸化物濃度30.6質量%、pH5.4、B型粘度13.4mPa・s、平均粒子径14nmであった。また、被覆層に含まれるAl含有量は被覆層中の全複合酸化物の質量に基づいて1.17質量%であった。得られたゾルは室温に1か月放置しても物性に変化はなく安定であった。
 得られたゾル164gをナス型フラスコ付きエバポレーターに投入して、γ-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM-403)を5.0g添加し、次いでメタノールを徐々に添加しながら600Torrで水を留去することにより、アルミン酸塩で改質した変性酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子のメタノール分散ゾルを213g得た。得られたメタノール分散ゾルは、全金属酸化物濃度31.0質量%、B型粘度5.3mPa・s、pH5.6(ゾルと同質量の水で希釈)、水分0.8%、平均粒子径16nmであった。得られたゾルは室温に1か月放置しても物性に変化はなく安定であった。
Example 3 Preparation of Modified Metal Oxide Colloidal Particles (C) To 1880 g of aqueous sol of acidic zirconium oxide-stannic oxide colloidal particles obtained by the same procedure as in Example 1, zirconium oxide-oxidized 20 g of an aqueous sodium aluminate solution (0.087 g as Al 2 O 3 ) was added so that the mass of the composite oxide of the stannic composite oxide colloidal particles/the mass of sodium aluminate (in terms of Al 2 O 3 ) was 650. The mixture was added and heated at 95° C. for 2 hours, then concentrated using an ultrafiltration device. The obtained dispersion containing the modified zirconium oxide-stannic oxide composite oxide colloidal particles had a total metal oxide concentration of 30.6% by mass, a pH of 5.4, a B-type viscosity of 13.4 mPa s, and an average particle diameter of 14 nm. Met. Also, the Al 2 O 3 content contained in the coating layer was 1.17% by mass based on the mass of all composite oxides in the coating layer. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
164 g of the obtained sol was charged into an evaporator equipped with an eggplant-shaped flask, 5.0 g of γ-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and then methanol was gradually added. 213 g of a methanol-dispersed sol of modified zirconium oxide-stannic oxide composite oxide colloidal particles modified with an aluminate was obtained by distilling off water at 600 Torr. The resulting methanol-dispersed sol had a total metal oxide concentration of 31.0% by mass, a B-type viscosity of 5.3 mPa s, a pH of 5.6 (diluted with the same mass of water as the sol), a water content of 0.8%, and an average particle size of The diameter was 16 nm. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
実施例4:変性金属酸化物コロイド粒子(C)の調製
 実施例1と同様の手順で得られた酸性の酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル1880gに、酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の複合酸化物の質量/アルミン酸ソーダの質量(Al換算)が650になるように、アルミン酸ソーダ水溶液20g(Alとして0.087g)を添加して95℃にて2時間加熱し、次いで限外ろ過装置を用いて濃縮した。得られた変性酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子を含む分散液は、全金属酸化物濃度30.6質量%、pH5.4、B型粘度13.4mPa・s、平均粒子径14nmであった。また、被覆層に含まれるAl含有量は被覆層中の全複合酸化物の質量に基づいて1.17質量%であった。得られたゾルは室温に1か月放置しても物性に変化はなく安定であった。
 得られたゾル164gをナス型フラスコ付きエバポレーターに投入して、メタノールを徐々に添加しながら600Torrで水を留去することにより、アルミン酸塩で改質した変性酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子のメタノール分散ゾルを149g得た。得られたメタノール分散ゾルは、全金属酸化物濃度31.0質量%、B型粘度4.6mPa・s、pH5.7(ゾルと同質量の水で希釈)、水分0.8%、平均粒子径16nmであった。得られたゾルは室温に1か月放置しても物性に変化はなく安定であった。
Example 4 Preparation of Modified Metal Oxide Colloidal Particles (C) To 1880 g of aqueous sol of acidic zirconium oxide-stannic oxide colloidal particles obtained by the same procedure as in Example 1, zirconium oxide-oxidized 20 g of an aqueous sodium aluminate solution (0.087 g as Al 2 O 3 ) was added so that the mass of the composite oxide of the stannic composite oxide colloidal particles/the mass of sodium aluminate (in terms of Al 2 O 3 ) was 650. The mixture was added and heated at 95° C. for 2 hours, then concentrated using an ultrafiltration device. The obtained dispersion containing the modified zirconium oxide-stannic oxide composite oxide colloidal particles had a total metal oxide concentration of 30.6% by mass, a pH of 5.4, a B-type viscosity of 13.4 mPa s, and an average particle diameter of 14 nm. Met. Also, the Al 2 O 3 content contained in the coating layer was 1.17% by mass based on the mass of all composite oxides in the coating layer. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
164 g of the obtained sol was put into an evaporator equipped with an eggplant-shaped flask, and water was distilled off at 600 Torr while methanol was gradually added, whereby a modified zirconium oxide-stannic oxide composite oxide modified with aluminate was obtained. 149 g of a methanol-dispersed sol of colloidal particles was obtained. The resulting methanol-dispersed sol had a total metal oxide concentration of 31.0% by mass, a B-type viscosity of 4.6 mPa s, a pH of 5.7 (diluted with the same mass of water as the sol), a water content of 0.8%, and an average particle size of The diameter was 16 nm. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
比較例1
 製造例2で調製した酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル830g(全金属酸化物として50g含有)に製造例1で調製したアルカリ性の酸化第二スズ-シリカ複合コロイド粒子の水性ゾル577gを添加し、十分に攪拌した。
 次いで95℃で2時間加熱熟成して、酸化第二スズ-シリカ複合コロイド粒子で被覆された酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル1400gを得た。得られたゾルのpHは8.1、全金属酸化物濃度は4.6質量%であった。
 得られた酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾルを、水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通し、酸性の酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル1910gを得た。得られたゾルはpH3.3、全金属酸化物濃度は3.4質量%であった。
 次いで限外濾過装置を用いて濃縮を行なおうとしたところ、濃縮途中で増粘・ゲル化した。
Comparative example 1
The alkaline stannic oxide-silica composite colloidal particles prepared in Production Example 1 were added to 830 g of the aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles prepared in Production Example 2 (containing 50 g of all metal oxides). 577 g of aqueous sol was added and thoroughly stirred.
