WO2023095393A1 - Inorganic substance powder-filled resin composition and molded product - Google Patents

Inorganic substance powder-filled resin composition and molded product Download PDF

Info

Publication number
WO2023095393A1
WO2023095393A1 PCT/JP2022/030749 JP2022030749W WO2023095393A1 WO 2023095393 A1 WO2023095393 A1 WO 2023095393A1 JP 2022030749 W JP2022030749 W JP 2022030749W WO 2023095393 A1 WO2023095393 A1 WO 2023095393A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
resin composition
filled
inorganic substance
Prior art date
Application number
PCT/JP2022/030749
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 服部
Original Assignee
株式会社Tbm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tbm filed Critical 株式会社Tbm
Publication of WO2023095393A1 publication Critical patent/WO2023095393A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/105Compounds containing metals of Groups 1 to 3 or of Groups 11 to 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to inorganic substance powder-filled resin compositions and molded articles. Specifically, the present invention provides an inorganic substance powder-filled resin composition suitable as a filament material for 3D printers, which exhibits good shape retention, excellent modeling accuracy, and high impact resistance, and a resin composition using the same. It relates to shaped articles, including 3D filament materials.
  • the Fused Deposition Modeling (FDM) method is often used because of its simplicity.
  • a raw material is generally inserted into an extrusion head as a filament made of a thermoplastic resin, and while being heated and melted, is continuously extruded from a nozzle portion provided in the extrusion head onto an XY plane substrate in a chamber, A step of depositing and fusing the extruded resin on an already deposited resin laminate and then cooling and solidifying it is taken.
  • thermoplastic resins such as ABS resins (acrylonitrile-butadiene-styrene resins), polylactic acid (PLA), and polyolefin resins are generally suitably used from the viewpoint of workability and fluidity.
  • Patent Document 1 discloses an FDM filament composed of a polypropylene resin having a specific melt mass flow rate, an olefin copolymer rubber, and a softening agent.
  • Patent Document 2 describes FDM filaments containing a specific propylene copolymer.
  • Patent Document 3 discloses FDM filaments containing polypropylene branched with a specific peroxide.
  • Blending a filler such as an inorganic powder into the FDM filament resin composition is also under consideration.
  • Patent Document 4 discloses an FDM filament containing specific polypropylene and calcium carbonate at a mass ratio of 20:80 to 50:50. This filament has the advantages of high reproducibility in 3D printer modeling and easy post-processing.
  • Patent Document 5 discloses FDM modeling filaments containing functional nanofillers such as carbon nanotubes and nanoclays.
  • filaments based on polyolefin resin cannot be ignored due to heat shrinkage during molding, and filaments based on soft polyolefin resin in particular have the disadvantage of poor shape retention.
  • Heat shrinkage can be suppressed by blending a filler, and shape retention can be improved by blending polyethylene or polypropylene (homopolymer).
  • shape retention can be improved by blending polyethylene or polypropylene (homopolymer).
  • the obtained filaments tend to be hard and brittle.
  • the functional nanofiller as described in Patent Document 5 has a strong interaction with the resin component, the filament becomes hard and difficult to process unless the blending amount is suppressed to about several mass %. put away.
  • the amount of filler compounded is small, the problems of heat shrinkage and warpage during molding cannot be solved.
  • the present invention has been made in view of the above circumstances, and exhibits good shape retention by suppressing heat shrinkage and warping during molding, is flexible and easy to post-process, and has excellent molding accuracy and high molding accuracy.
  • An object of the present invention is to provide an inorganic powder-filled resin composition having impact resistance and suitable as a filament material for FDM, and a molded article such as a 3D filament material using the same.
  • the inventors of the present invention have made intensive studies to solve the above problems.
  • the inventors have found that it is possible to obtain an inorganic powder-filled resin composition suitable as a filament material for FDM, which is suppressed, is flexible, and has excellent impact resistance, and arrived at the present invention.
  • the present invention provides an inorganic powder-filled resin composition containing a thermoplastic resin and an inorganic powder in a mass ratio of 50:50 to 10:90,
  • the thermoplastic resin contains a first resin and a second resin,
  • the first resin is a propylene- ⁇ -olefin copolymer,
  • the second resin is a polyolefin resin different from the first resin, and the content of the first resin is 80 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • An inorganic substance powder-filled resin composition characterized by:
  • the present invention also provides an inorganic substance powder-filled resin composition for fused deposition deposition method 3D printer filaments containing a thermoplastic resin and an inorganic substance powder at a mass ratio of 50:50 to 10:90,
  • the thermoplastic resin contains a first resin and a second resin,
  • the first resin is a propylene- ⁇ -olefin copolymer,
  • the second resin is a polyolefin resin different from the first resin, and the content of the first resin is 80 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • An inorganic substance powder-filled resin composition for fused deposition deposition method 3D printer filaments characterized by:
  • the second resin is a propylene homopolymer and/or block polypropylene.
  • the first resin is an ethylene-propylene copolymer having propylene repeating units and a random ethylene distribution
  • the propylene-derived structural units are An inorganic powder-filled resin composition containing 80% by mass or more and 20% by mass or less of structural units derived from ethylene is indicated.
  • an inorganic substance powder-filled resin composition is shown in which the inorganic substance powder is calcium carbonate.
  • the inorganic powder-filled resin composition is indicated in which the calcium carbonate is surface-treated heavy calcium carbonate.
  • the inorganic substance has an average particle size of 0.7 ⁇ m or more and 6.0 ⁇ m or less by an air permeation method according to JIS M-8511 of the calcium carbonate. A powder-filled resin composition is shown.
  • the present invention for solving the above problems is also a molded article made of the above inorganic substance powder-filled resin composition.
  • the molded article is an extruded article.
  • the molded article is a fused layering method 3D printer filament.
  • an inorganic substance powder filling that exhibits good shape retention by suppressing heat shrinkage and warpage during molding, is flexible, facilitates post-processing, excels in molding accuracy, and has high impact resistance.
  • Resin compositions and inorganic powder-filled resin compositions for fused deposition deposition 3D printer filaments are provided.
  • the inorganic powder-filled resin composition of the present invention is also useful as a material other than filaments for FDM, and can be molded into various molded articles including various extruded articles.
  • the inorganic powder-filled resin composition of the present invention and the inorganic powder-filled resin composition for hot melt deposition method 3D printer filament of the present invention contain a thermoplastic resin and an inorganic powder at a mass ratio of 50:50 to 10:50:50. 90% inorganic powder-filled resin composition, wherein the thermoplastic resin comprises a first resin and a second resin, the first resin being a propylene- ⁇ -olefin copolymer and the second resin is a polyolefin resin different from the first resin, and the content of the first resin is 80 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. It is characterized by
  • the inorganic powder-filled resin composition of the present invention contains two types of polyolefin resins with different properties as thermoplastic resins in a well-balanced manner, so it exhibits excellent physical properties in terms of both shape retention and flexibility. Therefore, post-processing is easy, and the molded product exhibits good impact resistance. In addition, since a large amount of inorganic substance powder is filled, heat shrinkage and warpage during modeling are suppressed. As a result, an inorganic powder-filled resin composition that exhibits extremely good shape retention, is easy to post-process, and has excellent impact resistance is obtained. Therefore, the inorganic powder-filled resin composition of the present invention is suitable for applications such as filament materials for FDM.
  • each component constituting the inorganic powder-filled resin composition (hereinafter sometimes abbreviated as "resin composition") according to the present invention will be described in detail.
  • the inorganic powder-filled resin composition according to the present invention contains at least two types of polyolefin resins as thermoplastic resins.
  • the first resin is a propylene- ⁇ -olefin copolymer
  • the second resin is a polyolefin resin having a structure different from that of the first resin.
  • the propylene- ⁇ -olefin copolymer contained as the first resin
  • copolymer Various copolymers are commercially available.
  • the copolymer that can be used in the present invention is not particularly limited, and various copolymers can be used depending on the application, function, etc. of the resin composition. It is also possible to use two or more copolymers together.
  • Monomers for copolymerization with propylene are also not particularly limited, and may be, for example, one or more monomer components selected from ethylene and ⁇ -olefins having 4 to 10 carbon atoms.
  • Examples include ethylene, 1-butene, isobutylene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1 - including but not limited to octene;
  • copolymers with ethylene, 1-butene, isobutylene, 1-hexene, and/or 1-octene, especially ethylene are preferred.
  • the form of copolymerization is also not limited, and various forms of copolymers such as random copolymers, block copolymers, alternating copolymers, and graft copolymers can be used.
  • a copolymer having a random distribution of propylene repeating units and a random ⁇ -olefin component, for example, a random ethylene distribution is preferred because it maintains workability and flexibility even when a large amount of inorganic substance powder is filled.
  • the first resin is an ethylene-propylene copolymer having isotactic propylene repeating units and a random ethylene distribution.
  • isotactic propylene repeat units can form crystalline regions, which facilitates toughness and dimensional stability.
  • the random ethylene distribution imparts flexibility, the resin composition has excellent impact resistance.
  • the propylene- ⁇ -olefin copolymers that may be used in the present invention may also have a triad tacticity of 3 propylene units. Triad tacticity can be measured, for example, by 13 C-nuclear magnetic resonance (NMR) and can typically have values of the order of 50-99%, especially 75-99%.
  • the copolymerization ratio is also not particularly limited, but a copolymer containing preferably 5% by mass or more, more preferably 7% by mass or more, and particularly preferably 8% by mass or more, is an ⁇ -olefin-derived structural unit that is a copolymerization monomer. Also, a copolymer containing the same constituent unit preferably at 35% by mass or less, more preferably at most 25% by mass, still more preferably at most 20% by mass, particularly preferably at most 18% by mass, is used.
  • the propylene- ⁇ -olefin copolymer having such a copolymerization ratio is highly flexible and has excellent compatibility with other polyolefin resins as the second resin described later. When incorporated into a composition, it can exhibit particularly excellent flexibility and workability.
  • the propylene- ⁇ -olefin copolymer that can be used in the present invention may also contain a structural unit derived from a third component such as a diene or a carboxylic acid (ester)-modified olefin.
  • the diene component includes 1,4-hexadiene, 1,6-octadiene, 5-methyl-1,4-hexadiene, 3,7-dimethyl-1,6-octadiene, dicyclopentadiene (DCPD), ethylidenenorbornene (ENB ), norbornadiene, 5-vinyl-2-norbornene, etc.; carboxylic acid (ester)-modified olefins include carboxyl group-containing olefins, carboxylic acid ester group-containing olefins, such as maleic anhydride-modified olefins, (meth)acrylic acid Examples include, but are not limited to, methyl and the like, respectively.
  • a copolymer containing, for example, 0.1 to 10% by mass, particularly 0.5 to 8% by mass, especially 1 to 5% by mass, of structural units derived from these third components is a propylene- ⁇ - It may exhibit melting behavior and compatibility different from those of olefin copolymers, and it is also possible to control the physical properties and workability of the inorganic powder-filled resin composition of the present invention by blending them. Since the diene-derived structural unit can also serve as a cross-linking site, the propylene- ⁇ -olefin copolymer is partially cross-linked by mixing it with other components together with a cross-linking agent such as a peroxide to modify processability. You can also Further, by using a propylene- ⁇ -olefin copolymer having functional groups such as carboxylic acid groups, miscibility with inorganic substance powders may be enhanced, and physical properties and moldability may be improved.
  • the propylene- ⁇ -olefin copolymer as described above is generally flexible, and has, for example, a Shore A hardness of 10 to 90, typically 20 to 80, based on JIS K6253-3:2012.
  • the inorganic powder-filled resin composition of the present invention is excellent in flexibility and impact resistance because these copolymers are blended.
  • Propylene- ⁇ -olefin copolymers have a wide variety of properties, for example, a mass average molecular weight of 20,000 to 5,000,000, typically 50,000 to 1,000,000, particularly 70,000 to 400.
  • melt flow rate MFR at 2.16 kg, 230° C. according to ASTM D1238, of 0.1-90 g/10 min, typically 0.5-30 g/10 min; about 10 minutes; the melting temperature can range from 40 to 180° C., typically from 80 to 160° C., particularly from 100 to 140° C., but is not limited thereto; Propylene- ⁇ -olefin copolymers with similar properties can also be used.
  • the content of the propylene- ⁇ -olefin copolymer, which is the first resin is 80 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. is. If the content of the propylene- ⁇ -olefin copolymer is 80% by mass or more of the total thermoplastic resin, the workability and flexibility of the resin composition are hardly impaired even if the inorganic powder is highly filled. In addition, when the content of the copolymer is 95 parts by mass or less, a resin composition (or filament) is provided which is excellent in shape retention and molding accuracy, in which shrinkage during molding is suppressed.
  • the content of the first resin with respect to 100 parts by mass of the thermoplastic resin is preferably 85 parts by mass or more and 93 parts by mass or less, more preferably 87 parts by mass or more and 92 parts by mass or less.
  • the second resin in the inorganic powder-filled resin composition of the present invention may be any polyolefin resin different from the first resin, and various resins may be used depending on the purpose. can do.
  • the polyolefin-based resin is a polyolefin-based resin mainly composed of olefin component units, and specifically includes polypropylene-based resin, polyethylene-based resin, polymethyl-1-pentene, cyclic olefin polymer, Examples include olefin copolymers and mixtures of two or more thereof.
  • the above-mentioned "mainly composed” means that the olefin component unit is contained in the polyolefin resin in an amount of 50% by mass or more, and the content is preferably 75% by mass or more, more preferably 85% by mass. % or more, more preferably 90 mass % or more.
  • homopolymers (homopolymers) of polyolefins are preferred.
  • the method for producing the polyolefin resin used in the present invention is not particularly limited, and can be obtained by any method using a Ziegler-Natta catalyst, a metallocene catalyst, or a radical initiator such as oxygen or peroxide. It may be something else.
  • a resin that is preferable as the second resin in the present invention is a polyethylene-based resin and/or a polypropylene-based resin.
  • polyethylene-based resins and polypropylene-based resins include resins containing 50% by mass or more of ethylene units or propylene component units.
  • a copolymer with tetrafluoroethylene, vinyl acetate, (meth)acrylic acid (ester), or the like may also be used.
  • polyethylene-based resins include high-density polyethylene (HDPE), low-density polyethylene (LDPE), medium-density polyethylene, linear low-density polyethylene (LLDPE), ethylene-vinyl acetate copolymer, ethylene-(meth) Acrylic acid (ester) copolymers and the like can also be used.
  • Copolymers of propylene with minor amounts of other monomers may also be used.
  • the second resin in the present invention is more preferably propylene homopolymer and/or block polypropylene.
  • These polypropylene-based resins have an excellent balance between mechanical strength and heat resistance, and provide excellent shape retention when blended in a resin composition filled with an inorganic powder.
  • Propylene homopolymer is a polymer obtained by polymerizing substantially only propylene, and is excellent in rigidity and heat resistance.
  • PP polypropylene homopolymer
  • Various products are commercially available, such as Wintec (registered trademark) and Novatec (registered trademark) of Japan Polypropylene Corporation, Noblen (registered trademark) of Sumitomo Chemical Co., Ltd., and Prime Polypro (registered trademark) of Prime Polymer Co., Ltd. ), Toray Industries, Inc.
  • the present invention is not limited to these, and any Such PP may be included.
  • a plurality of types of PP can also be used together.
  • Propylene homopolymers are classified into isotactic PP, syndiotactic PP, atactic PP, hemiisotactic PP, etc., depending on the difference in stereoregularity.
  • the resin composition of the present invention may contain any of these, and a plurality of these may be used in combination.
  • the homopolymer may contain trace components produced as a by-product during polymerization, or may have a branched structure.
  • a structure as if an ⁇ -olefin such as hexene is copolymerized may be contained in an amount of 5% by mass or less, particularly 1% by mass or less. It is broadly included as a propylene homopolymer (propylene homopolymer).
  • the molecular weight of the propylene homopolymer there is no particular limitation on the molecular weight of the propylene homopolymer.
  • PP having a weight average molecular weight of about 50,000 to 500,000, particularly about 100,000 to 400,000.
  • a compound having a mass average molecular weight of approximately 50,000 or more and less than 200,000 and a compound having a mass average molecular weight of approximately 200,000 or more and 500,000 or less can be used together.
  • Block polypropylene is a polymer having a sea-island structure in which polyethylene or the like is dispersed in PP, and is a kind of propylene block copolymer in a broad sense.
  • it is a polymer containing about 10 to 50% by mass of an island phase of a polyethylene component and/or an ethylene-propylene copolymer component in a PP sea phase, and is also called a heterophasic copolymer.
  • homopolypropylene chains and polyethylene chains or ethylene-propylene copolymer chains are not necessarily chemically bonded.
  • the propylene- ⁇ -olefin copolymer In this respect, it is clearly distinguished from the first resin, the propylene- ⁇ -olefin copolymer.
  • the polyethylene island phase In general block polypropylene, the polyethylene island phase is dispersed in the polypropylene sea phase while being covered with the ethylene-propylene copolymer. The mass ratio of (copolymer) to the second resin is hardly changed.
  • the above heterophasic copolymer can be produced, for example, by first polymerizing a propylene homopolymer and then copolymerizing ethylene or the like.
  • the sea-island structure can be controlled by adjusting the ratio of the ethylene component, the number of chains, and the molecular weight of the PP.
  • Various products are commercially available and any type of block polypropylene can be used in the present invention.
  • Block polypropylene is generally excellent in flexibility and impact resistance, and therefore, when used as the second resin in the present invention, it is possible to obtain a more flexible inorganic powder-filled resin composition.
  • thermoplastic resin includes the above-mentioned propylene- ⁇ -olefin copolymer and other polyolefin resins, and may further include resin components other than these.
  • Thermoplastic resins such as poly (meth) acrylic acid (ester), polyvinyl acetate, polyacrylonitrile, polystyrene, ABS resin, polycarbonate, polyamide, polyvinyl alcohol, petroleum hydrocarbon resin, coumarone-indene resin; Elastomers such as butadiene copolymers, styrene-isoprene copolymers, styrene-butadiene-ethylene copolymers, styrene-isoprene-ethylene copolymers, acrylonitrile-butadiene copolymers, fluorine-based elastomers, etc., may be mentioned. Not limited.
  • the thermoplastic resin in the inorganic powder-filled resin composition of the present invention is preferably 90% by mass or more, more preferably 97% by mass or more, and particularly preferably substantially the entire amount. consists of the above propylene- ⁇ -olefin copolymer and polyolefin resin. If the inorganic substance powder-filled resin composition does not substantially contain resin components other than the propylene- ⁇ -olefin copolymer and the polyolefin resin, it is particularly easy to select raw materials, composition and processing conditions.
  • the inorganic powder-filled resin composition of the present invention comprises, as thermoplastic resin components, a first resin that is a propylene- ⁇ -olefin copolymer and a second resin that is a different polyolefin resin. It contains at least two types of resin. Preferably the two resins are contained in a specific weight ratio.
  • the inorganic powder-filled resin composition of the present invention exhibits excellent physical properties in terms of both shape retention and flexibility, can be easily post-processed, and can be molded into molded articles with excellent impact resistance. becomes.
  • the first resin and the second resin are preferably mixed in an amount of 80 to 95 parts by mass: 20 to 5 parts by mass, more preferably 85 to 93 parts by mass: 15 to 7 parts by mass. , particularly preferably 87-92 parts by weight: 13-8 parts by weight. If the mass ratio of the first resin and the second resin is within the above range, it is possible to obtain an inorganic powder-filled resin composition having excellent balance between shape retention and flexibility. As a result, the inorganic powder-filled resin composition of the present invention becomes more suitable as a filament material for FDM.
  • the inorganic substance powder-filled resin composition of the present invention contains an inorganic substance powder together with the above thermoplastic resin.
  • the inorganic substance powder is not particularly limited. Specific examples include calcium carbonate, magnesium carbonate, zinc oxide, titanium oxide, silica, alumina, clays such as talc and kaolin, aluminum hydroxide, magnesium hydroxide, and silica.
  • the shape of the inorganic substance powder is not particularly limited, and may be in the form of particles, flakes, granules, fibers, or the like.
  • the particulate form it may be spherical as generally obtained by a synthetic method, or irregularly shaped as obtained by pulverizing collected natural minerals. .
  • These inorganic substance powders are preferably calcium carbonate, magnesium carbonate, dolomite, zinc oxide, titanium oxide, silica, alumina, clay, talc, kaolin, aluminum hydroxide, magnesium hydroxide and the like, particularly those containing calcium carbonate. is preferred.
  • the calcium carbonate may be either so-called light calcium carbonate prepared by a synthetic method or so-called heavy calcium carbonate obtained by mechanically pulverizing and classifying a natural raw material containing CaCO3 as a main component such as limestone. There may be one, or a combination of these may be used.
  • an inorganic substance powder containing heavy calcium carbonate is obtained by mechanically pulverizing and processing natural limestone or the like, and is clearly distinguished from synthetic calcium carbonate produced by chemical precipitation reaction or the like.
  • the pulverization method includes a dry method and a wet method, and the dry method is preferred.
  • Heavy calcium carbonate particles differ from light calcium carbonate produced by a synthetic method, and are characterized by surface irregularity and a large specific surface area due to the fact that the particles were formed by a pulverization process. Since the heavy calcium carbonate particles have such an irregular shape and a large specific surface area, when blended in a thermoplastic resin, the heavy calcium carbonate particles form a larger contact interface with the thermoplastic resin. It is effective for uniform dispersion.
  • the specific surface area of the heavy calcium carbonate particles is about 3,000 cm 2 /g or more and 35,000 cm 2 /g or less, depending on the average particle diameter. desired.
  • the specific surface area referred to here is obtained by the air permeation method. When the specific surface area is within this range, there is a tendency to suppress deterioration in processability of the obtained molded article.
  • the irregularity of the heavy calcium carbonate particles can be expressed by a low degree of spheroidization of the particle shape. 0.95 or less, more preferably 0.55 or more and 0.93 or less, and still more preferably 0.60 or more and 0.90 or less. If the roundness of the heavy calcium carbonate particles is within this range, the strength and moldability of the molded product will be moderate.
  • the circularity can be expressed by (the projected area of the grain)/(the area of the circle having the same circumferential length as the projected circumferential length of the grain).
  • the method for measuring the roundness is not particularly limited, and for example, the projected area and the projected peripheral length of the grain may be measured from a micrograph, or image analysis software that is generally commercially available may be used.
  • the surface may be surface-modified by a conventional method in order to enhance the dispersibility or reactivity of the inorganic substance powder.
  • surface-treated ground calcium carbonate can be preferably used.
  • surface modification methods include physical methods such as plasma treatment, and chemical surface treatment using a coupling agent or surfactant.
  • coupling agents include silane coupling agents and titanium coupling agents.
  • Surfactants may be anionic, cationic, nonionic or amphoteric, and examples thereof include higher fatty acids, higher fatty acid esters, higher fatty acid amides and higher fatty acid salts. On the contrary, it may contain inorganic substance powder that is not surface-treated.
  • the inorganic substance powder such as calcium carbonate particles is not particularly limited, but preferably has an average particle size of 0.5 ⁇ m or more and 9.0 ⁇ m or less, more preferably 0.7 ⁇ m or more and 6.0 ⁇ m or less. Preferably, it is 1.0 ⁇ m or more and 4.0 ⁇ m or less.
  • the average particle size of the inorganic substance powder described in this specification refers to a value calculated from the measurement result of the specific surface area by the air permeation method according to JIS M-8511.
  • a specific surface area measuring device SS-100 manufactured by Shimadzu Corporation can be preferably used.
  • the average particle size is larger than 9.0 ⁇ m, for example, when forming a sheet-like molded product, depending on the layer thickness of the molded product, the inorganic powder protrudes from the surface of the molded product, and the powder falls off. Otherwise, the surface properties, mechanical strength, etc. may be impaired.
  • the particle size distribution does not contain particles having a particle size of 45 ⁇ m or more.
  • the particles are too fine, the viscosity will increase significantly when kneaded with the above-mentioned resin, which may make it difficult to produce molded articles. Such a problem can be prevented by setting the average particle size of the inorganic powder to 0.5 ⁇ m or more, particularly 0.7 ⁇ m or more and 6.0 ⁇ m or less.
  • the calcium carbonate has an average particle size of 0.5 ⁇ m or more and less than 2.0 ⁇ m, particularly 0.7 ⁇ m or more and less than 2.0 ⁇ m, as measured by an air permeation method according to JIS M-8511.
  • the average particle size of the first calcium carbonate is a and the average particle size of the second calcium carbonate is b
  • the a/b ratio is 0.85 or less, more preferably. is roughly 0.10 to 0.70, more preferably 0.10 to 0.50. This is because a particularly excellent effect can be expected by jointly using particles having such a clear difference in average particle size to some extent.
  • each of the first calcium carbonate and the second calcium carbonate preferably has a coefficient of variation (Cv) of the distribution of particle diameters ( ⁇ m) of about 0.01 to 0.10, particularly 0.03. It is desirable to be about 0.08. If the variation in particle size defined by the coefficient of variation (Cv) is this level, it is considered that each powder group can provide more complementary effects.
  • the mass ratio of the first calcium carbonate to the second calcium carbonate is preferably about 90:10 to 98:2, more preferably about 92:8 to 95:5. Three or more calcium carbonate groups having different average particle size distributions may be used.
  • the first calcium carbonate and the second calcium carbonate are both surface-treated ground calcium carbonate.
  • the inorganic powder-filled resin composition of the present invention contains the thermoplastic resin and the inorganic powder in a mass ratio of 50:50 to 10:90. If the content of the inorganic substance powder is too small, the shrinkage rate and warpage during molding may not be improved.
  • the ratio of the inorganic substance powder to the total mass of the thermoplastic resin and the inorganic substance powder is preferably 60% by mass or more, more preferably 70% by mass or more, and particularly preferably 75% by mass or more.
  • the upper limit of the ratio is preferably 87% by mass or less, more preferably 85% by mass or less, and particularly preferably 82% by mass or less.
  • the content of the first resin with respect to 100 parts by mass of the thermoplastic resin is set to 80 parts by mass or more and 95 parts by mass or less.
  • the amount is set to about 15 to 40% by mass, physical properties such as shape retention and flexibility can be improved in a well-balanced manner.
  • the inorganic powder-filled resin composition of the present invention becomes more suitable as a filament material for FDM.
  • additives can be added as auxiliary agents to the inorganic powder-filled resin composition according to the present invention.
  • Other additives include, for example, colorants, lubricants, coupling agents, fluidity modifiers (fluidity modifiers), cross-linking agents, dispersants, antioxidants, ultraviolet absorbers, flame retardants, stabilizers, and electrifying agents. Inhibitors, foaming agents, plasticizers, etc. may be blended. These additives may be used alone or in combination of two or more. Further, these may be blended in the kneading step described later, or may be blended in the raw material components in advance before the kneading step.
  • the addition amount of these other additives is not particularly limited as long as it does not impede the desired physical properties and processability.
  • each of these other additives is about 0 to 10% by mass, particularly about 0.04 to 5% by mass, and the total amount of the other additives is 10% by mass. % or less.
  • plasticizers include triethyl citrate, acetyl-triethyl citrate, dibutyl phthalate, diaryl phthalate, dimethyl phthalate, diethyl phthalate, dioctyl phthalate, di(2-ethylhexyl) phthalate, and di-phthalate. 2-methoxyethyl, dibutyl tartrate, o-benzoylbenzoate, diacetin, epoxidized soybean oil and the like. These plasticizers are usually blended in an amount of about several mass % with respect to the thermoplastic resin, but the amount is not limited to these ranges. It is also possible to In the inorganic powder-filled resin composition of the present invention, the blending amount is preferably about 0.5 to 10 parts by weight, particularly about 1 to 5 parts by weight, per 100 parts by weight of the thermoplastic resin.
  • organic pigments such as azo-based, anthraquinone-based, phthalocyanine-based, quinacridone-based, isoindolinone-based, diosazine-based, perinone-based, quinophthalone-based, and perylene-based pigments, ultramarine blue, titanium oxide, titanium yellow, and iron oxide. (Rouge), chromium oxide, zinc white, carbon black and other inorganic pigments.
  • lubricants include fatty acid-based lubricants such as stearic acid, hydroxystearic acid, complex stearic acid, and oleic acid; fatty alcohol-based lubricants; stearamide, oxystearamide, oleylamide, erucylamide, ricinolamide, behenamide, and methylol.
  • Aliphatic amide-based lubricants such as amides, methylenebisstearamide, methylenebisstearobehenamide, higher fatty acid bisamic acids, complex amides; n-butyl stearate, methyl hydroxystearate, polyhydric alcohol fatty acid esters, Fatty acid ester-based lubricants such as saturated fatty acid esters and ester-based waxes; fatty acid metal soap-based lubricants such as zinc stearate;
  • antioxidants phosphorus-based antioxidants, phenol-based antioxidants, and pentaerythritol-based antioxidants can be used.
  • Phosphorus-based, more specifically phosphorus-based antioxidant stabilizers such as phosphites and phosphates are preferably used.
  • phosphites include triphenyl phosphite, trisnonylphenyl phosphite, tris(2,4-di-t-butylphenyl) phosphite, and other phosphorous acid triesters, diesters, and monoesters. is mentioned.
  • Phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris(nonylphenyl) phosphate, 2-ethylphenyl diphenyl phosphate, and the like. These phosphorus-based antioxidants may be used alone, or two or more of them may be used in combination.
  • Phenolic antioxidants include ⁇ -tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin E, n-octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2- t-butyl-6-(3'-t-butyl-5'-methyl-2'-hydroxybenzyl)-4-methylphenyl acrylate, 2,6-di-t-butyl-4-(N,N-dimethyl aminomethyl)phenol, 3,5-di-t-butyl-4-hydroxybenzylphosphonate diethyl ester, and tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyloxymethyl]methane etc., and these can be used alone or in combination of two or more.
  • the flame retardant is not particularly limited, but for example, halogen flame retardants or non-phosphorus halogen flame retardants such as phosphorus flame retardants and metal hydrates can be used.
  • halogen flame retardants include halogenated bisphenol compounds such as halogenated bisphenylalkanes, halogenated bisphenyl ethers, halogenated bisphenylthioethers, and halogenated bisphenylsulfones, brominated bisphenol A, bromine Bisphenol-bis(alkyl ether) compounds such as bisphenol S, chlorinated bisphenol A, and chlorinated bisphenol S, and phosphorus-based flame retardants such as aluminum tris(diethylphosphinate) and bisphenol A bis(diphenyl phosphate).
  • triarylisopropyl phosphate cresyl di-2,6-xylenyl phosphate, aromatic condensed phosphate esters, etc.
  • metal hydrates such as aluminum trihydrate, magnesium dihydroxide, or combinations thereof. etc. can be exemplified, respectively, and these can be used alone or in combination of two or more. It works as a flame retardant assistant, and can improve the flame retardant effect more effectively.
  • antimony oxides such as antimony trioxide and antimony pentoxide, zinc oxide, iron oxide, aluminum oxide, molybdenum oxide, titanium oxide, calcium oxide, magnesium oxide, etc. can be used in combination as flame retardant aids. .
  • the foaming agent is mixed or pressurized into the inorganic substance powder-filled resin composition which is the raw material which is in a molten state in the melt kneader, and changes phase from solid to gas, liquid to gas, or gas itself, It is mainly used to control the foaming ratio (foaming density) of foamed sheets.
  • a foaming agent that is liquid at room temperature undergoes a phase change to a gas depending on the resin temperature and dissolves in the molten resin, while a foaming agent that is gas at room temperature does not undergo a phase change and dissolves in the molten resin as it is.
  • the foaming agent dispersed and dissolved in the molten resin expands inside the sheet as the pressure is released when the molten resin is extruded into a sheet from an extrusion die, forming a large number of fine closed cells within the sheet and foaming. A sheet is obtained.
  • the foaming agent secondarily acts as a plasticizer that lowers the melt viscosity of the raw material resin composition, and lowers the temperature for making the raw resin composition plasticized.
  • blowing agents include aliphatic hydrocarbons such as propane, butane, pentane, hexane and heptane; alicyclic hydrocarbons such as cyclobutane, cyclopentane and cyclohexane; chlorodifluoromethane, difluoromethane, trifluoromethane, trichlorofluoromethane; Methane, dichloromethane, dichlorofluoromethane, dichlorodifluoromethane, chloromethane, chloroethane, dichlorotrifluoroethane, dichloropentafluoroethane, tetrafluoroethane, difluoroethane, pentafluoroethane, trifluoroethane, dichlorotetrafluoroethane, trichlorotrifluoroethane , tetrachlorodifluoroethane and perfluorocyclobut
  • a carrier resin containing an active ingredient of the foaming agent can be preferably used.
  • carrier resins include crystalline olefin resins. Among these, crystalline polypropylene resins are preferred.
  • hydrogen carbonate etc. are mentioned as an active ingredient. Among these, hydrogen carbonate is preferred.
  • a blowing agent concentrate containing a crystalline polypropylene resin as a carrier resin and a hydrogen carbonate as a thermally decomposable blowing agent is preferred.
  • the content of the foaming agent contained in the foaming agent in the molding process can be appropriately set according to the amounts of the polyolefin resin, the propylene- ⁇ -olefin copolymer, and the inorganic substance powder. It is preferably in the range of 0.04 to 5.00% by mass relative to the total mass of the composition.
  • fluidity modifiers can also be used.
  • examples include, but are not limited to, peroxides such as dialkyl peroxides such as 1,4-bis[(t-butylperoxy)isopropyl]benzene and the like.
  • these peroxides may also act as crosslinkers.
  • the propylene- ⁇ -olefin copolymer has a diene-derived structural unit, a portion of the copolymer is crosslinked by the action of the peroxide, thereby controlling the physical properties and workability of the resin composition.
  • the amount of the peroxide to be added is not particularly limited, but it is in the range of 0.04 to 2.00% by mass, particularly 0.05 to 0.50% by mass, based on the total mass of the resin composition filled with the inorganic powder. preferably.
  • antistatic agents it is possible to use, for example, fatty acid diethanolamides such as lauryl diethanolamide and stearyl diethanolamide, hydroxyl group-containing compounds such as alcohol amine compounds, and the like. Alcohol amines such as monoethanolamine, diethanolamine, triethanolamine and the like are particularly preferred. Two or more antistatic agents can be used in combination. These antistatic agents may be supported on calcium silicate, calcium carbonate, or the like. It should be noted that the number of carbon atoms in the acyl group of the fatty acid diethanolamide is preferably in the range of about 8 to 22 from the viewpoint of exhibiting a sufficient antistatic effect.
  • the amount of such an antistatic agent is about 0.01 to 8.00% by mass, more preferably 0.02%, when the total mass of the inorganic powder-blended thermoplastic resin composition is 100% by mass. It is desired that the content be blended in a proportion of up to 4.00% by mass, more preferably 0.05 to 3.00% by mass, particularly about 0.10 to 1.50% by mass. By using it within this range, in addition to obtaining a sufficient antistatic effect, there is little possibility that the surface of the resin will become sticky or that the physical properties of the resin will be adversely affected.
  • the present invention also provides an inorganic substance powder-filled resin composition for fused lamination method 3D printer filaments containing a thermoplastic resin and an inorganic substance powder at a mass ratio of 50:50 to 10:90, wherein the thermoplastic
  • the resin contains a first resin and a second resin, the first resin is a propylene- ⁇ -olefin copolymer, and the second resin is a polyolefin resin different from the first resin.
  • the content of the first resin is 80 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. composition.
  • Such a resin composition exhibits good shape retention as described above, is flexible and can be easily post-processed, and is therefore suitable as a filament material for FDM.
  • the inorganic powder-filled resin composition of the present invention may have any physical properties depending on the desired shaped article, but from the viewpoint of improving the shaping accuracy, the density is 1.40 to 2.2 g. /cm 3 (JISK7112), melt flow rate 0.5-4.0g/10min (230°C, 2,16kg JISK7210), tensile yield stress 10-2.2MPa (JISK7161), tensile modulus 2500-5000MPa ( JISK7161) is preferable.
  • a resin composition having such physical properties can be easily molded and exhibits sufficient strength.
  • a method for producing the inorganic powder-filled resin composition of the present invention a conventional method can be used, and it may be appropriately set according to the molding method (extrusion molding, injection molding, vacuum molding, etc.).
  • the first resin, the second resin, and the inorganic substance powder may be kneaded and melted before being put into the molding machine from the hopper, and the first resin, the second resin, and the inorganic powder may be melted together with the molding machine at the same time as molding.
  • the substance powder may be kneaded and melted. Melt-kneading is preferably carried out by applying a high shear stress while dispersing each component uniformly.
  • a mixing device various devices such as a general extruder, a kneader, and a Banbury mixer can be used.
  • the kneading order of the first resin, the second resin, and the inorganic substance powder there is no particular limitation on the kneading order of the first resin, the second resin, and the inorganic substance powder.
  • these three materials can be kneaded at the same time, or after kneading the first resin and the second resin, the thermoplastic resin mixture and the inorganic substance powder can be kneaded.
  • An inorganic powder may be kneaded into each of the first resin and the second resin, and the two thermoplastic resins may be kneaded after the melt viscosities of the two types of thermoplastic resins are made uniform. It is also possible to knead the first resin and the inorganic substance powder once and then knead the second resin.
  • the inorganic powder-filled resin composition may be in the form of pellets or may not be in the form of pellets.
  • the shape of is not particularly limited, and for example, pellets in the shape of a cylinder, a sphere, or an ellipsoid may be formed.
  • the size of the pellet may be appropriately set according to the shape, but for spherical pellets, for example, the diameter may be 1 to 10 mm. In the case of an elliptical pellet, it may be elliptical with an aspect ratio of 0.1 to 1.0 and a length and width of 1 to 10 mm. In the case of cylindrical pellets, the diameter may be in the range of 1 to 10 mm and the length in the range of 1 to 10 mm. These shapes may be molded into the pellets after the kneading process described below. The shape of pellets may be formed according to a conventional method.
  • a molded article according to the present invention is a molded article made of the inorganic powder-filled resin composition described above.
  • the shape and the like of the molded product according to the present invention are not particularly limited, and various shapes may be used.
  • it can be a sheet having a thickness of 40 ⁇ m to 20 mm, particularly about 50 ⁇ m to 1,000 ⁇ m, various shapes of containers, housings, daily necessities, and various other extruded or injection molded products.
  • the method for producing the molded article of the present invention is not particularly limited as long as it can be molded into a desired shape, and any of conventionally known methods such as extrusion molding, injection molding, vacuum molding, blow molding and calendar molding can be used. Can be molded. Furthermore, even in the case where the inorganic substance powder-filled resin composition according to the present invention contains a foaming agent and a molded article in the form of a foam is obtained, the molding method of the foam can be used as long as it can be molded into a desired shape. For example, conventionally known liquid phase foaming methods such as injection foaming, extrusion foaming, and foam blowing, or solid phase foaming methods such as bead foaming, batch foaming, press foaming, and normal pressure secondary foaming are used.
  • thermoplastic composition containing crystalline polypropylene as a carrier resin and a hydrogen carbonate as a thermally decomposable foaming agent an injection foaming method and an extrusion foaming method can be desirably used.
  • Molded articles of the present invention are preferably extruded articles. Examples include, but are not limited to, articles of various shapes such as sheets, rods, pipes, tubes, strands, and the like.
  • the extrusion molding method is not particularly limited, and general-purpose methods such as single-screw extrusion and twin-screw extrusion can be used.
  • a direct method in which the step of kneading each component and the step of forming into a sheet or the like are continuously performed may be used.
  • a method using a T-die type twin-screw extruder may be used. .
  • the molded sheet When it is molded into a sheet, it can be stretched uniaxially, biaxially, or multiaxially (such as by tubular stretching) during or after molding. In the case of biaxial stretching, sequential biaxial stretching or simultaneous biaxial stretching may be used.
  • biaxial stretching sequential biaxial stretching or simultaneous biaxial stretching may be used.
  • minute voids are generated in the sheet. The whiteness of the sheet is improved by the formation of minute voids in the sheet.
  • the molding temperature in injection molding, extrusion molding, etc. varies to some extent depending on the molding method and the type of polypropylene resin used, so it cannot be defined unconditionally.
  • the inorganic powder-filled resin composition according to the present invention has good drawdown properties and spreadability, and the composition does not locally denature. It can be molded into a predetermined shape.
  • the molded article of the present invention is particularly preferably a fused layered 3D printer filament.
  • the FDM filament of the present invention has the advantages of suppressing heat shrinkage and warping during molding, exhibiting good shape retention, being flexible, easy to post-process, excellent in molding accuracy, and having high impact resistance. .
  • the diameter of the filament for FDM of the present invention can be arbitrarily set according to the capacity of the manufacturing apparatus used for molding the resin molding by the hot melt lamination method.
  • the lower limit of the diameter is preferably 0.5 mm or more, more preferably 1.0 mm or more, and particularly preferably 1.5 mm or more, while the upper limit is preferably 5.0 mm or less, more preferably 4.0 mm. Below, more preferably 3.5 mm or less, particularly preferably 3.0 mm or less. Since the resin composition of the present invention generally has a high specific gravity, it is possible to form thin filaments for FDM.
  • the accuracy of the FDM filament diameter should be within ⁇ 5% for any measurement point of the filament.
  • the FDM filament of the present invention preferably has a diameter standard deviation of 0.07 mm or less, particularly 0.06 mm or less. The standard deviation can be obtained by measuring the major and minor diameters of filaments at 10 points at intervals of 3 cm with vernier calipers.
  • the FDM filament of the present invention preferably has a circularity of 0.93 or more, particularly 0.95 or more.
  • the upper limit of circularity is 1.0.
  • the filament is measured at 10 points at intervals of 3 cm, the major axis and minor axis are measured with a vernier caliper, the minor axis / major axis ratio at each measurement point is obtained, and the minor axis / major axis at the measured 10 points.
  • the average of the ratios can be taken as the circularity.
  • the FDM filament of the present invention preferably has an elongation at break of 30% or more, and an elongation of 100% or more improves the toughness of the filament and prevents the filament from breaking when the filament is incorporated.
  • the upper limit of this breaking strain is not particularly set, it is usually about 1000%.
  • the method for producing the FDM filament of the present invention is not particularly limited, but the inorganic substance powder-filled resin composition of the present invention can be molded by a known molding method such as extrusion molding, or the filament can be formed as it is during the production of the resin composition. It can be obtained by a method such as For example, the resin composition can be kneaded under the extrusion conditions as described above and at the same time formed into a filament to form the filament for FDM of the present invention.
  • ⁇ Filament roll and cartridge> When producing a resin molded product by a three-dimensional printer using the filament for FDM of the present invention, it is usually closed and packaged as a wound body wound on a bobbin, or the wound body is stored in a cartridge. This is preferable from the viewpoints of long-term storage, stable delivery, protection from environmental factors such as humidity, and prevention of twisting.
  • the cartridge include a wound body wound on a bobbin, and a structure in which a moisture-proof material or a moisture-absorbing material is used inside and at least the part other than the orifice through which the filament is delivered is sealed.
  • Example 1 Pellets of the inorganic powder-filled resin composition were prepared using the following raw materials, and test pieces such as filaments were formed from the pellets and subjected to various evaluation tests.
  • R1-1 first resin
  • vistamaxx® 6502 an ethylene-propylene copolymer from ExxonMobil Corporation (density 0.865 g/cm 3 )
  • second resin propylene homopolymer manufactured by Prime Polymer Co., Ltd. (MFR: 0.5 g/10 min)
  • CC1 Heavy calcium carbonate manufactured by Bihoku Funka Kogyo Co., Ltd. (no surface treatment) Average particle size: 2.2 ⁇ m, BET specific surface area: 1.0 m 2 /g, circularity: 0.85 ⁇ Lubricant: magnesium stearate
  • the pellets were introduced into a twin-screw kneading extruder with a screw diameter of 15 mm to produce filaments.
  • the twin-screw kneading extruder has a set temperature of 200 ° C. and a discharge rate of 1.0 kg / hr, extruding the resin composition from a die diameter of 3 mm, passing through a water tank of 40 ° C. and taking it off at 5 m / min with a take-up device. rice field.
  • the cross-sectional diameters of the resulting filaments ranged from 1.65 mm to 1.90 mm.
  • the filament obtained above is introduced into a fused layer deposition method 3D printer "BLADE-1" manufactured by Hot Proceed Co., Ltd., and a cup-shaped molded body 1 (three-dimensional modeled object) having an upper opening is formed. rice field.
  • the manufacturing conditions were a standard mode, a printing speed of 150 mm/sec, a substrate temperature of 60°C and an ejection temperature of 200°C.
  • the molten resin was extruded from the extrusion head in strands with a diameter of 0.1 mm.
  • a test piece of 80 mm ⁇ 10 mm ⁇ 1 mm was injection molded from the pellet, and the appearance of the test piece was observed to evaluate the degree of thermal shrinkage. Moreover, the following flexibility (flexibility) test was performed using the same test piece.
  • the above test piece was folded by hand and evaluated for flexibility according to the following criteria.
  • ⁇ A The test piece was bent five times up to about 160°, but did not break.
  • The test piece was not broken unless it was bent two or three times to about 160°.
  • Examples 2-3, Comparative Examples 1-3 The same operation as in Example 1 was performed while changing the blending amounts of the raw materials as shown in Table 1. Evaluation results are shown in Table 1 below.
  • Example 5-6 The same operation as in Example 1 was performed using commercially available polylactic acid (PLA) and ABS resin. The evaluation results are shown in Table 1 below together with the composition of each sample.
  • thermoplastic resin and an inorganic substance powder are contained in a mass ratio of 50:50 to 10:90, and a propylene- ⁇ -olefin copolymer as the first resin and polypropylene as the second resin and the content of the first resin is 80 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. and heat-shrinkability, and proved to be suitable as a filament material for FDM. It was also found that the inorganic powder-filled resin composition according to the present invention exhibits high flexibility and is a material with excellent flexibility.
  • Comparative Example 1 in which the content of the first resin was outside the range defined by the present invention, the resin composition became hard, and post-processability and flexibility decreased.
  • the resin composition of Comparative Example 2 which did not contain the second resin, had good flexibility, but was unsuitable as a filament material for FDM in terms of reproducibility and heat shrinkability.
  • the same results as in Comparative Example 2 were obtained even with the resin composition of Comparative Example 3, which contained a small amount of inorganic substance powder.
  • resin compositions containing polylactic acid and ABS resin are inferior in flexibility, reproducibility, and the like.
  • Examples 4-7, Comparative Examples 7-10 A sample having the composition shown in Table 2 was prepared in the same manner as in Example 1 using the following raw materials.
  • R1-2 first resin: vistamaxx® 6102, an ethylene-propylene block copolymer from ExxonMobil Corporation (ethylene content 16%, density 0.862 g/cm 3 )
  • second resin propylene homopolymer manufactured by Prime Polymer Co., Ltd.
  • MFR 2.0 g / 10 min
  • R2-3 second resin
  • MFR 55 g / 10 min
  • ⁇ CC2 Maruo Calcium Co., Ltd.
  • melt flow rate (MFR) and Charpy impact strength were measured by the following methods. Table 2 shows the composition of each sample and the test/evaluation results.
  • MFR Measured under the conditions of 230°C and 2.16 kg.
  • Charpy impact strength A test piece of 80 mm x 10 mm x 1 mm was used and measured according to ISO179/1eA.
  • the present invention contains a propylene- ⁇ -olefin copolymer as the first resin and polypropylene as the second resin, and the content of the first resin is 80 parts per 100 parts by mass of the thermoplastic resin.
  • the MFR also showed a moderate value, and it was found to be excellent in workability and suitable as a filament material for FDM.
  • the inorganic powder-filled resin compositions of Examples 4-7 according to the present invention also exhibited excellent flexibility, high flexibility and Charpy impact strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

