WO2023100924A1 - Method for producing layered product containing cellulose nanofibers - Google Patents

Method for producing layered product containing cellulose nanofibers Download PDF

Info

Publication number
WO2023100924A1
WO2023100924A1 PCT/JP2022/044126 JP2022044126W WO2023100924A1 WO 2023100924 A1 WO2023100924 A1 WO 2023100924A1 JP 2022044126 W JP2022044126 W JP 2022044126W WO 2023100924 A1 WO2023100924 A1 WO 2023100924A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
cellulose nanofibers
coating method
cellulose
cnf
Prior art date
Application number
PCT/JP2022/044126
Other languages
French (fr)
Japanese (ja)
Inventor
昌浩 森田
丈史 中谷
武史 堀田
駿生 濱谷
丈博 吉松
清 畠山
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021197013A external-priority patent/JP2023082962A/en
Priority claimed from JP2021197015A external-priority patent/JP2023082963A/en
Priority claimed from JP2022182544A external-priority patent/JP2023083222A/en
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Publication of WO2023100924A1 publication Critical patent/WO2023100924A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/20Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • C08B5/14Cellulose sulfate

Definitions

  • the present invention relates to a method for manufacturing a laminate containing cellulose nanofibers.
  • Cellulose nanofibers obtained by introducing anionic or cationic groups into cellulose and defibrating using the charge repulsion of these introduced groups have a very fine fiber diameter and are generally It has been extensively studied because of its characteristics such as high homogeneity, various functionalities based on the introduced groups, and high strength.
  • an anion-modified cellulose nanofiber obtained by introducing an anionic group into cellulose and defibrating it some of the hydroxyl groups of cellulose are oxidized to carboxyl groups using the surface oxidation reaction of cellulose by an N-oxyl compound.
  • oxidized cellulose nanofibers obtained by fibrillating and carboxymethylated cellulose nanofibers having a degree of carboxymethyl substitution of 0.01 to 0.30 and an average fiber diameter of 3 to 500 nm have been reported (patent References 1 and 2).
  • cellulose nanofibers exhibit unique properties in various applications due to the effects of nanostructures.
  • cellulose nanofibers are commercially available in the form of aqueous dispersions or powdery solids, and for industrial use, it is necessary to perform secondary processing. In particular, it is expected to form a coating film of cellulose nanofibers on a substrate and use it as a functional layer.
  • an object of the present invention is to provide a method of manufacturing a laminate having an optimal functional layer for application to such various industrial uses.
  • [1] including a lamination step of forming a functional layer containing anion-modified cellulose nanofibers on a supporting substrate by a coating method or a transfer coating method; A method for manufacturing a laminate.
  • [2] The production method according to [1], wherein a coating liquid containing anion-modified cellulose nanofibers is used in the lamination step, and the coating liquid has a viscosity of 50 to 1000 mPa ⁇ s at 60 rpm.
  • [3] The manufacturing method according to [1] or [2], wherein the film thickness of the functional layer is 30 ⁇ m or less.
  • the supporting substrate has a receptive layer, and in step 2, the receptive layer and the coating surface are laminated, and in step 3, the functional layer is formed on the supporting substrate via the receptive layer; A method for manufacturing the described laminate.
  • the transfer substrate has a release layer on the surface on which the coating film is provided, and in step 1, the coating film is formed on the transfer substrate via the release layer, [9] or [10] ].
  • [1-1] A step of applying a coating solution containing anion-modified cellulose nanofibers onto a supporting substrate by a pre-weigh coating method to form a functional layer,
  • the viscosity of the coating liquid at 60 rpm is 50 to 1000 mPa s,
  • the film thickness of the functional layer is 30 ⁇ m or less,
  • a method for manufacturing a laminate [1-2] The production method according to [1-1], wherein the anion-modified cellulose nanofibers are oxidized cellulose nanofibers having carboxyl groups and/or carboxylate groups.
  • [1-3] The production method according to [1-1], wherein the anion-modified cellulose nanofibers are carboxyalkylated cellulose nanofibers.
  • [1-4] The production method according to [1-1], wherein the anion-modified cellulose nanofibers are phosphorylated cellulose nanofibers.
  • [1-5] The production method according to [1-1], wherein the anion-modified cellulose nanofibers are sulfate-esterified cellulose nanofibers.
  • [1-6] The production method according to any one of [1-1] to [1-5], wherein the pre-metering coating method is a die coating method.
  • [1-7] The production method according to any one of [1-1] to [1-5], wherein the pre-metering coating method is a curtain coating method.
  • [2-1] A step of applying a coating solution containing anion-modified cellulose nanofibers onto a supporting substrate by a post-metering coating method to form a functional layer, The film thickness of the functional layer is 30 ⁇ m or less, A method for manufacturing a laminate.
  • [2-2] The production method according to [2-1], wherein the anionic cellulose nanofibers are oxidized cellulose nanofibers having carboxyl groups and/or carboxylate groups.
  • [2-3] The production method according to [2-1], wherein the anionic cellulose nanofibers are carboxyalkylated cellulose nanofibers.
  • [2-4] The production method according to [2-1], wherein the anionic cellulose nanofibers are phosphorylated cellulose nanofibers.
  • [2-5] The production method according to [2-1], wherein the anionic cellulose nanofibers are sulfate-esterified cellulose nanofibers.
  • [2-6] The production method according to any one of [2-1] to [2-5], wherein the post-metering coating method is a bar coating method.
  • [2-7] The production method according to any one of [2-1] to [2-5], wherein the post-metering coating method is a knife coating method.
  • [2-8] The production method according to any one of [2-1] to [2-5], wherein the post-metering coating method is a blade coating method.
  • [2-9] A laminate obtained by the manufacturing method according to any one of [2-1] to [2-8].
  • the transfer substrate has a release layer on the surface on which the coating film is provided, and the coating film is formed on the transfer substrate via the release layer, [3-1] or [3 -2].
  • Laminate> The laminate comprises a functional layer containing anion-modified cellulose nanofibers on a supporting substrate.
  • the functional layer of the laminate contains anionically modified cellulose nanofibers.
  • nanofibers refer to nanofibers having an average fiber diameter of less than 1 ⁇ m.
  • the average fiber diameter is preferably about 3 nm to 500 nm, more preferably about 3 nm to 150 nm, still more preferably about 3 nm to 20 nm.
  • the aspect ratio is usually 30 or more or 35 or more, preferably 40 or more, more preferably 50 or more, and still more preferably 100 or more. Although the upper limit of the aspect ratio is not limited, it is about 500 or less.
  • anion-modified cellulose nanofibers (hereinafter also referred to as anion-modified CNF) are used in the present invention.
  • anion-modified CNF is NF in which an anion group is introduced into the molecular chain of cellulose.
  • Anion-modified CNF can be obtained by defibrating anion-modified cellulose obtained by introducing an anion group into the pyranose ring of cellulose so as to have an average fiber diameter of less than 1 ⁇ m.
  • Anion-modified CNF maintains at least part of its fibrous shape even when dispersed in water, and does not completely dissolve in water.
  • a fibrous substance can be observed by observing the aqueous dispersion of anion-modified CNF with an electron microscope.
  • the functional layer containing anion-modified CNF can exhibit good physical strength because the fibrous shape of the anion-modified CNF is maintained within the layer.
  • cellulose used as a raw material for anion-modified cellulose is not particularly limited.
  • bleached or unbleached mechanical pulp e.g., thermomechanical pulp (TMP), groundwood pulp
  • chemical pulp e.g., sulfite pulp
  • softwood hardwood, cotton, straw, bamboo, hemp, jute, kenaf, etc.
  • kraft pulp e.g., sulfite pulp
  • dissolving pulp e.g., regenerated cellulose, fine cellulose, microcrystalline cellulose excluding non-crystalline regions, and the like, and any of these can be used as the cellulose raw material.
  • Anion-modified cellulose can be produced by introducing an anion group into such a cellulose raw material.
  • the method for introducing the anionic group is not particularly limited, but examples include a method of directly oxidizing the hydroxyl group of the pyranose ring of cellulose to a carboxyl group, and a method of introducing an anionic group by an esterification reaction at the hydroxyl group portion of the pyranose ring.
  • Anion-modified CNF can be obtained by defibrating the anion-modified cellulose obtained by introducing an anion group so that the average fiber diameter is less than 1 ⁇ m.
  • the defibration method is not particularly limited, and examples thereof include a method using a known defibration device such as a high-speed rotation type, colloid mill type, high pressure type, roll mill type, and ultrasonic type. Among them, a method using a wet high-pressure or ultrahigh-pressure homogenizer is preferable.
  • anion-modified CNF- (oxidized CNF)
  • An example of anion-modified CNF is oxidized CNF having a carboxyl group and/or a carboxylate group.
  • a carboxyl group refers to -COOH (acid form) and -COOM (metal salt form) (wherein M is a metal ion), and a carboxylate group refers to -COO - .
  • Oxidized CNF having a carboxyl group and/or a carboxylate group is obtained by obtaining oxidized cellulose using a known method of oxidizing the hydroxyl group of the pyranose ring of cellulose to a carboxyl group. and then fibrillating.
  • oxidized cellulose for example, oxidation is performed in the presence of an N-oxyl compound such as 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and bromide and/or iodide.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxy radical
  • Examples include a method of oxidizing cellulose in water using an agent, and a method of oxidizing cellulose by bringing it into contact with a cellulose raw material using an ozone-containing gas as an oxidizing agent.
  • the total amount of carboxyl groups and carboxylate groups in the oxidized CNF is preferably 0.4 to 3.0 mmol/g, more preferably 0.6 to 2.0 mmol/g, relative to the absolute dry mass of the oxidized CNF. 0 to 2.0 mmol/g, more preferably 1.1 to 2.0 mmol/g.
  • the amount of carboxyl groups and carboxylate groups in oxidized CNF can be adjusted by controlling reaction conditions such as the amount of oxidizing agent added and reaction time.
  • Carboxyalkylated CNF An example of anion-modified CNF is carboxyalkylated CNF having a carboxyalkyl group.
  • a carboxyalkyl group refers to -RCOOH (acid form) and -RCOOM (metal salt form).
  • R is an alkylene group such as a methylene group and an ethylene group
  • M is a metal ion (e.g., alkali metals such as Li, Na, and K; alkaline earth metals such as Mg and Ca; Fe; preferably Li, Na, or Ca, more preferably Na) (the same shall apply hereinafter).
  • carboxyalkylated CNF having a carboxyalkyl group carboxymethylated CNF having a carboxymethyl group in which R is a methylene group is most preferred (hereinafter "carboxymethyl” is referred to as "CM").
  • Carboxyalkylated CNF is obtained by obtaining carboxyalkylated cellulose using a known method of treating a cellulose raw material with a mercerizing agent and then treating it with a carboxyalkylating agent to introduce a carboxyalkyl group, and then defibrating it. Obtainable.
  • CM-cellulose which is a raw material for CM-CNF, maintains at least a part of its fibrous shape even when dispersed in water, and is distinguished from carboxymethyl cellulose, which is an example of a water-soluble polymer described later. be done.
  • carboxymethyl cellulose which is an example of a water-soluble polymer described later.
  • the degree of carboxyalkyl substitution per anhydroglucose unit of the carboxyalkylated CNF is preferably less than 0.40. Moreover, the lower limit of the degree of carboxyalkyl substitution is preferably 0.01 or more. Considering the workability, the degree of substitution is preferably 0.02 or more and 0.35 or less, more preferably 0.10 or more and 0.35 or less, and 0.15 or more and 0.35 or less. It is more preferably 0.15 or more and 0.30 or less.
  • the anhydroglucose unit means an individual anhydroglucose (glucose residue) constituting cellulose, and the degree of carboxyalkyl substitution refers to the hydroxyl group (—OH) in the glucose residue constituting cellulose.
  • the ratio of those substituted by groups (-ORCOOH or -ORCOOM) (the number of carboxyalkyl groups per glucose residue) is shown.
  • the degree of carboxyalkyl substitution can be adjusted by controlling reaction conditions such as the amount of mercerizing agent and reaction time.
  • the degree of CM substitution per glucose unit can be measured by the following method: About 2.0 g of CM-modified CNF (absolute dry) is precisely weighed and placed in a 300 mL conical flask with a common stopper. Add 100 mL of a liquid obtained by adding 100 mL of special grade concentrated nitric acid to 900 mL of methanol and shake for 3 hours to convert the salt-type CM-CNF to the hydrogen-type CM-CNF.
  • CM-CNF hydrogen-type CM-CNF (absolute dry) is accurately weighed and placed in a 300 mL conical flask equipped with a common stopper. Hydrogen-type CM-CNF is wetted with 15 mL of 80 mass % methanol, 100 mL of 0.1N NaOH is added, and shaken at room temperature for 3 hours. Excess NaOH is back-titrated with 0.1 N H 2 SO 4 using phenolphthalein as an indicator.
  • the degree of substitution of carboxyalkyl groups other than CM groups can also be measured in the same manner as above.
  • the crystallinity of cellulose type I in CM-CNF is preferably 50% or more, more preferably 60% or more.
  • the crystallinity of cellulose type I in CM-CNF can be controlled by the concentration of the mercerizing agent during the production of CM-cellulose as a raw material, the temperature during treatment, and the degree of carboxymethylation. Since a high concentration of alkali is used in mercerization and carboxymethylation, type I crystals of cellulose are easily converted to type II. Desired crystallinity can be maintained by adjusting the degree.
  • the upper limit of the crystallinity of cellulose type I is not particularly limited. Realistically, it is considered that the upper limit is about 90%.
  • the crystallinity of cellulose type I in CM-modified cellulose and the crystallinity of cellulose type I in CM-CNF obtained by fibrillating CM-modified cellulose are generally the same.
  • Phosphate esterified CNF An example of anion-modified CNF is phosphorylated CNF.
  • Phosphate-esterified CNF can be obtained by mixing the above-mentioned cellulose raw material with a phosphoric acid compound powder or aqueous solution, or by adding an aqueous solution of a phosphoric acid compound to a slurry of the cellulose raw material. It can be obtained by introducing an acid-based group into cellulose to obtain phosphate-esterified cellulose and defibrating it.
  • Phosphoric acid compounds include phosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid, phosphonic acid, polyphosphonic acid, and esters or salts thereof.
  • phosphoric acid sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium phosphite, potassium phosphite, sodium hypophosphite, Potassium phosphite, sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, ammonium metaphosphate and the like.
  • a phosphoric acid group derived from a phosphoric acid compound can be introduced into cellulose by using one or more of these in combination.
  • the phosphoric acid group derived from a phosphoric acid compound includes a phosphoric acid group, a phosphorous acid group, a hypophosphorous acid group, a pyrophosphate group, a metaphosphoric acid group, a polyphosphoric acid group, a phosphonic acid group, and polyphosphonic acid groups.
  • Phosphate-esterified cellulose and phosphate-esterified CNF include those in which one or more of these phosphoric acid groups are introduced into the molecular chain of cellulose.
  • the pH is preferably pH 3-7.
  • a nitrogen-containing compound such as urea may also be added.
  • the amount of the compound having a phosphate group added to the cellulose raw material is preferably 0.1 to 500 parts by mass, more preferably 1 to 400 parts by mass, in terms of phosphorus element, with respect to 100 parts by mass of the solid content of the cellulose raw material. 2 to 200 parts by mass is more preferable. As a result, a yield corresponding to the amount of the compound having a phosphate group can be efficiently obtained.
  • the reaction temperature is preferably 0 to 95°C, more preferably 30 to 90°C.
  • the reaction time is not particularly limited, it is usually about 1 to 600 minutes, preferably 30 to 480 minutes. If the conditions for the esterification reaction are within any of these ranges, excessive esterification of cellulose and its susceptibility to dissolution can be suppressed, and the yield of phosphate esterified cellulose can be improved.
  • a basic compound e.g., urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine, etc.
  • the heating temperature is preferably 100 to 170 ° C., and while water is contained during the heat treatment, heat at 130 ° C. or lower (preferably 110 ° C.
  • washing treatment such as washing with cold water and/or neutralization treatment. Thereby, defibration can be performed efficiently. Washing may be performed by adding water and dehydrating (for example, filtering), and may be repeated twice or more. Washing is preferably carried out until the electric conductivity of the filtrate decreases. For example, it can be carried out until the electric conductivity is preferably 200 or less, more preferably 150 or less, and still more preferably 120 or less. Moreover, after washing, neutralization treatment may be performed as necessary. Neutralization treatment can be carried out, for example, by addition of alkali (eg, sodium hydroxide). Washing may be performed again after neutralization.
  • alkali eg, sodium hydroxide
  • the lower limit of the degree of substitution of a phosphate group per glucose unit in the phosphorylated CNF is preferably 0.001 or more.
  • the upper limit is preferably 3.0 or less, more preferably less than 0.40.
  • the degree of phosphate group substitution per glucose unit can be measured by the following method: A slurry of phosphorylated CNF having a solids content of 0.2% by weight is prepared. To the slurry, 1/10 by volume of a strongly acidic ion exchange resin (Amberjet 1024; manufactured by Organo, conditioned) was added, shaken for 1 hour, and then poured onto a mesh with an opening of 90 ⁇ m to pour the resin.
  • a second example of a method for producing esterified cellulose fibers includes phosphite esterified cellulose fibers.
  • Phosphite cellulose fibers usually have a structure in which at least one of the carbon atoms constituting the cellulose molecular chain (for example, the carbon atom having a primary hydroxyl group at the C6 position constituting the glucopyranose unit) is phosphorylated. .
  • the degree of phosphite group substitution per glucose unit in the phosphite-esterified cellulose fiber is preferably 0.001 to 0.60. This facilitates electrical repulsion between cellulose particles, facilitating nano-fibrillation.
  • the degree of phosphite group substitution can be measured by the same method as the method for measuring the degree of phosphate group substitution.
  • the degree of phosphite group substitution can be adjusted by controlling reaction conditions such as the amount of phosphorous acid or a salt thereof added, the amount of an alkali metal ion-containing substance used as necessary, and the amount of urea or a derivative thereof added.
  • an unmodified cellulose fiber is reacted with phosphorous acid or a metal salt thereof (preferably sodium hydrogen phosphite) to introduce an ester group of phosphorous acid. method.
  • Examples of phosphorous acid and metal salts thereof include phosphorous acid, sodium hydrogen phosphite, ammonium hydrogen phosphite, potassium hydrogen phosphite, sodium dihydrogen phosphite, sodium phosphite, and lithium phosphite. , potassium phosphite, magnesium phosphite, calcium phosphite, triethyl phosphite, triphenyl phosphite, phosphorous acid compounds such as pyrophosphite, and combinations of two or more selected from these.
  • Sodium hydride is preferred. Thereby, alkali metal ions can also be introduced into the cellulose fibers.
  • the amount of phosphorous acid or its metal salt to be added is preferably 1 to 10,000 g, more preferably 100 to 5,000 g, still more preferably 300 to 1,500 g, per 1 kg of unmodified cellulose fibers.
  • alkali metal ion-containing substances e.g., hydroxides, metal sulfates, metal nitrates, metal chlorides, metal phosphates, metal carbonates
  • urea or a derivative thereof may be further added to the reaction system. This can also introduce carbamate groups into the cellulose fibers.
  • Urea and urea derivatives include, for example, urea, thiourea, biuret, phenylurea, benzylurea, dimethylurea, diethylurea, tetramethylurea, and combinations of two or more selected from these, with urea being preferred.
  • the amount of urea and urea derivatives to be added is preferably 0.01 to 100 mol, more preferably 0.2 to 20 mol, still more preferably 0.5 to 10 mol, per 1 mol of phosphorous acid or its metal salt.
  • the reaction temperature is preferably 100-200°C, more preferably 100-180°C, even more preferably 100-170°C. It is more preferable to heat at 130° C. or less (preferably 110° C. or less) while water is contained in the heat treatment, and after removing the water, heat-treat at 100 to 170° C.
  • the reaction time is usually about 10 to 180 minutes, more preferably 30 to 120 minutes.
  • the phosphite-esterified cellulose fibers are preferably washed prior to defibration.
  • the degree of substitution of the phosphite group per glucose unit is preferably 0.01 or more and less than 0.23.
  • Sulfated CNF can be obtained by reacting the above-described cellulose raw material with a sulfuric acid-based compound to introduce a sulfuric acid-based group derived from the sulfuric acid-based compound into cellulose to obtain sulfated cellulose, which is defibrated. can be done.
  • sulfuric acid compounds include sulfuric acid, sulfamic acid, chlorosulfonic acid, sulfur trioxide, and esters or salts thereof. Among these, sulfamic acid is preferably used because cellulose has low solubility and low acidity.
  • the amount of sulfamic acid used can be appropriately adjusted in consideration of the amount of anionic groups to be introduced into the cellulose chain. For example, it can be used in an amount of preferably 0.01 to 50 mol, more preferably 0.1 to 3.0 mol, per 1 mol of glucose units in the cellulose molecule.
  • the amount of sulfate-based groups per glucose unit in the sulfated CNF is preferably 0.1 to 3.0 mmol/g.
  • the amount of sulfate groups per glucose unit can be measured by the following method: The aqueous dispersion of sulfated CNF is subjected to solvent substitution in the order of ethanol and t-butanol, and then freeze-dried. 15 ml of ethanol and 5 ml of water are added to 200 mg of the obtained sample, and the mixture is stirred for 30 minutes. After that, 10 ml of 0.5N sodium hydroxide aqueous solution is added, and the mixture is stirred at 70° C.
  • the functional layer is a layer containing anion-modified CNF.
  • the functional layer preferably contains anion-modified CNF as a main component, and the content of anion-modified CNF is usually more than 50%, 60% or more, 70% or more, 80% or more, or 90% or more, It may consist only of anion-modified CNF (content 100%).
  • a functional layer can exhibit functions, such as a dielectric property and an insulating property, by including anion-modified CNF.
  • the film thickness (after drying) of the functional layer is usually 30 ⁇ m or less, preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the lower limit is not particularly limited, it is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, even more preferably 1 ⁇ m or more, and 1.3 ⁇ m or more so that the functional layer can easily exert an appropriate effect in various applications. , 1.5 ⁇ m or more or 2 ⁇ m or more are particularly preferred. It is preferable that the film thickness is substantially uniform. Thereby, a homogeneous functional layer can be obtained in which the distribution of anionic CNF is not biased.
  • the surface layer of the functional layer preferably has uniform smoothness. As a result, localization of the effect of the functional layer can be suppressed.
  • having uniform smoothness means that the functional layer does not have irregularities at the visual level.
  • the functional layer only needs to contain anion-modified CNF, and may contain other optional components.
  • Optional components include, for example, optional components of the subsequent coating liquid.
  • any base material can be used without particular limitation as long as it is composed of a material capable of forming a substantially uniform functional layer on its surface.
  • supporting substrates include resin substrates, paper substrates, and metal substrates. Among them, metal species having desired properties can be selected according to various uses. is preferred.
  • metals constituting the metal substrate include metals such as aluminum, copper, iron, zinc, titanium, nickel, lead, silver, platinum, tungsten, bismuth, stainless steel, brass, chromium, and alloys thereof.
  • Aluminum or copper is preferred because of its high versatility.
  • the shape and size of the supporting substrate are not particularly limited. Examples thereof include sheet-like and film-like substrates.
  • the laminate may have other layers.
  • Other layers include, for example, a primer layer, a receiving layer, and a release layer (peeling layer).
  • the primer layer and receiving layer are sandwiched between the supporting substrate and the functional layer, and the release layer is provided on the surface of the functional layer (generally peeled off at the end but may remain).
  • the primer layer By providing the primer layer, the coatability of the functional layer (coating liquid) in the pre-metering coating method and the post-metering coating method can be improved.
  • the primer that constitutes the primer layer include polyaniline.
  • the receiving layer can also improve the coatability of the functional layer in each coating method. Also, by providing a release layer, the workability of peeling in the transfer coating method can be enhanced. The receiving layer and release layer will be described later in the section of the transfer coating method.
  • Laminate manufacturing method The laminate described above can be produced by a method including a step of forming a functional layer containing anion-modified CNF on a support substrate.
  • a coating liquid containing anion-modified CNF can be used to form the functional layer, for example, by a coating method (coating method, for example, pre-metering coating method, post-metering coating method) or transfer coating method.
  • the pre-metering coating method means a coating method in which the wet film thickness is determined by specifying the flow rate per unit coating width and the substrate speed in the wet coating technology in which continuous wet coating is performed.
  • Pre-metering coating methods include, for example, die coating, curtain coating, gravure coating, forward roll coating, reverse coating, doctor coating, kiss coating, and applying tension to the base material on the die.
  • a tension web coating method that adjusts the coating amount can be used.
  • the die coating method and the curtain coating method are preferable because the flow rate can be stably controlled in continuous coating.
  • the die coating method can be by slot die coating.
  • Slot die coating is a method of coating a substrate while extruding a coating liquid from a die head.
  • An example of the coating method by slot die coating is as follows. A coating liquid is supplied into the die cavity that constitutes the slot die coater. While adjusting the coating speed so that the liquid (coating liquid) can be stably coated at a uniform flow rate in the width direction from the tip of the die (discharge hole) through the slit channel by pump, pressurization, etc. ( For example, coating speed: 0.1 to 1.0 m/min, coating width 0.1 to 1.0 m) Extrusion.
  • the size (slit width) of the die coater and the position (clearance) with respect to the substrate may be appropriately adjusted (for example, slit width 50 to 500 ⁇ m, clearance 100 to 1000 ⁇ m).
  • the slot die is of fixed type, the base material is run on a backup roll and continuously supplied to the vicinity of the tip of the die. It is possible to apply so as to obtain a predetermined wet film thickness while forming a so-called liquid pool.
  • the slot die is of a movable type, the slot die moves along the substrate (fixed) surface while discharging the coating agent, forming a uniform coating film on the surface of the substrate.
