WO2023096028A1 - Method for manufacturing light-sensitive all-inorganic nanoparticle ink and 3-dimensional structure printing method using same - Google Patents

Method for manufacturing light-sensitive all-inorganic nanoparticle ink and 3-dimensional structure printing method using same Download PDF

Info

Publication number
WO2023096028A1
WO2023096028A1 PCT/KR2022/003086 KR2022003086W WO2023096028A1 WO 2023096028 A1 WO2023096028 A1 WO 2023096028A1 KR 2022003086 W KR2022003086 W KR 2022003086W WO 2023096028 A1 WO2023096028 A1 WO 2023096028A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
inorganic
ink
preparing
inorganic nanoparticle
Prior art date
Application number
PCT/KR2022/003086
Other languages
French (fr)
Korean (ko)
Inventor
손재성
이지석
백성헌
반형우
손창일
정상균
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of WO2023096028A1 publication Critical patent/WO2023096028A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a method for preparing a light-sensitive all-inorganic nanoparticle ink and a method for printing a three-dimensional structure using the same.
  • 3D additive printing technology is a key technology of the 4th industrial revolution that goes beyond the limits of the existing 2D patterning process.
  • 3D additive printing technology is largely divided into three types: Fused Filament Fabrication, Selective Laser Sintering, and Stereo Lithography Apparatus, depending on the shape change of the material.
  • various types of 3D additive printing technologies are being developed according to the purpose of application.
  • optical-based 3D printing technologies such as Digital Light Processing (DLP) and Stereolithography (SLA) are technologies that have great potential as they can simply and quickly produce complex shapes at ultra-high resolution, and are , it can be used in various application fields such as energy device fabrication and metasurface structure fabrication. Furthermore, it is expected that it will be able to replace even the Micro Electron Mechanical System (MEMS) process that is currently widely used.
  • DLP Digital Light Processing
  • SLA Stereolithography
  • MEMS Micro Electron Mechanical System
  • the 3D structure manufacturing process based on the conventional 2D patterning process uses a specially manufactured 2D mask or mold, and requires high cost such as repeating the material deposition, photolithography, and etching processes in a high vacuum state several times. It has a disadvantage in that it is difficult to easily manufacture a three-dimensional structure because it involves complex and time-consuming multi-processes.
  • Optical-based 3D printing technology can easily manufacture complex 3D structures in a relatively short time and in a simple manner, but until now, most of the printable material groups are organic-based photocurable polymer resins or composites of inorganic fillers and photocurable polymers. Since it is limited to inorganic materials and its physical properties are significantly lower than those of inorganic materials, there is a limit to its application to electronics and energy fields that require high functionality.
  • the present invention is to solve the above problems, and an object of the present invention is to manufacture a light-sensitive all-inorganic, applicable to optical-based 3D printing technology and capable of producing a highly functional 3D structure suitable for multi-field applications. It is to provide a method for preparing nanoparticle ink.
  • Another object of the present invention is to provide a method for printing a 3D structure using a 3D printing ink including a light-sensitive all-inorganic nanoparticle ink.
  • One aspect of the present invention comprises the steps of preparing nanoparticles capped with an organic material; preparing a nanoparticle dispersion by dispersing the nanoparticles capped with the organic material in a non-polar solvent; preparing an inorganic ligand solution by dissolving an inorganic ligand in a polar solvent; obtaining nanoparticles capped with an inorganic ligand by stirring a mixture of the nanoparticle dispersion and the inorganic ligand solution; preparing an all-inorganic nanoparticle solution by dispersing the nanoparticles capped with the inorganic ligand in a polar solvent; and mixing the inorganic nanoparticle solution and a photoacid generator.
  • the nanoparticle may include at least one selected from the group consisting of a semiconductor material, a magnetic material, a metal material, an oxide material, a magnetic alloy, or a multi-component hybrid structure material.
  • the nanoparticles are CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, GaN, GaP, GaAs, PbS, PbSe, PbTe, GaSb, AlN, AlP, AlAs, AlSb, InP, InP/ZnS (core/shell), InAs, InSb, SiC, Pt, Ni, Co, Al, ITO.
  • the inorganic ligand is MoS 4 2- , Sn 2 S 6 4- , In 2 Se 4 2- , S 2- , Se 2- , Te 2- , SCN - , SnS 4 4- , SnTe 4 4- , AsS 3 3- , BF 4 - composed of oxoanion, polyoxometalate, halide, halometalate and polyphosphide (P x n- ) It may include at least one selected from the group.
  • the mixture may be a one-phase mixture or a two-phase mixture, and upon stirring, an organic ligand present on the surface of the nanoparticle may be replaced with an inorganic ligand.
  • the non-polar solvent is at least selected from the group consisting of N-hexane, pentane, cyclohexane, toluene and chloroform. It includes any one, and the polar solvent is dimethyl ether (DME), tetrahydrofuran (THF), dimethylformamide (DMF), N-methylformamide (NMF), N,N-dimethylformamide (DMF) , Dimethyl sulfoxide (DMSO), ethylenediamine (En), formamide (FA), hydrazine (N 2 H 4 ) It may include at least one selected from the group consisting of and dimethylacetamide.
  • DME dimethyl ether
  • THF tetrahydrofuran
  • DMF dimethylformamide
  • NMF N-methylformamide
  • DMSO Dimethyl sulfoxide
  • En ethylenediamine
  • F formamide
  • hydrazine N 2 H 4
  • It may include at least
  • the photoacid generator may generate protons (H + ) in response to light in a wavelength range of 200 nm to 500 nm.
  • the photoacid generator may include an ionic photoacid generator, a nonionic photoacid generator, or both.
  • the ionic photoacid generator is at least one anion selected from the group consisting of SbF 6- , AsF 6- , BF 4- , C 4 F 9 SO 3- and CF 3 SO 3- It may contain.
  • the ionic photoacid generator includes at least one selected from the group consisting of diaryliodonium, triarylsulfonium, aryldiazonium, and triarylphosphonium salts
  • Warm photoacid generators include halogenated triazines, 2-nitrobenzyl esters of organic sulfonic acids, 4-nitrobenzyl esters of organic sulfonic acids, quinolones, N-hydroxyimide or N-hydroxyamide sulfonates, imino sulfonates. And it may include at least one selected from the group consisting of diazonaphthoquinone.
  • the inorganic nanoparticle solution and the photoacid generator may be mixed in a ratio of 1:0.5 to 1:3.
  • Another aspect of the present invention provides an ink for 3D printing, including the light-sensitive all-inorganic nanoparticle ink prepared by the method for preparing the light-sensitive all-inorganic nanoparticle ink.
  • Another aspect of the present invention the step of filling the ink for the 3D printing ink bath; and placing an upper substrate on the surface of the ink for 3D printing filled in the ink bath and then performing an optical 3D printing process to form a structure on the surface of the upper substrate.
  • a self-assembly monolayer may be formed on the surface of the upper substrate.
  • the surface of the substrate is coated with a compound capable of inducing bonding with the nanoparticles, and the compound capable of inducing bonding with the nanoparticles is (3-mercaptopropyl) It may contain at least one of methoxysilane (MPTES) and (3-aminopropyl)triethoxysilane (APTES).
  • MPTES methoxysilane
  • APTES 3-aminopropyl)triethoxysilane
  • the bottom of the ink bath is coated with a superhydrophobic material
  • the superhydrophobic material is dichlorodimethylsilane (DCDMS) and trichloro(1H,1H,2H,2H-perfluorooctyl). It may include one or more of silanes (FOTS).
  • the optical-based 3D printing process includes Digital Light Processing (DLP), Stereolithography Apparatus (SLA), Continuous Liquid Interface Production (CLIP), Computed Axial Lithography (CAL), Direct Laser Writing (DLW), E -It may include one or more processes selected from the group consisting of Beam Lithography (EBL) and Nanoimprint Lithography (NIL).
  • DLP Digital Light Processing
  • SLA Stereolithography Apparatus
  • CLIP Continuous Liquid Interface Production
  • CAL Computed Axial Lithography
  • DLW Direct Laser Writing
  • E -It may include one or more processes selected from the group consisting of Beam Lithography (EBL) and Nanoimprint Lithography (NIL).
  • the light-sensitive all-inorganic nanoparticle ink prepared according to the present invention is a photoreactive inorganic material-based ink applicable to an optical-based 3D printing process, and has an effect of manufacturing a three-dimensional structure having high functionality with a relatively simple process. .
  • the 3D structure printing method according to the present invention has the advantage of being able to simultaneously manufacture the height of the 3D structure from several tens of nanometers to several micrometers, and has an effect of maintaining the inherent physical properties of inorganic nanoparticles as ink materials.
  • TDD 1,3,4-thiadiazole-2,5-dithiol
  • 2 is a UV-Vis absorption spectrum of nanoparticles.
  • 2(a) shows 3,4-thiadiazole-2,5-dithiol (TDD), (NH 4 ) 2 MoS 4 and N-(trifluoromethylsulfonyloxy)-1,8-naphthalimide (IM-NIT) photoacid generator
  • 2(b) is a UV-Vis absorption spectrum of Au nanoparticles capped with an organic material and a photosensitive ligand (TDD, MoS 4 2- )
  • FIG. 2(c) is a UV-Vis absorption spectrum of , UV-Vis absorption spectra of organic and photosensitive ligand (TDD) capped CdTe nanoparticles.
  • FIG. 3 is an electron micrograph of nanoparticles capped with organic material and TDD.
  • Figure 3 (a) is a TEM image of Ag nanoparticles capped with an organic material
  • Figure 3 (b) is a TEM image of Au nanoparticles capped with an organic material
  • Figure 3 (c) is a TEM image of organic material capped Au nanoparticles.
  • FIG. 3(d) is a TEM image of PbSe nanoparticles capped with an organic material
  • FIG. 3(e) shows Fe 3 O 4 It is a TEM image of nanoparticles
  • FIG. 3(f) is a TEM image of ITO nanoparticles capped with an organic material.
  • Fig. 3(g) is a TEM image of Ag nanoparticles capped with TDD
  • Fig. 3(h) is a TEM image of Au nanoparticles capped with TDD
  • Fig. 3(i) shows a TEM image of TDD-capped Au nanoparticles.
  • FIG. 3(j) is a TEM image of TDD-capped PbSe nanoparticles
  • FIG. 3(k) shows TDD-capped Fe 3 O 4 It is a TEM image of nanoparticles
  • FIG. 3 (l) is a TEM image of ITO nanoparticles capped with TDD.
  • FIG. 4 is a ⁇ potential distribution graph and dynamic light scattering particle size analysis results.
  • Fig. 4(a) is a ⁇ potential distribution graph of nanoparticles capped with TDD
  • Fig. 4(b) is a photosensitive Ag nanoparticle (Ag nanoparticle capped with TDD) ink coupled with a photoacid generator.
  • FIG. 4(c) shows dynamic light scattering particle size analysis before/after UV exposure of light-sensitive Ag nanoparticles (Ag nanoparticles capped with TDD) coupled with a photoacid generator. This is the result.
  • 5 is an XRD pattern of nanoparticles capped with an organic material and TDD.
  • 5(a) is an XRD pattern of InP/ZnS (core/shell) nanoparticles capped with an organic material and TDD
  • FIG. 5(b) is an XRD pattern of Au nanoparticles capped with an organic material and TDD.
  • 5(c) is an XRD pattern of CdTe nanoparticles capped with an organic material and TDD
  • FIG. 5(d) is an XRD pattern of PbSe nanoparticles capped with an organic material and TDD
  • FIG. ) is an XRD pattern of Fe 3 O 4 nanoparticles capped with an organic material and TDD
  • (f) of FIG. 5 is an XRD pattern of ITO nanoparticles capped with an organic material and TDD.
  • FIG. 7 is a schematic diagram of a photograph of the optical 3D printer equipment used in the present invention and a 3D printing process based on a DLP method.
  • FIG. 8 is a photograph of water droplets applied on a glass substrate.
  • Figure 8 (a) is a picture of water droplets applied on a general glass substrate
  • Figure 8 (b) is a picture of water droplets applied on a glass substrate treated with O 2 plasma
  • Figure 8 (c) is trichloro ( 1H,1H,2H,2H-perfluorooctyl)silane (FOTS) is a photograph of water droplets applied on a coated glass substrate
  • FIG. 8 (d) is a (3-aminopropyl)triethoxysilane (APTES) coated glass substrate. This is a picture of a drop of water.
  • APTES (3-aminopropyl)triethoxysilane
  • FIG. 9 is a photograph of a PDMS ink bath according to an embodiment of the present invention.
  • FIG. 10 is a photograph of a two-dimensional patterning process sequence using a 3D printing process according to an embodiment of the present invention and a schematic diagram of a nanoparticle curing mechanism in the process.
  • FIG. 11 is an optical image photograph according to the result of parameter adjustment (nanoparticle concentration versus photoacid generator concentration) of light-sensitive all-inorganic nanoparticle ink.
  • FIG. 13 is a diameter graph for each curing condition corresponding to each structure shape of FIG. 12 .
  • 13(a) is a diameter graph for each curing condition of a triangular structure
  • FIG. 13(b) is a diameter graph for each curing condition for a rectangular structure
  • FIG. 13(c) is a diameter graph for each curing condition for a circular structure. It is a diameter graph
  • FIG. 13(d) is a diameter graph for each curing condition of the heart structure.
  • 14 is an SEM image of an electrode pattern, a 2D pattern, and a 3D structure patterned with photosensitive Ag nanoparticles.
  • 14(a) to 14(c) are SEM images of electrode patterns patterned with photosensitive Ag nanoparticles, and FIGS. 14(d) and 14(e) show photosensitive Ag nanoparticles.
  • 14(f) and 14(g) are SEM images of a 3-dimensional structure patterned with light-sensitive Ag nanoparticles.
  • 15 is an optical micrograph and TEM image of a structure fabricated with nanoparticle ink.
  • 15(a) and 15(d) are optical micrographs of structures fabricated with light-sensitive Ag nanoparticle ink
  • FIG. 15(b) shows optical micrographs of structures fabricated with light-sensitive Ag nanoparticle ink. It is a TEM image
  • FIG. 15(c) is a high-resolution TEM image of a structure fabricated with light-sensitive Ag nanoparticle ink.
  • 15(e) and 15(f) are SEM images of a structure fabricated with light-sensitive Ag nanoparticle ink
  • FIG. 15(g) is a SEM image of a CdTe nanoparticle structure.
  • (h) is an SEM image of the Au nanoparticle structure
  • (i) of FIG. 15 is a side SEM image of the Au structure.
  • 16 is an XRD pattern of Ag nanoparticles capped with an organic material and TDD, and photo-cured Ag nanoparticle patterns.
  • 17 is a graph of electrical conductivity according to temperature of a photo-cured Au nanoparticle structure.
  • 19 is a 3D image of a light-cured 3D Ag nanoparticle-based electronic circuit structure through an interferometry scattering microscope and a profile graph of the structure.
  • FIG. 20 is a SEM photograph of the structure corresponding to FIG. 19 .
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, order, or order of the corresponding component is not limited by the term.
  • One aspect of the present invention comprises the steps of preparing nanoparticles capped with an organic material; preparing a nanoparticle dispersion by dispersing the nanoparticles capped with the organic material in a non-polar solvent; preparing an inorganic ligand solution by dissolving an inorganic ligand in a polar solvent; obtaining nanoparticles capped with an inorganic ligand by stirring a mixture of the nanoparticle dispersion and the inorganic ligand solution; preparing an all-inorganic nanoparticle solution by dispersing the nanoparticles capped with the inorganic ligand in a polar solvent; and mixing the inorganic nanoparticle solution and a photoacid generator.
  • the manufacturing method of light-sensitive all-inorganic nanoparticle ink according to the present invention is characterized in that it is possible to manufacture light-reactive inorganic material-based ink that can be directly applied to an optical-based 3D printing process without adding an organic material.
  • the light-sensitive all-inorganic nanoparticle ink prepared according to the present invention can be directly applied to optical-based 3D printing processes such as digital light processing (DLP) and stereolithography (SLA), and thus has high functionality with a relatively simple process. There is an effect that can manufacture a three-dimensional structure based on inorganic nanoparticles having a.
  • DLP digital light processing
  • SLA stereolithography
  • the first step is to prepare nanoparticles capped with an organic material.
  • Nanoparticles capped with the organic material can be prepared by a conventionally known synthetic method.
  • all-inorganic nanoparticles are formed through a process of surface-treating nanoparticles surface-stabilized with an organic material or organic ligand immediately after synthesis.
  • the nanoparticle may include at least one selected from the group consisting of a semiconductor material, a magnetic material, a metal material, an oxide material, a magnetic alloy, or a multi-component hybrid structure material.
  • the nanoparticles are CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, GaN, GaP, GaAs, PbS, PbSe, PbTe, GaSb, AlN, AlP, AlAs, AlSb, InP, InP/ZnS (core/shell), InAs, InSb, SiC, Pt, Ni, Co, Al, ITO.
  • the organic material capping the nanoparticle surface is -COOH, -NH 2 , -(O)P(OH) 2 , -SH and R 3 N (where R is a C1 to C24 alkyl group or C5 to C20 aryl group) may include at least one functional group selected from the group consisting of.
  • This step is a step of preparing a nanoparticle dispersion by dispersing the prepared organic material-capped nanoparticles in a non-polar solvent.
  • the non-polar solvent is at least selected from the group consisting of N-hexane, pentane, cyclohexane, toluene and chloroform. may include either.
  • This step is a step of preparing an inorganic ligand solution by dissolving the inorganic ligand in a polar solvent.
  • the polar solvent is dimethyl ether (DME), tetrahydrofuran (THF), dimethylformamide (DMF), N-methylformamide (NMF), N,N-dimethylformamide (DMF) , It may include at least one selected from the group consisting of dimethyl sulfoxide (DMSO), ethylenediamine (En), formamide (FA), and dimethylacetamide.
  • DME dimethyl ether
  • THF tetrahydrofuran
  • DMF dimethylformamide
  • NMF N-methylformamide
  • DMF N,N-dimethylformamide
  • the inorganic ligands according to one embodiment, MoS 4 2- , Sn 2 S 6 4- , In 2 Se 4 2- , S 2- , Se 2- , Te 2- , SCN - , SnS 4 4- , SnTe 4 4- , AsS 3 3- , BF 4 - oxoanion, polyoxometalate, halide, halometalate and It may include at least one selected from the group consisting of polyphosphide (P x n- ).
  • the manufacturing method of the light-sensitive all-inorganic nanoparticle ink according to the present invention can implement various physical properties of the finally 3D printed 3D structure by selectively using nanoparticles and inorganic ligands, and through this, various fields It can be applied to material manufacturing technology.
  • This step is a step of obtaining nanoparticles capped with an inorganic ligand by stirring a mixture of a nanoparticle dispersion and an inorganic ligand solution.
  • the nanoparticle dispersion is a solution in which organic-capped nanoparticles are dispersed in a non-polar solvent
  • the inorganic ligand solution is a solution in which an inorganic ligand is dissolved in a polar solvent.
  • the mixture is a mixture of a non-polar solvent and a polar solvent, and nanoparticles capped with inorganic ligands are finally dispersed in the polar solvent as the ligand exchange process proceeds.
  • the mixture may be a one-phase mixture or a two-phase mixture, and upon stirring, an organic ligand present on the surface of the nanoparticle may be replaced with an inorganic ligand.
  • the mixture may be a one-phase mixture in which the nanoparticle dispersion and the inorganic ligand solution have similar polarities and are mixed with each other, for example, in a combination of toluene/DMF or toluene/NMF.
  • the mixture forms a two-phase mixture in which the nanoparticle dispersion and the inorganic ligand solution have different polarities so that the layers are separated, for example, toluene/N 2 H 4 or hexane/DMF.
  • organic ligands present on the surface of the nanoparticles in the non-polar nanoparticle dispersion present in the upper layer are replaced with a polar inorganic ligand solution present in the lower layer, accompanied by a phase transition process of the nanoparticles it could be
  • the non-polar solvent is at least selected from the group consisting of N-hexane, pentane, cyclohexane, toluene and chloroform. It includes any one, and the polar solvent is dimethyl ether (DME), tetrahydrofuran (THF), dimethylformamide (DMF), N-methylformamide (NMF), N,N-dimethylformamide (DMF) , Dimethyl sulfoxide (DMSO), ethylenediamine (En), formamide (FA), hydrazine (N 2 H 4 ) It may include at least one selected from the group consisting of and dimethylacetamide.
  • DME dimethyl ether
  • THF tetrahydrofuran
  • DMF dimethylformamide
  • NMF N-methylformamide
  • DMSO Dimethyl sulfoxide
  • En ethylenediamine
  • F formamide
  • hydrazine N 2 H 4
  • It may include at least
  • This step is a step of preparing an all-inorganic nanoparticle solution by dispersing nanoparticles capped with inorganic ligands prepared through the ligand exchange process in a polar solvent.
  • the polar solvent is acetonitrile (ACN), dimethyl ether (DME), tetrahydrofuran (THF), dimethylformamide (DMF), N-methylformamide (NMF), N,N- containing at least one selected from the group consisting of dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ethylenediamine (En), formamide (FA), hydrazine (N 2 H 4 ) and dimethylacetamide can
  • ACN acetonitrile
  • DME dimethyl ether
  • THF tetrahydrofuran
  • DMF dimethylformamide
  • NMF N-methylformamide
  • N,N- containing at least one selected from the group consisting of dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ethylenediamine (En), formamide (FA), hydrazine (N 2 H 4 ) and dimethylacetamide can
  • the polar solvent may be a co-solvent of methylformamide (NMF) and acetonitrile (ACN).
  • NMF methylformamide
  • ACN acetonitrile
  • This step is a step of finally preparing an all-inorganic nanoparticle ink by mixing the prepared all-inorganic nanoparticle solution, that is, a solution in which nanoparticles capped with inorganic ligands are dispersed, and a photoacid generator.
  • light sources of various wavelengths may be selectively used by selecting a photoacid generator, and the light source may not be limited.
  • the photoacid generator may generate protons (H + ) in response to light in a wavelength range of 200 nm to 500 nm.
  • the photoacid generator generates protons (H + ) in response to light, and the generated protons react with inorganic ligands bound to the surface of the nanoparticles or bind to basic surface sites on the surface of the nanoparticles to form nanoparticles. By neutralizing the surface charge of , it performs the function of inducing effective precipitation of all-inorganic nanoparticles in a polar solvent.
  • the photoacid generator may include an ionic photoacid generator, a nonionic photoacid generator, or both.
  • the ionic photoacid generator is at least one anion selected from the group consisting of SbF 6- , AsF 6- , BF 4- , C 4 F 9 SO 3- and CF 3 SO 3- It may contain.
  • the ionic photoacid generator includes at least one selected from the group consisting of diaryliodonium, triarylsulfonium, aryldiazonium, and triarylphosphonium salts
  • Warm photoacid generators include halogenated triazines, 2-nitrobenzyl esters of organic sulfonic acids, 4-nitrobenzyl esters of organic sulfonic acids, quinolones, N-hydroxyimide or N-hydroxyamide sulfonates, imino sulfonates. And it may include at least one selected from the group consisting of diazonaphthoquinone.
  • the inorganic nanoparticle solution and the photoacid generator may be mixed in a ratio of 1:0.5 to 1:3.
  • the desired form of photocuring may not be achieved due to the small amount of photoacid generator relative to the concentration of the nanoparticles, or too many photoacid generators may cause overcuring more than necessary, thereby reducing the resolution of the photocured nanoparticle structure.
  • Another aspect of the present invention provides an ink for 3D printing, including the light-sensitive all-inorganic nanoparticle ink prepared by the method for preparing the light-sensitive all-inorganic nanoparticle ink.
  • the ink for 3D printing according to the present invention forms all inorganic nanoparticles into basic building blocks through surface treatment of nanoparticles without adding conventional organic materials and then mixes them with a photoacid generator, thereby providing optical-based 3D printing. It can be applied immediately, and through this, it is possible to manufacture a plate-shaped 3D architecture.
  • Another aspect of the present invention the step of filling the ink for the 3D printing ink bath; and placing an upper substrate on the surface of the ink for 3D printing filled in the ink bath and then performing an optical 3D printing process to form a structure on the surface of the upper substrate.
  • the 3D structure printing method according to the present invention can easily manufacture a 3D nanoparticle architecture without expensive equipment and repetition of complicated processes necessary for conventional 2D nanoparticle patterning technology.
  • the upper substrate is not particularly limited, but may include at least one selected from the group consisting of silicon, metal, glass, ceramic, plastic film such as polyester or polyimide, rubber sheet, fiber, wood, and paper. there is.
  • the 3D structure printing method according to the present invention has the advantage of simultaneously fabricating nanoparticle architectures having various sizes in a large area on a desired substrate without limitation of a specific substrate, and does not require expensive equipment and complicated manufacturing steps, so it is time consuming. and cost can be drastically reduced.
  • a self-assembly monolayer may be formed on the surface of the upper substrate.
  • a functional group capable of inducing bonding with the nanoparticles is introduced to the surface so that the nanoparticle structure formed through 3D printing can be stably attached.
  • the self-assembled monolayer may be formed by coating a substrate surface with a compound capable of inducing bonding with nanoparticles, and self-assembling the coated compound.
  • the surface of the substrate is coated with a compound capable of inducing bonding with the nanoparticles, and the compound capable of inducing bonding with the nanoparticles is (3-mercaptopropyl) It may contain at least one of methoxysilane (MPTES) and (3-aminopropyl)triethoxysilane (APTES).
  • MPTES methoxysilane
  • APTES 3-aminopropyl)triethoxysilane
  • the coating is, spin coating, drop casting, dip coating, roll coating, screen coating, spray coating ), spin casting, flow coating, screen printing and ink jet printing, and roll-to-roll at least selected from the group consisting of It may include any one.
  • the bottom of the ink bath is coated with a superhydrophobic material
  • the superhydrophobic material is dichlorodimethylsilane (DCDMS) and trichloro(1H,1H,2H,2H-perfluorooctyl). It may include one or more of silanes (FOTS).
  • the optical-based 3D printing process includes Digital Light Processing (DLP), Stereolithography Apparatus (SLA), Continuous Liquid Interface Production (CLIP), Computed Axial Lithography (CAL), Direct Laser Writing (DLW), E -It may include one or more processes selected from the group consisting of Beam Lithography (EBL) and Nanoimprint Lithography (NIL).
  • DLP Digital Light Processing
  • SLA Stereolithography Apparatus
  • CLIP Continuous Liquid Interface Production
  • CAL Computed Axial Lithography
  • DLW Direct Laser Writing
  • E -It may include one or more processes selected from the group consisting of Beam Lithography (EBL) and Nanoimprint Lithography (NIL).
  • the 3D structure printing method according to the present invention uses an optical-based 3D printing process, so that it is possible to manufacture a 2D pattern and a 3D architecture or structure even with a complex digital 2D image produced by a computer without restrictions on the shape.
  • Ammonium tetrathiomolybdate (ATTM, 99.97%, Aldrich), 2,5-dimercapto-1,3,4-thiadiazole (TDD, >95%, TCI), N-(trifluoromethylsulfonyl) Oxy)-1,8-naphthalimide (IM-NIT, WIMAS Corp.), (3-aminopropyl)triethoxysilane (APTES, 99%, Aldrich), trichloro (1H,1H,2H,2H -perfluorooctyl)silane (FOTS, 97%, Aldrich), silver nitrate (ACS reagent, 99%.
  • Organic-capped nanoparticles were prepared according to the same experimental procedure reported previously.
  • the synthesized Ag nanoparticles were diluted with additional hexane to make a solution with a total volume of 15 mL and precipitated by adding 22.5 mL of methanol and centrifuging (7500 rpm for 5 min). The precipitate was dispersed in hexane and then centrifuged on its own without anti-solvent.
  • Au nanoparticles with a size of 6 nm were synthesized with minor modifications based on the literature reported by Zhu et al. When 0.2 g of HAuCl 4 was dissolved in 20 mL of tetralin and OAm mixture (1:1 v/v ratio), the temperature was maintained at room temperature under N2 atmosphere.
  • CdTe nanoparticles with a size of 4.5 nm were synthesized according to the literature reported by Zhang et al., with minor modifications. In the washing step, absolute ethanol was used only to precipitate the nanoparticles.
  • 8.0 nm PbSe nanoparticles were synthesized by slightly modifying the method reported by Yu et al. All synthesis steps were performed under inert gas conditions. Lead oxide (4 mmol, 0.892 g), oleic acid (10 mmol, 3.184 ml) and 1-odctadecene (15.167 ml) were mixed in 100 ml of RB. The mixture was degassed at room temperature for 1 hour to remove impurities.
  • Fe(acac) 3 (2 mmol, 0.7063 g) was prepared from 1,2-hexadecanediol (10 mmol, 2.5844 g) in phenyl ether (20 mL), oleic acid (6 mmol, 1.91 mL) and 100 ml RB. It was mixed with oleylamine (6 mmol, 1.974 mL) under N 2 conditions.
  • the brown-black mixture was cooled to room temperature by removing the heating mantle.
  • These final products were treated with 40 mL of ethanol and centrifuged at 6000 rpm for 10 minutes.
  • the black precipitate was redispersed in 10 mL of hexane and further centrifuged to remove undispersed residue (10 min, 6000 rpm).
  • the Fe 3 O 4 nanoparticles were reprecipitated with ethanol (1:2 v/v), centrifuged (10 min, 6000 rpm) to remove unwanted impurities, and finally dispersed in hexane (30 mg/ml). .
  • InP@ZnS nanoparticles were prepared by Tessier et al. It was synthesized based on the literature reported by.
  • a photochemically active nanoparticle ink was prepared from a combination of a photoacid generator (PAG) and total inorganic nanoparticles. All inorganic nanoparticles were obtained by ligand exchange with inorganic ligands. To prevent contact with oxygen or H 2 O molecules and UV exposure, all preparations were performed in a glove box filled with N 2 inert gas and equipped with a yellow UV-blocking film.
  • PAG photoacid generator
  • the organic-covered nanoparticle surfaces were treated using a conventional two-phase ligand exchange method.
  • the concentration of the MoS 4 2- ligand capped on the Ag nanoparticles is preferably about 100 to 300 mg/ml, which is as high as possible.
  • the glass was 0.1 mm thick in a 18 mm x 18 mm (L x W) square for the top substrate and 0.1 mm thick in a 50 mm x 50 mm (L x W) square for the bottom substrate. All glass was pre-cleaned with CHCl 3 , acetone and IPA, respectively, by sonicating for 2 min before SAM coating.
  • the O 2 plasma-treated glass was placed in an airtight container to fabricate the SAM-treated upper substrate with APTES.
  • the petri dish filled with 10 mL of toluene containing 0.18 mL of APTES (2 wt% APTES solution) was placed together and kept closed for 4 hours. Then, the SAM-treated glass was heated on a hot plate for 30 minutes at 100 heated with
  • the petri dish was filled with 5 mL of hexane containing 25 ⁇ l of FOTS (200:1 v/v ratio), and kept closed for 1 hour and 20 minutes. After SAM coating, the glass was heated at 120 °C for 20 min. heated with
  • Microstructural characterization was performed using a Nova-NanoSEM230, an FEI scanning electron microscope (SEM) operating at 10 kV. Transmission electron microscopy (TEM) images of the nanoparticles were acquired using a JEM-2100F microscope (JEOL) operating voltage at 200 kV.
  • SEM FEI scanning electron microscope
  • TEM Transmission electron microscopy
  • TEM specimens for nanoparticles dispersed in non-polar and polar solvents were prepared by drop casting the nanoparticle solution onto carbon-coated copper TEM grids and completely dried in a vacuum chamber.
  • UV-Vis absorption spectra of nanoparticle solutions were collected at room temperature (RT) using a Shimadzu UV-2600 spectrophotometer.
  • Fourier transform infrared spectroscopy (FT-IR) spectra were acquired using a 670/620 Varian FT-IR spectrometer in attenuated total internal reflection (ATR) mode.
  • High-power x-ray diffraction (HPXRD) patterns were obtained using a high-power diffractometer (Rigaku, D/Max2500V/PC diffractometer) equipped with a Cu rotating anode X-ray source at RT.
  • ⁇ -potential data were obtained using a Zetasizer instrument (Malvern, Nano-ZS90).
  • DLP (Visiotech, Luxbeam Rapid System) equipment can expose 365 nm wavelengths in an area of up to 5 mm x 3 mm, with a maximum output of 4 W and a resolution of 2 ⁇ m x 2 ⁇ m.
  • Lamination was performed by exposing the sliced images on a stage using Visual Studio, a g-code based software.
  • the Z-stage (Linax, Lxc) was adjustable from 30 mm to 100 nm, and the exposed light was controlled by a shutter (Uniblitz, VED24).
  • Optical images were acquired using an optical microscope (Nikon, Eclipse Ti) and an attached CCD camera (Andor, Zyla).
  • the water contact angle was measured using a KRUSS DSA100 goniometer. A water droplet with a volume of about 5 ⁇ L was placed on a glass substrate coated with a functional polymer. Static contact angles across the droplets ( ) was measured at least 6 times.
  • Interferometric scattering microscopy images and corresponding random profile data were collected using a 3D surface profiler instrument (Nanosystem, NV-3000).
  • TDD 1,3,4-thiadiazole-2,5-dithiol
  • FIG. 2(a) shows 3,4-thiadiazole-2,5-dithiol (TDD), (NH 4 ) 2 MoS 4 and N-(trifluoromethylsulfonyloxy)-1,8-naphthalimide (IM-NIT) photoacid generator 2(b) is a UV-Vis absorption spectrum of Au nanoparticles capped with an organic material and a photosensitive ligand (TDD, MoS 4 2- ), and FIG. 2(c) is a UV-Vis absorption spectrum of , UV-Vis absorption spectra of organic and photosensitive ligand (TDD) capped CdTe nanoparticles.
  • TDD 3,4-thiadiazole-2,5-dithiol
  • IM-NIT N-(trifluoromethylsulfonyloxy)-1,8-naphthalimide
  • 3 is an electron micrograph of nanoparticles capped with organic material and TDD.
  • Figure 3 (a) is a TEM image of Ag nanoparticles capped with an organic material
  • Figure 3 (b) is a TEM image of Au nanoparticles capped with an organic material
  • Figure 3 (c) is a TEM image of organic material capped Au nanoparticles.
  • FIG. 3(d) is a TEM image of PbSe nanoparticles capped with an organic material
  • FIG. 3(e) shows Fe 3 O 4 It is a TEM image of nanoparticles
  • FIG. 3(f) is a TEM image of ITO nanoparticles capped with an organic material.
  • Fig. 3(g) is a TEM image of Ag nanoparticles capped with TDD
  • Fig. 3(h) is a TEM image of Au nanoparticles capped with TDD
  • Fig. 3(i) shows a TEM image of TDD-capped Au nanoparticles.
  • FIG. 3(j) is a TEM image of TDD-capped PbSe nanoparticles
  • FIG. 3(k) shows TDD-capped Fe 3 O 4 It is a TEM image of nanoparticles
  • FIG. 3 (l) is a TEM image of ITO nanoparticles capped with TDD.
  • Fig. 4(a) is a ⁇ potential distribution graph of nanoparticles capped with TDD
  • Fig. 4(b) is a photosensitive Ag nanoparticle (Ag nanoparticle capped with TDD) ink coupled with a photoacid generator.
  • FIG. 4(c) shows dynamic light scattering particle size analysis before/after UV exposure of light-sensitive Ag nanoparticles (Ag nanoparticles capped with TDD) coupled with a photoacid generator. This is the result.
  • the light-sensitive nanoparticle ink in which the photoacid generator is mixed loses its surface negative charge and is effectively precipitated by light of a specific UV wavelength.
  • 5 is an XRD pattern of nanoparticles capped with an organic material and TDD.
  • 5(a) is an XRD pattern of InP/ZnS (core/shell) nanoparticles capped with an organic material and TDD
  • FIG. 5(b) is an XRD pattern of Au nanoparticles capped with an organic material and TDD
  • 5(c) is an XRD pattern of CdTe nanoparticles capped with an organic material and TDD
  • FIG. 5(d) is an XRD pattern of PbSe nanoparticles capped with an organic material and TDD
  • FIG. ) is an XRD pattern of Fe 3 O 4 nanoparticles capped with an organic material and TDD
  • (f) of FIG. 5 is an XRD pattern of ITO nanoparticles capped with an organic material and TDD.
  • Rhodamine B can exist in two forms: “closed” and “open” forms. In basic conditions, it is colorless and non-fluorescent, but in acidic conditions, it is transformed into a fluorescent ring-opening chemical structure, showing a bright pink color.
  • IM-NIT and rhodamine B dissolved in ACN not only showed a noticeable color change from colorless to bright pink when exposed to UV light, but also showed a significant change in the absorption peak originating from the fluorescent chemical structure after UV irradiation. formation was shown.
  • FIG. 7 is a schematic diagram of a 3D printing process based on a photograph of the optical 3D printer equipment used in the present invention and a DLP method.
  • 8(a) to 8(d) are photographs of water droplets applied on a glass substrate.
  • Figure 8 (a) is a picture of water droplets applied on a general glass substrate
  • Figure 8 (b) is a picture of water droplets applied on a glass substrate treated with O 2 plasma
  • Figure 8 (c) is trichloro ( 1H,1H,2H,2H-perfluorooctyl)silane (FOTS) is a photograph of water droplets applied on a coated glass substrate
  • FIG. 8 (d) is a (3-aminopropyl)triethoxysilane (APTES) coated glass substrate. This is a picture of a drop of water.
  • FIG. 9 is a photograph of a PDMS ink bath according to an embodiment of the present invention.
  • FIG. 10 is a photograph of a two-dimensional patterning process sequence using a 3D printing process according to an embodiment of the present invention and a schematic diagram of a nanoparticle curing mechanism in the process.
  • a patterned ultraviolet light having a wavelength of 365 nm is irradiated only to a specific area to an area where light-sensitive all-inorganic nanoparticle ink is widely applied, effective precipitation of nanoparticles occurs in the area, which is previously dispersed. It can be confirmed that the nanoparticle structure is not redispersed in the solution and a nanoparticle structure consistent with the patterned light is formed. That is, a two-dimensional pattern can be obtained by performing this only once, and a stacked three-dimensional structure can be obtained by repeating this several times through a 3D printing process.
  • FIG. 11 is an optical image photograph according to the result of parameter adjustment (nanoparticle concentration versus photoacid generator concentration) of light-sensitive all-inorganic nanoparticle ink.
  • FIG. 13 is a diameter graph for each curing condition corresponding to each structure shape of FIG. 12 .
  • FIG. 13(a) is a diameter graph for each curing condition of a triangular structure
  • FIG. 13(b) is a diameter graph for each curing condition for a rectangular structure
  • FIG. 13(c) is a diameter graph for each curing condition for a circular structure. It is a diameter graph
  • FIG. 13(d) is a diameter graph for each curing condition of the heart structure.
  • FIG. 14 is an SEM image of an electrode pattern, a 2D pattern, and a 3D structure patterned with photosensitive Ag nanoparticles.
  • FIGS. 14(d) and 14(e) show photosensitive Ag nanoparticles.
  • 14(f) and 14(g) are SEM images of a 3-dimensional structure patterned with light-sensitive Ag nanoparticles.
  • FIG. 15(a) and 15(d) are optical micrographs of structures fabricated with light-sensitive Ag nanoparticle ink
  • FIG. 15(b) shows optical micrographs of structures fabricated with light-sensitive Ag nanoparticle ink. It is a TEM image
  • FIG. 15(c) is a high-resolution TEM image of a structure fabricated with light-sensitive Ag nanoparticle ink.
  • FIG. 15(e) and 15(f) are SEM images of a structure fabricated with light-sensitive Ag nanoparticle ink
  • FIG. 15(g) is a SEM image of a CdTe nanoparticle structure
  • (h) is a SEM image of the Au nanoparticle structure
  • (i) of FIG. 15 is a side SEM image of the Au structure.
  • the structure formed is based on the nanoparticle building blocks without collapse of the nanoparticles, and the structure formed through the enlarged SEM image shows that the nanoparticles are well stacked at a very high density. You can check.
  • 16 is an XRD pattern of Ag nanoparticles capped with an organic material and TDD, and photo-cured Ag nanoparticle patterns.
  • 17 is a graph of electrical conductivity according to temperature of a photo-cured Au nanoparticle structure.
  • 3D pyramid architectures of various shapes can be easily manufactured through the optical-based plate-like 3D architecture printing technology according to the present invention.
  • 19 is a 3D image of a light-cured 3D Ag nanoparticle-based electronic circuit structure through an interferometry scattering microscope and a profile graph of the structure.
  • the 3D structure printing method according to the present invention can manufacture even a complex 3D architecture having a thickness difference of 100 nm at once.
  • FIG. 20 is a SEM photograph of the structure corresponding to FIG. 19 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

