WO2023092776A1 - 糠醛渣/地沟油改性沥青及其制备方法 - Google Patents

糠醛渣/地沟油改性沥青及其制备方法 Download PDF

Info

Publication number
WO2023092776A1
WO2023092776A1 PCT/CN2021/140272 CN2021140272W WO2023092776A1 WO 2023092776 A1 WO2023092776 A1 WO 2023092776A1 CN 2021140272 W CN2021140272 W CN 2021140272W WO 2023092776 A1 WO2023092776 A1 WO 2023092776A1
Authority
WO
WIPO (PCT)
Prior art keywords
asphalt
furfural
waste oil
slag
residue
Prior art date
Application number
PCT/CN2021/140272
Other languages
English (en)
French (fr)
Inventor
李淑君
赖硕荣
张显权
徐永丽
徐文远
Original Assignee
东北林业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北林业大学 filed Critical 东北林业大学
Publication of WO2023092776A1 publication Critical patent/WO2023092776A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to a furfural slag/waste oil modified asphalt and a preparation method thereof.
  • Petroleum asphalt is a by-product of crude oil processing and is widely used in road construction, anti-corrosion materials and waterproof materials. Considering the massive consumption of fossil resources and the harm of petroleum asphalt to the environment and the health of construction workers, scientists are working to replace or modify petroleum asphalt with renewable biomass.
  • the object of the present invention is to provide a furfural slag/gutter oil modified asphalt and a preparation method thereof in order to solve the technical problem of massive consumption of fossil resources and petroleum asphalt causing harm to the environment and the health of construction workers.
  • the furfural slag/waste oil modified asphalt is composed of furfural slag/waste oil compound modifier and asphalt, and the mass ratio of waste oil and furfural slag in the furfural slag/waste oil compound modifier is (2 ⁇ 1):(1 ⁇ 2)
  • the mass percentage of the furfural residue/waste oil composite modifier in the furfural residue/waste oil modified asphalt is 4% to 20%.
  • the waste oil described in Step 1 is brownish yellow, with a pH value of 6.8 and a density of 0.943 g ⁇ mL -1 .
  • the cellulose content in the furfural slag described in step 2 is 47.63%, the hemicellulose content is 1.44%, the lignin content is 41.26%, and the ash content is 4.4% (both dry basis).
  • the asphalt model described in step 3 is 90# asphalt.
  • the mass percentage of the furfural residue/waste oil composite modifier in the furfural residue/waste oil modified asphalt in step 3 is 4% to 20%.
  • the long-chain fatty acid in waste cooking oil has a similar structure to the saturated component in asphalt, and has good compatibility. It can reduce the use of asphalt mixing solvent when used in asphalt modification, and has a softening effect on aged asphalt.
  • Cellulose and lignin are the two most abundant substances in nature.
  • the asphalt is modified by taking advantage of the advantages of large specific surface area and high strength of nanocellulose, which improves the viscoelasticity and anti-rutting performance.
  • Furfural slag is the residue produced when furfural is produced by the hydrolysis of agricultural and forestry biomass such as corncobs, bagasse and other raw materials with high pentose content, and the cost is very low.
  • its main component is lignin and cellulose
  • the present invention is raw material with furfural slag and waste oil, at first furfural slag is fully swollen and uniformly dispersed in waste oil, then is used for partially replacing petroleum asphalt, passes three major indicators (needle Penetration, softening point, ductility) and softening point difference method to analyze the basic properties of asphalt, get the maximum modifier content that meets the standard requirements, and use dynamic shear rheometer and bending beam rheometer to explore The effect of the amount of modifier on the high and low temperature performance of asphalt was investigated. Finally, the blending mechanism and microstructure of modified asphalt were explored by infrared spectroscopy and scanning electron microscopy.
  • Furfural slag can absorb part of the oil in asphalt and cross-link with asphaltene in asphalt to form a tight structure, thereby increasing its hardness.
  • furfural slag/gutter oil composite modifier can reduce the internal temperature stress of asphalt and reduce the possibility of material cracking under extremely cold conditions.
