WO2022127404A1 - 射频收发***及通信设备 - Google Patents

射频收发***及通信设备 Download PDF

Info

Publication number
WO2022127404A1
WO2022127404A1 PCT/CN2021/127825 CN2021127825W WO2022127404A1 WO 2022127404 A1 WO2022127404 A1 WO 2022127404A1 CN 2021127825 W CN2021127825 W CN 2021127825W WO 2022127404 A1 WO2022127404 A1 WO 2022127404A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
antenna
port
receiving
transceiver
Prior art date
Application number
PCT/CN2021/127825
Other languages
English (en)
French (fr)
Inventor
王国龙
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21905333.7A priority Critical patent/EP4258562A4/en
Publication of WO2022127404A1 publication Critical patent/WO2022127404A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0064Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with separate antennas for the more than one band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of radio frequency technology, and in particular, to a radio frequency transceiver system and communication equipment.
  • 5G mobile communication technology has gradually begun to be applied to electronic devices.
  • the communication frequency of 5G mobile communication technology is higher than that of 4G mobile communication technology.
  • a plurality of RF front-end modules are arranged in the receiving path of an RF system to cooperate with an antenna array to improve the channel capacity of the system, which is costly and occupies a large area of the substrate.
  • a radio frequency transceiver system and a communication device are provided.
  • a radio frequency transceiver system comprising:
  • an antenna group including at least a first antenna, a second antenna, a third antenna and a fourth antenna, for transmitting and receiving radio frequency signals;
  • the radio frequency LFEM devices are configured with a first transceiver port, a second transceiver port, at least one antenna port, and a first receive port, a second receive port, and a third receive port for connecting the radio frequency transceiver a receiving port
  • the radio frequency LFEM device is used to support the sending and receiving of radio frequency signals of the first frequency band, the radio frequency signal of the second frequency band and the radio frequency signal of the third frequency band
  • the antenna ports of the radio frequency LFEM devices are respectively used to connect the first antenna, The second antenna, the third antenna;
  • a transceiver selection module is respectively connected with the first transceiver port and the second transceiver port of each of the radio frequency LFEM devices, so as to be respectively connected with the first antenna, the second antenna and the third antenna through each of the radio frequency LFEM devices.
  • the transceiver selection module is also connected to the radio frequency transceiver and the fourth antenna, respectively, for supporting the transceiver selection of the radio frequency signal of the first frequency band, the radio frequency signal of the second frequency band and the radio frequency signal of the third frequency band.
  • a communication device includes the above-mentioned radio frequency transceiver system.
  • 1a is a schematic diagram of a transmission application scenario of a communication device feedback channel information according to an embodiment
  • FIG. 1b is a second schematic diagram of a transmission application scenario of a communication device feedback channel information according to an embodiment
  • FIG. 2 is a schematic diagram of a mode of alternate transmission of SRS antennas according to an embodiment
  • FIG. 3 is a schematic structural diagram of a radio frequency transceiver system according to an embodiment
  • FIG. 4 is one of the schematic structural diagrams of the radio frequency LFEM device according to an embodiment
  • FIG. 5 is a second schematic structural diagram of a radio frequency transceiver system according to an embodiment
  • FIG. 6 is a second schematic structural diagram of a radio frequency LFEM device according to an embodiment
  • FIG. 7 is a third schematic structural diagram of a radio frequency transceiver system according to an embodiment
  • FIG. 8a is a third schematic structural diagram of a radio frequency LFEM device according to an embodiment
  • 8b is a fourth schematic structural diagram of a radio frequency LFEM device according to an embodiment
  • Fig. 9a is a schematic diagram of the package pins of the radio frequency LFEM device in Fig. 4 and Fig. 8b;
  • FIG. 9b is a schematic diagram of the package pins of the radio frequency LFEM device in FIG. 6 and FIG. 8a.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plural means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • severeal means at least one, such as one, two, etc., unless expressly and specifically defined otherwise.
  • the radio frequency transceiver system involved in the embodiments of the present application can be applied to a communication device with a wireless communication function.
  • UE User Equipment
  • MS Mobile Station
  • Network devices may include base stations, access points, and the like.
  • the radio frequency transceiver system in the embodiment of the present application can support the fifth generation mobile communication technology (5G or 5G technology for short).
  • 5G fifth generation mobile communication technology
  • the performance goals of 5G are high data rates, reduced latency, energy savings, lower costs, increased system capacity, and massive device connectivity.
  • 5G is divided into two modes: Standalone Access (NA) and Non-Standalone Access (NSA).
  • NA Standalone Access
  • NSA Non-Standalone Access
  • the non-standalone networking is to anchor the 5G control signaling on the 4G base station
  • the independent networking is that the 5G base station directly accesses the 5G core network, and the control signaling does not depend on the 4G network.
  • the 5G network supports beamforming technology, which can transmit directionally to communication devices. If the base station wants to transmit in a directional manner, it must first detect the location of the communication device, the quality of the transmission path, etc., so that the resources of the base station can be allocated to each communication device more accurately.
  • PMI Precoding Matrix Indicator
  • SRS Sounding Reference Signal
  • the SRS information sent by the communication device is the method used by the base station to detect the terminal position and channel quality; the SRS antenna rotation is shown in Figure 2, and the details are as follows:
  • 1T1R fixed at the first antenna to feed back information to the base station, and does not support SRS rotation;
  • 1T4R SRS information is transmitted from the first antenna to the fourth antenna in turn, and only one antenna is selected for transmission at a time.
  • this mode is adopted for non-independent networking
  • 2T4R SRS information is transmitted from the first antenna to the fourth antenna in turn, and two antennas are selected for simultaneous transmission at each time.
  • this mode is adopted for independent networking.
  • the SA mode can complete the channel estimation faster than the NSA mode and improve the network channel. estimated speed.
  • the radio frequency transceiver system includes: a radio frequency transceiver 10 , an antenna group, three radio frequency LFEM devices 20 , and a transceiver selection module 30 .
  • the radio frequency transceiver 10 may include a transmitter (such as a transmitter TX) and a receiver (such as a receiver RX), or may contain only a receiver (eg, a receiver RX) or only a transmitter (eg, a transmit device TX).
  • the radio frequency transceiver 10 may be used to implement frequency conversion processing between radio frequency signals and baseband signals, or/and, to implement frequency conversion processing of signals in different frequency bands, and so on.
  • the antenna group at least includes a first antenna Ant1, a second antenna Ant2, a third antenna Ant3 and a fourth antenna Ant4.
  • the first antenna Ant1, the second antenna Ant2, the third antenna Ant3, and the fourth antenna Ant4 may be used to receive and transmit radio frequency signals in the N41, N77, and N79 frequency bands. That is, the first antenna Ant1, the second antenna Ant2, the third antenna Ant3, and the fourth antenna Ant4 are all antennas capable of supporting 5G NR signals.
  • each antenna in the antenna group may be a directional antenna or a non-directional antenna.
  • each antenna within an antenna group may be formed using any suitable type of antenna.
  • each antenna within an antenna group may include an antenna with resonating elements formed from the following antenna structures: array antenna structures, loop antenna structures, patch antenna structures, slot antenna structures, helical antenna structures, strip antennas, monopoles At least one of an antenna, a dipole antenna, etc.
  • Different types of antennas can be used for different frequency band combinations of RF signals.
  • the radio frequency LFEM device 20 is understood as a low noise amplifier front-end module (Low Noise AmPlifier-Front-End Modules), which is used to support dual-channel reception of radio frequency signals in at least two frequency bands, and cooperate with the first antenna Ant1, The second antenna Ant2, the third antenna Ant3, the fourth antenna Ant4 and the transceiver selection module 30 can support the 4*4 MIMO function.
  • the radio frequency LFEM device 20 is configured with at least one antenna port ANT, a first transceiver port TRX1, a second transceiver port TRX2, and a plurality of first receive ports RX1 and second receive ports RX2 for connecting the radio frequency transceiver 10 and the third receive port RX3.
  • the radio frequency LFEM device 20 can be understood as a packaged chip, and the antenna port ANT, the first transceiving port TRX1, the second transceiving port TRX2, the first receiving port RX1, The second receiving port RX2 and the third receiving port RX3 may be understood as the radio frequency pin terminals of the radio frequency LFEM device 20, which are used for connection with various external devices.
  • the three radio frequency LFEM devices 20 are a first radio frequency LFEM device 20, a second radio frequency LFEM device 20, and a third radio frequency LFEM device 20, wherein the antenna port of the first radio frequency LFEM device 20 can connect the first antenna Ant1
  • the received radio frequency signal is input to the first radio frequency LFEM device 20, and the radio frequency signal processed by the first radio frequency LFEM device 20 may also be transmitted through the first antenna Ant1.
  • the antenna port of the second radio frequency LFEM device 20 can input the radio frequency signal received by the second antenna Ant2 to the second radio frequency LFEM device 20, and can also transmit the radio frequency signal processed by the second radio frequency LFEM device 20 through the second antenna Ant2. .
  • the antenna port of the third radio frequency LFEM device 20 can input the radio frequency signal received by the third antenna Ant3 to the third radio frequency LFEM device 20, or can transmit the radio frequency signal processed by the third radio frequency LFEM device 20 through the third antenna Ant3 .
  • the first receiving port RX1 of each radio frequency LFEM device 20 can process the radio frequency signal received by the radio frequency LFEM device 20 through the antenna port ANT and output it to the radio frequency transceiver 10 to realize the receiving control of the radio frequency signal, and the second receiving port RX2 can transmit the radio frequency signal.
  • the RF signal received by the LFEM device 20 through the antenna port ANT is processed and then output to the RF transceiver 10 to control the reception of the RF signal.
  • the third receiving port RX3 can process the RF signal received by the RF LFEM device 20 through the antenna port ANT and output it to the radio frequency transceiver 10 to realize the control of receiving the radio frequency signal;
  • the first transceiver port TRX1 can receive the radio frequency signal output by the radio frequency transceiver 10 to the transceiver selection module 30 for processing, so that the radio frequency LFEM device 20 can realize the received radio frequency signal.
  • the second transceiver port TRX2 can receive the radio frequency signal output by the radio frequency transceiver 10 to the transceiver selection module 30 for processing, so that the radio frequency LFEM device 20 can transmit and transmit the received radio frequency signal.
  • the radio frequency signal may be a 5G signal, such as a 5G signal in the N41 frequency band, a radio frequency signal in the N77 (N78) frequency band, a radio frequency signal in the N79 frequency band, and the like.
  • the working frequency band of N41 is 496MHz-2690MHz
  • the working frequency band of N77 is 3.3GHz-4.2GHz
  • the working frequency band of N78 is 3.3GHz-3.8GHz
  • the working frequency band of N79 is 4.4GHz-5.0GHz.
  • the working frequency band of N77 covers the working frequency band of N78. That is, when the radio frequency LFEM device 2030 can support the transmission and reception of radio frequency signals in the N77 frequency band, it can also support the transmission and reception of radio frequency signals in the N78 frequency band.
  • the radio frequency signal of the first frequency band is a 5G signal of the N41 frequency band
  • the radio frequency signal of the second frequency band and the radio frequency signal of the third frequency band are 5G signals of the N77 and N79 frequency bands, respectively.
  • the transceiver selection module 30 is respectively connected with the radio frequency transceiver 10 and the fourth antenna, and the transceiver selection module 30 is also connected with the first transceiver port TRX1 and the second transceiver port TRX2 of the radio frequency LFEM device, so as to be respectively connected to the first antenna Ant1 through the radio frequency LFEM device , the second antenna Ant2, and the third antenna Ant3.
  • the transceiver selection module 30 can transmit the radio frequency signal of the first frequency band, the radio frequency signal of the second frequency band and the radio frequency signal of the third frequency band output by the radio frequency transceiver 10 through any antenna in the antenna group, and can also receive the signal received by any antenna in the antenna group.
  • the radio frequency signal of the first frequency band, the radio frequency signal of the second frequency band or the radio frequency signal of the third frequency band is transmitted to the radio frequency transceiver 10, so that the radio frequency transceiver system realizes the 4*4 MIMO function of the radio frequency signal of the three frequency bands.
  • the transceiver selection module 30 can directly transmit the radio frequency signal of the third frequency band output by the radio frequency transceiver 10 to any antenna for transmission, or can also transmit it to any antenna through the radio frequency LFEM device 20 .
  • MIMO technology refers to the use of multiple transmit and receive antennas at the transmit port and receive port, respectively, to make full use of space resources, and to achieve multiple transmissions and multiple receptions through multiple antennas. Improving system channel capacity shows obvious advantages and is regarded as the core technology of next-generation mobile communication.
  • the terminal and the base station can form 2*2MIMO or 4*4MIMO.
  • all 4 receiving channels are also connected to the instrument.
  • Four channels constitute the downlink of MIMO, all of which receive the signals sent by the uplink base station to improve the performance of the receiver.
  • the above-mentioned radio frequency transceiver system realizes the three-band reception of radio frequency signals through the radio frequency LFEM device 20, and the receiving channels of the three-band signals are integrated and packaged in the same chip, which can save the area of the substrate occupied by each device, and free up physical space for performance optimization of other modules. Space and cost are reduced.
  • the RF LFEM device 20 cooperates with the transceiver selection module 30, the first antenna, the second antenna, the third antenna, and the fourth antenna to realize the 4*4 MIMO function of the 1T4R mode, improve the system channel capacity, and improve the channel estimation. accuracy and efficiency.