The present invention addresses the problem of providing: an inorganic substance powder-filled resin composition that is suitable as an FDM filament material, has suppressed thermal contraction etc., and is flexible with excellent impact resistance; an inorganic substance powder-filled resin composition for a fused deposition modeling 3D printer filament; and a fused deposition modeling 3D printer filament. The present invention is an inorganic substance powder-filled resin composition containing a thermoplastic resin and inorganic substance powder at a mass ratio of 50:50 to 10:90, the inorganic substance powder-filled resin composition being characterized in that the thermoplastic resin contains a first resin and a second resin, the first resin is a propylene-α-olefin copolymer, the second resin is a polyolefin resin different from the first resin, and the content of the first resin is 80-95 parts by mass relative to 100 parts by mass of the thermoplastic resin.

Description

無機物質粉末充填樹脂組成物及び成形品Inorganic substance powder-filled resin composition and molded article
 本発明は、無機物質粉末充填樹脂組成物及び成形品に関する。詳しく述べると、本発明は、良好な形状保持性を示し、造形精度に優れ、かつ高い耐衝撃性を有する、3Dプリンター用フィラメント材料として好適な無機物質粉末充填樹脂組成物、及びこれを用いた3Dフィラメント材料を始めとする成形品に関する。 The present invention relates to inorganic substance powder-filled resin compositions and molded articles. Specifically, the present invention provides an inorganic substance powder-filled resin composition suitable as a filament material for 3D printers, which exhibits good shape retention, excellent modeling accuracy, and high impact resistance, and a resin composition using the same. It relates to shaped articles, including 3D filament materials.
 3次元プリンター(3Dプリンター)においては、簡便さから熱溶解積層法(FDM法)が使用されることが多い。FDM法では、一般的には原料を熱可塑性樹脂からなるフィラメントとして押出ヘッドへ挿入し、加熱溶融しながら押出ヘッドに備えたノズル部位からチャンバー内のX-Y平面基盤上に連続的に押し出し、押し出した樹脂を既に堆積している樹脂積層体上に堆積させると共に融着させ、それを冷却させ固化する、という工程がとられる。  In three-dimensional printers (3D printers), the Fused Deposition Modeling (FDM) method is often used because of its simplicity. In the FDM method, a raw material is generally inserted into an extrusion head as a filament made of a thermoplastic resin, and while being heated and melted, is continuously extruded from a nozzle portion provided in the extrusion head onto an XY plane substrate in a chamber, A step of depositing and fusing the extruded resin on an already deposited resin laminate and then cooling and solidifying it is taken.
 FDM法の原料としては、一般的にABS樹脂(アクリロニトリル-ブタジエン-スチレン系樹脂)やポリ乳酸(PLA)、ポリオレフィン系樹脂等の熱可塑性樹脂が、加工性や流動性の観点から好適に用いられている。例えば特許文献1には、特定のメルトマスフローレートを有するポリプロピレン樹脂、オレフィン系共重合ゴム、及び軟化剤からなるFDM用フィラメントが開示されている。特許文献2には、特定のプロピレン共重合体を含むFDM用フィラメントが記載されている。また、特許文献3には、特定の過酸化物で分岐させたポリプロピレンを含むFDM用フィラメントが開示されている。 As raw materials for the FDM method, thermoplastic resins such as ABS resins (acrylonitrile-butadiene-styrene resins), polylactic acid (PLA), and polyolefin resins are generally suitably used from the viewpoint of workability and fluidity. ing. For example, Patent Document 1 discloses an FDM filament composed of a polypropylene resin having a specific melt mass flow rate, an olefin copolymer rubber, and a softening agent. Patent Document 2 describes FDM filaments containing a specific propylene copolymer. Also, Patent Document 3 discloses FDM filaments containing polypropylene branched with a specific peroxide.
 FDM用フィラメント用樹脂組成物に、無機物質粉末等のフィラーを配合することも、検討されている。例えば特許文献4には、特定のポリプロピレンと炭酸カルシウムとを、20:80~50:50の質量比で含有するFDM用フィラメントが開示されている。このフィラメントは、3Dプリンター造形における再現性が高く、後加工も容易という利点を有する。特許文献5には、カーボンナノチューブやナノクレイ等の機能性ナノフィラーを含んだFDM造形用フィラメントが開示されている。 Blending a filler such as an inorganic powder into the FDM filament resin composition is also under consideration. For example, Patent Document 4 discloses an FDM filament containing specific polypropylene and calcium carbonate at a mass ratio of 20:80 to 50:50. This filament has the advantages of high reproducibility in 3D printer modeling and easy post-processing. Patent Document 5 discloses FDM modeling filaments containing functional nanofillers such as carbon nanotubes and nanoclays.
特開2018-144308号公報JP 2018-144308 A 特開2018-158451号公報JP 2018-158451 A 特表2019-531947号公報Japanese Patent Application Publication No. 2019-531947 特開2018-183917号公報JP 2018-183917 A 特開2016-28887号公報JP 2016-28887 A
 3Dプリンターを使用した3次元造形では、一旦出力したものを、さらにやすりがけ等により形状を微調整する後加工が通常行われる。しかしながらPLAは、プリンターによる再現性が高い反面、硬く、後加工し辛く、また力を入れすぎるといきなり割れてしまう等、靱性に劣っていた。一方ABS樹脂は、柔らかく後加工は容易であったが、もともと再現性に劣ることから、反りが発生しやすく、必ずしも要求を満足するものではなかった。また、PLAやABSには、造形時に刺激臭が発生する問題もあった。特許文献1~3記載の3Dプリンター造形用フィラメントでは、ポリオレフィン系樹脂組成物を用いることによって、加工性や臭気の問題に対処している。これら文献記載のフィラメントは、熱可塑性エラストマーのような軟質ポリオレフィン系樹脂をベースとしているため、靭性の点でも優れている。  In 3D modeling using a 3D printer, post-processing is usually performed to fine-tune the shape by sanding the output once. However, while PLA is highly reproducible by a printer, it is hard, difficult to post-process, and has poor toughness, such as being suddenly broken if too much force is applied. On the other hand, ABS resin is soft and easy to post-process, but it is inherently inferior in reproducibility and tends to warp, and does not necessarily satisfy the requirements. In addition, PLA and ABS also have a problem of giving off an irritating odor during molding. In the 3D printer modeling filaments described in Patent Documents 1 to 3, the problems of workability and odor are addressed by using a polyolefin resin composition. Since the filaments described in these documents are based on a soft polyolefin resin such as a thermoplastic elastomer, they are also excellent in terms of toughness.
 しかしながらポリオレフィン系樹脂をベースとするフィラメントでは、造形時の熱収縮が無視できず、特に軟質ポリオレフィン系樹脂をベースとするフィラメントには形状保持性に劣る欠点がある。熱収縮はフィラーの配合によって抑制することができ、形状保持性はポリエチレンやポリプロピレン(ホモポリマー)の配合によって改善することが可能である。しかし、ポリエチレンやポリプロピレンのホモポリマーにフィラーを多量配合すると、得られるフィラメントは硬く、かつ脆いものとなりがちである。特に、特許文献5に記載されたような機能性ナノフィラーは、樹脂成分との相互作用が強いため、配合量を数質量%程度に抑制しないと、フィラメントが硬く、加工し難いものとなってしまう。一方でフィラーの配合量が少量だと、造形時の熱収縮や反りの問題が解決できない。 However, filaments based on polyolefin resin cannot be ignored due to heat shrinkage during molding, and filaments based on soft polyolefin resin in particular have the disadvantage of poor shape retention. Heat shrinkage can be suppressed by blending a filler, and shape retention can be improved by blending polyethylene or polypropylene (homopolymer). However, when a large amount of filler is added to a polyethylene or polypropylene homopolymer, the obtained filaments tend to be hard and brittle. In particular, since the functional nanofiller as described in Patent Document 5 has a strong interaction with the resin component, the filament becomes hard and difficult to process unless the blending amount is suppressed to about several mass %. put away. On the other hand, if the amount of filler compounded is small, the problems of heat shrinkage and warpage during molding cannot be solved.
 本発明は以上の実情に鑑みてなされたものであり、造形時の熱収縮や反りが抑制されて良好な形状保持性を示し、柔軟で後加工が容易であって造形精度に優れ、かつ高い耐衝撃性を有する、FDM用フィラメント材料として好適な無機物質粉末充填樹脂組成物、及びこれを用いた3Dフィラメント材料等の成形品を提供することを課題とする。 The present invention has been made in view of the above circumstances, and exhibits good shape retention by suppressing heat shrinkage and warping during molding, is flexible and easy to post-process, and has excellent molding accuracy and high molding accuracy. An object of the present invention is to provide an inorganic powder-filled resin composition having impact resistance and suitable as a filament material for FDM, and a molded article such as a 3D filament material using the same.
 本発明者らは、上記課題を解決する上で鋭意検討を行った結果、熱可塑性樹脂として特性の異なる2種のポリオレフィン系樹脂を使用し、無機物質粉末を多量充填することによって、熱収縮等が抑制され、かつ柔軟で耐衝撃性にも優れる、FDM用フィラメント材料として好適な無機物質粉末充填樹脂組成物が得られることを見出し、本発明に到達した。 The inventors of the present invention have made intensive studies to solve the above problems. The inventors have found that it is possible to obtain an inorganic powder-filled resin composition suitable as a filament material for FDM, which is suppressed, is flexible, and has excellent impact resistance, and arrived at the present invention.
 すなわち本発明は、熱可塑性樹脂と無機物質粉末とを質量比50:50~10:90の割合で含有する無機物質粉末充填樹脂組成物であって、
 前記熱可塑性樹脂は第1の樹脂と第2の樹脂とを含有し、
 前記第1の樹脂はプロピレン-α-オレフィン共重合体であり、
 前記第2の樹脂は前記第1の樹脂とは異なるポリオレフィン系樹脂であり、かつ
 前記第1の樹脂の含有量が、前記熱可塑性樹脂100質量部に対して80質量部以上95質量部以下であることを特徴とする、無機物質粉末充填樹脂組成物である。
That is, the present invention provides an inorganic powder-filled resin composition containing a thermoplastic resin and an inorganic powder in a mass ratio of 50:50 to 10:90,
The thermoplastic resin contains a first resin and a second resin,
The first resin is a propylene-α-olefin copolymer,
The second resin is a polyolefin resin different from the first resin, and the content of the first resin is 80 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. An inorganic substance powder-filled resin composition characterized by:
 本発明はまた、熱可塑性樹脂と無機物質粉末とを質量比50:50~10:90の割合で含有する熱溶解積層法3Dプリンタフィラメント用の無機物質粉末充填樹脂組成物であって、
 前記熱可塑性樹脂は第1の樹脂と第2の樹脂とを含有し、
 前記第1の樹脂はプロピレン-α-オレフィン共重合体であり、
 前記第2の樹脂は前記第1の樹脂とは異なるポリオレフィン系樹脂であり、かつ
 前記第1の樹脂の含有量が、前記熱可塑性樹脂100質量部に対して80質量部以上95質量部以下であることを特徴とする、熱溶解積層法3Dプリンタフィラメント用の無機物質粉末充填樹脂組成物である。
The present invention also provides an inorganic substance powder-filled resin composition for fused deposition deposition method 3D printer filaments containing a thermoplastic resin and an inorganic substance powder at a mass ratio of 50:50 to 10:90,
The thermoplastic resin contains a first resin and a second resin,
The first resin is a propylene-α-olefin copolymer,
The second resin is a polyolefin resin different from the first resin, and the content of the first resin is 80 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. An inorganic substance powder-filled resin composition for fused deposition deposition method 3D printer filaments, characterized by:
 本発明に係る無機物質粉末充填樹脂組成物の一態様においては、前記第2の樹脂が、プロピレンホモポリマー及び/又はブロックポリプロピレンである、無機物質粉末充填樹脂組成物が示される。 In one aspect of the inorganic powder-filled resin composition according to the present invention, the second resin is a propylene homopolymer and/or block polypropylene.
 本発明に係る無機物質粉末充填樹脂組成物の一態様においては、前記第1の樹脂が、エチレン-プロピレンコポリマーであってプロピレン繰り返し単位とランダムなエチレン分布とを有し、プロピレン由来の構成単位が80質量%以上、エチレン由来の構成単位が20質量%以下である、無機物質粉末充填樹脂組成物が示される。 In one aspect of the inorganic powder-filled resin composition according to the present invention, the first resin is an ethylene-propylene copolymer having propylene repeating units and a random ethylene distribution, and the propylene-derived structural units are An inorganic powder-filled resin composition containing 80% by mass or more and 20% by mass or less of structural units derived from ethylene is indicated.
 本発明に係る無機物質粉末充填樹脂組成物の一態様においては、前記無機物質粉末が、炭酸カルシウムである、無機物質粉末充填樹脂組成物が示される。 In one aspect of the inorganic substance powder-filled resin composition according to the present invention, an inorganic substance powder-filled resin composition is shown in which the inorganic substance powder is calcium carbonate.
 本発明に係る無機物質粉末充填樹脂組成物の一態様においては、前記炭酸カルシウムが、表面処理された重質炭酸カルシウムである、無機物質粉末充填樹脂組成物が示される。 In one aspect of the inorganic powder-filled resin composition according to the present invention, the inorganic powder-filled resin composition is indicated in which the calcium carbonate is surface-treated heavy calcium carbonate.
 本発明に係る無機物質粉末充填樹脂組成物の一態様においては、前記炭酸カルシウムのJIS M-8511に準じた空気透過法による平均粒子径が、0.7μm以上6.0μm以下である、無機物質粉末充填樹脂組成物が示される。 In one aspect of the inorganic substance powder-filled resin composition according to the present invention, the inorganic substance has an average particle size of 0.7 μm or more and 6.0 μm or less by an air permeation method according to JIS M-8511 of the calcium carbonate. A powder-filled resin composition is shown.
 上記課題を解決する本発明はまた、上記の無機物質粉末充填樹脂組成物からなる成形品である。 The present invention for solving the above problems is also a molded article made of the above inorganic substance powder-filled resin composition.
 本発明に係る成形品の一態様においては、成形品が押出成形品である。 In one aspect of the molded article according to the present invention, the molded article is an extruded article.
 本発明に係る成形品の一態様においては、成形品が、熱溶解積層法3Dプリンタフィラメントである。 In one aspect of the molded article according to the present invention, the molded article is a fused layering method 3D printer filament.
 本発明によれば、造形時の熱収縮や反りが抑制されて良好な形状保持性を示し、柔軟で後加工が容易であって造形精度に優れ、かつ高い耐衝撃性を有する無機物質粉末充填樹脂組成物及び熱溶解積層法3Dプリンタフィラメント用の無機物質粉末充填樹脂組成物が提供される。本発明の無機物質粉末充填樹脂組成物は、FDM用フィラメント以外の材料としても有用であり、各種押出成形品を始めとする種々の成形品に成形することができる。 According to the present invention, an inorganic substance powder filling that exhibits good shape retention by suppressing heat shrinkage and warpage during molding, is flexible, facilitates post-processing, excels in molding accuracy, and has high impact resistance. Resin compositions and inorganic powder-filled resin compositions for fused deposition deposition 3D printer filaments are provided. The inorganic powder-filled resin composition of the present invention is also useful as a material other than filaments for FDM, and can be molded into various molded articles including various extruded articles.
 以下、本発明を実施形態に基づき詳細に説明する。 The present invention will be described in detail below based on embodiments.
≪無機物質粉末充填樹脂組成物≫
 本発明の無機物質粉末充填樹脂組成物、及び本発明の熱溶解積層法3Dプリンタフィラメント用の無機物質粉末充填樹脂組成物は、熱可塑性樹脂と無機物質粉末とを質量比50:50~10:90の割合で含有する無機物質粉末充填樹脂組成物であって、該熱可塑性樹脂は第1の樹脂と第2の樹脂とを含有し、該第1の樹脂はプロピレン-α-オレフィン共重合体であり、該第2の樹脂は前記第1の樹脂とは異なるポリオレフィン系樹脂であり、かつ第1の樹脂の含有量が、熱可塑性樹脂100質量部に対して80質量部以上95質量部以下であることを特徴とする。
<<Inorganic substance powder-filled resin composition>>
The inorganic powder-filled resin composition of the present invention and the inorganic powder-filled resin composition for hot melt deposition method 3D printer filament of the present invention contain a thermoplastic resin and an inorganic powder at a mass ratio of 50:50 to 10:50:50. 90% inorganic powder-filled resin composition, wherein the thermoplastic resin comprises a first resin and a second resin, the first resin being a propylene-α-olefin copolymer and the second resin is a polyolefin resin different from the first resin, and the content of the first resin is 80 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. It is characterized by
 本発明の無機物質粉末充填樹脂組成物は、熱可塑性樹脂として特性の異なる2種のポリオレフィン系樹脂をバランス良く含有するため、形状保持性と柔軟性の双方に優れた物性を示す。そのため、後加工が容易で、成形品は良好な耐衝撃性を示す。また、無機物質粉末が多量に充填されているため、造形時の熱収縮や反りが抑制される。その結果として、極めて良好な形状保持性を示し、後加工も容易で、かつ耐衝撃性に優れる無機物質粉末充填樹脂組成物となる。本発明の無機物質粉末充填樹脂組成物はそのため、FDM用フィラメント材料等の用途に好適である。以下、本発明に係る無機物質粉末充填樹脂組成物(以下で「樹脂組成物」と略す場合がある。)を構成する各成分につき、それぞれ詳細に説明する。 The inorganic powder-filled resin composition of the present invention contains two types of polyolefin resins with different properties as thermoplastic resins in a well-balanced manner, so it exhibits excellent physical properties in terms of both shape retention and flexibility. Therefore, post-processing is easy, and the molded product exhibits good impact resistance. In addition, since a large amount of inorganic substance powder is filled, heat shrinkage and warpage during modeling are suppressed. As a result, an inorganic powder-filled resin composition that exhibits extremely good shape retention, is easy to post-process, and has excellent impact resistance is obtained. Therefore, the inorganic powder-filled resin composition of the present invention is suitable for applications such as filament materials for FDM. Hereinafter, each component constituting the inorganic powder-filled resin composition (hereinafter sometimes abbreviated as "resin composition") according to the present invention will be described in detail.
 <熱可塑性樹脂>
 本発明に係る無機物質粉末充填樹脂組成物においては、熱可塑性樹脂として2種類のポリオレフィン系樹脂を少なくとも含有する。それら熱可塑性樹脂の内の第1の樹脂は、プロピレン-α-オレフィン共重合体であり、第2の樹脂は、第1の樹脂とは構造の異なるポリオレフィン系樹脂である。これらポリオレフィン系樹脂について、次に具体的に説明する。
<Thermoplastic resin>
The inorganic powder-filled resin composition according to the present invention contains at least two types of polyolefin resins as thermoplastic resins. Among these thermoplastic resins, the first resin is a propylene-α-olefin copolymer, and the second resin is a polyolefin resin having a structure different from that of the first resin. These polyolefin resins will be specifically described below.
 <第1の樹脂:プロピレン-α-オレフィン共重合体>
 本発明に係る無機物質粉末充填樹脂組成物において、第1の樹脂として含有されるプロピレン-α-オレフィン共重合体(以下で「共重合体」と略す場合がある。)自体は公知であり、種々の共重合体が市販されている。本発明で使用し得る共重合体としては、特に限定されるものではなく、樹脂組成物の用途、機能等に応じて、各種のものを用いることができる。2種以上の共重合体を併用することも可能である。プロピレンとの共重合モノマーにも特に制限はなく、例えばエチレン及び炭素数4~10のα-オレフィンから選択される1種又は2種以上のモノマー成分であってもよい。例としてエチレンや、1-ブテン、イソブチレン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、3,4-ジメチル-1-ブテン、1-ヘプテン、3-メチル-1-ヘキセン、1-オクテン等が挙げられるが、これらに限定されない。これらの中でも、エチレン、1-ブテン、イソブチレン、1-ヘキセン、及び/又は1-オクテン、特にエチレンとの共重合体が好ましい。
<First Resin: Propylene-α-Olefin Copolymer>
In the inorganic substance powder-filled resin composition according to the present invention, the propylene-α-olefin copolymer (hereinafter sometimes abbreviated as "copolymer") contained as the first resin is known per se, Various copolymers are commercially available. The copolymer that can be used in the present invention is not particularly limited, and various copolymers can be used depending on the application, function, etc. of the resin composition. It is also possible to use two or more copolymers together. Monomers for copolymerization with propylene are also not particularly limited, and may be, for example, one or more monomer components selected from ethylene and α-olefins having 4 to 10 carbon atoms. Examples include ethylene, 1-butene, isobutylene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1 - including but not limited to octene; Among these, copolymers with ethylene, 1-butene, isobutylene, 1-hexene, and/or 1-octene, especially ethylene, are preferred.
 共重合の形態にも制限はなく、ランダム共重合体、ブロック共重合体、交互共重合体、さらにはグラフト共重合体等、種々の形態の共重合体を使用することができる。無機物質粉末を多量充填しても加工性と柔軟性とが保たれる点から、プロピレン繰り返し単位とランダムなα-オレフィン成分の分布、例えばランダムなエチレン分布を有するコポリマー(共重合体)が好ましい。より好ましくは、アイソタクチックプロピレン繰り返し単位とランダムなエチレン分布とを有するエチレン-プロピレンコポリマーを、第1の樹脂とする。こうしたコポリマーでは、アイソタクチックプロピレン繰り返し単位が結晶領域を形成し得るため、強靭さと形状安定性が発現し易い。また、ランダムなエチレン分布によって柔軟性が付されるため、耐衝撃性に優れた樹脂組成物を与える。本発明で使用し得るプロピレン-α-オレフィン共重合体はまた、3つのプロピレン単位のトリアド(triad)タクチシティを有していてもよい。トリアドタクチシティは、例えば13C-核磁気共鳴(NMR)によって測定することができ、典型的には50~99%、特に75~99%程度の値となり得る。 The form of copolymerization is also not limited, and various forms of copolymers such as random copolymers, block copolymers, alternating copolymers, and graft copolymers can be used. A copolymer having a random distribution of propylene repeating units and a random α-olefin component, for example, a random ethylene distribution, is preferred because it maintains workability and flexibility even when a large amount of inorganic substance powder is filled. . More preferably, the first resin is an ethylene-propylene copolymer having isotactic propylene repeating units and a random ethylene distribution. In such copolymers, isotactic propylene repeat units can form crystalline regions, which facilitates toughness and dimensional stability. In addition, since the random ethylene distribution imparts flexibility, the resin composition has excellent impact resistance. The propylene-α-olefin copolymers that may be used in the present invention may also have a triad tacticity of 3 propylene units. Triad tacticity can be measured, for example, by 13 C-nuclear magnetic resonance (NMR) and can typically have values of the order of 50-99%, especially 75-99%.