The present invention relates to a method for manufacturing a light-sensitive all-inorganic nanoparticle ink and a 3-dimensional structure printing method using same. An aspect of the present invention provides a method for manufacturing a light-sensitive all-inorganic nanoparticle ink, comprising the steps of: preparing nanoparticles capped with an organic material; preparing a nanoparticle dispersion by dispersing the nanoparticles capped with the organic material in a non-polar solvent; preparing an inorganic ligand solution by dissolving an inorganic ligand in a polar solvent; obtaining nanoparticles capped with an inorganic ligand by stirring a mixture in which the nanoparticle dispersion is mixed with the inorganic ligand solution; preparing an all-inorganic nanoparticle solution by dispersing the nanoparticles capped with the inorganic ligand in a polar solvent; and mixing the inorganic nanoparticle solution and a photoacid generator.

Description

광 감응 전-무기 나노입자 잉크의 제조방법 및 이를 사용한 3차원 구조체 프린팅 방법Manufacturing method of light-sensitive all-inorganic nanoparticle ink and 3D structure printing method using the same
본 발명은 광 감응 전-무기 나노입자 잉크의 제조방법 및 이를 사용한 3차원 구조체 프린팅 방법에 관한 것이다.The present invention relates to a method for preparing a light-sensitive all-inorganic nanoparticle ink and a method for printing a three-dimensional structure using the same.
3 차원 적층 프린팅 기술은 기존 2차원 패터닝 공정의 한계를 뛰어 넘는 4차 산업 혁명의 핵심기술로서, 기술의 우수성 때문에 산업 뿐만 아니라 학문 분야까지 상당한 관심을 받고 있는 기술이다. 3D additive printing technology is a key technology of the 4th industrial revolution that goes beyond the limits of the existing 2D patterning process.
3차원 적층 프린팅 기술은 해당 소재의 형태 변화에 따라, 융합수지압출적층조형 (Fused Filament Fabrication), 선택적 레이저소결조형 (Selective Laser Sintering), 광경화수지조형 (Stereo Lithography Apparatus)의 3가지 형태로 크게 구분 지을 수 있으며, 이외에도 응용 목적에 따라 다양한 형태의 3차원 적층 프린팅 기술이 개발되고 있다.3D additive printing technology is largely divided into three types: Fused Filament Fabrication, Selective Laser Sintering, and Stereo Lithography Apparatus, depending on the shape change of the material. In addition, various types of 3D additive printing technologies are being developed according to the purpose of application.
그 중에서도 Digital Light Processing (DLP) 와 Stereolithography (SLA) 등의 광학 기반 3차원 프린팅 기술은, 간단하고 빠르게 복잡한 형상을 초고해상도 수준으로 제작할 수 있어 커다란 잠재력을 가지고 있는 기술이며, 마이크로 단위의 전자, 광전자, 에너지 소자 제작 및 메타표면구조 제작 등 다양한 응용 분야에 쓰일 수 있다. 더 나아가 현재 광범위하게 쓰이고 있는 마이크로 미세전자기계시스템 (Micro Electron Mechanical System, MEMS) 공정까지도 대체 가능할 것으로 기대되고 있다. Among them, optical-based 3D printing technologies such as Digital Light Processing (DLP) and Stereolithography (SLA) are technologies that have great potential as they can simply and quickly produce complex shapes at ultra-high resolution, and are , it can be used in various application fields such as energy device fabrication and metasurface structure fabrication. Furthermore, it is expected that it will be able to replace even the Micro Electron Mechanical System (MEMS) process that is currently widely used.
다만, 이와 같이 다분야에 적용되기 위해서는, 각 응용분야에 적합하며 광학 기반의 3차원 프린팅이 가능한 다양한 무기물 소재군의 개발 및 확장이 필수로 선행되어야 한다.However, in order to be applied to various fields as described above, development and expansion of various inorganic material groups suitable for each application field and capable of optical-based 3D printing must be preceded.
한편, 종래 2차원 패터닝 공정을 바탕으로 하는 3차원 구조체 제조 공정은 특수 제작된 이차원 마스크 또는 몰드를 사용하고, 고 진공 상태에서의 해당 물질 증착, 포토리소그래피 및 식각 공정 등을 수차례 반복하는 등 고비용의 복잡하고 시간 소요가 많은 다공정을 수반하기 때문에 손쉽게 3차원 구조체를 제조하기 힘들다는 단점이 있다.On the other hand, the 3D structure manufacturing process based on the conventional 2D patterning process uses a specially manufactured 2D mask or mold, and requires high cost such as repeating the material deposition, photolithography, and etching processes in a high vacuum state several times. It has a disadvantage in that it is difficult to easily manufacture a three-dimensional structure because it involves complex and time-consuming multi-processes.
광학 기반 3차원 프린팅 기술은 상대적으로 훨씬 짧은 시간에 간단한 방식으로 손쉽게 복잡한 3차원 구조체를 제조할 수 있으나, 현재까지는 프린팅 가능한 물질군이 대부분 유기물 기반의 광경화성 폴리머 레진 또는 무기물 충전제와 광경화성 폴리머 복합체 등에 한정되어 있어 무기물 소재에 비해 물성이 현저히 떨어지기 때문에 고기능성이 요구되는 전자, 에너지 분야 등에 적용되기에 한계가 있다.Optical-based 3D printing technology can easily manufacture complex 3D structures in a relatively short time and in a simple manner, but until now, most of the printable material groups are organic-based photocurable polymer resins or composites of inorganic fillers and photocurable polymers. Since it is limited to inorganic materials and its physical properties are significantly lower than those of inorganic materials, there is a limit to its application to electronics and energy fields that require high functionality.
따라서, 광학 기반 3차원 프린팅 기술에 적용가능하며 3차원 구조체의 물성 확보 및 고기능성 구현이 가능한 새로운 소재의 개발이 필요하다. Therefore, it is necessary to develop a new material that can be applied to optical-based 3D printing technology and can secure physical properties of a 3D structure and implement high functionality.
전술한 배경기술은 발명자가 본원의 개시 내용을 도출하는 과정에서 보유하거나 습득한 것으로서, 반드시 본 출원 전에 일반 공중에 공개된 공지기술이라고 할 수는 없다.The above background art is possessed or acquired by the inventor in the process of deriving the disclosure of the present application, and cannot necessarily be said to be known art disclosed to the general public prior to the present application.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 광학 기반 3차원 프린팅 기술에 적용가능하며, 다분야 응용에 적합한 고기능성 3차원 구조체를 제조할 수 있는, 광 감응 전-무기 나노입자 잉크의 제조방법을 제공하는 것이다.The present invention is to solve the above problems, and an object of the present invention is to manufacture a light-sensitive all-inorganic, applicable to optical-based 3D printing technology and capable of producing a highly functional 3D structure suitable for multi-field applications. It is to provide a method for preparing nanoparticle ink.
본 발명의 다른 목적은, 광 감응 전-무기 나노입자 잉크를 포함하는 3D 프린팅용 잉크를 사용한 3차원 구조체 프린팅 방법을 제공하는 것이다.Another object of the present invention is to provide a method for printing a 3D structure using a 3D printing ink including a light-sensitive all-inorganic nanoparticle ink.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 분야 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present invention is not limited to those mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
본 발명의 일 측면은, 유기물로 캡핑된 나노입자를 준비하는 단계; 상기 유기물로 캡핑된 나노입자를 무극성 용매에 분산시켜 나노입자 분산액을 제조하는 단계; 무기 리간드를 극성 용매에 용해하여 무기 리간드 용액을 제조하는 단계; 상기 나노입자 분산액 및 상기 무기 리간드 용액을 혼합한 혼합물을 교반하여 무기 리간드로 캡핑된 나노입자를 얻는 단계; 상기 무기 리간드로 캡핑된 나노입자를 극성 용매에 분산시켜 전-무기 나노입자 용액을 제조하는 단계; 및 상기 무기 나노입자 용액 및 광산 생성제(photoacid generator)를 혼합하는 단계;를 포함하는, 광 감응 전-무기 나노입자 잉크의 제조방법을 제공한다.One aspect of the present invention comprises the steps of preparing nanoparticles capped with an organic material; preparing a nanoparticle dispersion by dispersing the nanoparticles capped with the organic material in a non-polar solvent; preparing an inorganic ligand solution by dissolving an inorganic ligand in a polar solvent; obtaining nanoparticles capped with an inorganic ligand by stirring a mixture of the nanoparticle dispersion and the inorganic ligand solution; preparing an all-inorganic nanoparticle solution by dispersing the nanoparticles capped with the inorganic ligand in a polar solvent; and mixing the inorganic nanoparticle solution and a photoacid generator.
일 실시형태에 따르면, 상기 나노입자는, 반도체 물질, 자성 물질, 금속 물질, 산화 물질, 자성 합금 또는 다성분 혼성 구조체 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.According to one embodiment, the nanoparticle may include at least one selected from the group consisting of a semiconductor material, a magnetic material, a metal material, an oxide material, a magnetic alloy, or a multi-component hybrid structure material.
일 실시형태에 따르면, 상기 나노입자는, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, GaN, GaP, GaAs, PbS, PbSe, PbTe, GaSb, AlN, AlP, AlAs, AlSb, InP, InP/ZnS(코어/쉘), InAs, InSb, SiC, Pt, Ni, Co, Al, ITO. SnO2, Ag, Au, Cu, FePt, Fe2O3, Fe3O4, Ge, (NaYF4:Yb3+,Er3+), (NaYF4:Yb3+,Tm3+), (NaGdF4:Yb3+,Er3+), (NaYF4:Yb3+,Er3+/NaGdF4) 및 (NaGdF4:Yb3+,Er3+/NaGdF4)로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.According to one embodiment, the nanoparticles are CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, GaN, GaP, GaAs, PbS, PbSe, PbTe, GaSb, AlN, AlP, AlAs, AlSb, InP, InP/ZnS (core/shell), InAs, InSb, SiC, Pt, Ni, Co, Al, ITO. SnO 2 , Ag, Au, Cu, FePt, Fe 2 O 3 , Fe 3 O 4 , Ge, (NaYF 4 :Yb 3+ ,Er 3+ ), (NaYF 4 :Yb 3+ ,Tm 3+ ), ( NaGdF 4 :Yb 3+ ,Er 3+ ), (NaYF 4 :Yb 3+ ,Er 3+ /NaGdF 4 ) and (NaGdF 4 :Yb 3+ ,Er 3+ /NaGdF 4 ). It may include any one.
일 실시형태에 따르면, 상기 무기 리간드는, MoS4 2-, Sn2S6 4-, In2Se4 2-, S2-, Se2-, Te2-, SCN-, SnS4 4-, SnTe4 4-, AsS3 3-, BF4 - 산소산음이온(oxoanion), 폴리옥소메탈레이트(polyoxometalate), 할라이드(halide), 할로메탈레이트(halometalate) 및 폴리포스파이드(Px n-)로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.According to one embodiment, the inorganic ligand is MoS 4 2- , Sn 2 S 6 4- , In 2 Se 4 2- , S 2- , Se 2- , Te 2- , SCN - , SnS 4 4- , SnTe 4 4- , AsS 3 3- , BF 4 - composed of oxoanion, polyoxometalate, halide, halometalate and polyphosphide (P x n- ) It may include at least one selected from the group.
일 실시형태에 따르면, 상기 혼합물은, 1상 혼합물 또는 2상 혼합물이고, 상기 교반 시, 상기 나노입자 표면에 존재하는 유기 리간드가 무기 리간드로 치환되는 것일 수 있다.According to one embodiment, the mixture may be a one-phase mixture or a two-phase mixture, and upon stirring, an organic ligand present on the surface of the nanoparticle may be replaced with an inorganic ligand.
일 실시형태에 따르면, 상기 무극성 용매는, N-헥세인 (N-hexane), 펜테인 (pentane), 사이클로헥세인 (cyclohexane), 톨루엔(Toluene) 및 클로로포름(Chloroform)으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고, 상기 극성 용매는, 디메틸에테르(DME), 테트라히드로푸란(THF), 디메틸포름아미드(DMF), N-메틸포름아미드(NMF), N,N-디메틸포름아미드(DMF), 디메틸설폭사이드(DMSO), 에틸렌디아민(En), 포름아미드(FA), 하이드라진(N2H4) 및 디메틸아세트아미드로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.According to one embodiment, the non-polar solvent is at least selected from the group consisting of N-hexane, pentane, cyclohexane, toluene and chloroform. It includes any one, and the polar solvent is dimethyl ether (DME), tetrahydrofuran (THF), dimethylformamide (DMF), N-methylformamide (NMF), N,N-dimethylformamide (DMF) , Dimethyl sulfoxide (DMSO), ethylenediamine (En), formamide (FA), hydrazine (N 2 H 4 ) It may include at least one selected from the group consisting of and dimethylacetamide.
일 실시형태에 따르면, 상기 광산 생성제는, 200 nm 내지 500 nm의 파장영역에서 빛에 반응하여 양성자(H+)을 생성하는 것일 수 있다.According to one embodiment, the photoacid generator may generate protons (H + ) in response to light in a wavelength range of 200 nm to 500 nm.
일 실시형태에 따르면, 상기 광산 생성제는, 이온성 광산 생성제, 비이온성 광산 생성제 또는 이 둘;을 포함하는 것일 수 있다.According to one embodiment, the photoacid generator may include an ionic photoacid generator, a nonionic photoacid generator, or both.
일 실시형태에 따르면, 상기 이온성 광산 생성제는, SbF6-, AsF6-, BF4-, C4F9SO3- 및 CF3SO3-로 이루어진 군에서 선택되는 적어도 어느 하나의 음이온을 포함하는 것일 수 있다.According to one embodiment, the ionic photoacid generator is at least one anion selected from the group consisting of SbF 6- , AsF 6- , BF 4- , C 4 F 9 SO 3- and CF 3 SO 3- It may contain.
일 실시형태에 따르면, 상기 이온성 광산 생성제는, 디아릴요오도늄, 트리아릴술포늄, 아릴디아조늄 및 트리아릴포스포늄염으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것이고, 상기 비이온성 광산 생성제는, 할로겐화 트리아진, 유기 설폰산의 2-니트로벤질 에스테르, 유기 설폰산의 4-니트로벤질 에스테르, 퀴놀론, N-하이드록시이미드 또는 N-하이드록시아미드 설포네이트, 이미노 설포네이트 및 디아조나프토퀴논으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.According to one embodiment, the ionic photoacid generator includes at least one selected from the group consisting of diaryliodonium, triarylsulfonium, aryldiazonium, and triarylphosphonium salts, Warm photoacid generators include halogenated triazines, 2-nitrobenzyl esters of organic sulfonic acids, 4-nitrobenzyl esters of organic sulfonic acids, quinolones, N-hydroxyimide or N-hydroxyamide sulfonates, imino sulfonates. And it may include at least one selected from the group consisting of diazonaphthoquinone.
일 실시형태에 따르면, 상기 무기 나노입자 용액 및 광산 생성제(photoacid generator)는, 1: 0.5 내지 1 : 3 비율로 혼합하는 것일 수 있다.According to one embodiment, the inorganic nanoparticle solution and the photoacid generator may be mixed in a ratio of 1:0.5 to 1:3.
본 발명의 다른 측면은, 상기 광 감응 전-무기 나노입자 잉크의 제조방법으로 제조된, 광 감응 전-무기 나노입자 잉크를 포함하는, 3D 프린팅용 잉크를 제공한다.Another aspect of the present invention provides an ink for 3D printing, including the light-sensitive all-inorganic nanoparticle ink prepared by the method for preparing the light-sensitive all-inorganic nanoparticle ink.
본 발명의 또 다른 측면은, 상기 3D 프린팅용 잉크를 잉크 배스에 채우는 단계; 및 상기 잉크 배스에 채워진 3D 프린팅용 잉크 표면에 상부 기판을 위치시킨 뒤, 광학 기반 3D 프린팅 공정을 수행하여 상기 상부 기판 표면에 구조체를 형성시키는 단계;를 포함하는, 3차원 구조체 프린팅 방법을 제공한다.Another aspect of the present invention, the step of filling the ink for the 3D printing ink bath; and placing an upper substrate on the surface of the ink for 3D printing filled in the ink bath and then performing an optical 3D printing process to form a structure on the surface of the upper substrate. .
일 실시형태에 따르면, 상기 상부 기판의 표면에는, 자기조립 단분자막(Self-assembly monolayer)이 형성된 것일 수 있다.According to one embodiment, a self-assembly monolayer may be formed on the surface of the upper substrate.
일 실시형태에 따르면, 상기 기판의 표면은, 나노입자와의 결합을 유도할 수 있는 화합물로 코팅되는 것이고, 상기 나노입자와의 결합을 유도할 수 있는 화합물은, (3-메르캅토프로필)트리메톡시실란(MPTES) 및 (3-아미노프로필)트리에톡시실란(APTES) 중 하나 이상을 포함하는 것일 수 있다.According to one embodiment, the surface of the substrate is coated with a compound capable of inducing bonding with the nanoparticles, and the compound capable of inducing bonding with the nanoparticles is (3-mercaptopropyl) It may contain at least one of methoxysilane (MPTES) and (3-aminopropyl)triethoxysilane (APTES).
일 실시형태에 따르면, 상기 잉크 배스의 바닥은, 초소수성 물질로 코팅되는 것이고, 상기 초소수성 물질은, 디클로로디메틸실란(DCDMS) 및 트리클로로(1H,1H,2H,2H-퍼플루오로옥틸)실란(FOTS) 중 하나 이상을 포함하는 것일 수 있다.According to one embodiment, the bottom of the ink bath is coated with a superhydrophobic material, and the superhydrophobic material is dichlorodimethylsilane (DCDMS) and trichloro(1H,1H,2H,2H-perfluorooctyl). It may include one or more of silanes (FOTS).
일 실시형태에 따르면, 상기 광학 기반 3D 프린팅 공정은, Digital Light Processing (DLP), Stereolithography Apparatus (SLA), Continuous Liquid Interface Production (CLIP), Computed Axial Lithography (CAL), Direct Laser Writing (DLW), E-Beam Lithography (EBL) 및 Nanoimprint Lithography (NIL)로 이루어진 군에서 선택되는 하나 이상의 공정을 포함하는 것일 수 있다.According to one embodiment, the optical-based 3D printing process includes Digital Light Processing (DLP), Stereolithography Apparatus (SLA), Continuous Liquid Interface Production (CLIP), Computed Axial Lithography (CAL), Direct Laser Writing (DLW), E -It may include one or more processes selected from the group consisting of Beam Lithography (EBL) and Nanoimprint Lithography (NIL).
본 발명에 따라 제조된 광 감응 전-무기 나노입자 잉크는, 광학 기반 3D 프린팅 공정에 적용 가능한 광반응성 무기물 기반 잉크로, 비교적 단순한 공정으로 고기능성을 갖는 3차원 구조체를 제조할 수 있는 효과가 있다. The light-sensitive all-inorganic nanoparticle ink prepared according to the present invention is a photoreactive inorganic material-based ink applicable to an optical-based 3D printing process, and has an effect of manufacturing a three-dimensional structure having high functionality with a relatively simple process. .
본 발명에 따른 3차원 구조체 프린팅 방법은, 3차원 구조체 높이를 수십 나노미터부터 수 마이크로미터까지 동시 제작 가능한 장점이 있으며, 잉크 소재인 무기 나노입자 고유의 물성을 그대로 유지할 수 있는 효과가 있다.The 3D structure printing method according to the present invention has the advantage of being able to simultaneously manufacture the height of the 3D structure from several tens of nanometers to several micrometers, and has an effect of maintaining the inherent physical properties of inorganic nanoparticles as ink materials.
나아가, 무기 나노입자를 사용한 잉크 디자인을 통해 다양한 파장의 광원들을 선택적으로 사용할 수 있으며, 형태의 제약없이 복잡한 디지털 2D 이미지 그대로 2차원 패턴 및 3차원 구조체의 제작이 가능한 효과가 있다. Furthermore, through ink design using inorganic nanoparticles, light sources of various wavelengths can be selectively used, and 2D patterns and 3D structures can be produced as complex digital 2D images without shape restrictions.
특히, 고해상도 3차원 어레이 및 다종 소재 복합 구조체를 제조할 수 있는 장점이 있다.In particular, there is an advantage in manufacturing a high-resolution three-dimensional array and a multi-material composite structure.
도 1은, 1,3,4-thiadiazole-2,5-dithiol(TDD)로 캡핑된 인듐 주석 산화물, 금, 셀렌화납, 은, 텔루르화 카드뮴, 산화철 및 InP/ZnS(코어/쉘) 나노입자 용액의 사진이다.1 shows indium tin oxide, gold, lead selenide, silver, cadmium telluride, iron oxide, and InP/ZnS (core/shell) nanoparticles capped with 1,3,4-thiadiazole-2,5-dithiol (TDD). This is a picture of the solution.
도 2는, 나노입자의 UV-Vis 흡수 스펙트럼이다. 도 2의 (a)는, 3,4-thiadiazole-2,5-dithiol (TDD), (NH4)2MoS4 및 N-(trifluoromethylsulfonyloxy)-1,8-naphthalimide (IM-NIT) 광산생성제의 UV-Vis 흡수 스펙트럼이고, 도 2의 (b)는, 유기물 및 광감응 리간드(TDD, MoS4 2-)로 캡핑된 Au 나노입자의 UV-Vis 흡수 스펙트럼이고, 도 2의 (c)는, 유기물 및 광감응 리간드(TDD)로 캡핑된 CdTe 나노입자의 UV-Vis 흡수 스펙트럼이다.2 is a UV-Vis absorption spectrum of nanoparticles. 2(a) shows 3,4-thiadiazole-2,5-dithiol (TDD), (NH 4 ) 2 MoS 4 and N-(trifluoromethylsulfonyloxy)-1,8-naphthalimide (IM-NIT) photoacid generator 2(b) is a UV-Vis absorption spectrum of Au nanoparticles capped with an organic material and a photosensitive ligand (TDD, MoS 4 2- ), and FIG. 2(c) is a UV-Vis absorption spectrum of , UV-Vis absorption spectra of organic and photosensitive ligand (TDD) capped CdTe nanoparticles.