  • the radio frequency LFEM device 20 includes a first receiving circuit 210 , a second receiving circuit 220 , a third receiving circuit 230 and a first switching circuit 240 .
  • the first switch circuit 240 includes multiple first terminals and at least one second terminal, and the multiple first terminals of the first switch circuit 240 correspond to the input terminals of the first receiving circuit 210 and the second receiving circuit 220 respectively.
  • the input end of the third receiving circuit 230, the first transceiving port TRX1, and the second transceiving port TRX2 are connected, and at least one second end of the first switching circuit 240 is connected to the antenna port ANT for sending and receiving through the antenna port ANT
  • the radio frequency signal is also used to transmit the radio frequency signal output by the radio frequency transceiver 10 through the first transceiver port TRX1 and/or the second transceiver port TRX2 to selectively conduct the connection between the antenna port ANT and any receiving path of the radio frequency LFEM device 20 , or selectively conduct the connection between the antenna port ANT and any transmission path of the radio frequency LFEM device 20 .
  • the receiving path of the radio frequency LFEM device 20 can be understood as the receiving path between the antenna port ANT and the first receiving port RX1, the second receiving port RX2, the third receiving port RX3, the first receiving and sending port TRX1 or the second receiving and sending port TRX2
  • the transmission path of the radio frequency LFEM device 20 can be understood as the transmission path between the antenna port ANT and the first transceiver port TRX1 or the second transceiver port TRX2.
  • the output end of the first receiving circuit 210 is connected to the first receiving port RX1 for supporting the receiving and amplifying processing of the radio frequency signal of the first frequency band.
  • the output end of the second receiving circuit 220 is connected to the second receiving port RX2 for supporting the receiving and amplifying processing of the radio frequency signal of the second frequency band.
  • the output end of the third receiving circuit 230 is connected to the third receiving port RX3 for supporting the receiving and amplifying processing of the radio frequency signal of the third frequency band.
  • the first antenna Ant1 receives the radio frequency signal of the first frequency band, it can be input to the first switch circuit 240 through the antenna port ANT of the first radio frequency LFEM device 20 connected to the first antenna Ant1, and the first switch circuit 240
  • the first receiving circuit 210 is switched on, and the radio frequency signal is amplified by the first receiving circuit 210, and then output to the radio frequency transceiver 10 by the first receiving port RX1;
  • the first antenna Ant1 receives the radio frequency signal of the second frequency band, it can The antenna port ANT of the first radio frequency LFEM device 20 connected to the first antenna Ant1 is input to the first switch circuit 240 , the first switch circuit 240 is switched to the second receiving circuit 220 to conduct, and the radio frequency signal is transmitted through the second receiving circuit 220 .
  • the radio frequency transceiver 10 After amplification, it is output to the radio frequency transceiver 10 from the second receiving port RX2; if the first antenna Ant1 receives the radio frequency signal of the third frequency band, it can be input through the antenna port ANT of the first radio frequency LFEM device 20 connected to the first antenna Ant1 To the first switch circuit 240 , the first switch circuit 240 switches to the third receiving circuit 230 to conduct, and the radio frequency signal is amplified by the third receiving circuit 230 and then output to the radio frequency transceiver 10 through the third receiving port RX3 .
  • the second antenna Ant2 receives the radio frequency signal of the first frequency band, it can be input to the first switch circuit 240 through the antenna port ANT of the second radio frequency LFEM device 20 connected to the second antenna Ant2, and the first switch circuit 240 is switched to the first switch circuit 240.
  • the receiving circuit 210 is turned on, the radio frequency signal is amplified by the first receiving circuit 210, and then output to the radio frequency transceiver 10 from the first receiving port RX1; if the second antenna Ant2 receives the radio frequency signal of the second frequency band, it can communicate with the second antenna Ant2.
  • the antenna port ANT of the second radio frequency LFEM device 20 connected to the antenna Ant2 is input to the first switch circuit 240, the first switch circuit 240 is switched to the second receiving circuit 220, and the radio frequency signal is amplified by the second receiving circuit 220.
  • the second receiving port RX2 is output to the radio frequency transceiver 10; if the second antenna Ant2 receives the radio frequency signal of the third frequency band, it can be input to the first switch through the antenna port ANT of the third radio frequency LFEM device 20 connected to the second antenna Ant2 In the circuit 240 , the first switch circuit 240 switches to the third receiving circuit 230 to be turned on, and the radio frequency signal is amplified by the third receiving circuit 230 and then output to the radio frequency transceiver 10 through the third receiving port RX3 .
  • the third antenna Ant3 receives the radio frequency signal of the first frequency band, it can be input to the first switch circuit 240 through the antenna port ANT of the third radio frequency LFEM device 20 connected to the third antenna Ant3, and the first switch circuit 240 is switched to the first switch circuit 240.
  • the receiving circuit 210 is turned on, and the radio frequency signal is amplified by the first receiving circuit 210, and then output to the radio frequency transceiver 10 from the first receiving port RX1; if the third antenna Ant3 receives the radio frequency signal of the second frequency band, it can communicate with the third antenna Ant3.
  • the antenna port ANT of the third radio frequency LFEM device 20 connected to the antenna Ant3 is input to the first switch circuit 240, the first switch circuit 240 is switched to the second receiving circuit 220, and the radio frequency signal is amplified by the second receiving circuit 220.
  • the second receiving port RX2 is output to the radio frequency transceiver 10; if the third antenna Ant3 receives the radio frequency signal of the third frequency band, it can be input to the first switch via the antenna port ANT of the third radio frequency LFEM device 20 connected to the third antenna Ant3 In the circuit 240 , the first switch circuit 240 switches to the third receiving circuit 230 to be turned on, and the radio frequency signal is amplified by the third receiving circuit 230 and then output to the radio frequency transceiver 10 through the third receiving port RX3 .
  • the first receiving circuit 210 includes a first low-noise amplifier LNA1 , an input end of the first low-noise amplifier LNA1 is connected to a first end of the first switch circuit 240 , and the first The output end of the low noise amplifier LNA1 is connected to the first receiving port RX1.
  • the first low noise amplifier LNA1 is used for amplifying the received radio frequency signal of the first frequency band.
  • the second receiving circuit 220 includes a second low noise amplifier LNA2, the input end of the second low noise amplifier LNA2 is connected to the other first end of the first switch circuit 240, and the output end of the second low noise amplifier LNA2 is connected to the second receiving port RX2 connection.
  • the second low noise amplifier LNA2 is used for amplifying the received radio frequency signal of the second frequency band.
  • the third receiving circuit 230 includes a third low noise amplifier LNA3, the input end of the third low noise amplifier LNA3 is connected to another first end of the first switching circuit 240, and the output end of the third low noise amplifier LNA3 is connected to the third receiving port RX3 connection.
  • the third low noise amplifier LNA3 is used for amplifying the received radio frequency signal of the third frequency band.
  • the first receiving circuit 210 further includes a first filtering unit 211
  • the second receiving circuit 220 further includes a second filtering unit 221
  • the third receiving circuit 230 further includes a third filtering unit 231.
  • the first filtering unit 211 is disposed in the receiving path of the radio frequency signal of the first frequency band, and is used for filtering the received radio frequency signal of the first frequency band to output to the first low noise amplifier LNA1.
  • the first filter unit 211 is disposed at the front end of the first switch circuit 240 , that is, the first filter unit 211 is disposed between the input end of the first low noise amplifier LNA1 and the first switch circuit 240 .
  • the second filtering unit 221 is disposed in the receiving path of the radio frequency signal of the second frequency band, and is used for filtering the received radio frequency signal of the second frequency band to output to the second low noise amplifier LNA2.
  • the second filter unit 221 is disposed at the front end of the first switch circuit 240 , that is, the second filter unit 221 is disposed between the input end of the second low noise amplifier LNA2 and the first switch circuit 240 .
  • the third filtering unit 231 is disposed in the receiving path of the radio frequency signal of the third frequency band, and is used for filtering the received radio frequency signal of the third frequency band to output to the third low noise amplifier LNA3.
  • the third filter unit 231 is disposed at the front end of the first switch circuit 240 , that is, the third filter unit 231 is disposed between the input end of the third low noise amplifier LNA3 and the first switch circuit 240 .
  • the number of antenna ports configured by the three radio frequency LFEM devices 20 is one, then the antenna port ANT of one radio frequency LFEM device 20 is connected to the first antenna Ant1, and the other radio frequency LFEM device 20 is connected to the first antenna Ant1.
  • the antenna port ANT of 20 is connected to the second antenna Ant2, and the antenna port ANT of another radio frequency LFEM device 20 is connected to the third antenna Ant3.
  • the transceiver selection module 30 includes a second switch circuit 310 , a second combiner 320 , a first radio frequency PA Mid device 330 and a second radio frequency PA Mid device 340 .
  • the first radio frequency PA Mid device 330 is configured with one radio frequency antenna port AUX
  • the second radio frequency PA Mid device 340 is configured with four radio frequency antenna ports AUX.
  • the second switch circuit 310 includes a first terminal and four second terminals. The first terminal of the second switch circuit 310 is connected to the radio frequency antenna port AUX of the first radio frequency PA Mid device 330 .
  • One end is connected to the first transceiver port TRX1 and the second combiner 320 of the three radio frequency LFEM devices 20 in a one-to-one correspondence, wherein a second end of the second switch circuit 310 is connected to a second end of the second radio frequency PA Mid device 340.
  • the RF antenna port AUX is respectively connected to the fourth antenna Ant4 through the second combiner 320, and the second switch circuit 310 is used to selectively conduct the first antenna Ant1, the second antenna Ant2, the third antenna Ant3, the fourth antenna Ant4 and the third antenna Ant4.
  • An RF path between RF PA Mid devices 330 is also used for connecting with the radio frequency transceiver 10 to support the sending and receiving of radio frequency signals of the first frequency band.
  • the other three radio frequency antenna ports AUX of the second radio frequency PA Mid device 340 are respectively connected to the second transceiver ports TRX2 of the three radio frequency LFEM devices 20 in a one-to-one correspondence, and the second radio frequency PA Mid device 340 is also connected to the radio frequency transceiver 10, using It is used to support the sending and receiving of radio frequency signals of the second frequency band and the radio frequency signals of the third frequency band.
  • the first radio frequency PA Mid device 330 can transmit the radio frequency signal of the first frequency band output by the radio frequency transceiver 10 to any radio frequency LFEM device 20 through the second switch circuit 310 , and after being processed by the radio frequency LFEM device 20 , it is connected with the radio frequency signal.
  • the antenna connected to the LFEM device 20 is transmitted, or directly switched to the fourth antenna through the second switch circuit 310 for transmission; the second switch circuit 310 can also receive and process the radio frequency LFEM device 20 received and processed by the first antenna and the second antenna. Or the first frequency band radio frequency signal received by the third antenna, or the channel between the conduction and the fourth antenna is switched by the second switch circuit 310 to obtain the first frequency band radio frequency signal received by the fourth antenna, and transmit to the radio frequency transceiver 10 .
  • the second radio frequency PA Mid device 340 can transmit the radio frequency signal of the second frequency band output by the radio frequency transceiver 10 to any radio frequency LFEM device 20 through the second switch circuit 310 , and after being processed by the radio frequency LFEM device 20 , it is processed with the radio frequency LFEM device 20 .
  • the connected antenna is transmitted, or directly switched to the fourth antenna through the second switch circuit 310 for transmission; the second switch circuit 310 can also receive and process the radio frequency LFEM device 20 received and processed by the first antenna, the second antenna or the third antenna.
  • the radio frequency signal of the second frequency band received by the antenna or the channel between the conduction and the fourth antenna is switched by the second switch circuit 310 to obtain the radio frequency signal of the second frequency band received by the fourth antenna, and transmitted to the radio frequency transceiver 10 .
  • the second radio frequency PA Mid device 340 can also transmit the radio frequency signal of the third frequency band output by the radio frequency transceiver 10 to any radio frequency LFEM device 20 through the second switch circuit 310 , and after being processed by the radio frequency LFEM device 20 , it is processed with the radio frequency LFEM device 20 .
  • the antenna connected to 20 is transmitted, or directly switched to the fourth antenna through the second switch circuit 310 for transmission; the second switch circuit 310 can also receive and process the radio frequency LFEM device 20 received and processed by the first antenna, the second antenna or the third antenna.
  • the third frequency band radio frequency signal received by the three antennas or the channel between the conduction and the fourth antenna is switched by the second switch circuit 310 to obtain the third frequency band radio frequency signal received by the fourth antenna, and transmitted to the radio frequency transceiver 10 .
  • the first radio frequency PA Mid device 330 is further configured with a radio frequency transmit port RFIN and a radio frequency receive port RXOUT, and the radio frequency transmit port RFIN of the first radio frequency PA Mid device 330 is used to connect with the radio frequency transceiver 10 to receive The first frequency band radio frequency signal output by the radio frequency transceiver 10; the radio frequency receiving port RXOUT of the first radio frequency PA Mid device 330 is used to connect with the radio frequency transceiver 10 to output the received first frequency band radio frequency signal to the radio frequency transceiver 10, with To support the sending and receiving of radio frequency signals of the first frequency band.
  • the second radio frequency PA Mid device 340 is further configured with a radio frequency transmitting port RFIN and a radio frequency receiving port RXOUT.
  • the radio frequency signal of the second frequency band and the radio frequency signal of the third frequency band; the radio frequency receiving port RXOUT of the second radio frequency PA Mid device 340 is used for connecting with the radio frequency transceiver 10 to output the received radio frequency signal of the second frequency band and the radio frequency signal of the third frequency band to the radio frequency