 共重合比についても特に制限はないが、共重合モノマーであるα-オレフィン由来の構成単位が好ましくは5質量%以上、より好ましくは7質量%以上、特に好ましくは8質量%以上の共重合体、また、同構成単位が好ましくは35質量%以下、より好ましくは25質量%以下、さらに好ましくは20質量%以下、特に好ましくは18質量%以下等の共重合体を使用する。例えば、プロピレン由来の構成単位が80質量%以上、エチレン由来の構成単位が20質量%以下のコポリマー;特にプロピレン由来の構成単位が82~92質量%、エチレン由来の構成単位が8~18質量%のコポリマー;中でも、プロピレン由来の構成単位が84~90質量%、エチレン由来の構成単位が10~16質量%のコポリマーを使用する。こうした共重合比のプロピレン-α-オレフィン共重合体は柔軟性に富み、後記する第2の樹脂である他のポリオレフィン系樹脂との相溶性も優れているので、本発明の無機物質粉末充填樹脂組成物に配合された際に、特に優れた柔軟性、加工性を発現し得る。 The copolymerization ratio is also not particularly limited, but a copolymer containing preferably 5% by mass or more, more preferably 7% by mass or more, and particularly preferably 8% by mass or more, is an α-olefin-derived structural unit that is a copolymerization monomer. Also, a copolymer containing the same constituent unit preferably at 35% by mass or less, more preferably at most 25% by mass, still more preferably at most 20% by mass, particularly preferably at most 18% by mass, is used. For example, a copolymer containing 80% by mass or more of propylene-derived structural units and 20% by mass or less of ethylene-derived structural units; among others, copolymers with 84 to 90% by weight of propylene-derived structural units and 10 to 16% by weight of ethylene-derived structural units are used. The propylene-α-olefin copolymer having such a copolymerization ratio is highly flexible and has excellent compatibility with other polyolefin resins as the second resin described later. When incorporated into a composition, it can exhibit particularly excellent flexibility and workability.
 本発明で使用し得るプロピレン-α-オレフィン共重合体はまた、ジエンやカルボン酸(エステル)変性オレフィン等の第三成分由来の構成単位を含んでいてもよい。ジエン成分としては、1,4-ヘキサジエン、1,6-オクタジエン、5-メチル-1,4-ヘキサジエン、3,7-ジメチル-1,6-オクタジエン、ジシクロペンタジエン(DCPD)、エチリデンノルボルネン(ENB)、ノルボルナジエン、5-ビニル-2-ノルボルネン等が;カルボン酸(エステル)変性オレフィンとしては、カルボキシル基含有オレフィン、カルボン酸エステル基含有オレフィンの類、例えば無水マレイン酸変性オレフィン、(メタ)アクリル酸メチル等が、それぞれ挙げられるが、これらに限定されない。これら第三成分由来の構成単位を、例えば0.1~10質量%、特に0.5~8質量%、中でも1~5質量%含む共重合体は、第三成分不含のプロピレン-α-オレフィン共重合体とは異なった溶融挙動や相溶性を示すことがあり、その配合によって本発明の無機物質粉末充填樹脂組成物の物性や加工性を制御することも可能である。ジエン由来の構成単位は架橋サイトにもなり得るので、過酸化物等の架橋剤と共に他の成分と混合することによって、プロピレン-α-オレフィン共重合体を部分的に架橋させ、加工性を改変することもできる。また、カルボン酸基等の官能基を有するプロピレン-α-オレフィン共重合体の使用により、無機物質粉末との混和性が高められ、物性や成形性が改善される場合もある。 The propylene-α-olefin copolymer that can be used in the present invention may also contain a structural unit derived from a third component such as a diene or a carboxylic acid (ester)-modified olefin. The diene component includes 1,4-hexadiene, 1,6-octadiene, 5-methyl-1,4-hexadiene, 3,7-dimethyl-1,6-octadiene, dicyclopentadiene (DCPD), ethylidenenorbornene (ENB ), norbornadiene, 5-vinyl-2-norbornene, etc.; carboxylic acid (ester)-modified olefins include carboxyl group-containing olefins, carboxylic acid ester group-containing olefins, such as maleic anhydride-modified olefins, (meth)acrylic acid Examples include, but are not limited to, methyl and the like, respectively. A copolymer containing, for example, 0.1 to 10% by mass, particularly 0.5 to 8% by mass, especially 1 to 5% by mass, of structural units derived from these third components is a propylene-α- It may exhibit melting behavior and compatibility different from those of olefin copolymers, and it is also possible to control the physical properties and workability of the inorganic powder-filled resin composition of the present invention by blending them. Since the diene-derived structural unit can also serve as a cross-linking site, the propylene-α-olefin copolymer is partially cross-linked by mixing it with other components together with a cross-linking agent such as a peroxide to modify processability. You can also Further, by using a propylene-α-olefin copolymer having functional groups such as carboxylic acid groups, miscibility with inorganic substance powders may be enhanced, and physical properties and moldability may be improved.
 上記のようなプロピレン-α-オレフィン共重合体は、概して柔軟で、例えばJIS K6253-3:2012に基づくショアA硬さが10~90、典型的には20~80となる。本発明の無機物質粉末充填樹脂組成物は、これら共重合体が配合されているため、柔軟性や耐衝撃性に優れたものとなる。プロピレン-α-オレフィン共重合体の特性は多岐に亘り、例えば質量平均分子量が20,000~5,000,000、典型的には50,000~1,000,000、特に70,000~400,000程度の範囲に;密度が0.84~0.92g/cm、典型的には0.85~0.91g/cm程度の範囲に;結晶化度が0.5~40%、典型的には5~25%程度の範囲に;メルトフローレート(ASTM D1238に従う2.16kg、230℃でのMFR)が0.1~90g/10分、典型的には0.5~30g/10分程度の範囲に;融解温度が40~180℃、典型的には80~160℃、特に100~140℃程度の範囲に、それぞれ亘り得るが、これらに限定されず、本発明ではどのような特性のプロピレン-α-オレフィン共重合体をも使用することができる。 The propylene-α-olefin copolymer as described above is generally flexible, and has, for example, a Shore A hardness of 10 to 90, typically 20 to 80, based on JIS K6253-3:2012. The inorganic powder-filled resin composition of the present invention is excellent in flexibility and impact resistance because these copolymers are blended. Propylene-α-olefin copolymers have a wide variety of properties, for example, a mass average molecular weight of 20,000 to 5,000,000, typically 50,000 to 1,000,000, particularly 70,000 to 400. density in the range of 0.84 to 0.92 g/cm 3 , typically 0.85 to 0.91 g/cm 3 ; crystallinity in the range of 0.5 to 40%; typically in the range of 5-25%; melt flow rate (MFR at 2.16 kg, 230° C. according to ASTM D1238) of 0.1-90 g/10 min, typically 0.5-30 g/10 min; about 10 minutes; the melting temperature can range from 40 to 180° C., typically from 80 to 160° C., particularly from 100 to 140° C., but is not limited thereto; Propylene-α-olefin copolymers with similar properties can also be used.
 本発明の無機物質粉末充填樹脂組成物においては、第1の樹脂である上記プロピレン-α-オレフィン共重合体の含有量は、熱可塑性樹脂100質量部に対して80質量部以上95質量部以下である。プロピレン-α-オレフィン共重合体の含有量が、熱可塑性樹脂全体の80質量%以上であれば、無機物質粉末が高充填されても樹脂組成物の加工性や柔軟性は殆ど損なわれない。また、共重合体の含有量が95質量部以下であれば、造形時の収縮が抑制された、形状保持性や造形精度に優れた樹脂組成物(またはフィラメント)が提供される。熱可塑性樹脂100質量部に対する第1の樹脂の含有量は、好ましくは85質量部以上93質量部以下、より好ましくは87質量部以上92質量部以下である。 In the inorganic substance powder-filled resin composition of the present invention, the content of the propylene-α-olefin copolymer, which is the first resin, is 80 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. is. If the content of the propylene-α-olefin copolymer is 80% by mass or more of the total thermoplastic resin, the workability and flexibility of the resin composition are hardly impaired even if the inorganic powder is highly filled. In addition, when the content of the copolymer is 95 parts by mass or less, a resin composition (or filament) is provided which is excellent in shape retention and molding accuracy, in which shrinkage during molding is suppressed. The content of the first resin with respect to 100 parts by mass of the thermoplastic resin is preferably 85 parts by mass or more and 93 parts by mass or less, more preferably 87 parts by mass or more and 92 parts by mass or less.
 <第2の樹脂:ポリオレフィン系樹脂>
 本発明の無機物質粉末充填樹脂組成物における第2の樹脂は、上記の第1の樹脂と異なるポリオレフィン系樹脂であればどのようなものであっても良く、目的に応じて各種の樹脂を使用することができる。ここで、ポリオレフィン系樹脂とは、オレフィン成分単位を主成分とするポリオレフィン系樹脂であり、具体的にはポリプロピレン系樹脂やポリエチレン系樹脂、その他、ポリメチル-1-ペンテン、環状オレフィンポリマー、エチレン-環状オレフィン共重合体など、さらにそれらの2種以上の混合物などが挙げられる。なお、上記「主成分とする」とは、オレフィン成分単位がポリオレフィン系樹脂中に50質量%以上含まれることを意味し、その含有量は好ましくは75質量%以上であり、より好ましくは85質量%以上であり、さらに好ましくは90質量%以上である。特に、ポリオレフィンの単独重合体(ホモポリマー)が好ましい。なお、本発明に使用されるポリオレフィン系樹脂の製造方法は特に制限はなく、チーグラー・ナッタ系触媒、メタロセン系触媒、酸素、過酸化物等のラジカル開始剤等を用いる方法等の何れによって得られたものであっても良い。
<Second resin: polyolefin resin>
The second resin in the inorganic powder-filled resin composition of the present invention may be any polyolefin resin different from the first resin, and various resins may be used depending on the purpose. can do. Here, the polyolefin-based resin is a polyolefin-based resin mainly composed of olefin component units, and specifically includes polypropylene-based resin, polyethylene-based resin, polymethyl-1-pentene, cyclic olefin polymer, Examples include olefin copolymers and mixtures of two or more thereof. The above-mentioned "mainly composed" means that the olefin component unit is contained in the polyolefin resin in an amount of 50% by mass or more, and the content is preferably 75% by mass or more, more preferably 85% by mass. % or more, more preferably 90 mass % or more. In particular, homopolymers (homopolymers) of polyolefins are preferred. The method for producing the polyolefin resin used in the present invention is not particularly limited, and can be obtained by any method using a Ziegler-Natta catalyst, a metallocene catalyst, or a radical initiator such as oxygen or peroxide. It may be something else.
 本発明における第2の樹脂として好ましい樹脂は、ポリエチレン系樹脂及び/又はポリプロピレン系樹脂である。ポリエチレン系樹脂及びポリプロピレン系樹脂としては、エチレン単位又はプロピレン成分単位が50質量%以上の樹脂が挙げられる。テトラフロロエチレンや酢酸ビニル、(メタ)アクリル酸(エステル)等との共重合体であっても良い。例えばポリエチレン系樹脂として、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、中密度ポリエチレン、直鎖状低密度ポリエチレン(LLDPE)等の他、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸(エステル)共重合体等を使用することもできる。プロピレンと少量の他のモノマーとの共重合体を使用しても良い。 A resin that is preferable as the second resin in the present invention is a polyethylene-based resin and/or a polypropylene-based resin. Examples of polyethylene-based resins and polypropylene-based resins include resins containing 50% by mass or more of ethylene units or propylene component units. A copolymer with tetrafluoroethylene, vinyl acetate, (meth)acrylic acid (ester), or the like may also be used. For example, polyethylene-based resins include high-density polyethylene (HDPE), low-density polyethylene (LDPE), medium-density polyethylene, linear low-density polyethylene (LLDPE), ethylene-vinyl acetate copolymer, ethylene-(meth) Acrylic acid (ester) copolymers and the like can also be used. Copolymers of propylene with minor amounts of other monomers may also be used.
 その中でも、本発明における第2の樹脂は、より好ましくはプロピレンホモポリマー及び/又はブロックポリプロピレンである。これらポリプロピレン系樹脂は、機械的強度と耐熱性とのバランスに優れ、無機物質粉末充填樹脂組成物中に配合されると優れた形状保持性を与える。 Among them, the second resin in the present invention is more preferably propylene homopolymer and/or block polypropylene. These polypropylene-based resins have an excellent balance between mechanical strength and heat resistance, and provide excellent shape retention when blended in a resin composition filled with an inorganic powder.
 (プロピレンホモポリマー)
 プロピレンホモポリマー(以下、「PP」と略す場合がある。)は、実質的にプロピレンのみを重合したポリマーであり、剛性や耐熱性に優れている。様々な製品が市販されており、例として日本ポリプロ株式会社のウィンテック(登録商標)及びノバテック(登録商標)、住友化学株式会社のノーブレン(登録商標)、株式会社プライムポリマーのプライムポリプロ(登録商標)、東レ株式会社のトレカ(登録商標)、SABICペトロケミカルズのSABIC(登録商標)PP、並びにサンアロマー株式会社のサンアロマー(登録商標)等が挙げられるが、本発明においてはこれらに限定されず、どのようなPPが含まれていても良い。複数種のPPを併用することもできる。本発明の無機物質粉末充填樹脂組成物は、プロピレンホモポリマーを第2の樹脂として含有することにより、さらに形状保持性に優れた樹脂組成物となる。
(propylene homopolymer)
Propylene homopolymer (hereinafter sometimes abbreviated as "PP") is a polymer obtained by polymerizing substantially only propylene, and is excellent in rigidity and heat resistance. Various products are commercially available, such as Wintec (registered trademark) and Novatec (registered trademark) of Japan Polypropylene Corporation, Noblen (registered trademark) of Sumitomo Chemical Co., Ltd., and Prime Polypro (registered trademark) of Prime Polymer Co., Ltd. ), Toray Industries, Inc. Torayca (registered trademark), SABIC Petrochemicals SABIC (registered trademark) PP, and SunAllomer (registered trademark) of SunAllomer Co., Ltd., but the present invention is not limited to these, and any Such PP may be included. A plurality of types of PP can also be used together. By containing a propylene homopolymer as the second resin, the inorganic powder-filled resin composition of the present invention becomes a resin composition having even better shape retention.
 プロピレンホモポリマーは、立体規則性の違いにより、アイソタクチックPP、シンジオタクチックPP、アタクチックPP、ヘミアイソタクチックPP等に分類される。本発明の樹脂組成物はこれらのいずれを含んでいても良く、これらを複数種併用することもできる。また、ホモポリマー中に、重合時に副生する微量成分を含んだものや、分岐構造を有するものであっても良い。例えば、重合の結果としてヘキセン等のα-オレフィンが共重合したかのような構造が5質量%以下、特に1質量%以下程度含まれる場合があるが、本発明においてはそうした重合体をも、広くプロピレン単独重合体(プロピレンホモポリマー)として包含する。 Propylene homopolymers are classified into isotactic PP, syndiotactic PP, atactic PP, hemiisotactic PP, etc., depending on the difference in stereoregularity. The resin composition of the present invention may contain any of these, and a plurality of these may be used in combination. In addition, the homopolymer may contain trace components produced as a by-product during polymerization, or may have a branched structure. For example, as a result of polymerization, a structure as if an α-olefin such as hexene is copolymerized may be contained in an amount of 5% by mass or less, particularly 1% by mass or less. It is broadly included as a propylene homopolymer (propylene homopolymer).
 プロピレンホモポリマーの分子量にも特に制限はない。しかしながら本発明においては、PPとして質量平均分子量が50,000以上500,000以下程度、特に100,000以上400,000以下程度のものを使用するのが好ましい。一般に分子量が高いほど強度等の機械特性に優れ、分子量が低いほど成形性に優れる。質量平均分子量が50,000以上200,000未満程度のものと200,000以上500,000以下程度のものとを、併用することもできる。異なる分子量のPPを併用することにより、成形性を改善し、成形品の外観不良を低減させることも可能となる。 There is no particular limitation on the molecular weight of the propylene homopolymer. However, in the present invention, it is preferable to use PP having a weight average molecular weight of about 50,000 to 500,000, particularly about 100,000 to 400,000. In general, the higher the molecular weight, the better the mechanical properties such as strength, and the lower the molecular weight, the better the moldability. A compound having a mass average molecular weight of approximately 50,000 or more and less than 200,000 and a compound having a mass average molecular weight of approximately 200,000 or more and 500,000 or less can be used together. By using PPs with different molecular weights together, it is possible to improve the moldability and reduce the appearance defects of the molded product.
 (ブロックポリプロピレン)
 ブロックポリプロピレンとは、PP中にポリエチレン等が分散した海島構造を有するポリマーであり、広義のプロピレンブロックコポリマーの一種である。例えばPP海相中にポリエチレン成分及び/又はエチレン-プロピレン共重合体成分の島相を10~50質量%程度含有するポリマーであり、異相共重合体とも呼ばれる。狭義のエチレン-プロピレンブロックコポリマー等とは異なり、ホモポリプロピレン連鎖とポリエチレン連鎖又はエチレン-プロピレン共重合体連鎖とが、必ずしも化学結合していない。この点で、第1の樹脂であるプロピレン-α-オレフィン共重合体とは、明確に区別される。一般的なブロックポリプロピレンでは、ポリエチレン島相がエチレン-プロピレン共重合体で覆われた状態でポリプロピレン海相中に分散しているので、本発明の樹脂組成物に配合されても、第1の樹脂(共重合体)と第2の樹脂との質量比を殆ど変化させない。
(block polypropylene)
Block polypropylene is a polymer having a sea-island structure in which polyethylene or the like is dispersed in PP, and is a kind of propylene block copolymer in a broad sense. For example, it is a polymer containing about 10 to 50% by mass of an island phase of a polyethylene component and/or an ethylene-propylene copolymer component in a PP sea phase, and is also called a heterophasic copolymer. Unlike ethylene-propylene block copolymers in the narrow sense, homopolypropylene chains and polyethylene chains or ethylene-propylene copolymer chains are not necessarily chemically bonded. In this respect, it is clearly distinguished from the first resin, the propylene-α-olefin copolymer. In general block polypropylene, the polyethylene island phase is dispersed in the polypropylene sea phase while being covered with the ethylene-propylene copolymer. The mass ratio of (copolymer) to the second resin is hardly changed.
 上記のような異相共重合体は例えば、先ずプロピレンホモポリマーを重合させ、次いでエチレン等を共重合させることによって製造することができる。ここで、エチレン成分の比率や連鎖数、PPの分子量を調整することにより、海島構造の制御が可能である。様々な製品が市販されており、本発明においてはどのような種類のブロックポリプロピレンを使用することもできる。一般にブロックポリプロピレンは柔軟性や耐衝撃性に優れるので、本発明における第2の樹脂として使用すると、より柔軟な無機物質粉末充填樹脂組成物とすることが可能である。 The above heterophasic copolymer can be produced, for example, by first polymerizing a propylene homopolymer and then copolymerizing ethylene or the like. Here, the sea-island structure can be controlled by adjusting the ratio of the ethylene component, the number of chains, and the molecular weight of the PP. Various products are commercially available and any type of block polypropylene can be used in the present invention. Block polypropylene is generally excellent in flexibility and impact resistance, and therefore, when used as the second resin in the present invention, it is possible to obtain a more flexible inorganic powder-filled resin composition.
 <他の熱可塑性樹脂>
 本発明の無機物質粉末充填樹脂組成物において、熱可塑性樹脂は上記のようなプロピレン-α-オレフィン共重合体とその他のポリオレフィン系樹脂とを含むが、さらにこれら以外の樹脂成分を含んでもよい。例としてポリ(メタ)アクリル酸(エステル)、ポリ酢酸ビニル、ポリアクリロニトリル、ポリスチレン、ABS樹脂、ポリカーボネート、ポリアミド、ポリビニルアルコール、石油炭化水素樹脂、クマロンインデン樹脂等の熱可塑性樹脂;さらにはスチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、スチレン-ブタジエン-エチレン共重合体、スチレン-イソプレン-エチレン共重合体、アクリロニトリル-ブタジエン共重合体、フッ素系エラストマー等のエラストマーが挙げられるが、これらに限定されない。これら樹脂成分の配合により、無機物質粉末充填樹脂組成物中で各成分がより均一に分散し、物性や加工性が改善する場合がある。しかしながら各種樹脂成分の相溶性等を考慮すると、本発明の無機物質粉末充填樹脂組成物における熱可塑性樹脂は、好ましくは90質量%以上、より好ましくは97質量%以上、特に好ましくは実質的に全量が、上記のプロピレン-α-オレフィン共重合体及びポリオレフィン系樹脂から成る。プロピレン-α-オレフィン共重合体及びポリオレフィン系樹脂以外の樹脂成分を実質的に不含の無機物質粉末充填樹脂組成物であれば、原材料や組成、加工条件の選定が特に容易となる。
<Other thermoplastic resins>
In the inorganic powder-filled resin composition of the present invention, the thermoplastic resin includes the above-mentioned propylene-α-olefin copolymer and other polyolefin resins, and may further include resin components other than these. Thermoplastic resins such as poly (meth) acrylic acid (ester), polyvinyl acetate, polyacrylonitrile, polystyrene, ABS resin, polycarbonate, polyamide, polyvinyl alcohol, petroleum hydrocarbon resin, coumarone-indene resin; Elastomers such as butadiene copolymers, styrene-isoprene copolymers, styrene-butadiene-ethylene copolymers, styrene-isoprene-ethylene copolymers, acrylonitrile-butadiene copolymers, fluorine-based elastomers, etc., may be mentioned. Not limited. By blending these resin components, each component can be more uniformly dispersed in the inorganic powder-filled resin composition, and physical properties and workability can be improved. However, considering the compatibility of various resin components, the thermoplastic resin in the inorganic powder-filled resin composition of the present invention is preferably 90% by mass or more, more preferably 97% by mass or more, and particularly preferably substantially the entire amount. consists of the above propylene-α-olefin copolymer and polyolefin resin. If the inorganic substance powder-filled resin composition does not substantially contain resin components other than the propylene-α-olefin copolymer and the polyolefin resin, it is particularly easy to select raw materials, composition and processing conditions.
 [熱可塑性樹脂の組成]
 上記のように、本発明の無機物質粉末充填樹脂組成物は、熱可塑性樹脂成分として、プロピレン-α-オレフィン共重合体である第1の樹脂と、それとは異なるポリオレフィン系樹脂である第2の樹脂との、少なくとも2種を含有する。好ましくはそれら2種の樹脂を、特定の質量比で含有する。それによって、本発明の無機物質粉末充填樹脂組成物は形状保持性と柔軟性の双方に優れた物性を示し、後加工が容易で、耐衝撃性に優れた成形品へと成形することが可能となる。本発明においては、好ましくは第1の樹脂と第2の樹脂とを80~95質量部:20~5質量部の量で、より好ましくは85~93質量部:15~7質量部の量で、特に好ましくは87~92質量部:13~8質量部の量で含有する。第1の樹脂と第2の樹脂との質量比が上記範囲内であれば、形状保持性と柔軟性がバランス良く優れた無機物質粉末充填樹脂組成物とすることができる。その結果、本発明の無機物質粉末充填樹脂組成物は、FDM用フィラメント材料としてさらに好適なものとなる。