Then, the mixture was heated and aged at 95° C. for 2 hours to obtain 1400 g of an aqueous sol of zirconium oxide-stannic oxide composite oxide colloidal particles coated with stannic oxide-silica composite colloidal particles. The resulting sol had a pH of 8.1 and a total metal oxide concentration of 4.6% by mass.
The obtained aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and an acidic zirconium oxide-oxidized 1910 g of an aqueous sol of colloidal particles of stannic compound oxide was obtained. The resulting sol had a pH of 3.3 and a total metal oxide concentration of 3.4% by mass.
Then, when an attempt was made to concentrate using an ultrafiltration device, the product thickened and gelled during the concentration.
比較例2
 製造例2で調製した酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル830g(全金属酸化物として50g含有)に製造例1で調製した酸化第二スズ-シリカ複合コロイド粒子の水性ゾル577gを添加し、十分に攪拌した。
 次いで95℃で2時間加熱熟成して、酸化第二スズ-シリカ複合コロイド粒子で被覆された酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル1400gを得た。得られたゾルのpHは8.1、全金属酸化物濃度は4.6質量%であった。
 得られた酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾルを、水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通し、酸性の酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル1910gを得た。得られたゾルはpH3.3、全金属酸化物濃度は3.4質量%であった。
 得られた酸性ゾルにジイソブチルアミンを0.40g添加し、限外濾過装置を用いて全金属酸化物濃度20.6質量%まで濃縮した。得られたゾルは、pH3.9、B型粘度7.0mPa・s、平均粒子径24nmであった。得られたゾルは室温に1か月放置しても物性に変化はなく安定であった。
 得られたゾルをナス型フラスコ付きエバポレーターに投入して、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM-503)を5.0g添加、次いでメタノールを徐々に添加しながら600Torrで水を留去することにより、ジイソブチルアミンが結合した酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子のメタノール分散ゾルを213g得た。得られたメタノール分散ゾルは、全金属酸化物濃度30.5質量%、B型粘度4.3mPa・s、pH4.9(ゾルと同質量の水で希釈)、水分0.8%、平均粒子径19nmであった。得られたゾルは室温に1か月放置しても物性に変化はなく安定であった。
Comparative example 2
830 g of the aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles prepared in Production Example 2 (containing 50 g of all metal oxides) was added to the aqueous sol of the stannic oxide-silica composite colloidal particles prepared in Production Example 1. 577 g was added and stirred well.
Then, the mixture was heated and aged at 95° C. for 2 hours to obtain 1400 g of an aqueous sol of zirconium oxide-stannic oxide composite oxide colloidal particles coated with stannic oxide-silica composite colloidal particles. The resulting sol had a pH of 8.1 and a total metal oxide concentration of 4.6% by mass.
The obtained aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and an acidic zirconium oxide-oxidized 1910 g of an aqueous sol of colloidal particles of stannic compound oxide was obtained. The resulting sol had a pH of 3.3 and a total metal oxide concentration of 3.4% by mass.
0.40 g of diisobutylamine was added to the obtained acidic sol, and concentrated to a total metal oxide concentration of 20.6% by mass using an ultrafiltration device. The resulting sol had a pH of 3.9, a B-type viscosity of 7.0 mPa·s, and an average particle size of 24 nm. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
The obtained sol was put into an evaporator equipped with an eggplant-shaped flask, 5.0 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and then methanol was gradually added at 600 Torr. By distilling off water, 213 g of a methanol-dispersed sol of diisobutylamine-bonded zirconium oxide-stannic oxide composite oxide colloidal particles was obtained. The resulting methanol-dispersed sol had a total metal oxide concentration of 30.5% by mass, a B-type viscosity of 4.3 mPa s, a pH of 4.9 (diluted with the same mass of water as the sol), a water content of 0.8%, and an average particle size of The diameter was 19 nm. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
比較例3
 製造例3で得られた水分散ゾル1306gを製造例1で調製したアルカリ性の酸化第二スズ-シリカ複合コロイド粒子の水分散ゾル1076gに撹拌下で添加した。次いでアニオン交換樹脂(アンバーライト(登録商標)IRA-410、オルガノ(株)製)500mLを詰めたカラムに通液した。
 次いで通液後の水分散ゾルを150℃で3時間加熱して、酸化第二スズ-シリカ複合コロイド粒子で被覆された、酸化チタン-酸化ジルコニウム複合酸化物コロイド粒子の水分散ゾルを得た。得られた水分散ゾルは2788gで全金属酸化物濃度は2.2質量%であった。
 得られた酸化チタン-酸化ジルコニウム複合酸化物コロイド粒子の水分散ゾルを、水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通し、酸性の酸化チタン-酸化ジルコニウム複合酸化物コロイド粒子の水分散ゾル3427gを得た。得られたゾルはpH2.4、全金属酸化物濃度は1.8質量%であった。
 得られた酸性ゾルにジイソブチルアミン1.54gを添加し、限外濾過装置を用いて全金属酸化物濃度17.6質量%まで濃縮した。得られたゾルは、B型粘度4.8mPa・s、pH4.2、平均粒子径27nmであった。得られたゾルは室温に1か月放置しても物性に変化はなく安定であった。
 得られたゾル337gをナス型フラスコ付きエバポレーターに投入して、次いでメタノールを徐々に添加しながら600Torrで水を留去することにより、ジイソブチルアミンが結合した酸化チタン-酸化ジルコニウム複合酸化物コロイド粒子のメタノール分散ゾルを196g得た。得られたメタノール分散ゾルは、全金属酸化物濃度30.0質量%、B型粘度3.9mPa・s、pH5.0(ゾルと同質量の水で希釈)、水分0.8%、平均粒子径20nmであった。得られたゾルは室温に1か月放置しても物性に変化はなく安定であった。
Comparative example 3
1306 g of the water-dispersed sol obtained in Production Example 3 was added to 1076 g of the water-dispersed sol of alkaline stannic oxide-silica composite colloidal particles prepared in Production Example 1 with stirring. Then, the solution was passed through a column packed with 500 mL of an anion exchange resin (Amberlite (registered trademark) IRA-410, manufactured by Organo Co., Ltd.).