  • the transceiver 10 is configured to support sending and receiving radio frequency signals of the first frequency band.
  • the radio frequency transceiver system based on the above embodiment can support the 4*4 MIMO function and the SRS function of the four-antenna 1T4R.
  • Figure 5 as an example to analyze the working principle of the 4*4 MIMO function of the N41 frequency band:
  • the transmitted radio frequency signal is output to the radio frequency transmitting port RFIN of the first radio frequency PA Mid device 330 through the TX1HB2 port of the radio frequency transceiver 10.
  • the radio frequency signal is amplified by the power amplifier PA, it is sent to the SPDT radio frequency switch, and is switched to the single port through the SPDT radio frequency switch, After being filtered by the filter, it is sent to the RF antenna port AUX, and is sent to the second switch circuit 310 (SP4T RF switch) through the Path1 path.
  • the second switch circuit 310 is switched to the Path2 path, and the second combiner 320 is transmitted to the fourth antenna Ant4. .
  • the received radio frequency signal enters the second combiner 320 from the fourth antenna Ant4, goes to the second switch circuit 310 via the Path2 path, the second switch circuit 310 switches to a single port, and goes to the first radio frequency PA Mid device 330 via the Path1 path.
  • the RF antenna port AUX is filtered by the filter to the SPDT RF switch, and the SPDT RF switch is switched to the receiving path, amplified by the low noise amplifier LNA, and then sent to the RF receiving port RXOUT, and enters the RF transceiver 10 from the SDR PRX7 port.
  • the received radio frequency signal enters from the first antenna Ant1, goes through the Path6 path to the antenna port ANT of the first radio frequency LFEM device 20, and is switched to the contact 2 through the first switch unit (SP5T radio frequency switch), and passes through the first filter unit 211, No. After being amplified by a low noise amplifier LNA1, it goes to the first receiving port RX1, and enters the radio frequency transceiver 10 from the SDR DRX7 port.
  • SP5T radio frequency switch the first filter unit 211, No.
  • the received radio frequency signal enters from the second antenna Ant2, goes through the Path7 path to the antenna port ANT of the second radio frequency LFEM device 20, switches to the contact 2 through the first switch unit (SP5T radio frequency switch), and passes through the first filter unit 211, No. After being amplified by a low noise amplifier LNA1, it goes to the first receiving port RX1, and enters the radio frequency transceiver 10 from the SDR PRX5 port.
  • SP5T radio frequency switch the first switch unit
  • LNA1 low noise amplifier
  • the received radio frequency signal enters from the third antenna Ant3, goes through the Path8 path to the antenna port ANT of the third radio frequency LFEM device 20, switches to the contact 2 through the first switch unit (SP5T radio frequency switch), passes through the first filter unit 211, the first After being amplified by a low noise amplifier LNA1, it is sent to the first receiving port RX1, and then enters the radio frequency transceiver 10 from the SDR DRX5 port.
  • SP5T radio frequency switch the first switch unit
  • LNA1 low noise amplifier
  • the transmitted radio frequency signal is output to the radio frequency transmitting RFIN of the first radio frequency PA Mid device 330 through the TX1HB2 port of the radio frequency transceiver 10.
  • the radio frequency signal is amplified by the power amplifier PA, it is sent to the SPDT radio frequency switch, and is switched to the single port through the SPDT radio frequency switch.
  • the RF antenna port AUX After being filtered by the filter, it is sent to the RF antenna port AUX, and sent to the second switch circuit 310 (SP4T RF switch) through the Path1 path, and the second switch circuit 310 is switched to the Path2 path, and is transmitted to the fourth antenna Ant4 through the second combiner 320;
  • the second switch circuit 310 switches to the Path3 path, to the first transceiver port TRX1 of the first RF LFEM device 20, switches to the single port via the first switch circuit 240, and goes to the first transceiver port TRX1 via the Path6 path
  • One antenna Ant1 transmits;
  • the second switch circuit 310 switches to the Path4 path, to the first transceiving port TRX1 of the second RF LFEM device 20, switches to the single port via the first switch circuit 240, and goes to the first transceiving port TRX1 via the Path7 path Two antenna Ant2 transmission;
  • the second switch circuit 310 switches to the Path5 path, to the first transceiver port TRX1 of the third radio frequency LFEM device 20, to the single port via the first switch circuit 240, and to the first transceiving port TRX1 via the Path8 path Three antenna Ant3 transmitter.
  • the SRS function transmitted by N77 and N79 is similar to that of N41, and will not be repeated here.
  • the specific SRS path configuration is shown in Table 1:
  • the radio frequency LFEM device 20 is configured with two antenna ports (eg, a first antenna port ANT1 and a second antenna port ANT2).
  • the radio frequency transceiver system further includes three first combiners 40 , and the two antenna ports of each radio frequency LFEM device 20 are connected to the first antenna, the second antenna or the third antenna via a first combiner 40 .
  • the three radio frequency LFEM devices 20 are respectively a first radio frequency LFEM device 20 , a second radio frequency LFEM device 20 , and a third radio frequency LFEM device 20 ; the first antenna port ANT1 and the second antenna port of the first radio frequency LFEM device 20 The first antenna port ANT1 and the second antenna port of the second radio frequency LFEM device 20 are connected to the second antenna through another first combiner 40; the third radio frequency LFEM The first antenna port ANT1 and the second antenna port of the device 20 are connected to the third antenna via a further first combiner 40 .
  • the first switch circuit 240 in each radio frequency LFEM device 20 includes a first radio frequency switch 241 and a second radio frequency switch 242 .
  • the two first ends of the first radio frequency switch 241 are respectively connected to the input end of the first receiving circuit 210 and the first receiving port RX1, and the second end of the first radio frequency switch 241 is connected to the first antenna port ANT1;
  • the second The three first ends of the radio frequency switch 242 are respectively connected to the input end of the second receiving circuit 220 , the input end of the third receiving circuit 230 , and the second receiving port RX2 in one-to-one correspondence, and the second end of the second radio frequency switch 242 is connected to the first end of the second receiving circuit 220 .
  • Two antenna ports are connected to ANT2.
  • the radio frequency transceiver system based on the above embodiment can support the 4*4 MIMO function and the SRS function of the four-antenna 1T4R.
  • the transmitted radio frequency signal is output to a radio frequency transmitting port RFIN of the second radio frequency PA Mid device 340 through the TX1UHB 5GLM port of the radio frequency transceiver 10, and the radio frequency signal is switched to the power amplifier PA through the SPDT#1 radio frequency switch, and after being amplified by the power amplifier PA, To SPDT#2 RF switch, switch to single port through SPDT#2 RF switch, filter to DP3T RF switch, DP3T RF switch switches to Path9 path, pass through second combiner 320, and transmit to fourth antenna Ant4 .
  • the received radio frequency signal enters the second combiner 320 from the fourth antenna Ant4, goes to the DP3T radio frequency switch of the second radio frequency PA Mid device 340 through the Path9 path, and is switched to the contact 1 through the DP3T radio frequency switch.
  • SPDT#2 RF switch, SPDT#2 RF switch is switched to the receiving channel, amplified by the low noise amplifier LNA, and then sent to the RF receiving port RXOUT, and enters the RF transceiver 10 from the SDR PRX17 port.
  • the received radio frequency signal enters from the first antenna Ant1, goes through the Path6 path to the antenna port ANT of the first radio frequency LFEM device 20, switches to the contact 3 through the first switch unit (SP5T radio frequency switch), and passes through the first filter unit 211, No. After being amplified by a low noise amplifier LNA1, it goes to the first receiving port RX1, and enters the radio frequency transceiver 10 from the SDR DRX17 port.
  • the received radio frequency signal enters from the second antenna Ant2, goes to the antenna port ANT of the second radio frequency LFEM device 20 through the Path7 path, switches to the contact 3 through the first switch unit (SP5T radio frequency switch), and passes through the first filter unit 211 and the first filter unit 211. After being amplified by a low noise amplifier LNA1, it goes to the first receiving port RX1, and enters the radio frequency transceiver 10 from the SDR PRX15 port.
  • SP5T radio frequency switch the first switch unit
  • LNA1 low noise amplifier
  • the received radio frequency signal enters from the third antenna Ant3, goes through the Path8 path to the antenna port ANT of the third radio frequency LFEM device 20, switches to the contact 3 through the first switch unit (SP5T radio frequency switch), passes through the first filter unit 211, the first After being amplified by a low noise amplifier LNA1, it is sent to the first receiving port RX1, and then enters the radio frequency transceiver 10 from the SDR DRX15 port.
  • SP5T radio frequency switch switched to the contact 3 through the first switch unit (SP5T radio frequency switch)
  • LNA1 low noise amplifier
  • the transmitted radio frequency signal is output to the radio frequency transmitting RFIN of the second radio frequency PA Mid device 340 through the TX1UHB 5GLM port of the radio frequency transceiver 10.
  • the radio frequency signal is switched to the power amplifier PA through the RF switch of SPDT#1, and after being amplified by the power amplifier PA, it is sent to the SPDT.
  • #2 RF switch switched to single port by SPDT#2 RF switch, filtered by filter to DP3T RF switch, DP3T RF switch switched to Path9 path, and transmitted to fourth antenna Ant4 through second combiner 320;
  • the DP3T radio frequency switch is routed internally to the 3P4T radio frequency switch, and the 3P4T radio frequency switch is switched to the Path10 path, to the first transceiver port TRX1 of the first radio frequency LFEM device 20, and is switched to the single port via the first switch circuit 240.
  • One antenna Ant1 transmits;
  • the DP3T radio frequency switch is routed internally to the 4P3T radio frequency switch, and the 3P4T radio frequency switch is switched to the Path11 path, to the first transceiver port TRX1 of the second radio frequency LFEM device 20, and is switched to the single port via the first switch circuit 240.
  • the DP3T RF switch is routed internally to the 4P3T RF switch, and the 3P4T RF switch is switched to the Path12 path, to the first transceiver port TRX1 of the third RF LFEM device 20, and is switched to the single port via the first switch circuit 240, and is transferred to the No. 1 port via the Path8 path.
  • Three antenna Ant3 transmitter Three antenna Ant3 transmitter.
  • the SRS functions transmitted by N41 and N79 are similar to those of N77, and will not be repeated here.
  • the specific SRS path configuration is shown in Table 2:
  • the radio frequency LFEM device 30 is used to realize the three-band reception of radio frequency signals, and the receiving channels of the three frequency band signals are integrated and packaged in the same chip, which saves the area of the substrate occupied by each device.
  • Other modules perform performance optimization to free up physical space and reduce costs.
  • the 4*4 MIMO function in the 1T4R mode can be implemented, the system channel capacity can be improved, and the accuracy and efficiency of channel estimation can be improved.
  • the internal space of the radio frequency LFEM device 20 can be further saved, the cost can be saved, and the complexity of the internal logic control of the radio frequency LFEM device 30 can be simplified.
  • the first radio frequency switch 241 and the second radio frequency switch 242 are arranged to improve the isolation degree between the radio frequency signal of the first frequency band, the radio frequency signal of the second frequency band, and the radio frequency signal of the third frequency band.
  • the radio frequency LFEM device 20 further includes a third radio frequency switch 260 .
  • the two first ends of the third radio frequency switch 260 are respectively connected to the second receiving port RX2 and the third receiving port RX3 , and the two second ends of the third radio frequency switch 260 are respectively connected to the output end of the second receiving circuit 220 and the third receiving port RX3
  • the output end of the receiving circuit 230 is connected, and is used for selecting and conducting the receiving channel of the radio frequency signal of the second frequency band and the radio frequency signal of the third frequency band.
  • the radio frequency LFEM device 20 further includes a control module 250 , respectively connected to the first receiving circuit 210 , the second receiving circuit 220 , the third receiving circuit 230 , and the first switching circuit 240, used to adjust the gain coefficients of the first low noise amplifier and the second low noise amplifier to reduce the link loss of the receiving path, and also used to control the first switch circuit 240 to selectively conduct the first frequency band radio frequency signal, the second The transceiver path of the frequency band radio frequency signal and the third frequency band radio frequency signal.
  • a control module 250 respectively connected to the first receiving circuit 210 , the second receiving circuit 220 , the third receiving circuit 230 , and the first switching circuit 240, used to adjust the gain coefficients of the first low noise amplifier and the second low noise amplifier to reduce the link loss of the receiving path, and also used to control the first switch circuit 240 to selectively conduct the first frequency band radio frequency signal, the second The transceiver path of the frequency band radio frequency signal and the third frequency band radio frequency signal.
  • the radio frequency LFEM device 20 can be understood as a packaged chip, and the first antenna port ANT1, the second antenna port ANT2, the first transceiver port TRX1, the second transceiver port configured in the device TRX2 , the first receiving port RX1 , the second receiving port RX2 and the third receiving port RX3 may be understood as radio frequency pin terminals of the radio frequency LFEM device 20 , which are used for connection with various external devices.
  • control module 250 may be a mobile industry processor interface (Mobile Industry Processor Interface, MIPI)-RF Front End Control Interface (RF Front End Control Interface, RFFE) control module 250 or a radio frequency front end control interface (RF Front End Control Interface, RFFE) control module 250, which conforms to the control protocol of the RFFE bus.
  • MIPI Mobile Industry Processor Interface
  • RF Front End Control Interface RF Front End Control Interface
  • RFFE radio frequency front end control interface
  • the control module 250 is the MIPI-RFFE control module 250 or the RFFE control module 250
  • its radio frequency L-PA Mid device is also configured with the input pin CLK of the clock signal, the input of the unidirectional/bidirectional data signal or the bidirectional pins SDATAS, Power supply pin VDD, reference voltage pin VIO and so on.
  • An embodiment of the present application further provides a communication device, where the radio frequency transceiver system in any of the foregoing embodiments is set on the communication device.
  • the integration of the radio frequency transceiver system is improved, the area of the substrate occupied by each device in the radio frequency transceiver system is reduced, and the power supply, logic control and PCB layout of the radio frequency LFEM device 2030 can also be simplified. Layout and routing, saving costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