도 3은, 유기물 및 TDD로 캡핑된 나노입자의 전자 현미경 사진이다. 도 3의 (a)는, 유기물로 캡핑된 Ag 나노입자의 TEM 이미지이고, 도 3의 (b)는, 유기물로 캡핑된 Au 나노입자의 TEM 이미지이고, 도 3의 (c)는, 유기물로 캡핑된 InP/ZnS(코어/쉘) 나노입자의 TEM 이미지이고, 도 3의 (d)는, 유기물로 캡핑된 PbSe 나노입자의 TEM 이미지이고, 도 3의 (e)는, 유기물로 캡핑된 Fe3O4 나노입자의 TEM 이미지이고, 도 3의 (f)는, 유기물로 캡핑된 ITO 나노입자의 TEM 이미지이다. 도 3의 (g)는, TDD로 캡핑된 Ag 나노입자의 TEM 이미지이고, 도 3의 (h)는, TDD로 캡핑된 Au 나노입자의 TEM 이미지이고, 도 3의 (i)는, TDD로 캡핑된 InP/ZnS(코어/쉘) 나노입자의 TEM 이미지이고, 도 3의 (j)는, TDD로 캡핑된 PbSe 나노입자의 TEM 이미지이고, 도 3의 (k)는, TDD로 캡핑된 Fe3O4 나노입자의 TEM 이미지이고, 도 3의 (l)은, TDD로 캡핑된 ITO 나노입자의 TEM 이미지이다.3 is an electron micrograph of nanoparticles capped with organic material and TDD. Figure 3 (a) is a TEM image of Ag nanoparticles capped with an organic material, Figure 3 (b) is a TEM image of Au nanoparticles capped with an organic material, and Figure 3 (c) is a TEM image of organic material capped Au nanoparticles. TEM image of capped InP/ZnS (core/shell) nanoparticles, FIG. 3(d) is a TEM image of PbSe nanoparticles capped with an organic material, and FIG. 3(e) shows Fe 3 O 4 It is a TEM image of nanoparticles, and FIG. 3(f) is a TEM image of ITO nanoparticles capped with an organic material. Fig. 3(g) is a TEM image of Ag nanoparticles capped with TDD, Fig. 3(h) is a TEM image of Au nanoparticles capped with TDD, and Fig. 3(i) shows a TEM image of TDD-capped Au nanoparticles. TEM image of capped InP/ZnS (core/shell) nanoparticles, FIG. 3(j) is a TEM image of TDD-capped PbSe nanoparticles, and FIG. 3(k) shows TDD-capped Fe 3 O 4 It is a TEM image of nanoparticles, and FIG. 3 (l) is a TEM image of ITO nanoparticles capped with TDD.
도 4는, ζ 전위 분포 그래프 및 동적 광 산란 입자 크기 분석 결과이다. 도 4의 (a)는, TDD로 캡핑된 나노입자들의 ζ 전위 분포 그래프이고, 도 4의 (b)는, 광산 생성제가 결합된 광 감응 Ag 나노입자(TDD로 캡핑된 Ag 나노입자) 잉크의 자외선 노출 전/후의 ζ 전위 분포 그래프이고, 도 4의 (c)는, 광산 생성제가 결합된 광 감응 Ag 나노입자(TDD로 캡핑된 Ag 나노입자) 의 자외선 노출 전/후의 동적 광 산란 입자 크기 분석 결과이다.4 is a ζ potential distribution graph and dynamic light scattering particle size analysis results. Fig. 4(a) is a ζ potential distribution graph of nanoparticles capped with TDD, and Fig. 4(b) is a photosensitive Ag nanoparticle (Ag nanoparticle capped with TDD) ink coupled with a photoacid generator. ζ potential distribution graph before/after UV exposure, and FIG. 4(c) shows dynamic light scattering particle size analysis before/after UV exposure of light-sensitive Ag nanoparticles (Ag nanoparticles capped with TDD) coupled with a photoacid generator. This is the result.
도 5는, 유기물 및 TDD 로 캡핑된 나노입자의 XRD 패턴이다. 도 5의 (a)는, 유기물 및 TDD 로 캡핑된 InP/ZnS(코어/쉘) 나노입자의 XRD 패턴이고, 도 5의 (b)는, 유기물 및 TDD 로 캡핑된 Au 나노입자의 XRD 패턴이고, 도 5의 (c)는, 유기물 및 TDD 로 캡핑된 CdTe 나노입자의 XRD 패턴이고, 도 5의 (d)는, 유기물 및 TDD 로 캡핑된 PbSe 나노입자의 XRD 패턴이고, 도 5의 (e)는, 유기물 및 TDD 로 캡핑된 Fe3O4나노입자의 XRD 패턴이고, 도 5의 (f)는, 유기물 및 TDD 로 캡핑된 ITO 나노입자의 XRD 패턴이다.5 is an XRD pattern of nanoparticles capped with an organic material and TDD. 5(a) is an XRD pattern of InP/ZnS (core/shell) nanoparticles capped with an organic material and TDD, and FIG. 5(b) is an XRD pattern of Au nanoparticles capped with an organic material and TDD. 5(c) is an XRD pattern of CdTe nanoparticles capped with an organic material and TDD, FIG. 5(d) is an XRD pattern of PbSe nanoparticles capped with an organic material and TDD, and FIG. ) is an XRD pattern of Fe 3 O 4 nanoparticles capped with an organic material and TDD, and (f) of FIG. 5 is an XRD pattern of ITO nanoparticles capped with an organic material and TDD.
도 6은, 50 uM의 N-(trifluoromethylsulfonyloxy)-1,8-naphthalimide (IM-NIT) 광산 생성제와 5 uM 의 로다민 B (1:1 v/v ratio) 혼합물의 365 nm 자외선 조사 전/후의 UV-vis 흡수 스펙트럼 이다(삽도는 아세토니트릴에 녹아 있는 혼합물의 자외선 조사 전/후의 용액사진). 6 shows the mixture of 50 uM N-(trifluoromethylsulfonyloxy)-1,8-naphthalimide (IM-NIT) photoacid generator and 5 uM rhodamine B (1:1 v/v ratio) before/after 365 nm UV irradiation. This is the UV-vis absorption spectrum after (inset is a picture of the solution before and after ultraviolet irradiation of the mixture dissolved in acetonitrile).
도 7은, 본 발명에 사용된 광학 3D프린터 장비 사진 및 DLP 방식 기반의 3D 프린팅 과정 개략도이다.7 is a schematic diagram of a photograph of the optical 3D printer equipment used in the present invention and a 3D printing process based on a DLP method.
도 8은, 유리 기판 위의 물방울 도포 사진이다. 도 8의 (a)는, 일반 유리 기판 위의 물방울 도포 사진이고, 도 8의 (b)는, O2 plasma 처리된 유리 기판 위의 물방울 도포 사진이고, 도 8의 (c)는, trichloro(1H,1H,2H,2H-perfluorooctyl)silane (FOTS) 코팅 처리된 유리 기판 위의 물방울 도포 사진이고, 도 8의 (d)는, (3-aminopropyl)triethoxysilane (APTES) 코팅 처리된 유리 기판 위의 물방울 도포 사진이다.8 is a photograph of water droplets applied on a glass substrate. Figure 8 (a) is a picture of water droplets applied on a general glass substrate, Figure 8 (b) is a picture of water droplets applied on a glass substrate treated with O 2 plasma, Figure 8 (c) is trichloro ( 1H,1H,2H,2H-perfluorooctyl)silane (FOTS) is a photograph of water droplets applied on a coated glass substrate, and FIG. 8 (d) is a (3-aminopropyl)triethoxysilane (APTES) coated glass substrate. This is a picture of a drop of water.
도 9는, 본 발명의 일 실시형태에 따른 PDMS 잉크 배스 사진이다.9 is a photograph of a PDMS ink bath according to an embodiment of the present invention.
도 10은, 본 발명의 일 실시형태에 따른 3D 프린팅 공정을 이용한 2차원 패터닝 과정 순서의 사진 및 해당 과정의 나노입자 경화 메커니즘 모식도이다.10 is a photograph of a two-dimensional patterning process sequence using a 3D printing process according to an embodiment of the present invention and a schematic diagram of a nanoparticle curing mechanism in the process.
도 11은, 광 감응 전-무기 나노입자 잉크의 파라미터 조절 (나노입자 농도 대 광산생성제 농도) 결과에 따른 광학 이미지 사진이다.11 is an optical image photograph according to the result of parameter adjustment (nanoparticle concentration versus photoacid generator concentration) of light-sensitive all-inorganic nanoparticle ink.
도 12는, 프린팅 파라미터 조절 (빛 세기밀도 대 광 노출시간) 결과에 따른 광학 이미지 사진이다. 12 is an optical image photograph according to the result of adjusting the printing parameters (light intensity versus light exposure time).
도 13은, 도 12의 각 구조체 모양에 해당하는 경화 조건 별 직경 그래프이다. 도 13의 (a)는, 세모 구조체의 경화 조건 별 직경 그래프이고, 도 13의 (b)는, 네모 구조체의 경화 조건 별 직경 그래프이고, 도 13의 (c)는, 동그라미 구조체의 경화 조건 별 직경 그래프이고, 도 13의 (d)는, 하트 구조체의 경화 조건 별 직경 그래프이다.13 is a diameter graph for each curing condition corresponding to each structure shape of FIG. 12 . 13(a) is a diameter graph for each curing condition of a triangular structure, FIG. 13(b) is a diameter graph for each curing condition for a rectangular structure, and FIG. 13(c) is a diameter graph for each curing condition for a circular structure. It is a diameter graph, and FIG. 13(d) is a diameter graph for each curing condition of the heart structure.
도 14는, 광 감응 Ag 나노입자로 패터닝된 전극 패턴, 2차원 패턴 및 3차원 구조체의 SEM 이미지이다. 도 14의 (a) 내지 도 14의 (c)는, 광 감응 Ag 나노입자로 패터닝된 전극 패턴의 SEM 이미지이고, 도 14의 (d) 및 도 14의 (e)는, 광 감응 Ag 나노입자로 패터닝된 2차원 패턴의 SEM 이미지이고, 도 14의 (f) 및 도 14의 (g)는, 광 감응 Ag 나노입자로 패터닝된 3차원 구조체의 SEM 이미지이다.14 is an SEM image of an electrode pattern, a 2D pattern, and a 3D structure patterned with photosensitive Ag nanoparticles. 14(a) to 14(c) are SEM images of electrode patterns patterned with photosensitive Ag nanoparticles, and FIGS. 14(d) and 14(e) show photosensitive Ag nanoparticles. 14(f) and 14(g) are SEM images of a 3-dimensional structure patterned with light-sensitive Ag nanoparticles.
도 15는, 나노입자 잉크로 제작된 구조체의 광학 현미경 사진 및 TEM 이미지이다. 도 15의 (a) 및 도 15의 (d)는, 광 감응 Ag 나노입자 잉크로 제작된 구조체의 광학 현미경 사진이고, 도 15의 (b)는, 광 감응 Ag 나노입자 잉크로 제작된 구조체의 TEM 이미지이고, 도 15의 (c)는, 광 감응 Ag 나노입자 잉크로 제작된 구조체의 high-resolution TEM 이미지이다. 도 15의 (e) 및 도 15의 (f)는, 광 감응 Ag 나노입자 잉크로 제작된 구조체의 SEM 이미지이고, 도 15의 (g)는, CdTe 나노입자 구조체의 SEM 이미지이고, 도 15의 (h)는, Au 나노입자 구조체의 SEM 이미지이고, 도 15의 (i)는, Au 구조체의 측면 SEM 이미지이다.15 is an optical micrograph and TEM image of a structure fabricated with nanoparticle ink. 15(a) and 15(d) are optical micrographs of structures fabricated with light-sensitive Ag nanoparticle ink, and FIG. 15(b) shows optical micrographs of structures fabricated with light-sensitive Ag nanoparticle ink. It is a TEM image, and FIG. 15(c) is a high-resolution TEM image of a structure fabricated with light-sensitive Ag nanoparticle ink. 15(e) and 15(f) are SEM images of a structure fabricated with light-sensitive Ag nanoparticle ink, and FIG. 15(g) is a SEM image of a CdTe nanoparticle structure. (h) is an SEM image of the Au nanoparticle structure, and (i) of FIG. 15 is a side SEM image of the Au structure.
도 16은, 유기물 및 TDD 로 캡핑된 Ag 나노입자 및 광 경화된 Ag 나노입자 패턴의 XRD 패턴이다. 16 is an XRD pattern of Ag nanoparticles capped with an organic material and TDD, and photo-cured Ag nanoparticle patterns.
도 17은, 광 경화된 Au 나노입자 구조체의 온도에 따른 전기전도도 그래프이다. 17 is a graph of electrical conductivity according to temperature of a photo-cured Au nanoparticle structure.
도 18은, 광 경화된 3차원 Ag 나노입자 기반의 다양한 형태 피라미드 구조체의 간섭계 산란 현미경을 통한 3차원 이미지 및 해당 구조체의 프로파일 그래프이다. 18 is a 3D image through an interferometry scattering microscope of pyramidal structures of various shapes based on light-cured 3D Ag nanoparticles and a profile graph of the structures.
도 19는, 광 경화된 3차원 Ag 나노입자 기반 전자 회로 구조체의 간섭계 산란 현미경을 통한 3차원 이미지 및 해당 구조체의 프로파일 그래프이다.19 is a 3D image of a light-cured 3D Ag nanoparticle-based electronic circuit structure through an interferometry scattering microscope and a profile graph of the structure.
도 20은, 도 19에 해당하는 구조체의 SEM 사진이다.FIG. 20 is a SEM photograph of the structure corresponding to FIG. 19 .
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. However, since various changes can be made to the embodiments, the scope of the patent application is not limited or limited by these embodiments. It should be understood that all changes, equivalents or substitutes to the embodiments are included within the scope of rights.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in the examples are used only for descriptive purposes and should not be construed as limiting. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as "include" or "have" are intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person of ordinary skill in the art to which the embodiment belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in the present application, they should not be interpreted in an ideal or excessively formal meaning. don't
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In addition, in the description with reference to the accompanying drawings, the same reference numerals are given to the same components regardless of reference numerals, and overlapping descriptions thereof will be omitted. In describing the embodiment, if it is determined that a detailed description of a related known technology may unnecessarily obscure the gist of the embodiment, the detailed description will be omitted.
또한, 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the components of the embodiment, terms such as first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, order, or order of the corresponding component is not limited by the term. When an element is described as being “connected,” “coupled to,” or “connected” to another element, that element may be directly connected or connected to the other element, but there may be another element between the elements. It should be understood that may be "connected", "coupled" or "connected".
어느 하나의 실시 예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시 예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시 예에 기재한 설명은 다른 실시 예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.Components included in one embodiment and components having common functions will be described using the same names in other embodiments. Unless stated to the contrary, descriptions described in one embodiment may be applied to other embodiments, and detailed descriptions will be omitted to the extent of overlap.
본 발명의 일 측면은, 유기물로 캡핑된 나노입자를 준비하는 단계; 상기 유기물로 캡핑된 나노입자를 무극성 용매에 분산시켜 나노입자 분산액을 제조하는 단계; 무기 리간드를 극성 용매에 용해하여 무기 리간드 용액을 제조하는 단계; 상기 나노입자 분산액 및 상기 무기 리간드 용액을 혼합한 혼합물을 교반하여 무기 리간드로 캡핑된 나노입자를 얻는 단계; 상기 무기 리간드로 캡핑된 나노입자를 극성 용매에 분산시켜 전-무기 나노입자 용액을 제조하는 단계; 및 상기 무기 나노입자 용액 및 광산 생성제(photoacid generator)를 혼합하는 단계;를 포함하는, 광 감응 전-무기 나노입자 잉크의 제조방법을 제공한다.One aspect of the present invention comprises the steps of preparing nanoparticles capped with an organic material; preparing a nanoparticle dispersion by dispersing the nanoparticles capped with the organic material in a non-polar solvent; preparing an inorganic ligand solution by dissolving an inorganic ligand in a polar solvent; obtaining nanoparticles capped with an inorganic ligand by stirring a mixture of the nanoparticle dispersion and the inorganic ligand solution; preparing an all-inorganic nanoparticle solution by dispersing the nanoparticles capped with the inorganic ligand in a polar solvent; and mixing the inorganic nanoparticle solution and a photoacid generator.
본 발명에 따른 광 감응 전-무기 나노입자 잉크의 제조방법은, 유기물 첨가 없이 광학 기반 3D 프린팅 공정에 바로 적용 가능한 광반응성 무기물 기반 잉크의 제조가 가능한 특징이 있다.The manufacturing method of light-sensitive all-inorganic nanoparticle ink according to the present invention is characterized in that it is possible to manufacture light-reactive inorganic material-based ink that can be directly applied to an optical-based 3D printing process without adding an organic material.
특히, 유기물 기반의 광경화성 폴리머 레진 또는 무기물 충전제와 광경화성 폴리머 복합체를 사용하는 종래 3D 프린팅 잉크와 비교하여, 전-무기 나노입자만을 포함함으로써, 무기물 소재가 지닌 우수한 물성을 통해 전자, 에너지 분야 등에 적용되는 고기능성 소재의 제조가 가능하다.In particular, compared to conventional 3D printing inks that use organic-based photocurable polymer resins or inorganic fillers and photocurable polymer composites, by including only all-inorganic nanoparticles, they can be used in the field of electronics and energy through excellent physical properties of inorganic materials. It is possible to manufacture applied high-functional materials.
본 발명에 따라 제조된 광 감응 전-무기 나노입자 잉크는, 특히, Digital Light Processing (DLP) 와 Stereolithography (SLA) 등의 광학 기반 3차원 프린팅 공정에 바로 적용이 가능하여, 비교적 단순한 공정으로 고기능성을 갖는 무기 나노입자 기반 3차원 구조체를 제조할 수 있는 효과가 있다. The light-sensitive all-inorganic nanoparticle ink prepared according to the present invention can be directly applied to optical-based 3D printing processes such as digital light processing (DLP) and stereolithography (SLA), and thus has high functionality with a relatively simple process. There is an effect that can manufacture a three-dimensional structure based on inorganic nanoparticles having a.
이하, 본 발명에 따른 광 감응 전-무기 나노입자 잉크의 제조방법을 단계별로 상세히 설명한다.Hereinafter, a method for preparing a light-sensitive all-inorganic nanoparticle ink according to the present invention will be described step by step in detail.
유기물로 캡핑된 나노입자를 준비하는 단계Preparing organic material-capped nanoparticles
첫번째 단계는, 유기물로 캡핑된 나노입자를 준비하는 단계이다.The first step is to prepare nanoparticles capped with an organic material.
상기 유기물로 캡핑된 나노입자는, 기존에 알려진 합성 방법에 의해 제조 가능하다.Nanoparticles capped with the organic material can be prepared by a conventionally known synthetic method.
본 발명에 따른 광 감응 전-무기 나노입자 잉크의 제조방법은, 합성 직후의 유기물 또는 유기 리간드로 표면 안정화된 나노입자를 표면 처리하는 공정을 통해 전-무기 나노입자를 형성한다.In the method for preparing light-sensitive all-inorganic nanoparticle ink according to the present invention, all-inorganic nanoparticles are formed through a process of surface-treating nanoparticles surface-stabilized with an organic material or organic ligand immediately after synthesis.
일 실시형태에 따르면, 상기 나노입자는, 반도체 물질, 자성 물질, 금속 물질, 산화 물질, 자성 합금 또는 다성분 혼성 구조체 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.According to one embodiment, the nanoparticle may include at least one selected from the group consisting of a semiconductor material, a magnetic material, a metal material, an oxide material, a magnetic alloy, or a multi-component hybrid structure material.
일 실시형태에 따르면, 상기 나노입자는, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, GaN, GaP, GaAs, PbS, PbSe, PbTe, GaSb, AlN, AlP, AlAs, AlSb, InP, InP/ZnS(코어/쉘), InAs, InSb, SiC, Pt, Ni, Co, Al, ITO. SnO2, Ag, Au, Cu, FePt, Fe2O3, Fe3O4, Ge, (NaYF4:Yb3+,Er3+), (NaYF4:Yb3+,Tm3+), (NaGdF4:Yb3+,Er3+), (NaYF4:Yb3+,Er3+/NaGdF4) 및 (NaGdF4:Yb3+,Er3+/NaGdF4)로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.According to one embodiment, the nanoparticles are CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, GaN, GaP, GaAs, PbS, PbSe, PbTe, GaSb, AlN, AlP, AlAs, AlSb, InP, InP/ZnS (core/shell), InAs, InSb, SiC, Pt, Ni, Co, Al, ITO. SnO 2 , Ag, Au, Cu, FePt, Fe 2 O 3 , Fe 3 O 4 , Ge, (NaYF 4 :Yb 3+ ,Er 3+ ), (NaYF 4 :Yb 3+ ,Tm 3+ ), ( NaGdF 4 :Yb 3+ ,Er 3+ ), (NaYF 4 :Yb 3+ ,Er 3+ /NaGdF 4 ) and (NaGdF 4 :Yb 3+ ,Er 3+ /NaGdF 4 ). It may include any one.
일 실시형태에 따르면, 상기 나노입자 표면을 캡핑하는 유기물은, -COOH, -NH2, -(O)P(OH)2, -SH 및 R3N (여기서, R은 C1 내지 C24의 알킬기 또는 C5 내지 C20의 아릴기임)로 이루어진 군에서 선택되는 적어도 어느 하나의 작용기를 포함할 수 있다.According to one embodiment, the organic material capping the nanoparticle surface is -COOH, -NH 2 , -(O)P(OH) 2 , -SH and R 3 N (where R is a C1 to C24 alkyl group or C5 to C20 aryl group) may include at least one functional group selected from the group consisting of.
나노입자 분산액을 제조하는 단계Preparing a Nanoparticle Dispersion
본 단계는, 준비된 유기물로 캡핑된 나노입자를 무극성 용매에 분산시켜 나노입자 분산액을 제조하는 단계이다.This step is a step of preparing a nanoparticle dispersion by dispersing the prepared organic material-capped nanoparticles in a non-polar solvent.
일 실시형태에 따르면, 상기 무극성 용매는, N-헥세인 (N-hexane), 펜테인 (pentane), 사이클로헥세인 (cyclohexane), 톨루엔(Toluene) 및 클로로포름(Chloroform)으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있다.According to one embodiment, the non-polar solvent is at least selected from the group consisting of N-hexane, pentane, cyclohexane, toluene and chloroform. may include either.
무기 리간드 용액을 제조하는 단계Preparing an Inorganic Ligand Solution
본 단계는, 무기 리간드를 극성 용매에 용해하여 무기 리간드 용액을 제조하는 단계이다.This step is a step of preparing an inorganic ligand solution by dissolving the inorganic ligand in a polar solvent.
일 실시형태에 따르면, 상기 극성 용매는, 디메틸에테르(DME), 테트라히드로푸란(THF), 디메틸포름아미드(DMF), N-메틸포름아미드(NMF), N,N-디메틸포름아미드(DMF), 디메틸설폭사이드(DMSO), 에틸렌디아민(En), 포름아미드(FA) 및 디메틸아세트아미드로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.According to one embodiment, the polar solvent is dimethyl ether (DME), tetrahydrofuran (THF), dimethylformamide (DMF), N-methylformamide (NMF), N,N-dimethylformamide (DMF) , It may include at least one selected from the group consisting of dimethyl sulfoxide (DMSO), ethylenediamine (En), formamide (FA), and dimethylacetamide.