Next, the water-dispersed sol after passing the liquid was heated at 150° C. for 3 hours to obtain a water-dispersed sol of titanium oxide-zirconium oxide composite oxide colloidal particles coated with stannic oxide-silica composite colloidal particles. The resulting water-dispersed sol was 2788 g and had a total metal oxide concentration of 2.2% by mass.
The resulting water-dispersed sol of the colloidal particles of titanium oxide-zirconium oxide composite oxide was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B) to give an acidic titanium oxide-zirconium oxide. 3427 g of a water-dispersed sol of colloidal composite oxide particles was obtained. The resulting sol had a pH of 2.4 and a total metal oxide concentration of 1.8% by mass.
1.54 g of diisobutylamine was added to the obtained acidic sol, and concentrated to a total metal oxide concentration of 17.6% by mass using an ultrafiltration device. The resulting sol had a B-type viscosity of 4.8 mPa·s, a pH of 4.2 and an average particle size of 27 nm. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
337 g of the obtained sol was charged into an evaporator equipped with an eggplant-shaped flask, and then water was distilled off at 600 Torr while methanol was gradually added to obtain diisobutylamine-bonded titanium oxide-zirconium oxide composite oxide colloidal particles. 196 g of methanol-dispersed sol was obtained. The resulting methanol-dispersed sol had a total metal oxide concentration of 30.0% by mass, a B-type viscosity of 3.9 mPa s, a pH of 5.0 (diluted with the same mass of water as the sol), a water content of 0.8%, and an average particle size of The diameter was 20 nm. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
比較例4
 製造例2で調製した酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル830g(全金属酸化物として50g含有)に製造例4で調製した酸化第二スズ-シリカ-酸化アルミニウム複合コロイド粒子の水性ゾル334gを添加し、十分に攪拌した。
 次いで95℃で2時間加熱熟成して、酸化第二スズ-シリカ-酸化アルミニウム複合コロイド粒子で被覆された酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル1334gを得た。得られたゾルのpHは8.5、全金属酸化物濃度は4.5質量%であった。
 得られた酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾルを、水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通し、酸性の酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル1348gを得た。得られたゾルはpH3.1、全金属酸化物濃度は4.4質量%であった。
 得られた酸性ゾルを限外濾過装置を用いて濃縮したが途中で増粘ゲル化した。
Comparative example 4
830 g of the aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles prepared in Production Example 2 (containing 50 g of all metal oxides) was added to the stannic oxide-silica-aluminum oxide composite colloidal particles prepared in Production Example 4. was added and thoroughly stirred.
Then, the mixture was heated and aged at 95° C. for 2 hours to obtain 1334 g of aqueous sol of zirconium oxide-stannic oxide composite oxide colloidal particles coated with stannic oxide-silica-aluminum oxide composite colloidal particles. The resulting sol had a pH of 8.5 and a total metal oxide concentration of 4.5 mass %.
The obtained aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and an acidic zirconium oxide-oxidized 1348 g of aqueous sol of colloidal particles of stannic compound oxide was obtained. The resulting sol had a pH of 3.1 and a total metal oxide concentration of 4.4% by mass.
The acidic sol thus obtained was concentrated using an ultrafiltration device, but thickened and gelled on the way.
比較例5
 製造例2で調製した酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル830g(全金属酸化物として50g含有)に製造例4で調製した酸化第二スズ-シリカ-酸化アルミニウム複合コロイド粒子の水性ゾル334gを添加し、十分に攪拌した。
 次いで95℃で2時間加熱熟成して、酸化第二スズ-シリカ-酸化アルミニウム複合コロイド粒子で被覆された酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル1334gを得た。得られたゾルのpHは8.5、全金属酸化物濃度は4.5質量%であった。
 得られた酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾルを、水素型陽イオン交換樹脂(アンバーライト(登録商標)IR-120B)を充填したカラムに通し、酸性の酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子の水性ゾル1348gを得た。得られたゾルはpH3.1、全金属酸化物濃度は4.4質量%であった。
 得られた酸性ゾルに水酸化ナトリウム5%水溶液を10.1g添加し、pH5.2となり、ついで限外濾過装置を用いて全金属酸化物濃度22.4質量%まで濃縮した。得られたゾルは、pH5.4、B型粘度4.6mPa・s、平均粒子径16nmであった。得られたゾルは室温に1か月放置しても物性に変化はなく安定であった。
 得られたゾルをナス型フラスコ付きエバポレーターに投入して、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM-503)を5.6g添加、60℃で2時間加熱した。次いでメタノールを徐々に添加しながら600Torrで水を留去することにより、酸化ジルコニウム-酸化第二スズ複合酸化物コロイド粒子のメタノール分散ゾルを173g得た。得られたメタノール分散ゾルは、全金属酸化物濃度31.0質量%、B型粘度3.4mPa・s、pH5.7(ゾルと同質量の水で希釈)、水分1.0%であった。平均粒子径は69nmと凝集傾向にあった。得られたゾルは室温に1か月放置により増粘し、不安定であった。
Comparative example 5
830 g of the aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles prepared in Production Example 2 (containing 50 g of all metal oxides) was added to the stannic oxide-silica-aluminum oxide composite colloidal particles prepared in Production Example 4. was added and thoroughly stirred.
