WO2023092894A1 - Hard carbon composite material, and preparation method therefor and use thereof - Google Patents

Hard carbon composite material, and preparation method therefor and use thereof Download PDF

Info

Publication number
WO2023092894A1
WO2023092894A1 PCT/CN2022/080337 CN2022080337W WO2023092894A1 WO 2023092894 A1 WO2023092894 A1 WO 2023092894A1 CN 2022080337 W CN2022080337 W CN 2022080337W WO 2023092894 A1 WO2023092894 A1 WO 2023092894A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard carbon
preparation
composite material
carbon composite
alkali metal
Prior art date
Application number
PCT/CN2022/080337
Other languages
French (fr)
Chinese (zh)
Inventor
赵晓锋
刘静
杨红新
Original Assignee
蜂巢能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技股份有限公司 filed Critical 蜂巢能源科技股份有限公司
Publication of WO2023092894A1 publication Critical patent/WO2023092894A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure provides a method for preparing the above-mentioned hard carbon composite material, and the method includes the following steps:
  • the mass fraction of the coating material in the coating material solution in step (3) is 1-10%, for example: 1%, 3%, 5%, 7% or 10%.
  • pulverization is performed after the carbonization treatment.
  • Example 1 The only difference between this comparative example and Example 1 is that no conductive agent is added, and other conditions and parameters are exactly the same as those of Example 1.
  • Example 1 and Comparative Example 1-2 From the comparison of Example 1 and Comparative Example 1-2, it can be obtained that the first discharge capacity and first efficiency of the button battery made of the hard carbon composite material of the present disclosure are significantly higher than that of the comparative example, indicating that the hard carbon composite material prepared by the present disclosure
  • the porous structure has more active sites for lithium storage, which can increase the specific capacity of the hard carbon composite material and at the same time coat the alkali metal fast ion conductor on the outer layer to reduce the side reaction of the material and improve the first-time efficiency of the material and its fluorine-doped modification
  • the surface structure improves the first-time efficiency of the material and its cycle performance.

Abstract

Provided in the present disclosure are a hard carbon composite material, and a preparation method therefor and the use thereof. In the present disclosure, the surface of hard carbon is coated with an alkali metal fast ion conductor composite material, such that the specific surface area of the hard carbon is reduced and the ionic conductivity of the material is improved by using an alkali metal fast ion conductor; in addition, the high electronic conductivity of a conductive agent, the porous structure of the hard carbon and multiple lithium storage points are utilized to exert a synergistic effect of the three, such that the specific capacity, first efficiency and power performance of the hard carbon material are improved.