일 실시형태에 따르면, 상기 무기 리간드는, 일 실시형태에 따르면, 상기 무기 리간드는, MoS4 2-, Sn2S6 4-, In2Se4 2-, S2-, Se2-, Te2-, SCN-, SnS4 4-, SnTe4 4-, AsS3 3-, BF4 - 산소산음이온(oxoanion), 폴리옥소메탈레이트(polyoxometalate), 할라이드(halide), 할로메탈레이트(halometalate) 및 폴리포스파이드(Px n-)로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.According to one embodiment, the inorganic ligands, according to one embodiment, MoS 4 2- , Sn 2 S 6 4- , In 2 Se 4 2- , S 2- , Se 2- , Te 2- , SCN - , SnS 4 4- , SnTe 4 4- , AsS 3 3- , BF 4 - oxoanion, polyoxometalate, halide, halometalate and It may include at least one selected from the group consisting of polyphosphide (P x n- ).
본 발명에 따른 광 감응 전-무기 나노입자 잉크의 제조방법은, 나노입자 및 무기 리간드를 선택적으로 사용함으로써, 최종적으로 3D 프린팅되는 3차원 구조체의 물성을 다양하게 구현할 수 있으며, 이를 통해 다양한 분야의 소재 제조 기술로 응용 가능하다. The manufacturing method of the light-sensitive all-inorganic nanoparticle ink according to the present invention can implement various physical properties of the finally 3D printed 3D structure by selectively using nanoparticles and inorganic ligands, and through this, various fields It can be applied to material manufacturing technology.
무기 리간드로 캡핑된 나노입자를 얻는 단계Obtaining nanoparticles capped with inorganic ligands
본 단계는, 나노입자 분산액 및 무기 리간드 용액을 혼합한 혼합물을 교반하여 무기 리간드로 캡핑된 나노입자를 얻는 단계이다.This step is a step of obtaining nanoparticles capped with an inorganic ligand by stirring a mixture of a nanoparticle dispersion and an inorganic ligand solution.
상기 단계에서는 리간드 교환 공정이 진행된다.In this step, a ligand exchange process proceeds.
여기서, 상기 나노입자 분산액은 유기물-캡핑된 나노입자가 무극성 용매에 분산된 용액이고, 상기 무기 리간드 용액은 무기 리간드가 극성 용매에 용해된 것이다.Here, the nanoparticle dispersion is a solution in which organic-capped nanoparticles are dispersed in a non-polar solvent, and the inorganic ligand solution is a solution in which an inorganic ligand is dissolved in a polar solvent.
따라서, 상기 혼합물은 무극성 용매와 극성 용매가 혼합된 상태이며, 리간드 교환 공정이 진행되면서 최종적으로 극성 용매에 무기 리간드로 캡핑된 나노입자가 분산된다. Therefore, the mixture is a mixture of a non-polar solvent and a polar solvent, and nanoparticles capped with inorganic ligands are finally dispersed in the polar solvent as the ligand exchange process proceeds.
일 실시형태에 따르면, 상기 혼합물은, 1상 혼합물 또는 2상 혼합물이고, 상기 교반 시, 상기 나노입자 표면에 존재하는 유기 리간드가 무기 리간드로 치환되는 것일 수 있다.According to one embodiment, the mixture may be a one-phase mixture or a two-phase mixture, and upon stirring, an organic ligand present on the surface of the nanoparticle may be replaced with an inorganic ligand.
상기 혼합물은, 나노입자 분산액과 무기 리간드 용액이 비슷한 극성을 가져 예를 들어, toluene/DMF 또는 toluene/NMF 조합으로 서로 섞이며 1상 혼합물(one-phase) 형태를 이루는 것일 수 있다.The mixture may be a one-phase mixture in which the nanoparticle dispersion and the inorganic ligand solution have similar polarities and are mixed with each other, for example, in a combination of toluene/DMF or toluene/NMF.
또는, 상기 혼합물은, 나노입자 분산액과 무기 리간드 용액이 서로 다른 극성을 가져 예를 들어, toluene/N2H4 또는 hexane/DMF 와 같이 층이 분리되는 2상 혼합물(two-phase) 형태를 이루며, 상기 교반 시, 2상 혼합물 형태는 상층에 존재하는 무극성의 나노입자 분산액 속의 상기 나노입자 표면에 존재하는 유기 리간드가 아래층에 존재하는 극성의 무기 리간드 용액으로 치환되며 나노입자의 상전이 과정이 수반되는 것일 수 있다.Alternatively, the mixture forms a two-phase mixture in which the nanoparticle dispersion and the inorganic ligand solution have different polarities so that the layers are separated, for example, toluene/N 2 H 4 or hexane/DMF. , During the stirring, in the form of a two-phase mixture, organic ligands present on the surface of the nanoparticles in the non-polar nanoparticle dispersion present in the upper layer are replaced with a polar inorganic ligand solution present in the lower layer, accompanied by a phase transition process of the nanoparticles it could be
일 실시형태에 따르면, 상기 무극성 용매는, N-헥세인 (N-hexane), 펜테인 (pentane), 사이클로헥세인 (cyclohexane), 톨루엔(Toluene) 및 클로로포름(Chloroform)으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고, 상기 극성 용매는, 디메틸에테르(DME), 테트라히드로푸란(THF), 디메틸포름아미드(DMF), N-메틸포름아미드(NMF), N,N-디메틸포름아미드(DMF), 디메틸설폭사이드(DMSO), 에틸렌디아민(En), 포름아미드(FA), 하이드라진(N2H4) 및 디메틸아세트아미드로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.According to one embodiment, the non-polar solvent is at least selected from the group consisting of N-hexane, pentane, cyclohexane, toluene and chloroform. It includes any one, and the polar solvent is dimethyl ether (DME), tetrahydrofuran (THF), dimethylformamide (DMF), N-methylformamide (NMF), N,N-dimethylformamide (DMF) , Dimethyl sulfoxide (DMSO), ethylenediamine (En), formamide (FA), hydrazine (N 2 H 4 ) It may include at least one selected from the group consisting of and dimethylacetamide.
무기 나노입자 용액을 제조하는 단계Preparing an Inorganic Nanoparticle Solution
본 단계는, 리간드 교환 공정을 통해 제조된 무기 리간드로 캡핑된 나노입자를 극성 용매에 분산시켜 전-무기 나노입자 용액을 제조하는 단계이다.This step is a step of preparing an all-inorganic nanoparticle solution by dispersing nanoparticles capped with inorganic ligands prepared through the ligand exchange process in a polar solvent.
일 실시형태에 따르면, 상기 극성 용매는, 아세토니트릴(ACN), 디메틸에테르(DME), 테트라히드로푸란(THF), 디메틸포름아미드(DMF), N-메틸포름아미드(NMF), N,N-디메틸포름아미드(DMF), 디메틸설폭사이드(DMSO), 에틸렌디아민(En), 포름아미드(FA), 하이드라진(N2H4) 및 디메틸아세트아미드로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.According to one embodiment, the polar solvent is acetonitrile (ACN), dimethyl ether (DME), tetrahydrofuran (THF), dimethylformamide (DMF), N-methylformamide (NMF), N,N- containing at least one selected from the group consisting of dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ethylenediamine (En), formamide (FA), hydrazine (N 2 H 4 ) and dimethylacetamide can
예를 들어, 상기 극성 용매는, 메틸포름아미드(NMF) 및 아세토니트릴(ACN)의 공용매일 수 있다.For example, the polar solvent may be a co-solvent of methylformamide (NMF) and acetonitrile (ACN).
전-무기 나노입자 용액 및 광산 생성제(photoacid generator)를 혼합하는 단계Mixing the all-inorganic nanoparticle solution and photoacid generator
본 단계는, 제조된 전-무기 나노입자 용액 즉, 무기 리간드로 캡핑된 나노입자가 분산된 용액과 광산 생성제를 혼합하여 최종적으로 전-무기 나노입자 잉크를 제조하는 단계이다. This step is a step of finally preparing an all-inorganic nanoparticle ink by mixing the prepared all-inorganic nanoparticle solution, that is, a solution in which nanoparticles capped with inorganic ligands are dispersed, and a photoacid generator.
본 발명에 따른 광 감응 전-무기 나노입자 잉크의 제조방법은, 광산 생성제 선택에 의해 다양한 파장의 광원을 선택적으로 사용할 수 있으며, 광원에 구애받지 않을 수 있다.In the method for preparing light-sensitive all-inorganic nanoparticle ink according to the present invention, light sources of various wavelengths may be selectively used by selecting a photoacid generator, and the light source may not be limited.
일 실시형태에 따르면, 상기 광산 생성제는, 200 nm 내지 500 nm의 파장영역에서 빛에 반응하여 양성자(H+)을 생성하는 것일 수 있다.According to one embodiment, the photoacid generator may generate protons (H + ) in response to light in a wavelength range of 200 nm to 500 nm.
상기 광산 생성제는, 빛에 반응하여 양성자(H+)를 생성하고, 생성된 양성자가 나노입자 표면에 결합된 무기 리간드와 반응하거나 나노입자 표면의 염기 부위(basic surface site)에 결합하면서 나노입자의 표면 전하를 중성화시킴으로써, 전-무기 나노입자가 극성 용매 내에서 효과적인 침전될 수 있도록 유도하는 기능을 수행한다.The photoacid generator generates protons (H + ) in response to light, and the generated protons react with inorganic ligands bound to the surface of the nanoparticles or bind to basic surface sites on the surface of the nanoparticles to form nanoparticles. By neutralizing the surface charge of , it performs the function of inducing effective precipitation of all-inorganic nanoparticles in a polar solvent.
일 실시형태에 따르면, 상기 광산 생성제는, 이온성 광산 생성제, 비이온성 광산 생성제 또는 이 둘;을 포함하는 것일 수 있다.According to one embodiment, the photoacid generator may include an ionic photoacid generator, a nonionic photoacid generator, or both.
일 실시형태에 따르면, 상기 이온성 광산 생성제는, SbF6-, AsF6-, BF4-, C4F9SO3- 및 CF3SO3-로 이루어진 군에서 선택되는 적어도 어느 하나의 음이온을 포함하는 것일 수 있다.According to one embodiment, the ionic photoacid generator is at least one anion selected from the group consisting of SbF 6- , AsF 6- , BF 4- , C 4 F 9 SO 3- and CF 3 SO 3- It may contain.
일 실시형태에 따르면, 상기 이온성 광산 생성제는, 디아릴요오도늄, 트리아릴술포늄, 아릴디아조늄 및 트리아릴포스포늄염으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것이고, 상기 비이온성 광산 생성제는, 할로겐화 트리아진, 유기 설폰산의 2-니트로벤질 에스테르, 유기 설폰산의 4-니트로벤질 에스테르, 퀴놀론, N-하이드록시이미드 또는 N-하이드록시아미드 설포네이트, 이미노 설포네이트 및 디아조나프토퀴논으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.According to one embodiment, the ionic photoacid generator includes at least one selected from the group consisting of diaryliodonium, triarylsulfonium, aryldiazonium, and triarylphosphonium salts, Warm photoacid generators include halogenated triazines, 2-nitrobenzyl esters of organic sulfonic acids, 4-nitrobenzyl esters of organic sulfonic acids, quinolones, N-hydroxyimide or N-hydroxyamide sulfonates, imino sulfonates. And it may include at least one selected from the group consisting of diazonaphthoquinone.
일 실시형태에 따르면, 상기 무기 나노입자 용액 및 광산 생성제(photoacid generator)는, 1: 0.5 내지 1 : 3 비율로 혼합하는 것일 수 있다.According to one embodiment, the inorganic nanoparticle solution and the photoacid generator may be mixed in a ratio of 1:0.5 to 1:3.
만일, 상기 비율을 벗어날 경우, 나노입자 농도 대비 광산 생성제가 적어 원하는 형태의 광경화가 이뤄지지 않거나 혹은 광산 생성제가 너무 많아 필요이상의 과경화를 초래하여 광경화된 나노입자 구조체의 해상도를 감소시킬 수 있다.If the ratio is out of the range, the desired form of photocuring may not be achieved due to the small amount of photoacid generator relative to the concentration of the nanoparticles, or too many photoacid generators may cause overcuring more than necessary, thereby reducing the resolution of the photocured nanoparticle structure.
본 발명의 다른 측면은, 상기 광 감응 전-무기 나노입자 잉크의 제조방법으로 제조된, 광 감응 전-무기 나노입자 잉크를 포함하는, 3D 프린팅용 잉크를 제공한다.Another aspect of the present invention provides an ink for 3D printing, including the light-sensitive all-inorganic nanoparticle ink prepared by the method for preparing the light-sensitive all-inorganic nanoparticle ink.
본 발명에 따른 3D 프린팅용 잉크는, 기존의 사용되던 유기물 소재의 첨가 없이 나노입자의 표면 처리를 통해 전 무기 나노입자를 기초 빌딩 블로으로 형성한 다음 광산 생성제와 혼합됨으로써, 광학 기반 3D 프린팅에 바로 적용 가능하며, 이를 통해 판상형 3차원 아키텍처 제조가 가능하다.The ink for 3D printing according to the present invention forms all inorganic nanoparticles into basic building blocks through surface treatment of nanoparticles without adding conventional organic materials and then mixes them with a photoacid generator, thereby providing optical-based 3D printing. It can be applied immediately, and through this, it is possible to manufacture a plate-shaped 3D architecture.
특히, 복잡한 형태의 마이크로 및 나노 수준의 3차원 구조체의 제조가 가능한 효과가 있다. In particular, there is an effect capable of manufacturing a three-dimensional structure of a complex shape at the micro and nano level.
본 발명의 또 다른 측면은, 상기 3D 프린팅용 잉크를 잉크 배스에 채우는 단계; 및 상기 잉크 배스에 채워진 3D 프린팅용 잉크 표면에 상부 기판을 위치시킨 뒤, 광학 기반 3D 프린팅 공정을 수행하여 상기 상부 기판 표면에 구조체를 형성시키는 단계;를 포함하는, 3차원 구조체 프린팅 방법을 제공한다.Another aspect of the present invention, the step of filling the ink for the 3D printing ink bath; and placing an upper substrate on the surface of the ink for 3D printing filled in the ink bath and then performing an optical 3D printing process to form a structure on the surface of the upper substrate. .
본 발명에 따른 3차원 구조체 프린팅 방법은, 종래 2차원 나노입자 패터닝 기술에 필수적인 고가의 장비 및 복잡한 공정의 반복 없이 손쉽게 3차원 나노입자 아키텍처를 제조할 수 있다.The 3D structure printing method according to the present invention can easily manufacture a 3D nanoparticle architecture without expensive equipment and repetition of complicated processes necessary for conventional 2D nanoparticle patterning technology.
특히, 유기물 기반의 광경화성 폴리머 레진에 국한되어 있던 기존의 광학적 프린팅 기술의 한계를 극복할 수 있으며, 이를 토대로 초소형 및 복잡한 형태의 전자, 광전자, 에너지 및 촉매 소자에 응용 가능하다.In particular, it can overcome the limitations of the existing optical printing technology, which was limited to organic-based photocurable polymer resin, and based on this, it can be applied to microscopic and complex electronic, optoelectronic, energy, and catalytic devices.
상기 상부 기판은, 특별히 제한은 없으나, 실리콘, 금속, 유리, 세라믹, 폴리에스테르나 폴리이미드와 같은 플라스틱 필름, 고무시트, 섬유, 목재, 종이로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.The upper substrate is not particularly limited, but may include at least one selected from the group consisting of silicon, metal, glass, ceramic, plastic film such as polyester or polyimide, rubber sheet, fiber, wood, and paper. there is.
본 발명에 따른 3차원 구조체 프린팅 방법은, 특정 기판의 제한 없이 원하는 기판에 대면적으로 다양한 크기를 갖는 나노입자 아키텍처의 동시 제작이 가능한 장점을 가지며, 고가의 장비 및 복잡한 제조 단계가 필요하지 않아 시간 및 비용을 대폭 낮출 수 있다.The 3D structure printing method according to the present invention has the advantage of simultaneously fabricating nanoparticle architectures having various sizes in a large area on a desired substrate without limitation of a specific substrate, and does not require expensive equipment and complicated manufacturing steps, so it is time consuming. and cost can be drastically reduced.
일 실시형태에 따르면, 상기 상부 기판의 표면에는, 자기조립 단분자막(Self-assembly monolayer)이 형성된 것일 수 있다.According to one embodiment, a self-assembly monolayer may be formed on the surface of the upper substrate.
상기 자기조립 단분자막이 형성된 기판은, 표면에 나노입자와 결합을 유도할 수 있는 작용기가 도입되어 3D 프린팅을 통해 형성되는 나노입자 구조체가 안정적으로 붙어있도록 할 수 있다.In the substrate on which the self-assembled monolayer is formed, a functional group capable of inducing bonding with the nanoparticles is introduced to the surface so that the nanoparticle structure formed through 3D printing can be stably attached.
상기 자기조립 단분자막은, 나노입자와의 결합을 유도할 수 있는 화합물을 기판 표면에 코팅하고, 코팅된 화합물의 자기조립에 의해 층이 생성되는 것일 수 있다.The self-assembled monolayer may be formed by coating a substrate surface with a compound capable of inducing bonding with nanoparticles, and self-assembling the coated compound.
일 실시형태에 따르면, 상기 기판의 표면은, 나노입자와의 결합을 유도할 수 있는 화합물로 코팅되는 것이고, 상기 나노입자와의 결합을 유도할 수 있는 화합물은, (3-메르캅토프로필)트리메톡시실란(MPTES) 및 (3-아미노프로필)트리에톡시실란(APTES) 중 하나 이상을 포함하는 것일 수 있다.According to one embodiment, the surface of the substrate is coated with a compound capable of inducing bonding with the nanoparticles, and the compound capable of inducing bonding with the nanoparticles is (3-mercaptopropyl) It may contain at least one of methoxysilane (MPTES) and (3-aminopropyl)triethoxysilane (APTES).
일 실시형태에 따르면, 상기 코팅은, 핀코팅(spin coating), 드롭 캐스팅(drop casting), 딥코팅(dip coating), 롤코팅(roll coating), 스크린 코팅(screen coating), 분무 코팅(spray coating), 스핀 캐스팅(spin casting), 흐름 코팅(flow coating), 스크린 프린팅(screen printing) 및 잉크젯 프린팅(ink jet printing) 및 롤-투-롤(roll-to-roll)로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.According to one embodiment, the coating is, spin coating, drop casting, dip coating, roll coating, screen coating, spray coating ), spin casting, flow coating, screen printing and ink jet printing, and roll-to-roll at least selected from the group consisting of It may include any one.
일 실시형태에 따르면, 상기 잉크 배스의 바닥은, 초소수성 물질로 코팅되는 것이고, 상기 초소수성 물질은, 디클로로디메틸실란(DCDMS) 및 트리클로로(1H,1H,2H,2H-퍼플루오로옥틸)실란(FOTS) 중 하나 이상을 포함하는 것일 수 있다.According to one embodiment, the bottom of the ink bath is coated with a superhydrophobic material, and the superhydrophobic material is dichlorodimethylsilane (DCDMS) and trichloro(1H,1H,2H,2H-perfluorooctyl). It may include one or more of silanes (FOTS).
이는, 상기 잉크 배스의 바닥에 초소수성을 부여하여 전-무기 나노입자 잉크가 달라붙지 않도록 하기 위함이다.This is to prevent all-inorganic nanoparticle ink from sticking by imparting superhydrophobicity to the bottom of the ink bath.
일 실시형태에 따르면, 상기 광학 기반 3D 프린팅 공정은, Digital Light Processing (DLP), Stereolithography Apparatus (SLA), Continuous Liquid Interface Production (CLIP), Computed Axial Lithography (CAL), Direct Laser Writing (DLW), E-Beam Lithography (EBL) 및 Nanoimprint Lithography (NIL)로 이루어진 군에서 선택되는 하나 이상의 공정을 포함하는 것일 수 있다.According to one embodiment, the optical-based 3D printing process includes Digital Light Processing (DLP), Stereolithography Apparatus (SLA), Continuous Liquid Interface Production (CLIP), Computed Axial Lithography (CAL), Direct Laser Writing (DLW), E -It may include one or more processes selected from the group consisting of Beam Lithography (EBL) and Nanoimprint Lithography (NIL).
본 발명에 따른 3차원 구조체 프린팅 방법은, 광학 기반 3D 프린팅 공정을 이용함으로써, 형태의 제약없이 컴퓨터로 제작된 복잡한 디치털 2D 이미지 그래도 2차원 패턴 및 3차원 아키텍처 또는 구조체의 제조가 가능하다.The 3D structure printing method according to the present invention uses an optical-based 3D printing process, so that it is possible to manufacture a 2D pattern and a 3D architecture or structure even with a complex digital 2D image produced by a computer without restrictions on the shape.
특히, 판상형 3차원 아키텍처 제조가 가능하여 3차원 구조체의 높이를 수십 나노미터부터 수 마이크로미터까지 동시 제작 가능하며, 이 때 빌딩블록으로 쓰여진 나노입자의 고유 물성 또한 유지되는 장점을 갖는다.In particular, it is possible to manufacture a plate-like three-dimensional architecture, so that the height of a three-dimensional structure can be simultaneously manufactured from several tens of nanometers to several micrometers, and at this time, the unique physical properties of nanoparticles written as building blocks are also maintained.
이하, 실시예 및 비교예에 의하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail by examples and comparative examples.
단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are only for illustrating the present invention, and the content of the present invention is not limited to the following examples.
<실시예> <Example>
(1) 재료 (1) material
암모늄 테트라싸이오몰리브데이트(ATTM, 99.97%, Aldrich), 2,5-디머캅토-1,3,4-티아디아졸(TDD, >95%, TCI), N-(트리플루오로메틸술포닐옥시)-1,8-나프탈이미드(IM-NIT, WIMAS Corp.), (3-아미노프로필)트리에톡시실란(APTES, 99%, Aldrich), 트리클로로(1H,1H,2H,2H-퍼플루오로옥틸)실란(FOTS, 97%, Aldrich), 질산은(ACS 시약,
Figure PCTKR2022003086-appb-img-000001
99 %. Aldrich), 구리(II) 아세틸아세토네이트(99.9% 미량 금속 기준, Aldrich), 팔미트산(
Figure PCTKR2022003086-appb-img-000002