Then, the mixture was heated and aged at 95° C. for 2 hours to obtain 1334 g of aqueous sol of zirconium oxide-stannic oxide composite oxide colloidal particles coated with stannic oxide-silica-aluminum oxide composite colloidal particles. The resulting sol had a pH of 8.5 and a total metal oxide concentration of 4.5 mass %.
The obtained aqueous sol of the zirconium oxide-stannic oxide composite oxide colloidal particles was passed through a column filled with a hydrogen-type cation exchange resin (Amberlite (registered trademark) IR-120B), and an acidic zirconium oxide-oxidized 1348 g of aqueous sol of colloidal particles of stannic compound oxide was obtained. The resulting sol had a pH of 3.1 and a total metal oxide concentration of 4.4% by mass.
10.1 g of a 5% sodium hydroxide aqueous solution was added to the resulting acidic sol to adjust the pH to 5.2, and then concentrated to a total metal oxide concentration of 22.4% by mass using an ultrafiltration device. The resulting sol had a pH of 5.4, a B-type viscosity of 4.6 mPa·s, and an average particle size of 16 nm. The obtained sol was stable with no change in physical properties even after standing at room temperature for one month.
The obtained sol was put into an evaporator equipped with an eggplant-shaped flask, 5.6 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was heated at 60° C. for 2 hours. Then, water was distilled off at 600 Torr while gradually adding methanol, thereby obtaining 173 g of methanol-dispersed sol of zirconium oxide-stannic oxide composite oxide colloidal particles. The resulting methanol-dispersed sol had a total metal oxide concentration of 31.0% by mass, a B-type viscosity of 3.4 mPa·s, a pH of 5.7 (diluted with the same mass of water as the sol), and a water content of 1.0%. . The average particle size was 69 nm and there was a tendency to aggregate. The resulting sol was unstable and thickened when left at room temperature for one month.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示した結果より、本発明の変性金属酸化物コロイド粒子を含む水分散液は分散安定性に優れていた。また、本発明の変性金属酸化物コロイド粒子の表面が有機ケイ素化合物で表面修飾されていても、又は表面修飾されていなくても、本発明の変性金属酸化物コロイド粒子を含む有機溶媒分散液は、分散安定性に優れていた。
 一方、表2に示した結果より、被覆層(B)をアルミン酸ソーダで改質しなかった金属酸化物コロイド粒子を含む水分散液は、濃縮途中で増粘・ゲル化した(比較例1)。
 また、被覆層(B)として、酸化第二スズ-シリカ-酸化アルミニウム複合コロイド粒子を用いた金属酸化物コロイド粒子を含む水分散液は、濃縮途中で増粘・ゲル化した(比較例4)。
 さらに、被覆層(B)として、酸化第二スズ-シリカ-酸化アルミニウム複合コロイド粒子を用いた金属酸化物コロイド粒子に水酸化ナトリウムを添加した有機溶媒分散液は増粘して、分散安定性が劣っていた(比較例5)。
 以上の結果から、本発明の変性金属酸化物コロイド粒子は、未改質複合酸化物をアルミン酸塩で改質してなる被覆層(B)を採用したことにより、該変性金属酸化物コロイド粒子の水分散液及び有機溶媒分散液は、分散安定性に優れることが明らかである。
From the results shown in Table 1, the aqueous dispersion containing the modified metal oxide colloidal particles of the present invention was excellent in dispersion stability. Further, even if the surface of the modified metal oxide colloidal particles of the present invention is modified with an organosilicon compound or not, the organic solvent dispersion containing the modified metal oxide colloidal particles of the present invention can be , was excellent in dispersion stability.
On the other hand, from the results shown in Table 2, the aqueous dispersion containing metal oxide colloidal particles in which the coating layer (B) was not modified with sodium aluminate thickened and gelled during concentration (Comparative Example 1 ).
Further, an aqueous dispersion containing metal oxide colloidal particles using stannic oxide-silica-aluminum oxide composite colloidal particles as the coating layer (B) thickened and gelled during concentration (Comparative Example 4). .
Furthermore, as the coating layer (B), an organic solvent dispersion in which sodium hydroxide is added to metal oxide colloidal particles using stannic oxide-silica-aluminum oxide composite colloidal particles is thickened and dispersion stability is improved. It was inferior (Comparative Example 5).
From the above results, it can be seen that the modified metal oxide colloidal particles of the present invention employ the coating layer (B) obtained by modifying the unmodified composite oxide with an aluminate, so that the modified metal oxide colloidal particles It is clear that the aqueous dispersion and the organic solvent dispersion of are excellent in dispersion stability.
 実施例1、2で得られた変性金属酸化物コロイド粒子、比較例2、3で得られた金属酸化物コロイド粒子を用いて、以下に示す手順にてコーティング組成物を調製して光学部材を作製し、諸物性を測定し評価した。 Using the modified metal oxide colloidal particles obtained in Examples 1 and 2 and the metal oxide colloidal particles obtained in Comparative Examples 2 and 3, a coating composition was prepared in the following procedure to produce an optical member. It was produced, and various physical properties were measured and evaluated.