  • the pressure on the upstream side of the die tip may be reduced. Thereby, the pressure in the coating gap between the substrate and the die tip can be adjusted, and the bead on the substrate can be stabilized.
  • the degree of pressure reduction is preferably in the range of 0.05 kPa to 1.00 kPa from the atmospheric pressure, but may be appropriately adjusted depending on the speed of the base material and the properties of the coating liquid.
  • the pressure can be adjusted by installing a vacuum chamber.
  • the curtain coating method is a method in which a coating solution is dropped in a band (curtain) and the substrate is passed through the curtain to apply the coating solution.
  • Curtain coating methods are classified according to the method of forming a curtain, and examples thereof include overflow type, orifice type, die feed type, and slide hopper type.
  • the overflow type is a method in which the coating liquid overflows from the edge of the container in which the coating liquid is stored.
  • the overflow type is a system in which the coating liquid flows out from an orifice in the lower part of the coating liquid reservoir.
  • the large feed type pushes the coating liquid from the bottom of the die to form a curtain.
  • the slide hopper type forms a curtain by letting the coating liquid flow down from the slide surface.
  • Orifice type, die feed type and slide hopper type are preferable as the curtain coating method.
  • a constant flow pressure can be continuously applied, and the change in liquid property due to thixotropy caused by the action of the anion-modified CNF in the coating liquid containing the anion-modified CNF can be suppressed.
  • the amount of coating liquid supplied onto the substrate in the pre-metering coating method is usually 400 mL/min or less, preferably 300 mL/min or less, or more. It is preferably 250 mL/min or less, more preferably 200 mL/min or less. Although the lower limit is not particularly limited, it is usually 1 mL/min or more, preferably 50 mL/min or more, more preferably 80 mL/min or more. In the case of die coating, the above speed can be adjusted by the moving speed of the die or the moving speed of the substrate (the moving speed of the belt that moves the substrate).
  • the post-metering coating method means a coating method in which an external force is applied to a liquid film to remove excess liquid to obtain a predetermined coating film thickness in the wet coating technique of performing continuous wet coating.
  • Examples of post-metering coating methods include bar coating, blade coating, (air) knife coating, dip coating, and tension web coating, in which tension is applied to the substrate to adjust the coating amount on a roll. can be mentioned.
  • the bar coating method, the blade coating method, and the knife coating method are preferable because the clearance with the substrate can be easily adjusted, and as a result, the generation of scratches due to contact with the supporting substrate can be suppressed in continuous coating.
  • Bar coating method In the bar coating method, after the coating liquid is brought into contact with the supporting substrate, the bar is placed near the contacted coating liquid, and the bar or the supporting substrate is moved so as to scrape off the coating liquid. Coated by As such a bar, it is possible to use either a wire-wrapped wire bar or a wireless bar integrally formed with grooves, but the wireless bar is used from the viewpoint of suppressing scratches on the metal substrate during coating. is preferred.
  • the amount of coating liquid to be applied can be adjusted by the moving speed of the bar, the structure of the surface of the bar, and other factors.
  • the size of the grooves of the wireless bar is not particularly limited, but for example, it is preferable that the pitch is 0.05 to 0.5 mm and/or the depth is 5 to 15 ⁇ m.
  • Blade coating method In the blade coating method, after the coating liquid is brought into contact with the supporting substrate, a blade is placed in the vicinity of the contacted coating liquid, and the edge of the blade is pressed against the substrate surface to scrape off the coating liquid. Apply by moving the blade as shown.
  • the material of the blade is usually metal, but other materials such as ceramics may also be used.
  • the blade coating method is easy to control the coating amount and has a high affinity with a coating liquid having a high viscosity liquidity, so the highly viscous anion-modified CNF aqueous dispersion is applied to a predetermined film thickness. suitable for the purpose.
  • the coating amount of the coating liquid (film thickness of the functional layer) can be adjusted by the blade angle, clearance setting (clearance between the blade and the base material), moving speed, etc.
  • a smaller blade angle (for example, 80° or less, 70° or less, 60° or less, or 50° or less with respect to the substrate) is preferable.
  • a highly viscous coating liquid for example, aqueous dispersion liquid of anion-modified CNF.
  • Clearance settings are typically 800 ⁇ m or less, preferably 700 ⁇ m or less, more preferably 600 ⁇ m or less. In the case of the blade coating method, one set of coating and subsequent drying (described later) may be repeated multiple times.
  • the knife coating method is a coating method that uses a non-rotating knife roll with a knife-like edge and a backup roll that supplies a substrate so as to be in contact with the knife roll. That is, the coating liquid is supplied onto the base material, and a smooth coating film is formed by the effect of the shearing force in the gap between the knife roll and the base material.
  • the knife coating method is suitable when using a highly viscous anion-modified CNF water dispersion as a coating liquid.
  • the air knife coating method can also be used.
  • the air knife coating method is a coating method that uses an applicator roll that supplies a coating liquid in contact with the substrate and an air knife that blows air onto the surface of the substrate. That is, the base material contacted with the coating liquid by the applicator roll is adjusted to a predetermined coating amount by the air jetted from the air knife. It is preferable to adjust the viscosity of the coating liquid because it facilitates adjustment of the coating amount.
  • the coating liquid contains anion-modified CNF and is usually liquid.
  • the coating liquid preferably has moderate viscosity. Thereby, coatability becomes favorable.
  • the 60 rpm viscosity of the coating liquid is usually 30 mPa ⁇ s or more, or 50 mPa ⁇ s or more, preferably 52 mPa ⁇ s or more, more preferably 54 mPa ⁇ s or more, and still more preferably 55 mPa ⁇ s or more.
  • the upper limit is usually 1000 mPa s or less, 900 mPa s or less, 800 mPa s or less, preferably 700 mPa s or less, 600 mPa s or less, or 500 mPa s or less, more preferably 450 mPa s or less, or 400 mPa s or less. be.
  • the 6 rpm viscosity is usually 60 mPa ⁇ s or more or 65 mPa ⁇ s or more, preferably 70 mPa ⁇ s or more, more preferably 75 mPa ⁇ s or more.
  • the upper limit is usually 6000 mPa ⁇ s or less or 5000 mPa ⁇ s or less, preferably 4000 mPa ⁇ s or less, more preferably 3000 mPa ⁇ s or less, or 2500 mPa ⁇ s or less.
  • the 6 rpm viscosity and 60 rpm viscosity vary depending on conditions such as the type of anionic group, the average fiber diameter of CNF, the average fiber length, the aspect ratio, and the concentration of anion-modified CNF in the coating solution.
  • the 6 rpm viscosity and the 60 rpm viscosity can be measured using a Brookfield viscometer at 25° C. under the conditions of 6 rpm and 60 rpm, respectively.
  • the solid content of the anion-modified CNF contained in the coating liquid is preferably less than 5%, more preferably 4% or less, even more preferably 3% or less, and particularly preferably 2% or less. This can suppress an increase in the viscosity of the coating liquid and excessive expression of thixotropic properties.
  • the lower limit is preferably 0.1% or more, more preferably 0.2% or more, and even more preferably 0.3% or more.
  • the dispersion medium for the coating liquid examples include water and solvents (for example, hydrophilic solvents such as alcohol), which can be selected as appropriate.
  • the aqueous dispersion (for example, after fibrillation) at the time of production of anion-modified CNF can be used as a coating liquid as it is.
  • the viscosity and volatility of the coating liquid can be adjusted according to the coating conditions by using a solvent as the dispersion medium (substituting the solvent for water) or by mixing the solvent with water.
  • the coating liquid can be used in combination with other additives within a range that does not impair the effects of the present invention.
  • additives include leveling agents, antifoaming agents, dispersion stabilizers such as water-soluble polymers, preservatives, binders, and rheology control agents.
  • water-soluble polymers include cellulose derivatives (carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, ethylcellulose), xanthan gum, xyloglucan, dextrin, dextran, carrageenan, locust bean gum, alginic acid, alginate, pullulan, starch, potato starch, Kudzu flour, processed starch (cationized starch, phosphorylated starch, phosphoric acid cross-linked starch, phosphate monoesterified phosphoric acid cross-linked starch, hydroxypropyl starch, hydroxypropylated phosphate cross-linked starch, acetylated adipic acid cross-linked starch, acetylated phosphate cross-linked starch, Acetylated oxidized starch, sodium octenyl succinate, starch acetate, oxidized starch), cornstarch, gum arabic, gellan gum, polydextrose, pectin, chitin,
  • the coating liquid may be applied directly to the surface of the supporting substrate, but when an arbitrary primer layer is provided between the supporting substrate and the functional layer, the coating liquid for the primer layer is applied and dried before applying. be able to.
  • a drying process is a process of drying the coating film formed in the coating process.
  • a known drying method such as air drying, reduced pressure, infrared rays, or the like can be used, and a dryer such as an explosion-proof dryer can be used. Drying is preferably carried out under heating conditions.
  • the drying temperature is preferably 75 to 150°C, more preferably 75 to 130°C, still more preferably 80 to 120°C.
  • the drying time is usually 5 seconds or longer, preferably 10 seconds or longer, more preferably 30 seconds or longer, and still more preferably 45 seconds or longer.
  • the upper limit is preferably 10 minutes or less, more preferably 9 minutes or less, still more preferably 8 minutes or less. It is preferably 10 seconds to 10 minutes, more preferably 10 seconds to 9 minutes, more preferably 10 seconds to 8 minutes, even more preferably 10 to 180 seconds, and even more preferably 30 to 120 seconds.
  • the solvent drying rate is preferably 0.1 wt%/sec or more, more preferably 0.2 wt%/sec or more, and still more preferably 0.22 wt%/sec or more.
  • the upper limit is preferably 5.0 wt%/sec or less, more preferably 4.0 wt%/sec or less or 3.0 wt%/sec or less, still more preferably 2.0 wt%/sec or less, 1.5 weight %/sec or less, or 1.07 weight %/sec or less. Therefore, 0.1 to 5.0% by weight/sec is preferable, and 0.22 to 1.07% by weight/sec is more preferable.
  • the drying speed of the solvent can be calculated by dividing the ratio (% by weight) of the solvent in the entire coated sample by the time (sec) required for the solvent to volatilize and the coating film to dry. The drying speed can be adjusted by drying temperature and wind speed.
  • the wind speed during drying is preferably 100 m/min or less, 90 m/min or less, 80 m/min or less, 70 m/min or less, 60 m/min or less, 50 m/min or less, 40 m/min or less, Or 30 m/min or less is more preferable. Thereby, the influence on the coating film surface can be suppressed.
  • the lower limit is preferably 1 m/min or more, more preferably 5 m/min or more or 10 m/min or more. This can prevent insufficient drying.
  • Step 1 A step of forming a coating film containing anion-modified CNF on a substrate for transfer.
  • Step 2 A step of laminating a supporting substrate to the surface of the coating film.
  • Step 3 A step of peeling the transfer base material from the coating film and forming a functional layer on the support base material.
  • a known coating method can be selected as a method for forming a coating film containing anion-modified CNF on the substrate for transfer.
  • coating methods include bar coating, blade coating, (air) knife coating, dip coating, tension web coating, die coating, curtain coating, and the like.
  • a construction method is preferred, and a blade coating method is more preferred.
  • a coating solution containing anion-modified CNF can be used to form the coating film.
  • the coating method, examples of the coating liquid, and preferred conditions are as described in the description of the coating method in the preceding paragraph.
  • the coating film after coating is usually subjected to drying treatment. Drying can be carried out by a known drying method.
  • the drying temperature is preferably 80 to 150°C, more preferably 100 to 150°C, still more preferably 120 to 150°C.
  • the drying time is preferably 5 to 180 seconds, more preferably 10 to 120 seconds.
  • the drying time is preferably 5-180 seconds, more preferably 10-120 seconds.
  • the drying speed and air speed in the case of air drying are the same as the preferred conditions described above.
  • the coating surface is preferably uniform.
  • the substrate for transfer may be any known polymer film, such as polyethylene terephthalate, polyethylene, polypropylene, polystyrene, polycarbonate, polyvinyl chloride, polyacetylcellulose, polyether, polyacryl, (meth)acrylonitrile, and the like.
  • a polymeric film is mentioned.
  • polyethylene terephthalate film is preferable because it is excellent in mechanical strength, thermal stability and economic efficiency.
  • the transfer substrate may have a release layer (peeling layer).
  • peeling layer By having the release layer, transfer (peeling of the coating film from the substrate for transfer) can be easily performed.
  • the release layer is usually provided on the surface of the transfer substrate on which the coating film is formed (usually on one surface).
  • a coating film containing anion-modified CNF is formed on the surface of the release layer.
  • the release layer examples include, but are not limited to, silicone-based resins, acrylic resins, cellulose-based resins, melamine-based resins, phenol-based resins, urethane-based resins, isocyanate-based resins, urea-based resins, epoxy-based resins, unsaturated Polyester-based resins, etc., can be used, but silicone-based resins with low surface tension can be used so that the surface tension can be designed to be lower than that of the transfer base material, and the functional layer can be peeled off at the interface between the release layer and the functional layer for transfer. Resins, acrylic resins, cellulose resins, and the like are preferred.
  • the film thickness of the release layer is preferably 0.1 to 20 ⁇ m, more preferably 0.5 to 10 ⁇ m.
  • an unevenness imparting agent may be added.
  • the presence of the unevenness-imparting agent makes it easier to separate the functional layer from the release layer, while imparting an appropriate degree of roughness to the surface of the functional layer, which is suitable for increasing the surface area of the functional layer.
  • the average particle size of the roughening agent is preferably about 0.1 to 10 ⁇ m.
  • the release layer may also contain a release agent.
  • release agents include solid waxes such as polyethylene wax, amide wax, and Teflon (registered trademark) powder, fluorine-based and phosphate ester-based surfactants, silicone resins, and silicone oils.
  • the method for forming the release layer is not particularly limited, and examples thereof include bar coating, blade coating, (air) knife coating, dip coating, tension web coating, die coating, and curtain coating. It can be appropriately selected from among these.
  • the release layer is preferably a uniform coating film.
  • Step 2 a support substrate is attached to the surface of the coating film formed on the transfer substrate.
  • the lamination method a known method can be used and is not particularly limited. , or 55 ° C. or higher, the upper limit is usually 80 ° C. or lower) and / or pressurization (e.g., 0.2 MPa or higher, 0.3 MPa or higher, 0.4 MPa or higher, the upper limit is usually 1.0 MPa or lower) method (e.g. , lamination method).
  • the support substrate and the coating film can be brought into closer contact with each other, and stronger adhesive force can be obtained than the interface between the functional layer and the transfer substrate or the release layer.
  • Lamination is performed continuously (for example, 0.1 m/min or more, 0.2 m/min or more, 0.3 m/min or more, 0.4 m/min or more, 0.5 m/min or more, and the upper limit is usually 1.0 m/min or less) may be performed.
  • Lamination may be performed using a device such as a laminator.
  • the coating film formed on the transfer base material in step 1 may be subjected to the bonding treatment in step 2 in a state in which it contains a small amount of a dispersion medium without being completely dried. As a result, the support substrate and the coating film can be brought into closer contact with each other, and stronger adhesive force than the interface between the functional layer and the transfer substrate or the release layer can be obtained.
  • the supporting substrate and the coating film may be directly laminated or may be laminated via the receiving layer.
  • the receiving layer include acrylic resins, cellulose resins, melamine resins, phenol resins, urethane resins, isocyanate resins, urea resins, epoxy resins, vinyl chloride resins, polypropylene, and the like.
  • Polyolefin resin halogenated resin such as polyvinyl chloride or polyvinylidene chloride, polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, ethylene-vinyl acetate copolymer or vinyl resin such as polyacrylate, polyethylene
  • halogenated resin such as polyvinyl chloride or polyvinylidene chloride
  • polyvinyl acetate vinyl chloride-vinyl acetate copolymer
  • ethylene-vinyl acetate copolymer or vinyl resin such as polyacrylate
  • polyethylene examples include polyester resins such as terephthalate and polybutylene terephthalate, polystyrene resins, polyamide resins, copolymer resins of olefins such as ethylene or propylene and other vinyl polymers, and polycarbonates.
  • the receiving layer in the transfer coating method is not particularly limited as long as it has a higher surface tension than the interface between the coating film serving as the functional layer and the substrate for transfer or the release layer, and improves the transferability of the functional layer.
  • the receiving layer may be formed on the surface of the supporting substrate, and is usually formed before step 2 in the case of the transfer coating method.
  • the method for forming the receptive layer can be selected appropriately according to the usual technique and conditions (for example, the same method as exemplified as the method for forming the release layer).
  • the receiving layer may be provided in advance on either the supporting substrate or the coating before lamination.
  • Step 3 the transfer substrate is peeled off to form a functional layer.
  • Existing methods such as roll peeling can be used as the peeling method.
  • the release layer and the coating film may be separated at the interface to form the functional layer, or the transfer base material and the release layer may be separated at the interface.
  • a release layer and a functional layer may be formed on the supporting substrate by peeling, but the former is preferred.
  • Applications of Laminate include, for example, substrates for various display devices, substrates for electronic devices, members for home appliances, back surface protective sheets for solar cell modules, sealing of organic EL elements, packaging materials for electronic parts, batteries and Electrodes for power storage devices, electronic members such as flexible printed wiring boards; Interior members, exterior members, door side panels, bonnets, roofs, lithium ion battery (LIB) spacers, battery cases, LED headlamps and other automotive members; Examples include packaging materials for pharmaceuticals and foods, but are not particularly limited to these exemplified uses.
  • substrates for various display devices substrates for electronic devices, members for home appliances, back surface protective sheets for solar cell modules, sealing of organic EL elements, packaging materials for electronic parts, batteries and Electrodes for power storage devices, electronic members such as flexible printed wiring boards; Interior members, exterior members, door side panels, bonnets, roofs, lithium ion battery (LIB) spacers, battery cases, LED headlamps and other automotive members;
  • LIB lithium ion battery
  • the laminate of the present invention is wetted, the anion-modified CNF in the wetted portion causes an electrical adsorption phenomenon due to redispersion, so it has self-regenerative properties without causing defects in the functional layer. It is expected. Therefore, the laminate is preferably used as an electronic member.
  • the reaction was terminated when the sodium hypochlorite was consumed and the pH in the system stopped changing.
  • the mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain an oxidized pulp.
  • the pulp yield at this time was 90%, and the time required for the oxidation reaction was 90 minutes.
  • the oxidized pulp obtained in the above steps was adjusted with water to each concentration shown in Table 1, and defibrated five times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa) to obtain oxidized CNF dispersions A1 to A3. Obtained.
  • the resulting oxidized CNF had a carboxyl group content of 1.42 mmol/g, an average fiber diameter of 3.4 nm, and an average fiber length of 528 nm (Table 1).
  • CM-modified pulp obtained in the above steps was adjusted with water to each concentration shown in Table 1, and defibrated three times with an ultrahigh-pressure homogenizer (20°C, 150 MPa) to obtain CM-CNF dispersions B1 and B2. got The CM-CNF had an average fiber diameter of 3.7 nm and an average fiber length of 425 nm (Table 1).
  • the phosphate esterified pulp obtained in the above step is adjusted to 0.4% (w / v) with water, and defibrated three times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa) to phosphate ester.
  • a dispersion C of CNF was obtained.
  • the phosphorylated CNF had a phosphate group substitution degree of 0.89 mmol/g, an average fiber diameter of 3.4 nm, and an average fiber length of 625 nm (Table 1).
  • the sulfated pulp obtained in the above step was adjusted to 0.4% (w / v) with water, and defibration was performed three times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa) to produce sulfated CNF.
  • a dispersion D was obtained.
  • the sulfated CNF had a sulfate group content of 0.92 mmol/g, an average fiber diameter of 4.2, and an average fiber length of 354 (Table 1).
  • a reagent A was prepared by mixing 130 g of sodium hydrogen phosphite pentahydrate, 108 g of urea, and 762 g of water. 1000 g of prepared reagent A and 100 g of softwood pulp (manufactured by Nippon Paper Industries Co., Ltd., NBKP) were mixed and dried at 105°C. The dried pulp was reacted at 130° C. for 2 hours, washed with water and filtered twice to obtain a phosphite esterified pulp.
  • the phosphite esterified pulp obtained in the above process was adjusted to 0.4% (w/v) with water, and defibrated three times with an ultra-high pressure homogenizer (20°C, 150 MPa). A dispersion F of esterified CNF was obtained.
  • the phosphite-esterified CNF had a phosphite group substitution degree of 2.11 mmol/g, an average fiber diameter of 3.9 nm, and an average fiber length of 471 nm (Table 1).
  • the pH in the system decreased during the reaction, but was adjusted to pH 10 by successively adding 0.5N sodium hydroxide aqueous solution. After reacting for 2 hours, the mixture was filtered through a glass filter and thoroughly washed with water to obtain carboxylated cellulose.
  • Carboxylated cellulose slurries G1 and G2 were prepared by adding water to each concentration shown in Table 1, to which hydrogen peroxide was added at 2% (w/w) relative to the carboxylated cellulose, and 3M sodium hydroxide was added. to adjust the pH to 11.3. This slurry was left at a temperature of 80° C. for 2 hours for hydrolysis.
  • TEMPO-oxidized CNF dispersions G3, G1, G2, G4 and G5.
  • the resulting TEMPO-oxidized CNF had a carboxyl group content of 1.7 mmol/g, an average fiber diameter of 5.7 nm, and an average fiber length of 230 nm (Table 1).
  • sliding angle A liquid drop was dropped on a plate and the angle at which the liquid dropped when lifted was measured. That is, 0.2 g of CNF slurry is dropped on an aluminum plate at a temperature of 25 ° C. After standing for 1 minute, one side of the aluminum plate is lifted. values were measured.
  • the sliding angle is usually 70° or less, especially 60° or less, it can be evaluated that the coating uniformity is good.
  • the lower limit is usually 5° or more, preferably 10° or more.
  • B type viscosity Using a TV-10 type viscometer (Toki Sangyo Co., Ltd.), the B-type viscosity of each dispersion was measured under the conditions of 25° C. and 6 rpm or 60 rpm.
  • contact angle The contact angle between CNF slurry and aluminum foil was measured under the following conditions.
  • Contact angle measurement conditions Apparatus: Dynamic contact angle tester 1100DAT, manufactured by Fibro System AB Discharge amount: 5 ⁇ l Time until droplets drop after ejection: 40 seconds
  • Substrate Aluminum foil A contact angle of usually 70° or less, especially 65° or less can be evaluated as good wettability. The lower limit is usually 50° or more.
  • Ti value is the ratio of 6 rpm viscosity to 60 rpm viscosity and is proportional to thixotropy. In general, if the thixotropic properties are too high, the coating liquid will turn into a jelly, making it difficult to feed the liquid.
  • the Ti value is preferably 7.0 or less, more preferably 6.8 or less.
  • the lower limit is preferably 1.0 or more, more preferably 1.2 or more.
  • dispersions A3, B2, G3 to G5 Compared with dispersions A3, B2, G3 to G5, dispersions A1, A2, B1, C, D, F and G1 and G2 exhibit moderate sliding angles, contact angles, uniformity during coating, The wettability was evaluated as good. In addition, the fluidity and dripping properties were also evaluated as good.
  • Examples 1-1 to 1-5 Using a die coater and a lab coater equipped with a belt for transporting the substrate to the die coater, coating was performed under the following conditions.
  • the slit width of the die coater was set to 130 ⁇ m and the clearance was set to 500 ⁇ m.
  • the aqueous dispersion of each anion-modified CNF listed in Table 2 is used as a coating liquid so that it can be stably coated. It was spread evenly over the base material while adjusting the amount in minutes.
  • the coated sample was extracted from the lab coater, dried at 100° C. for 10 minutes in an explosion-proof dryer, and then cooled at room temperature to obtain a laminate produced by the die coating method (Table 2). .
  • Example 1 A laminate was obtained in the same manner as in Example 1, except that instead of using a die, the aluminum substrate was sprayed (spray coated) so that the film thickness after drying was about 6 ⁇ m (Table 2).
  • Example 1-6 to 1-17 and Comparative Examples 1-2 to 1-6 Using a lab coater equipped with a slot die for applying the coating liquid to the substrate, a dryer for drying the coating film after application, a slot die, and a belt and rolls for supplying the substrate in the order of the dryer, shown in Table 3
  • the coating and drying were performed continuously under the conditions, each dispersion shown in Table 3 was used as the coating liquid as an aqueous dispersion of anion-modified CNF, and the discharge amount was 130 to 200 mL so that stable coating could be performed.
  • a laminate produced by the die coating method in the same manner as in Example 1 was obtained (Table 3), except that the clearance was adjusted to 100 to 500 ⁇ m.
  • the drying temperature indicates the temperature of each sample.
  • the drying temperature in the drying device was set to 100°C.
  • Example 6 die coating was performed at a set temperature of the drying device of 100 ° C. and a sheet temperature of 85/83/84/85/86/81 ° C., and the drying conditions were a wind speed of 20 m / min and the conditions shown in Table 4. was performed in the same manner to confirm the degree of drying ( ⁇ : sufficiently dried; ⁇ : locally insufficient drying; ⁇ : insufficient drying (Table 4).
  • the laminate could be dried regardless of the drying conditions, but as is clear from the results of Examples 18 to 22, the drying time was 1 minute 30 seconds to 7 minutes 30 seconds and the coater speed was 1 to 5 m/min. Thus, sufficient drying was achieved (Table 4).
  • Example 5 After contacting one side of an aluminum substrate as a supporting substrate with an aqueous dispersion containing anion-modified CNF as shown in Table 5 as a coating liquid, a wireless bar (pitch 0.1 mm, depth 12 ⁇ m). was used to evenly spread the coating liquid on the substrate (Table 5).
  • Examples 3-1 to 3-5 A polyethylene terephthalate (PET) film having a film thickness of 100 ⁇ m was used as a transfer substrate, and an aluminum substrate was used as a support substrate.
  • PET polyethylene terephthalate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