99%, Aldrich), 부틸아민(99.5%, Aldrich), 톨루엔(무수, 99.8%, Aldrich), 메탄올( 99.5%, 삼천), N-메틸포름아미드(NMF, 99%, Aldrich), 2-프로판올(무수, 99.5%, Aldrich), 아세토니트릴(ACN, 무수 99.8%, Aldrich), 헥산(무수, 99.5%, Aldrich), 산화 카드뮴(99,99+%, Aldrich), 올레산(기술 등급, 90%, Aldrich), 1-옥타데센(ODE, 기술 등급, 90%, Aldrich), 텔루륨 (99,999%, 5N plus), 트리부틸포스핀 (97%, Aldrich), 트리옥틸포스핀(기술 등급, 90%, Aldrich), 산화납(II)(99.999%, Aldrich), 금(III) 염화물 삼수화물 (HAuCl43H2O, 99.9%, Aldrich), 1,2,3,4-tetrahydronaphthalene(tetralin, 97%, Alfa Aesar), 올레일아민 (OAm, 기술 등급, 70%, Aldrich) 및 보란 tert-부틸아민 착물(TBAB, 97%, Aldrich), 철(III) 아세틸아세토네이트(Fe(acac)3 99.9%, Aldrich), 페닐 에테르(99%, Acros Organics), 1,2-헥사데칸디올(기술 등급 90%, Aldrich), 산화납(II)(99.999%, Aldrich), 셀레늄(-200mesh 99.999% 금속 기반, Alfa Aesar).
Ammonium tetrathiomolybdate (ATTM, 99.97%, Aldrich), 2,5-dimercapto-1,3,4-thiadiazole (TDD, >95%, TCI), N-(trifluoromethylsulfonyl) Oxy)-1,8-naphthalimide (IM-NIT, WIMAS Corp.), (3-aminopropyl)triethoxysilane (APTES, 99%, Aldrich), trichloro (1H,1H,2H,2H -perfluorooctyl)silane (FOTS, 97%, Aldrich), silver nitrate (ACS reagent,
Figure PCTKR2022003086-appb-img-000001
99%. Aldrich), copper(II) acetylacetonate (99.9% trace metal basis, Aldrich), palmitic acid (
Figure PCTKR2022003086-appb-img-000002
99%, Aldrich), butylamine (99.5%, Aldrich), toluene (anhydrous, 99.8%, Aldrich), methanol (99.5%, Samcheon), N-methylformamide (NMF, 99%, Aldrich), 2-propanol (anhydrous, 99.5%, Aldrich), acetonitrile (ACN, anhydrous 99.8%, Aldrich), hexane (anhydrous, 99.5%, Aldrich), cadmium oxide (99,99+%, Aldrich), oleic acid (technical grade, 90%) , Aldrich), 1-octadecene (ODE, technical grade, 90%, Aldrich), tellurium (99,999%, 5N plus), tributylphosphine (97%, Aldrich), trioctylphosphine (technical grade, 90 %, Aldrich), lead(II) oxide (99.999%, Aldrich), gold(III) chloride trihydrate (HAuCl 4 3H 2 O, 99.9%, Aldrich), 1,2,3,4-tetrahydronaphthalene (tetralin, 97 %, Alfa Aesar), oleylamine (OAm, technical grade, 70%, Aldrich) and borane tert -butylamine complex (TBAB, 97%, Aldrich), iron(III) acetylacetonate (Fe(acac) 3 99.9 %, Aldrich), phenyl ether (99%, Acros Organics), 1,2-Hexadecanediol (tech grade 90%, Aldrich), lead(II) oxide (99.999%, Aldrich), selenium (-200mesh 99.999% metal based, Alfa Aesar).
(2) 유기물-캡핑된 나노입자의 합성(2) Synthesis of Organic-Capped Nanoparticles
종래 보고된 동일한 실험 절차에 따라 유기물-캡핑된 나노입자를 제조하였다.Organic-capped nanoparticles were prepared according to the same experimental procedure reported previously.
i) 6 nm 크기의 Ag 나노입자 합성 (us7591872b1, patent)i) Synthesis of 6 nm Ag nanoparticles (us7591872b1, patent)
먼저, 질산은 1.7g 및 구리(II) 아세틸아세토네이트 화합물 0.2g을 톨루엔 3g의 반응 매질에 혼합하였다. 그 다음, 혼합물에 부틸아민 1g을 더 첨가하고 충분히 교반하였다. 몇 분 후 이 혼합용액에 팔미트산 0.5 g을 가하고 110
Figure PCTKR2022003086-appb-img-000003
까지 승온하였다. 승온된 온도에서 2시간 동안 유지하고 실온(RT)으로 냉각시켰다.
First, 1.7 g of silver nitrate and 0.2 g of a copper(II) acetylacetonate compound were mixed into a reaction medium of 3 g of toluene. Then, 1 g of butylamine was further added to the mixture and stirred sufficiently. After a few minutes, 0.5 g of palmitic acid was added to this mixed solution and 110
Figure PCTKR2022003086-appb-img-000003
was heated up to It was maintained at elevated temperature for 2 hours and then cooled to room temperature (RT).
합성된 Ag 나노입자를 추가 헥산으로 희석하여 총 부피 15 mL 용액을 만들고 메탄올 22.5 mL를 첨가하고 원심분리(5분 동안 7500 rpm)하여 침전시켰다. 침전물을 헥산에 분산시킨 후 역용매 없이 자체적으로 원심분리하였다.The synthesized Ag nanoparticles were diluted with additional hexane to make a solution with a total volume of 15 mL and precipitated by adding 22.5 mL of methanol and centrifuging (7500 rpm for 5 min). The precipitate was dispersed in hexane and then centrifuged on its own without anti-solvent.
그런 다음 상층액을 추가 메탄올로 다시 세척하고 마지막으로 정제된 Ag 나노입자를 헥산에 분산시켰다.Then, the supernatant was washed again with additional methanol and finally, the purified Ag nanoparticles were dispersed in hexane.
ii) 6 nm 크기의 Au 나노입자 합성 (J.Am.Chem.Soc.2013,135,1683316836)ii) Synthesis of 6 nm Au nanoparticles (J.Am.Chem.Soc.2013,135,1683316836)
6 nm 크기의 Au 나노입자는 Zhu et al.에 의해 보고된 문헌을 바탕으로 약간의 변경을 통해 합성하였다. 0.2g의 HAuCl4를 20 mL의 테트랄린과 OAm 혼합물(1:1 v/v 비율)에 용해시켰을 때, 온도는 N2 분위기 하에 실온에서 유지되었다.Au nanoparticles with a size of 6 nm were synthesized with minor modifications based on the literature reported by Zhu et al. When 0.2 g of HAuCl 4 was dissolved in 20 mL of tetralin and OAm mixture (1:1 v/v ratio), the temperature was maintained at room temperature under N2 atmosphere.
iii) 4.5 nm 크기의 CdTe 나노입자 합성 (JACS,2016,138,24,7464)iii) Synthesis of 4.5 nm CdTe nanoparticles (JACS,2016,138,24,7464)
4.5 nm 크기의 CdTe 나노입자는 Zhang et al.에 의해 보고된 문헌에 따라, 약간의 변경을 통해 합성하였다. 세척 단계에서 무수 에탄올은 나노입자를 침전시키는 데만 사용되었다.CdTe nanoparticles with a size of 4.5 nm were synthesized according to the literature reported by Zhang et al., with minor modifications. In the washing step, absolute ethanol was used only to precipitate the nanoparticles.
iv) PbSe (Chem.Mater.2004,16,3318-3322)iv) PbSe (Chem.Mater.2004, 16, 3318-3322)
8.0 nm PbSe 나노입자는 Yu et al.에 의해 보고된 방법을 약간 수정하여 합성되었다. 모든 합성 단계는 불활성 가스 조건에서 수행되었다. 산화납(4 mmol, 0.892 g), 올레산(10 mmol, 3.184 ml) 및 1-odctadecene(15.167 ml)을 RB 100 ml에 혼합했다. 혼합물을 실온에서 1시간 동안 탈기하여 불순물을 제거하였다.8.0 nm PbSe nanoparticles were synthesized by slightly modifying the method reported by Yu et al. All synthesis steps were performed under inert gas conditions. Lead oxide (4 mmol, 0.892 g), oleic acid (10 mmol, 3.184 ml) and 1-odctadecene (15.167 ml) were mixed in 100 ml of RB. The mixture was degassed at room temperature for 1 hour to remove impurities.
150
Figure PCTKR2022003086-appb-img-000004
부근까지 가열된 혼합용액은 무색으로 변하였으며, 이후 180
Figure PCTKR2022003086-appb-img-000005
까지 가열하였다. 그런 다음 180
Figure PCTKR2022003086-appb-img-000006
에서 뜨거운 반응 혼합물에 셀레늄(8 mmol, 0.64 g)과 트리옥틸포스핀(6.93 ml) 용액을 빠르게 주입하였다. 반응 혼합물을 150
Figure PCTKR2022003086-appb-img-000007
로 냉각하고, 그 온도에서 PbSe 나노입자 성장을 10 분 동안 진행하여 원하는 크기의 나노입자를 합성하였다.
150
Figure PCTKR2022003086-appb-img-000004
The mixed solution heated to near turned colorless, and then
Figure PCTKR2022003086-appb-img-000005
heated up to then 180
Figure PCTKR2022003086-appb-img-000006
A solution of selenium (8 mmol, 0.64 g) and trioctylphosphine (6.93 ml) was rapidly injected into the hot reaction mixture at . Reaction mixture to 150
Figure PCTKR2022003086-appb-img-000007
, and PbSe nanoparticles were grown at that temperature for 10 minutes to synthesize nanoparticles of a desired size.
최종 생성물을 추가적인 클로로포름(15 ml)으로 실온으로 켄칭하였다. 동일한 부피의 메탄올을 사용하여 원심분리(5 분, 7500 rpm)로 클로로포름을 추출했다. 침전물을 헥산에 재분산시킨 다음, 추가적인 에탄올(1:3 v/v)로 5분 동안 7500 rpm으로 원심분리하였다. 정제 과정 후, PbSe 나노입자는 헥산(30 mg/ml)에 완전히 분산되었다.The final product was quenched to room temperature with additional chloroform (15 ml). Chloroform was extracted by centrifugation (5 min, 7500 rpm) using the same volume of methanol. The precipitate was redispersed in hexane and then centrifuged at 7500 rpm for 5 minutes with additional ethanol (1:3 v/v). After the purification process, the PbSe nanoparticles were completely dispersed in hexane (30 mg/ml).
v) Fe3O4 (J.Am.Chem.Soc.2004,126,273-279)v) Fe 3 O 4 (J. Am. Chem. Soc. 2004, 126, 273-279)
4.0 nm Fe3O4 나노입자는 Sun et al.에 의해 보고된 문헌과 동일한 합성 절차에 의해 합성되었다.4.0 nm Fe 3 O 4 nanoparticles were synthesized by the same synthetic procedure as reported by Sun et al.
간략히, Fe(acac)3(2 mmol, 0.7063 g)는 페닐 에테르 (20 mL)에서 1,2-헥사데칸디올(10 mmol, 2.5844 g), 올레산(6 mmol, 1.91 mL) 및 100 ml RB 중 올레일아민(6 mmol, 1.974 mL)과 N2 조건하에 혼합되었다.Briefly, Fe(acac) 3 (2 mmol, 0.7063 g) was prepared from 1,2-hexadecanediol (10 mmol, 2.5844 g) in phenyl ether (20 mL), oleic acid (6 mmol, 1.91 mL) and 100 ml RB. It was mixed with oleylamine (6 mmol, 1.974 mL) under N 2 conditions.
혼합물을 200
Figure PCTKR2022003086-appb-img-000008
로 가열하고 N2에서 2 시간 동안 유지하였다. 그런 다음, 냉각수를 환류시키면서 혼합 용액을 265
Figure PCTKR2022003086-appb-img-000009
까지 가열하고 30 분간 유지하였다.
200 mixture
Figure PCTKR2022003086-appb-img-000008
and held in N 2 for 2 h. Then, while refluxing the cooling water, the mixed solution
Figure PCTKR2022003086-appb-img-000009
heated to and held for 30 minutes.
마지막으로, 갈색-검정색 혼합물을 가열 맨틀을 제거하여 실온으로 냉각시켰다. 이들 최종 생성물을 40 mL의 에탄올로 처리하고 6000 rpm으로 10 분 동안 원심분리하였다. 흑색 침전물을 10 mL의 헥산에 재분산시킨 후, 추가로 원심분리하여 분산되지 않은 잔류물을 제거하였다(10 분, 6000 rpm). 그런 다음 Fe3O4 나노입자를 에탄올(1:2 v/v)로 재침전시키고 원심분리(10 분, 6000 rpm)하여 원하지 않는 불순물을 제거하고 최종적으로 헥산(30 mg/ml)에 분산시켰다.Finally, the brown-black mixture was cooled to room temperature by removing the heating mantle. These final products were treated with 40 mL of ethanol and centrifuged at 6000 rpm for 10 minutes. The black precipitate was redispersed in 10 mL of hexane and further centrifuged to remove undispersed residue (10 min, 6000 rpm). Then, the Fe 3 O 4 nanoparticles were reprecipitated with ethanol (1:2 v/v), centrifuged (10 min, 6000 rpm) to remove unwanted impurities, and finally dispersed in hexane (30 mg/ml). .
vi) InP@ZnS (Chem.Mater.2015,27,13,4893-4898)vi) InP@ZnS (Chem.Mater.2015,27,13,4893-4898)
InP@ZnS 나노입자는 Tessier et al. 에 의해 보고된 문헌을 바탕으로 합성하였다.InP@ZnS nanoparticles were prepared by Tessier et al. It was synthesized based on the literature reported by.
(3) 광 감응 전-무기 나노입자 잉크의 제조(3) Preparation of light-sensitive all-inorganic nanoparticle ink
광화학 활성 나노입자 잉크는 광산 발생제(PAG)와 전체 무기 나노입자의 조합으로 제조되었다. 모든 무기 나노입자는 무기 리간드와의 리간드 교환에 의해 획득되었다. 산소 또는 H2O 분자와의 접촉 및 자외선 노출을 방지하기 위해 모든 준비 공정은 N2 불활성 가스가 채워지고 노란색 자외선 차단 필름이 장착된 글로브 박스에서 수행되었다. A photochemically active nanoparticle ink was prepared from a combination of a photoacid generator (PAG) and total inorganic nanoparticles. All inorganic nanoparticles were obtained by ligand exchange with inorganic ligands. To prevent contact with oxygen or H 2 O molecules and UV exposure, all preparations were performed in a glove box filled with N 2 inert gas and equipped with a yellow UV-blocking film.
유기 캡핑 리간드를 무기 리간드로 교환하기 위해 일반적인 2상 리간드 교환 방법을 사용하여 유기물로 덮인 나노입자 표면을 처리했다. To exchange organic capping ligands with inorganic ligands, the organic-covered nanoparticle surfaces were treated using a conventional two-phase ligand exchange method.
구체적으로, 헥산(30 mg/ml) 중 1 mL의 Ag 나노입자를 극성 NMF(20 mg/ml)에 용해된 1 mL의 ATTM을 포함하는 10 mL 바이알에 첨가하여 비혼화성 2상 혼합물을 형성했다. 이 용액을 상부에서 하부로 나노입자의 상이동이 완료될 때까지 격렬하게 교반하였다. 리간드 교환 후, Ag 나노입자의 유기 리간드를 함유하는 헥산 층을 조심스럽게 버리고, 최종적으로 MoS4 2- 캡핑된 Ag 나노입자를 함유하는 수집된 용액을 과량의 이소프로판올(IPA)을 첨가하여 원심분리에 의해 정제하였다. 이 세척 단계를 3회 반복하여 남아 있는 과량의 MoS4 2-리간드를 완전히 제거하고, 침전된 Ag 나노입자를 신선한 NMF에 분산시켰다. Ag 나노입자에 캡핑된 MoS4 2- 리간드의 농도는 대략 100 ~ 300 mg/ml으로, 가능한 한 높은 것이 바람직하다.Specifically, 1 mL of Ag nanoparticles in hexane (30 mg/ml) was added to a 10 mL vial containing 1 mL of ATTM dissolved in polar NMF (20 mg/ml) to form an immiscible biphasic mixture. . This solution was vigorously stirred until phase transfer of the nanoparticles from top to bottom was completed. After ligand exchange, the hexane layer containing the organic ligands of the Ag nanoparticles was carefully discarded, and finally the collected solution containing the MoS 4 2- capped Ag nanoparticles was centrifuged by adding an excess of isopropanol (IPA). Purified by This washing step was repeated three times to completely remove the remaining excess MoS 4 2- ligand, and the precipitated Ag nanoparticles were dispersed in fresh NMF. The concentration of the MoS 4 2- ligand capped on the Ag nanoparticles is preferably about 100 to 300 mg/ml, which is as high as possible.
광감응 TDD 리간드 캡핑된 나노입자를 제조하기 위해, 헥산(30 mg/ml)에 1 mL의 Ag 나노입자를 NMF에 용해된 1 mL의 TDD (0.2M)가 들어 있는 갈색 바이알에 첨가하여 2상 용액을 형성했다. 격렬하게 교반하면서 리간드를 교환한 후, TDD로 캡핑된 Ag 나노입자를 톨루엔(1:3 v/v 비율)을 첨가하여 원심분리에 의해 세척하였다. 마지막으로, 침전된 Ag 나노입자를 극성 NMF에 재분산하고 더 사용하기 위해 어둡고 불활성 환경에서 보관하였다. To prepare photosensitive TDD ligand capped nanoparticles, 1 mL of Ag nanoparticles in hexane (30 mg/ml) was added to a brown vial containing 1 mL of TDD (0.2 M) dissolved in NMF to obtain a two-phase A solution was formed. After ligand exchange with vigorous stirring, the TDD-capped Ag nanoparticles were washed by centrifugation with the addition of toluene (1:3 v/v ratio). Finally, the precipitated Ag nanoparticles were redispersed in polar NMF and stored in a dark and inert environment for further use.
최종적으로, NMF 및 ACN 공용매 시스템(1:1.2 v/v)에서 이러한 표면 처리된 나노입자를 서로 다른 양의 IM-NIT PAG(0.01M)와 혼합하여 2성분 광 감응 전-나노입자 잉크를 제조하였다.Finally, two-component light-sensitive all-nanoparticle inks were prepared by mixing these surface-treated nanoparticles with different amounts of IM-NIT PAG (0.01 M) in NMF and ACN co-solvent systems (1:1.2 v/v). manufactured.
(4) 기판의 자기조립 단분자층(Self-assembly monolayer, SAM) 처리(4) Self-assembly monolayer (SAM) treatment of the substrate
슬라이드 커버 유리는 3D 나노 아키텍처 공정을 위한 상부 및 하부 기판으로 사용되었다.Slide cover glass was used as the top and bottom substrates for the 3D nanoarchitecture process.
유리는 상단 기판의 경우 18 mm x 18 mm (LxW)의 정사각형 모양으로 두께가 0.1 mm이고, 하단 기판의 경우 50 mm x 50 mm (LxW)의 정사각형 모양으로 두께가 0.1 mm이었다. 모든 유리는 SAM 코팅 전에 2분 동안 초음파 처리하여 각각 CHCl3, 아세톤 및 IPA로 사전 세척되었다.The glass was 0.1 mm thick in a 18 mm x 18 mm (L x W) square for the top substrate and 0.1 mm thick in a 50 mm x 50 mm (L x W) square for the bottom substrate. All glass was pre-cleaned with CHCl 3 , acetone and IPA, respectively, by sonicating for 2 min before SAM coating.
APTES로 SAM 처리된 상부 기판을 제작하기 위해 O2 플라즈마 처리된 유리를 밀폐 용기에 위치시켰다. 또한, APTES(2 wt% APTES 용액) 0.18 mL가 포함된 톨루엔 10 mL를 채운 샬레를 함께 놓은 뒤, 4 시간 동안 폐쇄 상태를 유지하였다. 그런 다음 SAM 처리된 유리를 핫 플레이트에서 30 분 동안 100
Figure PCTKR2022003086-appb-img-000010
로 가열했다.
The O 2 plasma-treated glass was placed in an airtight container to fabricate the SAM-treated upper substrate with APTES. In addition, the petri dish filled with 10 mL of toluene containing 0.18 mL of APTES (2 wt% APTES solution) was placed together and kept closed for 4 hours. Then, the SAM-treated glass was heated on a hot plate for 30 minutes at 100
Figure PCTKR2022003086-appb-img-000010
heated with
FOTS로 SAM 처리한 경우 샬레에 25 ㎕의 FOTS(200:1 v/v 비율)가 포함된 5 mL의 헥산을 채우고, 1 시간 20 분 동안 폐쇄 상태를 유지하였다. SAM 코팅 후 유리를 20 분 동안 120
Figure PCTKR2022003086-appb-img-000011
로 가열했다.
In the case of SAM treatment with FOTS, the petri dish was filled with 5 mL of hexane containing 25 μl of FOTS (200:1 v/v ratio), and kept closed for 1 hour and 20 minutes. After SAM coating, the glass was heated at 120 °C for 20 min.
Figure PCTKR2022003086-appb-img-000011
heated with
<실험예> 광 감응 전-무기 나노입자 및 나노입자 잉크의 물성 측정<Experimental Example> Measurement of physical properties of light-sensitive all-inorganic nanoparticles and nanoparticle ink
(1) 실험 방법(1) Experiment method
10 kV에서 작동하는 FEI 주사 전자 현미경(SEM)인 Nova-NanoSEM230을 사용하여 미세 구조 특성화를 수행했다. 나노입자의 투과 전자 현미경(TEM) 이미지는 200 kV에서 JEM-2100F 현미경(JEOL) 작동 전압을 사용하여 획득했다.Microstructural characterization was performed using a Nova-NanoSEM230, an FEI scanning electron microscope (SEM) operating at 10 kV. Transmission electron microscopy (TEM) images of the nanoparticles were acquired using a JEM-2100F microscope (JEOL) operating voltage at 200 kV.
비극성 및 극성 용매에 분산된 나노입자에 대한 TEM 시편은, 나노입자 용액을 탄소 코팅된 구리 TEM 그리드에 드롭 캐스팅하여 준비하고 진공 챔버에서 완전히 건조했다.TEM specimens for nanoparticles dispersed in non-polar and polar solvents were prepared by drop casting the nanoparticle solution onto carbon-coated copper TEM grids and completely dried in a vacuum chamber.
나노입자 용액의 UV-Vis 흡수 스펙트럼은 Shimadzu UV-2600 분광 광도계를 사용하여 실온(RT)에서 수집되었다. 푸리에 변환 적외선 분광법(FT-IR) 스펙트럼은 670/620 Varian FT-IR 분광계를 사용하여 감쇠 전반사(ATR) 모드에서 획득했다. UV-Vis absorption spectra of nanoparticle solutions were collected at room temperature (RT) using a Shimadzu UV-2600 spectrophotometer. Fourier transform infrared spectroscopy (FT-IR) spectra were acquired using a 670/620 Varian FT-IR spectrometer in attenuated total internal reflection (ATR) mode.
고출력 x선 회절(HPXRD) 패턴은 RT에서 Cu 회전 양극 X선 소스가 장착된 고전력 회절계(Rigaku, D/Max2500V/PC 회절계)를 사용하여 얻었다. Zetasizer 장비(Malvern, Nano-ZS90)를 사용하여 ζ-전위 데이터를 얻었다.High-power x-ray diffraction (HPXRD) patterns were obtained using a high-power diffractometer (Rigaku, D/Max2500V/PC diffractometer) equipped with a Cu rotating anode X-ray source at RT. ζ-potential data were obtained using a Zetasizer instrument (Malvern, Nano-ZS90).
DLP(Visiotech, Luxbeam Rapid System) 장비는 최대 5 mm x 3 mm 영역에서 365 nm 파장을 노출할 수 있으며, 최대 출력은 4W, 분해능은 2 μm x 2 μm이었다.DLP (Visiotech, Luxbeam Rapid System) equipment can expose 365 nm wavelengths in an area of up to 5 mm x 3 mm, with a maximum output of 4 W and a resolution of 2 μm x 2 μm.
Visual Studio, g 코드 기반 소프트웨어를 사용하여 슬라이싱된 이미지를 스테이지에 노출하여 적층을 수행하였다.Lamination was performed by exposing the sliced images on a stage using Visual Studio, a g-code based software.
Z-stage(Linax, Lxc)는 30 mm에서 100 nm까지 조절 가능하며, 노출된 빛은 셔터(Uniblitz, VED24)에 의해 제어되었다. 광학 이미지는 광학 현미경(Nikon, Eclipse Ti)과 부착된 CCD 카메라(Andor, Zyla)를 사용하여 획득했다.The Z-stage (Linax, Lxc) was adjustable from 30 mm to 100 nm, and the exposed light was controlled by a shutter (Uniblitz, VED24). Optical images were acquired using an optical microscope (Nikon, Eclipse Ti) and an attached CCD camera (Andor, Zyla).
물 접촉각은 KRUSS DSA100 각도계를 사용하여 측정하였다. 기능성 고분자가 코팅된 유리 기판 위에 부피가 약 5 μL인 물방울을 놓았다. 정확한 접촉각의 평균값을 얻기 위해 액적 양단의 정적 접촉각(
Figure PCTKR2022003086-appb-img-000012
)을 6회 이상 측정하였다.
The water contact angle was measured using a KRUSS DSA100 goniometer. A water droplet with a volume of about 5 μL was placed on a glass substrate coated with a functional polymer. Static contact angles across the droplets (
Figure PCTKR2022003086-appb-img-000012
) was measured at least 6 times.
간섭계 산란 현미경 이미지 및 해당 임의 프로파일 데이터는 3D 표면 프로파일러 장비(Nanosystem, NV-3000)를 사용하여 수집되었다.Interferometric scattering microscopy images and corresponding random profile data were collected using a 3D surface profiler instrument (Nanosystem, NV-3000).
(2) 실험 결과(2) Experimental results
1) 나노입자 및 나노입자 잉크의 특성 변화 관측1) Observation of changes in properties of nanoparticles and nanoparticle ink
도 1은, 1,3,4-thiadiazole-2,5-dithiol(TDD)로 캡핑된 인듐 주석 산화물, 금, 셀렌화납, 은, 텔루르화 카드뮴, 산화철 및 InP/ZnS(코어/쉘) 나노입자 용액의 사진이다.1 shows indium tin oxide, gold, lead selenide, silver, cadmium telluride, iron oxide, and InP/ZnS (core/shell) nanoparticles capped with 1,3,4-thiadiazole-2,5-dithiol (TDD). This is a picture of the solution.