  • the addition of furfural slag/waste oil composite modifier can enhance the stress dissipation ability of asphalt under low temperature conditions.
  • furfural slag/waste oil composite modifier will increase the penetration of asphalt mortar and reduce its softening point, and its ductility value will first increase and then decrease with the increase of the content.
  • the fluctuation range of the three indexes of asphalt mixed with furfural slag/waste oil compound modifier is lower than that of waste oil and furfural slag alone, and the three indexes after adding 8% furfural slag/waste oil compound modifier
  • the major indicators can all meet the requirements of the 90# matrix asphalt standard.
  • Furfural residue/gutter oil modified asphalt has good thermal storage stability. When the furfural residue/gutter oil composite modifier is added at 8%, its 72-hour thermal storage stability can still meet the standard requirements.
  • the low-temperature crack resistance of asphalt is better than that of base asphalt.
  • the creep rate of asphalt increases, the creep stiffness decreases, the low-temperature stress relaxation performance is enhanced, and the low-temperature crack resistance of asphalt is improved.
  • Furfural slag can be evenly dispersed in the waste oil and asphalt system, with good compatibility, which solves the technical problems of the large consumption of fossil resources and the harm of petroleum asphalt to the environment and the health of construction workers.
  • Fig. 1 is the result figure of penetration test in test one
  • Figure 2 is a comparison chart of the influence of modifier dosage on asphalt softening point in Test 1;
  • Figure 3 is a comparison chart of the influence of modifier dosage on asphalt ductility in Test 1;
  • Figure 4 is a comparison chart of the influence of furfural slag/gutter oil composite modifier dosage on the thermal storage stability of asphalt in Test 1;
  • Figure 5 is a comparison chart of the effect of the amount of furfural slag/gutter oil composite modifier on the low-temperature flexural creep stiffness of asphalt in Test 1;
  • Figure 6 is a comparison chart of the effect of furfural slag/gutter oil compound modifier dosage on asphalt creep rate in Test 1;
  • Fig. 7 is the scanning electron micrograph of furfural slag in test one
  • Fig. 8 is the scanning electron microscope picture of furfural slag/waste oil composite modifier in test one;
  • Fig. 9 is a scanning electron microscope image of furfural slag/waste oil modified asphalt in Test 1.
  • furfural slag/waste oil modified asphalt is made up of furfural slag/waste oil composite modifier and asphalt, and the mass ratio of waste oil and furfural slag in furfural slag/waste oil composite modifier is ( 2-1): (1-2), the mass percentage of the furfural residue/waste oil composite modifier in the furfural residue/waste oil modified asphalt is 4%-20%.
  • Specific embodiment two the difference between this embodiment and specific embodiment one is that the type of asphalt is 90# asphalt. Others are the same as the first embodiment.
  • Embodiment 3 The difference between this embodiment and Embodiment 1 or 2 is that the mass percentage of the furfural residue/waste oil composite modifier in the furfural residue/waste oil modified asphalt is 8%. Others are the same as those in Embodiment 1 or 2.
  • Embodiment 4 This embodiment differs from Embodiments 1 to 3 in that the mass ratio of waste oil to furfural residue in the furfural residue/waste oil composite modifier is 1:1.
  • Embodiment five the furfural slag/waste oil modified asphalt preparation method described in embodiment one is carried out according to the following steps:
  • Embodiment 6 This embodiment differs from Embodiment 5 in that the waste oil described in Step 1 is brownish yellow, with a pH value of 6.8 and a density of 0.943 g ⁇ mL ⁇ 1 . Others are the same as the fifth embodiment.
  • Embodiment 7 This embodiment is different from Embodiment 5 or 6 in that the cellulose content in the furfural residue described in step 2 is 47.63%, the hemicellulose content is 1.44%, the lignin content is 41.26%, and the ash content is 4.4%. Others are the same as the fifth or sixth embodiment.
  • Embodiment 8 The difference between this embodiment and one of Embodiments 5 to 7 is that the mass ratio of waste oil to furfural residue in the furfural residue/waste oil composite modifier in step 2 is 1:1.125. Others are the same as one of the fifth to seventh specific embodiments.