The present invention addresses the problem of providing a method for producing a layered product having a functional layer that is ideal for use in a variety of industrial applications. The present invention provides a method for producing a layered product, the method including a layering step for forming a functional layer containing anionically modified cellulose nanofibers on a supporting substrate using a coating method such as a pre-metering coating method, a post-metering coating method, or a transfer coating method. The anionically modified cellulose nanofibers are oxidized cellulose nanofibers having a carboxyl group and/or a carboxylate group, and are preferably carboxyalkylated cellulose nanofibers, phosphoric acid esterified cellulose nanofibers, or sulfuric acid esterified cellulose nanofibers.

Description

セルロースナノファイバーを含む積層体の製造方法METHOD FOR MANUFACTURING LAMINATE CONTAINING CELLULOSE NANOFIBER
 本発明は、セルロースナノファイバーを含む積層体の製造方法に関する。 The present invention relates to a method for manufacturing a laminate containing cellulose nanofibers.
 アニオン性またはカチオン性の基をセルロースに導入し、導入されたこれらの基の電荷反発力を利用して解繊して得られるセルロースナノファイバーは、非常に細い繊維径を有し、一般的に均質性が高く、また、導入された基に基づく各種の機能性を有し、強度が高いなどの特徴から、広く研究されている。例えば、アニオン性の基をセルロースに導入し解繊して得たアニオン変性セルロースナノファイバーとしては、N-オキシル化合物によるセルロースの表面酸化反応を利用してセルロースの水酸基の一部をカルボキシル基に酸化して解繊して得た酸化セルロースナノファイバーや、カルボキシメチル置換度が0.01~0.30であり平均繊維径が3~500nmであるカルボキシメチル化セルロースナノファイバーが報告されている(特許文献1及び2)。 Cellulose nanofibers obtained by introducing anionic or cationic groups into cellulose and defibrating using the charge repulsion of these introduced groups have a very fine fiber diameter and are generally It has been extensively studied because of its characteristics such as high homogeneity, various functionalities based on the introduced groups, and high strength. For example, as an anion-modified cellulose nanofiber obtained by introducing an anionic group into cellulose and defibrating it, some of the hydroxyl groups of cellulose are oxidized to carboxyl groups using the surface oxidation reaction of cellulose by an N-oxyl compound. oxidized cellulose nanofibers obtained by fibrillating and carboxymethylated cellulose nanofibers having a degree of carboxymethyl substitution of 0.01 to 0.30 and an average fiber diameter of 3 to 500 nm have been reported (patent References 1 and 2).
特開2008-1728号公報Japanese Unexamined Patent Application Publication No. 2008-1728 国際公開第2014/088072号WO2014/088072
 このようなナノファイバーは、ナノ構造体の効果により様々な用途において特異な性質を示すことが報告され始めている。しかしながら、セルロースナノファイバーは水分散体や粉体状の固形物での形状で市販されており、工業利用するためには二次加工を行い利用する必要がある。特に基材上にセルロースナノファイバーの塗工膜を形成し、それを機能層として利用されることが期待されている。 It has been reported that such nanofibers exhibit unique properties in various applications due to the effects of nanostructures. However, cellulose nanofibers are commercially available in the form of aqueous dispersions or powdery solids, and for industrial use, it is necessary to perform secondary processing. In particular, it is expected to form a coating film of cellulose nanofibers on a substrate and use it as a functional layer.
 ゆえに本発明は、そのような様々な工業用途に適用させるために最適な機能層を持つ積層体の製造方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method of manufacturing a laminate having an optimal functional layer for application to such various industrial uses.
 本出願人らは、鋭意努力の結果、以下の構成で課題を解決できることを見出した。
〔1〕支持基材上に、アニオン変性セルロースナノファイバーを含む機能層を、塗工法又は転写塗工法により形成する積層工程を含む、
積層体の製造方法。
〔2〕積層工程においては、アニオン変性セルロースナノファイバーを含む塗工液を用い、塗工液の60rpmにおける粘度が50~1000mPa・sである、〔1〕に記載の製造方法。
〔3〕機能層の膜厚は30μm以下である、〔1〕又は〔2〕に記載の製造方法。
〔4〕前記アニオン変性セルロースナノファイバーがカルボキシル基及び/またはカルボキシレート基を有する酸化セルロースナノファイバーである〔1〕~〔3〕のいずれか1項に記載の製造方法。
〔5〕前記アニオン変性セルロースナノファイバーがカルボキシアルキル化セルロースナノファイバー、リン酸エステル化セルロースナノファイバー、及び硫酸エステル化セルロースナノファイバーの少なくとも何れかを含む〔1〕~〔4〕のいずれか1項に記載の製造方法。
〔6〕塗工法が、前計量塗工法又は後計量塗工法である、〔1〕~〔5〕のいずれか1項に記載の製造方法。
〔7〕前記前計量塗工法がダイコーティング法又はカーテンコーティング法である〔6〕に記載の製造方法。
〔8〕前記後計量塗工法が、バーコーティング法、ナイフコーティング法又はブレードコーティング法である〔6〕に記載の積層体の製造方法。
〔9〕転写塗工法による機能層の形成は、
 工程1:転写用基材上にアニオン変性セルロースナノファイバーを含む塗膜を形成すること
 工程2:塗膜表面に支持基材を貼合すること、及び
 工程3:転写用基材を塗膜から剥離し、支持基材上に機能層を形成すること、
を含む、〔1〕~〔5〕のいずれか1項に記載の製造方法。
〔10〕支持基材は受容層を有し、工程2において受容層と塗膜表面を貼合し、工程3において支持基材上に受容層を介して機能層を形成させる、〔9〕に記載の積層体の製造方法。
〔11〕転写用基材は、塗膜を設ける面に離型層を有し、工程1において、転写用基材上に離型層を介して塗膜を形成する、〔9〕又は〔10〕に記載の積層体の製造方法。
As a result of diligent efforts, the applicants have found that the following configuration can solve the problem.
[1] including a lamination step of forming a functional layer containing anion-modified cellulose nanofibers on a supporting substrate by a coating method or a transfer coating method;
A method for manufacturing a laminate.
[2] The production method according to [1], wherein a coating liquid containing anion-modified cellulose nanofibers is used in the lamination step, and the coating liquid has a viscosity of 50 to 1000 mPa·s at 60 rpm.
[3] The manufacturing method according to [1] or [2], wherein the film thickness of the functional layer is 30 μm or less.
[4] The production method according to any one of [1] to [3], wherein the anion-modified cellulose nanofibers are oxidized cellulose nanofibers having carboxyl groups and/or carboxylate groups.
[5] Any one of [1] to [4], wherein the anion-modified cellulose nanofibers include at least one of carboxyalkylated cellulose nanofibers, phosphate-esterified cellulose nanofibers, and sulfate-esterified cellulose nanofibers. The manufacturing method described in .
[6] The production method according to any one of [1] to [5], wherein the coating method is a pre-metering coating method or a post-metering coating method.
[7] The production method according to [6], wherein the pre-metering coating method is a die coating method or a curtain coating method.
[8] The method for producing a laminate according to [6], wherein the post-metering coating method is a bar coating method, a knife coating method or a blade coating method.
[9] Formation of functional layer by transfer coating method,
Step 1: Forming a coating film containing anion-modified cellulose nanofibers on a transfer base material, Step 2: Laminating a supporting base material on the surface of the coating film, and Step 3: Transferring a transfer base material from the coating film. peeling to form a functional layer on the supporting substrate;
The production method according to any one of [1] to [5], comprising
[10] The supporting substrate has a receptive layer, and in step 2, the receptive layer and the coating surface are laminated, and in step 3, the functional layer is formed on the supporting substrate via the receptive layer; A method for manufacturing the described laminate.
[11] The transfer substrate has a release layer on the surface on which the coating film is provided, and in step 1, the coating film is formed on the transfer substrate via the release layer, [9] or [10] ].
[1-1]支持基材上に、アニオン変性セルロースナノファイバーを含む塗工液を前計量塗工法により塗布して機能層を形成する工程を含み、
 塗工液の60rpmにおける粘度が50~1000mPa・sであり、
 機能層の膜厚が30μm以下である、
積層体の製造方法。
[1-2]前記アニオン変性セルロースナノファイバーがカルボキシル基及び/またはカルボキシレート基を有する酸化セルロースナノファイバーである[1-1]に記載の製造方法。
[1-3]前記アニオン変性セルロースナノファイバーがカルボキシアルキル化セルロースナノファイバーである[1-1]に記載の製造方法。
[1-4]前記アニオン変性セルロースナノファイバーがリン酸エステル化セルロースナノファイバーである[1-1]に記載の製造方法。
[1-5]前記アニオン変性セルロースナノファイバーが硫酸エステル化セルロースナノファイバーである[1-1]に記載の製造方法。
[1-6]前記前計量塗工法がダイコーティング法である[1-1]~[1-5]のいずれか1項に記載の製造方法。
[1-7]前記前計量塗工法が、カーテンコーティング法である[1-1]~[1-5]のいずれか1項に記載の製造方法。
[1-1] A step of applying a coating solution containing anion-modified cellulose nanofibers onto a supporting substrate by a pre-weigh coating method to form a functional layer,
The viscosity of the coating liquid at 60 rpm is 50 to 1000 mPa s,
The film thickness of the functional layer is 30 μm or less,
A method for manufacturing a laminate.
[1-2] The production method according to [1-1], wherein the anion-modified cellulose nanofibers are oxidized cellulose nanofibers having carboxyl groups and/or carboxylate groups.
[1-3] The production method according to [1-1], wherein the anion-modified cellulose nanofibers are carboxyalkylated cellulose nanofibers.
[1-4] The production method according to [1-1], wherein the anion-modified cellulose nanofibers are phosphorylated cellulose nanofibers.
[1-5] The production method according to [1-1], wherein the anion-modified cellulose nanofibers are sulfate-esterified cellulose nanofibers.
[1-6] The production method according to any one of [1-1] to [1-5], wherein the pre-metering coating method is a die coating method.
[1-7] The production method according to any one of [1-1] to [1-5], wherein the pre-metering coating method is a curtain coating method.
[2-1]支持基材上に、アニオン変性セルロースナノファイバーを含む塗工液を後計量塗工法により塗布して機能層を形成する工程を含み、
 機能層の膜厚が30μm以下である、
積層体の製造方法。
[2-2]前記アニオン性セルロースナノファイバーがカルボキシル基及び/またはカルボキシレート基を有する酸化セルロースナノファイバーである[2-1]に記載の製造方法。
[2-3]前記アニオン性セルロースナノファイバーがカルボキシアルキル化セルロースナノファイバーである[2-1]に記載の製造方法。
[2-4]前記アニオン性セルロースナノファイバーがリン酸エステル化セルロースナノファイバーである[2-1]に記載の製造方法。
[2-5]前記アニオン性セルロースナノファイバーが硫酸エステル化セルロースナノファイバーである[2-1]に記載の製造方法。
[2-6]前記後計量塗工法が、バーコーティング法である[2-1]~[2-5]のいずれか1項に記載の製造方法。
[2-7]前記後計量塗工法が、ナイフコーティング法である[2-1]~[2-5]のいずれか1項に記載の製造方法。
[2-8]前記後計量塗工法が、ブレードコーティング法である[2-1]~[2-5]のいずれかに記載の製造方法。
[2-9][2-1]~[2-8]のいずれか1項の製造方法によって得られる、積層体。
[2-1] A step of applying a coating solution containing anion-modified cellulose nanofibers onto a supporting substrate by a post-metering coating method to form a functional layer,
The film thickness of the functional layer is 30 μm or less,
A method for manufacturing a laminate.
[2-2] The production method according to [2-1], wherein the anionic cellulose nanofibers are oxidized cellulose nanofibers having carboxyl groups and/or carboxylate groups.
[2-3] The production method according to [2-1], wherein the anionic cellulose nanofibers are carboxyalkylated cellulose nanofibers.
[2-4] The production method according to [2-1], wherein the anionic cellulose nanofibers are phosphorylated cellulose nanofibers.
[2-5] The production method according to [2-1], wherein the anionic cellulose nanofibers are sulfate-esterified cellulose nanofibers.
[2-6] The production method according to any one of [2-1] to [2-5], wherein the post-metering coating method is a bar coating method.
[2-7] The production method according to any one of [2-1] to [2-5], wherein the post-metering coating method is a knife coating method.
[2-8] The production method according to any one of [2-1] to [2-5], wherein the post-metering coating method is a blade coating method.
[2-9] A laminate obtained by the manufacturing method according to any one of [2-1] to [2-8].
[3-1]転写用基材上にアニオン変性セルロースナノファイバーを含む塗膜を形成した後、塗膜表面に支持基材を貼合し、次いで該転写用基材を塗膜から剥離し、支持基材上に機能層を形成する工程を含む積層体の製造方法。
[3-2]支持基材は受容層を有し、塗膜表面に受容層を貼合し、支持基材上に受容層を介して機能層を形成する、[3-1]に記載の製造方法。
[3-3]転写用基材は、塗膜を設ける面に離型層を有し、転写用基材上に離型層を介して塗膜を形成する、[3-1]又は[3-2]に記載の製造方法。
[3-4]前記アニオン性セルロースナノファイバーがカルボキシル基及び/またはカルボキシレート基を有する酸化セルロースナノファイバーであることを特徴とする[3-1]~[3-3]のいずれか1項に記載の製造方法。
[3-5]前記アニオン性セルロースナノファイバーがカルボキシアルキル化セルロースナノファイバーであることを特徴とする[3-1]~[3-3]のいずれか1項に記載の製造方法。
[3-6]前記アニオン性セルロースナノファイバーがリン酸エステル化セルロースナノファイバーであることを特徴とする[3-1]~[3-3]のいずれか1項に記載の製造方法。
[3-7]前記アニオン性セルロースナノファイバーが硫酸エステル化セルロースナノファイバーであることを特徴とする[3-1]~[3-3]のいずれか1項に記載の製造方法。
[3-8][3-1]~[3-7]のいずれか1項の製造方法によって得られる、積層体。
[3-1] After forming a coating film containing anion-modified cellulose nanofibers on a transfer substrate, a supporting substrate is attached to the surface of the coating film, and then the transfer substrate is peeled off from the coating film, A method for producing a laminate, comprising the step of forming a functional layer on a supporting substrate.
[3-2] The supporting substrate according to [3-1], wherein the supporting substrate has a receiving layer, the receiving layer is laminated on the surface of the coating film, and the functional layer is formed on the supporting substrate via the receiving layer. Production method.
[3-3] The transfer substrate has a release layer on the surface on which the coating film is provided, and the coating film is formed on the transfer substrate via the release layer, [3-1] or [3 -2].
[3-4] Any one of [3-1] to [3-3], wherein the anionic cellulose nanofibers are oxidized cellulose nanofibers having carboxyl groups and/or carboxylate groups. Method of manufacture as described.
[3-5] The production method according to any one of [3-1] to [3-3], wherein the anionic cellulose nanofibers are carboxyalkylated cellulose nanofibers.
[3-6] The production method according to any one of [3-1] to [3-3], wherein the anionic cellulose nanofibers are phosphate esterified cellulose nanofibers.
[3-7] The production method according to any one of [3-1] to [3-3], wherein the anionic cellulose nanofibers are sulfate-esterified cellulose nanofibers.
[3-8] A laminate obtained by the manufacturing method according to any one of [3-1] to [3-7].
 本発明によれば、様々な工業用途に適用させるために最適な機能層を持つ積層体の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a laminate having functional layers that are optimal for application to various industrial uses.
<1.積層体>
 積層体は、支持基材上に、アニオン変性セルロースナノファイバーを含む機能層を備える。
<1. Laminate>
The laminate comprises a functional layer containing anion-modified cellulose nanofibers on a supporting substrate.
<アニオン変性セルロースナノファイバー>
 積層体の機能層は、アニオン変性セルロースナノファイバーを含む。
<Anion-modified cellulose nanofiber>
The functional layer of the laminate contains anionically modified cellulose nanofibers.
-ナノファイバー(NF)-
 本発明において、ナノファイバー(NF)とは、平均繊維径が1μm未満であるナノ繊維をいう。好ましくは平均繊維径が3nm~500nm程度、より好ましくは3nm~150nm程度、さらに好ましくは3nm~20nm程度である。アスペクト比は、通常、30以上又は35以上、好ましくは40以上、より好ましくは50以上、さらに好ましくは100以上である。アスペクト比の上限は限定されないが、500以下程度である。NFの平均繊維径および平均繊維長は、径が20nm未満の場合は原子間力顕微鏡(AFM)、20nm以上の場合は電界放出型走査電子顕微鏡(FE-SEM)を用いて、ランダムに選んだ200本の繊維について解析し、平均を算出することにより、測定することができる。また、アスペクト比は下記の式により算出することができる:
 アスペクト比=平均繊維長/平均繊維径。
-Nanofiber (NF)-
In the present invention, nanofibers (NF) refer to nanofibers having an average fiber diameter of less than 1 μm. The average fiber diameter is preferably about 3 nm to 500 nm, more preferably about 3 nm to 150 nm, still more preferably about 3 nm to 20 nm. The aspect ratio is usually 30 or more or 35 or more, preferably 40 or more, more preferably 50 or more, and still more preferably 100 or more. Although the upper limit of the aspect ratio is not limited, it is about 500 or less. The average fiber diameter and average fiber length of NF were randomly selected using an atomic force microscope (AFM) when the diameter was less than 20 nm and a field emission scanning electron microscope (FE-SEM) when the diameter was 20 nm or more. It can be measured by analyzing 200 fibers and calculating the average. Also, the aspect ratio can be calculated by the following formula:
Aspect ratio = average fiber length/average fiber diameter.
 ナノファイバーのうち、本発明ではアニオン変性セルロースナノファイバー(以下、アニオン変性CNFともいう)を用いる。 Among nanofibers, anion-modified cellulose nanofibers (hereinafter also referred to as anion-modified CNF) are used in the present invention.
-アニオン変性CNFの定義、性質-
 アニオン変性CNFとは、セルロースの分子鎖にアニオン基が導入されたNFである。アニオン変性CNFは、セルロースのピラノース環にアニオン基を導入して得られたアニオン変性セルロースを1μm未満の平均繊維径となるように解繊することにより得ることができる。
-Definition and properties of anion-modified CNF-
Anion-modified CNF is NF in which an anion group is introduced into the molecular chain of cellulose. Anion-modified CNF can be obtained by defibrating anion-modified cellulose obtained by introducing an anion group into the pyranose ring of cellulose so as to have an average fiber diameter of less than 1 μm.
 アニオン変性CNFは、水に分散した際にも繊維状の形状の少なくとも一部が維持され、完全に水に溶解しない。アニオン変性CNFの水分散液を電子顕微鏡で観察すると、繊維状の物質を観察することができる。アニオン変性CNFを含む機能層は、層内でアニオン変性CNFの繊維状の形状が維持されているため、良好な物理的強度を発揮できる。 Anion-modified CNF maintains at least part of its fibrous shape even when dispersed in water, and does not completely dissolve in water. A fibrous substance can be observed by observing the aqueous dispersion of anion-modified CNF with an electron microscope. The functional layer containing anion-modified CNF can exhibit good physical strength because the fibrous shape of the anion-modified CNF is maintained within the layer.
-セルロース原料-
 アニオン変性セルロースの原料となるセルロース(セルロース原料)の種類は、特に限定されない。例えば、針葉樹、広葉樹、木綿、わら、竹、麻、ジュート、ケナフ等を原料とする晒又は未晒のメカニカルパルプ(例えば、サーモメカニカルパルプ(TMP)、砕木パルプ)やケミカルパルプ(例えば、亜硫酸パルプ、クラフトパルプ)、また、溶解パルプ、再生セルロース、微細セルロース、非結晶領域を除いた微結晶セルロース等を挙げることができ、これらのいずれも、セルロース原料として用いることができる。
-Cellulose raw material-
The type of cellulose (raw material for cellulose) used as a raw material for anion-modified cellulose is not particularly limited. For example, bleached or unbleached mechanical pulp (e.g., thermomechanical pulp (TMP), groundwood pulp) and chemical pulp (e.g., sulfite pulp) made from softwood, hardwood, cotton, straw, bamboo, hemp, jute, kenaf, etc. , kraft pulp), dissolving pulp, regenerated cellulose, fine cellulose, microcrystalline cellulose excluding non-crystalline regions, and the like, and any of these can be used as the cellulose raw material.
-アニオン基の導入・解繊方法-
 このようなセルロース原料にアニオン基を導入することにより、アニオン変性セルロースを製造することができる。アニオン基の導入方法は特に限定されないが、例えば、セルロースのピラノース環の水酸基を直接カルボキシル基に酸化する方法、及び、ピラノース環の水酸基部分でエステル化反応によりアニオン基を導入する方法が挙げられる。アニオン基の導入により得られたアニオン変性セルロースを、1μm未満の平均繊維径となるように解繊することにより、アニオン変性CNFを得ることができる。解繊方法は特に限定されず、例えば、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの公知の解繊装置を用いる方法が挙げられる。中でも、湿式の高圧または超高圧ホモジナイザを用いる方法が好ましい。
-Method of introduction and fibrillation of anionic groups-
Anion-modified cellulose can be produced by introducing an anion group into such a cellulose raw material. The method for introducing the anionic group is not particularly limited, but examples include a method of directly oxidizing the hydroxyl group of the pyranose ring of cellulose to a carboxyl group, and a method of introducing an anionic group by an esterification reaction at the hydroxyl group portion of the pyranose ring. Anion-modified CNF can be obtained by defibrating the anion-modified cellulose obtained by introducing an anion group so that the average fiber diameter is less than 1 μm. The defibration method is not particularly limited, and examples thereof include a method using a known defibration device such as a high-speed rotation type, colloid mill type, high pressure type, roll mill type, and ultrasonic type. Among them, a method using a wet high-pressure or ultrahigh-pressure homogenizer is preferable.
-アニオン変性CNFの例-
 (酸化CNF)
 アニオン変性CNFの一例として、カルボキシル基及び/またはカルボキシレート基を有する酸化CNFを挙げることができる。本明細書においてカルボキシル基とは、-COOH(酸型)および-COOM(金属塩型)(式中、Mは金属イオンである)をいい、カルボキシレート基とは-COOをいう。カルボキシル基及び/またはカルボキシレート基を有する酸化CNF(本明細書において、単に「酸化CNF」とも呼ぶ)は、セルロースのピラノース環の水酸基をカルボキシル基に酸化する公知の方法を用いて酸化セルロースを得て、次いで解繊することにより得ることができる。セルロースの酸化方法としては、例えば、2,2,6,6-テトラメチルピペリジン-1-オキシラジカル(TEMPO)のようなN-オキシル化合物と、臭化物及び/又はヨウ化物との存在下で、酸化剤を用いてセルロースを水中で酸化する方法や、オゾンを含む気体を酸化剤として用いてセルロース原料と接触させることによりセルロースを酸化する方法を挙げることができる。
-Example of anion-modified CNF-
(oxidized CNF)
An example of anion-modified CNF is oxidized CNF having a carboxyl group and/or a carboxylate group. As used herein, a carboxyl group refers to -COOH (acid form) and -COOM (metal salt form) (wherein M is a metal ion), and a carboxylate group refers to -COO - . Oxidized CNF having a carboxyl group and/or a carboxylate group (also referred to herein simply as "oxidized CNF") is obtained by obtaining oxidized cellulose using a known method of oxidizing the hydroxyl group of the pyranose ring of cellulose to a carboxyl group. and then fibrillating. As a method of oxidizing cellulose, for example, oxidation is performed in the presence of an N-oxyl compound such as 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and bromide and/or iodide. Examples include a method of oxidizing cellulose in water using an agent, and a method of oxidizing cellulose by bringing it into contact with a cellulose raw material using an ozone-containing gas as an oxidizing agent.
 酸化CNFにおけるカルボキシル基及びカルボキシレート基の合計量は、酸化CNFの絶乾質量に対して、0.4~3.0mmol/gが好ましく、0.6~2.0mmol/gがさらに好ましく、1.0~2.0mmol/gがさらに好ましく、1.1~2.0mmol/gがさらに好ましい。酸化CNFのカルボキシル基及びカルボキシレート基の量は、酸化剤の添加量や反応時間等の反応条件をコントロールすることで調整することができる。カルボキシル基及びカルボキシレート基の量は、以下の方法で測定することができる:
 酸化CNFの0.5質量%スラリー(水分散液)60mlを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出する:
 カルボキシル及びカルボキシレート基量〔mmol/g酸化CNF〕=a〔ml〕×0.05/酸化CNF質量〔g〕。
The total amount of carboxyl groups and carboxylate groups in the oxidized CNF is preferably 0.4 to 3.0 mmol/g, more preferably 0.6 to 2.0 mmol/g, relative to the absolute dry mass of the oxidized CNF. 0 to 2.0 mmol/g, more preferably 1.1 to 2.0 mmol/g. The amount of carboxyl groups and carboxylate groups in oxidized CNF can be adjusted by controlling reaction conditions such as the amount of oxidizing agent added and reaction time. The amount of carboxyl groups and carboxylate groups can be measured by the following methods:
Prepare 60 ml of 0.5% by mass slurry (aqueous dispersion) of oxidized CNF, add 0.1 M hydrochloric acid aqueous solution to adjust the pH to 2.5, and then drop 0.05 N sodium hydroxide aqueous solution to adjust the pH to 11. The electrical conductivity is measured until it becomes , and the amount of sodium hydroxide (a) consumed in the neutralization step of the weak acid, in which the change in electrical conductivity is gradual, is calculated using the following formula:
Carboxyl and carboxylate group amount [mmol/g oxidized CNF]=a [ml]×0.05/oxidized CNF mass [g].
 (カルボキシアルキル化CNF)
 アニオン変性CNFの一例として、カルボキシアルキル基を有するカルボキシアルキル化CNFを挙げることができる。本明細書においてカルボキシアルキル基とは、-RCOOH(酸型)および-RCOOM(金属塩型)をいう。ここでRはメチレン基、エチレン基等のアルキレン基であり、Mは金属イオン(例えば、Li、Na、K等のアルカリ金属;Mg、Ca等のアルカリ土類金属;Fe;Al等の金属が挙げられ、Li、Na、Caが好ましく、Naがより好ましい)である(以下、同様)。カルボキシアルキル基を有するカルボキシアルキル化CNFとしては、Rがメチレン基であるカルボキシメチル基を有するカルボキシメチル化CNFが最も好ましい(以下、「カルボキシメチル」を「CM」と呼ぶ)。カルボキシアルキル化CNFは、セルロース原料をマーセル化剤で処理した後にカルボキシアルキル化剤で処理してカルボキシアルキル基を導入する公知の方法を用いてカルボキシアルキル化セルロースを得て、次いで解繊することにより得ることができる。