도 2의 (a)는, 3,4-thiadiazole-2,5-dithiol (TDD), (NH4)2MoS4 및 N-(trifluoromethylsulfonyloxy)-1,8-naphthalimide (IM-NIT) 광산생성제의 UV-Vis 흡수 스펙트럼이고, 도 2의 (b)는, 유기물 및 광감응 리간드(TDD, MoS4 2-)로 캡핑된 Au 나노입자의 UV-Vis 흡수 스펙트럼이고, 도 2의 (c)는, 유기물 및 광감응 리간드(TDD)로 캡핑된 CdTe 나노입자의 UV-Vis 흡수 스펙트럼이다.2(a) shows 3,4-thiadiazole-2,5-dithiol (TDD), (NH 4 ) 2 MoS 4 and N-(trifluoromethylsulfonyloxy)-1,8-naphthalimide (IM-NIT) photoacid generator 2(b) is a UV-Vis absorption spectrum of Au nanoparticles capped with an organic material and a photosensitive ligand (TDD, MoS 4 2- ), and FIG. 2(c) is a UV-Vis absorption spectrum of , UV-Vis absorption spectra of organic and photosensitive ligand (TDD) capped CdTe nanoparticles.
도 2의 (a) 내지 도 2의 (c)를 참조하면, 리간드 치환 전후에 나노입자 고유의 물질 특성은 변하지 않음을 확인할 수 있다.Referring to FIG. 2(a) to FIG. 2(c) , it can be confirmed that the material properties inherent in the nanoparticles do not change before and after ligand substitution.
도 3은, 유기물 및 TDD로 캡핑된 나노입자의 전자 현미경 사진이다.3 is an electron micrograph of nanoparticles capped with organic material and TDD.
도 3의 (a)는, 유기물로 캡핑된 Ag 나노입자의 TEM 이미지이고, 도 3의 (b)는, 유기물로 캡핑된 Au 나노입자의 TEM 이미지이고, 도 3의 (c)는, 유기물로 캡핑된 InP/ZnS(코어/쉘) 나노입자의 TEM 이미지이고, 도 3의 (d)는, 유기물로 캡핑된 PbSe 나노입자의 TEM 이미지이고, 도 3의 (e)는, 유기물로 캡핑된 Fe3O4 나노입자의 TEM 이미지이고, 도 3의 (f)는, 유기물로 캡핑된 ITO 나노입자의 TEM 이미지이다.Figure 3 (a) is a TEM image of Ag nanoparticles capped with an organic material, Figure 3 (b) is a TEM image of Au nanoparticles capped with an organic material, and Figure 3 (c) is a TEM image of organic material capped Au nanoparticles. TEM image of capped InP/ZnS (core/shell) nanoparticles, FIG. 3(d) is a TEM image of PbSe nanoparticles capped with an organic material, and FIG. 3(e) shows Fe 3 O 4 It is a TEM image of nanoparticles, and FIG. 3(f) is a TEM image of ITO nanoparticles capped with an organic material.
도 3의 (g)는, TDD로 캡핑된 Ag 나노입자의 TEM 이미지이고, 도 3의 (h)는, TDD로 캡핑된 Au 나노입자의 TEM 이미지이고, 도 3의 (i)는, TDD로 캡핑된 InP/ZnS(코어/쉘) 나노입자의 TEM 이미지이고, 도 3의 (j)는, TDD로 캡핑된 PbSe 나노입자의 TEM 이미지이고, 도 3의 (k)는, TDD로 캡핑된 Fe3O4 나노입자의 TEM 이미지이고, 도 3의 (l)은, TDD로 캡핑된 ITO 나노입자의 TEM 이미지이다.Fig. 3(g) is a TEM image of Ag nanoparticles capped with TDD, Fig. 3(h) is a TEM image of Au nanoparticles capped with TDD, and Fig. 3(i) shows a TEM image of TDD-capped Au nanoparticles. TEM image of capped InP/ZnS (core/shell) nanoparticles, FIG. 3(j) is a TEM image of TDD-capped PbSe nanoparticles, and FIG. 3(k) shows TDD-capped Fe 3 O 4 It is a TEM image of nanoparticles, and FIG. 3 (l) is a TEM image of ITO nanoparticles capped with TDD.
도 3의 (a) 내지 도 3의 (l)을 참조하면, 모든 광 강응 무기 리간드로 캡핑된 나노입자는 크기 및 형태가 유지됨을 알 수 있다.Referring to FIGS. 3(a) to 3(l), it can be seen that the size and shape of the nanoparticles capped with all light-enhancing inorganic ligands are maintained.
도 4의 (a)는, TDD로 캡핑된 나노입자들의 ζ 전위 분포 그래프이고, 도 4의 (b)는, 광산 생성제가 결합된 광 감응 Ag 나노입자(TDD로 캡핑된 Ag 나노입자) 잉크의 자외선 노출 전/후의 ζ 전위 분포 그래프이고, 도 4의 (c)는, 광산 생성제가 결합된 광 감응 Ag 나노입자(TDD로 캡핑된 Ag 나노입자) 의 자외선 노출 전/후의 동적 광 산란 입자 크기 분석 결과이다.Fig. 4(a) is a ζ potential distribution graph of nanoparticles capped with TDD, and Fig. 4(b) is a photosensitive Ag nanoparticle (Ag nanoparticle capped with TDD) ink coupled with a photoacid generator. ζ potential distribution graph before/after UV exposure, and FIG. 4(c) shows dynamic light scattering particle size analysis before/after UV exposure of light-sensitive Ag nanoparticles (Ag nanoparticles capped with TDD) coupled with a photoacid generator. This is the result.
도 4의 (a) 내지 도 4의 (c)를 참조하면, 광산 생성제가 혼합된 광 감응 나노입자 잉크는 특정 UV 파장의 빛에 의해 기존에 가지고 있던 표면 음전하를 잃고 효과적으로 침전됨을 알 수 있다. Referring to FIGS. 4(a) to 4(c) , it can be seen that the light-sensitive nanoparticle ink in which the photoacid generator is mixed loses its surface negative charge and is effectively precipitated by light of a specific UV wavelength.
도 5는, 유기물 및 TDD 로 캡핑된 나노입자의 XRD 패턴이다.5 is an XRD pattern of nanoparticles capped with an organic material and TDD.
도 5의 (a)는, 유기물 및 TDD 로 캡핑된 InP/ZnS(코어/쉘) 나노입자의 XRD 패턴이고, 도 5의 (b)는, 유기물 및 TDD 로 캡핑된 Au 나노입자의 XRD 패턴이고, 도 5의 (c)는, 유기물 및 TDD 로 캡핑된 CdTe 나노입자의 XRD 패턴이고, 도 5의 (d)는, 유기물 및 TDD 로 캡핑된 PbSe 나노입자의 XRD 패턴이고, 도 5의 (e)는, 유기물 및 TDD 로 캡핑된 Fe3O4나노입자의 XRD 패턴이고, 도 5의 (f)는, 유기물 및 TDD 로 캡핑된 ITO 나노입자의 XRD 패턴이다.5(a) is an XRD pattern of InP/ZnS (core/shell) nanoparticles capped with an organic material and TDD, and FIG. 5(b) is an XRD pattern of Au nanoparticles capped with an organic material and TDD. 5(c) is an XRD pattern of CdTe nanoparticles capped with an organic material and TDD, FIG. 5(d) is an XRD pattern of PbSe nanoparticles capped with an organic material and TDD, and FIG. ) is an XRD pattern of Fe 3 O 4 nanoparticles capped with an organic material and TDD, and (f) of FIG. 5 is an XRD pattern of ITO nanoparticles capped with an organic material and TDD.
도 5를 참조하면, 리간드 치환 전/후에 나노입자의 결정성이 유지됨을 확인할 수 있다.Referring to FIG. 5 , it can be confirmed that the crystallinity of the nanoparticles is maintained before/after ligand substitution.
도 6은, 50 uM의 N-(trifluoromethylsulfonyloxy)-1,8-naphthalimide (IM-NIT) 광산 생성제와 5 uM 의 로다민 B (1:1 v/v ratio) 혼합물의 365 nm 자외선 조사 전/후의 UV-vis 흡수 스펙트럼 이다(삽도는 아세토니트릴에 녹아 있는 혼합물의 자외선 조사 전/후의 용액사진). 6 shows the mixture of 50 uM N-(trifluoromethylsulfonyloxy)-1,8-naphthalimide (IM-NIT) photoacid generator and 5 uM rhodamine B (1:1 v/v ratio) before/after 365 nm UV irradiation. This is the UV-vis absorption spectrum after (inset is a picture of the solution before and after ultraviolet irradiation of the mixture dissolved in acetonitrile).
도 6을 참조하면, 광산 생성제인 IM-NIT의 광분해로 인한 최종 생성물인 양성자(H+)의 존재를 확인할 수 있다.Referring to FIG. 6 , the presence of protons (H + ), which is a final product resulting from the photolysis of IM-NIT, which is a photoacid generator, can be confirmed.
구체적으로, 광산 생성제인 IM-NIT의 광분해로 인한 최종 생성물인 양성자(H+)의 존재는 형광 염료로서 생명 공학 응용 분야에서 광범위하게 사용되는 로다민 B의 색상 변화에 의해 쉽게 입증된다. 로다민 B는 "닫힌" 형태와 "열린" 형태 두 가지 형태로 존재할 수 있다. 염기성 조건에서는 무색 및 무형광 특성을 갖지만 산성 조건에서는 밝은 분홍색을 나타내면서 형광성 개환 화학 구조로 변형된다. 예를 들어, ACN에 용해된 IM-NIT와 로다민 B의 혼합물은 UV 빛에 노출되었을 때 무색에서 밝은 분홍색으로 눈에 띄는 색상 변화를 보였을 뿐만 아니라 UV 조사 후 형광 화학 구조에서 기인한 흡수 피크의 형성을 보여주었다.Specifically, the presence of protons (H + ), which are end products resulting from the photolysis of IM-NIT, a photoacid generator, is easily demonstrated by the color change of rhodamine B, which is widely used in biotechnology applications as a fluorescent dye. Rhodamine B can exist in two forms: "closed" and "open" forms. In basic conditions, it is colorless and non-fluorescent, but in acidic conditions, it is transformed into a fluorescent ring-opening chemical structure, showing a bright pink color. For example, a mixture of IM-NIT and rhodamine B dissolved in ACN not only showed a noticeable color change from colorless to bright pink when exposed to UV light, but also showed a significant change in the absorption peak originating from the fluorescent chemical structure after UV irradiation. formation was shown.
이를 통해 ACN에 용해된 IM-NIT로부터 산성 양성자의 성공적인 생성을 확인할 수 있다.This confirms the successful production of acidic protons from IM-NIT dissolved in ACN.
2) 무기 나노입자 잉크를 사용한 3D 프린팅 공정에서의 SAM 처리 기판 특성 확인2) Confirmation of SAM treated substrate characteristics in 3D printing process using inorganic nanoparticle ink
도 7은, 본 발명에 사용된 광학 3D 프린터 장비 사진 및 DLP 방식 기반의 3D 프린팅 과정 개략도이다.7 is a schematic diagram of a 3D printing process based on a photograph of the optical 3D printer equipment used in the present invention and a DLP method.
도 8의 (a) 내지 도 8의 (d)는, 유리 기판 위의 물방울 도포 사진이다.8(a) to 8(d) are photographs of water droplets applied on a glass substrate.
도 8의 (a)는, 일반 유리 기판 위의 물방울 도포 사진이고, 도 8의 (b)는, O2 plasma 처리된 유리 기판 위의 물방울 도포 사진이고, 도 8의 (c)는, trichloro(1H,1H,2H,2H-perfluorooctyl)silane (FOTS) 코팅 처리된 유리 기판 위의 물방울 도포 사진이고, 도 8의 (d)는, (3-aminopropyl)triethoxysilane (APTES) 코팅 처리된 유리 기판 위의 물방울 도포 사진이다.Figure 8 (a) is a picture of water droplets applied on a general glass substrate, Figure 8 (b) is a picture of water droplets applied on a glass substrate treated with O 2 plasma, Figure 8 (c) is trichloro ( 1H,1H,2H,2H-perfluorooctyl)silane (FOTS) is a photograph of water droplets applied on a coated glass substrate, and FIG. 8 (d) is a (3-aminopropyl)triethoxysilane (APTES) coated glass substrate. This is a picture of a drop of water.
도 8의 (a) 내지 도 8의 (d)를 참조하면, 바닥에 위치하는 ink bath의 경우 광 감응 나노입자 잉크가 달라붙지 않도록 초소수성을 부여하고, 나노입자 구조체가 형성될 수 있는 상부 기판에는 나노입자와 결합할 수 있는 작용기를 도입하여 구조체가 안정적으로 붙어있도록 하는 것이 중요한데, SAM 처리를 통해 원하는 기판에 원하는 물질을 올릴 수 있음을 시사한다.8(a) to 8(d), in the case of an ink bath located on the bottom, superhydrophobicity is provided so that the photosensitive nanoparticle ink does not stick to the upper substrate on which the nanoparticle structure can be formed. It is important to introduce a functional group that can bind to nanoparticles so that the structure can be stably attached, suggesting that a desired material can be placed on a desired substrate through SAM treatment.
도 9는, 본 발명의 일 실시형태에 따른 PDMS 잉크 배스 사진이다. 9 is a photograph of a PDMS ink bath according to an embodiment of the present invention.
3) 무기 나노입자 잉크를 사용한 3D 프린팅 공정 조건에 따른 결과 확인3) Confirmation of results according to 3D printing process conditions using inorganic nanoparticle ink
도 10은, 본 발명의 일 실시형태에 따른 3D 프린팅 공정을 이용한 2차원 패터닝 과정 순서의 사진 및 해당 과정의 나노입자 경화 메커니즘 모식도이다. 10 is a photograph of a two-dimensional patterning process sequence using a 3D printing process according to an embodiment of the present invention and a schematic diagram of a nanoparticle curing mechanism in the process.
도 10을 참조하면, 광 감응 전-무기 나노입자 잉크가 넓게 도포된 부위에 365 nm 파장을 가지는 패턴된 자외선을 특정 영역에만 조사하면 해당 부위에 효과적인 나노입자의 침전이 발생하여 기존에 분산되어 있던 용액에 다시 재 분산되지 않고 패턴된 빛의 형태와 일치하는 나노입자 구조체를 형성하는 것을 확인할 수 있다. 즉, 이를 1번만 수행하면 2차원 패턴을 얻을 수 있고, 3D 프린팅 공정을 통해 수 차례 반복하면 적층된 3차원 구조체를 얻을 수 있다.Referring to FIG. 10, when a patterned ultraviolet light having a wavelength of 365 nm is irradiated only to a specific area to an area where light-sensitive all-inorganic nanoparticle ink is widely applied, effective precipitation of nanoparticles occurs in the area, which is previously dispersed. It can be confirmed that the nanoparticle structure is not redispersed in the solution and a nanoparticle structure consistent with the patterned light is formed. That is, a two-dimensional pattern can be obtained by performing this only once, and a stacked three-dimensional structure can be obtained by repeating this several times through a 3D printing process.
도 11은, 광 감응 전-무기 나노입자 잉크의 파라미터 조절 (나노입자 농도 대 광산생성제 농도) 결과에 따른 광학 이미지 사진이다. 11 is an optical image photograph according to the result of parameter adjustment (nanoparticle concentration versus photoacid generator concentration) of light-sensitive all-inorganic nanoparticle ink.
도 11을 참조하면, 나노입자와 광산 생성제의 농도가 적절한 값으로 유지되며 혼합되었을 때 최적의 프린팅을 이룰 수 있음을 확인할 수 있다.Referring to FIG. 11 , it can be confirmed that optimal printing can be achieved when the concentrations of the nanoparticles and the photoacid generator are maintained at appropriate values and mixed.
도 12는, 프린팅 파라미터 조절 (빛 세기밀도 대 광 노출시간) 결과에 따른 광학 이미지 사진이다. 12 is an optical image photograph according to the result of adjusting the printing parameters (light intensity versus light exposure time).
도 13은, 도 12의 각 구조체 모양에 해당하는 경화 조건 별 직경 그래프이다.13 is a diameter graph for each curing condition corresponding to each structure shape of FIG. 12 .
도 13의 (a)는, 세모 구조체의 경화 조건 별 직경 그래프이고, 도 13의 (b)는, 네모 구조체의 경화 조건 별 직경 그래프이고, 도 13의 (c)는, 동그라미 구조체의 경화 조건 별 직경 그래프이고, 도 13의 (d)는, 하트 구조체의 경화 조건 별 직경 그래프이다.13(a) is a diameter graph for each curing condition of a triangular structure, FIG. 13(b) is a diameter graph for each curing condition for a rectangular structure, and FIG. 13(c) is a diameter graph for each curing condition for a circular structure. It is a diameter graph, and FIG. 13(d) is a diameter graph for each curing condition of the heart structure.
도 13을 참조하면, 같은 잉크 조건에서도 빛의 세기가 세질수록, 광 노출시간이 길어질수록 목표 설정한 크기보다 더 크게 제작되는 과경화가 발생됨을 알 수 있으며, 반대로 충분한 빛의 세기 및 광 노출시간이 주어지지 않는 경우 경화가 덜 되는 현상이 관찰됨을 확인할 수 있다. 또한, 형성하려는 구조체 모양에 따라 최적의 프린팅 조건이 있음을 알 수 있다.Referring to FIG. 13, it can be seen that as the light intensity increases and the light exposure time increases even under the same ink conditions, overcuring occurs in a size larger than the target size. Conversely, sufficient light intensity and light exposure time When not given, it can be confirmed that the phenomenon of less curing is observed. In addition, it can be seen that there are optimal printing conditions depending on the shape of the structure to be formed.
4) 무기 나노입자 잉크를 사용한 3D 프린팅 방법으로 형성된 패턴 및 구조체 특성 확인4) Confirmation of pattern and structure characteristics formed by 3D printing method using inorganic nanoparticle ink
도 14는, 광 감응 Ag 나노입자로 패터닝된 전극 패턴, 2차원 패턴 및 3차원 구조체의 SEM 이미지이다.14 is an SEM image of an electrode pattern, a 2D pattern, and a 3D structure patterned with photosensitive Ag nanoparticles.
도 14의 (a)내지 도 14의 (c)는, 광 감응 Ag 나노입자로 패터닝된 전극 패턴의 SEM 이미지이고, 도 14의 (d) 및 도 14의 (e)는, 광 감응 Ag 나노입자로 패터닝된 2차원 패턴의 SEM 이미지이고, 도 14의 (f) 및 도 14의 (g)는, 광 감응 Ag 나노입자로 패터닝된 3차원 구조체의 SEM 이미지이다.14(a) to 14(c) are SEM images of electrode patterns patterned with photosensitive Ag nanoparticles, and FIGS. 14(d) and 14(e) show photosensitive Ag nanoparticles. 14(f) and 14(g) are SEM images of a 3-dimensional structure patterned with light-sensitive Ag nanoparticles.
도 15의 (a) 및 도 15의 (d)는, 광 감응 Ag 나노입자 잉크로 제작된 구조체의 광학 현미경 사진이고, 도 15의 (b)는, 광 감응 Ag 나노입자 잉크로 제작된 구조체의 TEM 이미지이고, 도 15의 (c)는, 광 감응 Ag 나노입자 잉크로 제작된 구조체의 high-resolution TEM 이미지이다. 15(a) and 15(d) are optical micrographs of structures fabricated with light-sensitive Ag nanoparticle ink, and FIG. 15(b) shows optical micrographs of structures fabricated with light-sensitive Ag nanoparticle ink. It is a TEM image, and FIG. 15(c) is a high-resolution TEM image of a structure fabricated with light-sensitive Ag nanoparticle ink.
도 15의 (e) 및 도 15의 (f)는, 광 감응 Ag 나노입자 잉크로 제작된 구조체의 SEM 이미지이고, 도 15의 (g)는, CdTe 나노입자 구조체의 SEM 이미지이고, 도 15의 (h)는, Au 나노입자 구조체의 SEM 이미지이고, 도 15의 (i)는 Au 구조체의 측면 SEM 이미지이다.15(e) and 15(f) are SEM images of a structure fabricated with light-sensitive Ag nanoparticle ink, and FIG. 15(g) is a SEM image of a CdTe nanoparticle structure. (h) is a SEM image of the Au nanoparticle structure, and (i) of FIG. 15 is a side SEM image of the Au structure.
도 15를 참조하면, TEM 이미지를 통해 형성된 구조체는 나노입자들의 붕괴 없이 나노입자 빌딩 블록을 기반으로 만들어짐을 확인할 수 있으며, 확대한 SEM 이미지를 통해 형성된 구조체는 나노입자가 매우 고밀도로 잘 쌓여있음을 확인할 수 있다.Referring to FIG. 15, it can be seen from the TEM image that the structure formed is based on the nanoparticle building blocks without collapse of the nanoparticles, and the structure formed through the enlarged SEM image shows that the nanoparticles are well stacked at a very high density. You can check.
도 16은, 유기물 및 TDD 로 캡핑된 Ag 나노입자 및 광 경화된 Ag 나노입자 패턴의 XRD 패턴이다. 16 is an XRD pattern of Ag nanoparticles capped with an organic material and TDD, and photo-cured Ag nanoparticle patterns.
도 16을 참조하면, 광 감응 전-무기 Ag 나노입자를 이용한 Ag 패턴의 경우 열처리 후에도 결정구조의 변화 없이 나노입자 고유의 특성을 보존함을 확인할 수 있다.Referring to FIG. 16 , in the case of Ag patterns using light-sensitive all-inorganic Ag nanoparticles, it can be seen that the inherent characteristics of the nanoparticles are preserved without a change in crystal structure even after heat treatment.
도 17은, 광 경화된 Au 나노입자 구조체의 온도에 따른 전기전도도 그래프이다. 17 is a graph of electrical conductivity according to temperature of a photo-cured Au nanoparticle structure.
도 18은, 광 경화된 3차원 Ag 나노입자 기반의 다양한 형태 피라미드 구조체의 간섭계 산란 현미경을 통한 3차원 이미지 및 해당 구조체의 프로파일 그래프이다. 18 is a 3D image through an interferometry scattering microscope of pyramidal structures of various shapes based on light-cured 3D Ag nanoparticles and a profile graph of the structures.
도 18을 참조하면, 본 발명에 따른 광학 기반 판상형 3차원 아키텍처 프린팅 기술을 통해 다양한 모양의 3차원 피라미드 아키텍처를 손쉽게 제작할 수 있음을 알 수 있다.Referring to FIG. 18 , it can be seen that 3D pyramid architectures of various shapes can be easily manufactured through the optical-based plate-like 3D architecture printing technology according to the present invention.
도 19는, 광 경화된 3차원 Ag 나노입자 기반 전자 회로 구조체의 간섭계 산란 현미경을 통한 3차원 이미지 및 해당 구조체의 프로파일 그래프이다.19 is a 3D image of a light-cured 3D Ag nanoparticle-based electronic circuit structure through an interferometry scattering microscope and a profile graph of the structure.
도 19를 참조하면, 본 발명에 따른 3차원 구조체 프린팅 방법은, 100 nm 두께 차이를 갖는 복잡한 3차원 아키텍처까지도 한 번에 제작이 가능함을 알 수 있다. Referring to FIG. 19 , it can be seen that the 3D structure printing method according to the present invention can manufacture even a complex 3D architecture having a thickness difference of 100 nm at once.
도 20은, 도 19에 해당하는 구조체의 SEM 사진이다.FIG. 20 is a SEM photograph of the structure corresponding to FIG. 19 .
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.As described above, although the embodiments have been described with limited drawings, those skilled in the art can apply various technical modifications and variations based on the above. For example, the described techniques may be performed in an order different from the method described, and/or components of the described system, structure, device, circuit, etc. may be combined or combined in a different form than the method described, or other components may be used. Or even if it is replaced or substituted by equivalents, appropriate results can be achieved.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.Therefore, other implementations, other embodiments, and equivalents of the claims are within the scope of the following claims.