実施例5
(コーティング組成物の調製)
 マグネチックスターラーを備えたガラス製容器にγ-グリシドキシプロピルトリメトキシシラン35.2質量部とメタノール94.6質量部を添加し、撹拌しながら0.01規定の塩酸8.5質量部を30分で滴下した。滴下終了後、2.0時間撹拌を行い、γ-グリシドキシプロピルトリメトキシシランの部分加水分解物溶液を得た。
 つぎに、実施例1の変性金属酸化物コロイド粒子のメタノール分散ゾル(全金属酸化物濃度に換算して31.0質量%を含有する)106.7質量部、更に硬化剤としてアルミニウムアセチルアセトネート0.3質量部を前述したγ-グリシドキシプロピルトリメトキシシランの部分加水分解物溶液129.8質量部に加え、十分に撹拌した後、ろ過を行ってハードコート用コーティング組成物(コーティング液)を調製した。
 (光学部材の作製)
 直径30mmのガラス製シャーレに前記コーティング液を3mL添加し、80℃で30分間保持し、120℃で2時間加熱処理をして、光学部材を作製した。
 得られた光学部材について、以下に示す測定方法により、黄色度を評価した。評価結果を表3に示した。
(1)黄変度
 得られた光学部材の黄変度を目視で調べた。判断基準は次の通りである。
A:黄変が全く見られないもの
B:黄変がやや見られるもの
C:著しく黄変が見られるもの
Example 5
(Preparation of coating composition)
35.2 parts by mass of γ-glycidoxypropyltrimethoxysilane and 94.6 parts by mass of methanol were added to a glass container equipped with a magnetic stirrer, and 8.5 parts by mass of 0.01N hydrochloric acid was added while stirring. Dropped in 30 minutes. After the dropwise addition was completed, stirring was carried out for 2.0 hours to obtain a partially hydrolyzate solution of γ-glycidoxypropyltrimethoxysilane.
Next, 106.7 parts by mass of the methanol-dispersed sol of the modified metal oxide colloidal particles of Example 1 (containing 31.0% by mass in terms of total metal oxide concentration), and aluminum acetylacetonate as a curing agent. Add 0.3 parts by mass to 129.8 parts by mass of the partial hydrolyzate solution of γ-glycidoxypropyltrimethoxysilane described above, stir thoroughly, and then filter to obtain a coating composition for hard coating (coating liquid ) was prepared.
(Production of optical member)
3 mL of the coating liquid was added to a glass petri dish having a diameter of 30 mm, held at 80° C. for 30 minutes, and heat-treated at 120° C. for 2 hours to prepare an optical member.
The obtained optical member was evaluated for yellowness by the following measuring method. Table 3 shows the evaluation results.
(1) Degree of yellowing The degree of yellowing of the obtained optical members was visually examined. Judgment criteria are as follows.
A: No yellowing observed B: Some yellowing observed C: Significant yellowing observed
実施例6
 実施例5において、実施例1の変性金属酸化物コロイド粒子のメタノール分散ゾルを実施例2の変性金属酸化物コロイド粒子のメタノール分散ゾルに変更した以外は、実施例5と同様にコーティング組成物の調製及び光学部材の作製・評価を実施した。
Example 6
In Example 5, a coating composition was prepared in the same manner as in Example 5, except that the methanol-dispersed sol of the modified metal oxide colloidal particles of Example 1 was changed to the methanol-dispersed sol of the modified metal oxide colloidal particles of Example 2. Preparation and production/evaluation of optical members were carried out.
比較例6
 実施例5において、実施例1の変性金属酸化物コロイド粒子のメタノール分散ゾルを比較例2の金属酸化物コロイド粒子のメタノール分散ゾルに変更した以外は、実施例5と同様にコーティング組成物の調製及び光学部材の作製・評価を実施した。
Comparative example 6
In Example 5, a coating composition was prepared in the same manner as in Example 5, except that the methanol-dispersed sol of modified metal oxide colloidal particles of Example 1 was changed to the methanol-dispersed sol of metal oxide colloidal particles of Comparative Example 2. And the production and evaluation of optical members were carried out.
比較例7
 実施例5において、実施例1の変性金属酸化物コロイド粒子のメタノール分散ゾルを比較例3の金属酸化物コロイド粒子のメタノール分散ゾルに変更した以外は、実施例5と同様にコーティング組成物の調製及び光学部材の作製・評価を実施した。
Comparative example 7
In Example 5, a coating composition was prepared in the same manner as in Example 5, except that the methanol-dispersed sol of the modified metal oxide colloidal particles of Example 1 was changed to the methanol-dispersed sol of the metal oxide colloidal particles of Comparative Example 3. And the production and evaluation of optical members were carried out.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示した結果より、本発明の変性金属酸化物コロイド粒子(C)を用いたコーティング組成物から形成された硬化膜については、黄変が全く見られなかった(実施例5及び実施例6)。
 一方、表3に示した結果より、有機アミンを含有する金属酸化物コロイド粒子を用いたコーティング組成物から形成された硬化膜については、著しく黄変が見られた(比較例6及び比較例7)。
From the results shown in Table 3, no yellowing was observed in the cured film formed from the coating composition using the modified metal oxide colloidal particles (C) of the present invention (Example 5 and Example 6).
On the other hand, from the results shown in Table 3, the cured film formed from the coating composition using the metal oxide colloidal particles containing an organic amine was markedly yellowed (Comparative Examples 6 and 7). ).
 表1乃至表3に示した結果より、本発明の変性金属酸化物コロイド粒子は、未改質複合酸化物をアルミン酸塩で改質してなる被覆層(B)を採用したことにより、該変性金属酸化物コロイド粒子を含む水分散液及び有機溶媒分散液は、分散安定性に優れ、また、該変性金属酸化物コロイド粒子を含むコーティング組成物から形成された硬化膜は、黄変しなかったことが明らかである。
 一方、有機アミンを含有する金属酸化物コロイド粒子の水分散液及び有機溶媒分散液は、分散安定性に優れていたが、該金属酸化物コロイド粒子を含むコーティング組成物から形成された硬化膜は、著しく黄変した。
 
From the results shown in Tables 1 to 3, the modified metal oxide colloidal particles of the present invention employ the coating layer (B) obtained by modifying the unmodified composite oxide with an aluminate. Aqueous dispersions and organic solvent dispersions containing modified metal oxide colloidal particles are excellent in dispersion stability, and cured films formed from coating compositions containing the modified metal oxide colloidal particles do not yellow. It is clear that
On the other hand, aqueous dispersions and organic solvent dispersions of metal oxide colloidal particles containing organic amines were excellent in dispersion stability, but cured films formed from coating compositions containing the metal oxide colloidal particles were , markedly yellowed.