  • Embodiment 9 This embodiment differs from Embodiment 5 to Embodiment 8 in that the type of asphalt described in step 3 is 90# asphalt. Others are the same as one of the fifth to eighth specific embodiments.
  • the mass percentages of the furfural residue/waste oil compound modifier in the furfural residue/waste oil modified asphalt were 4%, 8%, and 12%, respectively.
  • furfural Slag modified asphalt 2. Put the furfural slag and asphalt in an oven at 140°C for 2 hours, then pour the furfural slag into the asphalt, cut at 140°C at a speed of 5000r/min for 30 minutes, and then place it at 140°C for 1 hour, then take it out and cool it to obtain furfural Slag modified asphalt.
  • the mass percentages of furfural slag in the furfural slag modified asphalt were 4%, 8%, and 12%, respectively.
  • waste oil and asphalt in an oven at 140°C for 2 hours, then pour the waste oil into the asphalt, cut it at 140°C at a speed of 5000r/min for 30 minutes, then place it at 140°C for 1 hour, take it out and cool it, and the waste oil modified sexual asphalt.
  • the mass percentages of furfural slag and waste oil in the modified asphalt were 4%, 8%, and 12%, respectively.
  • the furfural slag used in the test was produced by Harbin Xingcheng Chemical Co., Ltd., with a cellulose content of 47.63%, a hemicellulose content of 1.44%, a lignin content of 41.26%, and an ash content of 4.4% (both on a dry basis).
  • the water absorption rate of the dry residue is 13% when placed at 20°C and 90% RH for 3 days.
  • dry the furfural residue In order to fully mix the furfural residue with waste oil and asphalt, dry the furfural residue and put it into a pulverizer to crush it and pass it through an 80-mesh sieve for later use.
  • Raw waste oil is frying waste oil, which is taken from a local restaurant in Harbin. It is brownish yellow in color, with a pH value of 6.8 and a density of 0.943g ⁇ mL -1 .
  • furfural slag and gutter oil were mixed at a mass ratio of 1:3, and sheared at 5000r/min for 15min to promote furfural The residue fully absorbs the oil, and the oil is filtered out with a 200-mesh filter, and the filter residue is collected for later use. At this time, the mixed mass ratio of waste oil and furfural residue is 1:1.125.
  • furfural slag, waste oil, furfural slag/waste oil composite modifier and base asphalt in an oven at 140°C for 2 hours, take furfural slag, waste oil and furfural with different mass percentages (4%, 8%, 12%) of asphalt
  • furfural slag, waste oil and furfural with different mass percentages (4%, 8%, 12%) of asphalt
  • slag/waste oil compound modifier into the asphalt, cut at 140°C at a speed of 5000r/min for 30 minutes, take out the rotor, place the modified asphalt mortar at this temperature for 1 hour, take it out and cool it for later use.
  • Thermo Fisher IN10 infrared spectrometer to scan furfural residue, waste oil, furfural residue waste oil mixture, matrix asphalt, furfural residue/gutter oil modified asphalt samples, and the scanning wavelength range of asphalt-containing samples is 600-4000cm -1 , and the scanning wavelength range of other samples is 400-4000cm -1 .
  • Penetration, softening point, and ductility of asphalt are important indicators to characterize its basic performance. Penetration is closely related to asphalt viscosity, which can reflect the consistency and hardness of asphalt at 25°C.
  • the softening point represents the critical point at which the fluidity of asphalt reaches a specific state under the action of temperature, and it can reflect the stability of asphalt under high temperature conditions.
  • Ductility represents the tensile deformation ability of asphalt under low temperature conditions.