Description

一种硬碳复合材料及其制备方法和应用A kind of hard carbon composite material and its preparation method and application 技术领域technical field
本公开涉及锂离子电池领域,例如涉及一种硬碳复合材料及其制备方法和应用。The present disclosure relates to the field of lithium-ion batteries, for example, to a hard carbon composite material and its preparation method and application.
背景技术Background technique
目前市场化的锂离子电池的负极材料主要是石墨(改性天然石墨、人造石墨)为主,其具有导电性好,可逆比容量高,但石墨材料的结构稳定性差,与电解液的相容性差,并且锂离子在其有序层状结构中的扩散速度慢,导致该材料不能大倍率地充放电,同时其比容量目前达到360mAh/g,已经接近理论比容量372mAh/g。At present, the negative electrode materials of lithium-ion batteries in the market are mainly graphite (modified natural graphite, artificial graphite), which has good conductivity and high reversible specific capacity, but the structural stability of graphite material is poor, and it is compatible with the electrolyte. Poor performance, and the diffusion rate of lithium ions in its ordered layered structure is slow, so that the material cannot be charged and discharged at a high rate. At the same time, its specific capacity has reached 360mAh/g, which is close to the theoretical specific capacity of 372mAh/g.
硬碳属于非石墨化碳,结构特征可以概括为短程有序而长程无序,各项同性好,及其难以被石墨化,从而使得锂离子可以从各个角度嵌入和脱出,大大提高了充放电的速度,使硬碳具有优异的倍率和循环性能以及低温性能,同时硬碳的原料来自生物质来源,目前以环境友好性、成本低,市场应用前景广阔;但是其硬碳存在可逆容量低、首次效率低和放电电压高等缺点,限制其在锂离子电池中的纯使用,因此需要对材料进行改性包覆提升材料的比容量及其首次效率。Hard carbon belongs to non-graphitizable carbon, and its structural characteristics can be summarized as short-range order and long-range disorder, good isotropy, and it is difficult to be graphitized, so that lithium ions can be inserted and extracted from various angles, greatly improving the charging and discharging process. The speed of the hard carbon makes the hard carbon have excellent rate and cycle performance and low temperature performance. At the same time, the raw material of the hard carbon comes from biomass sources. At present, it is environmentally friendly and low in cost, and the market application prospect is broad; but its hard carbon has low reversible capacity, low The disadvantages of low initial efficiency and high discharge voltage limit its pure use in lithium-ion batteries. Therefore, it is necessary to modify and coat the material to improve the specific capacity of the material and its initial efficiency.
发明内容Contents of the invention
本公开提供一种硬碳复合材料及其制备方法和应用,本公开通过在硬碳表面包覆碱金属快离子导体复合材料,利用碱金属快离子导体降低硬碳的比表面积及其提升材料的离子导电性,同时利用导电剂高的电子导电性、硬碳多孔结构和多的储锂点,发挥其三者之间的协同效应,提升硬碳材料的比容量、首次效率及其功率性能。The disclosure provides a hard carbon composite material and its preparation method and application. The disclosure coats the alkali metal fast ion conductor composite material on the surface of the hard carbon, and uses the alkali metal fast ion conductor to reduce the specific surface area of the hard carbon and improve the performance of the material. Ionic conductivity, while using the high electronic conductivity of the conductive agent, the porous structure of the hard carbon and the many lithium storage points, the synergistic effect between the three can be used to improve the specific capacity, first-time efficiency and power performance of the hard carbon material.
本公开在一实施例中提供一种硬碳复合材料,所述硬碳复合材料包括内核和外壳,所述内核为硬碳,所述外壳包括碱金属快离子导体、导电剂和无定形碳组成的复合体。The present disclosure provides a hard carbon composite material in one embodiment, the hard carbon composite material includes an inner core and an outer shell, the inner core is hard carbon, and the outer shell includes an alkali metal fast ion conductor, a conductive agent and an amorphous carbon composition complex.
本公开在硬碳材料表面包覆碱金属快离子导体,利用碱金属快离子导体的锂离子导电率高的特性降低材料的极化提升功率性能;同时,碱金属快离子导体包覆在内核多孔硬碳表面,降低其材料的副反应,提升材料的首次效率。同时硬碳前驱体通过材料改性造孔提升材料的储锂活性点,提升材料的比容量。The disclosure coats the surface of the hard carbon material with an alkali metal fast ion conductor, and utilizes the high lithium ion conductivity of the alkali metal fast ion conductor to reduce the polarization of the material and improve power performance; at the same time, the alkali metal fast ion conductor is coated on the porous inner core The hard carbon surface reduces the side reaction of the material and improves the first-time efficiency of the material. At the same time, the hard carbon precursor improves the lithium storage active point of the material through material modification and pore formation, and increases the specific capacity of the material.
在一实施例中,所述碱金属快离子导体的分子式为M xN yW z,其中,x为0.5~1.5,例如:0.5、0.8、1、1.2或1.5等,y为0.5~1.5,例如:0.5、0.8、1、1.2或1.5等,z为0.5~3,例如:0.5、1、1.5、2、2.5或3等,M为钠和/或钾,N为Ni、Co、Mn、Al、Cr、Fe、Mg、V、Zn或Cu中的任意一种或至少两种的组合,W为SiO 3 2-、SO 4 2-、MoO 4 2-、PO 4 3-、TiO 3 2-或ZrO 4 3-中的任意一种或至少两种的组合。 In one embodiment, the molecular formula of the alkali metal fast ion conductor is M x N y W z , wherein x is 0.5-1.5, for example: 0.5, 0.8, 1, 1.2 or 1.5, etc., y is 0.5-1.5, For example: 0.5, 0.8, 1, 1.2 or 1.5, etc., z is 0.5 to 3, such as: 0.5, 1, 1.5, 2, 2.5 or 3, etc., M is sodium and/or potassium, N is Ni, Co, Mn, Any one or a combination of at least two of Al, Cr, Fe, Mg, V, Zn or Cu, W is SiO 3 2- , SO 4 2- , MoO 4 2- , PO 4 3- , TiO 3 2 - or any one of ZrO 4 3- or a combination of at least two.
本公开在硬碳表面添加碱金属快离子导体,利用碱金属提升材料的储锂功能,并提升其材料的比容量。The disclosure adds an alkali metal fast ion conductor on the surface of the hard carbon, utilizes the alkali metal to improve the lithium storage function of the material, and increases the specific capacity of the material.