[Composition of thermoplastic resin]
As described above, the inorganic powder-filled resin composition of the present invention comprises, as thermoplastic resin components, a first resin that is a propylene-α-olefin copolymer and a second resin that is a different polyolefin resin. It contains at least two types of resin. Preferably the two resins are contained in a specific weight ratio. As a result, the inorganic powder-filled resin composition of the present invention exhibits excellent physical properties in terms of both shape retention and flexibility, can be easily post-processed, and can be molded into molded articles with excellent impact resistance. becomes. In the present invention, the first resin and the second resin are preferably mixed in an amount of 80 to 95 parts by mass: 20 to 5 parts by mass, more preferably 85 to 93 parts by mass: 15 to 7 parts by mass. , particularly preferably 87-92 parts by weight: 13-8 parts by weight. If the mass ratio of the first resin and the second resin is within the above range, it is possible to obtain an inorganic powder-filled resin composition having excellent balance between shape retention and flexibility. As a result, the inorganic powder-filled resin composition of the present invention becomes more suitable as a filament material for FDM.
 <無機物質粉末>
 本発明の無機物質粉末充填樹脂組成物は、上記の熱可塑性樹脂と共に、無機物質粉末を含有する。無機物質粉末としては、特に限定されず、例えば、カルシウム、マグネシウム、アルミニウム、チタン、鉄、亜鉛等の炭酸塩、硫酸塩、珪酸塩、リン酸塩、ホウ酸塩、酸化物、若しくはこれらの水和物の粉末状のものが挙げられ、具体的には、例えば、炭酸カルシウム、炭酸マグネシウム、酸化亜鉛、酸化チタン、シリカ、アルミナ、タルクやカオリン等のクレー、水酸化アルミニウム、水酸化マグネシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸カルシウム、硫酸アルミニウム、硫酸マグネシウム、硫酸カルシウム、リン酸マグネシウム、硫酸バリウム、珪砂、カーボンブラック、ゼオライト、モリブデン、珪藻土、セリサイト、シラス、亜硫酸カルシウム、硫酸ナトリウム、チタン酸カリウム、ベントナイト、ウォラストナイト、ドロマイト、黒鉛等が挙げられる。これらは合成のものであっても天然鉱物由来のものであっても良く、また、これらは単独又は2種類以上併用して含有されても良い。
<Inorganic substance powder>
The inorganic substance powder-filled resin composition of the present invention contains an inorganic substance powder together with the above thermoplastic resin. The inorganic substance powder is not particularly limited. Specific examples include calcium carbonate, magnesium carbonate, zinc oxide, titanium oxide, silica, alumina, clays such as talc and kaolin, aluminum hydroxide, magnesium hydroxide, and silica. Aluminum oxide, magnesium silicate, calcium silicate, aluminum sulfate, magnesium sulfate, calcium sulfate, magnesium phosphate, barium sulfate, silica sand, carbon black, zeolite, molybdenum, diatomaceous earth, sericite, shirasu, calcium sulfite, sodium sulfate, titanium Potassium acid, bentonite, wollastonite, dolomite, graphite and the like. These may be synthetic or derived from natural minerals, and may be contained singly or in combination of two or more.
 さらに、無機物質粉末の形状としても、特に限定されるわけではなく、粒子状、フレーク状、顆粒状、繊維状等の何れであっても良い。また、粒子状としても、一般的に合成法により得られるような球形のものであっても、あるいは、採集した天然鉱物を粉砕にかけることにより得られるような不定形状のものであっても良い。 Furthermore, the shape of the inorganic substance powder is not particularly limited, and may be in the form of particles, flakes, granules, fibers, or the like. As for the particulate form, it may be spherical as generally obtained by a synthetic method, or irregularly shaped as obtained by pulverizing collected natural minerals. .
 これらの無機物質粉末として、好ましくは炭酸カルシウム、炭酸マグネシウム、ドロマイト、酸化亜鉛、酸化チタン、シリカ、アルミナ、クレー、タルク、カオリン、水酸化アルミニウム、水酸化マグネシウム等であり、特に炭酸カルシウムを含むものが好ましい。さらに炭酸カルシウムとしては、合成法により調製されたもの、いわゆる軽質炭酸カルシウムと、石灰石等CaCOを主成分とする天然原料を機械的に粉砕分級して得られる、いわゆる重質炭酸カルシウムの何れであっても良く、これらを組合わせたものであっても良い。 These inorganic substance powders are preferably calcium carbonate, magnesium carbonate, dolomite, zinc oxide, titanium oxide, silica, alumina, clay, talc, kaolin, aluminum hydroxide, magnesium hydroxide and the like, particularly those containing calcium carbonate. is preferred. Furthermore, the calcium carbonate may be either so-called light calcium carbonate prepared by a synthetic method or so-called heavy calcium carbonate obtained by mechanically pulverizing and classifying a natural raw material containing CaCO3 as a main component such as limestone. There may be one, or a combination of these may be used.
 しかしながら本発明においては、重質炭酸カルシウムを含む無機物質粉末を使用するのが好ましい。ここで、重質炭酸カルシウムとは、天然の石灰石等を機械的に粉砕・加工して得られるものであって、化学的沈殿反応等によって製造される合成炭酸カルシウムとは明確に区別される。なお、粉砕方法には乾式法と湿式法とがあるが、乾式法によるものが好ましい。 However, in the present invention, it is preferable to use an inorganic substance powder containing heavy calcium carbonate. Here, heavy calcium carbonate is obtained by mechanically pulverizing and processing natural limestone or the like, and is clearly distinguished from synthetic calcium carbonate produced by chemical precipitation reaction or the like. The pulverization method includes a dry method and a wet method, and the dry method is preferred.
 重質炭酸カルシウム粒子は、例えば、合成法による軽質炭酸カルシウムとは異なり、粒子形成が粉砕処理によって行われたことに起因する、表面の不定形性、比表面積の大きさに特徴を有する。重質炭酸カルシウム粒子がこの様に不定形性、比表面積の大きさを有するため、熱可塑性樹脂中に配合した場合に重質炭酸カルシウム粒子は、熱可塑性樹脂に対してより多くの接触界面を有し、均一分散に効果がある。 Heavy calcium carbonate particles, for example, differ from light calcium carbonate produced by a synthetic method, and are characterized by surface irregularity and a large specific surface area due to the fact that the particles were formed by a pulverization process. Since the heavy calcium carbonate particles have such an irregular shape and a large specific surface area, when blended in a thermoplastic resin, the heavy calcium carbonate particles form a larger contact interface with the thermoplastic resin. It is effective for uniform dispersion.
 特に限定されるわけではないが、重質炭酸カルシウム粒子の比表面積としては、その平均粒子径によっても左右されるが、3,000cm/g以上35,000cm/g以下程度であることが望まれる。ここでいう比表面積は空気透過法によるものである。比表面積がこの範囲内にあると、得られる成形品の加工性低下が抑制される傾向がある。 Although it is not particularly limited, the specific surface area of the heavy calcium carbonate particles is about 3,000 cm 2 /g or more and 35,000 cm 2 /g or less, depending on the average particle diameter. desired. The specific surface area referred to here is obtained by the air permeation method. When the specific surface area is within this range, there is a tendency to suppress deterioration in processability of the obtained molded article.
 また、重質炭酸カルシウム粒子の不定形性は、粒子形状の球形化の度合いが低いことで表わすことが出来、特に限定されるわけではないが、具体的には、真円度が0.50以上0.95以下、より好ましくは0.55以上0.93以下、さらに好ましくは0.60以上0.90以下である。重質炭酸カルシウム粒子の真円度がこの範囲内にあると、成形品の強度や成形加工性も適度なものとなる。なお、ここで、真円度とは、(粒子の投影面積)/(粒子の投影周囲長と同一周囲長を持つ円の面積)で表せるものである。真円度の測定方法は特に限定されず、例えば顕微鏡写真から粒子の投影面積と粒子の投影周囲長とを測定しても良く、一般に商用されている画像解析ソフトを用いても良い。 In addition, the irregularity of the heavy calcium carbonate particles can be expressed by a low degree of spheroidization of the particle shape. 0.95 or less, more preferably 0.55 or more and 0.93 or less, and still more preferably 0.60 or more and 0.90 or less. If the roundness of the heavy calcium carbonate particles is within this range, the strength and moldability of the molded product will be moderate. Here, the circularity can be expressed by (the projected area of the grain)/(the area of the circle having the same circumferential length as the projected circumferential length of the grain). The method for measuring the roundness is not particularly limited, and for example, the projected area and the projected peripheral length of the grain may be measured from a micrograph, or image analysis software that is generally commercially available may be used.
 また、無機物質粉末の分散性又は反応性を高めるために、表面が常法に従い表面改質されていても良い。例えば、表面処理された重質炭酸カルシウムを、好ましく使用することができる。表面改質法としては、プラズマ処理等の物理的な方法や、カップリング剤や界面活性剤で表面を化学的に表面処理するもの等が例示できる。カップリング剤としては、例えば、シランカップリング剤やチタンカップリング剤等が挙げられる。界面活性剤としては、アニオン性、カチオン性、ノニオン性及び両性の何れのものであっても良く、例えば、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸塩等が挙げられる。これらとは逆に、表面処理のされていない無機物質粉末が含有されていても構わない。 In addition, the surface may be surface-modified by a conventional method in order to enhance the dispersibility or reactivity of the inorganic substance powder. For example, surface-treated ground calcium carbonate can be preferably used. Examples of surface modification methods include physical methods such as plasma treatment, and chemical surface treatment using a coupling agent or surfactant. Examples of coupling agents include silane coupling agents and titanium coupling agents. Surfactants may be anionic, cationic, nonionic or amphoteric, and examples thereof include higher fatty acids, higher fatty acid esters, higher fatty acid amides and higher fatty acid salts. On the contrary, it may contain inorganic substance powder that is not surface-treated.
 炭酸カルシウム粒子等の無機物質粉末としては、特に限定される訳ではないが、その平均粒子径が、0.5μm以上9.0μm以下が好ましく、0.7μm以上6.0μm以下がより好ましく、さらに好ましくは、1.0μm以上4.0μm以下である。なお、本明細書において述べる無機物質粉末の平均粒子径は、JIS M-8511に準じた空気透過法による比表面積の測定結果から計算した値をいう。測定機器としては、例えば、島津製作所製の比表面積測定装置SS-100型を好ましく用いることができる。平均粒子径が9.0μmよりも大きくなると、例えばシート状の成形品を形成した場合に、その成形品の層厚にもよるが、成形品表面より無機物質粉末が突出して、当該粉末が脱落したり、表面性状や機械強度等を損なうおそれがある。特に、その粒径分布において、粒子径45μm以上の粒子を含有しないことが好ましい。他方、粒子が細かくなり過ぎると、前述した樹脂と混練した際に粘度が著しく上昇し、成形品の製造が困難になる虞れがある。そうした問題は、無機物質粉末の平均粒子径を0.5μm以上、特に0.7μm以上6.0μm以下とすることによって、防ぐことが可能となる。 The inorganic substance powder such as calcium carbonate particles is not particularly limited, but preferably has an average particle size of 0.5 μm or more and 9.0 μm or less, more preferably 0.7 μm or more and 6.0 μm or less. Preferably, it is 1.0 μm or more and 4.0 μm or less. In addition, the average particle size of the inorganic substance powder described in this specification refers to a value calculated from the measurement result of the specific surface area by the air permeation method according to JIS M-8511. As a measuring device, for example, a specific surface area measuring device SS-100 manufactured by Shimadzu Corporation can be preferably used. If the average particle size is larger than 9.0 μm, for example, when forming a sheet-like molded product, depending on the layer thickness of the molded product, the inorganic powder protrudes from the surface of the molded product, and the powder falls off. Otherwise, the surface properties, mechanical strength, etc. may be impaired. In particular, it is preferable that the particle size distribution does not contain particles having a particle size of 45 μm or more. On the other hand, if the particles are too fine, the viscosity will increase significantly when kneaded with the above-mentioned resin, which may make it difficult to produce molded articles. Such a problem can be prevented by setting the average particle size of the inorganic powder to 0.5 μm or more, particularly 0.7 μm or more and 6.0 μm or less.
 上記のように、本発明においては無機物質粉末として炭酸カルシウムを使用することが好ましい。より好ましくは、該炭酸カルシウムが、JIS M-8511による空気透過法により測定した平均粒子径が0.5μm以上2.0μm未満、特に0.7μm以上2.0μm未満である第1の炭酸カルシウムと、JIS M-8511による空気透過法により測定した平均粒子径が2.0μm以上9.0μm未満、特に2.0μm以上6.0μm未満である第2の炭酸カルシウムとを含有する。このことによって、成形品の表面性状や、印刷性、ブロッキング性等の物性を改善することができる。また、炭酸カルシウムの偏在が抑制され、外観及び、破断伸び等の機械的特性が良好な成形品を得ることができ、樹脂組成物成形品からの炭酸カルシウムの脱落を低減することも可能となる。特に限定されるわけではないが、第1の炭酸カルシウムの平均粒子径をaとし、第2の炭酸カルシウムの平均粒子径をbとした場合に、a/b比率が0.85以下、より好ましくは0.10~0.70、さらに好ましくは0.10~0.50程度となるように大別できるものであることが望ましい。このようなある程度明確な平均粒子径の差をもったものを併用することで、特に優れた効果が期待できるためである。また、第1の炭酸カルシウムと第2の炭酸カルシウムのそれぞれは、その粒子径(μm)の分布の変動係数(Cv)が0.01~0.10程度であることが望ましく、特に0.03~0.08程度であることが望ましい。変動係数(Cv)で規定される粒子径のばらつきがこの程度であれば、各粉末群がより相補的に効果を与え得ると考えられる。第1の炭酸カルシウムと第2の炭酸カルシウムとの質量比は、90:10~98:2、特に92:8~95:5程度とすることが好ましい。平均粒子径分布が異なる炭酸カルシウム群として、3つ以上のものを使用してもよい。また、前記第1の炭酸カルシウム及び前記第2の炭酸カルシウムが、何れも表面処理された重質炭酸カルシウムであることが好ましい。 As described above, it is preferable to use calcium carbonate as the inorganic powder in the present invention. More preferably, the calcium carbonate has an average particle size of 0.5 μm or more and less than 2.0 μm, particularly 0.7 μm or more and less than 2.0 μm, as measured by an air permeation method according to JIS M-8511. , and a second calcium carbonate having an average particle size of 2.0 μm or more and less than 9.0 μm, particularly 2.0 μm or more and less than 6.0 μm, as measured by an air permeation method according to JIS M-8511. As a result, it is possible to improve the physical properties such as the surface properties of the molded product and the printability and blocking property. In addition, uneven distribution of calcium carbonate is suppressed, a molded article having good appearance and mechanical properties such as elongation at break can be obtained, and it is also possible to reduce dropout of calcium carbonate from the resin composition molded article. . Although not particularly limited, when the average particle size of the first calcium carbonate is a and the average particle size of the second calcium carbonate is b, the a/b ratio is 0.85 or less, more preferably. is roughly 0.10 to 0.70, more preferably 0.10 to 0.50. This is because a particularly excellent effect can be expected by jointly using particles having such a clear difference in average particle size to some extent. Further, each of the first calcium carbonate and the second calcium carbonate preferably has a coefficient of variation (Cv) of the distribution of particle diameters (μm) of about 0.01 to 0.10, particularly 0.03. It is desirable to be about 0.08. If the variation in particle size defined by the coefficient of variation (Cv) is this level, it is considered that each powder group can provide more complementary effects. The mass ratio of the first calcium carbonate to the second calcium carbonate is preferably about 90:10 to 98:2, more preferably about 92:8 to 95:5. Three or more calcium carbonate groups having different average particle size distributions may be used. Moreover, it is preferable that the first calcium carbonate and the second calcium carbonate are both surface-treated ground calcium carbonate.
 本発明の無機物質粉末充填樹脂組成物においては、上記した熱可塑性樹脂と無機物質粉末とが、50:50~10:90の質量比で含有される。無機物質粉末の含有量が少ないと、造形時の収縮率や反りが改善されない場合があり、多すぎると混練や成形加工が困難となり、柔軟性も不十分となるためである。熱可塑性樹脂と無機物質粉末との合計質量に占める無機物質粉末の比率は、好ましくは60質量%以上、より好ましくは70質量%以上、特に好ましくは75質量%以上である。同比率の上限値に関しては、好ましくは87質量%以下、より好ましくは85質量%以下、特に好ましくは82質量%以下とする。それと共に、熱可塑性樹脂100質量部に対する第1の樹脂の含有量を80質量部以上95質量部以下とする、例えば無機物質粉末充填樹脂組成物全体に対する第1の樹脂の含有量を8~47質量%、特に15~40質量%程度とすることにより、形状保持性や柔軟性等の物性を、さらにバランス良く改善することができる。その結果、本発明の無機物質粉末充填樹脂組成物は、FDM用フィラメント材料としてさらに好適なものとなる。 The inorganic powder-filled resin composition of the present invention contains the thermoplastic resin and the inorganic powder in a mass ratio of 50:50 to 10:90. If the content of the inorganic substance powder is too small, the shrinkage rate and warpage during molding may not be improved. The ratio of the inorganic substance powder to the total mass of the thermoplastic resin and the inorganic substance powder is preferably 60% by mass or more, more preferably 70% by mass or more, and particularly preferably 75% by mass or more. The upper limit of the ratio is preferably 87% by mass or less, more preferably 85% by mass or less, and particularly preferably 82% by mass or less. At the same time, the content of the first resin with respect to 100 parts by mass of the thermoplastic resin is set to 80 parts by mass or more and 95 parts by mass or less. By setting the amount to about 15 to 40% by mass, physical properties such as shape retention and flexibility can be improved in a well-balanced manner. As a result, the inorganic powder-filled resin composition of the present invention becomes more suitable as a filament material for FDM.
 <その他の添加剤>
 本発明に係る無機物質粉末充填樹脂組成物には、必要に応じて、補助剤としてその他の添加剤を配合することも可能である。その他の添加剤としては、例えば、色剤、滑剤、カップリング剤、流動性改良材(流動性調整剤)、架橋剤、分散剤、酸化防止剤、紫外線吸収剤、難燃剤、安定剤、帯電防止剤、発泡剤、可塑剤等を配合しても良い。これらの添加剤は、単独で用いても良く、2種以上を併用しても良い。また、これらは、後述の混練工程において配合しても良く、混練工程の前にあらかじめ原料成分中に配合していても良い。本発明に係る無機物質粉末充填樹脂組成物において、これらのその他の添加剤の添加量は、所望の物性及び加工性を阻害しない限り特に限定されるものではないが、例えば、無機物質粉末充填樹脂組成物全体の質量を100%とした場合に、これらその他の添加剤はそれぞれ0~10質量%程度、特に0.04~5質量%程度の割合で、かつ当該その他の添加剤全体で10質量%以下となる割合で配合されることが望まれる。
<Other additives>
If necessary, other additives can be added as auxiliary agents to the inorganic powder-filled resin composition according to the present invention. Other additives include, for example, colorants, lubricants, coupling agents, fluidity modifiers (fluidity modifiers), cross-linking agents, dispersants, antioxidants, ultraviolet absorbers, flame retardants, stabilizers, and electrifying agents. Inhibitors, foaming agents, plasticizers, etc. may be blended. These additives may be used alone or in combination of two or more. Further, these may be blended in the kneading step described later, or may be blended in the raw material components in advance before the kneading step. In the inorganic substance powder-filled resin composition according to the present invention, the addition amount of these other additives is not particularly limited as long as it does not impede the desired physical properties and processability. When the mass of the entire composition is 100%, each of these other additives is about 0 to 10% by mass, particularly about 0.04 to 5% by mass, and the total amount of the other additives is 10% by mass. % or less.
 以下に、これらのうち、重要と考えられるものについて例を挙げて説明するが、これらに限られるものではない。 Of these, the ones that are considered important will be explained below with examples, but they are not limited to these.
 可塑剤としては、例えば、クエン酸トリエチル、クエン酸アセチル・トリエチル、フタル酸ジブチル、フタル酸ジアリール、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジオクチル、フタル酸ジ(2-エチルヘキシル)、フタル酸ジ-2-メトキシエチル、酒石酸ジブチル、o-ベンゾイル安息香酸エステル、ジアセチン、エポキシ化大豆油等が挙げられる。これら可塑剤は通常、熱可塑性樹脂に対して数質量%程度配合されるが、その量はこれら範囲に限定されず、成形品の目的によってはエポキシ化大豆油等を20~50質量部程度配合することも可能である。本発明の無機物質粉末充填樹脂組成物においては、その配合量は熱可塑性樹脂100質量部に対し0.5~10質量部、特に1~5質量部程度とするのが好ましい。 Examples of plasticizers include triethyl citrate, acetyl-triethyl citrate, dibutyl phthalate, diaryl phthalate, dimethyl phthalate, diethyl phthalate, dioctyl phthalate, di(2-ethylhexyl) phthalate, and di-phthalate. 2-methoxyethyl, dibutyl tartrate, o-benzoylbenzoate, diacetin, epoxidized soybean oil and the like. These plasticizers are usually blended in an amount of about several mass % with respect to the thermoplastic resin, but the amount is not limited to these ranges. It is also possible to In the inorganic powder-filled resin composition of the present invention, the blending amount is preferably about 0.5 to 10 parts by weight, particularly about 1 to 5 parts by weight, per 100 parts by weight of the thermoplastic resin.
 色剤としては、公知の有機顔料又は無機顔料あるいは染料の何れをも用いることができる。具体的には、アゾ系、アンスラキノン系、フタロシアニン系、キナクリドン系、イソインドリノン系、ジオオサジン系、ペリノン系、キノフタロン系、ペリレン系顔料などの有機顔料や群青、酸化チタン、チタンイエロー、酸化鉄(弁柄)、酸化クロム、亜鉛華、カーボンブラックなどの無機顔料が挙げられる。 Any of known organic pigments, inorganic pigments, or dyes can be used as the coloring agent. Specifically, organic pigments such as azo-based, anthraquinone-based, phthalocyanine-based, quinacridone-based, isoindolinone-based, diosazine-based, perinone-based, quinophthalone-based, and perylene-based pigments, ultramarine blue, titanium oxide, titanium yellow, and iron oxide. (Rouge), chromium oxide, zinc white, carbon black and other inorganic pigments.