  • Figure 2 shows the effect of the blending ratio of the three modifiers on the softening point of asphalt. It can be seen from the figure that as the blending ratio of waste oil/furfural slag increases, the softening point of asphalt decreases. At 12%, the softening point of asphalt drops to 42.1°C, which can still meet the technical requirements of No. 90 road petroleum asphalt in the "Technical Specifications for Construction of Highway Asphalt Pavement"; the addition of waste oil will make the softening point of asphalt drop sharply. 4% can not meet the standard requirements; the addition of furfural slag can improve the softening point of asphalt. The results show that waste oil and furfural slag/gutter oil composite modifier will have adverse effects on the high temperature stability of asphalt, and furfural slag can improve the high temperature stability of asphalt.
  • Figure 3 shows the influence of different mass fractions of modifiers on the ductility of asphalt mortar at 10°C. It can be seen from the figure that as the content of furfural slag/gutter oil composite modifier increases, the ductility of asphalt mortar increases first and then Decreasing trend, when the amount of modifier is 4%, the ductility of asphalt rises from 103cm to 112cm, an increase of 8.7%, but when the modifier is added, the ductility shows a downward trend, and the amount of modifier is 12 %, the asphalt ductility can still meet the standard requirements of No.
  • modifiers can improve the fluidity of asphalt at low temperature, but at the same time it will also reduce the viscosity of base asphalt. Excessive modifier addition will adversely affect its tensile properties; furfural slag will reduce the low temperature of asphalt This is because furfural slag will absorb some light components such as oil and resin in asphalt, reducing its plasticity and fluidity, thereby reducing the low-temperature ductility of asphalt.
  • Furfural slag and waste oil have many similarities in chemical composition and molecular structure with asphalt, so they can be well integrated, but the mixing is still mainly physical blending, and asphalt needs to be mixed before use.
  • Long-term storage in a high-temperature environment in order to verify whether the modifier will segregate with the asphalt under long-term thermal storage conditions, which will affect the performance of the asphalt, this test uses the softening point difference method to evaluate the thermal storage stability of modified asphalt. The analysis is carried out, and the test results are shown in Figure 4.
  • BBR bending beam rheometer
  • Figures 7 to 9 are microscopic morphology diagrams of furfural slag, furfural slag/gutter oil mixture, and furfural slag/gutter oil mixture modified asphalt. It can be seen from Figure 7 that the furfural slag is irregular in shape and size, the surface of the particles is rough, and many obvious grooves can be seen. After mixing with waste oil to prepare biomass asphalt (Figure 8), the waste oil soaks the furfural slag well And form a good interface with it, and after mixing with asphalt ( Figure 9), furfural residue is evenly dispersed in the waste oil and asphalt system, indicating that the three have good compatibility.
  • furfural slag/waste oil composite modifier will increase the penetration of asphalt mortar and reduce its softening point, and its ductility value will first increase and then decrease with the increase of the content.
  • the fluctuation range of the three indexes of asphalt mixed with furfural slag/waste oil compound modifier is lower than that of waste oil and furfural slag alone, and the three indexes after adding 8% furfural slag/waste oil compound modifier
  • the major indicators can all meet the requirements of the 90# matrix asphalt standard.
  • Furfural residue/gutter oil modified asphalt has good thermal storage stability. When the furfural residue/gutter oil composite modifier is added at 8%, its 72-hour thermal storage stability can still meet the standard requirements.
  • the low-temperature crack resistance of asphalt is better than that of base asphalt.
  • the creep rate of asphalt increases, the creep stiffness decreases, the low-temperature stress relaxation performance is enhanced, and the low-temperature crack resistance of asphalt is improved.