一种射频收发***。该射频收发***,包括:射频收发器(10);天线组,至少包括第一天线(Ant1)、第二天线(Ant2)、第三天线(Ant3)和第四天线(Ant4);三个射频LFEM器件(20),射频LFEM器件(20)被配置有第一收发端口(TRX1)、第二收发端口(TRX2)、至少一个天线端口(ANT)及用于连接射频收发器的第一接收端口(RX1)、第二接收端口(RX2)和第三接收端口(RX3);其中,各射频LFEM器件(20)的天线端口(ANT)分别用于连接第一天线(Ant1)、第二天线(Ant2)、第三天线(Ant3);收发选择模块(30),收发选择模块(30)分别与各射频LFEM器件(20)的第一收发端口(TRX1)、第二收发端口(TRX2)连接,以经各射频LFEM器件(20)分别与第一天线(Ant1)、第二天线(Ant2)、第三天线连接(Ant3),收发选择模块(30)还分别与射频收发器(10)及第四天线(Ant4)连接。

Description

射频收发***及通信设备
相关申请的交叉引用
本申请要求于2020年12月16日提交中国专利局、申请号为2020114874336发明名称为“射频收发***及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及射频技术领域,特别是涉及一种射频收发***及通信设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
随着技术的发展和进步,5G移动通信技术逐渐开始应用于电子设备。5G移动通信技术通信频率相比于4G移动通信技术的频率更高。一般,射频***中的接收通路中会设置多个射频前端模块配合天线阵列来提高***信道容量,成本高、占用基板的面积大。
发明内容
根据本申请的各种实施例,提供一种射频收发***和通信设备。
一种射频收发***,包括:
射频收发器;
天线组,至少包括第一天线、第二天线、第三天线和第四天线,用于收发射频信号;
三个射频LFEM器件,所述射频LFEM器件被配置有第一收发端口、第二收发端口、至少一个天线端口及用于连接所述射频收发器的第一接收端口、第二接收端口和第三接收端口,所述射频LFEM器件用于支持第一频段射频信号、第二频段射频信号及第三频段射频信号的收发;其中,各所述射频LFEM器件的天线端口分别用于连接第一天线、第二天线、第三天线;
收发选择模块,所述收发选择模块分别与各所述射频LFEM器件的第一收发端口、第二收发端口连接,以经各所述射频LFEM器件分别与第一天线、第二天线、第三天线连接,所述收发选择模块还分别与所述射频收发器及第四天线连接,用于支持对第一频段射频信号、第二频段射频信号及第三频段射频信号的收发选择。
一种通信设备,包括如上述的射频收发***。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为一实施例的通信设备反馈信道信息的传输应用场景示意图之一;
图1b为一实施例的通信设备反馈信道信息的传输应用场景示意图之二;
图2为一实施例的SRS天线轮流发射的模式示意图;
图3为一实施例的射频收发***的结构示意图之一;
图4为一实施例的射频LFEM器件的结构示意图之一;
图5为一实施例的射频收发***的结构示意图之二;
图6为一实施例的射频LFEM器件的结构示意图之二;
图7为一实施例的射频收发***的结构示意图之三;
图8a为一实施例的射频LFEM器件的结构示意图之三;
图8b为一实施例的射频LFEM器件的结构示意图之四;
图9a为图4、图8b中的射频LFEM器件的封装引脚示意图;
图9b为图6、图8a中的射频LFEM器件的封装引脚示意图。
具体实施方式
为了便于理解本申请,为使本申请的特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请,附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
本申请实施例涉及的射频收发***可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为通信设备。网络设备可以包括基站、接入点等。
本申请实施例中的射频收发***可支持第五代移动通信技术(简称5G或5G技术),5G是最新一代蜂窝移动通信技术,也是即4G、3G、2G***之后的延伸。5G的性能目标是高数据速率、减少延迟、节省能源、降低成本、提高***容量和大规模设备连接。5G分为支持独立组网(Standalone Access,NA)和非独立组网(Non Standalone Access,NSA)两种模式。其中,非独立组网是将5G控制信令锚定在4G基站上,独立组网是5G基站直接接入5G核心网,控制信令不依赖4G网络。
5G网络支持波束赋形技术,可以向通信设备定向发射。而基站要想定向发射,首先得探测到通信设备的位置、传输通路的质量等,从而使基站的资源更加精准地分配给每一个通信设备。
目前,通信设备反馈信道信息有预编码矩阵指示符(Precoding Matrix Indicator,PMI)和信道探测参考信号(Sounding Reference Signal,SRS)这两种不同的模式,信号传输分别图1a和1b所示。从标准定义上看,PMI是所有5G通信设备必须支持的功能,SRS则是可选功能。PMI是基站通过一种预先设定的 机制,依靠终端测量后辅以各种量化算法,来估计信道信息和资源要求,并上报给基站;而SRS则是利用信道互易性让终端直接将信道信息上报给基站,显然后者更加精确。
通信设备发送SRS信息即是用于基站探测终端位置和信道质量的方式;其中SRS天线轮发如图2所示,具体说明如下:
其一,1T1R:固定在第一天线向基站反馈信息,不支持SRS轮发;
其一,1T4R:在第一天线到第四天线轮流发射SRS信息,每次只选择一个天线发射,目前非独立组网采用这种模式;
其三,2T4R:在第一天线到第四天线轮流发射SRS信息,每次选择两个天线同时发射,目前独立组网采用这种模式。
在SRS模式下,能够参与发送参考信号的天线数量越多,信道估计就越准,进而能获得的速率越高;天线数量相同时,SA模式比NSA模式更快地完成信道估计,提高网络信道估计速度。
本申请实施例中提供一种射频收发***,如图3所示,在其中一个实施例中,射频收发***包括:射频收发器10、天线组、三个射频LFEM器件20、收发选择模块30。
示例性的,射频收发器10可以包括发射器(诸如发射器TX)和接收器(诸如接收器RX),或者可以仅包含接收器(例如,接收器RX)或者仅包含发射器(例如,发射器TX)。其中,射频收发器10可用于实现射频信号和基带信号之间的变频处理,或/和,用于实现不同频段信号的变频处理等等。
天线组,至少包括第一天线Ant1、第二天线Ant2、第三天线Ant3和第四天线Ant4。其中,第一天线Ant1、第二天线Ant2、第三天线Ant3和第四天线Ant4可以用于接收和发射N41、N77、N79频段的射频信号。即第一天线Ant1、第二天线Ant2、第三天线Ant3和第四天线Ant4均为能够支持5G NR信号的天线。
在其中一个实施例中,天线组内的各天线可以为定向天线,也可以为非定向天线。示例性的,天线组内的各天线可以使用任何合适类型的天线形成。例如,天线组内的各天线可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。不同类型的天线可以用于不同射频信号的频段组合。
在本申请实施例中,射频LFEM器件20理解为低噪声放大器前端模块(Low Noise AmPlifier–Front-End Modules),用于支持对至少两个频段射频信号的双通道接收,配合第一天线Ant1、第二天线Ant2、第三天线Ant3和第四天线Ant4及收发选择模块30能够支持4*4MIMO功能。其中,射频LFEM器件20被配置有至少一个天线端口ANT、第一收发端口TRX1、第二收发端口TRX2和用于连接所述射频收发器10的多个第一接收端口RX1、第二接收端口RX2和第三接收端口RX3。
如图9a所示,在其中一个实施例中,射频LFEM器件20可以理解为封装芯片,该器件中配置的天线端口ANT、第一收发端口TRX1、第二收发端口TRX2、第一接收端口RX1、第二接收端口RX2和第三接收端口RX3可以理解为射频LFEM器件20的射频引脚端子,用于与各外部器件进行连接。示例性的,三个射频LFEM器件20分别为第一射频LFEM器件20、第二射频LFEM器件20、第三射频LFEM器件20,其中,第一射频LFEM器件20的天线端口可以将第一天线Ant1接收的射频信号输入至该第一射频LFEM器件20,也可以将第一射 频LFEM器件20处理后的射频信号经第一天线Ant1发射出去。第二射频LFEM器件20的天线端口可以将第二天线Ant2接收的射频信号输入至该第二射频LFEM器件20,也可以将第二射频LFEM器件20处理后的射频信号经第二天线Ant2发射出去。第三射频LFEM器件20的天线端口可以将第三天线Ant3接收的射频信号输入至该第三射频LFEM器件20,也可以将第三射频LFEM器件20处理后的射频信号经第三天线Ant3发射出去。各射频LFEM器件20的第一接收端口RX1可以将射频LFEM器件20经天线端口ANT接收的射频信号处理后输出至射频收发器10以实现对射频信号的接收控制,第二接收端口RX2可以将射频LFEM器件20经天线端口ANT接收的射频信号处理后输出至射频收发器10以实现对射频信号的接收控制,第三接收端口RX3可以将射频LFEM器件20经天线端口ANT接收的射频信号处理后输出至射频收发器10以实现对射频信号的接收控制;第一收发端口TRX1可以接收射频收发器10输出至收发选择模块30处理后的射频信号,以使射频LFEM器件20可以实现对接收的射频信号的发射传输,第二收发端口TRX2可以接收射频收发器10输出至收发选择模块30处理后的射频信号,以使射频LFEM器件20可以实现对接收的射频信号的发射传输。
射频信号可以为5G信号,例如N41频段的5G信号、N77(N78)频段的射频信号、N79频段的射频信号等。具体地,N41的工作频段为496MHz-2690MHz,N77的工作频段为3.3GHz-4.2GHz,N78的工作频段为3.3GHz-3.8GHz,N79的工作频段为4.4GHz-5.0GHz。需要说明的是,N77的工作频段覆盖N78的工作频段。也即该射频LFEM器件2030能够支持N77频段的射频信号的收发时,也可以对应支持对N78频段的射频信号的收发。在其中一个实施例中,第一频段射频信号为N41频段的5G信号,第二频段射频信号和第三频段射频信号分别为N77和N79频段的5G信号。
收发选择模块30分别与射频收发器10、第四天线连接,收发选择模块30还与射频LFEM器件的第一收发端口TRX1、第二收发端口TRX2连接,以经射频LFEM器件分别连接第一天线Ant1、第二天线Ant2、第三天线Ant3。收发选择模块30能够将射频收发器10输出的第一频段射频信号、第二频段射频信号和第三频段射频信号通过天线组中的任意天线发射出去,也可以接收天线组中的任意天线接收的第一频段射频信号、第二频段射频信号或第三频段射频信号,并传输至射频收发器10,以使射频收发***实现对三频段射频信号的4*4MIMO功能。具体的,收发选择模块30能够将射频收发器10输出的第三频段射频信号直接传输至任意天线进行发射,也可以经过射频LFEM器件20传输至任意天线。
MIMO技术指在发射端口和接收端口分别使用多个发射天线和接收天线,充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高***信道容量,显示出明显的优势、被视为下一代移动通信的核心技术。
终端和基站可以构成2*2MIMO或者4*4MIMO。在泰尔协议测试接收性能时,也是将4个接收通道全部连接到仪表。4个通道构成MIMO的下行,全部接收上行基站发出的信号,提高接收机的性能。
上述射频收发***,通过射频LFEM器件20实现射频信号的三频段接收,将三频段信号的接收通道集成封装在同一芯片中,可以节约各器件占用基板的面积,为其他模块进行性能优化腾挪出物理空间,降低了成本,射频LFEM器件20配合收发选择模块30、第一天线、第二天线、第三天线、第四天线能够实现1T4R 模式的4*4MIMO功能,提高***信道容量,并提升信道估计的准确性和效率。
