WO2023098201A1 - 射频***及通信设备 - Google Patents

射频***及通信设备 Download PDF

Info

Publication number
WO2023098201A1
WO2023098201A1 PCT/CN2022/117226 CN2022117226W WO2023098201A1 WO 2023098201 A1 WO2023098201 A1 WO 2023098201A1 CN 2022117226 W CN2022117226 W CN 2022117226W WO 2023098201 A1 WO2023098201 A1 WO 2023098201A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
output
unit
antenna
low
Prior art date
Application number
PCT/CN2022/117226
Other languages
English (en)
French (fr)
Inventor
王国龙
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023098201A1 publication Critical patent/WO2023098201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0257Traffic management, e.g. flow control or congestion control per individual bearer or channel the individual bearer or channel having a maximum bit rate or a bit rate guarantee
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/20Transfer of user or subscriber data
    • H04W8/205Transfer to or from user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of radio frequency technology, in particular to a radio frequency system and communication equipment.
  • 5G mobile communication technology has gradually begun to be applied to electronic devices.
  • 5G low-frequency signals have low wireless frequencies, relatively long wavelengths, stronger diffraction capabilities, and greater coverage capabilities. Therefore, 5G low-frequency networks are currently widely used, but 5G low-frequency The data transfer rate of the signal is lower.
  • a radio frequency system and a communication device are provided.
  • a radio frequency system comprising:
  • the transceiver module is connected to the radio frequency transceiver and the first antenna respectively, and is used to support the transmission and main set reception of low frequency band radio frequency signals;
  • the diversity receiving module is connected to the radio frequency transceiver and the second antenna respectively, and is used to support the diversity reception of the low frequency band radio frequency signal;
  • the first MIMO receiving module is respectively connected to the radio frequency transceiver and the third antenna, and is used to support the main set MIMO reception of the low frequency band radio frequency signal;
  • the second MIMO receiving module is respectively connected to the radio frequency transceiver and the fourth antenna, and is used to support diversity MIMO reception of the low frequency band radio frequency signal.
  • a communication device includes the above-mentioned radio frequency system.
  • the above radio frequency system and communication equipment realize the transmission and main set reception of low frequency band radio frequency signals through the transceiver module, the diversity receiving module performs diversity reception on low frequency band radio frequency signals, and the first MIMO receiving module performs main set MIMO reception on low frequency band radio frequency signals, And the second MIMO receiving module performs diversity MIMO reception on the low-frequency radio frequency signal, so that the radio frequency system can support 4*4 MIMO reception of the low-frequency radio frequency signal, so as to improve the throughput of the radio frequency system to the low-frequency radio frequency signal, thereby improving communication equipment in low-frequency The data transfer rate under the network.
  • FIG. 1 is one of the schematic structural diagrams of a radio frequency system according to one or more embodiments
  • Fig. 2 is a second schematic structural diagram of a radio frequency system according to one or more embodiments
  • Fig. 3 is a third structural schematic diagram of a radio frequency system according to one or more embodiments.
  • Fig. 4 is a fourth structural schematic diagram of a radio frequency system according to one or more embodiments.
  • Fig. 5 is a fifth schematic structural diagram of a radio frequency system according to one or more embodiments.
  • Fig. 6 is a sixth schematic structural diagram of a radio frequency system according to one or more embodiments.
  • Fig. 7 is a seventh schematic structural diagram of a radio frequency system according to one or more embodiments.
  • Fig. 8 is an eighth schematic structural diagram of a radio frequency system according to one or more embodiments.
  • Fig. 9 is a ninth structural schematic diagram of a radio frequency system according to one or more embodiments.
  • Fig. 10 is a tenth structural schematic diagram of a radio frequency system according to one or more embodiments.
  • Fig. 11 is an eleventh structural schematic diagram of a radio frequency system according to one or more embodiments.
  • Fig. 12 is a twelveth structural schematic diagram of a radio frequency system according to one or more embodiments.
  • Figure 13 is a schematic diagram of a communication device in accordance with one or more embodiments.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the radio frequency system involved in the embodiments of the present application can be applied to communication devices with wireless communication functions, and the communication devices can be handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, and various forms of A user equipment (UserEquipment, UE) (for example, a mobile phone), a mobile station (Mobile Station, MS) and so on.
  • UE user equipment
  • MS Mobile Station
  • the radio frequency system includes a radio frequency transceiver 10, a transceiver module 20, a diversity receiving module 30, a first MIMO receiving module 40, and a second MIMO receiving module 50 .
  • the radio frequency system further includes an antenna group, and the antenna group includes at least a first antenna ANT1 , a second antenna ANT2 , a third antenna ANT3 and a fourth antenna ANT4 .
  • the first antenna ANT1, the second antenna ANT2, the third antenna ANT3 and the fourth antenna ANT4 are all antennas capable of supporting 5G NR signals.
  • each antenna in the antenna group may be a directional antenna or a non-directional antenna.
  • each antenna in the antenna group may be formed using any suitable type of antenna.
  • individual antennas within the antenna group may include antennas with resonating elements formed from the following antenna structures: array antenna structures, loop antenna structures, patch antenna structures, slot antenna structures, helical antenna structures, strip antennas, monopole antenna structures, At least one of an antenna, a dipole antenna, and the like.
  • Different types of antennas can be used for frequency band combinations of different RF signals.
  • the radio frequency transceiver 10 may include a transmitter and a receiver. Wherein, the radio frequency transceiver 10 can be used to implement frequency conversion processing between radio frequency signals and baseband signals, or/and, to implement frequency conversion processing of signals in different frequency bands, and the like.
  • the transceiver module 20 can realize the transmission and main set reception of low-frequency radio frequency signals by cooperating with the first antenna ANT1; the diversity receiving module 30 can realize the low-frequency radio frequency signal transmission Diversity reception; the first MIMO receiving module 40 can realize the main set MIMO reception of the low frequency band radio frequency signal by cooperating with the third antenna ANT3; the second MIMO receiving module 50 can realize the low frequency band Diversity MIMO reception of radio frequency signals, which in turn supports 4*4 MIMO reception of low frequency band radio frequency signals.
  • MIMO Multiple Input Multiple Output
  • transmitting power the channel capacity of the system can be doubled.
  • the throughput of the low frequency radio frequency signal can be doubled.
  • the low-band radio frequency signal in this embodiment of the present application may include a 5G low-band radio frequency signal and/or a 4G low-band radio frequency signal.
  • the low-frequency radio frequency signal may include at least one frequency band among N5, N8, N20, and N28A.
  • the transceiver module 20 is used to support the transmission and main set reception of multiple low-band radio frequency signals. In one of the embodiments, the transceiver module 20 can select one of the multiple radio frequency signals to transmit, and can also perform main set reception on the radio frequency signals of at least one frequency band. In another embodiment, the transceiver module 20 can simultaneously transmit radio frequency signals of more than two frequency bands, and can also perform main set reception of radio frequency signals of more than two frequency bands.
  • the diversity receiving module 30 is configured to support diversity reception of radio frequency signals of multiple low frequency bands. In one of the embodiments, the diversity receiving module 30 may select one of multiple low-frequency radio frequency signals to perform diversity reception. In another embodiment, the diversity receiving module 30 can simultaneously perform diversity reception on more than two low-frequency radio frequency signals.
  • the first MIMO receiving module 40 is configured to support main set MIMO reception of radio frequency signals of multiple low frequency bands. In one of the embodiments, the first MIMO receiving module 40 may select one of multiple low-frequency radio frequency signals to perform main-set MIMO reception. In another embodiment, the first MIMO receiving module 40 may perform main-set MIMO reception on more than two low-frequency radio frequency signals at the same time.
  • the second MIMO receiving module 50 is configured to support diversity MIMO reception of radio frequency signals of multiple low frequency bands. In one of the embodiments, the second MIMO receiving module 50 may select one of multiple low-frequency radio frequency signals to perform diversity MIMO reception. In another embodiment, the second MIMO receiving module 50 can perform diversity MIMO reception on more than two low-frequency radio frequency signals at the same time.
  • the first MIMO receiving module 40 includes a first filtering selection unit 420 and a first amplification unit 410 .
  • the first filter selection unit 420 includes at least one input terminal and multiple output terminals
  • the first amplifying unit 410 includes multiple input terminals and at least one output terminal.
  • An input terminal of the first filter selection unit 420 is connected to the third antenna ANT3, and multiple output terminals of the first filter selection unit 420 are connected to multiple input terminals of the first amplification unit 410 in one-to-one correspondence, and the first amplification unit 410
  • the output terminal of is connected with radio frequency transceiver 10.
  • the first filtering selection unit 420 performs filtering processing on the radio frequency signal received by the third antenna ANT3 and selects and outputs at least one 5G radio frequency signal of a frequency band to the first amplifying unit 410, and the first amplifying unit 410 low-frequency radio frequency signal received by the low frequency band The noise is amplified and output to the radio frequency transceiver 10 .
  • the first filter selection unit 420 filters the radio frequency signal received by the third antenna ANT3, and selects a filter channel capable of outputting the N28A frequency band to process the radio frequency signal to output the radio frequency signal of the N28A frequency band to the first amplification unit 410 for low-noise amplification processing.
  • the first amplifying unit 410 includes a plurality of first low noise amplifiers 411 and a first selection switch 412 .
  • the first selection switch 412 includes at least one first terminal and multiple second terminals, the first terminal of the first selection switch 412 serves as the output terminal of the first amplification unit 410, and the multiple second terminals of the first selection switch 412
  • the output terminals of the multiple first low noise amplifiers 411 are respectively connected in one-to-one correspondence; the input terminals of the multiple first low noise amplifiers 411 are respectively used for one-to-one connection with the multiple output terminals of the first filter selection unit 420 .
  • the first filter selection unit 420 includes a plurality of first filters 421 and a second selection switch 422 .
  • one end of a plurality of first filters 421 is respectively used as a plurality of output ends of the first filter selection unit 420, and is respectively connected to a plurality of input ends of the first amplifying unit 410 in one-to-one correspondence
  • the second selection switch 422 includes a plurality of The first terminal and at least one second terminal, the multiple first terminals of the second selection switch 422 are respectively connected to the other terminals of the multiple first filters 421 in one-to-one correspondence, and the second terminal of the second selection switch 422 serves as the first
  • the input end of the filter selection unit 420 is used for connecting with the third antenna ANT3.
  • a plurality of first filters 421 can filter the received radio frequency signal, wherein each first filter 421 only allows a low-frequency signal of a preset frequency band to pass through.
  • the frequency bands of the low-frequency radio frequency signals can be four different frequency bands of N5, N8, N20, and N28A
  • four first filters 421 can be set correspondingly to realize the filtering processing of the four low-frequency signals.
  • radio frequency signals in four frequency bands N5 , N8 , N20 , and N28A can be correspondingly output to the first amplifying unit 410 .
  • the first MIMO receiving module 40 can be a package structure, and the first MIMO receiving module 40 is configured with an antenna port Ant for connecting the third antenna ANT3 and at least one output for connecting the radio frequency transceiver 10 Port LNA OUT.
  • the antenna port Ant and the output port LNA OUT configured in the module can be understood as radio frequency pin terminals of the first MIMO receiving module 40, and are used for connecting with various external devices.
  • the antenna port Ant of the first MIMO receiving module 40 can be used for connecting with the antenna; the output port LNA OUT of the first MIMO receiving module 40 can be used for connecting with the radio frequency transceiver 10.
  • the antenna port Ant is used to receive the radio frequency signal output by the third antenna ANT3, and the first MIMO receiving module 40 can filter and amplify the input radio frequency signal, so as to output it to the radio frequency transceiver 10 through the output port LNA OUT, so as to Realize the reception control of low-frequency radio frequency signals.
  • the first MIMO receiving module 40 is integrated into one device, which can reduce the board area occupied by the radio frequency system.
  • the integrated first MIMO receiving module 40 can realize the matching between various parts inside the device, reducing the number of ports Mismatch improves device performance, and the integrated first MIMO receiving module 40 only needs to set a set of power supply terminals and MIPI control terminals, which improves the integration of devices, reduces the complexity of system layout, and can also reduce costs.
  • the second MIMO receiving module 50 includes a third filtering selection unit 520 and a third amplification unit 510 .
  • the third filter selection unit 520 includes at least one input terminal and multiple output terminals
  • the third amplifying unit 510 includes multiple input terminals and at least one output terminal.
  • An input terminal of the third filter selection unit 520 is connected to the fourth antenna ANT4, and multiple output terminals of the third filter selection unit 520 are respectively connected to multiple input terminals of the third amplifying unit 510 in one-to-one correspondence, and the third amplifying unit 510
  • the output terminal of is connected with radio frequency transceiver 10.
  • the third filtering selection unit 520 performs filtering processing on the radio frequency signal received by the fourth antenna ANT4 and selects and outputs at least one 5G radio frequency signal of a frequency band to the third amplifying unit 510, and the third amplifying unit 510 performs low-noise processing on the received 5G radio frequency signal After amplified processing, it is output to the radio frequency transceiver 10 .
  • the third filter selection unit 520 filters the radio frequency signal received by the fourth antenna ANT4, and selects a filter path capable of outputting the N28A frequency band to process the radio frequency signal to output the radio frequency signal of the N28A frequency band Go to the third amplifying unit 510 to perform noise reduction processing.
  • the third amplifying unit includes a plurality of second low noise amplifiers 511 and a third selection switch 512 .
  • the third selection switch 512 includes at least one first terminal and multiple second terminals, the first terminal of the third selection switch 512 serves as the output terminal of the third amplification unit, and the multiple second terminals of the third selection switch 512 are respectively
  • the output ends of the plurality of second low noise amplifiers 511 are connected in one-to-one correspondence; the input ends of the plurality of second low noise amplifiers 511 are respectively used for one-to-one connection with the plurality of output ends of the third filter selection unit.
  • the third filter selection unit includes a plurality of second filters 521 and a fourth selection switch 522 .
  • one end of the plurality of second filters 521 is respectively used as a plurality of output ends of the third filter selection unit 520, and is respectively connected to a plurality of input ends of the third amplifying unit in one-to-one correspondence
  • the fourth selection switch 522 includes a plurality of first One end and at least one second end, a plurality of first ends of the fourth selection switch 522 are respectively connected to the other ends of the plurality of second filters 521 in one-to-one correspondence, and the second end of the fourth selection switch 522 is used as the third filter
  • the input terminal of the selection unit is used for connecting with the fourth antenna ANT4.
  • a plurality of second filters 521 can filter the received radio frequency signal, wherein each second filter 521 only allows a low-frequency signal of a preset frequency band to pass through.
  • the frequency bands of the low-frequency radio frequency signals can be four different frequency bands of N5, N8, N20, and N28A
  • four second filters 521 can be set correspondingly to realize the filtering processing of the four low-frequency signals.
  • the 5G radio frequency signals in the four frequency bands N5, N8, N20, and N28A can be correspondingly output to the third amplifying unit 510 .
  • the second MIMO receiving module 50 can be a package structure, and the second MIMO receiving module 50 is configured with an antenna port Ant for connecting the fourth antenna ANT4 and at least one output for connecting the radio frequency transceiver 10 Port LNA OUT.
  • the antenna port Ant and the output port LNA OUT configured in this module can be understood as the radio frequency pin terminals of the second MIMO receiving module 50, and are used for connecting with various external devices.
  • the antenna port Ant of the second MIMO receiving module 50 can be used for connecting with the antenna; the output port LNA OUT of the second MIMO receiving module 50 can be used for connecting with the radio frequency transceiver 10.
  • the antenna port Ant is used to receive the radio frequency signal output by the fourth antenna ANT4, and the second MIMO receiving module 50 can filter and amplify the input radio frequency signal, so as to output it to the radio frequency transceiver 10 through the output port LNA OUT, so as to Realize the reception control of low-frequency radio frequency signals.
  • the second MIMO receiving module 50 is integrated into one device, which can reduce the board area occupied by the radio frequency system.
  • the integrated second MIMO receiving module 50 can realize the matching between various parts inside the device, reducing the number of ports. Mismatch improves device performance, and the integrated second MIMO receiving module 50 only needs to set a set of power supply terminals and MIPI control terminals, which improves the integration of devices, reduces the complexity of system layout, and can also reduce costs.
  • FIG. 6 shows a radio frequency system in an embodiment.
  • the transceiver module 20 may include a radio frequency PA Mid device, and the radio frequency PA Mid device may be understood as a power amplifier module (Power Amplifier Modules including Duplexers, PA Mid).
  • the RF PA Mid device can support the reception and transmission of low-frequency signals in multiple frequency bands, and realize the switching control of receiving and switching between multiple low-frequency signals, the switching control of transmitting, and the switching control between transmitting and receiving.
  • the plurality of low-frequency signals may include low-frequency signals of different frequency bands among 2G signals, 3G signals, 4G signals, and 5G signals.
  • the frequency bands of the plurality of low-frequency signals may include any one of the frequency bands among B5, B8, B12, B20, B26, B28A, B28B, B13, and B19.
  • the N5, N8, N20, and N28A in the 5G signal are the same as the B5, B8, B20, and B28A in the 4G signal, and can share the same receiving path and transmitting path.
  • the first antenna port LB ANT of the radio frequency PA Mid device is connected with the first antenna ANT1, an input port 4G LB RFIN of the radio frequency PA Mid device is connected with the radio frequency transceiver 10, and at least one output port LNA OUT1 of the radio frequency PA Mid device is connected with the radio frequency transceiver