  • Furfural slag can be evenly dispersed in waste oil and asphalt system with good compatibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

提供一种糠醛渣/地沟油改性沥青及其制备方法,属于沥青改性技术领域。该改性沥青由糠醛渣/地沟油复合改性剂和沥青组成,制备方法:一、将糠醛渣烘干过80目网筛;二、将糠醛渣与地沟油混合,剪切,过滤,得糠醛渣/地沟油复合改性剂;三、将糠醛渣/地沟油复合改性剂倒入沥青中,剪切,冷却,即得糠醛渣/地沟油改性沥青。糠醛渣能均匀地分散于地沟油与沥青体系中,相容性较好,解决了化石资源的大量消耗,以及石油沥青对环境以及施工人员身体健康造成危害的技术问题。

Description

糠醛渣/地沟油改性沥青及其制备方法 技术领域
本发明涉及一种糠醛渣/地沟油改性沥青及其制备方法。
背景技术
石油沥青是原油加工的副产物,广泛应用于公路建设、防腐材料和防水材料等。考虑到化石资源的大量消耗,以及石油沥青对环境以及施工人员身体健康造成的危害,科学家们正在致力于用可再生的生物质替代或改性石油沥青。
发明内容
本发明的目的是为了解决化石资源的大量消耗,以及石油沥青对环境以及施工人员身体健康造成危害的技术问题,提供了一种糠醛渣/地沟油改性沥青及其制备方法。
糠醛渣/地沟油改性沥青由糠醛渣/地沟油复合改性剂和沥青组成,糠醛渣/地沟油复合改性剂中地沟油与糠醛渣的质量比为(2~1)∶(1~2),糠醛渣/地沟油复合改性剂在糠醛渣/地沟油改性沥青中的质量百分比为4%~20%。
所述糠醛渣/地沟油改性沥青制备方法按照以下步骤进行:
一、将糠醛渣烘干后放入粉碎机中打碎并过80目网筛;
二、将糠醛渣与地沟油以质量比1∶3的比例混合,以5000r/min的转速剪切15min,以200目滤网滤出油分,得到糠醛渣/地沟油复合改性剂,糠醛渣/地沟油复合改性剂中地沟油与糠醛渣的质量比为(2~1)∶(1~2);
三、将糠醛渣/地沟油复合改性剂和沥青放在140℃烘箱中2h,然后将糠醛渣/地沟油复合改性剂倒入沥青中,在140℃以5000r/min的转速剪切30min,然后在140℃放置1h后取出冷却,即得糠醛渣/地沟油改性沥青。
步骤一所述地沟油为棕黄色、pH值6.8、密度0.943g·mL -1
步骤二中所述糠醛渣中纤维素含量47.63%、半纤维素含量1.44%、木质素含量41.26%、灰分含量4.4%(均为干基)。
步骤三中所述沥青型号为90#沥青。
步骤三中所述糠醛渣/地沟油复合改性剂在糠醛渣/地沟油改性沥青中的质量百分比为4%~20%。
废食用油中长链型脂肪酸,与沥青中饱和分结构相似,有很好的相容性,用于沥青改性可减少沥青拌合溶剂的使用,还对老化沥青具有软化的作用。
纤维素和木质素作为自然界储量最为丰富的两大物质。利用纳米纤维素比表面积大、强度高等优点将沥青改性,提高了粘弹性和抗车辙性能。利用木质素天然的芳香结构,与石油沥青稠环芳烃同属芳香族物质,两者具有很好相容性这一优点用于沥青改性,提高了沥青的高温稳定性。
糠醛渣是由农林生物质如玉米芯、甘蔗渣等戊糖含量较高的原料水解制备糠醛时产生的剩余物,成本很低。而其主要成分为木质素和纤维素,本发明以糠醛渣和地沟油为原料,首先将糠醛渣在地沟油中充分溶胀并均匀分散,而后用于部分替代石油沥青,通过三大指标(针入度、软化点、延度)和软化点差值法对沥青基本性能进行分析,得出符合标准要求的最大改性剂掺量,并利用动态剪切流变仪和弯曲梁流变仪探究改性剂掺量对沥青高低温性能影响,最后通过红外光谱和扫描电镜对改性沥青共混机理及微观结构进行探究。