 滑剤としては、例えば、ステアリン酸、ヒドロキシステアリン酸、複合型ステアリン酸、オレイン酸等の脂肪酸系滑剤;脂肪族アルコール系滑剤;ステアロアミド、オキシステアロアミド、オレイルアミド、エルシルアミド、リシノールアミド、ベヘンアミド、メチロールアミド、メチレンビスステアロアミド、メチレンビスステアロベヘンアミド、高級脂肪酸のビスアミド酸、複合型アミド等の脂肪族アマイド系滑剤;ステアリン酸-n-ブチル、ヒドロキシステアリン酸メチル、多価アルコール脂肪酸エステル、飽和脂肪酸エステル、エステル系ワックス等の脂肪族エステル系滑剤;脂肪酸金属石鹸系滑剤、例えばジンクステアレート等を挙げることができる。 Examples of lubricants include fatty acid-based lubricants such as stearic acid, hydroxystearic acid, complex stearic acid, and oleic acid; fatty alcohol-based lubricants; stearamide, oxystearamide, oleylamide, erucylamide, ricinolamide, behenamide, and methylol. Aliphatic amide-based lubricants such as amides, methylenebisstearamide, methylenebisstearobehenamide, higher fatty acid bisamic acids, complex amides; n-butyl stearate, methyl hydroxystearate, polyhydric alcohol fatty acid esters, Fatty acid ester-based lubricants such as saturated fatty acid esters and ester-based waxes; fatty acid metal soap-based lubricants such as zinc stearate;
 酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、ペンタエリスリトール系酸化防止剤が使用できる。リン系、より具体的には亜リン酸エステル、リン酸エステル等のリン系酸化防止安定剤が好ましく用いられる。亜リン酸エステルとしては、例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、等の亜リン酸のトリエステル、ジエステル、モノエステル等が挙げられる。 As antioxidants, phosphorus-based antioxidants, phenol-based antioxidants, and pentaerythritol-based antioxidants can be used. Phosphorus-based, more specifically phosphorus-based antioxidant stabilizers such as phosphites and phosphates are preferably used. Examples of phosphites include triphenyl phosphite, trisnonylphenyl phosphite, tris(2,4-di-t-butylphenyl) phosphite, and other phosphorous acid triesters, diesters, and monoesters. is mentioned.
 リン酸エステルとしては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリス(ノニルフェニル)ホスフェート、2-エチルフェニルジフェニルホスフェート等が挙げられる。これらリン系酸化防止剤は単独で用いても良く、二種以上を組み合わせて用いても良い。 Phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris(nonylphenyl) phosphate, 2-ethylphenyl diphenyl phosphate, and the like. These phosphorus-based antioxidants may be used alone, or two or more of them may be used in combination.
 フェノール系の酸化防止剤としては、α-トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネイト、2-t-ブチル-6-(3'-t-ブチル-5'-メチル-2'-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,6-ジ-t-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネイトジエチルエステル、及びテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン等が例示され、これらは単独で又は2種以上を組合せて使用することができる。 Phenolic antioxidants include α-tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin E, n-octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2- t-butyl-6-(3'-t-butyl-5'-methyl-2'-hydroxybenzyl)-4-methylphenyl acrylate, 2,6-di-t-butyl-4-(N,N-dimethyl aminomethyl)phenol, 3,5-di-t-butyl-4-hydroxybenzylphosphonate diethyl ester, and tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyloxymethyl]methane etc., and these can be used alone or in combination of two or more.
 難燃剤としては、特に限定されないが、例えば、ハロゲン系難燃剤や、あるいはリン系難燃剤や金属水和物などの非リン系ハロゲン系難燃剤を用いることができる。ハロゲン系難燃剤としては、具体的には例えば、ハロゲン化ビスフェニルアルカン、ハロゲン化ビスフェニルエーテル、ハロゲン化ビスフェニルチオエーテル、ハロゲン化ビスフェニルスルフォンなどのハロゲン化ビスフェノール系化合物、臭素化ビスフェノールA、臭素化ビスフェノールS、塩素化ビスフェノールA、塩素化ビスフェノールSなどのビスフェノール-ビス(アルキルエーテル)系化合物等が、またリン系難燃剤としては、トリス(ジエチルホスフィン酸)アルミニウム、ビスフェノールAビス(ジフェニルホスフェート)、リン酸トリアリールイソプロピル化物、クレジルジ2、6-キシレニルホスフェート、芳香族縮合リン酸エステル等が、金属水和物としては、例えば、アルミニウム三水和物、二水酸化マグネシウム又はこれらの組み合わせ等がそれぞれ例示でき、これらは単独で又は2種以上を組合せて使用することができる。難燃助剤として働き、より効果的に難燃効果を向上させることが可能となる。さらに、例えば、三酸化アンチモン、五酸化アンチモン等の酸化アンチモン、酸化亜鉛、酸化鉄、酸化アルミニウム、酸化モリブデン、酸化チタン、酸化カルシウム、酸化マグネシウム等を難燃助剤として併用することも可能である。 The flame retardant is not particularly limited, but for example, halogen flame retardants or non-phosphorus halogen flame retardants such as phosphorus flame retardants and metal hydrates can be used. Specific examples of halogen flame retardants include halogenated bisphenol compounds such as halogenated bisphenylalkanes, halogenated bisphenyl ethers, halogenated bisphenylthioethers, and halogenated bisphenylsulfones, brominated bisphenol A, bromine Bisphenol-bis(alkyl ether) compounds such as bisphenol S, chlorinated bisphenol A, and chlorinated bisphenol S, and phosphorus-based flame retardants such as aluminum tris(diethylphosphinate) and bisphenol A bis(diphenyl phosphate). , triarylisopropyl phosphate, cresyl di-2,6-xylenyl phosphate, aromatic condensed phosphate esters, etc., and metal hydrates such as aluminum trihydrate, magnesium dihydroxide, or combinations thereof. etc. can be exemplified, respectively, and these can be used alone or in combination of two or more. It works as a flame retardant assistant, and can improve the flame retardant effect more effectively. Furthermore, for example, antimony oxides such as antimony trioxide and antimony pentoxide, zinc oxide, iron oxide, aluminum oxide, molybdenum oxide, titanium oxide, calcium oxide, magnesium oxide, etc. can be used in combination as flame retardant aids. .
 発泡剤は、溶融混練機内で溶融状態にされている原料である無機物質粉末充填樹脂組成物に混合、又は圧入し、固体から気体、液体から気体に相変化するもの、又は気体そのものであり、主として発泡シートの発泡倍率(発泡密度)を制御するために使用される。発泡剤は、常温で液体のものは樹脂温度によって気体に相変化して溶融樹脂に溶解し、常温で気体のものは相変化せずそのまま溶融樹脂に溶解する。溶融樹脂に分散溶解した発泡剤は、溶融樹脂を押出ダイからシート状に押出した際に、圧力が開放されるのでシート内部で膨張し、シート内に多数の微細な独立気泡を形成して発泡シートが得られる。発泡剤は、副次的に原料樹脂組成物の溶融粘度を下げる可塑剤として作用し、原料樹脂組成物を可塑化状態にするための温度を低くする。 The foaming agent is mixed or pressurized into the inorganic substance powder-filled resin composition which is the raw material which is in a molten state in the melt kneader, and changes phase from solid to gas, liquid to gas, or gas itself, It is mainly used to control the foaming ratio (foaming density) of foamed sheets. A foaming agent that is liquid at room temperature undergoes a phase change to a gas depending on the resin temperature and dissolves in the molten resin, while a foaming agent that is gas at room temperature does not undergo a phase change and dissolves in the molten resin as it is. The foaming agent dispersed and dissolved in the molten resin expands inside the sheet as the pressure is released when the molten resin is extruded into a sheet from an extrusion die, forming a large number of fine closed cells within the sheet and foaming. A sheet is obtained. The foaming agent secondarily acts as a plasticizer that lowers the melt viscosity of the raw material resin composition, and lowers the temperature for making the raw resin composition plasticized.
 発泡剤としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素類;シクロブタン、シクロペンタン、シクロヘキサンなどの脂環式炭化水素類;クロロジフルオロメタン、ジフロオロメタン、トリフルオロメタン、トリクロロフルオロメタン、ジクロロメタン、ジクロロフルオロメタン、ジクロロジフルオロメタン、クロロメタン、クロロエタン、ジクロロトリフルオロエタン、ジクロロペンタフルオロエタン、テトラフルオロエタン、ジフルオロエタン、ペンタフルオロエタン、トリフルオロエタン、ジクロロテトラフルオロエタン、トリクロロトリフルオロエタン、テトラクロロジフルオロエタン、パーフルオロシクロブタンなどのハロゲン化炭化水素類;二酸化炭素、チッ素、空気などの無機ガス;水などが挙げられる。 Examples of blowing agents include aliphatic hydrocarbons such as propane, butane, pentane, hexane and heptane; alicyclic hydrocarbons such as cyclobutane, cyclopentane and cyclohexane; chlorodifluoromethane, difluoromethane, trifluoromethane, trichlorofluoromethane; Methane, dichloromethane, dichlorofluoromethane, dichlorodifluoromethane, chloromethane, chloroethane, dichlorotrifluoroethane, dichloropentafluoroethane, tetrafluoroethane, difluoroethane, pentafluoroethane, trifluoroethane, dichlorotetrafluoroethane, trichlorotrifluoroethane , tetrachlorodifluoroethane and perfluorocyclobutane; inorganic gases such as carbon dioxide, nitrogen and air; and water.
 発泡剤としては、さらに、例えば、キャリアレジンに発泡剤の有効成分が含まれるものを好ましく用いる事ができる。キャリアレジンとしては、結晶性オレフィン樹脂等が挙げられる。これらのうち、結晶性ポリプロピレン樹脂が好ましい。また、有効成分としては、炭酸水素塩等が挙げられる。これらのうち、炭酸水素塩が好ましい。結晶性ポリプロピレン樹脂をキャリアレジンとし、炭酸水素塩を熱分解型発泡剤として含む発泡剤コンセントレートであることが好ましい。 As the foaming agent, for example, a carrier resin containing an active ingredient of the foaming agent can be preferably used. Examples of carrier resins include crystalline olefin resins. Among these, crystalline polypropylene resins are preferred. Moreover, hydrogen carbonate etc. are mentioned as an active ingredient. Among these, hydrogen carbonate is preferred. A blowing agent concentrate containing a crystalline polypropylene resin as a carrier resin and a hydrogen carbonate as a thermally decomposable blowing agent is preferred.
 成形工程において発泡剤に含まれる発泡剤の含有量はポリオレフィン系樹脂、プロピレン-α-オレフィン共重合体、及び無機物質粉末の量等に応じて、適宜設定することができ、無機物質粉末充填樹脂組成物の全質量に対して0.04~5.00質量%の範囲とすることが好ましい。 The content of the foaming agent contained in the foaming agent in the molding process can be appropriately set according to the amounts of the polyolefin resin, the propylene-α-olefin copolymer, and the inorganic substance powder. It is preferably in the range of 0.04 to 5.00% by mass relative to the total mass of the composition.
 流動性調整剤としても、種々の慣用のものを使用することができる。例としてジアルキルパーオキサイド等の過酸化物、例えば1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼン等が挙げられるが、これらに限定されない。使用する熱可塑性樹脂の種類によっては、これら過酸化物は架橋剤としても作用する。特に上記プロピレン-α-オレフィン共重合体がジエン由来の構成単位を有する場合、上記過酸化物の作用で共重合体の一部が架橋し、樹脂組成物の物性や加工性を制御する上での一助となり得る。過酸化物の添加量に特に制限はないが、無機物質粉末充填樹脂組成物の全質量に対して0.04~2.00質量%、特に0.05~0.50質量%程度の範囲とすることが好ましい。 Various commonly used fluidity modifiers can also be used. Examples include, but are not limited to, peroxides such as dialkyl peroxides such as 1,4-bis[(t-butylperoxy)isopropyl]benzene and the like. Depending on the type of thermoplastic used, these peroxides may also act as crosslinkers. In particular, when the propylene-α-olefin copolymer has a diene-derived structural unit, a portion of the copolymer is crosslinked by the action of the peroxide, thereby controlling the physical properties and workability of the resin composition. can help The amount of the peroxide to be added is not particularly limited, but it is in the range of 0.04 to 2.00% by mass, particularly 0.05 to 0.50% by mass, based on the total mass of the resin composition filled with the inorganic powder. preferably.
 帯電防止剤としては、例えばラウリルジエタノールアミド、ステアリルジエタノールアミド等の脂肪酸ジエタノールアミド、アルコールアミン系化合物を始めとする水酸基含有化合物等を用いることが可能である。特に、アルコールアミン類、例えばモノエタノールアミン、ジエタノールアミン、トリエタノールアミン等が好ましい。2種以上の帯電防止剤を併用することもできる。これら帯電防止剤は、ケイ酸カルシウムや炭酸カルシウム等に担持されていても良い。なお、脂肪酸ジエタノールアミドのアシル基の炭素数の範囲としては8~22程度が、十分な帯電防止効果を発揮し得る上から望ましい。このような帯電防止剤の配合量としては、無機物質粉末配合熱可塑性樹脂組成物全体の質量を100質量%とした場合に、0.01~8.00質量%程度、より好ましくは0.02~4.00質量%、さらに好ましくは0.05~3.00質量%、特に0.10~1.50質量%程度となる割合で配合されることが望まれる。この範囲内で用いることにより、十分な帯電防止効果が得られることに加え、樹脂表面がべとついたり樹脂物性への悪影響が生じる虞れも少ない。 As antistatic agents, it is possible to use, for example, fatty acid diethanolamides such as lauryl diethanolamide and stearyl diethanolamide, hydroxyl group-containing compounds such as alcohol amine compounds, and the like. Alcohol amines such as monoethanolamine, diethanolamine, triethanolamine and the like are particularly preferred. Two or more antistatic agents can be used in combination. These antistatic agents may be supported on calcium silicate, calcium carbonate, or the like. It should be noted that the number of carbon atoms in the acyl group of the fatty acid diethanolamide is preferably in the range of about 8 to 22 from the viewpoint of exhibiting a sufficient antistatic effect. The amount of such an antistatic agent is about 0.01 to 8.00% by mass, more preferably 0.02%, when the total mass of the inorganic powder-blended thermoplastic resin composition is 100% by mass. It is desired that the content be blended in a proportion of up to 4.00% by mass, more preferably 0.05 to 3.00% by mass, particularly about 0.10 to 1.50% by mass. By using it within this range, in addition to obtaining a sufficient antistatic effect, there is little possibility that the surface of the resin will become sticky or that the physical properties of the resin will be adversely affected.
≪FDM用フィラメント用無機物質粉末充填樹脂組成物≫
 本発明はまた、熱可塑性樹脂と無機物質粉末とを質量比50:50~10:90の割合で含有する熱溶解積層法3Dプリンタフィラメント用の無機物質粉末充填樹脂組成物であって、熱可塑性樹脂は第1の樹脂と第2の樹脂とを含有し、第1の樹脂はプロピレン-α-オレフィン共重合体であり、第2の樹脂は前記第1の樹脂とは異なるポリオレフィン系樹脂であり、かつ第1の樹脂の含有量が、熱可塑性樹脂100質量部に対して80質量部以上95質量部以下であることを特徴とする、熱溶解積層法3Dプリンタフィラメント用の無機物質粉末充填樹脂組成物である。こうした樹脂組成物は、上記のように良好な形状保持性を示し、柔軟で後加工も容易なので、FDM用フィラメント材料として好適である。
<<Inorganic substance powder-filled resin composition for filament for FDM>>
The present invention also provides an inorganic substance powder-filled resin composition for fused lamination method 3D printer filaments containing a thermoplastic resin and an inorganic substance powder at a mass ratio of 50:50 to 10:90, wherein the thermoplastic The resin contains a first resin and a second resin, the first resin is a propylene-α-olefin copolymer, and the second resin is a polyolefin resin different from the first resin. , and the content of the first resin is 80 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. composition. Such a resin composition exhibits good shape retention as described above, is flexible and can be easily post-processed, and is therefore suitable as a filament material for FDM.
 本発明の無機物質粉末充填樹脂組成物は、目的とする造形品に応じてどのような物性を有していても良いが、造形精度を高める観点からは、密度が1.40~2.2g/cm(JISK7112)、メルトフローレイトが0.5~4.0g/10min(230℃、2,16kgJISK7210)、引張降伏応力が10~2.2MPa(JISK7161)、引張弾性率が2500~5000MPa(JISK7161)程度であることが好ましい。こうした物性の樹脂組成物であれば、成形加工が容易で、かつ十分な強度を呈する。 The inorganic powder-filled resin composition of the present invention may have any physical properties depending on the desired shaped article, but from the viewpoint of improving the shaping accuracy, the density is 1.40 to 2.2 g. /cm 3 (JISK7112), melt flow rate 0.5-4.0g/10min (230°C, 2,16kg JISK7210), tensile yield stress 10-2.2MPa (JISK7161), tensile modulus 2500-5000MPa ( JISK7161) is preferable. A resin composition having such physical properties can be easily molded and exhibits sufficient strength.
≪無機物質粉末充填樹脂組成物の製造方法≫
 本発明の無機物質粉末充填樹脂組成物の製造方法としては、通常の方法を使用することができ、成形方法(押出成形、射出成形、真空成形等)に応じて適宜設定して良く、例えば、成形機にホッパーから投入する前に第1の樹脂、第2の樹脂と無機物質粉末とを混練溶融しても良く、成形機と一体で成形と同時に第1の樹脂、第2の樹脂と無機物質粉末とを混練溶融しても良い。溶融混練は、各成分を均一に分散させる傍ら、高い剪断応力を作用させて混練することが好ましい。混合装置としても、一般的な押出機、ニーダー、バンバリーミキサー等種々のものを用いることができるが、例えば二軸混練機で混練することが好ましい。
<<Method for producing inorganic substance powder-filled resin composition>>
As a method for producing the inorganic powder-filled resin composition of the present invention, a conventional method can be used, and it may be appropriately set according to the molding method (extrusion molding, injection molding, vacuum molding, etc.). The first resin, the second resin, and the inorganic substance powder may be kneaded and melted before being put into the molding machine from the hopper, and the first resin, the second resin, and the inorganic powder may be melted together with the molding machine at the same time as molding. The substance powder may be kneaded and melted. Melt-kneading is preferably carried out by applying a high shear stress while dispersing each component uniformly. As a mixing device, various devices such as a general extruder, a kneader, and a Banbury mixer can be used.
 本発明の製造方法において、第1の樹脂、第2の樹脂、及び無機物質粉末の混練順序に特に制限はない。例えばこれら3者を同時に混練することもでき、第1の樹脂と第2の樹脂とを一旦混練した後、その熱可塑性樹脂混合物と無機物質粉末とを混練することも可能である。第1の樹脂と第2の樹脂のそれぞれに無機物質粉末を混練し、2種の熱可塑性樹脂の溶融粘度を揃えてから両者を混練してもよい。第1の樹脂と無機物質粉末とを一旦混練し、その後、第2の樹脂を混練することも可能である。 In the manufacturing method of the present invention, there is no particular limitation on the kneading order of the first resin, the second resin, and the inorganic substance powder. For example, these three materials can be kneaded at the same time, or after kneading the first resin and the second resin, the thermoplastic resin mixture and the inorganic substance powder can be kneaded. An inorganic powder may be kneaded into each of the first resin and the second resin, and the two thermoplastic resins may be kneaded after the melt viscosities of the two types of thermoplastic resins are made uniform. It is also possible to knead the first resin and the inorganic substance powder once and then knead the second resin.
 本発明の無機物質粉末充填樹脂組成物の製造方法において、無機物質粉末充填樹脂組成物はペレットの形態であっても良く、ペレットの形態でなくても良いが、ペレットの形態である場合、ペレットの形状は特に限定されず、例えば、円柱、球形、楕円球状等のペレットを成形しても良い。 In the method for producing the inorganic powder-filled resin composition of the present invention, the inorganic powder-filled resin composition may be in the form of pellets or may not be in the form of pellets. The shape of is not particularly limited, and for example, pellets in the shape of a cylinder, a sphere, or an ellipsoid may be formed.
 ペレットのサイズは、形状に応じて適宜設定すれば良いが、例えば、球形ペレットの場合、直径1~10mmであって良い。楕円球状のペレットの場合、縦横比0.1~1.0の楕円状とし、縦横1~10mmであって良い。円柱ペレットの場合は、直径1~10mmの範囲内、長さ1~10mmの範囲内であって良い。これらの形状は、後述する混練工程後のペレットに対して成形させて良い。ペレットの形状は、常法に従って成形させて良い。 The size of the pellet may be appropriately set according to the shape, but for spherical pellets, for example, the diameter may be 1 to 10 mm. In the case of an elliptical pellet, it may be elliptical with an aspect ratio of 0.1 to 1.0 and a length and width of 1 to 10 mm. In the case of cylindrical pellets, the diameter may be in the range of 1 to 10 mm and the length in the range of 1 to 10 mm. These shapes may be molded into the pellets after the kneading process described below. The shape of pellets may be formed according to a conventional method.
≪成形品≫
 本発明に係る成形品は、上記した無機物質粉末充填樹脂組成物からなる成形品である。本発明に係る成形品の形状等においては特に限定されるものではなく、各種の形態のものであって良い。例えば、肉厚40μm~20mm、特に50μm~1,000μm程度のシートや、各種形状の容器体、筐体、日用品等、各種の押出成形品や射出成形品とすることができる。
≪Molded product≫
A molded article according to the present invention is a molded article made of the inorganic powder-filled resin composition described above. The shape and the like of the molded product according to the present invention are not particularly limited, and various shapes may be used. For example, it can be a sheet having a thickness of 40 μm to 20 mm, particularly about 50 μm to 1,000 μm, various shapes of containers, housings, daily necessities, and various other extruded or injection molded products.
 本発明の成形品の製造方法としては、所望の形状に成形できるものであれば特に限定されず、従来公知の押出成形、射出成形、真空成形、ブロー成形、カレンダー成形等の何れの方法によっても成形加工可能である。さらにまた、本発明に係る無機物質粉末充填樹脂組成物が発泡剤を含有し、発泡体である態様の成形品を得る場合においても、所望の形状に成形できるものであれば発泡体の成形方法として従来公知の、例えば、射出発泡,押出発泡,発泡ブロー等の液相発泡法、あるいは、例えば、ビーズ発泡,バッチ発泡,プレス発泡,常圧二次発泡等の固相発泡法の何れを用いることも可能である。前記した、結晶性ポリプロピレンをキャリアレジンとし、炭酸水素塩を熱分解型発泡剤として含む熱可塑性組成物の一態様においては、射出発泡法及び押出発泡法が望ましく用いられ得る。 The method for producing the molded article of the present invention is not particularly limited as long as it can be molded into a desired shape, and any of conventionally known methods such as extrusion molding, injection molding, vacuum molding, blow molding and calendar molding can be used. Can be molded. Furthermore, even in the case where the inorganic substance powder-filled resin composition according to the present invention contains a foaming agent and a molded article in the form of a foam is obtained, the molding method of the foam can be used as long as it can be molded into a desired shape. For example, conventionally known liquid phase foaming methods such as injection foaming, extrusion foaming, and foam blowing, or solid phase foaming methods such as bead foaming, batch foaming, press foaming, and normal pressure secondary foaming are used. is also possible. In one aspect of the thermoplastic composition containing crystalline polypropylene as a carrier resin and a hydrogen carbonate as a thermally decomposable foaming agent, an injection foaming method and an extrusion foaming method can be desirably used.