在一实施例中,所述导电剂包括氧化石墨烯。In one embodiment, the conductive agent includes graphene oxide.
在一实施例中,以所述外壳的质量为100%计,所述碱金属快离子导体的质量分数为50~80%,例如:50%、55%、60%、70%或80%等。In one embodiment, based on the mass of the shell as 100%, the mass fraction of the alkali metal fast ion conductor is 50-80%, for example: 50%, 55%, 60%, 70% or 80%, etc. .
在一实施例中,所述导电剂的质量分数为1~10%,例如:1%、3%、5%、7%或10%等。In one embodiment, the mass fraction of the conductive agent is 1-10%, for example: 1%, 3%, 5%, 7% or 10%.
本公开在一实施例中提供了一种前面所述硬碳复合材料的制备方法,所述制备方法包括以下步骤:In one embodiment, the present disclosure provides a method for preparing the above-mentioned hard carbon composite material, and the method includes the following steps:
(1)将碱金属快离子导体、导电剂和有机溶剂混合,得到包覆材料;(1) mixing an alkali metal fast ion conductor, a conductive agent and an organic solvent to obtain a coating material;
(2)将生物质原料与碱性溶液混合,过滤干燥后得到前驱体材料;(2) Mix the biomass raw material with the alkaline solution, and obtain the precursor material after filtering and drying;
(3)将包覆材料和溶剂混合得到包覆材料溶液,加入前驱体材料,经碳化处理后得到所述硬碳复合材料。(3) Mix the coating material and a solvent to obtain a coating material solution, add a precursor material, and obtain the hard carbon composite material after carbonization treatment.
本公开不对步骤(1)和步骤(2)的操作顺序进行限定,可以先进行步骤(1)再进行步骤(2),也可以先进性步骤(2)再进行步骤(1)。The present disclosure does not limit the operation sequence of step (1) and step (2), step (1) can be performed first and then step (2), or step (2) can be advanced and then step (1) can be performed.
本公开将生物质原料与碱性溶液混合,目的为在其表面接枝-OH基团,一方面造孔提升储锂点,另一方面,碱性基团会与外壳中的碱金属快离子导体进行脱水反应,使其在内核和外壳之间形成化学键连接,提高结构稳定性。In this disclosure, the biomass raw material is mixed with an alkaline solution for the purpose of grafting -OH groups on its surface, on the one hand creating pores to improve lithium storage points, on the other hand, the alkaline groups will interact with the alkali metal fast ions in the shell The conductor undergoes a dehydration reaction, allowing it to form a chemical bond connection between the inner core and the outer shell, improving structural stability.
在一实施例中,步骤(1)所述碱金属快离子导体、导电剂和有机溶剂的质量比为100:(1~5):(500~1000),例如:100:2:500、100:1:600、100:3:800、100:4:800或100:5:1000等。In one embodiment, the mass ratio of the alkali metal fast ion conductor, conductive agent and organic solvent in step (1) is 100:(1~5):(500~1000), for example: 100:2:500, 100 :1:600, 100:3:800, 100:4:800 or 100:5:1000 etc.
在一实施例中,所述有机溶剂包括乙醇、甲醇、乙二醇、异丙醇、三甘醇或丙酮中的任意一种或至少两种的组合。In one embodiment, the organic solvent includes any one or a combination of at least two of ethanol, methanol, ethylene glycol, isopropanol, triethylene glycol or acetone.
在一实施例中,所述混合的温度为100~200℃,例如:100℃、120℃、150℃、180℃或200℃等。In one embodiment, the mixing temperature is 100-200°C, for example: 100°C, 120°C, 150°C, 180°C or 200°C.
在一实施例中,所述混合的压力为1~5MPa,例如:1MPa、2MPa、3MPa、4MPa或5MPa等。In one embodiment, the mixing pressure is 1-5 MPa, for example: 1 MPa, 2 MPa, 3 MPa, 4 MPa or 5 MPa.
本公开采用高温高压的目的是材料在高温高压下气化,生成自由基,并进行材料的均匀掺杂混合,并加速反应进程,使其提升材料之间的掺杂均匀性。The purpose of using high temperature and high pressure in the present disclosure is to gasify materials under high temperature and high pressure to generate free radicals, uniformly dope and mix materials, and accelerate the reaction process to improve the doping uniformity between materials.
在一实施例中,所述混合的时间为1~6h,例如:1h、2h、3h、4h、5h或6h等。In one embodiment, the mixing time is 1-6 hours, for example: 1 hour, 2 hours, 3 hours, 4 hours, 5 hours or 6 hours.
在一实施例中,所述混合后进行干燥和研磨。In one embodiment, the mixing is followed by drying and grinding.
在一实施例中,步骤(2)所述生物质原料包括桃壳、稻壳、香蕉皮、瓜子壳、松果、棉花、椰壳、海藻、麦秸、海带、柳絮、花生壳、沥青、荷叶或泥炭中的任意一种或至少两种的组合。In one embodiment, the biomass raw materials in step (2) include peach shells, rice husks, banana peels, melon seed shells, pine cones, cotton, coconut shells, seaweed, wheat straw, kelp, catkins, peanut shells, asphalt, lotus Any one or a combination of at least two of leaves or peat.
在一实施例中,所述生物质原料预先进行干燥处理和粉碎处理。In one embodiment, the biomass raw material is pre-dried and pulverized.
在一实施例中,所述干燥处理的温度为50~150℃,例如:50℃、80℃、100℃、120℃或150℃等。In one embodiment, the temperature of the drying treatment is 50-150°C, for example: 50°C, 80°C, 100°C, 120°C or 150°C.
在一实施例中,所述干燥处理的时间为12~48h,例如:12h、18h、24h、30h、36h或48h等。In one embodiment, the drying time is 12-48 hours, for example: 12 hours, 18 hours, 24 hours, 30 hours, 36 hours or 48 hours.
在一实施例中,所述粉碎处理后生物质原料的粒径为1~10μm,例如:1μm、2μm、4μm、6μm、8μm或10μm等。In one embodiment, the particle size of the pulverized biomass raw material is 1-10 μm, for example: 1 μm, 2 μm, 4 μm, 6 μm, 8 μm or 10 μm.
在一实施例中,步骤(2)所述碱性溶液包括氢氧化钠溶液。In one embodiment, the alkaline solution in step (2) includes sodium hydroxide solution.
在一实施例中,所述氢氧化钠溶液的质量浓度为1~5%,例如:1%、2%、3%、4%或5%等。In one embodiment, the mass concentration of the sodium hydroxide solution is 1-5%, for example: 1%, 2%, 3%, 4% or 5%.
在一实施例中,所述生物质原料和碱性溶液中溶质的质量比为100:(1~10),例如:100:1、100:3、100:5、100:7、100:9或100:10等。In one embodiment, the mass ratio of the biomass raw material to the solute in the alkaline solution is 100:(1-10), for example: 100:1, 100:3, 100:5, 100:7, 100:9 Or 100:10 etc.
在一实施例中,所述混合后浸泡24~72h,例如:24h、48h、60h、66h或72h等。In one embodiment, the mixing is followed by soaking for 24-72 hours, such as 24 hours, 48 hours, 60 hours, 66 hours or 72 hours.