糠醛渣能吸收沥青中部分油分并与沥青中的沥青质交联成紧密的结构,从而增加其硬度。
在极寒条件下糠醛渣/地沟油复合改性剂的加入能降低沥青内部温度应力,降低材料开裂的可能性。糠醛渣/地沟油复合改性剂的掺加能增强沥青低温条件下的应力消散能力。
本发明具有以下优点:
1、糠醛渣/地沟油复合改性剂的掺入会增大沥青胶浆针入度,降低其软化点,其延度值随掺量增加出现先增大后减小的趋势。掺入糠醛渣/地沟油复合改性剂相较于地沟油和糠醛渣单独掺加的沥青三大指标波动幅度更低,并且在掺入8%糠醛渣/地沟油复合改性剂后其三大指标均能满足90#基质沥青标准要求。
2、糠醛渣/地沟油改性沥青具有良好的热储存稳定性,当糠醛渣/地沟油复合改性剂掺量为8%时,其72小时热储存稳定性仍能满足标准要求。
3、加入糠醛渣/地沟油复合改性剂后沥青低温抗裂性优于基质沥青。随糠醛渣/地沟油复合改性剂掺量增加,沥青蠕变速率随之增大,蠕变劲度随之下降,低温应力松弛性能增强,沥青低温抗裂性提高。
4、糠醛渣能均匀地分散于地沟油与沥青体系中,相容性较好,解决了化石资源的大量消耗,以及石油沥青对环境以及施工人员身体健康造成危害的技术问题。
附图说明
图1是试验一中针入度试验结果图;
图2是试验一中改性剂掺量对沥青软化点的影响对比图;
图3是试验一中改性剂掺量对沥青延度的影响对比图;
图4是试验一中糠醛渣/地沟油复合改性剂掺量对沥青热储存稳定性的影响对比图;
图5是试验一中糠醛渣/地沟油复合改性剂掺量对沥青低温弯曲蠕变劲度影响对比图;
图6是试验一中糠醛渣/地沟油复合改性剂掺量对沥青蠕变速率影响对比图;
图7是试验一中糠醛渣的扫描电镜图;
图8是试验一中糠醛渣/地沟油复合改性剂的扫描电镜图;
图9是试验一中糠醛渣/地沟油改性沥青的扫描电镜图。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式糠醛渣/地沟油改性沥青由糠醛渣/地沟油复合改性剂和沥青组成,糠醛渣/地沟油复合改性剂中地沟油与糠醛渣的质量比为(2~1)∶(1~2),糠醛渣/地沟油复合改性剂在糠醛渣/地沟油改性沥青中的质量百分比为4%~20%。
具体实施方式二:本实施方式与具体实施方式一不同的是所述沥青型号为90#沥青。其他与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是所述糠醛渣/地沟油复合改性剂在糠醛渣/地沟油改性沥青中的质量百分比为8%。其他与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三不同的是所述糠醛渣/地沟油复合改性剂中地沟油与糠醛渣的质量比为1:1。
具体实施方式五:具体实施方式一所述糠醛渣/地沟油改性沥青制备方法按照以下步骤进行:
一、将糠醛渣烘干后放入粉碎机中打碎并过80目网筛;
二、将糠醛渣与地沟油以质量比1∶3的比例混合,以5000r/min的转速剪切15min,以200目滤网滤出油分,得到糠醛渣/地沟油复合改性剂,糠醛渣/地沟油复合改性剂中地沟油与糠醛渣的质量比为(2~1)∶(1~2);
三、将糠醛渣/地沟油复合改性剂和沥青放在140℃烘箱中2h,然后将糠醛渣/地沟油复合改性剂倒入沥青中,在140℃以5000r/min的转速剪切30min,然后在140℃放置1h后取出冷却,即得糠醛渣/地沟油改性沥青。
具体实施方式六:本实施方式与具体实施方式五不同的是步骤一所述地沟油为棕黄色、pH值6.8、密度0.943g·mL -1。其他与具体实施方式五相同。
具体实施方式七:本实施方式与具体实施方式五或六不同的是步骤二中所述糠醛渣中纤维素含量47.63%、半纤维素含量1.44%、木质素含量41.26%、灰分含量4.4%。其他与具体实施方式五或六相同。