 <押出成形品の製造方法>
 本発明の成形品は、好ましくは押出成形品である。例としてシート、ロッド、パイプ、チューブ、ストランド等の種々の形状の物品が挙げられるが、これらに限定されない。押出成形方法に特に制限はなく、汎用の一軸押出、二軸押出等の手法を用いることができる。また、各成分を混練する工程と、シート等に成形する工程とを連続的に行う直接法を用いても良く、例えば、Tダイ方式の二軸押出し成形機を使用する方法を用いても良い。
<Method for producing extruded product>
Molded articles of the present invention are preferably extruded articles. Examples include, but are not limited to, articles of various shapes such as sheets, rods, pipes, tubes, strands, and the like. The extrusion molding method is not particularly limited, and general-purpose methods such as single-screw extrusion and twin-screw extrusion can be used. Alternatively, a direct method in which the step of kneading each component and the step of forming into a sheet or the like are continuously performed may be used. For example, a method using a T-die type twin-screw extruder may be used. .
 シート状に成形する場合においては、その成形時あるいはその成形後に一軸方向又は二軸方向に、ないしは、多軸方向(チューブラー法による延伸等)に延伸することが可能である。二軸延伸の場合には、逐次二軸延伸でも同時二軸延伸であっても良い。成形後のシートに対し、延伸(例えば、縦及び/又は横延伸)を行うと、シート内に微小な空隙が生じる。シート内に微小な空隙が生じることにより、シートの白色度が良好なものとなる。 When it is molded into a sheet, it can be stretched uniaxially, biaxially, or multiaxially (such as by tubular stretching) during or after molding. In the case of biaxial stretching, sequential biaxial stretching or simultaneous biaxial stretching may be used. When the molded sheet is stretched (for example, longitudinally and/or transversely), minute voids are generated in the sheet. The whiteness of the sheet is improved by the formation of minute voids in the sheet.
 なお、射出成形、押出成形等における成形温度としては、その成形方法や使用するポリプロピレン系樹脂の種類等によってもある程度異なるため、一概には規定できるものではないが、例えば、180~260℃、より好ましくは190~230℃の温度であれば、本発明に係る無機物質粉末充填樹脂組成物が、良好なドローダウン特性、延展性を持って、かつ組成物が局部的にも変性を生じることなく所定形状に成形できる。 The molding temperature in injection molding, extrusion molding, etc. varies to some extent depending on the molding method and the type of polypropylene resin used, so it cannot be defined unconditionally. Preferably, at a temperature of 190 to 230° C., the inorganic powder-filled resin composition according to the present invention has good drawdown properties and spreadability, and the composition does not locally denature. It can be molded into a predetermined shape.
≪FDM用フィラメント≫
 本発明の成形品は、特に好ましくは熱溶解積層法3Dプリンタフィラメントである。本発明のFDM用フィラメントは、造形時の熱収縮や反りが抑制されて良好な形状保持性を示し、柔軟で後加工が容易であって造形精度に優れ、かつ耐衝撃性が高い利点を有する。
≪Filament for FDM≫
The molded article of the present invention is particularly preferably a fused layered 3D printer filament. The FDM filament of the present invention has the advantages of suppressing heat shrinkage and warping during molding, exhibiting good shape retention, being flexible, easy to post-process, excellent in molding accuracy, and having high impact resistance. .
 <フィラメント>
 本発明のFDM用フィラメントの直径は、熱溶解積層法による樹脂成形体の成形に使用する製造装置の能力に応じて任意に設定することができる。直径の下限値は、好ましくは0.5mm以上、より好ましくは1.0mm以上、特に好ましくは1.5mm以上であり、一方で上限値は、好ましくは5.0mm以下、より好ましくは4.0mm以下、さらに好ましくは3.5mm以下、特に好ましくは3.0mm以下である。本発明の樹脂組成物は、概して比重が高いため、細いFDM用フィラメントを成形することができる。
<Filament>
The diameter of the filament for FDM of the present invention can be arbitrarily set according to the capacity of the manufacturing apparatus used for molding the resin molding by the hot melt lamination method. The lower limit of the diameter is preferably 0.5 mm or more, more preferably 1.0 mm or more, and particularly preferably 1.5 mm or more, while the upper limit is preferably 5.0 mm or less, more preferably 4.0 mm. Below, more preferably 3.5 mm or less, particularly preferably 3.0 mm or less. Since the resin composition of the present invention generally has a high specific gravity, it is possible to form thin filaments for FDM.
 さらにFDM用フィラメント径の精度は、フィラメントの任意の測定点に対して±5%以内の誤差に納めることが、原料供給の安定性の観点から好ましい。特に、本発明のFDM用フィラメントは、径の標準偏差が0.07mm以下、特に0.06mm以下であることが好ましい。標準偏差は、フィラメントを3cm間隔にて10点、ノギスにて長径と短径を計測して求めることができる。 Furthermore, it is preferable from the viewpoint of stability of raw material supply that the accuracy of the FDM filament diameter should be within ±5% for any measurement point of the filament. In particular, the FDM filament of the present invention preferably has a diameter standard deviation of 0.07 mm or less, particularly 0.06 mm or less. The standard deviation can be obtained by measuring the major and minor diameters of filaments at 10 points at intervals of 3 cm with vernier calipers.
 また、本発明のFDM用フィラメントは、真円度が0.93以上、特に0.95以上であることが好ましい。真円度の上限は1.0である。真円度は、例えばフィラメントを3cm間隔にて10点、ノギスにて長径と短径を計測し、それぞれの測定点における短径/長径の比率を求め、測定した10点における短径/長径の比率の平均を真円度とすることができる。 In addition, the FDM filament of the present invention preferably has a circularity of 0.93 or more, particularly 0.95 or more. The upper limit of circularity is 1.0. For roundness, for example, the filament is measured at 10 points at intervals of 3 cm, the major axis and minor axis are measured with a vernier caliper, the minor axis / major axis ratio at each measurement point is obtained, and the minor axis / major axis at the measured 10 points. The average of the ratios can be taken as the circularity.
 また、本発明のFDM用フィラメントについて、切断時伸びは30%以上であることが好ましく、100%以上であることがフィラメントの靱性を向上し、フィラメントを取り込む際にフィラメントが折れることを抑制できる観点から好ましい。この破断ひずみの上限は特に設定されないが、通常1000%程度である。 In addition, the FDM filament of the present invention preferably has an elongation at break of 30% or more, and an elongation of 100% or more improves the toughness of the filament and prevents the filament from breaking when the filament is incorporated. preferred from Although the upper limit of this breaking strain is not particularly set, it is usually about 1000%.
 本発明のFDM用フィラメントの製造方法は特に制限されないが、本発明の無機物質粉末充填樹脂組成物を、例えば押出成形等の公知の成形方法により成形する方法や、樹脂組成物の製造時にそのままフィラメントとする方法等によって得ることができる。例えば上記したような押出条件で樹脂組成物を混練すると同時にフィラメント状に成形し、本発明のFDM用フィラメントとすることも可能である。 The method for producing the FDM filament of the present invention is not particularly limited, but the inorganic substance powder-filled resin composition of the present invention can be molded by a known molding method such as extrusion molding, or the filament can be formed as it is during the production of the resin composition. It can be obtained by a method such as For example, the resin composition can be kneaded under the extrusion conditions as described above and at the same time formed into a filament to form the filament for FDM of the present invention.
 <フィラメントの巻回体及びカートリッジ>
 本発明のFDM用フィラメントを用いて3次元プリンターにより樹脂成形体を製造するにあたり、通常はボビンに巻きとった巻回体として密閉包装されるか、又は、巻回体がカートリッジに収納されていることが、長期保存、安定した繰り出し、湿気等の環境要因からの保護、捩れ防止等の観点から好ましい。カートリッジとしては、ボビンに巻き取った巻回体の他、内部に防湿材または吸湿材を使用し、少なくともフィラメントを繰り出すオリフィス部以外が密閉されている構造のものが挙げられる。
<Filament roll and cartridge>
When producing a resin molded product by a three-dimensional printer using the filament for FDM of the present invention, it is usually closed and packaged as a wound body wound on a bobbin, or the wound body is stored in a cartridge. This is preferable from the viewpoints of long-term storage, stable delivery, protection from environmental factors such as humidity, and prevention of twisting. Examples of the cartridge include a wound body wound on a bobbin, and a structure in which a moisture-proof material or a moisture-absorbing material is used inside and at least the part other than the orifice through which the filament is delivered is sealed.
 以下、本発明を実施例に基づきより具体的に説明する。なお、これらの実施例は、本明細書に開示され、また添付の請求の範囲に記載された、本発明の概念及び範囲の理解を、より容易なものとする上で、特定の態様及び実施形態の例示の目的のためにのみ記載するのであって、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples. It should be noted that these Examples are intended to provide specific aspects and implementations in order to facilitate an understanding of the concept and scope of the present invention disclosed herein and recited in the appended claims. The present invention is in no way limited to these examples, which are provided for illustrative purposes only.
[実施例1]
 下記の原材料を用いて無機物質粉末充填樹脂組成物のペレットを作製し、該ペレットからフィラメント等の試験片を成形して、各種評価試験に付した。
・R1-1(第1の樹脂):vistamaxx(登録商標)6502、エクソンモービルコーポレーション製のエチレン-プロピレンコポリマー(密度0.865g/cm
・R2-1(第2の樹脂):株式会社プライムポリマー製のプロピレンホモポリマー(MFR:0.5g/10min)
・CC1:備北粉化工業株式会社製の重質炭酸カルシウム(表面処理なし) 平均粒子径:2.2μm、BET比表面積:1.0m/g、真円度:0.85
・滑剤:マグネシウムステアレート
[Example 1]
Pellets of the inorganic powder-filled resin composition were prepared using the following raw materials, and test pieces such as filaments were formed from the pellets and subjected to various evaluation tests.
R1-1 (first resin): vistamaxx® 6502, an ethylene-propylene copolymer from ExxonMobil Corporation (density 0.865 g/cm 3 )
・R2-1 (second resin): propylene homopolymer manufactured by Prime Polymer Co., Ltd. (MFR: 0.5 g/10 min)
CC1: Heavy calcium carbonate manufactured by Bihoku Funka Kogyo Co., Ltd. (no surface treatment) Average particle size: 2.2 μm, BET specific surface area: 1.0 m 2 /g, circularity: 0.85
・Lubricant: magnesium stearate
 HTM50型異方向回転式二軸押出機((株)シーティーシー製)にR1-1を24質量部、R1-2を6質量部、CC1を70質量部、滑剤を1質量部投入し、混練して原料ペレットを調製した。 24 parts by mass of R1-1, 6 parts by mass of R1-2, 70 parts by mass of CC1, and 1 part by mass of a lubricant were added to an HTM50 counter-rotating twin-screw extruder (manufactured by CTC Co., Ltd.) and kneaded. to prepare raw material pellets.
 上記ペレットを、スクリュー径15mmの二軸混練押出機に導入し、フィラメントを製造した。二軸混練押出機は、設定温度200℃、吐出量1.0kg/hrとした上で、ダイス径3mmから樹脂組成物を押出し、40℃の水槽を経て引取り装置で5m/minで引取った。得られたフィラメントの断面の直径は1.65mmから1.90mmの範囲であった。 The pellets were introduced into a twin-screw kneading extruder with a screw diameter of 15 mm to produce filaments. The twin-screw kneading extruder has a set temperature of 200 ° C. and a discharge rate of 1.0 kg / hr, extruding the resin composition from a die diameter of 3 mm, passing through a water tank of 40 ° C. and taking it off at 5 m / min with a take-up device. rice field. The cross-sectional diameters of the resulting filaments ranged from 1.65 mm to 1.90 mm.
 上記で得られたフィラメントを、ホットプロシード社製の熱溶解積層法3Dプリンター「BLADE-1」に導入し、上方に開口部を有するカップ形状の成形体1(3次元造形物)の成形を行った。製造条件は、スタンダードモード、プリント速度150mm/秒とし、また、基盤温度を60℃として吐出温度は200℃で行った。溶融樹脂は、押出ヘッドから直径0.1mmのストランド状に吐出された。 The filament obtained above is introduced into a fused layer deposition method 3D printer "BLADE-1" manufactured by Hot Proceed Co., Ltd., and a cup-shaped molded body 1 (three-dimensional modeled object) having an upper opening is formed. rice field. The manufacturing conditions were a standard mode, a printing speed of 150 mm/sec, a substrate temperature of 60°C and an ejection temperature of 200°C. The molten resin was extruded from the extrusion head in strands with a diameter of 0.1 mm.
 得られた成形体を目視観察し、造形における再現性及び後加工性を、以下の基準で評価した。
(再現性)
・○:ほぼ成形体1と同じ形態が再現されている。
・△:反りの発生とまではいえないが、いびつさが感じられる。
・×:部分的に反りの発生がみられる。
(後加工性)
 23℃55%RHの環境下、やすり300番と800番を使用して後加工を行い、後加工性を官能評価した。
・○:いずれのやすりでも容易に切削することができる。
・△:切削するのにし辛さを感じる。
・×:切削するのに明らかに時間がかかる。
The obtained molded article was visually observed, and the reproducibility in molding and post-processability were evaluated according to the following criteria.
(Reproducibility)
○: Almost the same form as the compact 1 is reproduced.
Δ: Although it cannot be said that warpage occurs, distortedness is felt.
* x: Generation|occurrence|production of curvature is seen partially.
(Post-processability)
Post-processing was performed using files No. 300 and No. 800 in an environment of 23° C. and 55% RH, and post-processing properties were sensory evaluated.
· ◯: Any file can be easily cut.
△: It feels hot to cut.
x: It obviously takes a long time to cut.
 上記ペレットから、80mm×10mm×1mmの試験片を射出成形し、試験片の外観を観察して熱収縮の大小を評価した。また、同試験片を用いて、下記の可撓性(柔軟性)試験を行った。
(熱収縮性)
・〇:試験片の表面が、ほぼ平滑であった。
・△:試験片中央部が、僅かに凹んだ形状となっていた。
・×:試験片中央部が著しく収縮し、明らかに凹状となっていた。
(可撓性)
 上記の試験片を手で折り曲げ、以下の基準に従って柔軟性を評価した。
・◎:試験片を160°前後まで5回折り曲げたが、破断しなかった。
・〇:試験片を160°前後まで2~3回折り曲げない限り、破断しなかった。
・△:試験片を120°程度以上折り曲げると、1回で破断してしまった。
・×:試験片を90~120°程度折り曲げると、1回で破断してしまった。
 各評価結果を、樹脂組成物の配合と共に、後記する表1に示す。
A test piece of 80 mm×10 mm×1 mm was injection molded from the pellet, and the appearance of the test piece was observed to evaluate the degree of thermal shrinkage. Moreover, the following flexibility (flexibility) test was performed using the same test piece.
(heat shrinkable)
◯: The surface of the test piece was almost smooth.
Δ: The central portion of the test piece was slightly recessed.
x: The central portion of the test piece shrank remarkably and was clearly recessed.
(Flexible)
The above test piece was folded by hand and evaluated for flexibility according to the following criteria.
· A: The test piece was bent five times up to about 160°, but did not break.
◯: The test piece was not broken unless it was bent two or three times to about 160°.
Δ: When the test piece was bent at about 120° or more, it broke at one time.
x: When the test piece was bent about 90 to 120°, it broke at one time.
Each evaluation result is shown in Table 1 below together with the formulation of the resin composition.
[実施例2~3、比較例1~3]
 原材料の配合量を、表1に示すように変化させ、実施例1と同様の操作を行った。評価結果を、後記する表1に示す。
[Examples 2-3, Comparative Examples 1-3]
The same operation as in Example 1 was performed while changing the blending amounts of the raw materials as shown in Table 1. Evaluation results are shown in Table 1 below.
[比較例4]
 R1-1を4質量部、R2-1を1質量部、CC1を95質量部、滑剤を1質量部使用し、実施例1と同様の操作を試みたが、混練時の粘度上昇が著しく、試料調製自体ができなかった。
[Comparative Example 4]
Using 4 parts by mass of R1-1, 1 part by mass of R2-1, 95 parts by mass of CC1, and 1 part by mass of lubricant, the same operation as in Example 1 was attempted, but the viscosity increased significantly during kneading, Sample preparation itself was not possible.
[比較例5~6]
 市販のポリ乳酸(PLA)、ABS樹脂を使用して実施例1と同様の操作を行った。評価結果を、各試料の配合と共に、後記する表1に示す。
[Comparative Examples 5-6]
The same operation as in Example 1 was performed using commercially available polylactic acid (PLA) and ABS resin. The evaluation results are shown in Table 1 below together with the composition of each sample.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明に従い、熱可塑性樹脂と無機物質粉末とを質量比50:50~10:90の割合で含有し、第1の樹脂としてのプロピレン-α-オレフィン共重合体と第2の樹脂としてのポリプロピレンとを含み、かつ第1の樹脂の含有量が熱可塑性樹脂100質量部に対して80質量部以上95質量部以下である実施例1~3の試料は、いずれも良好な再現性、後加工性、及び熱収縮性を示し、FDM用フィラメント材料として好適であることが判明した。本発明に従う無機物質粉末充填樹脂組成物はまた、高い可撓性を示し、柔軟性に優れる材料であることが明らかとなった。一方、第1の樹脂の含有量が本発明で規定する範囲外の比較例1では、樹脂組成物は硬くなり、後加工性や可撓性が低下した。反対に第2の樹脂を含まない比較例2の樹脂組成物は、可撓性は良好だが、再現性や熱収縮性の点で、FDM用フィラメント材料としては不適切であった。無機物質粉末含有量の少ない比較例3の樹脂組成物でも、比較例2と同様の結果となった。また、ポリ乳酸やABS樹脂を配合した樹脂組成物は、それぞれ可撓性や再現性等が劣っていた。 According to the present invention, a thermoplastic resin and an inorganic substance powder are contained in a mass ratio of 50:50 to 10:90, and a propylene-α-olefin copolymer as the first resin and polypropylene as the second resin and the content of the first resin is 80 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. and heat-shrinkability, and proved to be suitable as a filament material for FDM. It was also found that the inorganic powder-filled resin composition according to the present invention exhibits high flexibility and is a material with excellent flexibility. On the other hand, in Comparative Example 1, in which the content of the first resin was outside the range defined by the present invention, the resin composition became hard, and post-processability and flexibility decreased. On the contrary, the resin composition of Comparative Example 2, which did not contain the second resin, had good flexibility, but was unsuitable as a filament material for FDM in terms of reproducibility and heat shrinkability. The same results as in Comparative Example 2 were obtained even with the resin composition of Comparative Example 3, which contained a small amount of inorganic substance powder. In addition, resin compositions containing polylactic acid and ABS resin are inferior in flexibility, reproducibility, and the like.
[実施例4~7、比較例7~10]
 下記の原材料を用い、表2に示す配合の試料を、実施例1と同様にして作製した。
・R1-2(第1の樹脂):vistamaxx(登録商標)6102、エクソンモービルコーポレーション製のエチレン-プロピレンブロックコポリマー(エチレン含有率16%、密度0.862g/cm
・R2-2(第2の樹脂):株式会社プライムポリマー製のプロピレンホモポリマー(MFR:2.0g/10min)
・R2-3(第2の樹脂):株式会社プライムポリマー製のブロックポリプロピレン(MFR:55g/10min)
・CC2:丸尾カルシウム株式会社製の重質炭酸カルシウム(表面処理品)MCコートS-20 平均粒子径:2.3μm、BET比表面積:20000m/g
・CC3:軽質炭酸カルシウム(表面処理なし) 平均粒子径:1.5μm、BET比表面積:0.1m/g、真円度:1.00
[Examples 4-7, Comparative Examples 7-10]
A sample having the composition shown in Table 2 was prepared in the same manner as in Example 1 using the following raw materials.
R1-2 (first resin): vistamaxx® 6102, an ethylene-propylene block copolymer from ExxonMobil Corporation (ethylene content 16%, density 0.862 g/cm 3 )
・R2-2 (second resin): propylene homopolymer manufactured by Prime Polymer Co., Ltd. (MFR: 2.0 g / 10 min)
・ R2-3 (second resin): block polypropylene manufactured by Prime Polymer Co., Ltd. (MFR: 55 g / 10 min)
・CC2: Maruo Calcium Co., Ltd. heavy calcium carbonate (surface-treated product) MC Coat S-20 Average particle size: 2.3 μm, BET specific surface area: 20000 m 2 /g
CC3: Light calcium carbonate (no surface treatment) Average particle size: 1.5 μm, BET specific surface area: 0.1 m 2 /g, circularity: 1.00
 得られた各試料について、実施例1と同様に成形して試験・評価した。また、下記の方法により、メルトフローレート(MFR)とシャルピー衝撃強度を測定した。各試料の配合及び試験・評価結果を、表2に示す。
(MFR)
 230℃-2.16kgの条件で測定した。
(シャルピー衝撃強度)
 80mm×10mm×1mmの試験片を用い、ISO179/1eAに従い測定した。
Each obtained sample was molded in the same manner as in Example 1, and tested and evaluated. Also, melt flow rate (MFR) and Charpy impact strength were measured by the following methods. Table 2 shows the composition of each sample and the test/evaluation results.
(MFR)
Measured under the conditions of 230°C and 2.16 kg.
(Charpy impact strength)
A test piece of 80 mm x 10 mm x 1 mm was used and measured according to ISO179/1eA.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明に従い、第1の樹脂としてのプロピレン-α-オレフィン共重合体と第2の樹脂としてのポリプロピレンとを含有し、かつ第1の樹脂の含有量が熱可塑性樹脂100質量部に対して80質量部以上95質量部以下である実施例4~7の試料は、いずれも良好な再現性、後加工性、及び熱収縮性を示した。MFRも適度な値を示し、加工性に優れ、FDM用フィラメント材料として好適な材料であることが判明した。本発明に従う実施例4~7の無機物質粉末充填樹脂組成物はまた、柔軟性に優れ、高い可撓性及びシャルピー衝撃強度を示した。 According to the present invention, it contains a propylene-α-olefin copolymer as the first resin and polypropylene as the second resin, and the content of the first resin is 80 parts per 100 parts by mass of the thermoplastic resin. All of the samples of Examples 4 to 7, which are more than 95 parts by mass and less than 95 parts by mass, exhibited good reproducibility, post-processability, and heat shrinkability. The MFR also showed a moderate value, and it was found to be excellent in workability and suitable as a filament material for FDM. The inorganic powder-filled resin compositions of Examples 4-7 according to the present invention also exhibited excellent flexibility, high flexibility and Charpy impact strength.