在一实施例中,所述浸泡的温度为25~100℃,例如:25℃、30℃、50℃、80℃或100℃等。In one embodiment, the soaking temperature is 25-100°C, for example: 25°C, 30°C, 50°C, 80°C or 100°C.
在一实施例中,步骤(3)所述包覆材料溶液中包覆材料的质量分数为1~10%,例如:1%、3%、5%、7%或10%等。In one embodiment, the mass fraction of the coating material in the coating material solution in step (3) is 1-10%, for example: 1%, 3%, 5%, 7% or 10%.
在一实施例中,所述碳化处理前进行过滤。In one embodiment, filtration is performed before the carbonization treatment.
在一实施例中,所述碳化处理的气氛包括惰性气体和氟气。In one embodiment, the carbonization treatment atmosphere includes inert gas and fluorine gas.
在一实施例中,所述惰性气体和氟气的体积比为(0.8~1.2):(0.8~1.2),例如:0.8:0.9、1:1.2、0.9:1.2、1:1或1.2:0.8等。In one embodiment, the volume ratio of the inert gas to the fluorine gas is (0.8-1.2):(0.8-1.2), for example: 0.8:0.9, 1:1.2, 0.9:1.2, 1:1 or 1.2:0.8 wait.
在一实施例中,所述碳化处理为温度为700~1000℃,例如:700℃、750℃、800℃、850℃、900℃或1000℃等。In one embodiment, the temperature of the carbonization treatment is 700-1000°C, for example: 700°C, 750°C, 800°C, 850°C, 900°C or 1000°C.
在一实施例中,所述碳化处理的时间为1~6h,例如:1h、2h、3h、4h、5h或6h等。In one embodiment, the time for the carbonization treatment is 1-6 hours, for example: 1 hour, 2 hours, 3 hours, 4 hours, 5 hours or 6 hours.
在一实施例中,所述碳化处理后进行粉碎。In one embodiment, pulverization is performed after the carbonization treatment.
本公开在一实施例中提供一种负极极片,所述的负极极片包含上述硬碳复合材料。In an embodiment of the present disclosure, a negative electrode sheet is provided, and the negative electrode sheet includes the above-mentioned hard carbon composite material.
本公开在一实施例中提供一种锂离子电池,所述的离子电池包含上述负极极片。In one embodiment, the present disclosure provides a lithium ion battery, and the ion battery includes the above-mentioned negative electrode sheet.
具体实施方式Detailed ways
实施例1Example 1
本实施例提供了一种硬碳复合材料,所述硬碳复合材料通过如下方法制得:This embodiment provides a kind of hard carbon composite material, and described hard carbon composite material is made by following method:
(1)将将100gNaNiSO 4、3g氧化石墨烯导电剂添加到800ml乙醇有机溶剂中分散均匀后,超声分散,之后转移到高压反应釜中,并在温度为150℃,压强为3Mpa,反应3h,之后过滤,80℃真空干燥24h,研磨得到包覆材料; (1) Add 100g NaNiSO 4 and 3g graphene oxide conductive agent to 800ml ethanol organic solvent to disperse evenly, disperse it by ultrasonic, then transfer it to a high-pressure reactor, and react at a temperature of 150°C and a pressure of 3Mpa for 3h, Then filter, vacuum dry at 80°C for 24 hours, and grind to obtain the coating material;
(2)将100g椰壳粉碎到5μm,之后添加到500ml浓度为3wt%的氢氧化钠碱性溶液中,在温度为60℃浸泡48h,过滤,干燥得到前驱体材料;(2) Grinding 100g of coconut shells to 5 μm, then adding to 500ml of 3wt% sodium hydroxide alkaline solution, soaking at 60°C for 48h, filtering, and drying to obtain the precursor material;
(3)将步骤(1)中制备出的10g包覆材料添加到2000ml的乙二醇溶液中配置成浓度为5wt%的溶液,之后添加100g硬碳前驱体材料,搅拌均匀后,过滤,之后转移到管式炉中,并在氟气/氩气混合气(体积比1:1)条件下,在800℃碳化3h,之后粉碎,得到所述硬碳复合材料。(3) Add 10g of the coating material prepared in step (1) to 2000ml of ethylene glycol solution to form a solution with a concentration of 5wt%, then add 100g of hard carbon precursor material, stir evenly, filter, and then Transfer to a tube furnace, carbonize at 800° C. for 3 h under the condition of fluorine/argon gas mixture (volume ratio 1:1), and then pulverize to obtain the hard carbon composite material.
实施例2Example 2
本实施例提供了一种硬碳复合材料,所述硬碳复合材料通过如下方法制得:This embodiment provides a kind of hard carbon composite material, and described hard carbon composite material is made by following method:
(1)将100g K 2MnPO 4碱金属快离子导体、200ml浓度为0.5wt%氧化石墨烯导电剂溶液添加到500ml异丙醇有机溶剂中分散均匀后,超声分散,之后转移到高压反应釜中,并在温度为100℃,压强为5Mpa,反应1h,之后过滤,80℃真空干燥24h,研磨得到包覆材料; (1) Add 100g K 2 MnPO 4 alkali metal fast ion conductor and 200ml concentration of 0.5wt% graphene oxide conductive agent solution to 500ml isopropanol organic solvent to disperse evenly, ultrasonically disperse, and then transfer to a high-pressure reactor , and at a temperature of 100°C and a pressure of 5Mpa, react for 1h, then filter, vacuum dry at 80°C for 24h, and grind to obtain the coating material;
(2)将100g稻壳粉碎到1μm,之后添加100ml浓度为1wt%的氢氧化钠碱性溶液中,在温度为25℃浸泡72h,过滤,干燥得到前驱体材料;(2) Grinding 100g of rice husks to 1 μm, then adding 100ml of sodium hydroxide alkaline solution with a concentration of 1wt%, soaking at 25°C for 72h, filtering, and drying to obtain the precursor material;
(3)将5g包覆材料添加到500ml异丙醇中配置成浓度为1wt%的溶液,之后添加100g硬碳前驱体材料,搅拌均匀后,过滤,之后转移到管式炉中,并在氟气/氩气混合气(体积比1:1)条件下,在700℃碳化6h,之后粉碎,得到所述硬碳复合材料。(3) Add 5g of coating material to 500ml of isopropanol to configure a solution with a concentration of 1wt%, then add 100g of hard carbon precursor material, stir evenly, filter, then transfer to a tube furnace, and Under the condition of gas/argon gas mixture (volume ratio 1:1), carbonization was carried out at 700° C. for 6 hours, and then pulverized to obtain the hard carbon composite material.
实施例3Example 3
本实施例提供了一种硬碳复合材料,所述硬碳复合材料通过如下方法制得:This embodiment provides a kind of hard carbon composite material, and described hard carbon composite material is made by following method:
(1)将100gNaCoMoO 4、2.5g氧化石墨烯导电剂添加到800ml乙醇有机溶剂中分散均匀后,超声分散,之后转移到高压反应釜中,并在温度为120℃,压强为3Mpa,反应2.5h,之后过滤,80℃真空干燥24h,研磨得到包覆材料; (1) Add 100g NaCoMoO 4 and 2.5g graphene oxide conductive agent to 800ml ethanol organic solvent to disperse evenly, disperse it by ultrasonic, then transfer it to a high-pressure reactor, and react at a temperature of 120°C and a pressure of 3Mpa for 2.5h , then filtered, dried in vacuum at 80°C for 24 hours, and ground to obtain the coating material;