  • the radio frequency PA Mid device is used to filter and amplify the low-frequency radio frequency signal sent by the radio frequency transceiver 10, output it to the antenna port LB ANT1, and transmit it through the first antenna ANT1 to realize the radio frequency of multiple low-frequency bands. Signal emission control.
  • the first antenna port LB ANT of the RF PA Mid device is also used to receive the low-frequency radio frequency signal received by the first antenna ANT1. After filtering and amplifying the low-frequency radio frequency signal, it passes through the output port LNA OUT1 or the output port LNA OUT2 output to the radio frequency transceiver 10 to realize the reception control of multiple low frequency signals.
  • the diversity receiving module 30 may include a radio frequency LFEM device (the radio frequency LFEM device supporting low, middle and high frequency bands used in FIG. 6 , and a radio frequency LFEM device supporting only low frequency bands may also be used in some embodiments).
  • RF LFEM devices are understood as low noise amplifier front-end modules (Low Noise AmPlifier–Front-End Modules).
  • the radio frequency LFEM device can support the reception of low-frequency signals in multiple frequency bands, and realize the switching control of reception among multiple low-frequency signals.
  • the multiple low-frequency signals may include low-frequency signals of different frequency bands in the 4G signal and the 5G signal.
  • the frequency bands of the plurality of low-frequency signals may include any one of the frequency bands among B5, B8, B12, B20, B26, B28A, B28B, B13, and B19.
  • the N5, N8, N20, and N28A in the 5G signal are the same as the B5, B8, B20, and B28A in the 4G signal, and can share the same receiving channel.
  • the third antenna port LB3 ANT of the radio frequency LFEM device is connected with the second antenna ANT2, and the transmitting port (including LNA OUT LB1, LNA OUT LB2) of the radio frequency LFEM device is connected with the radio frequency transceiver 10.
  • the radio frequency LFEM device is used to receive the low frequency radio frequency signal received by the second antenna ANT2, filter and amplify the low frequency radio frequency signal, and output it to the radio frequency transceiver 10 through the transmission port, so as to realize the reception control of multiple low frequency signals.
  • a radio frequency system supporting 4*4 MIMO reception of low-band radio frequency signals is constructed to improve the throughput of low-band radio frequency signals.
  • the radio frequency system based on the foregoing embodiments can support the 4*4 MIMO function of four antennas.
  • Figure 6 as an example to analyze the working principle of the 4*4MIMO function in the N28A frequency band:
  • the transmission signal is output from the TX0 LB1 port of the radio frequency transceiver 10, through the radio frequency line, to the 4G LB RFIN port of the radio frequency PA Mid device, and after the signal is amplified by the 4G LB PA, it is sent to the single port of the radio frequency switch SP9T; the radio frequency switch SP9T is switched to touch Point 9, to the B28A TX channel; through the internal radio frequency line, to the contact 2 of the radio frequency switch SPDT; the radio frequency switch SPDT switches the single port, and passes through the duplexer to the radio frequency switch SP10T; the radio frequency switch SP10T switches the single port to the LB1 ANT port; The LB1 ANT port outputs to the first antenna ANT1 for transmission.
  • the received radio frequency signal enters from the first antenna ANT1 to the LB1 ANT port of the radio frequency PA Mid device; the radio frequency switch SP10T is switched to the contact 9, and passes through the duplexer to the B28A RX channel; to the radio frequency switch SP6T, the radio frequency switch SP6T switches the single Port to LNA2 channel; after being amplified by LNA2, the RF switch DPDT is switched to contact 1, and output to the LNA OUT1 port of the RF PA Mid device; the received RF signal enters the RF transceiver 10 through the SDR PRXE port.
  • the received RF signal enters from the second antenna ANT2 to the LB3 ANT port of the RF LFEM device; the RF switch SP6T is switched to contact 4, and after filtering by the filter, it goes to the RF switch SP3T#1; the RF switch SP3T#1 switches the single port , after being amplified by LNA1, to the radio frequency switch DPDT; the radio frequency switch DPDT is switched to contact 1, and output to the LNA OUT LB1 port of the radio frequency LFEM device; the received radio frequency signal enters the radio frequency transceiver 10 through the SDR DRXE port.
  • the received radio frequency signal enters from the third antenna ANT3, the antenna port Ant of the first MIMO receiving module 40; the second selection switch 422 switches to the contact 4, after filtering by the first filter 421 and amplifying by the first low noise amplifier 411, To the first selection switch 412; the first selection switch 412 is switched to the contact 2, and output to the LNA OUT port of the first MIMO receiving module 40; the received radio frequency signal enters the radio frequency transceiver 10 through the SDR PRX3 port.
  • the received radio frequency signal enters from the fourth antenna ANT4, the antenna port Ant of the second MIMO receiving module 50; the fourth selector switch 522 is switched to the contact 4, after being filtered by the second filter 521 and amplified by the second low noise amplifier 511, To the third selection switch 512; the third selection switch 512 is switched to contact 2, and output to the LNA OUT port of the second MIMO receiving module 50; the received radio frequency signal enters the radio frequency transceiver 10 through the SDR DRX3 port.
  • the first amplifying unit 410 in the first MIMO receiving module 40 is integrated in the transceiver module 20 .
  • the transceiver module 20 can be understood as a package structure, configured with at least one first input port LB RFIN and a plurality of output ports LNA OUT for connecting with the radio frequency transceiver 10, and a first antenna port LB1 for connecting with the first antenna ANT1 ANT and multiple second input ports PRX for one-to-one connection with multiple output terminals of the first filter selection unit 420 .
  • the transceiver module 20 includes a transmitting unit 210 , a second filter selection unit 220 , a second amplification unit 230 and a first switch unit 240 .
  • a plurality of input ends of the first amplifying unit 410 are respectively connected with a plurality of second input ports PRX of the transceiver module 20 in one-to-one correspondence, and the transmitting unit 210 is connected with the first input port LB RFIN and the second filter selection of the transceiver module 20 respectively.
  • the transmitting path TX of the unit is connected, the receiving path RX of the second filter selection unit is connected with the input end of the second amplifying unit 230, and the second filter selection unit 220 is also connected with the first antenna port LB1 ANT of the transceiver module 20.
  • the first switch unit 240 includes a plurality of first ends and a plurality of second ends, and a plurality of first ends of the first switch unit 240 are respectively connected to a plurality of output ports LNA OUT of the transceiver module 20 in one-to-one correspondence, and the first switch unit The multiple second ends of 240 are respectively connected to the output end of the first amplifying unit 410 and the output end of the second amplifying unit 230 .
  • the transmitting unit 210 is configured to receive the low-band radio frequency signal output by the radio frequency transceiver 10, and amplify the received low-band radio frequency signal.
  • the second filter selection unit 220 is used to filter the radio frequency signal received by the first antenna ANT1 and select and output at least one frequency band of 5G radio frequency signal or 4G low frequency signal, and is also used to perform low frequency band radio frequency signal output by the transmitting unit 210
  • the 5G radio frequency signal or the 4G low frequency signal of at least one frequency band is filtered and selected to be output and radiated through the first antenna ANT1.
  • the second amplifying unit 230 is configured to amplify the 5G radio frequency signal or the 4G low frequency signal filtered by the second filtering selection unit 220 .
  • the first switch unit is used to selectively conduct the path between the first amplifying unit 410, the second amplifying unit 230 and the output port LNA OUT of the transceiver module 20.
  • the radio frequency transceiver 10 inputs a low frequency 5G radio frequency signal or a 4G radio frequency signal to the first input port LB RFIN of the transceiver module 20, and after being amplified by the transmitting unit 210, it is output to the second filter selection unit 220 for filtering processing, and selects
  • the 5G radio frequency signal or 4G radio frequency signal of at least one frequency band is output to the first antenna port LB ANT of the transceiver module 20, and is transmitted through the first antenna ANT1 to realize the transmission of the 5G radio frequency signal or 4G radio frequency signal of the low frequency band.
  • the first antenna ANT1 outputs the received low-frequency radio frequency signal to the first antenna port LB ANT of the transceiver module 20, and after being filtered by the second filter selection unit 220, it is output to the second amplification unit 230 for low-noise amplification processing, and then Output to the output port LNA OUT of the transceiver module 20 through the first switch unit 240, and output to the radio frequency transceiver 10, so as to realize the main set reception of the radio frequency signal of the low frequency band.
  • the third antenna ANT3 outputs the received low-frequency radio frequency signal to the first filter selection unit 420 for filtering and processing, then outputs it to the second input port PRX of the transceiver module 20, and inputs it to the first amplification unit 410 for low-noise amplification processing, and then Output to the output port LNA OUT of the transceiver module 20 through the first switch unit 240, and output to the radio frequency transceiver 10, so as to realize the main set MIMO reception of the 5G radio frequency signal or the 4G radio frequency signal of the low frequency band.
  • the first amplifying unit 410 of the first MIMO receiving module 40 is integrated into the transceiver module 20 to further improve the integration of the device, reduce the board area occupied by the radio frequency system, and reduce the complexity of the system layout.
  • the third amplification unit 510 in the second MIMO receiving module 50 is integrated into the diversity receiving module 30 .
  • the diversity receiving module 30 can be understood as a package structure, and is configured with a transmitting port LNA OUT LB for connecting with the radio frequency transceiver 10, a third antenna port LB3 ANT for connecting with the second antenna ANT2, and a plurality of antenna ports for connecting with the third antenna ANT2.
  • Multiple output terminals of the filter selection unit 520 are connected to the receiving ports DRX in one-to-one correspondence.
  • the diversity receiving module 30 includes a fourth filter selection unit 310 , a fourth amplification unit 320 and a second switch unit 330 .
  • multiple input ends of the third amplifying unit 510 are respectively connected to multiple receiving ports DRX of the diversity receiving module 30 in a one-to-one correspondence.
  • the fourth filter selection unit 310 is respectively connected to the third antenna port LB3 ANT of the diversity receiving module 30 and the input end of the fourth amplification unit 320.
  • the second switch unit 330 includes a plurality of first ends and a plurality of second ends, and a plurality of first ends of the second switch unit 330 are respectively connected to a plurality of transmitting ports LNA OUT LB of the diversity receiving module 30 in one-to-one correspondence, and the second Multiple second terminals of the switch unit 330 are respectively connected to the output terminal of the third amplification unit 510 and the output terminal of the fourth amplification unit 320 .
  • the fourth filtering selection unit 310 is configured to filter the low-band radio frequency signal received by the second antenna ANT2 and select and output at least one low-band 5G radio frequency signal or 4G radio frequency signal.
  • the fourth amplifying unit 320 is configured to perform low-noise amplification processing on the low-frequency 5G radio frequency signal or the 4G radio frequency signal filtered by the fourth filtering selection unit 310 .
  • the second switch unit 330 is used for selectively conducting the path between the third amplifying unit 510, the fourth amplifying unit 320 and the transmitting port LNA OUT LB of the diversity receiving module 30.
  • the second antenna ANT2 outputs the received low-frequency radio frequency signal to the third antenna port LB3 ANT of the diversity receiving module 30, and after filtering by the fourth filter selection unit 310, it is output to the fourth amplifying unit 320 for low-noise amplification processed, and then output to the transmitting port LNA OUT LB of the diversity receiving module 30 through the second switch unit 330, and output to the radio frequency transceiver 10, so as to realize the diversity reception of 5G radio frequency signals or 4G radio frequency signals in the low frequency band.
  • the fourth antenna ANT4 outputs the received low-frequency radio frequency signal to the third filter selection unit 520 for filter processing, then outputs it to the receiving port DRX of the diversity receiving module 30, and inputs it to the third amplification unit 510 for amplification processing, and then passes through the second
  • the switch unit 330 outputs to the transmit port LNA OUT LB of the diversity receiving module 30, and outputs to the radio frequency transceiver 10, so as to realize diversity MIMO reception of 5G radio frequency signals or 4G radio frequency signals in the low frequency band.
  • the third amplifying unit 510 in the second MIMO receiving module 50 is integrated into the diversity receiving module 30 to further improve the integration of devices, reduce the board area occupied by the radio frequency system, and reduce the complexity of system layout.
  • the first amplifying unit includes a first low noise amplifier 411 and a first selection switch 412 .
  • the first selection switch 412 includes a first terminal and a plurality of second terminals, the first terminal of the first selection switch 412 is connected to the input terminal of the first low noise amplifier 411; the multiple second terminals of the first selection switch 412 Terminals serve as multiple input terminals of the first amplifying unit 410 , and are respectively used for one-to-one corresponding connection with multiple output terminals of the first filter selection unit 420 .
  • the first amplifying unit is integrated in the transceiver module 20, and the paths between the first low-noise amplifier 411 and the different output terminals of the first filter selection unit 420 are selected through the first selection switch 412, so as to select different frequency bands.
  • the 5G radio frequency signal is subjected to low-noise amplification processing, which saves the number of the first low-noise amplifier 411 and reduces the area occupied by the device on the motherboard.
  • the third amplifying unit includes at least one second low noise amplifier 511 and a third selection switch 512 .
  • the third selection switch 512 includes at least one first terminal and a plurality of second terminals, the first terminal of the third selection switch 512 is connected to the input terminal of the second low noise amplifier 511; the multiple first terminals of the third selection switch 512
  • the two terminals are respectively used as multiple input terminals of the third amplification unit 510 , and are respectively used for one-to-one corresponding connection with multiple output terminals of the third filter selection unit 520 .
  • the third amplifying unit is integrated in the diversity receiving module 30, and the paths between the different output terminals of the second low-noise amplifier 511 and the third filter selection unit 520 are selected through the third selection switch 512 to select different frequency bands.
  • the 5G radio frequency signal is subjected to low-noise amplification processing, which saves the number of the second low-noise amplifier 511 and reduces the area occupied by the device on the motherboard.
  • FIG. 9 shows a radio frequency system in an embodiment.
  • the transceiver module 20 can be understood as a radio frequency PA Mid device integrating the first amplifying unit.
  • the RF PA Mid device can support the reception and transmission of low-frequency signals in multiple frequency bands, and realize the switching control of receiving and switching between multiple low-frequency signals, the switching control of transmitting, and the switching control between transmitting and receiving.
  • the plurality of low-frequency signals may include low-frequency signals of different frequency bands among 2G signals, 3G signals, 4G signals, and 5G signals.
  • the frequency bands of the plurality of low-frequency signals may include any one of the frequency bands among B5, B8, B12, B20, B26, B28A, B28B, B13, and B19.
  • the N5, N8, N20, and N28A in the 5G signal are the same as the B5, B8, B20, and B28A frequency bands in the 4G signal, and can share the same receiving path and transmitting path.
  • the first antenna port L/1 ANT of the radio frequency PA Mid device is connected with the first antenna ANT1, an input port 4G LB RFIN of the radio frequency PA Mid device is connected with the radio frequency transceiver 10, and a plurality of second input ports PRX1 of the radio frequency PA Mid device , PRX2, PRX3, PRX4 are respectively connected with a plurality of output terminals of the first filter selection unit 420 in one-to-one correspondence, and at least one output port (LNA OUT1, LNA OUT2, LNA OUT3) of the radio frequency PA Mid device is connected with the radio frequency transceiver 10,
  • the RF PA Mid device is used to filter and amplify the low-frequency radio frequency signal sent by the radio frequency transceiver 10, output it to the first antenna port LB1 ANT, and transmit it
  • the first antenna port LB1 ANT of the RF PA Mid device is also used to receive the low-frequency radio frequency signal received by the first antenna ANT1. After filtering and amplifying the low-frequency radio frequency signal, it passes through the output port LNA OUT1, LNA OUT2 or LNA OUT3 is output to the radio frequency transceiver 10, so as to realize the master receiving control of multiple low frequency signals.
  • the second input ports PRX1, PRX2, PRX3, and PRX4 of the radio frequency PA Mid device are used to receive the 5G radio frequency signal output after the radio frequency signal received by the third antenna ANT3 is filtered by the first filter selection unit 420, and the 5G radio frequency signal is processed. After low-noise amplification processing, it is output to the radio frequency transceiver 10 through the output port, so as to realize the main set MIMO reception control of 5G radio frequency signals in multiple low frequency bands.
  • the diversity receiving module 30 can be understood as a radio frequency LFEM device integrated with a second amplifying unit (the radio frequency LFEM device that supports low, middle and high frequency bands is adopted in FIG. ).
  • the radio frequency LFEM device can support the reception of low-frequency signals in multiple frequency bands, and realize the switching control of reception among multiple low-frequency signals.
  • the multiple low-frequency signals may include low-frequency signals of different frequency bands in the 4G signal and the 5G signal.
  • the frequency bands of the plurality of low-frequency signals may include any one of the frequency bands among B5, B8, B12, B20, B26, B28A, B28B, B13, and B19.
  • the N5, N8, N20, and N28A in the 5G signal are the same as the B5, B8, B20, and B28A in the 4G signal, and can share the same receiving channel.
  • the third antenna port LB3 ANT of the radio frequency LFEM device is connected to the second antenna ANT2, and the multiple receiving ports DRX1, DRX2, DRX3, and DRX4 of the radio frequency LFEM device are respectively connected to a plurality of output ends of the third filter selection unit 520 in one-to-one correspondence,
  • the transmitting ports LNA OUT LB1, LNA OUT LB2, and LNA OUT LB3 of the radio frequency LFEM device are respectively connected to the radio frequency transceiver 10.
  • the third antenna port LB3 ANT of the RF LFEM device is used to receive the low-frequency signal received by the second antenna ANT2. After the low-frequency signal is filtered and amplified, it is output to the RF transceiver through the transmitting port LNA OUT LB1, LNA OUT LB2 or LNA OUT LB3 device 10 to realize diversity reception control of multiple low frequency signals.
  • the input ports PRX1, PRX2, PRX3, and PRX4 of the radio frequency LFEM device are used to receive the 5G radio frequency signal output after filtering the low frequency radio frequency signal received by the fourth antenna ANT4 by the third filter selection unit 520, and perform the 5G radio frequency signal output. After amplification processing, it is output to the radio frequency transceiver 10 through the transmitting port LNA OUT LB1, so as to realize the diversity MIMO reception control of 5G radio frequency signals in multiple low frequency bands.
  • a 4*4 MIMO reception system supporting low-frequency radio frequency signals is constructed.