如图4所示,在其中一个实施例中,射频LFEM器件20包括第一接收电路210、第二接收电路220、第三接收电路230和第一开关电路240。其中,第一开关电路240包括多个第一端和至少一个第二端,第一开关电路240的多个第一端分别一一对应与第一接收电路210的输入端、第二接收电路220的输入端、第三接收电路230的输入端、第一收发端口TRX1、第二收发端口TRX2连接,第一开关电路240的至少一第二端与天线端口ANT连接,用于经天线端口ANT收发射频信号,还用于经第一收发端口TRX1和/或第二收发端口TRX2发射射频收发器10输出的射频信号,以选择性地导通天线端口ANT与射频LFEM器件20的任意接收通路的连接,或选择性地导通天线端口ANT与射频LFEM器件20的任意发射通路的连接。其中,射频LFEM器件20的接收通路可以理解为天线端口ANT与第一接收端口RX1、第二接收端口RX2、第三接收端口RX3、第一收发端口TRX1或第二收发端口TRX2之间的接收通路;射频LFEM器件20的发射通路可以理解为天线端口ANT与第一收发端口TRX1或第二收发端口TRX2之间的发射通路。
第一接收电路210的输出端与第一接收端口RX1连接,用于支持对第一频段射频信号的接收放大处理。第二接收电路220的输出端与第二接收端口RX2连接,用于支持对第二频段射频信号的接收放大处理。第三接收电路230的输出端与第三接收端口RX3连接,用于支持对第三频段射频信号的接收放大处理。示例性的,第一天线Ant1若接收到第一频段的射频信号,可经与第一天线Ant1连接的第一射频LFEM器件20的天线端口ANT输入至第一开关电路240,第一开关电路240切换至第一接收电路210导通,射频信号经第一接收电路210进行放大后,由第一接收端口RX1输出至射频收发器10;第一天线Ant1若接收到第二频段的射频信号,可经与第一天线Ant1连接的第一射频LFEM器件20的天线端口ANT输入至第一开关电路240,第一开关电路240切换至第二接收电路220导通,射频信号经第二接收电路220进行放大后,由第二接收端口RX2输出至射频收发器10;第一天线Ant1若接收到第三频段的射频信号,可经与第一天线Ant1连接的第一射频LFEM器件20的天线端口ANT输入至第一开关电路240,第一开关电路240切换至第三接收电路230导通,射频信号经第三接收电路230进行放大后,由第三接收端口RX3输出至射频收发器10。第二天线Ant2若接收到第一频段的射频信号,可经与第二天线Ant2连接的第二射频LFEM器件20的天线端口ANT输入至第一开关电路240,第一开关电路240切换至第一接收电路210导通,射频信号经第一接收电路210进行放大后,由第一接收端口RX1输出至射频收发器10;第二天线Ant2若接收到第二频段的射频信号,可经与第二天线Ant2连接的第二射频LFEM器件20的天线端口ANT输入至第一开关电路240,第一开关电路240切换至第二接收电路220导通,射频信号经第二接收电路220进行放大后,由第二接收端口RX2输出至射频收发器10;第二天线Ant2若接收到第三频段的射频信号,可经与第二天线Ant2连接的第三射频LFEM器件20的天线端口ANT输入至第一开关电路240,第一开关电路240切换至第三接收电路230导通,射频信号经第三接收电路230进行放大后,由第三接收端口RX3输出至射频收发器10。第三天线Ant3若接收到第一频段的射频信号,可经与第三天线Ant3连接的第三射频LFEM器件20的天线端口ANT输入至第一开关电路240,第一开关电路240切换至第一接收电路210导通,射频信号经第一接收电路210进行放大后,由第一接收端口RX1输出至 射频收发器10;第三天线Ant3若接收到第二频段的射频信号,可经与第三天线Ant3连接的第三射频LFEM器件20的天线端口ANT输入至第一开关电路240,第一开关电路240切换至第二接收电路220导通,射频信号经第二接收电路220进行放大后,由第二接收端口RX2输出至射频收发器10;第三天线Ant3若接收到第三频段的射频信号,可经与第三天线Ant3连接的第三射频LFEM器件20的天线端口ANT输入至第一开关电路240,第一开关电路240切换至第三接收电路230导通,射频信号经第三接收电路230进行放大后,由第三接收端口RX3输出至射频收发器10。
如图5所示,在其中一个实施例中,第一接收电路210包括第一低噪声放大器LNA1,第一低噪声放大器LNA1的输入端与第一开关电路240的一第一端连接,第一低噪声放大器LNA1的输出端与第一接收端口RX1连接。第一低噪声放大器LNA1用于对接收到的第一频段射频信号进行放大处理。
第二接收电路220包括第二低噪声放大器LNA2,第二低噪声放大器LNA2的输入端与第一开关电路240的另一第一端连接,第二低噪声放大器LNA2的输出端与第二接收端口RX2连接。第二低噪声放大器LNA2用于对接收到的第二频段射频信号进行放大处理。
第三接收电路230包括第三低噪声放大器LNA3,第三低噪声放大器LNA3的输入端与第一开关电路240的又一第一端连接,第三低噪声放大器LNA3的输出端与第三接收端口RX3连接。第三低噪声放大器LNA3用于对接收到的第三频段射频信号进行放大处理。
如图5所示,在其中一个实施例中,第一接收电路210还包括第一滤波单元211,第二接收电路220还包括第二滤波单元221,第三接收电路230还包括第三滤波单元231。其中,第一滤波单元211设置于第一频段射频信号的接收通路中,用于对接收的第一频段射频信号进行滤波处理以输出至第一低噪声放大器LNA1。第一滤波单元211设置于第一开关电路240的前端,即,第一滤波单元211设置在第一低噪声放大器LNA1的输入端与第一开关电路240之间。第二滤波单元221设置于第二频段射频信号的接收通路中,用于对接收的第二频段射频信号进行滤波处理以输出至第二低噪声放大器LNA2。第二滤波单元221设置于第一开关电路240的前端,即,第二滤波单元221设置在第二低噪声放大器LNA2的输入端与第一开关电路240之间。第三滤波单元231设置于第三频段射频信号的接收通路中,用于对接收的第三频段射频信号进行滤波处理以输出至第三低噪声放大器LNA3。第三滤波单元231设置于第一开关电路240的前端,即,第三滤波单元231设置在第三低噪声放大器LNA3的输入端与第一开关电路240之间。
如图5所示,在其中一个实施例中,三个射频LFEM器件20所配置的天线端口数量为一个,则一射频LFEM器件20的天线端口ANT与第一天线Ant1连接,另一射频LFEM器件20的天线端口ANT与第二天线Ant2连接,又一射频LFEM器件20的天线端口ANT与第三天线Ant3连接。
如图5所示,在其中一个实施例中,收发选择模块30包括第二开关电路310、第二合路器320、第一射频PA Mid器件330和第二射频PA Mid器件340。其中,第一射频PA Mid器件330配置有一个射频天线端口AUX,第二射频PA Mid器件340配置有四个射频天线端口AUX。第二开关电路310包括一个第一端和四个第二端,第二开关电路310的第一端与第一射频PA Mid器件330的射频天线端口AUX连接,第二开关电路310的四个第一端分别一一对应与三个射频LFEM 器件20的第一收发端口TRX1、第二合路器320连接,其中,第二开关电路310的一第二端与第二射频PA Mid器件340的一射频天线端口AUX分别经第二合路器320与第四天线Ant4连接,第二开关电路310用于选择导通第一天线Ant1、第二天线Ant2、第三天线Ant3、第四天线Ant4与第一射频PA Mid器件330之间的射频通路。第一射频PA Mid器件330还用于与射频收发器10连接,用于支持对第一频段射频信号的收发。第二射频PA Mid器件340的另外三个射频天线端口AUX分别与三个射频LFEM器件20的第二收发端口TRX2一一对应连接,第二射频PA Mid器件340还与射频收发器10连接,用于支持对第二频段射频信号和第三频段射频信号的收发。具体的,第一射频PA Mid器件330能够将射频收发器10输出的第一频段射频信号经第二开关电路310传输至任意一个射频LFEM器件20,经过射频LFEM器件20处理后再经与该射频LFEM器件20连接的天线发射出去,或直接经第二开关电路310切换至第四天线发射出去;也可以通过第二开关电路310接收经射频LFEM器件20接收处理的由第一天线、第二天线或第三天线接收的第一频段射频信号,或通过第二开关电路310切换导通与第四天线间的通路以获取第四天线接收的第一频段射频信号,并传输至射频收发器10。第二射频PA Mid器件340能够将射频收发器10输出的第二频段射频信号经第二开关电路310传输至任意一个射频LFEM器件20,经过射频LFEM器件20处理后再经与该射频LFEM器件20连接的天线发射出去,或直接经第二开关电路310切换至第四天线发射出去;也可以通过第二开关电路310接收经射频LFEM器件20接收处理的由第一天线、第二天线或第三天线接收的第二频段射频信号,或通过第二开关电路310切换导通与第四天线间的通路以获取第四天线接收的第二频段射频信号,并传输至射频收发器10。第二射频PA Mid器件340还能够将射频收发器10输出的第三频段射频信号经第二开关电路310传输至任意一个射频LFEM器件20,经过射频LFEM器件20处理后再经与该射频LFEM器件20连接的天线发射出去,或直接经第二开关电路310切换至第四天线发射出去;也可以通过第二开关电路310接收经射频LFEM器件20接收处理的由第一天线、第二天线或第三天线接收的第三频段射频信号,或通过第二开关电路310切换导通与第四天线间的通路以获取第四天线接收的第三频段射频信号,并传输至射频收发器10。
在其中一个实施例中,第一射频PA Mid器件330还配置有射频发射端口RFIN、射频接收端口RXOUT,第一射频PA Mid器件330的射频发射端口RFIN用于与射频收发器10连接,以接收射频收发器10输出的第一频段射频信号;第一射频PA Mid器件330的射频接收端口RXOUT用于与射频收发器10连接,以将接收的第一频段射频信号输出至射频收发器10,用于支持收发第一频段的射频信号。
第二射频PA Mid器件340还配置有射频发射端口RFIN、射频接收端口RXOUT,第二射频PA Mid器件340的射频发射端口RFIN用于与射频收发器10连接,以接收射频收发器10输出的第二频段射频信号和第三频段射频信号;第二射频PA Mid器件340的射频接收端口RXOUT用于与射频收发器10连接,以将接收的第二频段射频信号和第三频段射频信号输出至射频收发器10,用于支持收发第一频段的射频信号。
基于上述实施例的射频收发***,可以支持四天线1T4R的4*4MIMO功能和SRS功能。示例性的,以图5为例,分析N41频段的4*4MIMO功能工作原理:
TX通路:
发射的射频信号经射频收发器10的TX1HB2端口输出至第一射频PA Mid器件330的射频发射端口RFIN,射频信号经功率放大器PA放大后,至SPDT射频开关,经SPDT射频开关切换至单端口,经滤波器滤波后至射频天线端口AUX,经Path1路径至第二开关电路310(SP4T射频开关),第二开关电路310切换至Path2路径,经第二合路器320,至第四天线Ant4发射。
PRX通路:
接收的射频信号从第四天线Ant4进入至第二合路器320,经Path2路径至第二开关电路310,第二开关电路310切换至单端口,经Path1路径至第一射频PA Mid器件330的射频天线端口AUX,经滤波器滤波后至SPDT射频开关,SPDT射频开关切换至接收通路,经低噪声放大器LNA放大后至射频接收端口RXOUT,从SDR PRX7端口进入射频收发器10。
DRX通路:
接收的射频信号从第一天线Ant1进入,经Path6路径至第一射频LFEM器件20的天线端口ANT,经过第一开关单元(SP5T射频开关)切换至触点2,经第一滤波单元211、第一低噪声放大器LNA1放大后,至第一接收端口RX1,从SDR DRX7端口进入射频收发器10。
PRX MIMO通路:
接收的射频信号从第二天线Ant2进入,经Path7路径至第二射频LFEM器件20的天线端口ANT,经过第一开关单元(SP5T射频开关)切换至触点2,经第一滤波单元211、第一低噪声放大器LNA1放大后,至第一接收端口RX1,从SDR PRX5端口进入射频收发器10。
DRX MIMO通路:
接收的射频信号从第三天线Ant3进入,经Path8路径至第三射频LFEM器件20的天线端口ANT,经过第一开关单元(SP5T射频开关)切换至触点2,经第一滤波单元211、第一低噪声放大器LNA1放大后,至第一接收端口RX1,从SDR DRX5端口进入射频收发器10。