Claims (10)

  1.  熱可塑性樹脂と無機物質粉末とを質量比50:50~10:90の割合で含有する無機物質粉末充填樹脂組成物であって、
     前記熱可塑性樹脂は第1の樹脂と第2の樹脂とを含有し、
     前記第1の樹脂はプロピレン-α-オレフィン共重合体であり、
     前記第2の樹脂は前記第1の樹脂とは異なるポリオレフィン系樹脂であり、かつ
     前記第1の樹脂の含有量が、前記熱可塑性樹脂100質量部に対して80質量部以上95質量部以下であることを特徴とする、無機物質粉末充填樹脂組成物。
    An inorganic powder-filled resin composition containing a thermoplastic resin and an inorganic powder at a mass ratio of 50:50 to 10:90,
    The thermoplastic resin contains a first resin and a second resin,
    The first resin is a propylene-α-olefin copolymer,
    The second resin is a polyolefin resin different from the first resin, and the content of the first resin is 80 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. An inorganic substance powder-filled resin composition characterized by:
  2.  熱可塑性樹脂と無機物質粉末とを質量比50:50~10:90の割合で含有する熱溶解積層法3Dプリンタフィラメント用の無機物質粉末充填樹脂組成物であって、
     前記熱可塑性樹脂は第1の樹脂と第2の樹脂とを含有し、
     前記第1の樹脂はプロピレン-α-オレフィン共重合体であり、
     前記第2の樹脂は前記第1の樹脂とは異なるポリオレフィン系樹脂であり、かつ
     前記第1の樹脂の含有量が、前記熱可塑性樹脂100質量部に対して80質量部以上95質量部以下であることを特徴とする、熱溶解積層法3Dプリンタフィラメント用の無機物質粉末充填樹脂組成物。
    An inorganic substance powder-filled resin composition for fused deposition deposition method 3D printer filaments containing a thermoplastic resin and an inorganic substance powder at a mass ratio of 50:50 to 10:90,
    The thermoplastic resin contains a first resin and a second resin,
    The first resin is a propylene-α-olefin copolymer,
    The second resin is a polyolefin resin different from the first resin, and the content of the first resin is 80 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. An inorganic substance powder-filled resin composition for fused deposition deposition method 3D printer filaments, characterized by:
  3.  前記第2の樹脂が、プロピレンホモポリマー及び/又はブロックポリプロピレンである、請求項1又は2の無機物質粉末充填樹脂組成物。 The inorganic substance powder-filled resin composition according to claim 1 or 2, wherein the second resin is propylene homopolymer and/or block polypropylene.
  4.  前記第1の樹脂が、エチレン-プロピレンコポリマーであってプロピレン繰り返し単位とランダムなエチレン分布とを有し、プロピレン由来の構成単位が80質量%以上、エチレン由来の構成単位が20質量%以下である、請求項1~3の何れかに記載の無機物質粉末充填樹脂組成物。 The first resin is an ethylene-propylene copolymer, has propylene repeating units and a random ethylene distribution, and contains 80% by mass or more of propylene-derived structural units and 20% by mass or less of ethylene-derived structural units. The inorganic powder-filled resin composition according to any one of claims 1 to 3.
  5.  前記無機物質粉末が、炭酸カルシウムである、請求項1~4の何れかに記載の無機物質粉末充填樹脂組成物。 The inorganic powder-filled resin composition according to any one of claims 1 to 4, wherein the inorganic powder is calcium carbonate.
  6.  前記炭酸カルシウムが、表面処理された重質炭酸カルシウムである、請求項5に記載の無機物質粉末充填樹脂組成物。 The inorganic powder-filled resin composition according to claim 5, wherein the calcium carbonate is surface-treated ground calcium carbonate.
  7.  前記炭酸カルシウムのJIS M-8511に準じた空気透過法による平均粒子径が、0.7μm以上6.0μm以下である、請求項5又は6に記載の無機物質粉末充填樹脂組成物。 7. The inorganic substance powder-filled resin composition according to claim 5 or 6, wherein the calcium carbonate has an average particle size of 0.7 μm or more and 6.0 μm or less by an air permeation method according to JIS M-8511.
  8.  請求項1~7の何れかに記載の無機物質粉末充填樹脂組成物からなる成形品。 A molded article made of the inorganic powder-filled resin composition according to any one of claims 1 to 7.
  9.  前記成形品が押出成形品である請求項8に記載の成形品。 The molded product according to claim 8, wherein the molded product is an extruded product.
  10.  前記成形品が、熱溶解積層法3Dプリンタフィラメントである、請求項9に記載の成形品。 The molded article according to claim 9, wherein the molded article is a fused layering method 3D printer filament.
PCT/JP2022/030749 2021-11-25 2022-08-12 Inorganic substance powder-filled resin composition and molded product WO2023095393A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-190737 2021-11-25
JP2021190737A JP7079536B1 (en) 2021-11-25 2021-11-25 Inorganic substance powder-filled resin composition and molded product