(2)将100g瓜子壳粉碎到5μm,之后添加到500ml浓度为3wt%的氢氧化钠碱性溶液中,在温度为60℃浸泡48h,过滤,干燥得到前驱体材料;(2) 100g of melon seed shells were crushed to 5 μm, and then added to 500ml of 3wt% sodium hydroxide alkaline solution, soaked at 60°C for 48h, filtered, and dried to obtain the precursor material;
(3)将步骤(1)中制备出的8g包覆材料添加到200ml的乙二醇溶液中配置成浓度为4wt%的溶液,之后添加100g硬碳前驱体材料,搅拌均匀后,过滤,之后转移到管式炉中,并在氟气/氩气混合气(体积比1:1)条件下,在800℃碳化3h,之后粉碎,得到所述硬碳复合材料。(3) Add 8g of the coating material prepared in step (1) to 200ml of ethylene glycol solution to form a solution with a concentration of 4wt%, then add 100g of hard carbon precursor material, stir evenly, filter, and then Transfer to a tube furnace, carbonize at 800° C. for 3 h under the condition of fluorine/argon gas mixture (volume ratio 1:1), and then pulverize to obtain the hard carbon composite material.
实施例4Example 4
本实施例与实施例1区别仅在于,步骤(1)所述导电剂的质量为0.5g,其他条件与参数与实施例1完全相同。The only difference between this embodiment and embodiment 1 is that the mass of the conductive agent in step (1) is 0.5 g, and other conditions and parameters are exactly the same as those in embodiment 1.
实施例5Example 5
本实施例与实施例1区别仅在于,步骤(1)所述导电剂的质量为5.5g,其他条件与参数与实施例1完全相同。The only difference between this embodiment and embodiment 1 is that the mass of the conductive agent in step (1) is 5.5 g, and other conditions and parameters are exactly the same as those in embodiment 1.
实施例6Example 6
本实施例与实施例1区别仅在于,步骤(3)所述碳化处理的温度为600℃,其他条件与参数与实施例1完全相同。The only difference between this embodiment and embodiment 1 is that the temperature of the carbonization treatment in step (3) is 600° C., and other conditions and parameters are exactly the same as those of embodiment 1.
实施例7Example 7
本实施例与实施例1区别仅在于,步骤(3)所述碳化处理的温度为1200℃,其他条件与参数与实施例1完全相同。The only difference between this embodiment and embodiment 1 is that the temperature of the carbonization treatment in step (3) is 1200° C., and other conditions and parameters are exactly the same as those of embodiment 1.
对比例1Comparative example 1
本对比例与实施例1区别仅在于,不加入碱金属快离子导体,其他条件与参数与实施例1完全相同。The only difference between this comparative example and Example 1 is that no alkali metal fast ion conductor is added, and other conditions and parameters are exactly the same as those of Example 1.
对比例2Comparative example 2
本对比例与实施例1区别仅在于,不加入导电剂,其他条件与参数与实施例1完全相同。The only difference between this comparative example and Example 1 is that no conductive agent is added, and other conditions and parameters are exactly the same as those of Example 1.
性能测试:Performance Testing:
SEM测试:SEM test:
取实施例1-7和对比例1-2得到的硬碳复合材料测试其比表面积和孔容,测试结果如表1所示:Get the hard carbon composite material that embodiment 1-7 and comparative example 1-2 obtain to test its specific surface area and pore volume, test result is as shown in table 1:
表1Table 1
Figure PCTCN2022080337-appb-000001
Figure PCTCN2022080337-appb-000001
Figure PCTCN2022080337-appb-000002
Figure PCTCN2022080337-appb-000002
由表1可以看出,由实施例1-7和对比例1-2对比可得,本公开所述硬碳复合材料在比表面积方面优于对比例,其原因为:硬碳前驱体进行造孔提升材料的表面积,同时通过表面包覆降略微降低其材料的比表面积。As can be seen from Table 1, it can be obtained from the comparison of Examples 1-7 and Comparative Examples 1-2 that the hard carbon composite material in the present disclosure is superior to the Comparative Examples in terms of specific surface area. The reason is that the hard carbon precursor is manufactured Pores increase the surface area of the material while slightly reducing its specific surface area through surface coating.
扣式电池测试:Coin Cell Test:
取实施例1-7和对比例1-2得到的硬碳复合材料作为负极(配方中物质的质量比为硬碳复合材料:CMC:SBR:SP:H 2O=95:2.5:1.5:1:150)、锂片作为正极,电解液采用LiPF 6/EC+DEC(电解液溶剂体积比EC:DEC=1:1),隔膜采用聚乙烯PE、聚丙烯PP和聚乙丙烯PEP的复合膜,扣式电池装配在充氢气的手套箱中进行,组装成扣式电池,电化学性能在武汉蓝电CT2001A型电池测试仪上进行,充放电电压范围控制在0.0-2.0V,充放电速率0.1C/0.1C,同时测试其扣式电池的放电比容量、首效及倍率性能,测试结果如表2所示: Get the hard carbon composite material that embodiment 1-7 and comparative example 1-2 obtain as negative pole (the mass ratio of substance in the formula is hard carbon composite material: CMC: SBR: SP: H 2 O=95:2.5:1.5:1 :150), lithium sheet is used as the positive electrode, the electrolyte is LiPF 6 /EC+DEC (electrolyte solvent volume ratio EC:DEC=1:1), and the separator is a composite film of polyethylene PE, polypropylene PP and polyethylene propylene PEP , The button cell is assembled in a hydrogen-filled glove box, and assembled into a button cell. The electrochemical performance is carried out on a Wuhan Landian CT2001A battery tester. The charge and discharge voltage range is controlled at 0.0-2.0V, and the charge and discharge rate is 0.1 C/0.1C, while testing the discharge specific capacity, first effect and rate performance of the button battery, the test results are shown in Table 2:
表2Table 2
Figure PCTCN2022080337-appb-000003
Figure PCTCN2022080337-appb-000003
Figure PCTCN2022080337-appb-000004
Figure PCTCN2022080337-appb-000004
由表2可以看出,实施例材料的比容量明显高于对比例,其原因为实施例复合材料中包覆有快离子导体,提升充放电过程中锂离子的嵌脱率,降低阻抗及其极化,提升材料的比容量及其首次效率;同时材料中的比表面积高,提升材料的储锂活性点,提升材料的比容量。It can be seen from Table 2 that the specific capacity of the example material is significantly higher than that of the comparative example. The reason is that the composite material of the example is coated with a fast ion conductor, which improves the intercalation rate of lithium ions in the charge and discharge process, reduces the impedance and its Polarization improves the specific capacity and first-time efficiency of the material; at the same time, the specific surface area in the material increases the lithium storage active point of the material and the specific capacity of the material.