以图5为例,分析N41频段的SRS功能工作原理:
发射的射频信号经射频收发器10的TX1HB2端口输出至第一射频PA Mid器件330的射频发射RFIN,射频信号经功率放大器PA放大后,至SPDT射频开关,经SPDT射频开关切换至单端口,经滤波器滤波后至射频天线端口AUX,经Path1路径至第二开关电路310(SP4T射频开关),第二开关电路310切换至Path2路径,经第二合路器320,至第四天线Ant4发射;
经Path1路径至第二开关电路310,第二开关电路310切换至Path3路径,至第一射频LFEM器件20的第一收发端口TRX1,经第一开关电路240切换至单端口,经Path6路径至第一天线Ant1发射;
经Path1路径至第二开关电路310,第二开关电路310切换至Path4路径,至第二射频LFEM器件20的第一收发端口TRX1,经第一开关电路240切换至单端口,经Path7路径至第二天线Ant2发射;
经Path1路径至第二开关电路310,第二开关电路310切换至Path5路径,至第三射频LFEM器件20的第一收发端口TRX1,经第一开关电路240切换至单端口,经Path8路径至第三天线Ant3发射。
N77、N79发射的SRS功能与N41相似,不再赘述,具体的SRS路径配置如表1所示:
表1 1T4R SRS详细路径配置表
  N41 N77 N79
Channel0 Path1->Path2 Path9 Path9
Channel1 Path1->Path3->Path6 Path10->Path6 Path10->Path6
Channel2 Path1->Path4->Path7 Path11->Path7 Path11->Path7
Channel3 Path1->Path5->Path8 Path12->Path8 Path12->Path8
参考图6、7所示,在其中一个实施例中,射频LFEM器件20配置有两个天线端口(例如,第一天端口ANT1和第二天线端口ANT2)。射频收发***还包括三个第一合路器40,每个射频LFEM器件20的两个天线端口经一第一合路器40与第一天线、第二天线或第三天线连接。示例性的,三个射频LFEM器件20分别为第一射频LFEM器件20、第二射频LFEM器件20、第三射频LFEM器件20;第一射频LFEM器件20的第一天线端口ANT1和第二天线端口经一第一合路器40与第一天线连接;第二射频LFEM器件20的第一天线端口ANT1和第二天线端口经另一第一合路器40与第二天线连接;第三射频LFEM器件20的第一天线端口ANT1和第二天线端口经又一第一合路器40与第三天线连接。各射频LFEM器件20中的第一开关电路240包括第一射频开关241和第二射频开关242。其中,第一射频开关241的两个第一端分别与第一接收电路210的输入端、第一接收端口RX1连接,第一射频开关241的第二端与第一天线端口ANT1连接;第二射频开关242的三个第一端分别一一对应与第二接收电路220的输入端、第三接收电路230的输入端、第二接收端口RX2连接,第二射频开关242的第二端与第二天线端口ANT2连接。
基于上述实施例的射频收发***,可以支持四天线1T4R的4*4MIMO功能和SRS功能。示例性的,以图7为例,分析N77频段的4*4MIMO功能工作原理:
TX通路:
发射的射频信号经射频收发器10的TX1UHB 5GLM端口输出至第二射频PA Mid器件340的一射频发射端口RFIN,射频信号经SPDT#1射频开关切换至功率放大器PA,经功率放大器PA放大后,至SPDT#2射频开关,经SPDT#2射频开关切换至单端口,经滤波器滤波后至DP3T射频开关,DP3T射频开关切换至Path9路径,经第二合路器320,至第四天线Ant4发射。
PRX通路:
接收的射频信号从第四天线Ant4进入至第二合路器320,经Path9路径至第二射频PA Mid器件340的DP3T射频开关,经DP3T射频开关切换至触点1,经过滤波器滤波后至SPDT#2射频开关,SPDT#2射频开关切换至接收通路,经低噪声放大器LNA放大后至射频接收端口RXOUT,从SDR PRX17端口进入射频收发器10。
DRX通路:
接收的射频信号从第一天线Ant1进入,经Path6路径至第一射频LFEM器件20的天线端口ANT,经过第一开关单元(SP5T射频开关)切换至触点3,经第一滤波单元211、第一低噪声放大器LNA1放大后,至第一接收端口RX1,从SDR DRX17端口进入射频收发器10。
PRX MIMO通路:
接收的射频信号从第二天线Ant2进入,经Path7路径至第二射频LFEM器件20的天线端口ANT,经过第一开关单元(SP5T射频开关)切换至触点3,经 第一滤波单元211、第一低噪声放大器LNA1放大后,至第一接收端口RX1,从SDR PRX15端口进入射频收发器10。
DRX MIMO通路:
接收的射频信号从第三天线Ant3进入,经Path8路径至第三射频LFEM器件20的天线端口ANT,经过第一开关单元(SP5T射频开关)切换至触点3,经第一滤波单元211、第一低噪声放大器LNA1放大后,至第一接收端口RX1,从SDR DRX15端口进入射频收发器10。
以图7为例,分析N77频段的SRS功能工作原理:
发射的射频信号经射频收发器10的TX1UHB 5GLM端口输出至第二射频PA Mid器件340的射频发射RFIN,射频信号经SPDT#1射频开关切换至功率放大器PA,经功率放大器PA放大后,至SPDT#2射频开关,经SPDT#2射频开关切换至单端口,经滤波器滤波后至DP3T射频开关,DP3T射频开关切换至Path9路径,经第二合路器320,至第四天线Ant4发射;
DP3T射频开关经内部走线至3P4T射频开关,3P4T射频开关切换至Path10路径,至第一射频LFEM器件20的第一收发端口TRX1,经第一开关电路240切换至单端口,经Path6路径至第一天线Ant1发射;
DP3T射频开关经内部走线至4P3T射频开关,3P4T射频开关切换至Path11路径,至第二射频LFEM器件20的第一收发端口TRX1,经第一开关电路240切换至单端口,经Path7路径至第二天线Ant2发射;
DP3T射频开关经内部走线至4P3T射频开关,3P4T射频开关切换至Path12路径,至第三射频LFEM器件20的第一收发端口TRX1,经第一开关电路240切换至单端口,经Path8路径至第三天线Ant3发射。
N41、N79发射的SRS功能与N77相似,不再赘述,具体的SRS路径配置如表2所示:
表4 1T4R SRS详细路径配置表
  N41 N77 N79
Channel0 Path1->Path2 Path9 Path9
Channel1 Path1->Path3->Path6 Path10->Path6 Path10->Path6
Channel2 Path1->Path4->Path7 Path11->Path7 Path11->Path7
Channel3 Path1->Path5->Path8 Path12->Path8 Path12->Path8
参考图5和图7所示的射频收发***,通过射频LFEM器件30实现射频信号的三频段接收,将三个频段信号的接收通道集成封装在同一芯片中,节约各器件占用基板的面积,为其他模块进行性能优化腾挪出物理空间,降低了成本,配合天线组、收发选择模块30能够实现1T4R模式的4*4MIMO功能,提高***信道容量,并提升信道估计的准确性和效率。其中,图5所示的射频收发***中,能够进一步节约射频LFEM器件20的内部空间,节约成本,简化了射频LFEM器件30内部逻辑控制的复杂度。图7所示的射频收发***中,通过设置第一射频开关241和第二射频开关242提高第一频段射频信号与第二频段射频信号、第三频段射频信号间的隔离度。
参考图8a、图8b所示,在其中一个实施例中,射频LFEM器件20还包括第三射频开关260。第三射频开关260的两个第一端分别与第二接收端口RX2、第三接收端口RX3连接,第三射频开关260的两个第二端分别与第二接收电路220的输出端、第三接收电路230的输出端连接,用于选择导通第二频段射频信号和第三频段射频信号的接收通路。
参考图5-图8所示,在其中一个实施例中,射频LFEM器件20还包括控制模块250,分别与第一接收电路210、第二接收电路220、第三接收电路230、第一开关电路240,用于调节第一低噪声放大器及第二低噪声放大器的增益系数以降低接收通路的链路损耗,还用于控制第一开关电路240,以选择导通第一频段射频信号、第二频段射频信号和第三频段射频信号的收发通路。
如图9b所示,在其中一个实施例中,射频LFEM器件20可以理解为封装芯片,该器件中配置的第一天线端口ANT1、第二天线端口ANT2、第一收发端口TRX1、第二收发端口TRX2、第一接收端口RX1、第二接收端口RX2和第三接收端口RX3可以理解为射频LFEM器件20的射频引脚端子,用于与各外部器件进行连接。
具体的,控制模块250可以为移动行业处理器接口(Mobile Industry Processor Interface,MIPI)—射频前端控制接口(RF Front End Control Interface,RFFE)控制模块250或射频前端控制接口(RF Front End Control Interface,RFFE)控制模块250,其符合RFFE总线的控制协议。当控制模块250为MIPI-RFFE控制模块250或RFFE控制模块250时,其射频L-PA Mid器件还被配置有时钟信号的输入引脚CLK、单/双向数据信号的输入或双向引脚SDATAS、电源引脚VDD、参考电压引脚VIO等等。
本申请实施例还提供一种通信设备,该通信设备上设置有上述任一实施例中的射频收发***。
通过在通信设备上设置该射频收发***,提高了射频收发***的集成度,减小了射频收发***中各器件占用基板的面积,同时还可以简化射频LFEM器件2030的供电、逻辑控制以及PCB的布局布线,节约了成本。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、“理想实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请发明构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种射频收发***,包括:
    射频收发器;
    天线组,至少包括第一天线、第二天线、第三天线和第四天线,用于收发射频信号;
    三个射频LFEM器件,所述射频LFEM器件被配置有第一收发端口、第二收发端口、至少一个天线端口及用于连接所述射频收发器的第一接收端口、第二接收端口和第三接收端口,所述射频LFEM器件用于支持第一频段射频信号、第二频段射频信号及第三频段射频信号的接收;其中,各所述射频LFEM器件的天线端口分别用于连接第一天线、第二天线、第三天线;
    收发选择模块,所述收发选择模块分别与各所述射频LFEM器件的第一收发端口、第二收发端口连接,以经各所述射频LFEM器件分别与第一天线、第二天线、第三天线连接,所述收发选择模块还与所述射频收发器及第四天线连接,用于支持对第一频段射频信号、第二频段射频信号及第三频段射频信号的收发选择。
  2. 根据权利要求1所述的射频收发***,所述射频LFEM器件包括:
    第一接收电路,所述第一接收电路的输出端与第一接收端口连接,用于支持对第一频段射频信号的接收放大处理;
    第二接收电路,所述第二接收电路的输出端与第二接收端口连接,用于支持对第二频段射频信号的接收放大处理;
    第三接收电路,所述第三接收电路的输出端与第三接收端口连接,用于支持对第三频段射频信号的接收放大处理;
    第一开关电路,所述第一开关电路包括多个第一端和至少一个第二端,所述第一开关电路的多个第一端分别一一对应与所述第一接收电路的输入端、第二接收电路的输入端、第三接收电路的输入端、第一收发端口、第二收发端口连接,所述第一开关电路的至少一第二端与一所述天线端口连接。
  3. 根据权利要求2所述的射频收发***,所述射频LFEM器件被配置有两个所述天线端口,所述射频收发***还包括三个第一合路器,每个所述射频LFEM器件的两个天线端口经一第一合路器与第一天线、第二天线或第三天线连接;所述第一开关电路包括:
    第一射频开关,所述第一射频开关的两个第一端分别与第一接收电路的输入端、第一接收端口连接,所述第一射频开关的第二端与一天线端口连接;
    第二射频开关,所述第二射频开关的三个第一端分别一一对应与第二接收电路的输入端、第三接收电路的输入端、第二接收端口连接,所述第二射频开关的第二端与另一天线端口连接。
  4. 根据权利要求2或3所述的射频收发***,所述收发选择模块包括:第二开关电路、第二合路器、第一射频PA Mid器件及第二射频PA Mid器件;其中,所述第一射频PA Mid器件配置有一个射频天线端口,所述第二射频PA Mid器件配置有四个射频天线端口;
    所述第二开关电路包括一个第一端和四个第二端,所述第二开关电路的第一端与所述第一射频PA Mid器件的射频天线端口连接,所述第二开关电路的其中三个第二端分别一一对应与三个所述射频LFEM器件的第一收发端口连接,所述第二开关电路的另一第二端经第二合路器与所述第四天线连接,用于选择导通所述第一天线、第二天线、第三天线、第四天线与所述第一射频PA Mid器件间 的射频通路;
    所述第一射频PA Mid器件还与所述射频收发器连接,用于支持对第一频段射频信号的收发;
    所述第二射频PA Mid器件的其中三个射频天线端口分别与三个所述射频LFEM器件的第二收发端口一一对应连接,所述第二射频PA Mid器件的另一个射频天线端口经所述第二合路器与所述第四天线连接,所述第二射频PA Mid器件还与所述射频收发器连接,用于支持对第二频段射频信号和第三频段射频信号的收发。
  5. 根据权利要求4所述的射频收发***,所述射频LFEM器件还包括:
    第三射频开关,所述第三射频开关的两个第一端分别与第二接收端口、第三接收端口连接,所述第三射频开关的两个第二端分别与第二接收电路的输出端、第三接收电路的输出端连接,用于选择导通第二频段射频信号和第三频段射频信号的接收通路。
  6. 根据权利要求4所述的射频收发***,所述第一射频PA Mid器件和第二射频PA Mid器件均配置有射频发射端口、射频接收端口;
    第一射频PA Mid器件的射频发射端口用于与所述射频收发器连接,以接收所述射频收发器输出的第一频段射频信号;第一射频PA Mid器件的射频接收端口用于与所述射频收发器连接,以将接收的第一频段射频信号输出至所述射频收发器,用于支持收发第一频段的射频信号;
    第二射频PA Mid器件的射频发射端口用于与所述射频收发器连接,以接收所述射频收发器输出的第二频段射频信号和第三频段射频信号;第二射频PA Mid器件的射频接收端口用于与所述射频收发器连接,以将接收的第二频段射频信号和第三频段射频信号输出至所述射频收发器,用于支持收发第一频段的射频信号。
  7. 根据权利要求2或3所述的射频收发***,所述第一接收电路包括:
    第一低噪声放大器,所述第一低噪声放大器的输入端与所述第一开关电路的一第一端连接,所述第一低噪声放大器的输出端与第一接收端口连接,用于对接收的第一频段射频信号进行放大处理;
    所述第二接收电路包括:
    第二低噪声放大器,所述第二低噪声放大器的输入端与所述第一开关电路的另第一端连接,所述第二低噪声放大器的输出端与第二接收端口连接,用于对接收的第二频段射频信号进行放大处理;
    所述第三接收电路包括:
    第三低噪声放大器,所述第三低噪声放大器的输入端与所述第一开关电路的又一第一端连接,所述第三低噪声放大器的输出端与第三接收端口连接,用于对接收的第三频段射频信号进行放大处理。
  8. 根据权利要求7所述的射频收发***,所述第一接收电路还包括第一滤波单元,所述第一滤波单元设置于所述第一频段射频信号的接收通路中,用于对接收的第一频段射频信号进行滤波处理以输出至所述第一低噪声放大器;
    所述第二接收电路还包括第二滤波单元,所述第二滤波单元设置于所述第二频段射频信号的接收通路中,用于对接收的第二频段射频信号进行滤波处理以输出至所述第二低噪声放大器;
    所述第三接收电路还包括第三滤波单元,所述第三滤波单元设置于所述第三频段射频信号的接收通路中,用于对接收的第三频段射频信号进行滤波处理以输 出至所述第三低噪声放大器。
  9. 根据权利要求2所述的射频收发***,所述射频LFEM器件还包括:
    控制模块,分别与第一接收电路、第二接收电路、第三接收电路、第一开关电路,用于调节所述第一低噪声放大器及第二低噪声放大器的增益系数以降低接收通路的链路损耗,还用于控制所述第一开关电路,以选择导通第一频段射频信号、第二频段射频信号和第三频段射频信号的收发通路。
  10. 根据权利要求1所述的射频收发***,所述第一频段射频信号为N41频段的5G信号,所述第二频段射频信号和第三频段射频信号分别为N77和N79频段的5G信号。
  11. 一种通信设备,包括射频收发***,所述射频收发***包括:
    射频收发器;
    天线组,至少包括第一天线、第二天线、第三天线和第四天线,用于收发射频信号;
    三个射频LFEM器件,所述射频LFEM器件被配置有第一收发端口、第二收发端口、至少一个天线端口及用于连接所述射频收发器的第一接收端口、第二接收端口和第三接收端口,所述射频LFEM器件用于支持第一频段射频信号、第二频段射频信号及第三频段射频信号的接收;其中,各所述射频LFEM器件的天线端口分别用于连接第一天线、第二天线、第三天线;
    收发选择模块,所述收发选择模块分别与各所述射频LFEM器件的第一收发端口、第二收发端口连接,以经各所述射频LFEM器件分别与第一天线、第二天线、第三天线连接,所述收发选择模块还与所述射频收发器及第四天线连接,用于支持对第一频段射频信号、第二频段射频信号及第三频段射频信号的收发选择。
  12. 根据权利要求11所述的通信设备,所述射频LFEM器件包括:
    第一接收电路,所述第一接收电路的输出端与第一接收端口连接,用于支持对第一频段射频信号的接收放大处理;
    第二接收电路,所述第二接收电路的输出端与第二接收端口连接,用于支持对第二频段射频信号的接收放大处理;
    第三接收电路,所述第三接收电路的输出端与第三接收端口连接,用于支持对第三频段射频信号的接收放大处理;
    第一开关电路,所述第一开关电路包括多个第一端和至少一个第二端,所述第一开关电路的多个第一端分别一一对应与所述第一接收电路的输入端、第二接收电路的输入端、第三接收电路的输入端、第一收发端口、第二收发端口连接,所述第一开关电路的至少一第二端与一所述天线端口连接。
  13. 根据权利要求12所述的通信设备,所述射频LFEM器件被配置有两个所述天线端口,所述射频收发***还包括三个第一合路器,每个所述射频LFEM器件的两个天线端口经一第一合路器与第一天线、第二天线或第三天线连接;所述第一开关电路包括:
    第一射频开关,所述第一射频开关的两个第一端分别与第一接收电路的输入端、第一接收端口连接,所述第一射频开关的第二端与一天线端口连接;
    第二射频开关,所述第二射频开关的三个第一端分别一一对应与第二接收电路的输入端、第三接收电路的输入端、第二接收端口连接,所述第二射频开关的第二端与另一天线端口连接。
  14. 根据权利要求12或13所述的通信设备,所述收发选择模块包括:第二 开关电路、第二合路器、第一射频PA Mid器件及第二射频PA Mid器件;其中,所述第一射频PA Mid器件配置有一个射频天线端口,所述第二射频PA Mid器件配置有四个射频天线端口;
    所述第二开关电路包括一个第一端和四个第二端,所述第二开关电路的第一端与所述第一射频PA Mid器件的射频天线端口连接,所述第二开关电路的其中三个第二端分别一一对应与三个所述射频LFEM器件的第一收发端口连接,所述第二开关电路的另一第二端经第二合路器与所述第四天线连接,用于选择导通所述第一天线、第二天线、第三天线、第四天线与所述第一射频PA Mid器件间的射频通路;
    所述第一射频PA Mid器件还与所述射频收发器连接,用于支持对第一频段射频信号的收发;
    所述第二射频PA Mid器件的其中三个射频天线端口分别与三个所述射频LFEM器件的第二收发端口一一对应连接,所述第二射频PA Mid器件的另一个射频天线端口经所述第二合路器与所述第四天线连接,所述第二射频PA Mid器件还与所述射频收发器连接,用于支持对第二频段射频信号和第三频段射频信号的收发。
  15. 根据权利要求14所述的通信设备,所述射频LFEM器件还包括:
    第三射频开关,所述第三射频开关的两个第一端分别与第二接收端口、第三接收端口连接,所述第三射频开关的两个第二端分别与第二接收电路的输出端、第三接收电路的输出端连接,用于选择导通第二频段射频信号和第三频段射频信号的接收通路。
  16. 根据权利要求14所述的通信设备,所述第一射频PA Mid器件和第二射频PA Mid器件均配置有射频发射端口、射频接收端口;
    第一射频PA Mid器件的射频发射端口用于与所述射频收发器连接,以接收所述射频收发器输出的第一频段射频信号;第一射频PA Mid器件的射频接收端口用于与所述射频收发器连接,以将接收的第一频段射频信号输出至所述射频收发器,用于支持收发第一频段的射频信号;
    第二射频PA Mid器件的射频发射端口用于与所述射频收发器连接,以接收所述射频收发器输出的第二频段射频信号和第三频段射频信号;第二射频PA Mid器件的射频接收端口用于与所述射频收发器连接,以将接收的第二频段射频信号和第三频段射频信号输出至所述射频收发器,用于支持收发第一频段的射频信号。
  17. 根据权利要求12或13所述的通信设备,所述第一接收电路包括:
    第一低噪声放大器,所述第一低噪声放大器的输入端与所述第一开关电路的一第一端连接,所述第一低噪声放大器的输出端与第一接收端口连接,用于对接收的第一频段射频信号进行放大处理;
    所述第二接收电路包括:
    第二低噪声放大器,所述第二低噪声放大器的输入端与所述第一开关电路的另第一端连接,所述第二低噪声放大器的输出端与第二接收端口连接,用于对接收的第二频段射频信号进行放大处理;
    所述第三接收电路包括:
    第三低噪声放大器,所述第三低噪声放大器的输入端与所述第一开关电路的又一第一端连接,所述第三低噪声放大器的输出端与第三接收端口连接,用于对接收的第三频段射频信号进行放大处理。
  18. 根据权利要求17所述的通信设备,所述第一接收电路还包括第一滤波单元,所述第一滤波单元设置于所述第一频段射频信号的接收通路中,用于对接收的第一频段射频信号进行滤波处理以输出至所述第一低噪声放大器;
    所述第二接收电路还包括第二滤波单元,所述第二滤波单元设置于所述第二频段射频信号的接收通路中,用于对接收的第二频段射频信号进行滤波处理以输出至所述第二低噪声放大器;
    所述第三接收电路还包括第三滤波单元,所述第三滤波单元设置于所述第三频段射频信号的接收通路中,用于对接收的第三频段射频信号进行滤波处理以输出至所述第三低噪声放大器。
  19. 根据权利要求12所述的通信设备,所述射频LFEM器件还包括:
    控制模块,分别与第一接收电路、第二接收电路、第三接收电路、第一开关电路,用于调节所述第一低噪声放大器及第二低噪声放大器的增益系数以降低接收通路的链路损耗,还用于控制所述第一开关电路,以选择导通第一频段射频信号、第二频段射频信号和第三频段射频信号的收发通路。
  20. 根据权利要求11所述的通信设备,所述第一频段射频信号为N41频段的5G信号,所述第二频段射频信号和第三频段射频信号分别为N77和N79频段的5G信号。
PCT/CN2021/127825 2020-12-16 2021-11-01 射频收发***及通信设备 WO2022127404A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21905333.7A EP4258562A4 (en) 2020-12-16 2021-11-01 RADIO FREQUENCY TRANSMITTING-RECEIVING SYSTEM AND COMMUNICATION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011487433.6 2020-12-16
CN202011487433.6A CN114640370B (zh) 2020-12-16 2020-12-16 射频收发***及通信设备