(Carboxyalkylated CNF)
An example of anion-modified CNF is carboxyalkylated CNF having a carboxyalkyl group. As used herein, a carboxyalkyl group refers to -RCOOH (acid form) and -RCOOM (metal salt form). Here, R is an alkylene group such as a methylene group and an ethylene group, and M is a metal ion (e.g., alkali metals such as Li, Na, and K; alkaline earth metals such as Mg and Ca; Fe; preferably Li, Na, or Ca, more preferably Na) (the same shall apply hereinafter). As the carboxyalkylated CNF having a carboxyalkyl group, carboxymethylated CNF having a carboxymethyl group in which R is a methylene group is most preferred (hereinafter "carboxymethyl" is referred to as "CM"). Carboxyalkylated CNF is obtained by obtaining carboxyalkylated cellulose using a known method of treating a cellulose raw material with a mercerizing agent and then treating it with a carboxyalkylating agent to introduce a carboxyalkyl group, and then defibrating it. Obtainable.
 CM化CNFの原料となるCM化セルロースは、水に分散した際にも繊維状の形状の少なくとも一部が維持されるものであり、後述する水溶性高分子の一例であるカルボキシメチルセルロースとは区別される。「カルボキシメチル化セルロース(CM化セルロース)」の水分散液を電子顕微鏡で観察すると、繊維状の物質を観察することができる。一方、水溶性高分子の一種であるカルボキシメチルセルロースの水分散液を観察しても、繊維状の物質は観察されない。また、「カルボキシメチル化セルロース(CM化セルロース)」はX線回折で測定した際にセルロースI型結晶のピークを観測することができるが、水溶性高分子のカルボキシメチルセルロースではセルロースI型結晶はみられない。 CM-cellulose, which is a raw material for CM-CNF, maintains at least a part of its fibrous shape even when dispersed in water, and is distinguished from carboxymethyl cellulose, which is an example of a water-soluble polymer described later. be done. When an aqueous dispersion of "carboxymethylated cellulose (CM-cellulose)" is observed with an electron microscope, a fibrous substance can be observed. On the other hand, no fibrous substance is observed in an aqueous dispersion of carboxymethyl cellulose, which is a type of water-soluble polymer. In addition, when "carboxymethylated cellulose (CM-cellulose)" is measured by X-ray diffraction, a cellulose type I crystal peak can be observed. can't
 カルボキシアルキル化CNFの無水グルコース単位当たりのカルボキシアルキル置換度は、0.40未満であることが好ましい。また、カルボキシアルキル置換度の下限値は0.01以上が好ましい。操業性を考慮すると当該置換度は0.02以上0.35以下であることが好ましく、0.10以上0.35以下であることがより好ましく、0.15以上0.35以下であることがさらに好ましく、0.15以上0.30以下であることがさらに好ましい。なお、無水グルコース単位とは、セルロースを構成する個々の無水グルコース(グルコース残基)を意味し、カルボキシアルキル置換度とは、セルロースを構成するグルコース残基中の水酸基(-OH)のうちカルボキシアルキル基(-ORCOOHまたは-ORCOOM)に置換されているものの割合(1つのグルコース残基当たりのカルボキシアルキル基の数)を示す。カルボキシアルキル置換度は、マーセル化剤の量や反応時間等の反応条件をコントロールすることで調整することができる。グルコース単位当たりのCM置換度は、以下の方法で測定することができる:
 CM化CNF(絶乾)約2.0gを精秤して、300mL容共栓付き三角フラスコに入れる。メタノール900mLに特級濃硝酸100mLを加えた液100mLを加え、3時間振とうして、塩型のCM化CNFを水素型CM化CNFに変換する。水素型CM化CNF(絶乾)を1.5g~2.0g精秤し、300mL容共栓付き三角フラスコに入れる。80質量%メタノール15mLで水素型CM化CNFを湿潤し、0.1NのNaOHを100mL加え、室温で3時間振とうする。指示薬として、フェノールフタレインを用いて、0.1NのHSOで過剰のNaOHを逆滴定する。CM置換度(DS)を、次式によって算出する:
 A=[(100×F’-(0.1NのHSO)(mL)×F)×0.1]/(水素型CM化CNFの絶乾質量(g))
 DS=0.162×A/(1-0.058×A)
 A:水素型CM化CNFの1gの中和に要する1NのNaOH量(mL)
 F:0.1NのHSOのファクター
 F’:0.1NのNaOHのファクター
 CM基以外のカルボキシアルキル基置換度の測定も、上記と同様の方法で行うことができる。
The degree of carboxyalkyl substitution per anhydroglucose unit of the carboxyalkylated CNF is preferably less than 0.40. Moreover, the lower limit of the degree of carboxyalkyl substitution is preferably 0.01 or more. Considering the workability, the degree of substitution is preferably 0.02 or more and 0.35 or less, more preferably 0.10 or more and 0.35 or less, and 0.15 or more and 0.35 or less. It is more preferably 0.15 or more and 0.30 or less. The anhydroglucose unit means an individual anhydroglucose (glucose residue) constituting cellulose, and the degree of carboxyalkyl substitution refers to the hydroxyl group (—OH) in the glucose residue constituting cellulose. The ratio of those substituted by groups (-ORCOOH or -ORCOOM) (the number of carboxyalkyl groups per glucose residue) is shown. The degree of carboxyalkyl substitution can be adjusted by controlling reaction conditions such as the amount of mercerizing agent and reaction time. The degree of CM substitution per glucose unit can be measured by the following method:
About 2.0 g of CM-modified CNF (absolute dry) is precisely weighed and placed in a 300 mL conical flask with a common stopper. Add 100 mL of a liquid obtained by adding 100 mL of special grade concentrated nitric acid to 900 mL of methanol and shake for 3 hours to convert the salt-type CM-CNF to the hydrogen-type CM-CNF. 1.5 g to 2.0 g of hydrogen-type CM-CNF (absolute dry) is accurately weighed and placed in a 300 mL conical flask equipped with a common stopper. Hydrogen-type CM-CNF is wetted with 15 mL of 80 mass % methanol, 100 mL of 0.1N NaOH is added, and shaken at room temperature for 3 hours. Excess NaOH is back-titrated with 0.1 N H 2 SO 4 using phenolphthalein as an indicator. The degree of CM substitution (DS) is calculated by the following formula:
A = [(100 × F'-(0.1 N H 2 SO 4 ) (mL) × F) × 0.1] / (absolute dry mass of hydrogen-type CM-CNF (g))
DS = 0.162 x A/(1 - 0.058 x A)
A: Amount of 1N NaOH (mL) required to neutralize 1 g of hydrogen-type CM-CNF
F: factor of 0.1N H 2 SO 4 F': factor of 0.1N NaOH The degree of substitution of carboxyalkyl groups other than CM groups can also be measured in the same manner as above.
 (セルロースI型の結晶化度)
 CM化CNFにおけるセルロースI型の結晶化度は、好ましくは50%以上であり、さらに好ましくは60%以上である。CM化CNFにおけるセルロースI型の結晶化度は、原料となるCM化セルロースの製造時のマーセル化剤の濃度と処理時の温度、並びにカルボキシメチル化の度合によって制御することができる。マーセル化及びカルボキシメチル化においては高濃度のアルカリが使用されるために、セルロースのI型結晶がII型に変換されやすいが、例えば、アルカリ(マーセル化剤)の使用量を調整して変換の度合いを調整することによって、所望の結晶性を維持させることができる。セルロースI型の結晶化度の上限は特に限定されない。現実的には90%程度が上限となると考えられる。CM化セルロースのセルロースI型の結晶化度と、それを解繊して得たCM化CNFのセルロースI型の結晶化度とは、通常、同じである。
(Crystallinity of cellulose type I)
The crystallinity of cellulose type I in CM-CNF is preferably 50% or more, more preferably 60% or more. The crystallinity of cellulose type I in CM-CNF can be controlled by the concentration of the mercerizing agent during the production of CM-cellulose as a raw material, the temperature during treatment, and the degree of carboxymethylation. Since a high concentration of alkali is used in mercerization and carboxymethylation, type I crystals of cellulose are easily converted to type II. Desired crystallinity can be maintained by adjusting the degree. The upper limit of the crystallinity of cellulose type I is not particularly limited. Realistically, it is considered that the upper limit is about 90%. The crystallinity of cellulose type I in CM-modified cellulose and the crystallinity of cellulose type I in CM-CNF obtained by fibrillating CM-modified cellulose are generally the same.
 (リン酸エステル化CNF)
 アニオン変性CNFの一例として、リン酸エステル化CNFを挙げることができる。リン酸エステル化CNFは、上述したセルロース原料にリン酸系化合物の粉末又は水溶液を混合する、あるいは、セルロース原料のスラリーにリン酸系化合物の水溶液を添加するなどにより、リン酸系化合物由来のリン酸系の基をセルロースに導入してリン酸エステル化セルロースとし、これを解繊することにより得ることができる。リン酸系化合物としては、リン酸、ポリリン酸、亜リン酸、次亜リン酸、ホスホン酸、ポリホスホン酸あるいはこれらのエステル又は塩が挙げられる。具体的には、例えば、これらに限定されないが、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、亜リン酸ナトリウム、亜リン酸カリウム、次亜リン酸ナトリウム、次亜リン酸カリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウム等が挙げられる。これらの1種、あるいは2種以上を併用してセルロースにリン酸系化合物由来のリン酸系の基を導入することができる。本明細書において、リン酸系化合物由来のリン酸系の基には、リン酸基、亜リン酸基、次亜リン酸基、ピロリン酸基、メタリン酸基、ポリリン酸基、ホスホン酸基、及びポリホスホン酸基が含まれる。リン酸エステル化セルロース及びリン酸エステル化CNFは、セルロースの分子鎖にこれらのリン酸系の基の1種または2種以上が導入されているものを含む。セルロース原料をリン酸系化合物と反応させる際には、反応を均一に進行できかつ上記基の導入の効率が高くなることから前記リン酸系化合物は水溶液として用いることが望ましく、その際、水溶液のpHは、pH3~7が好ましい。また、尿素等の窒素含有化合物を添加してもよい。セルロース原料に対するリン酸基を有する化合物の添加量は、セルロース原料の固形分100質量部に対して、リン元素換算で、0.1~500質量部が好ましく、1~400質量部がより好ましく、2~200質量部がさらに好ましい。これにより、リン酸基を有する化合物の使用量に見合った収率を効率よく得ることができる。反応温度は0~95℃が好ましく、30~90℃がより好ましい。反応時間は特に限定されないが、通常1~600分程度であり、30~480分が好ましい。エステル化反応の条件がこれらのいずれかの範囲内であると、セルロースが過度にエステル化されて溶解しやすくなることを抑制でき、リン酸エステル化セルロースの収率を向上できる。リン酸基を有する化合物を反応させる際、さらに塩基性化合物(例えば、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミン等の塩基性を示すアミノ基を有する化合物)を反応系に加えてもよい。
 エステル化後に得られた懸濁液は、必要に応じて脱水し、脱水後には加熱処理を行うことが好ましい。これにより、セルロース原料の加水分解を抑えることができる。加熱温度は、100~170℃が好ましく、加熱処理の際に水が含まれている間は、130℃以下(好ましくは、110℃以下)で加熱し、水を除いた後、100~170℃で加熱処理することがより好ましい。煮沸後、冷水で洗浄する等の洗浄処理及び/又は中和処理がなされることが好ましい。これにより解繊を効率よく行うことができる。洗浄は、加水後脱水(例えばろ過)により行えばよく、2回以上繰り返してもよい。洗浄は、ろ液の電気伝導度が低下するまで行うことが好ましい。例えば、電気伝導度が好ましくは200以下、より好ましくは150以下、更に好ましくは120以下となるまで行うことができる。また、洗浄後、必要に応じて中和処理を行ってもよい。中和処理は、例えばアルカリ(例、水酸化ナトリウム)の添加によることができる。中和後に再び洗浄を行ってもよい。
(Phosphate esterified CNF)
An example of anion-modified CNF is phosphorylated CNF. Phosphate-esterified CNF can be obtained by mixing the above-mentioned cellulose raw material with a phosphoric acid compound powder or aqueous solution, or by adding an aqueous solution of a phosphoric acid compound to a slurry of the cellulose raw material. It can be obtained by introducing an acid-based group into cellulose to obtain phosphate-esterified cellulose and defibrating it. Phosphoric acid compounds include phosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid, phosphonic acid, polyphosphonic acid, and esters or salts thereof. Specifically, for example, but not limited to, phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium phosphite, potassium phosphite, sodium hypophosphite, Potassium phosphite, sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, ammonium metaphosphate and the like. A phosphoric acid group derived from a phosphoric acid compound can be introduced into cellulose by using one or more of these in combination. In the present specification, the phosphoric acid group derived from a phosphoric acid compound includes a phosphoric acid group, a phosphorous acid group, a hypophosphorous acid group, a pyrophosphate group, a metaphosphoric acid group, a polyphosphoric acid group, a phosphonic acid group, and polyphosphonic acid groups. Phosphate-esterified cellulose and phosphate-esterified CNF include those in which one or more of these phosphoric acid groups are introduced into the molecular chain of cellulose. When the cellulose raw material is reacted with the phosphoric acid compound, it is desirable to use the phosphoric acid compound in the form of an aqueous solution because the reaction can proceed uniformly and the efficiency of introduction of the above group increases. The pH is preferably pH 3-7. A nitrogen-containing compound such as urea may also be added. The amount of the compound having a phosphate group added to the cellulose raw material is preferably 0.1 to 500 parts by mass, more preferably 1 to 400 parts by mass, in terms of phosphorus element, with respect to 100 parts by mass of the solid content of the cellulose raw material. 2 to 200 parts by mass is more preferable. As a result, a yield corresponding to the amount of the compound having a phosphate group can be efficiently obtained. The reaction temperature is preferably 0 to 95°C, more preferably 30 to 90°C. Although the reaction time is not particularly limited, it is usually about 1 to 600 minutes, preferably 30 to 480 minutes. If the conditions for the esterification reaction are within any of these ranges, excessive esterification of cellulose and its susceptibility to dissolution can be suppressed, and the yield of phosphate esterified cellulose can be improved. When reacting a compound having a phosphate group, a basic compound (e.g., urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine, etc.) (compound having an amino group showing) may be added to the reaction system.
The suspension obtained after the esterification is preferably dehydrated, if necessary, and heat-treated after the dehydration. Thereby, hydrolysis of the cellulose raw material can be suppressed. The heating temperature is preferably 100 to 170 ° C., and while water is contained during the heat treatment, heat at 130 ° C. or lower (preferably 110 ° C. or lower), remove water, and then heat to 100 to 170 ° C. It is more preferable to heat-process at. After boiling, it is preferable to carry out washing treatment such as washing with cold water and/or neutralization treatment. Thereby, defibration can be performed efficiently. Washing may be performed by adding water and dehydrating (for example, filtering), and may be repeated twice or more. Washing is preferably carried out until the electric conductivity of the filtrate decreases. For example, it can be carried out until the electric conductivity is preferably 200 or less, more preferably 150 or less, and still more preferably 120 or less. Moreover, after washing, neutralization treatment may be performed as necessary. Neutralization treatment can be carried out, for example, by addition of alkali (eg, sodium hydroxide). Washing may be performed again after neutralization.
 リン酸エステル化CNFにおけるグルコース単位当たりのリン酸系の基の置換度(以下、単に「リン酸基置換度」と呼ぶ。)は、下限は0.001以上が好ましい。上限は、3.0以下が好ましく、0.40未満であることがより好ましい。グルコース単位当たりのリン酸基置換度は、以下の方法で測定することができる:
 固形分量が0.2質量%のリン酸エステル化CNFのスラリーを調製する。スラリーに対し、体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ社製、コンディショニング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーとを分離することにより、水素型リン酸エステル化CNFを得る。次いで、イオン交換樹脂による処理後のスラリーに、0.1Nの水酸化ナトリウム水溶液を、30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測する。計測結果のうち、急激に電気伝導度が低下する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除すことにより、水素型リン酸エステル化CNF1g当たりのリン酸基量(mmol/g)を算出する。さらに、リン酸エステル化CNFのグルコース単位当たりのリン酸基置換度(DS)を、次式によって算出する:
 DS=0.162×A/(1-0.079×A)
 A:水素型リン酸エステル化CNFの1gあたりのリン酸基量(mmol/g)。
The lower limit of the degree of substitution of a phosphate group per glucose unit in the phosphorylated CNF (hereinafter simply referred to as "degree of phosphate group substitution") is preferably 0.001 or more. The upper limit is preferably 3.0 or less, more preferably less than 0.40. The degree of phosphate group substitution per glucose unit can be measured by the following method:
A slurry of phosphorylated CNF having a solids content of 0.2% by weight is prepared. To the slurry, 1/10 by volume of a strongly acidic ion exchange resin (Amberjet 1024; manufactured by Organo, conditioned) was added, shaken for 1 hour, and then poured onto a mesh with an opening of 90 μm to pour the resin. and the slurry are separated to obtain hydrogen-type phosphate-esterified CNF. Next, while adding 50 μL of 0.1 N sodium hydroxide aqueous solution to the slurry after the treatment with the ion-exchange resin once every 30 seconds, the change in the electrical conductivity of the slurry is measured. Among the measurement results, by dividing the alkali amount (mmol) required in the region where the electrical conductivity sharply decreases by the solid content (g) in the slurry to be titrated, the hydrogen-type phosphate-esterified CNF per 1 g A phosphate group amount (mmol/g) is calculated. Furthermore, the degree of phosphate group substitution (DS) per glucose unit of the phosphorylated CNF is calculated by the following formula:
DS = 0.162 x A/(1 - 0.079 x A)
A: Phosphate group amount (mmol/g) per 1 g of hydrogen-type phosphate-esterified CNF.
-亜リン酸エステル化CNF-
 エステル化セルロース繊維の製造方法の第2の例としては、亜リン酸エステル化セルロース繊維が挙げられる。亜リン酸化セルロース繊維は通常、セルロース分子鎖を構成する炭素原子の少なくとも1つ(例えば、グルコピラノース単位を構成するC6位の1級水酸基を有する炭素原子)が亜リン酸化されている構造を有する。
-Phosphite CNF-
A second example of a method for producing esterified cellulose fibers includes phosphite esterified cellulose fibers. Phosphite cellulose fibers usually have a structure in which at least one of the carbon atoms constituting the cellulose molecular chain (for example, the carbon atom having a primary hydroxyl group at the C6 position constituting the glucopyranose unit) is phosphorylated. .
 亜リン酸エステル化セルロース繊維におけるグルコース単位当たりの亜リン酸基の置換度(以下、単に「亜リン酸基置換度」と呼ぶ。)は、0.001~0.60が好ましい。これにより、セルロース同士の電気的反発が起こりやすくなり、ナノ解繊が容易となる。亜リン酸基の置換度の測定は、リン酸基置換度の測定方法と同じ方法で測定できる。亜リン酸基置換度は、亜リン酸又はその塩の添加量、必要に応じて用いるアルカリ金属イオン含有物、尿素又はその誘導体の添加量等の反応条件をコントロールすることにより調整できる。 The degree of phosphite group substitution per glucose unit in the phosphite-esterified cellulose fiber (hereinafter simply referred to as "phosphite group substitution degree") is preferably 0.001 to 0.60. This facilitates electrical repulsion between cellulose particles, facilitating nano-fibrillation. The degree of phosphite group substitution can be measured by the same method as the method for measuring the degree of phosphate group substitution. The degree of phosphite group substitution can be adjusted by controlling reaction conditions such as the amount of phosphorous acid or a salt thereof added, the amount of an alkali metal ion-containing substance used as necessary, and the amount of urea or a derivative thereof added.
 亜リン酸エステル化の方法としては、例えば、未変性のセルロース繊維に対し、亜リン酸又はその金属塩(好ましくは、亜リン酸水素ナトリウム)を反応させ、亜リン酸のエステル基を導入する方法が挙げられる。 As a method of phosphite esterification, for example, an unmodified cellulose fiber is reacted with phosphorous acid or a metal salt thereof (preferably sodium hydrogen phosphite) to introduce an ester group of phosphorous acid. method.
 亜リン酸及びその金属塩としては、例えば、亜リン酸、亜リン酸水素ナトリウム、亜リン酸水素アンモニウム、亜リン酸水素カリウム、亜リン酸二水素ナトリウム、亜リン酸ナトリウム、亜リン酸リチウム、亜リン酸カリウム、亜リン酸マグネシウム、亜リン酸カルシウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸等の亜リン酸化合物、これらから選ばれる2以上の組み合わせが挙げられ、亜リン酸水素ナトリウムが好ましい。これにより、セルロース繊維にアルカリ金属イオンも導入できる。亜リン酸又はその金属塩の添加量は、未変性のセルロース繊維1kgに対し、好ましくは1~10,000g、より好ましくは100~5,000g、さらに好ましくは300~1,500gである。亜リン酸及びその金属塩とは別に、アルカリ金属イオン含有物(例えば、水酸化物、硫酸金属塩、硝酸金属塩、塩化金属塩、リン酸金属塩、炭酸金属塩)を反応系にさらに添加してもよい。 Examples of phosphorous acid and metal salts thereof include phosphorous acid, sodium hydrogen phosphite, ammonium hydrogen phosphite, potassium hydrogen phosphite, sodium dihydrogen phosphite, sodium phosphite, and lithium phosphite. , potassium phosphite, magnesium phosphite, calcium phosphite, triethyl phosphite, triphenyl phosphite, phosphorous acid compounds such as pyrophosphite, and combinations of two or more selected from these. Sodium hydride is preferred. Thereby, alkali metal ions can also be introduced into the cellulose fibers. The amount of phosphorous acid or its metal salt to be added is preferably 1 to 10,000 g, more preferably 100 to 5,000 g, still more preferably 300 to 1,500 g, per 1 kg of unmodified cellulose fibers. Apart from phosphorous acid and its metal salts, alkali metal ion-containing substances (e.g., hydroxides, metal sulfates, metal nitrates, metal chlorides, metal phosphates, metal carbonates) are further added to the reaction system. You may
 また、尿素又はその誘導体を反応系にさらに添加してもよい。これにより、カルバメート基もセルロース繊維に導入できる。尿素及び尿素誘導体としては、例えば、尿素、チオ尿素、ビウレット、フェニル尿素、ベンジル尿素、ジメチル尿素、ジエチル尿素、テトラメチル尿素、これらから選択される2以上の組み合わせが挙げられ、尿素が好ましい。尿素及び尿素誘導体の添加量は、亜リン酸又はその金属塩1molに対し、好ましくは0.01~100mol、より好ましくは0.2~20mol、さらに好ましくは0.5~10molである。 Also, urea or a derivative thereof may be further added to the reaction system. This can also introduce carbamate groups into the cellulose fibers. Urea and urea derivatives include, for example, urea, thiourea, biuret, phenylurea, benzylurea, dimethylurea, diethylurea, tetramethylurea, and combinations of two or more selected from these, with urea being preferred. The amount of urea and urea derivatives to be added is preferably 0.01 to 100 mol, more preferably 0.2 to 20 mol, still more preferably 0.5 to 10 mol, per 1 mol of phosphorous acid or its metal salt.
 反応温度は、100~200℃が好ましく、100~180℃がより好ましく、100~170℃がさらに好ましい。加熱処理の際に水が含まれている間は、130℃以下(好ましくは、110℃以下)で加熱し、水を除いた後、100~170℃で加熱処理することがより好ましい。反応時間は、通常、10~180分程度であり、30~120分がより好ましい。亜リン酸エステル化セルロース繊維は、解繊するに先立って、洗浄することが好ましい。グルコース単位当たりの亜リン酸基の置換度は、0.01以上0.23未満が好ましい。 The reaction temperature is preferably 100-200°C, more preferably 100-180°C, even more preferably 100-170°C. It is more preferable to heat at 130° C. or less (preferably 110° C. or less) while water is contained in the heat treatment, and after removing the water, heat-treat at 100 to 170° C. The reaction time is usually about 10 to 180 minutes, more preferably 30 to 120 minutes. The phosphite-esterified cellulose fibers are preferably washed prior to defibration. The degree of substitution of the phosphite group per glucose unit is preferably 0.01 or more and less than 0.23.
 (硫酸エステル化CNF)
 アニオン変性CNFの一例として、硫酸エステル化CNFを挙げることができる。硫酸エステル化CNFは、上述したセルロース原料に硫酸系化合物を反応させることにより、硫酸系化合物由来の硫酸系の基をセルロースに導入して硫酸エステル化セルロースとし、これを解繊することにより得ることができる。硫酸系化合物としては、例えば、硫酸、スルファミン酸、クロロスルホン酸、三酸化硫黄、あるいはこれらのエステル又は塩が挙げられる。これらの中では、セルロースの溶解性が小さく、また、酸性度が低いことから、スルファミン酸を用いることが好ましい。
(Sulfuric acid esterified CNF)
An example of anion-modified CNF is sulfate-esterified CNF. Sulfated CNF can be obtained by reacting the above-described cellulose raw material with a sulfuric acid-based compound to introduce a sulfuric acid-based group derived from the sulfuric acid-based compound into cellulose to obtain sulfated cellulose, which is defibrated. can be done. Examples of sulfuric acid compounds include sulfuric acid, sulfamic acid, chlorosulfonic acid, sulfur trioxide, and esters or salts thereof. Among these, sulfamic acid is preferably used because cellulose has low solubility and low acidity.
 例えば、硫酸系化合物としてスルファミン酸を用いる場合、スルファミン酸の使用量は、セルロース鎖へのアニオン基の導入量を考慮して適宜調整することができる。例えば、セルロース分子中のグルコース単位1mol当たり、好ましくは0.01~50molの量で用いることができ、より好ましくは0.1~3.0molの量で用いることができる。 For example, when sulfamic acid is used as the sulfuric acid compound, the amount of sulfamic acid used can be appropriately adjusted in consideration of the amount of anionic groups to be introduced into the cellulose chain. For example, it can be used in an amount of preferably 0.01 to 50 mol, more preferably 0.1 to 3.0 mol, per 1 mol of glucose units in the cellulose molecule.
 硫酸エステル化CNFにおけるグルコース単位当たりの硫酸系の基の量(以下、単に「硫酸基量」と呼ぶ。)は、0.1~3.0mmol/gであることが好ましい。グルコース単位当たりの硫酸基量は、以下の方法で測定することができる:
 硫酸エステル化CNFの水分散液をエタノール、t-ブタノールの順に溶媒置換した後、凍結乾燥する。得られた試料200mgにエタノール15ml及び水5mlを加え、30分間撹拌する。その後、0.5Nの水酸化ナトリウム水溶液を10ml加え、70℃で30分間撹拌し、さらに30℃で24時間撹拌する。次いで、指示薬としてフェノールフタレインを加え、塩酸で滴定を行い、下式を用いて算出する:
 硫酸基量[mmol/g試料]=(5-(0.1×塩酸滴定量[ml]×2))/0.2。
The amount of sulfate-based groups per glucose unit in the sulfated CNF (hereinafter simply referred to as "amount of sulfate groups") is preferably 0.1 to 3.0 mmol/g. The amount of sulfate groups per glucose unit can be measured by the following method:
The aqueous dispersion of sulfated CNF is subjected to solvent substitution in the order of ethanol and t-butanol, and then freeze-dried. 15 ml of ethanol and 5 ml of water are added to 200 mg of the obtained sample, and the mixture is stirred for 30 minutes. After that, 10 ml of 0.5N sodium hydroxide aqueous solution is added, and the mixture is stirred at 70° C. for 30 minutes and further stirred at 30° C. for 24 hours. Then, add phenolphthalein as an indicator, titrate with hydrochloric acid, and calculate using the following formula:
Sulfate group amount [mmol/g sample]=(5−(0.1×hydrochloric acid titration amount [ml]×2))/0.2.
<機能層>
 機能層は、アニオン変性CNFを含む層である。機能層は、アニオン変性CNFを主成分として含むことが好ましく、アニオン変性CNFの含有量が、通常、50%を超え、60%以上、70%以上、80%以上、又は90%以上であり、アニオン変性CNFのみからなる(含有量100%)でもよい。機能層は、アニオン変性CNFを含むことにより、誘電性、絶縁性等の機能を発揮できる。
<Function layer>
The functional layer is a layer containing anion-modified CNF. The functional layer preferably contains anion-modified CNF as a main component, and the content of anion-modified CNF is usually more than 50%, 60% or more, 70% or more, 80% or more, or 90% or more, It may consist only of anion-modified CNF (content 100%). A functional layer can exhibit functions, such as a dielectric property and an insulating property, by including anion-modified CNF.
 機能層の膜厚(乾燥後)は、通常、30μm以下であり、25μm以下であることが好ましく、20μm以下であることがさらに好ましく、10μm以下であることが特に好ましい。下限としては特に制限されないが、機能層として様々な用途に適切に作用効果を及ぼしやすくするため、0.1μm以上が好ましく、0.5μm以上がより好ましく、1μm以上がさらに好ましく、1.3μm以上、1.5μm以上又は2μm以上が特に好ましい。膜厚は略均一であることが好ましい。これにより、アニオン性CNFの分布に偏りのない均質な機能層となり得る。 The film thickness (after drying) of the functional layer is usually 30 µm or less, preferably 25 µm or less, more preferably 20 µm or less, and particularly preferably 10 µm or less. Although the lower limit is not particularly limited, it is preferably 0.1 μm or more, more preferably 0.5 μm or more, even more preferably 1 μm or more, and 1.3 μm or more so that the functional layer can easily exert an appropriate effect in various applications. , 1.5 μm or more or 2 μm or more are particularly preferred. It is preferable that the film thickness is substantially uniform. Thereby, a homogeneous functional layer can be obtained in which the distribution of anionic CNF is not biased.
 機能層の表層は、均質な平滑性を有していることが好ましい。これにより、機能層としての効果の局在の発生を抑制できる。本発明において、均質な平滑性を有しているとは、目視レベルで機能層に凹凸が発生していないことを意味する。 The surface layer of the functional layer preferably has uniform smoothness. As a result, localization of the effect of the functional layer can be suppressed. In the present invention, having uniform smoothness means that the functional layer does not have irregularities at the visual level.
 機能層は、アニオン変性CNFを含んでいればよく、他の任意成分を含んでいてもよい。任意成分としては、例えば、後段の塗工液の任意成分が挙げられる。 The functional layer only needs to contain anion-modified CNF, and may contain other optional components. Optional components include, for example, optional components of the subsequent coating liquid.
<支持基材>
 支持基材としては、その表面に機能層を略均一に形成できる材料から構成される基材であれば特に制限なく使用することができる。支持基材としては、例えば、樹脂基材、紙基材、さらに金属基材などが挙げられ、中でも様々な用途に応じて所望の性質を有する金属種を選択することができることから、金属基材が好ましい。金属基材を構成する金属としては例えば、アルミニウム、銅、鉄、亜鉛、チタン、ニッケル、鉛、銀、白金、タングステン、ビスマス、ステンレス、真鍮、クロムなどの金属またはこれらの合金などを挙げることができ、汎用性の高さからアルミニウム、または銅が好ましい。支持基材の形状、サイズは特に制限されない。例えば、シート状、フィルム上の基材が挙げられる。
<Support base material>
As the support base material, any base material can be used without particular limitation as long as it is composed of a material capable of forming a substantially uniform functional layer on its surface. Examples of supporting substrates include resin substrates, paper substrates, and metal substrates. Among them, metal species having desired properties can be selected according to various uses. is preferred. Examples of metals constituting the metal substrate include metals such as aluminum, copper, iron, zinc, titanium, nickel, lead, silver, platinum, tungsten, bismuth, stainless steel, brass, chromium, and alloys thereof. Aluminum or copper is preferred because of its high versatility. The shape and size of the supporting substrate are not particularly limited. Examples thereof include sheet-like and film-like substrates.
<他の層>
 積層体は、他の層を有していてもよい。他の層としては、例えば、プライマー層、受容層、離型層(剥離層)が挙げられる。プライマー層、受容層は、支持基材と機能層の間に挟持され、離型層は、機能層表面に設けられる(通常、最後に剥離されるが残る場合がある)。プライマー層を設けることにより、前計量塗工法及び後計量塗工法における機能層(塗工液)の塗布性を向上させることができる。プライマー層を構成するプライマーとしては、例えば、ポリアニリンが挙げられる。受容層も、各塗工法における機能層の塗布性を向上させることができる。また、離型層を設けることにより、転写塗工法における剥離の作業性を高めることができる。受容層及び離型層については転写塗工法の欄で後述する。
<Other layers>
The laminate may have other layers. Other layers include, for example, a primer layer, a receiving layer, and a release layer (peeling layer). The primer layer and receiving layer are sandwiched between the supporting substrate and the functional layer, and the release layer is provided on the surface of the functional layer (generally peeled off at the end but may remain). By providing the primer layer, the coatability of the functional layer (coating liquid) in the pre-metering coating method and the post-metering coating method can be improved. Examples of the primer that constitutes the primer layer include polyaniline. The receiving layer can also improve the coatability of the functional layer in each coating method. Also, by providing a release layer, the workability of peeling in the transfer coating method can be enhanced. The receiving layer and release layer will be described later in the section of the transfer coating method.
<2.積層体の製造方法>
 上述の積層体は、支持基材上に、アニオン変性CNFを含む機能層を形成する工程を含む方法により製造できる。機能層の形成には、アニオン変性CNFを含む塗工液を用いることができ、例えば、塗工法(塗布法、例えば、前計量塗工法、後計量塗工法)、転写塗工法によることができる。
<2. Laminate manufacturing method>
The laminate described above can be produced by a method including a step of forming a functional layer containing anion-modified CNF on a support substrate. A coating liquid containing anion-modified CNF can be used to form the functional layer, for example, by a coating method (coating method, for example, pre-metering coating method, post-metering coating method) or transfer coating method.
<塗工法>
-前計量塗工法-
 前計量塗工法とは、連続したウェットコートを行うウェットコーティング技術において、単位塗布幅あたりの流量と基材速度を規定することでウェット膜厚が決定される塗工方法を意味する。前計量塗工法としては、例えば、ダイコーティング法、カーテンコーティング法、グラビアコーティング法、正回転ロールコーティング法、リバースコーティング法、ドクターコーティング法、キスコーティング法、さらに基材にテンションをかけてダイ上で塗布量を調節するテンションウェブコーティング法などを挙げることができる。中でも、連続した塗工において安定して流量をコントロールしやすいことから、ダイコーティング法、カーテンコーティング法が好ましい。
<Coating method>
- Pre-weigh coating method -
The pre-metering coating method means a coating method in which the wet film thickness is determined by specifying the flow rate per unit coating width and the substrate speed in the wet coating technology in which continuous wet coating is performed. Pre-metering coating methods include, for example, die coating, curtain coating, gravure coating, forward roll coating, reverse coating, doctor coating, kiss coating, and applying tension to the base material on the die. A tension web coating method that adjusts the coating amount can be used. Among them, the die coating method and the curtain coating method are preferable because the flow rate can be stably controlled in continuous coating.
(ダイコーティング法)
 ダイコーティング法は、スロットダイ塗布によることができる。スロットダイ塗布は、ダイヘッドから塗工液を押し出しながら基材にコーティングする方式である。スロットダイ塗布による塗工方法の一例をあげると以下のとおりである。スロットダイコーターを構成する、ダイキャビティ内に塗工液を供給しておく。ポンプ、加圧等によりスリット流路を経由してダイ先端(吐出孔)から液体(塗工液)を幅方向に均一な流量で安定して塗工できるような塗工速度に調整しながら(例えば、塗工速度:0.1~1.0m/分、塗工幅0.1~1.0m)押し出す。ダイコーターのサイズ(スリット幅)、基材に対する位置(クリアランス)は、適宜調整すればよい(例えば、スリット幅50~500μm、クリアランス100~1000μm)。スロットダイが固定式の場合、基材をバックアップロール上走行させダイ先端付近へ連続的に供給すると、吐出孔から押し出された塗工液が基材へ供給され、基材との間にビードと呼ばれる液溜まりを形成させつつ、所定のウェット膜厚となるよう、塗布することができる。一方、スロットダイが可動式の場合、スロットダイが基材(固定)表面に沿って塗工剤を吐出しながら動き、基材の表面に均一な塗膜が形成される。
(Die coating method)
The die coating method can be by slot die coating. Slot die coating is a method of coating a substrate while extruding a coating liquid from a die head. An example of the coating method by slot die coating is as follows. A coating liquid is supplied into the die cavity that constitutes the slot die coater. While adjusting the coating speed so that the liquid (coating liquid) can be stably coated at a uniform flow rate in the width direction from the tip of the die (discharge hole) through the slit channel by pump, pressurization, etc. ( For example, coating speed: 0.1 to 1.0 m/min, coating width 0.1 to 1.0 m) Extrusion. The size (slit width) of the die coater and the position (clearance) with respect to the substrate may be appropriately adjusted (for example, slit width 50 to 500 μm, clearance 100 to 1000 μm). When the slot die is of fixed type, the base material is run on a backup roll and continuously supplied to the vicinity of the tip of the die. It is possible to apply so as to obtain a predetermined wet film thickness while forming a so-called liquid pool. On the other hand, when the slot die is of a movable type, the slot die moves along the substrate (fixed) surface while discharging the coating agent, forming a uniform coating film on the surface of the substrate.
 ダイコーティング法を採用する場合、ダイ先端の上流側を減圧してもよい。これにより、基材とダイ先端とのコーティングギャップの圧力を調整でき、基材上のビードを安定化できる。減圧の程度は、大気圧より0.05kPa~1.00kPaの範囲で減圧することが好適であるが、基材速度や塗工液の液性によって適宜調整すればよい。圧力の調製は、バキュームチャンバーを設置して行うことができる。 When adopting the die coating method, the pressure on the upstream side of the die tip may be reduced. Thereby, the pressure in the coating gap between the substrate and the die tip can be adjusted, and the bead on the substrate can be stabilized. The degree of pressure reduction is preferably in the range of 0.05 kPa to 1.00 kPa from the atmospheric pressure, but may be appropriately adjusted depending on the speed of the base material and the properties of the coating liquid. The pressure can be adjusted by installing a vacuum chamber.
(カーテンコーティング法)
 カーテンコーティング法では、塗工液を帯(カーテン)状に落下させ、基材をそのカーテン内を通過させることにより塗布する方法である。カーテンコーティング法は、カーテンを形成させる方法によって分類され、例えば、オーバーフロー型、オリフィス型、ダイフィード型、スライドホッパー型が挙げられる。オーバーフロー型は、塗液を溜めている容器の淵から塗液をオーバーフローさせる方式である。オーバーフロー型は、塗工液溜めの下部にあるオリフィスから塗工液を流し出す方式である。大フィード型は、ダイの下部から塗工液を押し出してカーテンを形成するスライドホッパー型は、スライド面から塗工液を流下させてカーテンを形成する方式である。カーテンコーティング法としては、オリフィス型、ダイフィード型、スライドホッパー型が好ましい。これらの方式では、一定の流圧を継続的にかけ続けることができ、アニオン変性CNFを含む塗工液の、アニオン変性CNFの作用により生ずるチキソ性による液性の変化を抑制できる。
(curtain coating method)
The curtain coating method is a method in which a coating solution is dropped in a band (curtain) and the substrate is passed through the curtain to apply the coating solution. Curtain coating methods are classified according to the method of forming a curtain, and examples thereof include overflow type, orifice type, die feed type, and slide hopper type. The overflow type is a method in which the coating liquid overflows from the edge of the container in which the coating liquid is stored. The overflow type is a system in which the coating liquid flows out from an orifice in the lower part of the coating liquid reservoir. The large feed type pushes the coating liquid from the bottom of the die to form a curtain. The slide hopper type forms a curtain by letting the coating liquid flow down from the slide surface. Orifice type, die feed type and slide hopper type are preferable as the curtain coating method. In these methods, a constant flow pressure can be continuously applied, and the change in liquid property due to thixotropy caused by the action of the anion-modified CNF in the coating liquid containing the anion-modified CNF can be suppressed.
(前計量塗工法の際の塗工液の供給量)
 前計量塗工法における塗工液の基材上への供給量(ダイコーティングの場合、ダイコーターからの塗工液の吐出量)は、通常、400mL/min以下、好ましくは300mL/min以下、より好ましくは250mL/min以下、さらに好ましくは200mL/min以下である。下限は特に限定されないが、通常、1mL/min以上、好ましくは50mL/min以上、より好ましくは80mL/min以上である。上記速度は、ダイコーティングの場合、ダイの移動速度、又は基材の移動速度(基材を移動させるベルトの移動速度)により調整可能である。
(Amount of coating solution supplied during pre-metering coating method)
The amount of coating liquid supplied onto the substrate in the pre-metering coating method (in the case of die coating, the amount of coating liquid discharged from the die coater) is usually 400 mL/min or less, preferably 300 mL/min or less, or more. It is preferably 250 mL/min or less, more preferably 200 mL/min or less. Although the lower limit is not particularly limited, it is usually 1 mL/min or more, preferably 50 mL/min or more, more preferably 80 mL/min or more. In the case of die coating, the above speed can be adjusted by the moving speed of the die or the moving speed of the substrate (the moving speed of the belt that moves the substrate).
-後計量塗工法-
 後計量塗工法とは、連続したウェットコートを行うウェットコーティング技術において、液膜に外力を与えて過剰液を除去し所定の塗布膜厚を得る塗工方法を意味する。後計量塗工法としては、例えば、バーコーティング法、ブレードコーティング法、(エア)ナイフコーティング法、ディップコーティング法、さらに基材にテンションをかけてロール上で塗布量を調節するテンションウェブコーティング法などを挙げることができる。中でも、基材とのクリアランスの調整がしやすく、その結果、連続した塗工において支持基材に接触によるキズなどの発生を抑制できることから、バーコーティング法、ブレードコーティング法、ナイフコーティング法が好ましい。
- Post-weighing coating method -
The post-metering coating method means a coating method in which an external force is applied to a liquid film to remove excess liquid to obtain a predetermined coating film thickness in the wet coating technique of performing continuous wet coating. Examples of post-metering coating methods include bar coating, blade coating, (air) knife coating, dip coating, and tension web coating, in which tension is applied to the substrate to adjust the coating amount on a roll. can be mentioned. Among them, the bar coating method, the blade coating method, and the knife coating method are preferable because the clearance with the substrate can be easily adjusted, and as a result, the generation of scratches due to contact with the supporting substrate can be suppressed in continuous coating.
(バーコーティング法)
 バーコーティング法では、支持基材上に塗工液を接触させたのち、接触させた塗工液の近傍にバーを載置し、塗工液をかき取るようにバーまたは支持基材を動かすことにより塗工する。そのようなバーとしてはワイヤーを巻き付けたワイヤーバー、また溝が一体形成されているワイヤレスバーのどちらも用いることができるが、塗工時の金属基材のキズを抑制する観点からワイヤレスバーを用いることが好ましい。バーの移動速度、バーの表面の構造などにより、塗工液の塗布量を調整できる。ワイヤレスバーの溝のサイズは、特に限定されないが、一例をあげると、ピッチは0.05~0.5mm、及び/又は、深さは、5~15μmが好ましい。
(Bar coating method)
In the bar coating method, after the coating liquid is brought into contact with the supporting substrate, the bar is placed near the contacted coating liquid, and the bar or the supporting substrate is moved so as to scrape off the coating liquid. Coated by As such a bar, it is possible to use either a wire-wrapped wire bar or a wireless bar integrally formed with grooves, but the wireless bar is used from the viewpoint of suppressing scratches on the metal substrate during coating. is preferred. The amount of coating liquid to be applied can be adjusted by the moving speed of the bar, the structure of the surface of the bar, and other factors. The size of the grooves of the wireless bar is not particularly limited, but for example, it is preferable that the pitch is 0.05 to 0.5 mm and/or the depth is 5 to 15 μm.
(ブレードコーティング法)
 ブレードコーティング法では、支持基材上に塗工液を接触させたのち、接触させた塗工液の近傍にブレードを載置し、ブレードの刃を基材表面に押し付けて塗工液をかき取るようにブレードを動かすことにより塗工する。ブレードの材料は、通常、金属であるが、セラミックス等他の材料でもよい。ブレードコーティング法は、塗布量の制御が容易であり、また高粘度の液性を持つ塗工液との親和性が高いため、粘性の高いアニオン変性CNF水分散液を所定の膜厚に塗布する目的で好適である。
(Blade coating method)
In the blade coating method, after the coating liquid is brought into contact with the supporting substrate, a blade is placed in the vicinity of the contacted coating liquid, and the edge of the blade is pressed against the substrate surface to scrape off the coating liquid. Apply by moving the blade as shown. The material of the blade is usually metal, but other materials such as ceramics may also be used. The blade coating method is easy to control the coating amount and has a high affinity with a coating liquid having a high viscosity liquidity, so the highly viscous anion-modified CNF aqueous dispersion is applied to a predetermined film thickness. suitable for the purpose.
 ブレードコーティング法による場合、ブレード角、クリアランス設定(ブレードと基材の間のクリアランス)、移動速度などにより、塗工液の塗布量(機能層の膜厚)を調整できる。ブレード角は、小さいほうが(例えば、基材に対し80°以下、70°以下、60°以下、50°以下など)が好ましい。これにより、粘性が高い塗工液(例えば、アニオン変性CNFの水分散液)を用いる場合にもストリークの発生を抑制できる。クリアランス設定は、通常、800μm以下、好ましくは700μm以下、より好ましくは600μm以下である。ブレードコーティング法の場合、塗工とその後の乾燥(後述)をワンセットとして、複数回繰り返してもよい。 When using the blade coating method, the coating amount of the coating liquid (film thickness of the functional layer) can be adjusted by the blade angle, clearance setting (clearance between the blade and the base material), moving speed, etc. A smaller blade angle (for example, 80° or less, 70° or less, 60° or less, or 50° or less with respect to the substrate) is preferable. Thereby, generation|occurrence|production of a streak can be suppressed also when using a highly viscous coating liquid (for example, aqueous dispersion liquid of anion-modified CNF). Clearance settings are typically 800 μm or less, preferably 700 μm or less, more preferably 600 μm or less. In the case of the blade coating method, one set of coating and subsequent drying (described later) may be repeated multiple times.
(ナイフコーティング法)
 ナイフコーティング法とは、ナイフのように刃先加工された非回転のナイフロールと、ナイフロールに接するように基材を供給するバックアップロールとを用いる塗工方法である。すなわち、基材上に塗工液を供給し、ナイフロールと基材との間隙におけるせん断力の効果で平滑な塗膜を形成する。ナイフコーティング法は、粘性の高いアニオン変性CNF水分散液を塗工液に用いる際に好適である。
(Knife coating method)
The knife coating method is a coating method that uses a non-rotating knife roll with a knife-like edge and a backup roll that supplies a substrate so as to be in contact with the knife roll. That is, the coating liquid is supplied onto the base material, and a smooth coating film is formed by the effect of the shearing force in the gap between the knife roll and the base material. The knife coating method is suitable when using a highly viscous anion-modified CNF water dispersion as a coating liquid.
 なお、エアナイフコーティング法を用いることもできる。エアナイフコーティング法は、基材に塗布液を接触させエアナイフに接するように供給するアプリケーターロールと、基材表面にエアを吹きかけるエアナイフとを用いる塗工方法である。すなわち、アプリケーターロールで塗布液を接触させた基材は、エアナイフから噴出するエアにより所定の塗工量に調整される。塗工量の調整を容易となるので、塗工液の粘性を調整することが好ましい。 The air knife coating method can also be used. The air knife coating method is a coating method that uses an applicator roll that supplies a coating liquid in contact with the substrate and an air knife that blows air onto the surface of the substrate. That is, the base material contacted with the coating liquid by the applicator roll is adjusted to a predetermined coating amount by the air jetted from the air knife. It is preferable to adjust the viscosity of the coating liquid because it facilitates adjustment of the coating amount.
-塗工液-
 塗工液は、アニオン変性CNFを含み、通常は液体である。
- Coating liquid -
The coating liquid contains anion-modified CNF and is usually liquid.
 塗工液は、適度な粘性を有することが好ましい。これにより、塗工性が良好となる。塗工液の60rpm粘度は、通常、30mPa・s以上、又は50mPa・s以上、好ましくは52mPa・s以上、より好ましくは54mPa・s以上、さらに好ましくは55mPa・s以上である。上限は、通常、1000mPa・s以下、900mPa・s以下、800mPa・s以下、好ましくは700mPa・s以下、600mPa・s以下又は500mPa・s以下、より好ましくは450mPa・s以下又は400mPa・s以下である。6rpm粘度は、通常、60mPa・s以上又は65mPa・s以上、好ましくは70mPa・s以上、より好ましくは75mPa・s以上である。上限は、通常、6000mPa・s以下又は5000mPa・s以下、好ましくは4000mPa・s以下、より好ましくは3000mPa・s以下、又は2500mPa・s以下である。6rpm粘度及び60rpm粘度は、アニオン性基の種類、CNFの平均繊維径、平均繊維長、アスペクト比、塗工液におけるアニオン変性CNFの濃度等の条件により変動する。6rpm粘度及び60rpm粘度は、B型粘度計を用い、25℃においてそれぞれ回転数6rpm、60rpmの条件で測定できる。 The coating liquid preferably has moderate viscosity. Thereby, coatability becomes favorable. The 60 rpm viscosity of the coating liquid is usually 30 mPa·s or more, or 50 mPa·s or more, preferably 52 mPa·s or more, more preferably 54 mPa·s or more, and still more preferably 55 mPa·s or more. The upper limit is usually 1000 mPa s or less, 900 mPa s or less, 800 mPa s or less, preferably 700 mPa s or less, 600 mPa s or less, or 500 mPa s or less, more preferably 450 mPa s or less, or 400 mPa s or less. be. The 6 rpm viscosity is usually 60 mPa·s or more or 65 mPa·s or more, preferably 70 mPa·s or more, more preferably 75 mPa·s or more. The upper limit is usually 6000 mPa·s or less or 5000 mPa·s or less, preferably 4000 mPa·s or less, more preferably 3000 mPa·s or less, or 2500 mPa·s or less. The 6 rpm viscosity and 60 rpm viscosity vary depending on conditions such as the type of anionic group, the average fiber diameter of CNF, the average fiber length, the aspect ratio, and the concentration of anion-modified CNF in the coating solution. The 6 rpm viscosity and the 60 rpm viscosity can be measured using a Brookfield viscometer at 25° C. under the conditions of 6 rpm and 60 rpm, respectively.
 塗工液中に含まれるアニオン変性CNFの固形分量は5%未満が好ましく、4%以下がより好ましく、3%以下がさらに好ましく、2%以下が特に好ましい。これにより、塗工液の粘度上昇、チキソ性の過剰発現を抑制できる。下限としては、0.1%以上が好ましく、0.2%以上がより好ましく、0.3%以上がさらに好ましい。ダイコーティング法を採用する場合、一般に、スリット流路における塗工液の流量の均一性が、支持基材上のウェット膜厚の均一性と連動している。塗工液の固形分を上記の範囲に調整することにより、塗工液の流量の均一性、ウェット膜厚の均一性を向上させることができる。 The solid content of the anion-modified CNF contained in the coating liquid is preferably less than 5%, more preferably 4% or less, even more preferably 3% or less, and particularly preferably 2% or less. This can suppress an increase in the viscosity of the coating liquid and excessive expression of thixotropic properties. The lower limit is preferably 0.1% or more, more preferably 0.2% or more, and even more preferably 0.3% or more. When adopting the die coating method, generally, the uniformity of the flow rate of the coating liquid in the slit channel is linked to the uniformity of the wet film thickness on the supporting substrate. By adjusting the solid content of the coating liquid within the above range, the uniformity of the flow rate of the coating liquid and the uniformity of the wet film thickness can be improved.