Publications (1)

Publication Number Publication Date
WO2023095393A1 true WO2023095393A1 (en) 2023-06-01

Family

ID=81847760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030749 WO2023095393A1 (en) 2021-11-25 2022-08-12 Inorganic substance powder-filled resin composition and molded product

Country Status (2)

Country Link
JP (1) JP7079536B1 (en)
WO (1) WO2023095393A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7496927B1 (en) 2023-10-26 2024-06-07 第一セラモ株式会社 Composition for 3D printer filament, filament for 3D printer, sintered body, and method for manufacturing sintered body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122847A (en) * 1980-03-03 1981-09-26 Toa Nenryo Kogyo Kk Thermoplastic resin composition
JP2014003025A (en) * 2009-03-09 2014-01-09 Asahi Kasei E-Materials Corp Polyolefin microporous film and production method therefor
JP2016169249A (en) * 2015-03-11 2016-09-23 片野染革株式会社 Resin composition and method for producing resin composition
JP2018183917A (en) * 2017-04-25 2018-11-22 株式会社Tbm filament
CN110894323A (en) * 2019-11-25 2020-03-20 朱正娟 Polyolefin plastic
CN112341714A (en) * 2020-11-12 2021-02-09 江苏贝尔家居科技有限公司 Polypropylene sheet material and preparation method thereof
WO2021060278A1 (en) * 2019-09-25 2021-04-01 三井化学株式会社 Three-dimensional modeling material, three-dimensional modeled object, and production method for three-dimensional modeled object
JP2021161197A (en) * 2020-03-31 2021-10-11 株式会社プライムポリマー Polypropylene resin composition for injection foam molding, and injection foam polypropylene resin composition molding using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3260294B1 (en) 2015-02-16 2021-01-06 Yupo Corporation Thermoplastic resin film and production method thereof, in-mold molding label, and plastic container with label and production method thereof
KR102178514B1 (en) 2018-11-20 2020-11-16 지에스칼텍스 주식회사 Polypropylene resin composition and article prepared therefrom

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122847A (en) * 1980-03-03 1981-09-26 Toa Nenryo Kogyo Kk Thermoplastic resin composition
JP2014003025A (en) * 2009-03-09 2014-01-09 Asahi Kasei E-Materials Corp Polyolefin microporous film and production method therefor
JP2016169249A (en) * 2015-03-11 2016-09-23 片野染革株式会社 Resin composition and method for producing resin composition
JP2018183917A (en) * 2017-04-25 2018-11-22 株式会社Tbm filament
WO2021060278A1 (en) * 2019-09-25 2021-04-01 三井化学株式会社 Three-dimensional modeling material, three-dimensional modeled object, and production method for three-dimensional modeled object
CN110894323A (en) * 2019-11-25 2020-03-20 朱正娟 Polyolefin plastic
JP2021161197A (en) * 2020-03-31 2021-10-11 株式会社プライムポリマー Polypropylene resin composition for injection foam molding, and injection foam polypropylene resin composition molding using the same
CN112341714A (en) * 2020-11-12 2021-02-09 江苏贝尔家居科技有限公司 Polypropylene sheet material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7496927B1 (en) 2023-10-26 2024-06-07 第一セラモ株式会社 Composition for 3D printer filament, filament for 3D printer, sintered body, and method for manufacturing sintered body

Also Published As

Publication number Publication date
JP7079536B1 (en) 2022-06-02
JP2023077472A (en) 2023-06-06

Similar Documents

Publication Publication Date Title
JP6661152B1 (en) Thermoplastic resin composition containing inorganic substance powder and molded article
KR102216041B1 (en) Thermoplastic resin composition and molded article using the same
JP6933408B1 (en) Inorganic powder-filled resin composition and molded products
WO2022196434A1 (en) Inorganic powder-filled resin composition and molded product
WO2023095393A1 (en) Inorganic substance powder-filled resin composition and molded product
WO2022196436A1 (en) Inorganic substance powder-filled resin composition and molded product
CN114521171A (en) Three-dimensional molding material, three-dimensional molded object, and method for producing three-dimensional molded object
JP2011042780A (en) Method for using polypropylene resin composition in air cooling inflation method and film obtained by the same
JP7206416B2 (en) Resin composition and molding
JP7070958B1 (en) Inorganic substance powder-filled resin composition and molded product
JP2022181839A (en) Resin composition and molded article
JP7282404B2 (en) high frequency dielectric
JP2022182473A (en) Resin composition and molded article
JP6892185B1 (en) Inorganic substance powder-filled resin composition and molded product
JP7202744B1 (en) Manufacturing method of high frequency dielectric for RF tag
JP7499398B1 (en) Resin composition and molded article containing same
JP2019127580A (en) Polyolefin resin composition
JP7100933B1 (en) Laminated sheets and food packaging containers
JP2019183001A (en) Production method of polyolefin resin composition and polyolefin film
JP2019183000A (en) Production method of polyolefin resin composition and polyolefin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898178

Country of ref document: EP

Kind code of ref document: A1