  • the RF system improves the throughput of low-frequency RF signals, improves the integration of devices, and reduces the loss of signals on external RF lines.
  • the radio frequency system based on the foregoing embodiments can support the 4*4 MIMO function of four antennas.
  • Figure 9 as an example to analyze the working principle of the 4*4MIMO function in the N28A frequency band:
  • the transmit signal is output from the TX0LB1 port of the radio frequency transceiver 10, through the radio frequency line, to the 4G LB RFIN port of the radio frequency PA Mid device, after the signal is amplified by the 4G LB PA, to the single port of the radio frequency switch SP9T; the radio frequency switch SP9T switches to the contact 9.
  • the radio frequency switch SPDT switches the single port, and passes through the duplexer to the radio frequency switch SP10T; the radio frequency switch SP10T switches the single port to the LB1 ANT port; via LB1 ANT is output to the first antenna ANT1 for transmission.
  • the received radio frequency signal enters from the first antenna ANT1 to the LB1 ANT port of the radio frequency PA Mid device; the radio frequency switch SP10T is switched to the contact 9, and passes through the duplexer to the B28A RX channel; to the radio frequency switch SP6T, the radio frequency switch SP6T switches the single Port to LNA3 channel; after being amplified by LNA3, the radio frequency switch 3P3T is switched to contact 1, and output to the LNA OUT1 port of the radio frequency PA Mid device; the received radio frequency signal enters the radio frequency transceiver 10 through the SDR PRXE port.
  • the received RF signal enters from the second antenna ANT2 to the LB3 ANT port of the RF LFEM device; the RF switch SP6T is switched to contact 4, and after filtering by the filter, it goes to the RF switch SP3T#1; the RF switch SP3T#1 switches the single port , after being amplified by LNA1, to the radio frequency switch 3P3T; the radio frequency switch 3P3T is switched to contact 1, and output to the LNA OUT LB1 port of the radio frequency LFEM device; the received radio frequency signal enters the radio frequency transceiver 10 through the SDR DRXE port.
  • the received radio frequency signal enters from the third antenna ANT3 to the second selection switch 422 of the first filter selection unit 420; the second selection switch 422 is switched to contact 4, and is filtered by the first filter 421 and then output to the RF PA Mid device PRX4 port; to the first selection switch 412, the first selection switch 412 is switched to a single port, after being amplified by the first low noise amplifier 411, to the radio frequency switch 3P3T; the radio frequency switch 3P3T is switched to the contact 3, to the radio frequency PA Mid device The LNA OUT3 port output; the received radio frequency signal enters the radio frequency transceiver 10 through the SDR PRX1 port.
  • the received radio frequency signal enters from the fourth antenna ANT4, to the fourth selection switch 522 of the third filter selection unit 520; the fourth selection switch 522 is switched to the contact 4, and is filtered by the second filter 521 and then output to the radio frequency LFEM device DRX4 port; to the third selection switch 512, the third selection switch 512 is switched to a single port, after being amplified by the second low-noise amplifier 511, to the radio frequency switch 3P3T; the radio frequency switch 3P3T is switched to contact 3, to the LNA of the radio frequency LFEM device OUT LB3 port output; the received radio frequency signal enters the radio frequency transceiver 10 through the SDR DRX1 port.
  • the first MIMO receiving module 40 is integrated in the transceiver module 20 .
  • the transceiver module 20 can be understood as a package structure, configured with at least one first input port LB RFIN and a plurality of output ports LNA OUT for connecting with the radio frequency transceiver 10, and a first antenna port LB1 for connecting with the first antenna ANT1 ANT and the second antenna port LB2 ANT for connection with the third antenna ANT3.
  • the transceiver module 20 includes a transmitting unit 210 , a second filter selection unit 220 , a second amplification unit 230 and a first switch unit 240 .
  • the input end of the first filter selection unit 420 is connected with the second antenna port LB2 ANT of the transceiver module 20, and the transmitting unit 210 is respectively connected with the first input port LB RFIN of the transceiver module 20 and the transmission path TX of the second filter selection unit 220 connected, the receiving channel RX of the second filter selection unit 220 is connected to the input of the second amplification unit 230, and the second filter selection unit 220 is also connected to the first antenna port LB1 ANT of the transceiver module 20.
  • the first switch unit 240 includes a plurality of first ends and a plurality of second ends, and a plurality of first ends of the first switch unit 240 are respectively connected to a plurality of output ports LNA OUT of the transceiver module 20 in one-to-one correspondence, and the first switch unit Multiple second terminals of 240 are respectively connected to the output terminals of the first amplifying unit 410 and the output terminal of the second amplifying unit 230, and the multiple input terminals of the first amplifying unit 410 are respectively connected to multiple output terminals of the first filter selection unit 420 One-to-one connection.
  • the transmitting unit 210 is configured to receive the low-band radio frequency signal output by the radio frequency transceiver 10, and amplify the received low-band 5G radio frequency signal or 4G radio frequency signal.
  • the second filter selection unit 220 is used to filter the radio frequency signal of the low frequency band received by the first antenna ANT1 and select and output at least one 5G radio frequency signal or 4G radio frequency signal of the low frequency band.
  • the radio frequency signal of the frequency band is filtered and processed, and at least one 5G radio frequency signal or 4G radio frequency signal of the low frequency band is selected to be output and radiated through the first antenna ANT1.
  • the second amplification unit 230 is configured to perform low-noise amplification processing on the low-frequency radio frequency signal filtered by the second filtering selection unit 220 .
  • the first switch unit 240 is used for selectively conducting the path between the first amplifying unit 410, the second amplifying unit 230 and the output port LNA OUT of the transceiver module 20.
  • the radio frequency transceiver 10 inputs the radio frequency signal of the low frequency band to the first input port LB RFIN of the transceiver module 20, after being amplified by the transmitting unit 210, it is output to the second filter selection unit 220 for filtering processing, and selects at least one low frequency band signal
  • the 5G radio frequency signal or the 4G radio frequency signal is output to the first antenna port LB1 ANT of the transceiver module 20, and is transmitted through the first antenna ANT1 to realize the transmission of the radio frequency signal of the low frequency band.
  • the first antenna ANT1 outputs the received low-frequency radio frequency signal to the first antenna port LB1 ANT of the transceiver module 20, and after filtering by the second filter selection unit 220, it is output to the second amplification unit 230 for amplification, and then passed through the second filter selection unit 220 for amplification.
  • a switch unit 240 outputs to the output port LNA OUT of the transceiver module 20, and outputs to the radio frequency transceiver 10, so as to realize the main reception of the 5G radio frequency signal or the 4G radio frequency signal of the low frequency band.
  • the third antenna ANT3 outputs the received low-frequency radio frequency signal to the second antenna port LB2 ANT of the transceiver module 20, and after filtering by the first filter selection unit 420, it is output to the first amplification unit 410 for low-noise amplification processing, and then Output to the output port LNA OUT of the transceiver module 20 through the first switch unit 240, and output to the radio frequency transceiver 10, so as to realize the main set MIMO reception of the 5G radio frequency signal in the low frequency band.
  • the first MIMO receiving module 40 is integrated into the transceiver module 20 to further improve device integration, reduce the board area occupied by the radio frequency system, and reduce the complexity of the system layout.
  • the second MIMO receiving module 50 is integrated into the diversity receiving module 30 .
  • the diversity receiving module 30 can be understood as a packaging structure, and is configured with a transmitting port LNA OUT LB for connecting with the radio frequency transceiver 10, a third antenna port LB3 ANT for connecting with the second antenna ANT2, and a third antenna port LB3 ANT for connecting with the fourth antenna ANT4 Connect the fourth antenna port LB4 ANT.
  • the diversity receiving module 30 includes a fourth filter selection unit 310 , a fourth amplification unit 320 and a second switch unit 330 .
  • the input terminal of the third filter selection unit 520 is connected to the fourth antenna port LB4 ANT of the diversity receiving module 30.
  • the fourth filter selection unit 310 is respectively connected to the third antenna port LB3 ANT of the diversity receiving module 30 and the input end of the fourth amplification unit 320.
  • the second switch unit 330 includes a plurality of first ends and a plurality of second ends, and a plurality of first ends of the second switch unit 330 are respectively connected to a plurality of transmitting ports LNA OUT LB of the diversity receiving module 30 in one-to-one correspondence, and the second Multiple second terminals of the switch unit 330 are respectively connected to the output terminal of the third amplification unit 510 and the output terminal of the fourth amplification unit 320 .
  • Multiple input terminals of the third amplification unit 510 are respectively connected to multiple output terminals of the third filter selection unit 520 in a one-to-one correspondence.
  • the fourth filtering selection unit 310 is configured to filter the low-band radio frequency signal received by the second antenna ANT2 and select and output at least one low-band 5G radio frequency signal or 4G radio frequency signal.
  • the fourth amplifying unit 320 is configured to perform low-noise amplification processing on the 5G radio frequency signal or the 4G radio frequency signal filtered by the fourth filtering selection unit 310 .
  • the second switch unit 330 is used for selectively conducting the path between the third amplifying unit 510, the fourth amplifying unit 320 and the transmitting port LNA OUT LB of the diversity receiving module 30.
  • the second antenna ANT2 outputs the received low-frequency radio frequency signal to the third antenna port LB3 ANT of the diversity receiving module 30, and after the filter processing by the fourth filter selection unit 310, it is output to the fourth amplifying unit 320 for amplification processing, Then output to the transmission port LNA OUT LB of the diversity receiving module 30 through the second switch unit 330, and output to the radio frequency transceiver 10, so as to realize diversity reception of 5G radio frequency signals or 4G radio frequency signals in the low frequency band.
  • the fourth antenna ANT4 outputs the received low-frequency radio frequency signal to the fourth antenna port LB4 ANT of the diversity receiving module 30, and after filtering by the third filter selection unit 520, it outputs the third amplifying unit 510 for low-noise amplification processing, and then Output to the transmit port LNA OUT LB of the diversity receiving module 30 through the second switch unit 330, and output to the radio frequency transceiver 10, so as to realize diversity MIMO reception of 5G radio frequency signals in the low frequency band.
  • the second MIMO receiving module 50 is integrated into the diversity receiving module 30 to further improve device integration, reduce the board area occupied by the radio frequency system, and reduce the complexity of system layout.
  • FIG 12 shows a radio frequency system in an embodiment.
  • the transceiver module 20 can be understood as a radio frequency PA Mid device integrating the first MIMO receiving module.
  • the RF PA Mid device can support the reception and transmission of low-frequency signals in multiple frequency bands, and realize the switching control of receiving and switching between multiple low-frequency signals, the switching control of transmitting, and the switching control between transmitting and receiving.
  • the plurality of low-frequency signals may include low-frequency signals of different frequency bands among 2G signals, 3G signals, 4G signals, and 5G signals.
  • the frequency bands of the plurality of low-frequency signals may include any one of the frequency bands among B5, B8, B12, B20, B26, B28A, B28B, B13, and B19.
  • the N5, N8, N20, and N28A in the 5G signal are the same as the B5, B8, B20, and B28A frequency bands in the 4G signal, and can share the same receiving path and transmitting path.
  • the first antenna port LB1 ANT of the RF PA Mid device is connected to the first antenna ANT1
  • the second antenna port LB2 ANT of the RF PA Mid device is connected to the third antenna ANT3, and an input port 4G LB RFIN of the RF PA Mid device is connected to the RF transceiver
  • the device 10 is connected, and at least one output port (comprising LNA OUT1, LNA OUT2, LNA OUT3) of the radio frequency PA Mid device is connected with the radio frequency transceiver 10.
  • the radio frequency PA Mid device is used to filter and amplify the low-frequency radio frequency signal sent by the radio frequency transceiver 10, output it to the first antenna port LB1 ANT, and transmit it through the first antenna ANT1 to realize multiple low-frequency radio frequency signals. launch control.
  • the first antenna port LB1 ANT of the radio frequency PA Mid device is also used to receive the radio frequency signal of the low frequency band received by the first antenna ANT1, after the radio frequency signal of the low frequency band is filtered and amplified, it is output to the radio frequency transceiver 10 through the output port, In order to realize the main set receiving control of multiple low-frequency signals.
  • the second antenna port LB2 ANT of the RF PA Mid device is used to receive the low-frequency 5G RF signal received by the third antenna ANT3. After filtering and amplifying the 5G RF signal, it is output through the output port LNA OUT1, LNA OUT2 or LNA OUT3 to the radio frequency transceiver 10, so as to realize the main set MIMO reception control of 5G radio frequency signals in multiple low frequency bands.
  • the diversity receiving module 30 can be understood as a radio frequency LFEM device integrating the second MIMO receiving module (the radio frequency LFEM device that supports low, medium and high frequency bands is adopted in FIG. device).
  • the radio frequency LFEM device can support the reception of low-frequency signals in multiple frequency bands, and realize the switching control of reception among multiple low-frequency signals.
  • the multiple low-frequency signals may include low-frequency signals of different frequency bands in the 4G signal and the 5G signal.
  • the frequency bands of the plurality of low-frequency signals may include any one of the frequency bands among B5, B8, B12, B20, B26, B28A, B28B, B13, and B19.
  • the N5, N8, N20, and N28A in the 5G signal are the same as the B5, B8, B20, and B28A in the 4G signal, and can share the same receiving channel.
  • the third antenna port LB3 ANT of the radio frequency LFEM device is connected with the second antenna ANT2, the fourth antenna port LB4 ANT of the radio frequency LFEM device is connected with the fourth antenna ANT4, the transmitting ports LNA OUT LB1, LNA OUT LB2, LNA OUT of the radio frequency LFEM device LB3 is connected to the radio frequency transceiver 10 respectively.
  • the third antenna port LB1 ANT of the RF LFEM device is used to receive the low-frequency signal received by the second antenna ANT2.
  • the low-frequency signal After the low-frequency signal is filtered and amplified, it is output to the RF transceiver through the transmitting port LNA OUT LB1, LNA OUT LB2 or LNA OUT LB3 device 10 to realize diversity reception control of multiple low frequency signals.
  • the fourth antenna port LB4 ANT of the radio frequency LFEM device is used to receive the 5G radio frequency signal in the low frequency band received by the fourth antenna ANT4.
  • the 5G radio frequency signal in the low frequency band After the 5G radio frequency signal in the low frequency band is amplified and filtered, it is output to the radio frequency transceiver through the transmitting port LNA OUT LB1
  • the device 10 is used to realize the diversity MIMO reception control of 5G radio frequency signals in multiple low frequency bands.
  • a radio frequency system supporting 4*4 MIMO reception of low-frequency radio frequency signals is constructed to improve the throughput of low-frequency radio frequency signals , and improve the integration of the device and reduce the loss of the signal on the external radio frequency line.
  • the radio frequency system based on the foregoing embodiments can support the 4*4 MIMO function of four antennas.
  • Figure 12 as an example to analyze the working principle of the 4*4MIMO function in the N28A frequency band:
  • the transmission signal is output from the TX0 LB1 port of the radio frequency transceiver 10, through the radio frequency line, to the 4G LB RFIN port of the radio frequency PA Mid device, and after the signal is amplified by the 4G LB PA, it is sent to the single port of the radio frequency switch SP9T; the radio frequency switch SP9T is switched to touch Point 9, to the B28A TX channel; through the internal radio frequency line, to the contact 2 of the radio frequency switch SPDT; the radio frequency switch SPDT switches the single port, and passes through the duplexer to the radio frequency switch SP10T; the radio frequency switch SP10T switches the single port to the LB1 ANT port; LB1 ANT port output to ANT1 antenna for transmission.
  • the received radio frequency signal enters from the first antenna ANT1 to the LB1 ANT port of the radio frequency PA Mid device; the radio frequency switch SP10T is switched to the contact 9, and passes through the duplexer to the B28A RX channel; to the radio frequency switch SP6T, the radio frequency switch SP6T switches the single Port to LNA3 channel; after being amplified by LNA3, the radio frequency switch 3P3T is switched to contact 1, and output to the LNA OUT1 port of the radio frequency PA Mid device; the received radio frequency signal enters the radio frequency transceiver 10 through the SDR PRXE port.
  • the received RF signal enters from the second antenna ANT2 to the LB3 ANT port of the RF LFEM device; the RF switch SP6T is switched to contact 4, and after filtering by the filter, it goes to the RF switch SP3T#1; the RF switch SP3T#1 switches the single port , after being amplified by LNA1, to the radio frequency switch 3P3T; the radio frequency switch 3P3T is switched to contact 1, and output to the LNA OUT LB1 port of the radio frequency LFEM device; the received radio frequency signal enters the radio frequency transceiver 10 through the SDR DRXE port.
  • the received radio frequency signal enters from the third antenna ANT3, to the LB2 ANT port of the radio frequency PA Mid device, to the second selection switch 422; the second selection switch 422 is switched to the contact 4, and after filtering by the first filter 421, to the second selection switch 422 A selection switch 412, the first selection switch 412 is switched to a single port, after being amplified by the first low noise amplifier 411, it is sent to the radio frequency switch 3P3T; the radio frequency switch 3P3T is switched to the contact 3, and is output to the LNA OUT3 port of the radio frequency PA Mid device; The received radio frequency signal enters the radio frequency transceiver 10 through the SDR PRX1 port.
  • the received radio frequency signal enters from the fourth antenna ANT4, to the LB4 ANT port of the radio frequency LFEM device, to the fourth selection switch 522, and the fourth selection switch 522 is switched to the contact 4, and after filtering by the second filter 521, to the third Selector switch 512, the third selector switch 512 is switched to a single port, after being amplified by the second low noise amplifier 511, to the radio frequency switch 3P3T; the radio frequency switch 3P3T is switched to the contact 3, and output to the LNA OUT LB3 port of the radio frequency LFEM device;
  • the radio frequency signal enters the radio frequency transceiver 10 through the SDR DRX1 port.
  • Each filter in this embodiment of the present application may be a band-pass filter, a low-pass filter, or the like. It should be noted that, in the embodiment of the present application, the types of the filters are not further limited, and an appropriate filter can be selected according to the frequency band of the low-frequency signal to be filtered.
  • an embodiment of the present application further provides a communication device, on which the radio frequency system in any of the foregoing embodiments is set.
  • the throughput of the radio frequency system for low-frequency radio frequency signals is improved, and the device has a high degree of integration, which reduces the area of the substrate occupied by each device in the radio frequency system, and also simplifies the design of each device. Power supply, logic control, and PCB layout save costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Transceivers (AREA)