 塗工液の分散媒としては、例えば、水、溶剤(例えば、アルコール等の親水性溶剤)が挙げられ、適宜選択することができる。アニオン変性CNFの製造時の(例えば解繊後の)水分散体は、そのまま塗工液として利用できる。一方で分散媒として溶剤を用いる(水から溶剤に置換する)か、又は水に溶剤を混合することにより、塗工条件にあわせて、塗工液の粘度、揮発性を調整できる。 Examples of the dispersion medium for the coating liquid include water and solvents (for example, hydrophilic solvents such as alcohol), which can be selected as appropriate. The aqueous dispersion (for example, after fibrillation) at the time of production of anion-modified CNF can be used as a coating liquid as it is. On the other hand, the viscosity and volatility of the coating liquid can be adjusted according to the coating conditions by using a solvent as the dispersion medium (substituting the solvent for water) or by mixing the solvent with water.
 塗工液は、アニオン変性CNFと分散媒の他に、本発明の効果を阻害しない範囲でその他の添加剤を併用することができる。そのような添加剤としては、例えば、レベリング剤、消泡剤、水溶性高分子などの分散安定剤、防腐剤、結着剤、レオロジーコントロール剤などを挙げることができる。 In addition to the anion-modified CNF and the dispersion medium, the coating liquid can be used in combination with other additives within a range that does not impair the effects of the present invention. Examples of such additives include leveling agents, antifoaming agents, dispersion stabilizers such as water-soluble polymers, preservatives, binders, and rheology control agents.
 水溶性高分子としては、例えば、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、エチルセルロース)、キサンタンガム、キシログルカン、デキストリン、デキストラン、カラギーナン、ローカストビーンガム、アルギン酸、アルギン酸塩、プルラン、澱粉、かたくり粉、クズ粉、加工澱粉(カチオン化澱粉、燐酸化澱粉、燐酸架橋澱粉、燐酸モノエステル化燐酸架橋澱粉、ヒドロキシプロピル澱粉、ヒドロキシプロピル化燐酸架橋澱粉、アセチル化アジピン酸架橋澱粉、アセチル化燐酸架橋澱粉、アセチル化酸化澱粉、オクテニルコハク酸澱粉ナトリウム、酢酸澱粉、酸化澱粉)、コーンスターチ、アラビアガム、ジェランガム、ポリデキストロース、ペクチン、キチン、水溶性キチン、キトサン、カゼイン、アルブミン、大豆蛋白溶解物、ペプトン、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸ソーダ、ポリビニルピロリドン、ポリ酢酸ビニル、ポリアミノ酸、ポリ乳酸、ポリリンゴ酸、ポリグリセリン、ラテックス、ロジン系サイズ剤、石油樹脂系サイズ剤、尿素樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミド・ポリアミン樹脂、ポリエチレンイミン、ポリアミン、植物ガム、ポリエチレンオキサイド、親水性架橋ポリマー、ポリアクリル酸塩、澱粉ポリアクリル酸共重合体、タマリンドガム、グァーガム及びコロイダルシリカ並びにそれら1つ以上の混合物が挙げられる。この中でも、セルロース誘導体は、CM化CNFとの親和性が良好である点から好ましい。 Examples of water-soluble polymers include cellulose derivatives (carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, ethylcellulose), xanthan gum, xyloglucan, dextrin, dextran, carrageenan, locust bean gum, alginic acid, alginate, pullulan, starch, potato starch, Kudzu flour, processed starch (cationized starch, phosphorylated starch, phosphoric acid cross-linked starch, phosphate monoesterified phosphoric acid cross-linked starch, hydroxypropyl starch, hydroxypropylated phosphate cross-linked starch, acetylated adipic acid cross-linked starch, acetylated phosphate cross-linked starch, Acetylated oxidized starch, sodium octenyl succinate, starch acetate, oxidized starch), cornstarch, gum arabic, gellan gum, polydextrose, pectin, chitin, water-soluble chitin, chitosan, casein, albumin, soy protein lysate, peptone, polyvinyl alcohol , polyacrylamide, polysodium acrylate, polyvinylpyrrolidone, polyvinyl acetate, polyamino acid, polylactic acid, polymalic acid, polyglycerin, latex, rosin-based sizing agent, petroleum resin-based sizing agent, urea resin, melamine resin, epoxy resin, Polyamide resin, polyamide/polyamine resin, polyethyleneimine, polyamine, vegetable gum, polyethylene oxide, hydrophilic crosslinked polymer, polyacrylate, starch polyacrylic acid copolymer, tamarind gum, guar gum and colloidal silica, and one or more thereof mixtures. Among these, cellulose derivatives are preferable because they have good affinity with CM-CNF.
 塗工液は、支持基材の表面へ直接塗布してもよいが、支持基材と機能層の間に任意のプライマー層を設ける場合、プライマー層用の塗工液を塗布、乾燥後に塗布することができる。 The coating liquid may be applied directly to the surface of the supporting substrate, but when an arbitrary primer layer is provided between the supporting substrate and the functional layer, the coating liquid for the primer layer is applied and dried before applying. be able to.
<乾燥工程>
 塗工法においては、塗工工程後、通常は乾燥工程を行う。乾燥工程は、塗工工程において形成された塗布膜を乾燥する工程である。乾燥は、風乾、減圧、赤外線等公知の乾燥方法を用いることができ、防爆型乾燥機等の乾燥機を用いることができる。乾燥は、加熱条件下で行うことが好ましい。乾燥温度としては好ましくは75~150℃であり、より好ましくは75~130℃であり、さらに好ましくは80~120℃である。また乾燥時間としては、通常、5秒以上、好ましくは10秒以上、より好ましくは30秒以上、さらに好ましくは45秒以上である。上限は、好ましくは10分以下、より好ましくは9分以下、さらに好ましくは8分以下である。好ましくは10秒~10分、より好ましくは10秒~9分、より好ましくは10秒~8分であり、更に好ましくは10~180秒であり、更により好ましくは30~120秒である。
<Drying process>
In the coating method, a drying process is usually performed after the coating process. A drying process is a process of drying the coating film formed in the coating process. For drying, a known drying method such as air drying, reduced pressure, infrared rays, or the like can be used, and a dryer such as an explosion-proof dryer can be used. Drying is preferably carried out under heating conditions. The drying temperature is preferably 75 to 150°C, more preferably 75 to 130°C, still more preferably 80 to 120°C. The drying time is usually 5 seconds or longer, preferably 10 seconds or longer, more preferably 30 seconds or longer, and still more preferably 45 seconds or longer. The upper limit is preferably 10 minutes or less, more preferably 9 minutes or less, still more preferably 8 minutes or less. It is preferably 10 seconds to 10 minutes, more preferably 10 seconds to 9 minutes, more preferably 10 seconds to 8 minutes, even more preferably 10 to 180 seconds, and even more preferably 30 to 120 seconds.
 乾燥工程において、溶媒の乾燥速度は、好ましくは0.1重量%/sec以上、より好ましくは0.2重量%/sec以上、さらに好ましくは0.22重量%/sec以上である。上限は、好ましくは5.0重量%/sec以下、より好ましくは4.0重量%/sec以下又は3.0重量%/sec以下、さらに好ましくは2.0重量%/sec以下、1.5重量%/sec以下、又は1.07重量%/sec以下である。従って、0.1~5.0重量%/secが好ましく、0.22~1.07重量%/secがより好ましい。上記範囲であると、表面の局所乾燥が抑制され、塗膜表面性の低下を抑制できる。すなわち、局所的な乾燥の進行による膜の生成を抑制でき、また、乾燥収縮による応力集中によるしわの発生を抑制できる。溶媒の乾燥速度は、塗布したサンプル全体における溶媒の比率(重量%)を、溶媒が揮発して塗膜が乾燥するのにかかった時間(sec)で除することにより算出できる。乾燥速度は、乾燥温度、風速により調整できる。 In the drying step, the solvent drying rate is preferably 0.1 wt%/sec or more, more preferably 0.2 wt%/sec or more, and still more preferably 0.22 wt%/sec or more. The upper limit is preferably 5.0 wt%/sec or less, more preferably 4.0 wt%/sec or less or 3.0 wt%/sec or less, still more preferably 2.0 wt%/sec or less, 1.5 weight %/sec or less, or 1.07 weight %/sec or less. Therefore, 0.1 to 5.0% by weight/sec is preferable, and 0.22 to 1.07% by weight/sec is more preferable. When it is in the above range, local drying of the surface is suppressed, and deterioration of coating film surface properties can be suppressed. That is, it is possible to suppress the formation of a film due to the progress of local drying, and to suppress the occurrence of wrinkles due to stress concentration due to drying shrinkage. The drying speed of the solvent can be calculated by dividing the ratio (% by weight) of the solvent in the entire coated sample by the time (sec) required for the solvent to volatilize and the coating film to dry. The drying speed can be adjusted by drying temperature and wind speed.
 乾燥を風乾により行う場合、乾燥時の風速は、100m/min以下が好ましく、90m/min以下、80m/min以下、70m/min以下、60m/min以下、50m/min以下、40m/min以下、又は30m/min以下がより好ましい。これにより、塗膜表面への影響を抑制できる。下限は、1m/min以上が好ましく、5m/min以上又は10m/min以上がより好ましい。これにより乾燥が不十分となることを抑制できる。 When drying is performed by air drying, the wind speed during drying is preferably 100 m/min or less, 90 m/min or less, 80 m/min or less, 70 m/min or less, 60 m/min or less, 50 m/min or less, 40 m/min or less, Or 30 m/min or less is more preferable. Thereby, the influence on the coating film surface can be suppressed. The lower limit is preferably 1 m/min or more, more preferably 5 m/min or more or 10 m/min or more. This can prevent insufficient drying.
<転写塗工法>
 本発明の積層体の製造方法としては、以下の工程1~3をこの順で行うことで、支持基材上にアニオン変性CNFを含む機能層を形成した、積層体を得ることができる。
工程1:転写用基材上にアニオン変性CNFを含む塗膜を形成する工程。
工程2:塗膜表面に支持基材を貼合する工程。
工程3:転写用基材を塗膜から剥離し、支持基材上に機能層を形成する工程。
<Transfer coating method>
As a method for producing a laminate of the present invention, the following steps 1 to 3 are performed in this order to obtain a laminate in which a functional layer containing anion-modified CNF is formed on a support substrate.
Step 1: A step of forming a coating film containing anion-modified CNF on a substrate for transfer.
Step 2: A step of laminating a supporting substrate to the surface of the coating film.
Step 3: A step of peeling the transfer base material from the coating film and forming a functional layer on the support base material.
(工程1)
 転写用基材上にアニオン変性CNFを含む塗膜を形成させる方法としては、公知の塗工方法を選択することができる。そのような塗工方法としては、例えば、バーコーティング法、ブレードコーティング法、(エア)ナイフコーティング法、ディップコーティング法、テンションウェブコーティング法、ダイコーティング法、カーテンコーティング法などが挙げられ、後計量塗工法が好ましく、ブレードコーティング法がより好ましい。塗膜を形成する際には、アニオン変性CNFを含む塗工液を利用できる。塗工方法、塗工液の例、好ましい条件は、塗工液を用いる塗工方法は、前段の塗工法の説明部分に記載したとおりである。
(Step 1)
A known coating method can be selected as a method for forming a coating film containing anion-modified CNF on the substrate for transfer. Examples of such coating methods include bar coating, blade coating, (air) knife coating, dip coating, tension web coating, die coating, curtain coating, and the like. A construction method is preferred, and a blade coating method is more preferred. A coating solution containing anion-modified CNF can be used to form the coating film. The coating method, examples of the coating liquid, and preferred conditions are as described in the description of the coating method in the preceding paragraph.
 塗工後の塗膜は、通常、乾燥処理に供される。乾燥は公知の乾燥方法によることができる。乾燥温度は、好ましくは80~150℃であり、より好ましくは100~150℃であり、さらに好ましくは120~150℃である。また乾燥時間としては、好ましくは5~180秒であり、より好ましくは10~120秒である。乾燥時間は、好ましくは5~180秒であり、より好ましくは10~120秒である。乾燥処理においては、塗膜を完全に乾燥させない(分散媒が残った状態とする)ことが好ましい。これにより、工程3における機能層(塗膜)の剥離を容易に行うことができる。乾燥速度、風乾の場合の風速は、前述の好ましい条件と同様である。塗膜表面は、均一であることが好ましい。 The coating film after coating is usually subjected to drying treatment. Drying can be carried out by a known drying method. The drying temperature is preferably 80 to 150°C, more preferably 100 to 150°C, still more preferably 120 to 150°C. The drying time is preferably 5 to 180 seconds, more preferably 10 to 120 seconds. The drying time is preferably 5-180 seconds, more preferably 10-120 seconds. In the drying treatment, it is preferable not to completely dry the coating film (in which the dispersion medium remains). As a result, the functional layer (coating film) in step 3 can be easily peeled off. The drying speed and air speed in the case of air drying are the same as the preferred conditions described above. The coating surface is preferably uniform.
-転写用基材-
 転写用基材としては、公知の高分子フィルムであればよく、例えば、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリ塩化ビニル、ポリアセチルセルロース、ポリエーテル、ポリアクリル、(メタ)アクリロニトリルなどの高分子フィルムが挙げられる。これらのうち、機械的強度、熱的安定性、経済性に優れているので、ポリエチレンテレフタレートフィルムが好ましい。
- Substrate for transfer -
The substrate for transfer may be any known polymer film, such as polyethylene terephthalate, polyethylene, polypropylene, polystyrene, polycarbonate, polyvinyl chloride, polyacetylcellulose, polyether, polyacryl, (meth)acrylonitrile, and the like. A polymeric film is mentioned. Among these, polyethylene terephthalate film is preferable because it is excellent in mechanical strength, thermal stability and economic efficiency.
 転写用基材は、離型層(剥離層)を有してもよい。離型層を有することにより、転写(転写用基材からの塗膜の剥離)を容易に行うことができる。離型層は、通常、転写用基材の塗膜を形成する方の面(通常は、片面)に設けられる。転写用基材が離型層を有する場合、離型層の表面にアニオン変性CNFを含む塗膜が形成される。 The transfer substrate may have a release layer (peeling layer). By having the release layer, transfer (peeling of the coating film from the substrate for transfer) can be easily performed. The release layer is usually provided on the surface of the transfer substrate on which the coating film is formed (usually on one surface). When the transfer substrate has a release layer, a coating film containing anion-modified CNF is formed on the surface of the release layer.
 離型層としては、特に制限されないが、例えばシリコーン系樹脂、アクリル系樹脂、セルロース系樹脂、メラミン系樹脂、フェノール系樹脂、ウレタン系樹脂、イソシアネート系樹脂、尿素系樹脂、エポキシ系樹脂、不飽和ポリエステル系樹脂、などを用いることができるが、表面張力を転写用基材より低く設計でき、離型層と機能層との界面で機能層が剥離し転写できるように、表面張力の小さいシリコーン系樹脂、アクリル系樹脂、セルロース系樹脂などが好ましい。 Examples of the release layer include, but are not limited to, silicone-based resins, acrylic resins, cellulose-based resins, melamine-based resins, phenol-based resins, urethane-based resins, isocyanate-based resins, urea-based resins, epoxy-based resins, unsaturated Polyester-based resins, etc., can be used, but silicone-based resins with low surface tension can be used so that the surface tension can be designed to be lower than that of the transfer base material, and the functional layer can be peeled off at the interface between the release layer and the functional layer for transfer. Resins, acrylic resins, cellulose resins, and the like are preferred.
 離型層の膜厚は、0.1~20μmが好ましく、0.5~10μmがより好ましい。離型層の表面にごく微細な凹凸を付与するため、凹凸付与剤を添加しても良い。凹凸付与剤があることで、機能層と離型層界面での剥離がより容易になりつつ、機能層表面に適度な粗さを付与できるため、機能層の表面積を向上させるのに好適である。凹凸付与剤の平均粒子径は、0.1~10μm程度であることが好ましい。 The film thickness of the release layer is preferably 0.1 to 20 μm, more preferably 0.5 to 10 μm. In order to impart very fine unevenness to the surface of the release layer, an unevenness imparting agent may be added. The presence of the unevenness-imparting agent makes it easier to separate the functional layer from the release layer, while imparting an appropriate degree of roughness to the surface of the functional layer, which is suitable for increasing the surface area of the functional layer. . The average particle size of the roughening agent is preferably about 0.1 to 10 μm.
 また離型層は離型剤を含んでも良い。離型剤としては、例えば、ポリエチレンワックス、アミドワックス、テフロン(登録商標)パウダー等の固形ワックス、弗素系、リン酸エステル系の界面活性剤、シリコーン樹脂、シリコーンオイル等を挙げることができる。離型層の形成方法としては特に制限されないが、例えば、バーコーティング法、ブレードコーティング法、(エア)ナイフコーティング法、ディップコーティング法、テンションウェブコーティング法、ダイコーティング法、カーテンコーティング法が挙げられ、これらのうちから適宜選択することができる。離型層は、均一な塗工膜であることが好ましい。 The release layer may also contain a release agent. Examples of release agents include solid waxes such as polyethylene wax, amide wax, and Teflon (registered trademark) powder, fluorine-based and phosphate ester-based surfactants, silicone resins, and silicone oils. The method for forming the release layer is not particularly limited, and examples thereof include bar coating, blade coating, (air) knife coating, dip coating, tension web coating, die coating, and curtain coating. It can be appropriately selected from among these. The release layer is preferably a uniform coating film.
(工程2)
 工程2においては、転写用基材上に形成された塗膜の表面に、支持基材を貼合させる。貼合方法としては公知の方法を用いることができ特に制限されることはないが、例えば、塗膜の表面に支持基材を貼り合わせた後、加温(例えば、45℃以上、50℃以上、又は55℃以上、上限は、通常80℃以下)及び/又は加圧(例えば、0.2MPa以上、0.3MPa以上、0.4MPa以上、上限は、通常1.0MPa以下)する方法(例えば、ラミネート法)が挙げられる。この方法によれば、支持基材と塗膜をより密着させることができ、機能層と転写用基材又は剥離層との界面よりも強い接着力を得ることができる。貼合は、連続的に(例えば、0.1m/分以上、0.2m/分以上、0.3m/分以上、0.4m/分以上、0.5m/分以上、上限は、通常、1.0m/分以下)行ってもよい。貼合は、ラミネーター等の装置を用いて行ってもよい。工程1で転写用基材上に形成された塗膜は、完全に乾燥させることなく分散媒を若干量含んでいる状態で、工程2の貼合処理を行ってもよい。これにより、支持基材と塗膜をより密着させることができ、機能層と転写用基材又は剥離層との界面よりも強い接着力を得ることができる。
(Step 2)
In step 2, a support substrate is attached to the surface of the coating film formed on the transfer substrate. As the lamination method, a known method can be used and is not particularly limited. , or 55 ° C. or higher, the upper limit is usually 80 ° C. or lower) and / or pressurization (e.g., 0.2 MPa or higher, 0.3 MPa or higher, 0.4 MPa or higher, the upper limit is usually 1.0 MPa or lower) method (e.g. , lamination method). According to this method, the support substrate and the coating film can be brought into closer contact with each other, and stronger adhesive force can be obtained than the interface between the functional layer and the transfer substrate or the release layer. Lamination is performed continuously (for example, 0.1 m/min or more, 0.2 m/min or more, 0.3 m/min or more, 0.4 m/min or more, 0.5 m/min or more, and the upper limit is usually 1.0 m/min or less) may be performed. Lamination may be performed using a device such as a laminator. The coating film formed on the transfer base material in step 1 may be subjected to the bonding treatment in step 2 in a state in which it contains a small amount of a dispersion medium without being completely dried. As a result, the support substrate and the coating film can be brought into closer contact with each other, and stronger adhesive force than the interface between the functional layer and the transfer substrate or the release layer can be obtained.
 支持基材と塗膜とは、直接貼合させてもよいし、受容層を介して貼合させてもよい。受容層としては、例えば、アクリル系樹脂、セルロース系樹脂、メラミン系樹脂、フェノール系樹脂、ウレタン系樹脂、イソシアネート系樹脂、尿素系樹脂、エポキシ系樹脂などの他、塩化ビニル系樹脂、ポリプロピレン等のポリオレフィン系樹脂、ポリ塩化ビニルもしくはポリ塩化ビニリデン等のハロゲン化樹脂、ポリ酢酸ビニル、塩化ビニル-酢酸ビニル系共重合体、エチレン-酢酸ビニル共重合体もしくはポリアクリル酸エステル等のビニル系樹脂、ポリエチレンテレフタレートもしくはポリブチレンテレフタレート等のポリエステル樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、エチレンもしくはプロピレン等のオレフィンと他のビニルポリマーとの共重合体系樹脂、ポリカーボネート等を挙げることができる。転写塗工法における受容層は、機能層となる塗膜と転写用基材又は離形層との界面よりも表面張力が大きいものとなり、機能層の転写性を向上させるものであれば特に制限されない。受容層は、支持基材表面に形成すればよく、転写塗工法の場合、通常、工程2の前に形成される。受容層の形成方法は、通常行われる手法、条件(例えば、離型層の形成方法として例示したのと同様の方法)によることができ、適宜選択できる。 The supporting substrate and the coating film may be directly laminated or may be laminated via the receiving layer. Examples of the receiving layer include acrylic resins, cellulose resins, melamine resins, phenol resins, urethane resins, isocyanate resins, urea resins, epoxy resins, vinyl chloride resins, polypropylene, and the like. Polyolefin resin, halogenated resin such as polyvinyl chloride or polyvinylidene chloride, polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, ethylene-vinyl acetate copolymer or vinyl resin such as polyacrylate, polyethylene Examples include polyester resins such as terephthalate and polybutylene terephthalate, polystyrene resins, polyamide resins, copolymer resins of olefins such as ethylene or propylene and other vinyl polymers, and polycarbonates. The receiving layer in the transfer coating method is not particularly limited as long as it has a higher surface tension than the interface between the coating film serving as the functional layer and the substrate for transfer or the release layer, and improves the transferability of the functional layer. . The receiving layer may be formed on the surface of the supporting substrate, and is usually formed before step 2 in the case of the transfer coating method. The method for forming the receptive layer can be selected appropriately according to the usual technique and conditions (for example, the same method as exemplified as the method for forming the release layer).
 受容層は、貼合前に、支持基材及び塗膜のいずれかにあらかじめ設けておけばよい。 The receiving layer may be provided in advance on either the supporting substrate or the coating before lamination.
(工程3)
 工程3では、転写用基材を剥離し、機能層を形成する。剥離方法としては、ロール剥離などの既存の方法を用いることができる。剥離機能層上の剥離面を均一な面として得るために、転写用基材又は離型面の機能層との界面の表面張力との関係から、剥離速度などを適宜調節することが好ましい。
(Step 3)
In step 3, the transfer substrate is peeled off to form a functional layer. Existing methods such as roll peeling can be used as the peeling method. In order to obtain a uniform release surface on the release functional layer, it is preferable to appropriately adjust the release speed and the like in view of the surface tension of the interface between the transfer base material or the release surface and the functional layer.
 転写用基材が離型層を含む場合、工程3において、離型層と塗膜の界面で剥離し、機能層が形成されてもよいし、転写用基材と離型層との界面で剥離し、離型層、機能層が支持基材上に形成されてもよいが、前者が好ましい。 When the transfer base material includes a release layer, in step 3, the release layer and the coating film may be separated at the interface to form the functional layer, or the transfer base material and the release layer may be separated at the interface. A release layer and a functional layer may be formed on the supporting substrate by peeling, but the former is preferred.
<3.積層体の用途>
 本発明の積層体の用途としては、例えば、各種のディスプレイ装置基板、電子機器の基板、家電の部材、太陽電池モジュール用裏面保護シート、有機EL素子の封止、電子部品の包装材、電池や蓄電デバイス等の電極、フレキシブルプリント配線板等の電子部材;内装部材、外装部材、ドアサイドパネル、ボンネット、ルーフ、リチウムイオン電池(LIB)スペーサー、電池ケース、LEDヘッドランプ等の各種自動車用部材;医薬品や食品の包装材が挙げられるが、特にこれら例示の用途に限定されるものではない。
<3. Applications of Laminate>
Applications of the laminate of the present invention include, for example, substrates for various display devices, substrates for electronic devices, members for home appliances, back surface protective sheets for solar cell modules, sealing of organic EL elements, packaging materials for electronic parts, batteries and Electrodes for power storage devices, electronic members such as flexible printed wiring boards; Interior members, exterior members, door side panels, bonnets, roofs, lithium ion battery (LIB) spacers, battery cases, LED headlamps and other automotive members; Examples include packaging materials for pharmaceuticals and foods, but are not particularly limited to these exemplified uses.
 本発明の積層体は、水濡れが発生した際にも、水濡れ部分のアニオン変性CNFが再分散により電気的な吸着現象を起こすため、機能層に欠点を発生させることなく自己再生性を有することが期待される。従って、積層体は、電子部材として好ましく利用される。 Even when the laminate of the present invention is wetted, the anion-modified CNF in the wetted portion causes an electrical adsorption phenomenon due to redispersion, so it has self-regenerative properties without causing defects in the functional layer. It is expected. Therefore, the laminate is preferably used as an electronic member.
 以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples.
 (製造例1:酸化CNFの準備)
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)500g(絶乾)を、TEMPO(Sigma Aldrich社)780mgと臭化ナトリウム75.5gとを溶解した水溶液500mlに加え、パルプが均一に分散されるまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を6.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水洗することで、酸化されたパルプを得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分であった。上記の工程で得られた酸化パルプを、水で表1に示す各濃度に調整し、超高圧ホモジナイザー(20℃、150MPa)で5回解繊処理を行い、酸化CNFの分散液A1~A3を得た。得られた酸化CNFのカルボキシル基量は、1.42mmol/g、平均繊維径は3.4nm、平均繊維長は528nmであった(表1)。
(Production Example 1: Preparation of oxidized CNF)