Claims (18)

  1.  金属酸化物コロイド粒子(A)を核として、その表面をSi及びAlと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との複合酸化物からなる被覆層(B)で被覆されてなる、平均粒子径5~300nmの変性金属酸化物コロイド粒子(C)。 Using the metal oxide colloidal particles (A) as nuclei, the surfaces thereof are covered with a coating layer (B) comprising a composite oxide of Si and Al and at least one atom selected from the group consisting of Sn, Sb and W. Modified metal oxide colloidal particles (C) having an average particle size of 5 to 300 nm.
  2.  前記被覆層(B)が、Siと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との未改質複合酸化物をアルミン酸塩で改質してなる層である、請求項1に記載の変性金属酸化物コロイド粒子(C)。 The coating layer (B) is a layer obtained by modifying an unmodified composite oxide of Si and at least one atom selected from the group consisting of Sn, Sb and W with an aluminate. Item 1. Modified metal oxide colloidal particles (C) according to item 1.
  3.  前記金属酸化物コロイド粒子(A)が、Ti、Mn、Fe、Cu、Zn、Y、Zr、Nb、Mo、In、Sn、Sb、Ta、W、Pb、Bi及びCeからなる群から選ばれる少なくとも1種の金属の酸化物のコロイド粒子である、請求項1又は請求項2に記載の変性金属酸化物コロイド粒子(C)。 The metal oxide colloidal particles (A) are selected from the group consisting of Ti, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, Sn, Sb, Ta, W, Pb, Bi and Ce. 3. The modified metal oxide colloidal particles (C) according to claim 1, which are colloidal particles of at least one metal oxide.
  4.  前記金属酸化物コロイド粒子(A)の平均一次粒子径が1~300nmである、請求項1乃至請求項3のいずれか一項に記載の変性金属酸化物コロイド粒子(C)。 The modified metal oxide colloidal particles (C) according to any one of claims 1 to 3, wherein the metal oxide colloidal particles (A) have an average primary particle size of 1 to 300 nm.
  5.  前記被覆層(B)中のAl含有量(Al換算)が、金属酸化物コロイド粒子(A)の全金属酸化物及び被覆層(B)の全複合酸化物の合計質量に基づいて0.05~0.5質量%である、請求項1乃至請求項4のいずれか一項に記載の変性金属酸化物コロイド粒子(C)。 The Al content (in terms of Al 2 O 3 ) in the coating layer (B) is based on the total mass of all metal oxides in the metal oxide colloidal particles (A) and all composite oxides in the coating layer (B). 5. The modified metal oxide colloidal particles (C) according to any one of claims 1 to 4, wherein the content is 0.05 to 0.5% by mass.
  6.  前記被覆層(B)中のAl含有量(Al換算)が、被覆層(B)の全複合酸化物の質量に基づいて0.1~10質量%である、請求項1乃至請求項5のいずれか一項に記載の変性金属酸化物コロイド粒子(C)。 1 to 10, wherein the Al content (in terms of Al 2 O 3 ) in the coating layer (B) is 0.1 to 10% by mass based on the mass of the total composite oxide in the coating layer (B). Item 6. Modified metal oxide colloidal particles (C) according to any one of items 5.
  7.  前記変性金属酸化物コロイド粒子(C)中の有機アミンに由来する全窒素の含有量が、金属酸化物コロイド粒子(A)の全金属酸化物及び被覆層(B)の全複合酸化物の合計質量に基づいて0.05質量%以下である、請求項1乃至請求項6のいずれか一項に記載の変性金属酸化物コロイド粒子(C)。 The content of total nitrogen derived from organic amines in the modified colloidal metal oxide particles (C) is the sum of all metal oxides in the colloidal metal oxide particles (A) and all composite oxides in the coating layer (B). 7. The modified metal oxide colloidal particles (C) according to any one of claims 1 to 6, which is 0.05% by mass or less based on the mass.
  8.  前記変性金属酸化物コロイド粒子(C)の表面の少なくとも一部が、一般式(1)又は一般式(2)で表される有機ケイ素化合物で表面修飾されている、請求項1乃至請求項7のいずれか一項に記載の変性金属酸化物コロイド粒子(C)。
     (R1’a’Si(R2’4-a’      式(1)
     [(R3’Si(R4’3-d   式(2)
    (式(1)、式(2)中、
     R1’及びR3’はアルキル基、フェニル基、ビニル基、アクリロキシ基、メタクリロキシ基、エポキシ基、スチリル基、イソシアネート基、メルカプト基、ウレイド基、酸無水物基又はそれら官能基を含む炭素原子数1乃至10のアルキレン基であり且つSi-C結合によりケイ素原子と結合しているアルキレン基を示し、R1’及びR3’がそれぞれ複数存在する場合は、各R1’及び各R3’はそれぞれ同一でも異なっていてもよく、
     R2’及びR4’はアルコキシ基、アシルオキシ基、又はハロゲン原子からなる加水分解性基を示し、R2’及びR4’がそれぞれ複数存在する場合は、各R2’及び各R4’はそれぞれ同一でも異なっていてもよく、
     Yはアルキレン基、アリーレン基、NH基又は酸素原子を示す。
     a’は1乃至3の整数を示し、dは0乃至3の整数を示し、eは0又は1の整数を示す。)
    Claims 1 to 7, wherein at least part of the surface of the modified metal oxide colloidal particles (C) is surface-modified with an organosilicon compound represented by general formula (1) or general formula (2). Modified metal oxide colloidal particles (C) according to any one of .