Abstract

一种射频***及通信设备。该射频***,包括:射频收发器(10);收发模块(20),分别与射频收发器(10)、第一天线(ANT1)连接,用于支持对低频段射频信号的发射和主集接收;分集接收模块(30),分别与射频收发器(10)、第二天线(ANT2)连接,用于支持对低频段射频信号的分集接收;第一MIMO接收模块(40),分别与射频收发器(10)、第三天线(ANT3)连接,用于支持对低频段射频信号的主集MIMO接收;第二MIMO接收模块(50),分别与射频收发器(10)、第四天线(ANT4)连接,用于支持对低频段射频信号的分集MIMO接收。

Description

射频***及通信设备
相关申请的交叉引用
本申请要求于2021年11月30日提交中国专利局,申请号为202111447467.7,申请名称为“射频***及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及射频技术领域,特别是涉及一种射频***及通信设备。
背景技术
随着技术的发展和进步,5G移动通信技术逐渐开始应用于电子设备。相比于5G高频信号而言,5G低频信号的无线频率低,波长相对比较长,绕射能力更强,覆盖能力也更大,因此目前对于5G低频网络的应用也较为广泛,但是5G低频信号的数据传输速率较低。
发明内容
根据本申请公开的各种实施例,提供一种射频***及通信设备。
一种射频***,包括:
射频收发器;
收发模块,分别与所述射频收发器、第一天线连接,用于支持对低频段射频信号的发射和主集接收;
分集接收模块,分别与所述射频收发器、第二天线连接,用于支持对所述低频段射频信号的分集接收;
第一MIMO接收模块,分别与所述射频收发器、第三天线连接,用于支持对所述低频段射频信号的主集MIMO接收;
第二MIMO接收模块,分别与所述射频收发器、第四天线连接,用于支持对所述低频段射频信号的分集MIMO接收。
一种通信设备,包括如上述的射频***。
上述射频***及通信设备,通过收发模块实现低频段射频信号的发射和主集接收,分集接收模块对低频段射频信号进行分集接收,第一MIMO接收模块对低频段射频信号进行主集MIMO接收,以及第二MIMO接收模块对低频射频信号进行分集MIMO接收,使射频***能够支持对低频段射频信号的4*4MIMO接收,以提高射频***对低频段射频信号的吞吐量,进而提高通信设备在低频网络下的数据传输速率。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据一个或多个实施例中射频***的结构示意图之一;
图2为根据一个或多个实施例中射频***的结构示意图之二;
图3为根据一个或多个实施例中射频***的结构示意图之三;
图4为根据一个或多个实施例中射频***的结构示意图之四;
图5为根据一个或多个实施例中射频***的结构示意图之五;
图6为根据一个或多个实施例中射频***的结构示意图之六;
图7为根据一个或多个实施例中射频***的结构示意图之七;
图8为根据一个或多个实施例中射频***的结构示意图之八;
图9为根据一个或多个实施例中射频***的结构示意图之九;
图10为根据一个或多个实施例中射频***的结构示意图之十;
图11为根据一个或多个实施例中射频***的结构示意图之十一;
图12为根据一个或多个实施例中射频***的结构示意图之十二;
图13为根据一个或多个实施例中通信设备的示意图。
具体实施方式
为了便于理解本申请,为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请,附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
本申请实施例涉及的射频***可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(UserEquipment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为通信设备。
本申请实施例提供一种射频***,如图1所示,在其中一个实施例中,射频***包括射频收发器10、收发模块20、分集接收模块30、第一MIMO接收模块40及第二MIMO接收模块50。
射频***还包括天线组,天线组至少包括第一天线ANT1、第二天线ANT2、第三天线ANT3和第四天线ANT4。其中,第一天线ANT1、第二天线ANT2、第三天线ANT3和第四天线ANT4均为能够支持5GNR信号的天线。
在其中一个实施例中,天线组内的各天线可以为定向天线,也可以为非定向天线。示例性的,天线组内的各天线可以使用任何合适类型的天线形成。例如,天线组内的各天线可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。不同类型的天线可以用于不同射频信号的频段组合。
示例性的,射频收发器10可以包括发射器和接收器。其中,射频收发器10可用于实现射频信号和基带信号之间的变频处理,或/和,用于实现不同频段信号的变频处理等等。
本申请实施例中,收发模块20通过与第一天线ANT1配合,能够实现对低频段射频信号的发射和主集接收;分集接收模块30通过与第二天线ANT2配合,能够实现对低频段射频信号的分集接收;第一MIMO接收模块40通过与第三天线ANT3配合,能够实现对低频段射频信号的主集MIMO接收;第二MIMO接收模块50通过与第四天线ANT4配合,能够实现对低频段射频信号的分集MIMO接收,进而支持对低频段射频信号实现4*4MIMO接收。
MIMO(Multiple InputMultiple Output,多发多收)技术是指在发射端口和接收端口分别使用多个发射天线和接收天线,充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高***的信道容量。本申请实施例通过配置用于支持低频段射频信号的4*4MIMO功能的射频***,能够成倍提高对于低频段射频信号的吞吐量。
本申请实施例中的低频段射频信号可以包括5G低频段射频信号和/或4G低频段射频信号。在其中一个实施例中,低频段射频信号可包括N5、N8、N20、N28A中的至少一个频段。
在其中一个实施例中,收发模块20用于支持对多个低频段射频信号的发射和主集接收。在其中一个实施例中,收发模块20可以在多个射频信号中选择一个进行发射,还可以对至少一个频段的射频信号进行主集接收。在另一个实施例中,收发模块20可以同时对两个以上频段的射频信号进行发射,还 可以对两个以上频段的射频信号进行主集接收。
在其中一个实施例中,分集接收模块30用于支持对多个低频段的射频信号的分集接收。在其中一个实施例中,分集接收模块30可以在多个低频段的射频信号中选择一个进行分集接收。在另一个实施例中,分集接收模块30可以同时对两个以上低频段的射频信号进行分集接收。
在其中一个实施例中,第一MIMO接收模块40用于支持对多个低频段的射频信号的主集MIMO接收。在其中一个实施例中,第一MIMO接收模块40可以在多个低频段的射频信号中选择一个进行主集MIMO接收。在另一个实施例中,第一MIMO接收模块40可以同时对两个以上的低频段的射频信号进行主集MIMO接收。
在其中一个实施例中,第二MIMO接收模块50用于支持对多个低频段的射频信号的分集MIMO接收。在其中一个实施例中,第二MIMO接收模块50可以在多个低频段的射频信号中选择一个进行分集MIMO接收。在另一个实施例中,第二MIMO接收模块50可以同时对两个以上低频段的射频信号进行分集MIMO接收。
如图2所示,在其中一个实施例中,第一MIMO接收模块40包括第一滤波选择单元420和第一放大单元410。其中,第一滤波选择单元420包括至少一个输入端及多个输出端,第一放大单元410包括多个输入端及至少一个输出端。第一滤波选择单元420的一输入端与第三天线ANT3连接,第一滤波选择单元420的多个输出端分别与第一放大单元410的多个输入端一一对应连接,第一放大单元410的输出端与射频收发器10连接。
第一滤波选择单元420对第三天线ANT3接收的射频信号进行滤波处理并选择输出至少一个频段的5G射频信号至第一放大单元410,第一放大单元410对接收到的低频段射频信号进行低噪声放大处理后输出至射频收发器10。示例性的,对于目标频段为N28A频段时,第一滤波选择单元420对第三天线ANT3接收的射频信号进行滤波,选择能够输出N28A频段的滤波通路对射频信号处理,以输出N28A频段的射频信号至第一放大单元410进行低噪声放大处理。
参考图3所示,在其中一个实施例中,第一放大单元410包括多个第一低噪声放大器411和第一选择开关412。其中,第一选择开关412包括至少一个第一端和多个第二端,第一选择开关412的第一端作为第一放大单元410的输出端,第一选择开关412的多个第二端分别与多个第一低噪声放大器411的输出端一一对应连接;多个第一低噪声放大器411的输入端分别用于与第一滤波选择单元420的多个输出端一一对应连接。
在其中一个实施例中,第一滤波选择单元420包括多个第一滤波器421和第二选择开关422。其中,多个第一滤波器421的一端分别作为第一滤波选择单元420的多个输出端,分别与第一放大单元410的多个输入端一一对应连接;第二选择开关422包括多个第一端和至少一个第二端,第二选择开关422的多个第一端分别与多个第一滤波器421的另一端一一对应连接,第二选择开关422的第二端作为第一滤波选择单元420的输入端,用于与第三天线ANT3连接。多个第一滤波器421能够对接收的射频信号进行滤波处理,其中,每个第一滤波器421仅允许一种预设频段的低频信号通过。示例性的,若低频段射频信号的频段可以是N5、N8、N20、N28A这四个不同频段,可对应设置四个第一滤波器421,以实现对这四个低频信号的滤波处理,经过这四个第一滤波器421的滤波处理后,可以对应输出N5、N8、N20、N28A四个频段的射频信号至第一放大单元410。
在其中一个实施例中,第一MIMO接收模块40可以为封装结构,该第一MIMO接收模块40被配置有用于连接第三天线ANT3的天线端口Ant以及用于连接射频收发器10的至少一输出端口LNA OUT。其中,该模块中配置的天线端口Ant和输出端口LNA OUT可以理解为第一MIMO接收模块40的射频引脚端子,用于与各外部器件进行连接。其中,第一MIMO接收模块40的天线端口Ant可用于与天线连接;第一MIMO接收模块40的输出端口LNA OUT可用于与射频收发器10连接。示例性的,天线端口Ant用于接收第三天线ANT3输出的射频信号,第一MIMO接收模块40可对输入的射频信号进行滤波放大处理,以经输出端口LNA OUT输出至射频收发器10,以实现对低频段射频信号的接收控制。
本实施例中,将第一MIMO接收模块40集成为一个器件,能够减少射频***占用的主板面积,集 成化的第一MIMO接收模块40,在器件内部即可实现各部分间的匹配,降低端口失配,提高器件性能,并且集成后的第一MIMO接收模块40,只需设置一组供电端和MIPI控制端即可,提高器件的集成度,降低***布局的复杂度,还能够降低成本。
如图4所示,在其中一个实施例中,第二MIMO接收模块50包括第三滤波选择单元520和第三放大单元510。其中,第三滤波选择单元520包括至少一个输入端及多个输出端,第三放大单元510包括多个输入端及至少一个输出端。第三滤波选择单元520的一输入端与第四天线ANT4连接,第三滤波选择单元520的多个输出端分别与第三放大单元510的多个输入端一一对应连接,第三放大单元510的输出端与射频收发器10连接。
第三滤波选择单元520对第四天线ANT4接收的射频信号进行滤波处理并选择输出至少一个频段的5G射频信号至第三放大单元510,第三放大单元510对接收到的5G射频信号进行低噪声放大处理后输出至射频收发器10。示例性的,对于目标频段为N28A频段时,第三滤波选择单元520对第四天线ANT4接收的射频信号进行滤波,选择能够输出N28A频段的滤波通路对射频信号处理,以输出N28A频段的射频信号至第三放大单元510进行放低噪声大处理。
参考图5所示,在其中一个实施例中,第三放大单元包括多个第二低噪声放大器511和第三选择开关512。其中,第三选择开关512包括至少一个第一端和多个第二端,第三选择开关512的第一端作为第三放大单元的输出端,第三选择开关512的多个第二端分别与多个第二低噪声放大器511的输出端一一对应连接;多个第二低噪声放大器511的输入端分别用于与第三滤波选择单元的多个输出端一一对应连接。
在其中一个实施例中,第三滤波选择单元包括多个第二滤波器521和第四选择开关522。其中,多个第二滤波器521的一端分别作为第三滤波选择单元520的多个输出端,分别与第三放大单元的多个输入端一一对应连接;第四选择开关522包括多个第一端和至少一个第二端,第四选择开关522的多个第一端分别与多个第二滤波器521的另一端一一对应连接,第四选择开关522的第二端作为第三滤波选择单元的输入端,用于与第四天线ANT4连接。多个第二滤波器521能够对接收的射频信号进行滤波处理,其中,每个第二滤波器521仅允许一种预设频段的低频信号通过。示例性的,若低频段射频信号的频段可以是N5、N8、N20、N28A这四个不同频段,可对应设置四个第二滤波器521,以实现对这四个低频信号的滤波处理,经过这四个第二滤波器521的滤波处理后,可以对应输出N5、N8、N20、N28A四个频段的5G射频信号至第三放大单元510。
在其中一个实施例中,第二MIMO接收模块50可以为封装结构,该第二MIMO接收模块50被配置有用于连接第四天线ANT4的天线端口Ant以及用于连接射频收发器10的至少一输出端口LNA OUT。其中,该模块中配置的天线端口Ant和输出端口LNA OUT可以理解为第二MIMO接收模块50的射频引脚端子,用于与各外部器件进行连接。其中,第二MIMO接收模块50的天线端口Ant可用于与天线连接;第二MIMO接收模块50的输出端口LNA OUT可用于与射频收发器10连接。示例性的,天线端口Ant用于接收第四天线ANT4输出的射频信号,第二MIMO接收模块50可对输入的射频信号进行滤波放大处理,以经输出端口LNA OUT输出至射频收发器10,以实现对低频段射频信号的接收控制。
本实施例中,将第二MIMO接收模块50集成为一个器件,能够减少射频***占用的主板面积,集成化的第二MIMO接收模块50,在器件内部即可实现各部分间的匹配,降低端口失配,提高器件性能,并且集成后的第二MIMO接收模块50,只需设置一组供电端和MIPI控制端即可,提高器件的集成度,降低***布局的复杂度,还能够降低成本。