500 g (absolute dry) of bleached unbeaten kraft pulp (85% whiteness) derived from softwood is added to 500 ml of an aqueous solution in which 780 mg of TEMPO (Sigma Aldrich) and 75.5 g of sodium bromide are dissolved, and the pulp is uniformly dispersed. Stir until done. An aqueous sodium hypochlorite solution was added to the reaction system so as to have a concentration of 6.0 mmol/g to initiate an oxidation reaction. The pH in the system decreased during the reaction, but was adjusted to pH 10 by successively adding 3M sodium hydroxide aqueous solution. The reaction was terminated when the sodium hypochlorite was consumed and the pH in the system stopped changing. The mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain an oxidized pulp. The pulp yield at this time was 90%, and the time required for the oxidation reaction was 90 minutes. The oxidized pulp obtained in the above steps was adjusted with water to each concentration shown in Table 1, and defibrated five times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa) to obtain oxidized CNF dispersions A1 to A3. Obtained. The resulting oxidized CNF had a carboxyl group content of 1.42 mmol/g, an average fiber diameter of 3.4 nm, and an average fiber length of 528 nm (Table 1).
 (製造例2:CM化CNFの準備)
 回転数を150rpmに調節した二軸ニーダーに、水130部と、水酸化ナトリウム20部を水10部とイソプロパノール(IPA)90部の混合溶媒に溶解したものとを加え、広葉樹パルプ(日本製紙(株)製、LBKP)を100℃、60分間乾燥した際の乾燥質量で100部仕込んだ。35℃で80分間撹拌、混合しマーセル化処理を行った。さらに撹拌しつつ水23部とIPA207部の混合溶媒と、モノクロロ酢酸ナトリウム40部とを添加し、30分間撹拌した後、70℃に昇温して90分間エーテル化処理を行った。
(Production Example 2: Preparation of CM-CNF)
130 parts of water and 20 parts of sodium hydroxide dissolved in a mixed solvent of 10 parts of water and 90 parts of isopropanol (IPA) are added to a twin-screw kneader whose rotation speed is adjusted to 150 rpm, and hardwood pulp (Nippon Paper Industries ( LBKP manufactured by Co., Ltd.) was charged at 100° C. for 60 minutes in terms of dry weight. The mixture was stirred and mixed at 35° C. for 80 minutes for mercerization. Further, a mixed solvent of 23 parts of water and 207 parts of IPA and 40 parts of sodium monochloroacetate were added with stirring, and after stirring for 30 minutes, the temperature was raised to 70° C. and etherification treatment was performed for 90 minutes.
 反応終了後、pH7になるまで酢酸で中和、含水メタノールで洗浄、脱液、乾燥、粉砕して、CM化パルプのナトリウム塩を得た。得られたCM化パルプにおけるCM置換度は0.17であった。上記の工程で得られたCM化パルプを水で表1に示す各濃度に調整し、超高圧ホモジナイザー(20℃、150MPa)で3回解繊処理を行い、CM化CNFの分散液B1、B2を得た。CM化CNFの平均繊維径は3.7nm、平均繊維長は425nmであった(表1)。 After completion of the reaction, the mixture was neutralized with acetic acid until the pH reached 7, washed with water-containing methanol, deliquored, dried and pulverized to obtain a sodium salt of CM pulp. The degree of CM substitution in the obtained CM pulp was 0.17. The CM-modified pulp obtained in the above steps was adjusted with water to each concentration shown in Table 1, and defibrated three times with an ultrahigh-pressure homogenizer (20°C, 150 MPa) to obtain CM-CNF dispersions B1 and B2. got The CM-CNF had an average fiber diameter of 3.7 nm and an average fiber length of 425 nm (Table 1).
 (製造例3:リン酸エステル化CNFの準備)
 広葉樹パルプ(日本製紙(株)製、LBKP)100gを尿素120g、リン酸二水素アンモニウム45gを溶解させた水溶液400gに浸漬した後、70℃のオーブンで24時間乾燥させ、さらに150℃で10分間加熱した。その後、イオン交換水で5回洗浄し、リン酸エステル化パルプを得た。リン酸エステル化パルプのリン酸基量を上述の方法で測定したところ、0.87mmol/gであった。上記の工程で得られたリン酸エステル化パルプを水で0.4%(w/v)に調整し、超高圧ホモジナイザー(20℃、150MPa)で3回解繊処理を行い、リン酸エステル化CNFの分散液Cを得た。リン酸エステル化CNFのリン酸基置換度は0.89mmol/g、平均繊維径は3.4nm、平均繊維長は625nmであった(表1)。
(Production Example 3: Preparation of phosphate-esterified CNF)
100 g of hardwood pulp (LBKP, manufactured by Nippon Paper Industries Co., Ltd.) is immersed in 400 g of an aqueous solution of 120 g of urea and 45 g of ammonium dihydrogen phosphate, dried in an oven at 70 ° C. for 24 hours, and further at 150 ° C. for 10 minutes. heated. Then, it was washed with ion-exchanged water five times to obtain a phosphate-esterified pulp. When the amount of phosphate groups in the phosphate-esterified pulp was measured by the method described above, it was 0.87 mmol/g. The phosphate esterified pulp obtained in the above step is adjusted to 0.4% (w / v) with water, and defibrated three times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa) to phosphate ester. A dispersion C of CNF was obtained. The phosphorylated CNF had a phosphate group substitution degree of 0.89 mmol/g, an average fiber diameter of 3.4 nm, and an average fiber length of 625 nm (Table 1).
 (製造例4:硫酸エステル化CNFの準備)
 広葉樹パルプ(日本製紙(株)製、LBKP)100gを105℃のオーブンで24時間乾燥させた後、60%硫酸水溶液2000gを添加して、50℃で1時間撹拌した。その後、イオン交換水で5回洗浄し、硫酸エステル化パルプを得た。硫酸エステル化パルプの硫酸基量を上述の方法で測定したところ、0.79mmol/gであった。上記の工程で得られた硫酸エステル化パルプを水で0.4%(w/v)に調整し、超高圧ホモジナイザー(20℃、150MPa)で3回解繊処理を行い、硫酸エステル化CNFの分散液Dを得た。硫酸エステル化CNFの硫酸基量は0.92mmol/g、平均繊維径は4.2、平均繊維長は354であった(表1)。
(Production Example 4: Preparation of sulfated CNF)
After drying 100 g of hardwood pulp (LBKP, manufactured by Nippon Paper Industries Co., Ltd.) in an oven at 105° C. for 24 hours, 2000 g of a 60% aqueous sulfuric acid solution was added and stirred at 50° C. for 1 hour. After that, it was washed with ion-exchanged water five times to obtain sulfate-esterified pulp. The amount of sulfate groups in the sulfate-esterified pulp was measured by the method described above and found to be 0.79 mmol/g. The sulfated pulp obtained in the above step was adjusted to 0.4% (w / v) with water, and defibration was performed three times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa) to produce sulfated CNF. A dispersion D was obtained. The sulfated CNF had a sulfate group content of 0.92 mmol/g, an average fiber diameter of 4.2, and an average fiber length of 354 (Table 1).
 (製造例5:亜リン酸エステル化CNFの準備)
 亜リン酸水素ナトリム・5水和物130gと尿素108gと水762gとを混合して試薬Aを作製した。作製した試薬A1000gと針葉樹パルプ(日本製紙(株)製、NBKP)100gとを混合し、105℃で乾燥した。乾燥したパルプを130℃で2時間反応させ、水洗とろ過を2回繰返し、亜リン酸エステル化パルプを得た。上記の工程で得られた亜リン酸エステル化パルプを水で0.4%(w/v)に調整し、超高圧ホモジナイザー(20℃、150MPa)で3回解繊処理を行い、亜リン酸エステル化CNFの分散液Fを得た。亜リン酸エステル化CNFの亜リン酸基置換度は2.11mmol/g、平均繊維径は3.9nm、平均繊維長は471nmであった(表1)。
(Production Example 5: Preparation of phosphite esterified CNF)
A reagent A was prepared by mixing 130 g of sodium hydrogen phosphite pentahydrate, 108 g of urea, and 762 g of water. 1000 g of prepared reagent A and 100 g of softwood pulp (manufactured by Nippon Paper Industries Co., Ltd., NBKP) were mixed and dried at 105°C. The dried pulp was reacted at 130° C. for 2 hours, washed with water and filtered twice to obtain a phosphite esterified pulp. The phosphite esterified pulp obtained in the above process was adjusted to 0.4% (w/v) with water, and defibrated three times with an ultra-high pressure homogenizer (20°C, 150 MPa). A dispersion F of esterified CNF was obtained. The phosphite-esterified CNF had a phosphite group substitution degree of 2.11 mmol/g, an average fiber diameter of 3.9 nm, and an average fiber length of 471 nm (Table 1).
 (製造例6:酸化CNFの準備)
 漂白済み針葉樹由来溶解クラフトパルプ(バッカイ社製DKP)5g(絶乾)を、TEMPO(Sigma Aldrich社)78mg(0.5mmol)と臭化ナトリウム755mg(7.4mmol)とを溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液16mlを添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した(酸化処理)。反応中は系内のpHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。2時間反応させた後、ガラスフィルターで濾過し、十分に水洗することでカルボキシル化セルロースを得た。これを水で表1に示す各濃度としたカルボキシル化セルロースのスラリーG1,G2を調製し、ここに過酸化水素をカルボキシル化セルロースに対して2%(w/w)添加し、3M水酸化ナトリウムでpHを11.3に調整した。このスラリーを80℃の温度下に2時間おき、加水分解を行った。これを水で1.0(w/v)%、2.0(w/v)%、3.0(w/v)%、4.0%(w/v)%又は5.0(w/v)%に調整し、超高圧ホモジナイザー(20℃、140MPa)で3回処理し、TEMPO酸化CNFの分散液G3、G1、G2、G4、G5を得た。得られたTEMPO酸化CNFのカルボキシル基量は1.7mmol/g、平均繊維径は5.7nm、平均繊維長は230nmであった(表1)。
(Production Example 6: Preparation of oxidized CNF)
5 g (absolute dry) of bleached softwood-derived dissolved kraft pulp (DKP manufactured by Buckeye) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (Sigma Aldrich) and 755 mg (7.4 mmol) of sodium bromide were dissolved. was stirred until the pulp was evenly dispersed. After adding 16 ml of a 2M sodium hypochlorite aqueous solution to the reaction system, the pH was adjusted to 10.3 with a 0.5N hydrochloric acid aqueous solution to initiate an oxidation reaction (oxidation treatment). The pH in the system decreased during the reaction, but was adjusted to pH 10 by successively adding 0.5N sodium hydroxide aqueous solution. After reacting for 2 hours, the mixture was filtered through a glass filter and thoroughly washed with water to obtain carboxylated cellulose. Carboxylated cellulose slurries G1 and G2 were prepared by adding water to each concentration shown in Table 1, to which hydrogen peroxide was added at 2% (w/w) relative to the carboxylated cellulose, and 3M sodium hydroxide was added. to adjust the pH to 11.3. This slurry was left at a temperature of 80° C. for 2 hours for hydrolysis. This was diluted with water to 1.0 (w/v)%, 2.0 (w/v)%, 3.0 (w/v)%, 4.0% (w/v)% or 5.0 (w/v)%. /v)% and treated three times with an ultrahigh pressure homogenizer (20°C, 140 MPa) to obtain TEMPO-oxidized CNF dispersions G3, G1, G2, G4 and G5. The resulting TEMPO-oxidized CNF had a carboxyl group content of 1.7 mmol/g, an average fiber diameter of 5.7 nm, and an average fiber length of 230 nm (Table 1).
(滑落角)
 液滴を板に垂らし、持ち上げた時に液が垂れる角度を測定した。すなわち、温度25℃でCNFスラリー0.2gをアルミ板に着滴し1分静置後にアルミ板の片側を持ち上げ、その状態で液滴が1分後に移動した距離が1cm以上になる角度の最小値を測定した。滑落角が、通常70°以下、中でも60°以下であることにより、塗工時の均一性が良好であると評価できる。下限は、通常、5°以上、好ましくは10°以上である。
(sliding angle)
A liquid drop was dropped on a plate and the angle at which the liquid dropped when lifted was measured. That is, 0.2 g of CNF slurry is dropped on an aluminum plate at a temperature of 25 ° C. After standing for 1 minute, one side of the aluminum plate is lifted. values were measured. When the sliding angle is usually 70° or less, especially 60° or less, it can be evaluated that the coating uniformity is good. The lower limit is usually 5° or more, preferably 10° or more.
(B型粘度)
 TV-10型粘度計(東機産業社)を用いて、25℃、6rpm又は60rpmの条件で各分散液のB型粘度を測定した。
(B type viscosity)
Using a TV-10 type viscometer (Toki Sangyo Co., Ltd.), the B-type viscosity of each dispersion was measured under the conditions of 25° C. and 6 rpm or 60 rpm.
(接触角)
 CNFスラリーとアルミ箔の接触角を、以下の条件で測定した。
 ・接触角の測定条件
   装置:動的接触角試験機1100DAT、Fibro System AB社製
   吐出量:5μl
   吐出後液滴を落下させるまでの時間:40秒
   基材:アルミ箔
 接触角が、通常70°以下、中でも65°以下であることにより、濡れ性が良好であると評価できる。下限は、通常、50°以上である。
(contact angle)
The contact angle between CNF slurry and aluminum foil was measured under the following conditions.
Contact angle measurement conditions Apparatus: Dynamic contact angle tester 1100DAT, manufactured by Fibro System AB Discharge amount: 5 μl
Time until droplets drop after ejection: 40 seconds Substrate: Aluminum foil A contact angle of usually 70° or less, especially 65° or less can be evaluated as good wettability. The lower limit is usually 50° or more.
(流動性とタレ性の官能評価)
 後述のダイから塗工液を流した時の流動性及びタレ性を目視評価し、以下の基準で評価した。流動性とタレ性のバランスがよいと、ダイからの塗工がしやすく、塗工後の液の移動が小さく、膜厚を均一に保つことができる。
<評価基準>
  A:スラリーに流動性があり垂れにくい。
  B:スラリーに流動性がありやや垂れやすい。
  C:スラリーに流動性があるが垂れる。または、スラリーに流動性がなく垂れない。
(Sensory evaluation of fluidity and sagging)
The fluidity and sagging of the coating liquid when the coating liquid was passed through a die described later were visually evaluated and evaluated according to the following criteria. If the fluidity and sagging are well balanced, the coating from the die is easy, the movement of the liquid after coating is small, and the film thickness can be kept uniform.
<Evaluation Criteria>
A: Slurry has fluidity and does not drip easily.
B: Slurry has fluidity and tends to drip a little.
C: Slurry has fluidity but drips. Alternatively, the slurry has no fluidity and does not sag.
(Ti値)
 Ti値は、6rpm粘度の60rpm粘度に対する比であり、チキソ性と比例する。一般に、チキソ性が大き過ぎると、塗工液がゼリー化して送液が困難となり、チキソ性が小さ過ぎると、塗工液が流動し垂れ易くなる。Ti値は、7.0以下が好ましく、6.8以下がより好ましい。下限は、1.0以上が好ましく、1.2以上がより好ましい。
(Ti value)
The Ti value is the ratio of 6 rpm viscosity to 60 rpm viscosity and is proportional to thixotropy. In general, if the thixotropic properties are too high, the coating liquid will turn into a jelly, making it difficult to feed the liquid. The Ti value is preferably 7.0 or less, more preferably 6.8 or less. The lower limit is preferably 1.0 or more, more preferably 1.2 or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔表1の脚注〕
 接触角の「測定不可」:吐出ノズルから出てきた液が長細いひも状になり液滴を形成できなかった。
 滑落角の「垂れない」:90°を超えても、1cm未満の移動に留まった。
[Footnote to Table 1]
"Not measurable" for contact angle: The liquid coming out of the discharge nozzle was shaped like a long thin string, and droplets could not be formed.
"Does not droop" of the sliding angle: Even if it exceeds 90°, the movement is less than 1 cm.
 分散液A3、B2、G3~G5と比較して、分散液A1、A2、B1、C、D、F及びG1及びG2は、適度な滑落角、接触角を示し、塗工時の均一性、濡れ性が良好であるものと評価された。また、流動性、垂れ性も良好な評価を示した。 Compared with dispersions A3, B2, G3 to G5, dispersions A1, A2, B1, C, D, F and G1 and G2 exhibit moderate sliding angles, contact angles, uniformity during coating, The wettability was evaluated as good. In addition, the fluidity and dripping properties were also evaluated as good.
 (実施例1-1~1-5)
 ダイコーター、基材をダイコーターへ移送するベルトを備えるラボコーターを用いて、以下の条件で塗工処理を行った。ダイコーターのスリット幅130μm、クリアランス500μmに設定し、ダイリップの上流側をバキューム圧0.6kPaをかけて、塗工速度0.2m/分、塗工幅0.4m、支持基材としてアルミニウム製基材(幅1m×厚さ18μmのロール状)の片面上に、表2に記載の各アニオン変性CNFの水分散液を塗工液として、安定して塗工できるように吐出量80~120mL/分で調整しながら基材上に均一に塗り広げた。
(Examples 1-1 to 1-5)
Using a die coater and a lab coater equipped with a belt for transporting the substrate to the die coater, coating was performed under the following conditions. The slit width of the die coater was set to 130 μm and the clearance was set to 500 μm. On one side of the material (1 m wide × 18 μm thick roll), the aqueous dispersion of each anion-modified CNF listed in Table 2 is used as a coating liquid so that it can be stably coated. It was spread evenly over the base material while adjusting the amount in minutes.
 その後、ラボコーターから塗工済みのサンプルを抜き出し、防爆型乾燥機にて100℃/10分間乾燥させた後、室温下で冷却し、ダイコーティング法により作製された積層体を得た(表2)。 After that, the coated sample was extracted from the lab coater, dried at 100° C. for 10 minutes in an explosion-proof dryer, and then cooled at room temperature to obtain a laminate produced by the die coating method (Table 2). .
(比較例1-1)
 ダイの替わりに、乾燥後の膜厚6μm程度となるようにアルミニウム製基材上に噴霧(スプレーコート)を行った以外は、実施例1と同様にして積層体を得た(表2)。
(Comparative Example 1-1)
A laminate was obtained in the same manner as in Example 1, except that instead of using a die, the aluminum substrate was sprayed (spray coated) so that the film thickness after drying was about 6 μm (Table 2).
<評価方法>(以下の実施例において共通である)
(乾燥後の膜厚)
 乾燥後の機能層の膜厚は、キーエンス(株)製の走査型電子顕微鏡にて断面を観察し、計測した。
<Evaluation method> (common to the following examples)
(Film thickness after drying)
The film thickness of the functional layer after drying was measured by observing the cross section with a scanning electron microscope manufactured by Keyence Corporation.
(外観)
 積層体の外観は、乾燥後に目視確認を行い、以下の基準で評価した。
  A:平滑な機能層が形成されており、良好な積層体となっている。
  B:機能層の凹凸が目立ち、積層体として不適である。
(exterior)
The appearance of the laminate was visually confirmed after drying and evaluated according to the following criteria.
A: A smooth functional layer is formed and the laminate is good.
B: The unevenness of the functional layer is conspicuous, and it is not suitable as a laminate.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 スプレーコートにより塗布を行った比較例1-1と比較して、ダイコートによる塗布を行った実施例1-1~1-5においては、塗膜の外観が良好であった(表1)。 In comparison with Comparative Example 1-1, which was applied by spray coating, the appearance of the coating film was good in Examples 1-1 to 1-5, which were applied by die coating (Table 1).
 (実施例1-6~1-17及び比較例1-2~1-6)
 基材に塗工液を塗布するためのスロットダイ、塗布後の塗膜を乾燥するためのドライヤー、スロットダイ、ドライヤーの順に基材を供給するベルト及びロールを備えるラボコーターを用い、表3に示す条件で塗工及び乾燥を連続的に行ったこと、アニオン変性CNFの水分散液として表3に示す各分散液を塗工液としたこと、安定して塗工できるように吐出量130~200mL/分、クリアランス100~500μmと調整したこと、を除き、実施例1と同様にダイコーティング法により作製された積層体を得た(表3)。
(Examples 1-6 to 1-17 and Comparative Examples 1-2 to 1-6)
Using a lab coater equipped with a slot die for applying the coating liquid to the substrate, a dryer for drying the coating film after application, a slot die, and a belt and rolls for supplying the substrate in the order of the dryer, shown in Table 3 The coating and drying were performed continuously under the conditions, each dispersion shown in Table 3 was used as the coating liquid as an aqueous dispersion of anion-modified CNF, and the discharge amount was 130 to 200 mL so that stable coating could be performed. A laminate produced by the die coating method in the same manner as in Example 1 was obtained (Table 3), except that the clearance was adjusted to 100 to 500 μm.
(外観)
 積層体の外観は、乾燥後に目視確認を行い、以下の基準で評価した。
  A:平滑な機能層が形成されており、良好な積層体となっている。
  B:機能層の凹凸が目立ち、積層体として不適である。
(exterior)
The appearance of the laminate was visually confirmed after drying and evaluated according to the following criteria.
A: A smooth functional layer is formed and the laminate is good.
B: The unevenness of the functional layer is conspicuous, and it is not suitable as a laminate.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[表3の脚注]
*乾燥温度は、各サンプルの温度を示した。乾燥装置における乾燥温度の設定は100℃とした。
[Footnote to Table 3]
*The drying temperature indicates the temperature of each sample. The drying temperature in the drying device was set to 100°C.
 分散液G3~G5、A3、B2を用いた比較例1-2~1-5では、製膜できないか、又は機能層の表面の評価が不良であったのに対し、分散液G1、G2、A1、A2、B1、C、D、Fを用いた実施例6~17では、同評価が良好であった(表3)。 In Comparative Examples 1-2 to 1-5 using the dispersions G3 to G5, A3, and B2, the film could not be formed, or the evaluation of the surface of the functional layer was unsatisfactory, whereas the dispersions G1, G2, In Examples 6 to 17 using A1, A2, B1, C, D and F, the same evaluation was good (Table 3).
 (実施例1-18~1-23)
 実施例6において、乾燥装置の設定温度100℃、シート温度85/83/84/85/86/81℃にてダイコートを行い、乾燥条件を、風速20m/min及び表4に示す条件としたほかは、同様に行い、乾燥の程度(〇:十分乾燥した;△:乾燥が局所的に不十分;×:乾燥が不十分を確認した(表4)。
(Examples 1-18 to 1-23)
In Example 6, die coating was performed at a set temperature of the drying device of 100 ° C. and a sheet temperature of 85/83/84/85/86/81 ° C., and the drying conditions were a wind speed of 20 m / min and the conditions shown in Table 4. was performed in the same manner to confirm the degree of drying (○: sufficiently dried; Δ: locally insufficient drying; ×: insufficient drying (Table 4).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 乾燥条件に関わらず積層体を乾燥することはできたが、実施例18~22の結果から明らかなとおり、乾燥時間が1分30秒~7分30秒、コーター速度1~5m/minであることにより、乾燥を十分に行うことができた(表4)。 The laminate could be dried regardless of the drying conditions, but as is clear from the results of Examples 18 to 22, the drying time was 1 minute 30 seconds to 7 minutes 30 seconds and the coater speed was 1 to 5 m/min. Thus, sufficient drying was achieved (Table 4).
(実施例2-1~2-5)
 支持基材としてアルミニウム製基材の片面上に、表5に記載のようにアニオン変性CNFを含む水分散液を塗工液として接触させた後、ワイヤレスバー(ピッチ0.1mm、深さ12μm)を用いて、塗工液を基材上に均一に塗り広げた(表5)。
(Examples 2-1 to 2-5)
After contacting one side of an aluminum substrate as a supporting substrate with an aqueous dispersion containing anion-modified CNF as shown in Table 5 as a coating liquid, a wireless bar (pitch 0.1 mm, depth 12 μm). was used to evenly spread the coating liquid on the substrate (Table 5).
 その後、防爆型乾燥機にて100℃/2分間乾燥させた後、室温下で冷却し、バーコーティング法により作製された積層体を得た(表5)。 After that, it was dried at 100°C for 2 minutes in an explosion-proof dryer, and then cooled at room temperature to obtain a laminate produced by the bar coating method (Table 5).
(実施例2-6~2-10)
 ワイヤレスバーの替わりに、クリアランス設定500μmに設定したブレードコーターを用い乾燥後の膜厚6μm程度となるように片面塗工と乾燥を必要に応じて複数回実施した以外は、各々実施例2-1~2-5と同様にして積層体を得た(表5)。
(Examples 2-6 to 2-10)
Instead of a wireless bar, a blade coater with a clearance setting of 500 μm was used, and single-sided coating and drying were performed multiple times as necessary so that the film thickness after drying was about 6 μm. A laminate was obtained in the same manner as in 2-5 (Table 5).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 スプレーコートにより塗布を行った比較例1-1と比較して、バー又はブレードによる塗布を行った実施例2-1~2-10においては、塗膜の外観が良好であった(表5)。 Compared to Comparative Example 1-1, which was applied by spray coating, the appearance of the coating film was good in Examples 2-1 to 2-10, which were applied with a bar or blade (Table 5). .
(実施例3-1~3-5)
 膜厚100μmのポリエチレンテレフタレート(PET)フィルムを転写用基材として、またアルミニウム製基材を支持基材として用いた。
(Examples 3-1 to 3-5)
A polyethylene terephthalate (PET) film having a film thickness of 100 μm was used as a transfer substrate, and an aluminum substrate was used as a support substrate.
 PETフィルム上に、表6に記載のようにアニオン変性CNFを含む水分散液を塗工液として接触させた後、ブレードコーターで塗工し、100℃で1分間乾燥し膜厚5μm程度の機能層を得た。
 その後、機能層の面上にアルミニウム製基材を、大成ラミネーター(株)社のラミネーター(VA-900)でロール温度60℃、0.8m/分、圧力0.5MPaで貼り合わせた。
After contacting the PET film with an aqueous dispersion containing anion-modified CNF as a coating liquid as shown in Table 6, it is coated with a blade coater and dried at 100 ° C. for 1 minute to obtain a film thickness of about 5 μm. got a layer.
Thereafter, an aluminum substrate was laminated on the surface of the functional layer using a laminator (VA-900) manufactured by Taisei Laminator Co., Ltd. at a roll temperature of 60° C., a pressure of 0.8 m/min, and a pressure of 0.5 MPa.
 室温にて冷却後、PETフィルムをゆっくりと剥離させ、アルミ基材上に機能層が積層された積層体をそれぞれ得た(表6)。 After cooling at room temperature, the PET film was slowly peeled off to obtain laminates in which a functional layer was laminated on an aluminum substrate (Table 6).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 スプレーコートにより塗布を行った比較例1-1と比較して、転写による塗布を行った実施例3-1~3-10においては、塗膜の外観が良好であった(表6)。 In comparison with Comparative Example 1-1, in which coating was performed by spray coating, in Examples 3-1 to 3-10, in which coating was performed by transfer, the appearance of the coating film was good (Table 6).
 これらの結果は、本発明によれば、アニオン変性CNFを含む機能層を支持基材に備え、各種工業用途に利用できる積層体を効率良く得ることができることを示している。
 