    (R 1′ ) a′ Si(R 2′ ) 4-a′ Formula (1)
    [(R 3′ ) d Si(R 4′ ) 3-d ] 2 Y e Formula (2)
    (In formulas (1) and (2),
    R 1' and R 3' are alkyl groups, phenyl groups, vinyl groups, acryloxy groups, methacryloxy groups, epoxy groups, styryl groups, isocyanate groups, mercapto groups, ureido groups, acid anhydride groups, or carbon atoms containing functional groups thereof. It is an alkylene group of numbers 1 to 10 and represents an alkylene group bonded to a silicon atom via a Si—C bond, and when there are a plurality of each of R 1' and R 3' , each R 1' and each R 3 ' may be the same or different,
    R 2' and R 4 ' each represents a hydrolyzable group consisting of an alkoxy group, an acyloxy group, or a halogen atom ; may be the same or different,
    Y represents an alkylene group, an arylene group, an NH group or an oxygen atom.
    a′ represents an integer of 1 to 3, d represents an integer of 0 to 3, and e represents an integer of 0 or 1. )
  9.  請求項1乃至請求項8のいずれか一項に記載の変性金属酸化物コロイド粒子(C)を水性媒体又は有機溶媒に分散した変性金属酸化物コロイド粒子(C)の分散液。 A dispersion of modified metal oxide colloidal particles (C) in which the modified metal oxide colloidal particles (C) according to any one of claims 1 to 8 are dispersed in an aqueous medium or an organic solvent.
  10.  (S)成分:有機ケイ素化合物、及び/又はその加水分解物であるケイ素含有物質、並びに
     (T)成分:請求項1乃至請求項8のいずれか一項に記載の変性金属酸化物コロイド粒子(C)
    を含むコーティング組成物であって、
     前記(S)成分の有機ケイ素化合物が、下記式(I)で表される化合物及び下記式(II)で表される化合物からなる群より選ばれる少なくとも1種の有機ケイ素化合物を含む、コーティング組成物。
     (R(RSi(OR4-(a+b)     (I)
    (式中、
     R及びRは、それぞれ独立して、アルキル基、アリール基、ビニル基、ハロゲン化アルキル基、ハロゲン化アリール基若しくはアルケニル基を表すか、又は
    エポキシ基、イソシアネート基、アクリロイル基、メタクリロイル基、メルカプト基、ウレイド基、若しくはシアノ基を有する1価の有機基であり且つSi-C結合によりケイ素原子と結合している有機基を表し、
     Rは、炭素原子数1乃至8のアルキル基、アリール基、アラルキル基、アルコキシアルキル基、又はアシル基を表し、
     a及びbは、それぞれ独立して、0、1、又は2の整数を表し、且つa+bは0、1、又は2の整数である。)
     〔(RSi(OX)3-cY        (II)
    (式中、
     Rは炭素原子数1乃至5のアルキル基を表し、
     Xは炭素原子数1乃至4のアルキル基又はアシル基を表し、
     Yはメチレン基又は炭素原子数2乃至20のアルキレン基を表し、
     cは0又は1の整数を表す。)
    Component (S): an organosilicon compound and/or a silicon-containing substance that is a hydrolyzate thereof, and Component (T): the modified metal oxide colloid particles according to any one of claims 1 to 8 ( C)
    A coating composition comprising
    A coating composition in which the organosilicon compound as component (S) contains at least one organosilicon compound selected from the group consisting of compounds represented by the following formula (I) and compounds represented by the following formula (II): thing.
    (R 1 ) a (R 3 ) b Si(OR 2 ) 4-(a+b) (I)
    (In the formula,
    R 1 and R 3 each independently represent an alkyl group, an aryl group, a vinyl group, a halogenated alkyl group, a halogenated aryl group or an alkenyl group, or an epoxy group, an isocyanate group, an acryloyl group, a methacryloyl group, represents an organic group that is a monovalent organic group having a mercapto group, a ureido group, or a cyano group and is bonded to a silicon atom via a Si—C bond,
    R 2 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, an aralkyl group, an alkoxyalkyl group, or an acyl group;
    a and b each independently represent an integer of 0, 1, or 2, and a+b is an integer of 0, 1, or 2; )
    [(R 4 ) c Si(OX) 3-c ] 2 Y (II)
    (In the formula,
    R 4 represents an alkyl group having 1 to 5 carbon atoms,
    X represents an alkyl group or acyl group having 1 to 4 carbon atoms,
    Y represents a methylene group or an alkylene group having 2 to 20 carbon atoms,
    c represents an integer of 0 or 1; )
  11.  (K)成分:熱硬化性樹脂、熱可塑性樹脂及び紫外線硬化樹脂からなる群から選ばれる少なくとも1種の樹脂、並びに
     (T)成分:請求項1乃至請求項8のいずれか一項に記載の変性金属酸化物コロイド粒子(C)
    を含むコーティング組成物。
    (K) component: at least one resin selected from the group consisting of thermosetting resins, thermoplastic resins and ultraviolet curable resins, and (T) component: any one of claims 1 to 8 Modified metal oxide colloidal particles (C)
    A coating composition comprising:
  12.  請求項10又は請求項11に記載のコーティング組成物を用いて作製された硬化膜。 A cured film produced using the coating composition according to claim 10 or claim 11.
  13.  光学基材表面に請求項12に記載の硬化膜を有する光学部材。 An optical member having the cured film according to claim 12 on the surface of an optical substrate.
  14.  請求項13に記載の硬化膜の表面に、更に反射防止膜を有する光学部材。 An optical member further comprising an antireflection film on the surface of the cured film according to claim 13.
  15.  下記(a)工程乃至(d)工程を含む変性金属酸化物コロイド粒子(C)の製造方法。
    (a)金属酸化物コロイド粒子(A)を含む分散液と、Siと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との未改質複合酸化物コロイド粒子の分散液とを混合する工程
    (b)(a)工程で得られた混合溶液を30~320℃の温度で、0.5~24時間加熱する工程
    (c)(b)工程で得られた混合溶液をH型陽イオン交換樹脂と接触させる工程
    (d)(c)工程で得られた混合溶液とアルミン酸塩水溶液とを混合し、30~320℃の温度で、0.5~24時間加熱する工程
    A method for producing modified metal oxide colloidal particles (C), comprising the following steps (a) to (d).