如图6所示为一实施例中的射频***。其中,收发模块20可以包括射频PA Mid器件,该射频PA Mid器件可以理解为功率放大器模块(Power Amplifier Modules including Duplexers,PA Mid)。该射频PA Mid器件可以支持对多个频段的低频信号的接收和发射,以及实现对多个低频信号间的接收切换控制、发射切换控制以及发射与接收之间的切换控制。该多个低频信号可以包括2G信号、3G信号、4G信号、5G信号中的不同频段的低频信号。其中,多个低频信号的频段可包括B5、B8、B12、B20、B26、B28A、B28B、B13、B19中的任意一种频段。其中,5G信号中的N5、N8、N20、N28A分别与4G信号中的 B5、B8、B20、B28A频段相同,可以共用相同的接收通路和发射通路。射频PA Mid器件的第一天线端口LB ANT与第一天线ANT1连接,射频PA Mid器件的一输入端口4G LB RFIN与射频收发器10连接,射频PA Mid器件的至少一输出端口LNA OUT1与射频收发器10连接,射频PA Mid器件用于对射频收发器10发出的低频段射频信号进行滤波放大处理,输出至天线端口LB ANT1,经第一天线ANT1发射出去,以实现对多个低频段的射频信号的发射控制。射频PA Mid器件的第一天线端口LB ANT还用于接收由第一天线ANT1接收的低频段的射频信号,对低频段的射频信号进行滤波放大处理后,经输出端口LNA OUT1或输出端口LNA OUT2输出至射频收发器10,以实现对多个低频信号的接收控制。
分集接收模块30可以包括射频LFEM器件(图6中采用的为支持低中高频段的射频LFEM器件,在一些实施例中也可以使用仅支持低频段的射频LFEM器件)。射频LFEM器件理解为低噪声放大器前端模块(Low Noise AmPlifier–Front-End Modules)。该射频LFEM器件可以支持对多个频段的低频信号的接收,以及实现对多个低频信号间的接收切换控制。该多个低频信号可以包括4G信号、5G信号中的不同频段的低频信号。其中,多个低频信号的频段可包括B5、B8、B12、B20、B26、B28A、B28B、B13、B19中的任意一种频段。其中,5G信号中的N5、N8、N20、N28A分别与4G信号中的B5、B8、B20、B28A频段相同,可以共用相同的接收通路。射频LFEM器件的第三天线端口LB3 ANT与第二天线ANT2连接,射频LFEM器件的发射端口(包括LNA OUT LB1、LNA OUT LB2)与射频收发器10连接。射频LFEM器件用于接收由第二天线ANT2接收的低频段射频信号,对低频段射频信号进行滤波放大处理后,经发射端口输出至射频收发器10,以实现对多个低频信号的接收控制。
通过收发模块20、分集接收模块30、第一MIMO接收模块40和第二MIMO接收模块50配合,构建支持低频段射频信号4*4MIMO接收的射频***,提高对低频段射频信号的吞吐量。
基于上述实施例的射频***,可以支持四天线的4*4MIMO功能。示例性的,以图6为例,分析N28A频段的4*4MIMO功能工作原理:
TX通路:
发射信号从射频收发器10的TX0 LB1端口输出,经射频线,至射频PA Mid器件的4G LB RFIN端口,经4G LB PA放大信号后,至射频开关SP9T的单端口;射频开关SP9T切换至触点9,至B28A TX通路;经内部射频线,至射频开关SPDT的触点2;射频开关SPDT切换单端口,经双工器至射频开关SP10T;射频开关SP10T切换单端口至LB1 ANT端口;经LB1 ANT端口输出至第一天线ANT1发射。
PRX通路:
接收的射频信号从第一天线ANT1进入,至射频PA Mid器件的LB1 ANT端口;射频开关SP10T切换至触点9,经双工器,至B28A RX通路;至射频开关SP6T,射频开关SP6T切换单端口至LNA2通路;经LNA2放大后,射频开关DPDT切换至触点1,至射频PA Mid器件的LNA OUT1端口输出;接收的射频信号经SDR PRXE端口进入射频收发器10。
DRX通路:
接收的射频信号从第二天线ANT2进入,至射频LFEM器件的LB3 ANT端口;射频开关SP6T切换至触点4,经滤波器滤波后,至射频开关SP3T#1;射频开关SP3T#1切换单端口,经LNA1放大后,至射频开关DPDT;射频开关DPDT切换至触点1,至射频LFEM器件的LNA OUT LB1端口输出;接收的射频信号经SDR DRXE端口进入射频收发器10。
PRX MIMO通路:
接收的射频信号从第三天线ANT3进入,第一MIMO接收模块40的天线端口Ant;第二选择开关422切换至触点4,经第一滤波器421滤波、第一低噪声放大器411放大后,至第一选择开关412;第一选择开关412切换至触点2,至第一MIMO接收模块40的LNA OUT端口输出;接收的射频信号经SDR PRX3端口进入射频收发器10。
DRX MIMO通路:
接收的射频信号从第四天线ANT4进入,第二MIMO接收模块50的天线端口Ant;第四选择开关522切换至触点4,经第二滤波器521滤波、第二低噪声放大器511放大后,至第三选择开关512;第三选择开关512切换至触点2,至第二MIMO接收模块50的LNA OUT端口输出;接收的射频信号经 SDR DRX3端口进入射频收发器10。
如图7所示,在其中一个实施例中,第一MIMO接收模块40中的第一放大单元410被集成于收发模块20内。收发模块20可以理解为封装结构,被配置有用于与射频收发器10连接的至少一个第一输入端口LB RFIN和多个输出端口LNA OUT、用于与第一天线ANT1连接的第一天线端口LB1 ANT以及多个用于与第一滤波选择单元420的多个输出端一一对应连接的第二输入端口PRX。
收发模块20包括发射单元210、第二滤波选择单元220、第二放大单元230及第一开关单元240。其中,第一放大单元410的多个输入端分别与收发模块20的多个第二输入端口PRX一一对应连接,发射单元210分别与收发模块20的第一输入端口LB RFIN、第二滤波选择单元的发射通路TX连接,第二滤波选择单元的接收通路RX与第二放大单元230的输入端连接,第二滤波选择单元220还与收发模块20的第一天线端口LB1 ANT连接。第一开关单元240包括多个第一端和多个第二端,第一开关单元240的多个第一端分别与收发模块20的多个输出端口LNA OUT一一对应连接,第一开关单元240的多个第二端分别与第一放大单元410的输出端、第二放大单元230的输出端连接。发射单元210用于接收射频收发器10输出的低频段射频信号,并对接收的低频段射频信号进行放大处理。第二滤波选择单元220用于对经第一天线ANT1接收的射频信号进行滤波处理并选择输出至少一个频段的5G射频信号或4G低频信号,还用于对发射单元210输出的低频段射频信号进行滤波处理并选择输出至少一个频段的5G射频信号或4G低频信号经第一天线ANT1进行辐射。第二放大单元230用于对第二滤波选择单元220滤波处理后的5G射频信号或4G低频信号进行放大处理。第一开关单元用于选择导通第一放大单元410、第二放大单元230与收发模块20的输出端口LNA OUT之间的通路。
其中,射频收发器10向收发模块20的第一输入端口LB RFIN输入低频段的5G射频信号或4G射频信号,经发射单元210放大处理后输出至第二滤波选择单元220进行滤波处理,并选择至少一个频段的5G射频信号或4G射频信号输出至收发模块20的第一天线端口LB ANT,经第一天线ANT1发射出去,以实现对低频段的5G射频信号或4G射频信号的发射。第一天线ANT1将接收的低频段的射频信号输出至收发模块20的第一天线端口LB ANT,经第二滤波选择单元220滤波处理后,输出至第二放大单元230进行低噪声放大处理,再经第一开关单元240输出至收发模块20的输出端口LNA OUT,输出至射频收发器10,以实现对低频段的射频信号的主集接收。第三天线ANT3将接收的低频段的射频信号输出至第一滤波选择单元420滤波处理后,输出至收发模块20的第二输入端口PRX,输入至第一放大单元410进行低噪声放大处理,再经第一开关单元240输出至收发模块20的输出端口LNA OUT,输出至射频收发器10,以实现对低频段的5G射频信号或4G射频信号的主集MIMO接收。
本实施例中,将第一MIMO接收模块40中的第一放大单元410集成至收发模块20内,进一步提高器件的集成度,减少射频***占用的主板面积,降低***布局的复杂度。
如图8所示,在其中一个实施例中,第二MIMO接收模块50中的第三放大单元510被集成于分集接收模块30内。分集接收模块30可以理解为封装结构,被配置有用于与射频收发器10连接的发射端口LNA OUT LB、用于与第二天线ANT2连接的第三天线端口LB3 ANT以及多个用于与第三滤波选择单元520的多个输出端一一对应连接的接收端口DRX。
分集接收模块30包括第四滤波选择单元310、第四放大单元320和第二开关单元330。其中,第三放大单元510的多个输入端分别与分集接收模块30的多个接收端口DRX一一对应连接。第四滤波选择单元310分别与分集接收模块30的第三天线端口LB3 ANT、第四放大单元320的输入端连接。第二开关单元330包括多个第一端和多个第二端,第二开关单元330的多个第一端分别与分集接收模块30的多个发射端口LNA OUT LB一一对应连接,第二开关单元330的多个第二端分别与第三放大单元510的输出端、第四放大单元320的输出端连接。第四滤波选择单元310用于对经第二天线ANT2接收的低频段的射频信号进行滤波处理并选择输出至少一个低频段的5G射频信号或4G射频信号。第四放大单元320用于对第四滤波选择单元310滤波处理后的低频段的5G射频信号或4G射频信号进行低噪声放大处理。第二开关单元330用于选择导通第三放大单元510、第四放大单元320与分集接收模块30的发射端口LNA OUT LB之间的通路。
其中,第二天线ANT2将接收的低频段的射频信号输出至分集接收模块30的第三天线端口LB3  ANT,经第四滤波选择单元310滤波处理后,输出至第四放大单元320进行低噪声放大处理,再经第二开关单元330输出至分集接收模块30的发射端口LNA OUT LB,输出至射频收发器10,以实现对低频段的5G射频信号或4G射频信号的分集接收。第四天线ANT4将接收的低频段的射频信号输出至第三滤波选择单元520滤波处理后,输出至分集接收模块30的接收端口DRX,输入至第三放大单元510进行放大处理,再经第二开关单元330输出至分集接收模块30的发射端口LNA OUT LB,输出至射频收发器10,以实现对低频段的5G射频信号或4G射频信号的分集MIMO接收。
本实施例中,将第二MIMO接收模块50中的第三放大单元510集成至分集接收模块30内,进一步提高器件的集成度,减少射频***占用的主板面积,降低***布局的复杂度。
参考图9所示,在其中一个实施例中,第一放大单元包括第一低噪声放大器411和第一选择开关412。其中,第一选择开关412包括一个第一端和多个第二端,第一选择开关412的第一端与第一低噪声放大器411的输入端连接;第一选择开关412的多个第二端分别作为第一放大单元410的多个输入端,分别用于与第一滤波选择单元420的多个输出端一一对应连接。
本实施例中,将第一放大单元集成于收发模块20内,通过第一选择开关412选择第一低噪声放大器411与第一滤波选择单元420不同输出端间的通路,以选择对不同频段的5G射频信号进行低噪声放大处理,节省了第一低噪声放大器411的数量,缩小器件占用主板的面积。
在其中一个实施例中,第三放大单元包括至少一个第二低噪声放大器511和第三选择开关512。其中,第三选择开关512包括至少一个第一端和多个第二端,第三选择开关512的第一端与第二低噪声放大器511的输入端连接;第三选择开关512的多个第二端分别作为第三放大单元510的多个输入端,分别用于与第三滤波选择单元520的多个输出端一一对应连接。
本实施例中,将第三放大单元集成于分集接收模块30内,通过第三选择开关512选择第二低噪声放大器511与第三滤波选择单元520不同输出端间的通路,以选择对不同频段的5G射频信号进行低噪声放大处理,节省了第二低噪声放大器511的数量,缩小器件占用主板的面积。
如图9所示为一实施例中的射频***。其中,收发模块20可以理解为集成了第一放大单元的射频PA Mid器件。该射频PA Mid器件可以支持对多个频段的低频信号的接收和发射,以及实现对多个低频信号间的接收切换控制、发射切换控制以及发射与接收之间的切换控制。该多个低频信号可以包括2G信号、3G信号、4G信号、5G信号中的不同频段的低频信号。其中,多个低频信号的频段可包括B5、B8、B12、B20、B26、B28A、B28B、B13、B19中的任意一种频段。其中,5G信号中的N5、N8、N20、N28A分别与4G信号中的B5、B8、B20、B28A频段相同,可以共用相同的接收通路和发射通路。射频PA Mid器件的第一天线端口L/1 ANT与第一天线ANT1连接,射频PA Mid器件的一输入端口4G LB RFIN与射频收发器10连接,射频PA Mid器件的多个第二输入端口PRX1、PRX2、PRX3、PRX4分别与第一滤波选择单元420的多个输出端一一对应连接,射频PA Mid器件的至少一输出端口(LNA OUT1、LNA OUT2、LNA OUT3)与射频收发器10连接,射频PA Mid器件用于对射频收发器10发出的低频段射频信号进行滤波放大处理,输出至第一天线端口LB1 ANT,经第一天线ANT1发射出去,以实现对多个低频段的射频信号的发射控制。射频PA Mid器件的第一天线端口LB1 ANT还用于接收由第一天线ANT1接收的低频段的射频信号,对低频段的射频信号进行滤波放大处理后,经输出端口LNA OUT1、LNA OUT2或LNA OUT3输出至射频收发器10,以实现对多个低频信号的主集接收控制。射频PA Mid器件的第二输入端口PRX1、PRX2、PRX3、PRX4用于接收由第一滤波选择单元420对第三天线ANT3接收的射频信号进行滤波处理后输出的5G射频信号,对5G射频信号进行低噪声放大处理后,经输出端口输出至射频收发器10,以实现对多个低频段的5G射频信号的主集MIMO接收控制。