These results show that according to the present invention, a functional layer containing an anion-modified CNF can be provided on a support substrate, and a laminate that can be used for various industrial applications can be efficiently obtained.

Claims (11)

  1.  支持基材上に、アニオン変性セルロースナノファイバーを含む機能層を、塗工法又は転写塗工法により形成する積層工程を含む、
    積層体の製造方法。
    A lamination step of forming a functional layer containing anion-modified cellulose nanofibers on a supporting substrate by a coating method or a transfer coating method,
    A method for manufacturing a laminate.
  2.  積層工程においては、アニオン変性セルロースナノファイバーを含む塗工液を用い、 塗工液の60rpmにおける粘度が50~1000mPa・sである、
    請求項1に記載の製造方法。
    In the lamination step, a coating liquid containing anion-modified cellulose nanofibers is used, and the viscosity of the coating liquid at 60 rpm is 50 to 1000 mPa s.
    The manufacturing method according to claim 1.
  3.  機能層の膜厚は30μm以下である、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the film thickness of the functional layer is 30 µm or less.
  4.  前記アニオン変性セルロースナノファイバーがカルボキシル基及び/またはカルボキシレート基を有する酸化セルロースナノファイバーである請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the anion-modified cellulose nanofibers are oxidized cellulose nanofibers having carboxyl groups and/or carboxylate groups.
  5.  前記アニオン変性セルロースナノファイバーがカルボキシアルキル化セルロースナノファイバー、リン酸エステル化セルロースナノファイバー、及び硫酸エステル化セルロースナノファイバーの少なくとも何れかを含む請求項1~4のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the anion-modified cellulose nanofibers include at least one of carboxyalkylated cellulose nanofibers, phosphate-esterified cellulose nanofibers, and sulfate-esterified cellulose nanofibers. .
  6.  塗工法が、前計量塗工法又は後計量塗工法である、請求項1~5のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 5, wherein the coating method is a pre-metering coating method or a post-metering coating method.
  7.  前記前計量塗工法がダイコーティング法又はカーテンコーティング法である請求項6に記載の製造方法。 The manufacturing method according to claim 6, wherein the pre-metering coating method is a die coating method or a curtain coating method.
  8.  前記後計量塗工法が、バーコーティング法、ナイフコーティング法又はブレードコーティング法である請求項6に記載の積層体の製造方法。 The method for producing a laminate according to claim 6, wherein the post-metering coating method is a bar coating method, a knife coating method or a blade coating method.
  9.  転写塗工法による機能層の形成は、
     工程1:転写用基材上にアニオン変性セルロースナノファイバーを含む塗膜を形成すること
     工程2:塗膜表面に支持基材を貼合すること、及び
     工程3:転写用基材を塗膜から剥離し、支持基材上に機能層を形成すること、
    を含む、請求項1~5のいずれか1項に記載の製造方法。
    The formation of the functional layer by the transfer coating method is
    Step 1: Forming a coating film containing anion-modified cellulose nanofibers on a transfer base material, Step 2: Laminating a supporting base material on the surface of the coating film, and Step 3: Transferring a transfer base material from the coating film. peeling to form a functional layer on the supporting substrate;
    The production method according to any one of claims 1 to 5, comprising
  10.  支持基材は受容層を有し、工程2において受容層と塗膜表面を貼合し、工程3において支持基材上に受容層を介して機能層を形成させる、請求項9に記載の積層体の製造方法。 10. Lamination according to claim 9, wherein the supporting substrate has a receiving layer, the receiving layer and the coating film surface are laminated in step 2, and the functional layer is formed on the supporting substrate via the receiving layer in step 3. body manufacturing method.
  11.  転写用基材は、塗膜を設ける面に離型層を有し、工程1において、転写用基材上に離型層を介して塗膜を形成する、請求項9又は10に記載の積層体の製造方法。
     
    The laminate according to claim 9 or 10, wherein the transfer base material has a release layer on the surface on which the coating film is provided, and in step 1, the coating film is formed on the transfer base material via the release layer. body manufacturing method.
PCT/JP2022/044126 2021-12-03 2022-11-30 Method for producing layered product containing cellulose nanofibers WO2023100924A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2021197014 2021-12-03
JP2021-197014 2021-12-03
JP2021-197013 2021-12-03
JP2021197013A JP2023082962A (en) 2021-12-03 2021-12-03 Laminate containing cellulose nanofiber, and method for producing the laminate
JP2021197015A JP2023082963A (en) 2021-12-03 2021-12-03 Laminate containing cellulose nanofiber, and method for producing the laminate
JP2021-197015 2021-12-03
JP2022-182544 2022-11-15
JP2022182544A JP2023083222A (en) 2021-12-03 2022-11-15 Laminate containing cellulose nanofiber, and method for producing the laminate

Publications (1)

Publication Number Publication Date
WO2023100924A1 true WO2023100924A1 (en) 2023-06-08

Family

ID=86612291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044126 WO2023100924A1 (en) 2021-12-03 2022-11-30 Method for producing layered product containing cellulose nanofibers

Country Status (1)

Country Link
WO (1) WO2023100924A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040547A1 (en) * 2009-09-30 2011-04-07 日本製紙株式会社 Paper barrier material
JP2011202010A (en) * 2010-03-25 2011-10-13 Toppan Printing Co Ltd Material for forming film, manufacturing method thereof, and sheet
JP2012076231A (en) * 2010-09-30 2012-04-19 Nippon Paper Industries Co Ltd Paper-made gas barrier material
WO2017111112A1 (en) * 2015-12-25 2017-06-29 関西ペイント株式会社 Multilayer coating film forming method
WO2017175468A1 (en) * 2016-04-04 2017-10-12 関西ペイント株式会社 Bright pigment dispersion and method for forming multilayer coating film
WO2018012014A1 (en) * 2016-07-13 2018-01-18 関西ペイント株式会社 Glitter pigment dispersion
WO2018168736A1 (en) * 2017-03-13 2018-09-20 富士フイルム株式会社 Transfer film and image forming method
JP2019202434A (en) * 2018-05-22 2019-11-28 第一工業製薬株式会社 Laminate
JP2021137983A (en) * 2020-03-02 2021-09-16 凸版印刷株式会社 Paper barrier laminate and paper barrier container
JP2021137982A (en) * 2020-03-02 2021-09-16 凸版印刷株式会社 Double-sided laminated paper and paper cup

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040547A1 (en) * 2009-09-30 2011-04-07 日本製紙株式会社 Paper barrier material
JP2011202010A (en) * 2010-03-25 2011-10-13 Toppan Printing Co Ltd Material for forming film, manufacturing method thereof, and sheet
JP2012076231A (en) * 2010-09-30 2012-04-19 Nippon Paper Industries Co Ltd Paper-made gas barrier material
WO2017111112A1 (en) * 2015-12-25 2017-06-29 関西ペイント株式会社 Multilayer coating film forming method
WO2017175468A1 (en) * 2016-04-04 2017-10-12 関西ペイント株式会社 Bright pigment dispersion and method for forming multilayer coating film
WO2018012014A1 (en) * 2016-07-13 2018-01-18 関西ペイント株式会社 Glitter pigment dispersion
WO2018168736A1 (en) * 2017-03-13 2018-09-20 富士フイルム株式会社 Transfer film and image forming method
JP2019202434A (en) * 2018-05-22 2019-11-28 第一工業製薬株式会社 Laminate
JP2021137983A (en) * 2020-03-02 2021-09-16 凸版印刷株式会社 Paper barrier laminate and paper barrier container
JP2021137982A (en) * 2020-03-02 2021-09-16 凸版印刷株式会社 Double-sided laminated paper and paper cup

Similar Documents

Publication Publication Date Title
JP7290147B2 (en) Method for producing fibrous cellulose-containing coating, resin composition, coating and laminate
JP6958712B2 (en) Sheets and sheet manufacturing methods
JP6822420B2 (en) Resin composite and manufacturing method of resin composite
JP7443769B2 (en) Fibrous cellulose-containing resin composition, sheet and molded article
WO2023100924A1 (en) Method for producing layered product containing cellulose nanofibers
JP6683242B1 (en) Fibrous cellulose, fibrous cellulose-containing material, molded article and method for producing fibrous cellulose
US11987675B2 (en) Sheet
JP7255106B2 (en) Solid and fibrous cellulose-containing composition
JP7187895B2 (en) FIBROUS CELLULOSE-CONTAINING RESIN COMPOSITION, LIQUID COMPOSITION, MOLDED PRODUCT AND METHOD FOR MANUFACTURING MOLDED PRODUCT
JP2023083222A (en) Laminate containing cellulose nanofiber, and method for producing the laminate
JP7351305B2 (en) Fibrous cellulose-containing composition, liquid composition and molded article
JP7090023B2 (en) Fibrous Cellulose, Fibrous Cellulose Containing Material, Molded Body and Method for Producing Fibrous Cellulose
JP2020105470A (en) Fibrous cellulose-containing material, fibrous cellulose-containing liquid composition and formed body
JP2023082962A (en) Laminate containing cellulose nanofiber, and method for producing the laminate
JP2023082963A (en) Laminate containing cellulose nanofiber, and method for producing the laminate
JP6708274B1 (en) Method for producing fibrous cellulose-containing coating, resin composition, coating and laminate
EP4293069A1 (en) Sheet and layered body
JP2020109153A (en) Fibrous cellulose-containing material, fibrous cellulose-containing liquid composition and formed body
JP7047369B2 (en) Composition
JP7342873B2 (en) Solid body, sheet and method for producing solid body
JP7452108B2 (en) Fibrous cellulose, fibrous cellulose-containing material, fibrous cellulose-containing liquid composition, and molded article
JP2023007000A (en) dispersion and sheet
JP6978403B2 (en) Fibrous cellulose-containing material, fibrous cellulose-containing liquid composition and molded product
JP2022157193A (en) Fibrous cellulose, dispersion and sheet
JP2023006999A (en) dispersion and sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901356

Country of ref document: EP

Kind code of ref document: A1