    (a) a dispersion containing metal oxide colloidal particles (A) and a dispersion of unmodified composite oxide colloidal particles containing Si and at least one atom selected from the group consisting of Sn, Sb and W; Step (b) of mixing the mixed solution obtained in step (a) at a temperature of 30 to 320 ° C. for 0.5 to 24 hours (c) Heating the mixed solution obtained in step (b) with H A step of contacting with a type cation exchange resin (d) A step of mixing the mixed solution obtained in the step (c) and an aluminate aqueous solution, and heating at a temperature of 30 to 320 ° C. for 0.5 to 24 hours.
  16.  前記(a)工程は、未改質複合酸化物コロイド粒子の全複合酸化物の質量/金属酸化物コロイド粒子(A)の全金属酸化物の質量が0.05~0.50となるように、金属酸化物コロイド粒子(A)を含む分散液と、Siと、Sn、Sb及びWからなる群から選ばれる少なくとも1種の原子との未改質複合酸化物コロイド粒子の分散液とを混合する工程である、請求項15に記載の変性金属酸化物コロイド粒子(C)の製造方法。 In the step (a), the weight of the total composite oxide of the unmodified composite oxide colloidal particles/the weight of the total metal oxide of the metal oxide colloidal particles (A) is adjusted to 0.05 to 0.50. , a dispersion containing metal oxide colloidal particles (A) and a dispersion of unmodified composite oxide colloidal particles containing Si and at least one atom selected from the group consisting of Sn, Sb and W are mixed. 16. The method for producing modified metal oxide colloidal particles (C) according to claim 15, which is a step of
  17.  前記(d)工程は、全複合酸化物の質量/アルミン酸塩の質量(Al換算)が50~800となるように、(c)工程で得られた混合溶液とアルミン酸塩水溶液とを混合する工程である、請求項15又は請求項16に記載の変性金属酸化物コロイド粒子(C)の製造方法。 In the step (d), the mixed solution obtained in the step (c) and the aqueous aluminate solution are mixed so that the mass of the total composite oxide/the mass of the aluminate (in terms of Al 2 O 3 ) is 50 to 800. 17. The method for producing modified metal oxide colloidal particles (C) according to claim 15 or 16, which is a step of mixing with.
  18.  前記(b)工程の加熱処理を水熱条件下で行なう、請求項15乃至請求項17のいずれか一項に記載の変性金属酸化物コロイド粒子(C)の製造方法。
     
    18. The method for producing modified metal oxide colloidal particles (C) according to any one of claims 15 to 17, wherein the heat treatment in step (b) is performed under hydrothermal conditions.
PCT/JP2022/044245 2021-12-03 2022-11-30 Modified metal oxide colloidal particles, and method for producing same WO2023100947A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-196951 2021-12-03
JP2021196951 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023100947A1 true WO2023100947A1 (en) 2023-06-08

Family

ID=86612243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044245 WO2023100947A1 (en) 2021-12-03 2022-11-30 Modified metal oxide colloidal particles, and method for producing same

Country Status (2)

Country Link
TW (1) TW202344480A (en)
WO (1) WO2023100947A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170323A (en) * 1990-11-02 1992-06-18 Ishihara Sangyo Kaisha Ltd Superfine particle yellow pigment and its production
JP2008508405A (en) * 2004-07-31 2008-03-21 クローノス インターナショナル インコーポレイテッド Post-treatment method of titanium dioxide pigment
WO2012165620A1 (en) * 2011-06-03 2012-12-06 日産化学工業株式会社 Metal oxide particles containing titanium oxide coated with silicon dioxide-tin(iv) oxide complex oxide
WO2018181241A1 (en) * 2017-03-31 2018-10-04 日揮触媒化成株式会社 Method for producing dispersion of iron-containing rutile-type titanium oxide microparticles, iron-containing rutile-type titanium oxide microparticles and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170323A (en) * 1990-11-02 1992-06-18 Ishihara Sangyo Kaisha Ltd Superfine particle yellow pigment and its production
JP2008508405A (en) * 2004-07-31 2008-03-21 クローノス インターナショナル インコーポレイテッド Post-treatment method of titanium dioxide pigment
WO2012165620A1 (en) * 2011-06-03 2012-12-06 日産化学工業株式会社 Metal oxide particles containing titanium oxide coated with silicon dioxide-tin(iv) oxide complex oxide
WO2018181241A1 (en) * 2017-03-31 2018-10-04 日揮触媒化成株式会社 Method for producing dispersion of iron-containing rutile-type titanium oxide microparticles, iron-containing rutile-type titanium oxide microparticles and use thereof

Also Published As

Publication number Publication date
TW202344480A (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP5182533B2 (en) Metal oxide composite sol, coating composition and optical member
JP5168469B2 (en) Zirconium oxide-tin oxide composite sol, coating composition, and optical member
JP5182532B2 (en) Modified metal oxide composite sol, coating composition and optical member
JP7284462B2 (en) Coating composition containing silane compound containing nitrogen-containing ring
JP4654492B2 (en) Coating composition and optical member
JP6614412B2 (en) Coating composition and optical member
JP4288432B2 (en) Coating composition and optical member
EP1568659B1 (en) Modified stannic oxide sol, stannic oxide-zirconium oxide composite sol, coating composition and optical member
JP2012031353A (en) Coating composition and optical member
JPH09125003A (en) Coating composition and optical member
JP4129600B2 (en) Coating composition and optical member
JP7212320B2 (en) Inorganic oxide particles coated with silane compounds containing nitrogen-containing rings, and coating compositions
WO2023100947A1 (en) Modified metal oxide colloidal particles, and method for producing same
JP4591655B2 (en) Coating composition and optical member
JP4088720B2 (en) Coating composition and optical member
JPH09118870A (en) Coating composition and optical member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901379

Country of ref document: EP

Kind code of ref document: A1