分集接收模块30可以理解为集成了第二放大单元的射频LFEM器件(图9中采用的为支持低中高频段的射频LFEM器件,在一些实施例中也可以使用仅支持低频段的射频LFEM器件)。该射频LFEM器件可以支持对多个频段的低频信号的接收,以及实现对多个低频信号间的接收切换控制。该多个低频信号可以包括4G信号、5G信号中的不同频段的低频信号。其中,多个低频信号的频段可包括B5、B8、B12、B20、B26、B28A、B28B、B13、B19中的任意一种频段。其中,5G信号中的N5、N8、N20、N28A分别与4G信号中的B5、B8、B20、B28A频段相同,可以共用相同的接收通路。射频LFEM器 件的第三天线端口LB3 ANT与第二天线ANT2连接,射频LFEM器件的多个接收端口DRX1、DRX2、DRX3、DRX4分别与第三滤波选择单元520的多个输出端一一对应连接,射频LFEM器件的发射端口LNA OUT LB1、LNA OUT LB2、LNA OUT LB3分别与射频收发器10连接。射频LFEM器件的第三天线端口LB3 ANT用于接收由第二天线ANT2接收的低频信号,对低频信号进行滤波放大处理后,经发射端口LNA OUT LB1、LNA OUT LB2或LNA OUT LB3输出至射频收发器10,以实现对多个低频信号的分集接收控制。射频LFEM器件的输入端口PRX1、PRX2、PRX3、PRX4用于接收由第三滤波选择单元520对第四天线ANT4接收的低频段的射频信号进行滤波处理后输出的5G射频信号,对5G射频信号进行放大处理后,经发射端口LNA OUT LB1输出至射频收发器10,以实现对多个低频段的5G射频信号的分集MIMO接收控制。
通过集成了第一放大单元的收发模块20、集成了第三放大单元的分集接收模块30、第一滤波选择单元420和第三滤波选择单元520配合,构建支持低频段射频信号4*4MIMO接收的射频***,提高对低频段射频信号的吞吐量,并且提高了器件的集成度,减少信号在外部射频线上的损耗。
基于上述实施例的射频***,可以支持四天线的4*4MIMO功能。示例性的,以图9为例,分析N28A频段的4*4MIMO功能工作原理:
TX通路:
发射信号从射频收发器10的TX0LB1端口输出,经射频线,至射频PA Mid器件的4G LB RFIN端口,经4G LB PA放大信号后,至射频开关SP9T的单端口;射频开关SP9T切换至触点9,至B28A TX通路;经内部射频线,至射频开关SPDT的触点2;射频开关SPDT切换单端口,经双工器至射频开关SP10T;射频开关SP10T切换单端口至LB1 ANT端口;经LB1 ANT输出至第一天线ANT1发射。
PRX通路:
接收的射频信号从第一天线ANT1进入,至射频PA Mid器件的LB1 ANT端口;射频开关SP10T切换至触点9,经双工器,至B28A RX通路;至射频开关SP6T,射频开关SP6T切换单端口至LNA3通路;经LNA3放大后,射频开关3P3T切换至触点1,至射频PA Mid器件的LNA OUT1端口输出;接收的射频信号经SDR PRXE端口进入射频收发器10。
DRX通路:
接收的射频信号从第二天线ANT2进入,至射频LFEM器件的LB3 ANT端口;射频开关SP6T切换至触点4,经滤波器滤波后,至射频开关SP3T#1;射频开关SP3T#1切换单端口,经LNA1放大后,至射频开关3P3T;射频开关3P3T切换至触点1,至射频LFEM器件的LNA OUT LB1端口输出;接收的射频信号经SDR DRXE端口进入射频收发器10。
PRX MIMO通路:
接收的射频信号从第三天线ANT3进入,至第一滤波选择单元420的第二选择开关422;第二选择开关422切换至触点4,经第一滤波器421滤波后输出至射频PA Mid器件的PRX4端口;至第一选择开关412,第一选择开关412切换至单端口,经第一低噪声放大器411放大后,至射频开关3P3T;射频开关3P3T切换至触点3,至射频PA Mid器件的LNA OUT3端口输出;接收的射频信号经SDR PRX1端口进入射频收发器10。
DRX MIMO通路:
接收的射频信号从第四天线ANT4进入,至第三滤波选择单元520的第四选择开关522;第四选择开关522切换至触点4,经第二滤波器521滤波后输出至射频LFEM器件的DRX4端口;至第三选择开关512,第三选择开关512切换至单端口,经第二低噪声放大器511放大后,至射频开关3P3T;射频开关3P3T切换至触点3,至射频LFEM器件的LNA OUT LB3端口输出;接收的射频信号经SDR DRX1端口进入射频收发器10。
如图10所示,在其中一个实施例中,第一MIMO接收模块40被集成于收发模块20内。收发模块20可以理解为封装结构,被配置有用于与射频收发器10连接的至少一个第一输入端口LB RFIN和多个输出端口LNA OUT、用于与第一天线ANT1连接的第一天线端口LB1 ANT以及用于与第三天线ANT3连接的第二天线端口LB2 ANT。
收发模块20包括发射单元210、第二滤波选择单元220、第二放大单元230及第一开关单元240。其中,第一滤波选择单元420的输入端与收发模块20的第二天线端口LB2 ANT连接,发射单元210分别与收发模块20的第一输入端口LB RFIN、第二滤波选择单元220的发射通路TX连接,第二滤波选择单元220的接收通路RX与第二放大单元230的输入端连接,第二滤波选择单元220还与收发模块20的第一天线端口LB1 ANT连接。第一开关单元240包括多个第一端和多个第二端,第一开关单元240的多个第一端分别与收发模块20的多个输出端口LNA OUT一一对应连接,第一开关单元240的多个第二端分别与第一放大单元410的输出端、第二放大单元230的输出端连接,第一放大单元410的多个输入端分别与第一滤波选择单元420的多个输出端一一对应连接。发射单元210用于接收射频收发器10输出的低频段的射频信号,并对接收的低频段的5G射频信号或4G射频信号进行放大处理。第二滤波选择单元220用于对经第一天线ANT1接收的低频段的射频信号进行滤波处理并选择输出至少一个低频段的5G射频信号或4G射频信号,还用于对发射单元210输出的低频段的射频信号进行滤波处理并选择输出至少一个低频段的5G射频信号或4G射频信号经第一天线ANT1进行辐射。第二放大单元230用于对第二滤波选择单元220滤波处理后的低频段射频信号进行低噪声放大处理。第一开关单元240用于选择导通第一放大单元410、第二放大单元230与收发模块20的输出端口LNA OUT之间的通路。
其中,射频收发器10向收发模块20的第一输入端口LB RFIN输入低频段的射频信号,经发射单元210放大处理后输出至第二滤波选择单元220进行滤波处理,并选择至少一个低频段的5G射频信号或4G射频信号输出至收发模块20的第一天线端口LB1 ANT,经第一天线ANT1发射出去,以实现对低频段的射频信号的发射。第一天线ANT1将接收的低频段的射频信号输出至收发模块20的第一天线端口LB1 ANT,经第二滤波选择单元220滤波处理后,输出至第二放大单元230进行放大处理,再经第一开关单元240输出至收发模块20的输出端口LNA OUT,输出至射频收发器10,以实现对低频段的5G射频信号或4G射频信号的主集接收。第三天线ANT3将接收的低频段的射频信号输出至收发模块20的第二天线端口LB2 ANT,经第一滤波选择单元420滤波处理后,输出至第一放大单元410进行低噪声放大处理,再经第一开关单元240输出至收发模块20的输出端口LNA OUT,输出至射频收发器10,以实现对低频段的5G射频信号的主集MIMO接收。
本实施例中,将第一MIMO接收模块40集成至收发模块20内,进一步提高器件的集成度,减少射频***占用的主板面积,降低***布局的复杂度。
如图11所示,在其中一个实施例中,第二MIMO接收模块50被集成于分集接收模块30内。分集接收模块30可以理解为封装结构,被配置有用于与射频收发器10连接的发射端口LNA OUT LB、用于与第二天线ANT2连接的第三天线端口LB3 ANT以及用于与第四天线ANT4连接的第四天线端口LB4 ANT。
分集接收模块30包括第四滤波选择单元310、第四放大单元320和第二开关单元330。其中,第三滤波选择单元520的输入端与分集接收模块30的第四天线端口LB4 ANT连接。第四滤波选择单元310分别与分集接收模块30的第三天线端口LB3 ANT、第四放大单元320的输入端连接。第二开关单元330包括多个第一端和多个第二端,第二开关单元330的多个第一端分别与分集接收模块30的多个发射端口LNA OUT LB一一对应连接,第二开关单元330的多个第二端分别与第三放大单元510的输出端、第四放大单元320的输出端连接。第三放大单元510的多个输入端分别与第三滤波选择单元520的多个输出端一一对应连接。第四滤波选择单元310用于对经第二天线ANT2接收的低频段的射频信号进行滤波处理并选择输出至少一个低频段的5G射频信号或4G射频信号。第四放大单元320用于对第四滤波选择单元310滤波处理后的5G射频信号或4G射频信号进行低噪声放大处理。第二开关单元330用于选择导通第三放大单元510、第四放大单元320与分集接收模块30的发射端口LNA OUT LB之间的通路。
其中,第二天线ANT2将接收的低频段的射频信号输出至分集接收模块30的第三天线端口LB3 ANT,经第四滤波选择单元310滤波处理后,输出至第四放大单元320进行放大处理,再经第二开关单元330输出至分集接收模块30的发射端口LNA OUT LB,输出至射频收发器10,以实现对低频段的5G射频信号或4G射频信号的分集接收。第四天线ANT4将接收的低频段的射频信号输出至分集接收 模块30的第四天线端口LB4 ANT,经第三滤波选择单元520滤波处理后,输出第三放大单元510进行低噪声放大处理,再经第二开关单元330输出至分集接收模块30的发射端口LNA OUT LB,输出至射频收发器10,以实现对低频段的5G射频信号的分集MIMO接收。
本实施例中,将第二MIMO接收模块50集成至分集接收模块30内,进一步提高器件的集成度,减少射频***占用的主板面积,降低***布局的复杂度。
如图12所示为一实施例中的射频***。其中,收发模块20可以理解为集成了第一MIMO接收模块的射频PA Mid器件。该射频PA Mid器件可以支持对多个频段的低频信号的接收和发射,以及实现对多个低频信号间的接收切换控制、发射切换控制以及发射与接收之间的切换控制。该多个低频信号可以包括2G信号、3G信号、4G信号、5G信号中的不同频段的低频信号。其中,多个低频信号的频段可包括B5、B8、B12、B20、B26、B28A、B28B、B13、B19中的任意一种频段。其中,5G信号中的N5、N8、N20、N28A分别与4G信号中的B5、B8、B20、B28A频段相同,可以共用相同的接收通路和发射通路。射频PA Mid器件的第一天线端口LB1 ANT与第一天线ANT1连接,射频PA Mid器件的第二天线端口LB2 ANT与第三天线ANT3连接,射频PA Mid器件的一输入端口4G LB RFIN与射频收发器10连接,射频PA Mid器件的至少一输出端口(包括LNA OUT1、LNA OUT2、LNA OUT3)与射频收发器10连接。射频PA Mid器件用于对射频收发器10发出的低频段的射频信号进行滤波放大处理,输出至第一天线端口LB1 ANT,经第一天线ANT1发射出去,以实现对多个低频段的射频信号的发射控制。射频PA Mid器件的第一天线端口LB1 ANT还用于接收由第一天线ANT1接收的低频段的射频信号,对低频段的射频信号进行滤波放大处理后,经输出端口输出至射频收发器10,以实现对多个低频信号的主集接收控制。射频PA Mid器件的第二天线端口LB2 ANT用于接收由第三天线ANT3接收的低频段的5G射频信号,对5G射频信号进行滤波放大处理后,经输出端口LNA OUT1、LNA OUT2或LNA OUT3输出至射频收发器10,以实现对多个低频段的5G射频信号的主集MIMO接收控制。
分集接收模块30可以理解为集成了第二MIMO接收模块的射频LFEM器件(图12中采用的为支持低中高频段的射频LFEM器件,在一些实施例中也可以使用仅支持低频段的射频LFEM器件)。该射频LFEM器件可以支持对多个频段的低频信号的接收,以及实现对多个低频信号间的接收切换控制。该多个低频信号可以包括4G信号、5G信号中的不同频段的低频信号。其中,多个低频信号的频段可包括B5、B8、B12、B20、B26、B28A、B28B、B13、B19中的任意一种频段。其中,5G信号中的N5、N8、N20、N28A分别与4G信号中的B5、B8、B20、B28A频段相同,可以共用相同的接收通路。射频LFEM器件的第三天线端口LB3 ANT与第二天线ANT2连接,射频LFEM器件的第四天线端口LB4 ANT与第四天线ANT4连接,射频LFEM器件的发射端口LNA OUT LB1、LNA OUT LB2、LNA OUT LB3分别与射频收发器10连接。射频LFEM器件的第三天线端口LB1 ANT用于接收由第二天线ANT2接收的低频信号,对低频信号进行滤波放大处理后,经发射端口LNA OUT LB1、LNA OUT LB2或LNA OUT LB3输出至射频收发器10,以实现对多个低频信号的分集接收控制。射频LFEM器件的第四天线端口LB4 ANT用于接收由第四天线ANT4接收的低频段的5G射频信号,对低频段的5G射频信号进行放大滤波处理后,经发射端口LNA OUT LB1输出至射频收发器10,以实现对多个低频段的5G射频信号的分集MIMO接收控制。
通过集成了第一MIMO接收模块的收发模块20、集成了第二MIMO接收模块的分集接收模块30配合,构建支持低频段射频信号4*4MIMO接收的射频***,提高对低频段射频信号的吞吐量,并且提高了器件的集成度,减少信号在外部射频线上的损耗。
基于上述实施例的射频***,可以支持四天线的4*4MIMO功能。示例性的,以图12为例,分析N28A频段的4*4MIMO功能工作原理:
TX通路:
发射信号从射频收发器10的TX0 LB1端口输出,经射频线,至射频PA Mid器件的4G LB RFIN端口,经4G LB PA放大信号后,至射频开关SP9T的单端口;射频开关SP9T切换至触点9,至B28A TX通路;经内部射频线,至射频开关SPDT的触点2;射频开关SPDT切换单端口,经双工器至射频开关SP10T;射频开关SP10T切换单端口至LB1 ANT端口;经LB1 ANT端口输出至ANT1天线发射。