由实施例1和实施例4-5对比可得,步骤(1)所述碱金属快离子导体和导电剂的质量比会影响制得硬碳复合材料的性能,将碱金属快离子导体和导电剂的质量比控制在100:(1~5),制得硬碳复合材料的电性能优异,若导电剂的占比过高,比容量得到提升但是材料的首次效率偏低,若导电剂的占比过低,电池极化较大,比容量偏低,首次效率高,因此选择合适的导电剂比例,一方面可以在提升材料的比容量的同时,材料的首次效率也能得到提升。Can be obtained by the contrast of embodiment 1 and embodiment 4-5, the mass ratio of alkali metal fast ion conductor and conductive agent described in step (1) can affect the performance of making hard carbon composite material, alkali metal fast ion conductor and conductive The mass ratio of the conductive agent is controlled at 100: (1-5), and the electrical properties of the hard carbon composite material are excellent. If the proportion of the conductive agent is too high, the specific capacity will be improved, but the first-time efficiency of the material is low. If the conductive agent If the proportion is too low, the polarization of the battery is large, the specific capacity is low, and the first-time efficiency is high. Therefore, choosing an appropriate conductive agent ratio can improve the specific capacity of the material while improving the first-time efficiency of the material.
由实施例1和实施例6-7对比可得,步骤(3)所述碳化的温度会影响制得硬碳复合材料的性能,将碳化的温度控制在700~1000℃,制得硬碳复合材料的性能优异,若碳化的温度过低,碳的各项同性较好,阻抗较低,但是循环性能偏差,若碳化的温度过高,碳的各项同性较差,动力学性能偏差,影响循环及其功率性能。From the comparison of Example 1 and Examples 6-7, it can be obtained that the carbonization temperature in step (3) will affect the performance of the hard carbon composite material, and the carbonization temperature is controlled at 700-1000 ° C to obtain a hard carbon composite material. The performance of the material is excellent. If the carbonization temperature is too low, the carbon isotropy is better and the impedance is low, but the cycle performance is deviated. If the carbonization temperature is too high, the carbon isotropy is poor, and the dynamic performance is deviated. cycle and its power performance.
由实施例1和对比例1-2对比可得,本公开所述硬碳复合材料制作的扣电电池的首次放电容量和首次效率明显高于对比例,表明本公开制备出的硬碳复合材料中为多孔结构具有更多的储锂活性点,能够提高硬碳复合材料的比容量同时在外层包覆碱金属快离子导体降低其材料的副反应提升材料的首次效率及其掺杂氟改性表面结构,提升材料的首次效率及其循环性能。From the comparison of Example 1 and Comparative Example 1-2, it can be obtained that the first discharge capacity and first efficiency of the button battery made of the hard carbon composite material of the present disclosure are significantly higher than that of the comparative example, indicating that the hard carbon composite material prepared by the present disclosure The porous structure has more active sites for lithium storage, which can increase the specific capacity of the hard carbon composite material and at the same time coat the alkali metal fast ion conductor on the outer layer to reduce the side reaction of the material and improve the first-time efficiency of the material and its fluorine-doped modification The surface structure improves the first-time efficiency of the material and its cycle performance.
软包电池测试:Soft pack battery test:
取实施例1-7和对比例1-2得到的硬碳复合材料进行合浆、涂布制备出负极极片,三元材料作为正极,溶剂为EC/DEC/PC(EC:DEC:PC=1:1:1)作为电解液,溶质为LiPF 6(浓度为1.3mol/L),Celgard 2400膜为隔膜,分别制备出5Ah软包电池,参照国家标准GB/T 24533-2009《锂离子电池石墨类负极材料》测试负极片的吸液能力以及锂电池的首次效率、循环性能(3.0C/3.0C),测试结果如表3所示: The hard carbon composite materials obtained in Examples 1-7 and Comparative Examples 1-2 were mixed and coated to prepare a negative electrode sheet, the ternary material was used as the positive electrode, and the solvent was EC/DEC/PC (EC: DEC: PC = 1:1:1) as the electrolyte, the solute is LiPF 6 (concentration is 1.3mol/L), and the Celgard 2400 membrane is used as the diaphragm, and 5Ah soft pack batteries are prepared respectively, referring to the national standard GB/T 24533-2009 "Lithium-ion battery Graphite-based negative electrode materials" test the liquid absorption capacity of the negative electrode sheet and the first-time efficiency and cycle performance (3.0C/3.0C) of the lithium battery. The test results are shown in Table 3:
表3table 3
Figure PCTCN2022080337-appb-000005
Figure PCTCN2022080337-appb-000005
Figure PCTCN2022080337-appb-000006
Figure PCTCN2022080337-appb-000006
由表3可以看出,由实施例1-7和对比例1-2对比可得,本公开所述硬碳复合材料的吸液保液能力均明显优于对比例,原因在于:采用内核为多孔硬碳结构,具有高的吸液保液能力。所述硬碳复合材料的循环性能均明显优于对比例,原因在于:通过材料表面包覆碱金属快离子导体,提升材料的充放电过程中的结构稳定性,并改善循环性能。As can be seen from Table 3, it can be obtained from the comparison of Examples 1-7 and Comparative Examples 1-2 that the liquid absorption and liquid retention capabilities of the hard carbon composite materials described in the present disclosure are significantly better than those of the Comparative Examples. The reason is that the inner core is Porous hard carbon structure with high liquid absorption and retention capacity. The cycle performance of the hard carbon composite materials is obviously better than that of the comparative examples, because the structure stability of the material during the charge and discharge process is improved by coating the surface of the material with an alkali metal fast ion conductor, and the cycle performance is improved.