Claims (17)

  1. 유기물로 캡핑된 나노입자를 준비하는 단계;Preparing nanoparticles capped with an organic material;
    상기 유기물로 캡핑된 나노입자를 무극성 용매에 분산시켜 나노입자 분산액을 제조하는 단계;preparing a nanoparticle dispersion by dispersing the nanoparticles capped with the organic material in a non-polar solvent;
    무기 리간드를 극성 용매에 용해하여 무기 리간드 용액을 제조하는 단계;preparing an inorganic ligand solution by dissolving an inorganic ligand in a polar solvent;
    상기 나노입자 분산액 및 상기 무기 리간드 용액을 혼합한 혼합물을 교반하여 무기 리간드로 캡핑된 나노입자를 얻는 단계;obtaining nanoparticles capped with an inorganic ligand by stirring a mixture of the nanoparticle dispersion and the inorganic ligand solution;
    상기 무기 리간드로 캡핑된 나노입자를 극성 용매에 분산시켜 전-무기 나노입자 용액을 제조하는 단계; 및preparing an all-inorganic nanoparticle solution by dispersing the nanoparticles capped with the inorganic ligand in a polar solvent; and
    상기 무기 나노입자 용액 및 광산 생성제(photoacid generator)를 혼합하는 단계;를 포함하는,Mixing the inorganic nanoparticle solution and a photoacid generator;
    광 감응 전-무기 나노입자 잉크의 제조방법.Method for preparing photosensitive all-inorganic nanoparticle ink.
  2. 제1항에 있어서,According to claim 1,
    상기 나노입자는,The nanoparticles,
    반도체 물질, 자성 물질, 금속 물질, 산화 물질, 자성 합금 또는 다성분 혼성 구조체 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것인,It includes at least one selected from the group consisting of a semiconductor material, a magnetic material, a metal material, an oxide material, a magnetic alloy, or a multi-component hybrid structure material,
    광 감응 전-무기 나노입자 잉크의 제조방법.Method for preparing photosensitive all-inorganic nanoparticle ink.
  3. 제1항에 있어서,According to claim 1,
    상기 나노입자는,The nanoparticles,
    CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, GaN, GaP, GaAs, PbS, PbSe, PbTe, GaSb, AlN, AlP, AlAs, AlSb, InP, InP/ZnS(코어/쉘), InAs, InSb, SiC, Pt, Ni, Co, Al, ITO. SnO2, Ag, Au, Cu, FePt, Fe2O3, Fe3O4, Ge, (NaYF4:Yb3+,Er3+), (NaYF4:Yb3+,Tm3+), (NaGdF4:Yb3+,Er3+), (NaYF4:Yb3+,Er3+/NaGdF4) 및 (NaGdF4:Yb3+,Er3+/NaGdF4)로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것인,CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, GaN, GaP, GaAs, PbS, PbSe, PbTe, GaSb, AlN, AlP, AlAs, AlSb, InP, InP/ZnS (core/shell), InAs, InSb, SiC , Pt, Ni, Co, Al, ITO. SnO 2 , Ag, Au, Cu, FePt, Fe 2 O 3 , Fe 3 O 4 , Ge, (NaYF 4 :Yb 3+ ,Er 3+ ), (NaYF 4 :Yb 3+ ,Tm 3+ ), ( NaGdF 4 :Yb 3+ ,Er 3+ ), (NaYF 4 :Yb 3+ ,Er 3+ /NaGdF 4 ) and (NaGdF 4 :Yb 3+ ,Er 3+ /NaGdF 4 ). which includes any one,
    광 감응 전-무기 나노입자 잉크의 제조방법.Method for preparing photosensitive all-inorganic nanoparticle ink.
  4. 제1항에 있어서,According to claim 1,
    상기 무기 리간드는,The inorganic ligand,
    MoS4 2-, Sn2S6 4-, In2Se4 2-, S2-, Se2-, Te2-, SCN-, SnS4 4-, SnTe4 4-, AsS3 3-, BF4 - 산소산음이온(oxoanion), 폴리옥소메탈레이트(polyoxometalate), 할라이드(halide), 할로메탈레이트(halometalate) 및 폴리포스파이드(Px n-)로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것인, MoS 4 2- , Sn 2 S 6 4- , In 2 Se 4 2- , S 2- , Se 2- , Te 2- , SCN - , SnS 4 4- , SnTe 4 4- , AsS 3 3- , BF 4 - containing at least one selected from the group consisting of oxoanion, polyoxometalate, halide, halometalate and polyphosphide (P x n- ) person,
    광 감응 전-무기 나노입자 잉크의 제조방법.Method for preparing photosensitive all-inorganic nanoparticle ink.
  5. 제1항에 있어서,According to claim 1,
    상기 혼합물은, 1상 혼합물 또는 2상 혼합물이고,The mixture is a one-phase mixture or a two-phase mixture,
    상기 교반 시, 상기 나노입자 표면에 존재하는 유기 리간드가 무기 리간드로 치환되는 것인,During the stirring, organic ligands present on the surface of the nanoparticles are replaced with inorganic ligands,
    광 감응 전-무기 나노입자 잉크의 제조방법.Method for preparing photosensitive all-inorganic nanoparticle ink.
  6. 제1항에 있어서,According to claim 1,
    상기 무극성 용매는, N-헥세인 (N-hexane), 펜테인 (pentane), 사이클로헥세인 (cyclohexane), 톨루엔(Toluene) 및 클로로포름(Chloroform)으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고,The non-polar solvent includes at least one selected from the group consisting of N-hexane, pentane, cyclohexane, toluene, and chloroform,
    상기 극성 용매는, 디메틸에테르(DME), 테트라히드로푸란(THF), 디메틸포름아미드(DMF), N-메틸포름아미드(NMF), N,N-디메틸포름아미드(DMF), 디메틸설폭사이드(DMSO), 에틸렌디아민(En), 포름아미드(FA), 하이드라진(N2H4) 및 디메틸아세트아미드로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것인,The polar solvent is dimethyl ether (DME), tetrahydrofuran (THF), dimethylformamide (DMF), N-methylformamide (NMF), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO ), containing at least one selected from the group consisting of ethylenediamine (En), formamide (FA), hydrazine (N 2 H 4 ) and dimethylacetamide,
    광 감응 전-무기 나노입자 잉크의 제조방법.Method for preparing photosensitive all-inorganic nanoparticle ink.
  7. 제1항에 있어서,According to claim 1,
    상기 광산 생성제는,The photoacid generator,
    200 nm 내지 500 nm의 파장영역에서 빛에 반응하여 양성자(H+)을 생성하는 것인,To generate protons (H + ) in response to light in the wavelength range of 200 nm to 500 nm,
    광 감응 전-무기 나노입자 잉크의 제조방법.Method for preparing photosensitive all-inorganic nanoparticle ink.
  8. 제1항에 있어서,According to claim 1,
    상기 광산 생성제는,The photoacid generator,
    이온성 광산 생성제, 비이온성 광산 생성제 또는 이 둘;을 포함하는 것인,An ionic photoacid generator, a nonionic photoacid generator or both;
    광 감응 전-무기 나노입자 잉크의 제조방법.Method for preparing photosensitive all-inorganic nanoparticle ink.
  9. 제8항에 있어서,According to claim 8,
    상기 이온성 광산 생성제는, SbF6-, AsF6-, BF4-, C4F9SO3- 및 CF3SO3-로 이루어진 군에서 선택되는 적어도 어느 하나의 음이온을 포함하는 것인,The ionic photoacid generator includes at least one anion selected from the group consisting of SbF 6- , AsF 6- , BF 4- , C 4 F 9 SO 3- and CF 3 SO 3- ,
    광 감응 전-무기 나노입자 잉크의 제조방법.Method for preparing photosensitive all-inorganic nanoparticle ink.
  10. 제8항에 있어서,According to claim 8,
    상기 이온성 광산 생성제는, 디아릴요오도늄, 트리아릴술포늄, 아릴디아조늄 및 트리아릴포스포늄염으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것이고,The ionic photoacid generator includes at least one selected from the group consisting of diaryliodonium, triarylsulfonium, aryldiazonium and triarylphosphonium salts,
    상기 비이온성 광산 생성제는, 할로겐화 트리아진, 유기 설폰산의 2-니트로벤질 에스테르, 유기 설폰산의 4-니트로벤질 에스테르, 퀴놀론, N-하이드록시이미드 또는 N-하이드록시아미드 설포네이트, 이미노 설포네이트 및 디아조나프토퀴논으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것인,The nonionic photoacid generator is a halogenated triazine, 2-nitrobenzyl ester of organic sulfonic acid, 4-nitrobenzyl ester of organic sulfonic acid, quinolone, N-hydroxyimide or N-hydroxyamide sulfonate, imino It contains at least one selected from the group consisting of sulfonates and diazonaphthoquinones,
    광 감응 전-무기 나노입자 잉크의 제조방법.Method for preparing photosensitive all-inorganic nanoparticle ink.
  11. 제1항에 있어서,According to claim 1,
    상기 무기 나노입자 용액 및 광산 생성제(photoacid generator)는,The inorganic nanoparticle solution and photoacid generator,
    1: 0.5 내지 1 : 3 비율로 혼합하는 것인,Mixing in a ratio of 1: 0.5 to 1: 3,
    광 감응 전-무기 나노입자 잉크의 제조방법.Method for preparing photosensitive all-inorganic nanoparticle ink.
  12. 제11항의 제조방법으로 제조된 광 감응 전-무기 나노입자 잉크를 포함하는,Comprising the light-sensitive all-inorganic nanoparticle ink prepared by the manufacturing method of claim 11,
    3D 프린팅용 잉크. Ink for 3D printing.
  13. 제12항의 3D 프린팅용 잉크를 잉크 배스에 채우는 단계; 및Filling an ink bath with the ink for 3D printing of claim 12; and
    상기 잉크 배스에 채워진 3D 프린팅용 잉크 표면에 상부 기판을 위치시킨 뒤, 광학 기반 3D 프린팅 공정을 수행하여 상기 상부 기판 표면에 구조체를 형성시키는 단계;Forming a structure on the surface of the upper substrate by placing an upper substrate on the surface of the ink for 3D printing filled in the ink bath and performing an optical 3D printing process;
    를 포함하는,including,
    3차원 구조체 프린팅 방법.3D structure printing method.
  14. 제13항에 있어서,According to claim 13,
    상기 상부 기판의 표면에는, 자기조립 단분자막(Self-assembly monolayer)이 형성된 것인,On the surface of the upper substrate, a self-assembly monolayer is formed,
    3차원 구조체 프린팅 방법.3D structure printing method.
  15. 제13항에 있어서,According to claim 13,
    상기 기판의 표면은, 나노입자와의 결합을 유도할 수 있는 화합물로 코팅되는 것이고,The surface of the substrate is coated with a compound capable of inducing binding to nanoparticles,
    상기 나노입자와의 결합을 유도할 수 있는 화합물은, (3-메르캅토프로필)트리메톡시실란(MPTES) 및 (3-아미노프로필)트리에톡시실란(APTES) 중 하나 이상을 포함하는 것인,The compound capable of inducing binding with the nanoparticles includes at least one of (3-mercaptopropyl)trimethoxysilane (MPTES) and (3-aminopropyl)triethoxysilane (APTES) ,
    3차원 구조체 프린팅 방법.3D structure printing method.
  16. 제13항에 있어서,According to claim 13,
    상기 잉크 배스의 바닥은, 초소수성 물질로 코팅되는 것이고,The bottom of the ink bath is coated with a superhydrophobic material,
    상기 초소수성 물질은, 디클로로디메틸실란(DCDMS) 및 트리클로로(1H,1H,2H,2H-퍼플루오로옥틸)실란(FOTS) 중 하나 이상을 포함하는 것인,Wherein the superhydrophobic material includes at least one of dichlorodimethylsilane (DCDMS) and trichloro(1H,1H,2H,2H-perfluorooctyl)silane (FOTS),
    3차원 구조체 프린팅 방법.3D structure printing method.
  17. 제13항에 있어서,According to claim 13,
    상기 광학 기반 3D 프린팅 공정은,The optical-based 3D printing process,
    Digital Light Processing (DLP), Stereolithography Apparatus (SLA), Continuous Liquid Interface Production (CLIP), Computed Axial Lithography (CAL), Direct Laser Writing (DLW), E-Beam Lithography (EBL) 및 Nanoimprint Lithography (NIL)로 이루어진 군에서 선택되는 하나 이상의 공정을 포함하는 것인,Digital Light Processing (DLP), Stereolithography Apparatus (SLA), Continuous Liquid Interface Production (CLIP), Computed Axial Lithography (CAL), Direct Laser Writing (DLW), E-Beam Lithography (EBL) and Nanoimprint Lithography (NIL) To include one or more steps selected from the group,
    3차원 구조체 프린팅 방법.3D structure printing method.
PCT/KR2022/003086 2021-11-25 2022-03-04 Method for manufacturing light-sensitive all-inorganic nanoparticle ink and 3-dimensional structure printing method using same WO2023096028A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210164552A KR20230077358A (en) 2021-11-25 2021-11-25 Manufacturing method of photosensitive all-inorganic nanoparticle ink and 3D structure printing method using the same
KR10-2021-0164552 2021-11-25