Publications (1)

Publication Number Publication Date
WO2022127404A1 true WO2022127404A1 (zh) 2022-06-23

Family

ID=81944392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127825 WO2022127404A1 (zh) 2020-12-16 2021-11-01 射频收发***及通信设备

Country Status (3)

Country Link
EP (1) EP4258562A4 (zh)
CN (1) CN114640370B (zh)
WO (1) WO2022127404A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978258A (zh) * 2022-07-28 2022-08-30 合肥龙旗智能科技有限公司 接收信号处理电路、射频***及通信设备
TWI831310B (zh) * 2022-07-28 2024-02-01 瑞昱半導體股份有限公司 訊號接收器及訊號接收方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170294947A1 (en) * 2016-04-09 2017-10-12 Skyworks Solutions, Inc. Front-end architecture having switchable duplexer
CN109412657A (zh) * 2018-07-23 2019-03-01 Oppo广东移动通信有限公司 射频***、天线切换控制方法及相关产品
WO2020116056A1 (ja) * 2018-12-06 2020-06-11 株式会社村田製作所 高周波モジュール及び通信装置
CN111600616A (zh) * 2020-07-10 2020-08-28 锐石创芯(深圳)科技有限公司 一种射频前端架构、天线装置及通信终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106252845A (zh) * 2016-07-22 2016-12-21 宇龙计算机通信科技(深圳)有限公司 一种天线、载波射频电路、终端和载波聚合方法
CN108199727A (zh) * 2018-03-16 2018-06-22 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN108462506B (zh) * 2018-03-16 2020-06-23 Oppo广东移动通信有限公司 多路选择开关、射频***和无线通信设备
CN108199728B (zh) * 2018-03-16 2020-05-19 Oppo广东移动通信有限公司 多路选择开关、射频***和无线通信设备
CN109861734B (zh) * 2019-03-28 2022-04-29 Oppo广东移动通信有限公司 射频***、天线切换控制方法、相关设备及存储介质
KR20200117203A (ko) * 2019-04-03 2020-10-14 삼성전자주식회사 사운딩 기준 신호를 송신하기 위한 방법 및 그 전자 장치
CN211630163U (zh) * 2020-04-30 2020-10-02 维沃移动通信有限公司 一种射频电路和电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170294947A1 (en) * 2016-04-09 2017-10-12 Skyworks Solutions, Inc. Front-end architecture having switchable duplexer
CN109412657A (zh) * 2018-07-23 2019-03-01 Oppo广东移动通信有限公司 射频***、天线切换控制方法及相关产品
WO2020116056A1 (ja) * 2018-12-06 2020-06-11 株式会社村田製作所 高周波モジュール及び通信装置
CN111600616A (zh) * 2020-07-10 2020-08-28 锐石创芯(深圳)科技有限公司 一种射频前端架构、天线装置及通信终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4258562A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978258A (zh) * 2022-07-28 2022-08-30 合肥龙旗智能科技有限公司 接收信号处理电路、射频***及通信设备
CN114978258B (zh) * 2022-07-28 2022-10-25 合肥龙旗智能科技有限公司 接收信号处理电路、射频***及通信设备
TWI831310B (zh) * 2022-07-28 2024-02-01 瑞昱半導體股份有限公司 訊號接收器及訊號接收方法

Also Published As

Publication number Publication date
CN114640370A (zh) 2022-06-17
EP4258562A1 (en) 2023-10-11
EP4258562A4 (en) 2024-05-01
CN114640370B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2022062585A1 (zh) 射频L-PA Mid器件、射频收发***和通信设备
WO2022062575A1 (zh) 射频***和通信设备
CN212588326U (zh) 射频PA Mid器件、射频***和通信设备
CN108512556B (zh) 多路选择开关、射频***和无线通信设备
CN108462497B (zh) 多路选择开关及相关产品
CN108494413B (zh) 具有多路选择开关的电子设备
WO2022127397A1 (zh) 射频收发***及通信设备
CN212588327U (zh) 射频PA Mid器件、射频收发***和通信设备
CN108599778B (zh) 多路选择开关、射频***和无线通信设备
WO2021238453A1 (zh) 射频PA Mid器件、射频***和通信设备
WO2021258863A1 (zh) 射频PA Mid器件、射频***和通信设备
WO2022127404A1 (zh) 射频收发***及通信设备
EP3540963B1 (en) Multiway switch, radio frequency system, and wireless communication device
WO2021238536A1 (zh) 射频PA Mid器件、射频收发装置和通信设备
WO2023098201A1 (zh) 射频***及通信设备
CN212811690U (zh) 射频l-drx器件、射频收发***和通信设备
WO2023056817A1 (zh) 射频前端器件、射频收发***和通信设备
WO2022062586A1 (zh) 射频drx器件、射频***和通信设备
CN113726357A (zh) 射频PA Mid器件、射频收发***和通信设备
WO2021238534A1 (zh) 射频PA Mid器件、射频收发***和通信设备
CN113726358A (zh) 射频PA Mid器件、射频***和通信设备
WO2021238430A1 (zh) 射频PA Mid器件、射频***和通信设备
CN114614851B (zh) 信号收发电路、射频***以及移动终端
WO2022127360A1 (zh) 射频收发***及通信设备
WO2022127394A1 (zh) 射频收发***及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021905333

Country of ref document: EP

Effective date: 20230704

NENP Non-entry into the national phase

Ref country code: DE