Claims (15)

  1. 一种硬碳复合材料,所述硬碳复合材料包括内核和外壳,所述内核为硬碳,所述外壳包括碱金属快离子导体、导电剂和无定形碳组成的复合体。A hard carbon composite material, the hard carbon composite material includes an inner core and an outer shell, the inner core is hard carbon, and the outer shell includes a complex composed of an alkali metal fast ion conductor, a conductive agent and amorphous carbon.
  2. 如权利要求1所述的硬碳复合材料,其中,所述碱金属快离子导体的分子式为M xN yW z,其中,x为0.5~1.5,y为0.5~1.5,z为0.5~3,M为钠和/或钾,N为Ni、Co、Mn、Al、Cr、Fe、Mg、V、Zn或Cu中的任意一种或至少两种的组合,W为SiO 3 2-、SO 4 2-、MoO 4 2-、PO 4 3-、TiO 3 2-或ZrO 4 3-中的任意一种或至少两种的组合,所述导电剂包括氧化石墨烯。 The hard carbon composite material according to claim 1, wherein the molecular formula of the alkali metal fast ion conductor is M x N y W z , wherein x is 0.5-1.5, y is 0.5-1.5, and z is 0.5-3 , M is sodium and/or potassium, N is any one or a combination of at least two of Ni, Co, Mn, Al, Cr, Fe, Mg, V, Zn or Cu, W is SiO 3 2- , SO 4 2- , MoO 4 2- , PO 4 3- , TiO 3 2- or ZrO 4 3- any one or a combination of at least two, the conductive agent includes graphene oxide.
  3. 如权利要求1或2所述的硬碳复合材料,其中,以所述外壳的质量为100%计,所述碱金属快离子导体的质量分数为50~80%,所述导电剂的质量分数为1~10%。The hard carbon composite material according to claim 1 or 2, wherein, taking the mass of the shell as 100%, the mass fraction of the alkali metal fast ion conductor is 50-80%, and the mass fraction of the conductive agent 1 to 10%.
  4. 一种如权利要求1-3任一项所述硬碳复合材料的制备方法,所述制备方法包括以下步骤:A preparation method for a hard carbon composite material as described in any one of claims 1-3, said preparation method comprising the following steps:
    (1)将碱金属快离子导体、导电剂和有机溶剂混合,得到包覆材料;(1) mixing an alkali metal fast ion conductor, a conductive agent and an organic solvent to obtain a coating material;
    (2)将生物质原料与碱性溶液混合,过滤干燥后得到前驱体材料;(2) Mix the biomass raw material with the alkaline solution, and obtain the precursor material after filtering and drying;
    (3)将包覆材料和溶剂混合得到包覆材料溶液,加入前驱体材料,经碳化处理后得到所述硬碳复合材料。(3) Mix the coating material and a solvent to obtain a coating material solution, add a precursor material, and obtain the hard carbon composite material after carbonization treatment.
  5. 如权利要求4所述的制备方法,其中,步骤(1)所述碱金属快离子导体、导电剂和有机溶剂的质量比为100:(1~5):(500~1000),所述有机溶剂包括乙醇、甲醇、乙二醇、异丙醇、三甘醇或丙酮中的任意一种或至少两种的组合。The preparation method according to claim 4, wherein, the mass ratio of the alkali metal fast ion conductor, conductive agent and organic solvent in step (1) is 100:(1~5):(500~1000), and the organic The solvent includes any one or a combination of at least two of ethanol, methanol, ethylene glycol, isopropanol, triethylene glycol or acetone.
  6. 如权利要求4或5所述的制备方法,其中,步骤(1)所述混合的温度为100~200℃,所述混合的压力为1~5MPa,所述混合的时间为1~6h,所述混合后进行干燥和研磨。The preparation method according to claim 4 or 5, wherein the mixing temperature in step (1) is 100-200° C., the mixing pressure is 1-5 MPa, and the mixing time is 1-6 hours. Drying and milling are carried out after mixing as described above.
  7. 如权利要求4-6任一项所述的制备方法,其中,步骤(2)所述生物质原料包括桃壳、稻壳、香蕉皮、瓜子壳、松果、棉花、椰壳、海藻、麦秸、海带、柳絮、花生壳、沥青、荷叶或泥炭中的任意一种或至少两种的组合,所述生物质原料预先进行干燥处理和粉碎处理,所述干燥处理的温度为50~150℃,所述干燥处理的时间为12~48h,所述粉碎处理后生物质原料的粒径为1~10μm。The preparation method according to any one of claims 4-6, wherein the biomass raw material in step (2) comprises peach shells, rice husks, banana peels, melon seed shells, pine cones, cotton, coconut shells, seaweed, wheat straw , kelp, catkins, peanut shells, asphalt, lotus leaf or peat, or a combination of at least two of them, the biomass raw material is pre-dried and crushed, and the temperature of the drying treatment is 50-150°C , the time of the drying treatment is 12-48 hours, and the particle size of the biomass raw material after the crushing treatment is 1-10 μm.
  8. 如权利要求4-7任一项所述的制备方法,其中,步骤(2)所述碱性溶液包括氢氧化钠溶液,所述氢氧化钠溶液的质量浓度为1~5%。The preparation method according to any one of claims 4-7, wherein the alkaline solution in step (2) comprises sodium hydroxide solution, and the mass concentration of the sodium hydroxide solution is 1-5%.
  9. 如权利要求4-8任一项所述的制备方法,其中,步骤(2)所述生物质原料和碱性溶液中溶质的质量比为100:(1~10)。The preparation method according to any one of claims 4-8, wherein the mass ratio of the biomass raw material in step (2) to the solute in the alkaline solution is 100:(1-10).
  10. 如权利要求4-9任一项所述的制备方法,其中,步骤(2)所述混合后浸泡24~72h,所述浸泡的温度为25~100℃。The preparation method according to any one of claims 4-9, wherein in step (2), soaking for 24-72 hours after mixing, the soaking temperature is 25-100°C.
  11. 如权利要求4-10任一项所述的制备方法,其中,步骤(3)所述包覆材料溶液中包覆材料的质量分数为1~10%。The preparation method according to any one of claims 4-10, wherein the mass fraction of the coating material in the coating material solution in step (3) is 1-10%.
  12. 如权利要求4-11任一项所述的制备方法,其中,步骤(3)所述碳化处理前进行过滤,所述碳化处理的气氛包括惰性气体和氟气,所述惰性气体和氟气的体积比为(0.8~1.2):(0.8~1.2)。The preparation method as claimed in any one of claims 4-11, wherein, filter before the carbonization treatment in step (3), the atmosphere of the carbonization treatment includes inert gas and fluorine gas, the content of the inert gas and fluorine gas The volume ratio is (0.8~1.2):(0.8~1.2).
  13. 如权利要求4-12任一项所述的制备方法,其中,步骤(3)所述碳化处理为温度为700~1000℃,所述碳化处理的时间为1~6h,所述碳化处理后进行粉碎。The preparation method according to any one of claims 4-12, wherein, the carbonization treatment in step (3) is performed at a temperature of 700 to 1000° C., and the time of the carbonization treatment is 1 to 6 hours, and the carbonization treatment is carried out after the carbonization treatment. smash.
  14. 一种负极极片,所述负极极片包含如权利要求1-3任一项所述的硬碳复合材料。A negative electrode sheet comprising the hard carbon composite material according to any one of claims 1-3.
  15. 一种锂离子电池,所述锂离子电池包含如权利要求14所述的负极极片。A lithium ion battery, said lithium ion battery comprising the negative pole piece as claimed in claim 14.
PCT/CN2022/080337 2021-11-29 2022-03-11 Hard carbon composite material, and preparation method therefor and use thereof WO2023092894A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111433770.1 2021-11-29
CN202111433770.1A CN114142011B (en) 2021-11-29 2021-11-29 Hard carbon composite material and preparation method and application thereof