PRX通路:
接收的射频信号从第一天线ANT1进入,至射频PA Mid器件的LB1 ANT端口;射频开关SP10T切换至触点9,经双工器,至B28A RX通路;至射频开关SP6T,射频开关SP6T切换单端口至LNA3通路;经LNA3放大后,射频开关3P3T切换至触点1,至射频PA Mid器件的LNA OUT1端口输出;接收的射频信号经SDR PRXE端口进入射频收发器10。
DRX通路:
接收的射频信号从第二天线ANT2进入,至射频LFEM器件的LB3 ANT端口;射频开关SP6T切换至触点4,经滤波器滤波后,至射频开关SP3T#1;射频开关SP3T#1切换单端口,经LNA1放大后,至射频开关3P3T;射频开关3P3T切换至触点1,至射频LFEM器件的LNA OUT LB1端口输出;接收的射频信号经SDR DRXE端口进入射频收发器10。
PRX MIMO通路:
接收的射频信号从第三天线ANT3进入,至射频PA Mid器件的LB2 ANT端口,至第二选择开关422;第二选择开关422切换至触点4,经第一滤波器421滤波后,至第一选择开关412,第一选择开关412切换至单端口,经第一低噪声放大器411放大后,至射频开关3P3T;射频开关3P3T切换至触点3,至射频PA Mid器件的LNA OUT3端口输出;接收的射频信号经SDR PRX1端口进入射频收发器10。
DRX MIMO通路:
接收的射频信号从第四天线ANT4进入,至射频LFEM器件的LB4 ANT端口,至第四选择开关522,第四选择开关522切换至触点4,经第二滤波器521滤波后,至第三选择开关512,第三选择开关512切换至单端口,经第二低噪声放大器511放大后,至射频开关3P3T;射频开关3P3T切换至触点3,至射频LFEM器件的LNA OUT LB3端口输出;接收的射频信号经SDR DRX1端口进入射频收发器10。
本申请实施例中的各滤波器可以为带通滤波器、低通滤波器等。需要说明的是,在本申请实施例中,对各滤波器的类型不做进一步的限定,可以根据待滤波处理的低频信号的频段来选择合适的滤波器。
如图13所示,本申请实施例还提供一种通信设备,该通信设备上设置有上述任一实施例中的射频***。
通过在通信设备上设置该射频***,提高了射频***对低频段射频信号的吞吐量,并且器件具有高集成度,减小了射频***中各器件占用基板的面积,同时还可以简化各器件的供电、逻辑控制以及PCB的布局布线,节约了成本。
在本说明书的描述中,参考术语“其中一个实施例”、“一些实施例”、“示例性的”等的描述意指结合该实施例或示例描述的具体特征、结构或者特征包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种射频***,包括:
    射频收发器;
    收发模块,分别与所述射频收发器、第一天线连接,用于支持对低频段射频信号的发射和主集接收;
    分集接收模块,分别与所述射频收发器、第二天线连接,用于支持对所述低频段射频信号的分集接收;
    第一MIMO接收模块,分别与所述射频收发器、第三天线连接,用于支持对所述低频段射频信号的主集MIMO接收;以及
    第二MIMO接收模块,分别与所述射频收发器、第四天线连接,用于支持对所述低频段射频信号的分集MIMO接收。
  2. 根据权利要求1所述的射频***,所述低频段射频信号包括多个不同频段的5G射频信号。
  3. 根据权利要求2所述的射频***,所述第一MIMO接收模块包括:
    第一滤波选择单元,所述第一滤波选择单元的输入端与所述第三天线连接,用于对经所述第三天线接收的射频信号进行滤波处理并选择输出至少一个频段的5G射频信号;以及
    第一放大单元,所述第一放大单元的多个输入端分别与所述第一滤波选择单元的多个输出端一一对应连接,所述第一放大单元的输出端与所述射频收发器连接,用于对所述第一滤波选择单元输出的5G射频信号进行低噪声放大处理。
  4. 根据权利要求3所述的射频***,所述第一MIMO接收模块被配置有用于连接所述第三天线的天线端口以及用于连接所述射频收发器的输出端口;
    所述第一滤波选择单元的输入端与所述第一MIMO接收模块的天线端口连接;
    所述第一放大单元的输出端与所述第一MIMO接收模块的输出端口连接。
  5. 根据权利要求3所述的射频***,所述第一放大单元被集成于所述收发模块内;所述收发模块被配置有用于与所述射频收发器连接的第一输入端口及多个输出端口、用于与所述第一天线连接的第一天线端口以及多个用于与所述第一滤波选择单元的多个输出端一一对应连接的第二输入端口;其中,所述第一放大单元的多个输入端分别与所述收发模块的多个第二输入端口连接;
    所述收发模块包括:
    发射单元,与所述收发模块的第一输入端口连接,用于接收所述射频收发器输出的所述低频段射频信号,并对接收的所述低频段射频信号进行放大处理;
    第二滤波选择单元,分别与所述发射单元、所述收发模块的第一天线端口连接,用于对经所述第一天线接收的射频信号进行滤波处理并选择输出至少一个频段的5G射频信号;还用于对所述发射单元输出的所述低频段射频信号进行滤波处理并选择输出至少一个频段的5G射频信号经所述第一天线进行辐射;
    第二放大单元,所述第二放大单元的输入端与所述第二滤波选择单元连接,用于对所述第二滤波选择单元滤波处理后的5G射频信号进行低噪声放大处理;以及
    第一开关单元,分别与所述第一放大单元的输出端、所述第二放大单元的输出端、所述收发模块的输出端口连接,用于选择导通所述第一放大单元、所述第二放大单元与所述收发模块的输出端口之间的通路。
  6. 根据权利要求3所述的射频***,所述第一MIMO接收模块被集成于所述收发模块内;所述收发模块被配置有用于与所述射频收发器连接的第一输入端口及多个输出端口、用于与所述第一天线连接的第一天线端口以及用于与所述第三天线连接的第二天线端口;其中,所述第一滤波选择单元的输入端与所述收发模块的第二天线端口连接;
    所述收发模块包括:
    发射单元,与所述收发模块的第一输入端口连接,用于接收所述射频收发器输出的所述低频段射频信号,并对接收的所述低频段射频信号进行放大处理;
    第二滤波选择单元,分别与所述发射单元、所述收发模块的第一天线端口连接,用于对经所述第一 天线接收的射频信号进行滤波处理并选择输出至少一个频段的5G射频信号;还用于对所述发射单元输出的所述低频段射频信号进行滤波处理并选择输出至少一个频段的5G射频信号经所述第一天线进行辐射;
    第二放大单元,所述第二放大单元的输入端与所述第二滤波选择单元连接,用于对所述第二滤波单元滤波处理后的5G射频信号进行低噪声放大处理;以及
    第一开关单元,分别与所述第一放大单元的输出端、所述第二放大单元的输出端、所述收发模块的输出端口连接,用于选择导通所述第一放大单元、所述第二放大单元与所述收发模块的输出端口之间的通路。
  7. 根据权利要求5或6任一项所述的射频***,所述发射单元还用于接收所述射频收发器输出的低频段的4G射频信号,并对接收的所述4G射频信号进行放大处理;
    所述第二滤波选择单元,还用于对经所述第一天线接收的低频段的射频信号进行滤波处理并选择输出至少一个频段的4G射频信号;还用于对所述发射单元输出的所述4G射频信号进行滤波处理并选择输出至少一个频段的4G射频信号经所述第一天线进行辐射;
    第二放大单元,还用于对所述第二滤波单元滤波处理后的4G射频信号进行低噪声放大处理。
  8. 根据权利要求3所述的射频***,所述第一放大单元包括:
    第一低噪声放大器,所述第一低噪声放大器的输出端作为所述第一放大单元的输出端,用于对所述第一滤波选择单元输出的5G射频信号进行放大处理;以及
    第一选择开关,包括至少一个第一端和多个第二端,所述第一选择开关的第一端与所述第一低噪声放大器的输入端连接,所述第一选择开关的多个第二端分别作为所述第一放大单元的多个输入端,所述第一选择开关用于选择导通所述第一滤波选择单元的任意一个输出端与所述第一低噪声放大器之间的通路。
  9. 根据权利要求3所述的射频***,所述第一放大单元包括:
    多个第一低噪声放大器,各所述第一低噪声放大器的输入端分别作为所述第一放大单元的多个输入端;以及
    第一选择开关,包括至少一个第一端和多个第二端,所述第一选择开关的第一端作为所述第一放大单元的输出端,所述第一选择开关的多个第二端分别与多个所述第一低噪声放大器的输出端一一对应连接;所述第一选择开关用于选择导通所述第一放大单元的任意一个输出端与所述第一低噪声放大器之间的通路。
  10. 根据权利要求3所述的射频***,所述第一滤波选择单元包括:
    多个第一滤波器,分别与所述第一放大单元的多个输入端一一对应连接,用于对经所述第三天线接收的射频信号进行滤波处理,并输出不同频段的5G射频信号;以及
    第二选择开关,包括多个第一端和一个第二端,所述第二选择开关的多个第一端分别与多个所述第一滤波器一一对应连接,所述第二选择开关的第二端作为所述第一滤波选择单元的输入端。
  11. 根据权利要求2所述的射频***,所述第二MIMO接收模块包括:
    第三滤波选择单元,所述第三滤波选择单元的输入端与所述第四天线连接,用于对经所述第四天线接收的射频信号进行滤波处理并选择输出至少一个频段的5G射频信号;以及
    第三放大单元,所述第三放大单元的多个输入端分别与所述第三滤波选择单元的多个输出端一一对应连接,所述第三放大单元的输出端与所述射频收发器连接,用于对所述第三滤波选择单元输出的5G射频信号进行低噪声放大处理。
  12. 根据权利要求11所述的射频***,所述第二MIMO接收模块被配置有用于连接所述第四天线的天线端口以及用于连接所述射频收发器的输出端口;
    所述第三滤波选择单元的输入端与所述第二MIMO接收模块的天线端口连接;以及
    所述第三放大单元的输出端与所述第二MIMO接收模块的输出端口连接。
  13. 根据权利要求11所述的射频***,所述第三放大单元被集成于所述分集接收模块内;所述分集接收模块被配置有用于与所述射频收发器连接的多个发射端口、用于与所述第二天线连接的第三天线端 口以及多个用于与所述第三滤波选择单元的多个输出端一一对应连接的接收端口;其中,所述第三放大单元的多个输入端分别与所述分集接收模块的多个接收端口一一对应连接;
    所述分集接收模块包括:
    第四滤波选择单元,与所述分集接收模块的第三天线端口连接,用于对经所述第二天线接收的射频信号进行滤波处理并选择输出至少一个频段的5G射频信号;
    第四放大单元,所述第四放大单元的输入端与所述第四滤波选择单元连接,用于对所述第四滤波选择单元滤波处理后的5G射频信号进行低噪声放大处理;以及
    第二开关单元,分别与所述第三放大单元的输出端、所述第四放大单元的输出端、所述分集接收模块的输出端口连接,用于选择导通所述第三放大单元、所述第四放大单元与所述分集接收模块的输出端口之间的通路。
  14. 根据权利要求11所述的射频***,所述第二MIMO接收模块被集成于所述分集接收模块内;所述分集接收模块被配置有用于与所述射频收发器连接的发射端口、用于与所述第二天线连接的第三天线端口以及用于与所述第四天线连接的第四天线端口;其中,所述第三滤波选择单元的输入端与所述分集接收模块的第四天线端口连接;
    所述分集接收模块包括:
    第四滤波选择单元,与所述分集接收模块的第一天线端口连接,用于对经所述第二天线接收的射频信号进行滤波处理并选择输出至少一个频段的5G射频信号;
    第四放大单元,所述第四放大单元的输入端与所述第四滤波选择单元连接,用于对所述第四滤波单元滤波处理后的5G射频信号进行低噪声放大处理;以及
    第二开关单元,分别与所述第三放大单元的输出端、所述第四放大单元的输出端、所述分集接收模块的输出端口连接,用于选择导通所述第三放大单元、所述第四放大单元与所述分集接收模块的输出端口之间的通路。
  15. 根据权利要求11所述的射频***,所述第三放大单元包括:
    第二低噪声放大器,所述第二低噪声放大器的输出端作为所述第三放大单元的输出端,用于对所述第三滤波选择单元输出的射频信号进行低噪声放大处理;以及
    第三选择开关,包括至少一个第一端和多个第二端,所述第三选择开关的第一端与所述第二低噪声放大器的输入端连接,所述第三选择开关的多个第二端分别作为所述第三放大单元的多个输入端,所述第三选择开关用于选择导通所述第三滤波选择单元的任意一个输出端与所述第二低噪声放大器之间的通路。
  16. 根据权利要求11所述的射频***,其特征在于,所述第三放大单元包括:
    多个第二低噪声放大器,各所述第二低噪声放大器的输入端分别作为所述第三放大单元的多个输入端;以及
    第三选择开关,包括至少一个第一端和多个第二端,所述第三选择开关的第一端作为所述第三放大单元的输出端,所述第三选择开关的多个第二端分别与多个所述第二低噪声放大器的输出端一一对应连接;所述第三选择开关用于选择导通所述第三放大单元的任意一个输出端与所述第二低噪声放大器之间的通路。
  17. 根据权利要求11所述的射频***,所述第三滤波选择单元包括:
    多个第二滤波器,分别与所述第三放大单元的多个输入端一一对应连接,用于对经所述第四天线接收的射频信号进行滤波处理,并输出不同频段的5G射频信号;以及
    第四选择开关,包括多个第一端和一个第二端,所述第四选择开关的多个第一端分别与多个所述第二滤波器一一对应连接,所述第四选择开关的第二端作为所述第三滤波选择单元的输入端。
  18. 根据权利要求1所述的射频***,所述第一MIMO接收模块为封装结构。
  19. 根据权利要求1所述的射频***,所述第二MIMO接收模块为封装结构。
  20. 一种通信设备,包括如权利要求1至19任一项所述的射频***。
PCT/CN2022/117226 2021-11-30 2022-09-06 射频***及通信设备 WO2023098201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111447467.7 2021-11-30
CN202111447467.7A CN113992229B (zh) 2021-11-30 2021-11-30 射频***及通信设备