Publications (1)

Publication Number Publication Date
WO2023096028A1 true WO2023096028A1 (en) 2023-06-01

Family

ID=86539961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/003086 WO2023096028A1 (en) 2021-11-25 2022-03-04 Method for manufacturing light-sensitive all-inorganic nanoparticle ink and 3-dimensional structure printing method using same

Country Status (2)

Country Link
KR (1) KR20230077358A (en)
WO (1) WO2023096028A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130042372A (en) * 2011-10-18 2013-04-26 삼성전자주식회사 Method for producing quantum dot
KR20180016867A (en) * 2016-08-08 2018-02-20 김광현 Digital light processing type 3d printer
KR20180035735A (en) * 2015-04-30 2018-04-06 포캐스트 리서치 앤 디벨럽먼트 코프. Improved stereo lithography system
KR20190140458A (en) * 2017-04-18 2019-12-19 더 유니버서티 오브 시카고 Photoactive Inorganic Ligand-Capped Inorganic Nanocrystals
KR20210039098A (en) * 2019-10-01 2021-04-09 고려대학교 산학협력단 Metal oxide nanoparticle ink and manufacturing method thereof, metal oxide nanoparticle thin film manufactured therefrom, photoelectric device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130042372A (en) * 2011-10-18 2013-04-26 삼성전자주식회사 Method for producing quantum dot
KR20180035735A (en) * 2015-04-30 2018-04-06 포캐스트 리서치 앤 디벨럽먼트 코프. Improved stereo lithography system
KR20180016867A (en) * 2016-08-08 2018-02-20 김광현 Digital light processing type 3d printer
KR20190140458A (en) * 2017-04-18 2019-12-19 더 유니버서티 오브 시카고 Photoactive Inorganic Ligand-Capped Inorganic Nanocrystals
KR20210039098A (en) * 2019-10-01 2021-04-09 고려대학교 산학협력단 Metal oxide nanoparticle ink and manufacturing method thereof, metal oxide nanoparticle thin film manufactured therefrom, photoelectric device using the same

Also Published As

Publication number Publication date
KR20230077358A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
WO2014104846A1 (en) Method for forming conductive pattern, conductive film, conductive pattern, and transparent conductive film
WO2015084123A1 (en) Block copolymer
WO2014161382A1 (en) Transparent conductive electrodes comprising merged metal nanowires, their structure design,and methodof making such structures
WO2015084129A1 (en) Block copolymer
US20080292979A1 (en) Transparent conductive materials and coatings, methods of production and uses thereof
WO2010024564A2 (en) Method for manufacturing metal flakes
US20170181291A1 (en) Multi-component nanoinks for direct write applications
WO2017142153A1 (en) Polysilsesquioxane resin composition and light-shielding black resist composition containing same
WO2019135533A1 (en) Method for manufacturing electromagnetic interference shielding film
WO2021125412A1 (en) Defect-suppressed metal halide perovskite luminescent material, and light-emitting diode comprising same
WO2018143611A1 (en) Method for manufacturing large-area metal chalcogenide thin film, and method for manufacturing electronic device comprising metal chalcogenide thin film manufactured thereby
WO2018143628A1 (en) Quantum dot dispersion, self-emission type photosensitive resin composition, color filter, and image display device
WO2023096028A1 (en) Method for manufacturing light-sensitive all-inorganic nanoparticle ink and 3-dimensional structure printing method using same
WO2017200169A1 (en) Hollow aluminosilicate particles and method of manufacturing the same
WO2017073956A1 (en) Ink composition for photonic sintering and method for producing same
Lee et al. Fabrication of 3D structure with heterogeneous compositions using inkjet printing process
WO2023191535A1 (en) Patterned cnt film-coated substrate using click reaction and manufacturing method therefor
WO2015199449A1 (en) Photosensitive resin composition for light shielding and light-shielding layer formed therefrom
WO2016003212A1 (en) Non-spherical amphiphilic polymer nanoparticles having interfacial properties which can be reversibly controlled by temperature, method for producing same, and composition comprising same
WO2020076138A1 (en) Complex coating solution, metal substrate structure manufactured using same, and manufacturing method therefor
WO2019225976A1 (en) Pigment particles with enhanced insulation, dispersibility, and resistance
WO2022163950A1 (en) Solventless quantum dot composition, preparation method therefor, and cured film, color filter and display device which comprise same
WO2015152674A1 (en) Silica sol composition having excellent dispersibility in cyanate-based resin and method for preparing same
WO2019035651A1 (en) Nayf4 thin film, laminate, pattern, and method for manufacturing same
WO2023096029A1 (en) Method for printing 3d inorganic nanoparticle aerogel, and 3d inorganic nanoparticle aerogel produced using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898718

Country of ref document: EP

Kind code of ref document: A1