Publications (1)

Publication Number Publication Date
WO2023092894A1 true WO2023092894A1 (en) 2023-06-01

Family

ID=80389321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080337 WO2023092894A1 (en) 2021-11-29 2022-03-11 Hard carbon composite material, and preparation method therefor and use thereof

Country Status (2)

Country Link
CN (1) CN114142011B (en)
WO (1) WO2023092894A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117334885A (en) * 2023-11-30 2024-01-02 天鹏锂能技术(淮安)有限公司 Negative electrode material for sodium ion battery, preparation method of negative electrode material and sodium ion battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142011B (en) * 2021-11-29 2023-06-16 蜂巢能源科技有限公司 Hard carbon composite material and preparation method and application thereof
CN114420938B (en) * 2022-03-31 2022-06-21 河北坤天新能源股份有限公司 Metal oxide amorphous carbon coated hard carbon composite material and preparation method and application thereof
CN114824237B (en) * 2022-04-15 2023-01-20 晖阳(贵州)新能源材料有限公司 Silicon-carbon composite material coated with fast ion conductor and preparation method thereof
CN114843483A (en) * 2022-05-23 2022-08-02 常州烯源谷新材料科技有限公司 Hard carbon composite material and preparation method and application thereof
CN114843482A (en) * 2022-05-23 2022-08-02 常州烯源谷新材料科技有限公司 Core-shell silicon-carbon composite material and preparation method and application thereof
CN115064676B (en) * 2022-06-29 2023-11-03 蜂巢能源科技股份有限公司 Sodium ion battery anode material and preparation method and application thereof
CN115520851B (en) * 2022-09-30 2023-08-15 深圳市金牌新能源科技有限责任公司 Preparation method of hard carbon-soft carbon-fast ion conductor composite material
CN115536000B (en) * 2022-10-14 2024-03-15 中国科学院合肥物质科学研究院 Preparation method of hard carbon material with graphite coating layer on surface and application of hard carbon material in sodium ion battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282547A (en) * 2007-05-08 2008-11-20 Tokai Carbon Co Ltd Anode material for lithium ion secondary battery and its manufacturing method
CN109713235A (en) * 2017-10-25 2019-05-03 华为技术有限公司 A kind of sub- composite material and preparation method of conduction diversion, modified electrode material and energy storage device
CN111092254A (en) * 2018-10-23 2020-05-01 中信国安盟固利动力科技有限公司 All-solid-state battery with low interface impedance and high interface compatibility
CN111477852A (en) * 2020-04-15 2020-07-31 溧阳天目先导电池材料科技有限公司 Composite anode material with network channel structure and preparation method and application thereof
CN111509198A (en) * 2019-01-31 2020-08-07 贝特瑞新材料集团股份有限公司 Core-shell structure composite material, preparation method thereof and application thereof in lithium ion battery
CN112467116A (en) * 2020-11-30 2021-03-09 湖南中科星城石墨有限公司 Graphite coating material, preparation method thereof and battery cathode
CN114142011A (en) * 2021-11-29 2022-03-04 蜂巢能源科技有限公司 Hard carbon composite material and preparation method and application thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425802B (en) * 2013-09-11 2018-09-25 上海杉杉科技有限公司 Silicon based composite material, preparation method, using and its lithium ion battery obtained
CN106558685B (en) * 2015-09-30 2019-11-22 比亚迪股份有限公司 Porous core-shell structure negative electrode material and preparation method thereof and battery
CN106299275A (en) * 2016-08-26 2017-01-04 东莞市迈科新能源有限公司 A kind of preparation method of composite hard carbon anode material of lithium-ion battery
CN108134050B (en) * 2016-11-30 2021-04-20 比亚迪股份有限公司 Negative electrode active material, preparation method thereof and lithium ion battery
CN107785549B (en) * 2017-10-10 2020-05-19 中航锂电(洛阳)有限公司 Preparation method of carbon composite negative electrode material and carbon composite negative electrode material
CN108232156B (en) * 2018-01-03 2020-12-08 清陶(昆山)能源发展有限公司 Silicon-carbon composite cathode for solid-state battery and preparation method thereof
CN108899517B (en) * 2018-07-04 2021-02-12 大连海事大学 Lithium niobate/niobium-based oxide/silicon composite anode material and preparation and application thereof
CN109802131A (en) * 2019-01-03 2019-05-24 江西星盈科技有限公司 Lithium ion battery and its negative electrode tab and negative electrode material and preparation process
CN110444736B (en) * 2019-05-23 2023-01-31 山东大学 Method for protecting lithium cathode of metal lithium battery based on pressure and protective layer and application
CN110739455A (en) * 2019-10-11 2020-01-31 昆山宝创新能源科技有限公司 Silicon-carbon negative electrode material, preparation method and lithium ion battery
CN111048756A (en) * 2019-12-04 2020-04-21 兰溪致德新能源材料有限公司 High-conductivity silica negative electrode material and application thereof
CN113428907A (en) * 2020-03-23 2021-09-24 飞翼新能源公司 Method for preparing cathode composition of lithium ion battery and lithium ion battery using same
CN111653738B (en) * 2020-04-20 2022-01-07 万向一二三股份公司 Silicon-carbon negative electrode material of lithium ion battery and preparation method thereof
CN111525121B (en) * 2020-05-10 2022-02-15 兰溪致德新能源材料有限公司 Silicon anode material with villus structure and preparation method thereof
CN111403750B (en) * 2020-06-04 2020-09-01 苏州清陶新能源科技有限公司 Composite electrode, preparation method thereof and application of composite electrode in solid-state lithium ion battery
CN111653759A (en) * 2020-06-15 2020-09-11 中国科学院宁波材料技术与工程研究所 Silicon-based composite material and preparation method thereof
CN112467118B (en) * 2020-11-30 2022-07-05 湖南中科星城石墨有限公司 Graphite composite material, preparation method thereof and lithium battery cathode
CN112687865A (en) * 2020-12-25 2021-04-20 惠州亿纬锂能股份有限公司 Lithium ion battery cathode slurry, preparation method and application thereof
CN113410442A (en) * 2021-06-09 2021-09-17 恒大新能源技术(深圳)有限公司 Silicon-based negative electrode material and preparation method thereof, negative plate and secondary battery
CN113540416A (en) * 2021-07-08 2021-10-22 洛阳月星新能源科技有限公司 Solid electrolyte coated graphite composite material, preparation method and application thereof, and lithium ion battery
CN113707863B (en) * 2021-08-26 2023-04-14 蜂巢能源科技有限公司 Hard carbon composite material and preparation method and application thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282547A (en) * 2007-05-08 2008-11-20 Tokai Carbon Co Ltd Anode material for lithium ion secondary battery and its manufacturing method
CN109713235A (en) * 2017-10-25 2019-05-03 华为技术有限公司 A kind of sub- composite material and preparation method of conduction diversion, modified electrode material and energy storage device
CN111092254A (en) * 2018-10-23 2020-05-01 中信国安盟固利动力科技有限公司 All-solid-state battery with low interface impedance and high interface compatibility
CN111509198A (en) * 2019-01-31 2020-08-07 贝特瑞新材料集团股份有限公司 Core-shell structure composite material, preparation method thereof and application thereof in lithium ion battery
CN111477852A (en) * 2020-04-15 2020-07-31 溧阳天目先导电池材料科技有限公司 Composite anode material with network channel structure and preparation method and application thereof
CN112467116A (en) * 2020-11-30 2021-03-09 湖南中科星城石墨有限公司 Graphite coating material, preparation method thereof and battery cathode
CN114142011A (en) * 2021-11-29 2022-03-04 蜂巢能源科技有限公司 Hard carbon composite material and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117334885A (en) * 2023-11-30 2024-01-02 天鹏锂能技术(淮安)有限公司 Negative electrode material for sodium ion battery, preparation method of negative electrode material and sodium ion battery

Also Published As

Publication number Publication date
CN114142011B (en) 2023-06-16
CN114142011A (en) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2023092894A1 (en) Hard carbon composite material, and preparation method therefor and use thereof
CN103311522B (en) A kind of silicon/carbon composite microsphere negative electrode material and its production and use
CN114420938B (en) Metal oxide amorphous carbon coated hard carbon composite material and preparation method and application thereof
CN113659125B (en) Silicon-carbon composite material and preparation method thereof
CN114122372B (en) Low-expansion silicon-carbon negative electrode material for lithium ion battery and preparation method thereof
CN115101741B (en) Nitrogen-doped graphene-coated silicon-carbon composite material and preparation method and application thereof
CN107611356A (en) A kind of silicon-carbon cathode lithium ion battery
WO2021143515A1 (en) Polyamine composite material and preparation method therefor, slurry containing polyamine composite material, separator, electrode sheet, and lithium-sulfur battery
CN113889593A (en) Preparation method of hard carbon-coated soft carbon composite material
CN105914378A (en) Negative pole piece of lithium-ion battery and preparation method of negative pole piece and lithium-ion battery
CN107887579B (en) Surface-modified polyanionic positive electrode material for lithium ion battery and preparation method thereof
CN111435732B (en) Negative electrode material of lithium ion battery, preparation method of negative electrode material and lithium ion battery
Zhang et al. Functional polyethylene separator with impurity entrapment and faster Li+ ions transfer for superior lithium-ion batteries
CN115714170A (en) Preparation method of high-energy-density fast-charging negative electrode material
CN115566170A (en) Preparation method of high-energy-density quick-charging lithium ion battery cathode material
CN111326721A (en) Preparation method of composite negative electrode pre-embedded lithium material
CN113772718A (en) SnS-SnS2@ GO heterostructure composite material and preparation method and application thereof
CN114843483A (en) Hard carbon composite material and preparation method and application thereof
CN112467138B (en) Preparation method of aluminum-doped porous silicon-carbon composite material and lithium ion battery
WO2021184220A1 (en) Lithium ion start-stop power supply capable of being pre-lithiated and preparation method therefor
CN112186149A (en) Manganese dioxide/graphite nanosheet composite zinc ion positive electrode material and preparation method thereof
CN110931754A (en) Negative electrode material, preparation method thereof, negative electrode plate and electrochemical device
CN116230911B (en) High-power silicon-carbon negative electrode composite material and preparation method thereof
CN116154146B (en) Three-dimensional silicon-carbon composite material and preparation method thereof
CN113666354B (en) Preparation method of silicon-carbon composite material, silicon negative electrode piece and battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896996

Country of ref document: EP

Kind code of ref document: A1