Publications (1)

Publication Number Publication Date
WO2023098201A1 true WO2023098201A1 (zh) 2023-06-08

Family

ID=79732768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117226 WO2023098201A1 (zh) 2021-11-30 2022-09-06 射频***及通信设备

Country Status (2)

Country Link
CN (1) CN113992229B (zh)
WO (1) WO2023098201A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992229B (zh) * 2021-11-30 2023-03-17 Oppo广东移动通信有限公司 射频***及通信设备
CN115102558B (zh) * 2022-06-07 2024-04-16 Oppo广东移动通信有限公司 射频PA Mid器件、射频***和通信设备
CN115001525B (zh) * 2022-08-02 2022-12-23 荣耀终端有限公司 射频模组、主集收发模组及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634569A (zh) * 2015-12-31 2016-06-01 宇龙计算机通信科技(深圳)有限公司 实现载波聚合和wifi双频mimo的控制电路、终端
US20180019768A1 (en) * 2016-07-17 2018-01-18 Skyworks Solutions, Inc. Uplink carrier aggregation front-end architecture that supports simultaneous mimo
CN110572178A (zh) * 2019-09-06 2019-12-13 维沃移动通信有限公司 一种网络射频结构、射频控制方法及电子设备
CN112187311A (zh) * 2020-09-27 2021-01-05 Oppo广东移动通信有限公司 射频***和通信设备
CN112436845A (zh) * 2020-12-02 2021-03-02 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发***和通信设备
WO2021100925A1 (ko) * 2019-11-22 2021-05-27 엘지전자 주식회사 5g 안테나 모듈과 통신 모듈을 구비하는 전자 기기
CN113992229A (zh) * 2021-11-30 2022-01-28 Oppo广东移动通信有限公司 射频***及通信设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8744373B2 (en) * 2009-03-18 2014-06-03 Netgear, Inc. Multiple antenna system for wireless communication
KR102197339B1 (ko) * 2014-02-12 2020-12-31 한국전자통신연구원 모드 전환이 가능한 무선 송수신기
CN113300736B (zh) * 2021-05-19 2022-11-04 深圳市锐尔觅移动通信有限公司 射频收发***及通信设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634569A (zh) * 2015-12-31 2016-06-01 宇龙计算机通信科技(深圳)有限公司 实现载波聚合和wifi双频mimo的控制电路、终端
US20180019768A1 (en) * 2016-07-17 2018-01-18 Skyworks Solutions, Inc. Uplink carrier aggregation front-end architecture that supports simultaneous mimo
CN110572178A (zh) * 2019-09-06 2019-12-13 维沃移动通信有限公司 一种网络射频结构、射频控制方法及电子设备
WO2021100925A1 (ko) * 2019-11-22 2021-05-27 엘지전자 주식회사 5g 안테나 모듈과 통신 모듈을 구비하는 전자 기기
CN112187311A (zh) * 2020-09-27 2021-01-05 Oppo广东移动通信有限公司 射频***和通信设备
CN112436845A (zh) * 2020-12-02 2021-03-02 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发***和通信设备
CN113992229A (zh) * 2021-11-30 2022-01-28 Oppo广东移动通信有限公司 射频***及通信设备

Also Published As

Publication number Publication date
CN113992229A (zh) 2022-01-28
CN113992229B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
CN112436845B (zh) 射频L-PA Mid器件、射频收发***和通信设备
CN108199728B (zh) 多路选择开关、射频***和无线通信设备
CN108923790B (zh) 多路选择开关、射频***和无线通信设备
CN108880602B (zh) 多路选择开关以及相关产品
CN212588326U (zh) 射频PA Mid器件、射频***和通信设备
WO2023098201A1 (zh) 射频***及通信设备
WO2022062575A1 (zh) 射频***和通信设备
JP7038212B2 (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
CN112436846B (zh) 射频L-PA Mid器件、射频收发***及通信设备
WO2021258863A1 (zh) 射频PA Mid器件、射频***和通信设备
WO2023016204A1 (zh) 放大器模组、射频***及通信设备
CN108923792B (zh) 多路选择开关及相关产品
WO2023061090A1 (zh) 一种覆盖多频段的射频前端模块及无线通信设备
WO2023056817A1 (zh) 射频前端器件、射频收发***和通信设备
CN114039614B (zh) 射频前端器件、射频收发***和通信设备
WO2022127397A1 (zh) 射频收发***及通信设备
CN109039367B (zh) 多路选择开关及相关产品
CN108923793B (zh) 多路选择开关及相关产品
CN114553250A (zh) 射频***和通信设备
CN114124115B (zh) 射频收发***和通信设备
CN114124137B (zh) 射频***及通信设备
WO2022062586A1 (zh) 射频drx器件、射频***和通信设备
WO2022127404A1 (zh) 射频收发***及通信设备
WO2021238534A1 (zh) 射频PA Mid器件、射频收发***和通信设备
CN114095048A (zh) 射频***及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900013

Country of ref document: EP

Kind code of ref document: A1