具体实施方式八:本实施方式与具体实施方式五至七之一不同的是步骤二中糠醛渣/地沟油复合改性剂中地沟油与糠醛渣的质量比为1:1.125。其他与具体实施方式五至七之一相同。
具体实施方式九:本实施方式与具体实施方式五至八之一不同的是步骤三中所述沥青型号为90#沥青。其他与具体实施方式五至八之一相同。
具体实施方式十:本实施方式与具体实施方式五至九之一不同的是步骤三中所述糠醛渣/地沟油复合改性剂在糠醛渣/地沟油改性沥青中的质量百分比为4%~20%。其他与具体实施方式五至九之一相同。
采用下述试验验证本发明效果:
本试验中糠醛渣/地沟油改性沥青制备方法按照以下步骤进行:
一、将糠醛渣烘干后放入粉碎机中打碎并过80目网筛;
二、将糠醛渣与地沟油以质量比1∶3的比例混合,并以5000r/min的转速剪切15min,以200目滤网滤出油分,得到糠醛渣/地沟油复合改性剂,糠醛渣/地沟油复合改性剂中地沟油与糠醛渣的质量比为1:1.125;
三、将糠醛渣/地沟油复合改性剂和沥青放在140℃烘箱中2h,然后将糠醛渣/地沟油复合改性剂倒入沥青中,在140℃以5000r/min的转速剪切30min,然后在140℃放置1h后取出冷却,即得糠醛渣/地沟油改性沥青。
糠醛渣/地沟油复合改性剂在糠醛渣/地沟油改性沥青中的质量百分比分别为4%、8%、12%。
对比试验中糠醛渣改性沥青制备方法按照以下步骤进行:
一、将糠醛渣烘干后放入粉碎机中打碎并过80目网筛;
二、将糠醛渣和沥青放在140℃烘箱中2h,然后将糠醛渣倒入沥青中,在140℃以5000r/min的转速剪切30min,然后在140℃放置1h后取出冷却,即得糠醛渣改性沥青。
糠醛渣在糠醛渣改性沥青中的质量百分比分别为4%、8%、12%。
对比试验中地沟油改性沥青制备方法按照以下步骤进行:
将地沟油和沥青放在140℃烘箱中2h,然后将地沟油倒入沥青中,在140℃以5000r/min的转速剪切30min,然后在140℃放置1h后取出冷却,即得地沟油改性沥青。
糠醛渣、地沟油在改性沥青中的质量百分比分别为4%、8%、12%。
1材料与方法
1.1试验材料
试验用糠醛渣为哈尔滨兴城化工有限公司生产,其中纤维素含量47.63%、半纤维素含量1.44%、木质素含量41.26%、灰分含量4.4%(均为干基)。干渣在20℃、90%RH下放置3d吸水率为13%。为了使糠醛渣能与地沟油和沥青充分混合均匀,将糠醛渣烘干后放入粉碎机中打碎并过80目网筛后备用。
原料地沟油为煎炸废油,取自哈尔滨当地餐饮店,棕黄色,pH值6.8,密度0.943g·mL -1
实验用90#基质沥青技术指标及标准要求如表1所示。
表1所用90#基质沥青技术指标
Figure PCTCN2021140272-appb-000001
1.2糠醛渣与地沟油混合
为了避免糠醛渣吸收沥青中轻组分和油分造成沥青低温延展性急剧下降 [14],将糠醛渣与地沟油以质量比1∶3的比例混合,并以5000r/min剪切15min,促使糠醛渣充分吸收油分,以200目滤网滤出油分,收集滤渣备用。此时地沟油与糠醛渣混合质量比为1:1.125。
1.3改性沥青的制备
将糠醛渣、地沟油、糠醛渣/地沟油复合改性剂和基质沥青放在140℃烘箱中2h,取沥青不同质量百分比(4%、8%、12%)的糠醛渣、地沟油和糠醛渣/地沟油复合改性剂缓慢倒入沥青中,在140℃下以5000r/min的转速剪切30min后,取出转子,将改性沥青胶浆在此温度下放置1h后取出冷却备用。
1.4分析方法
1.4.1三大指标测定
依据《公路工程沥青及沥青混合料试验规程》(JTG E20-2011)中三大指标测定方法,对不同沥青试样25℃时针入度,沥青软化点,以及其10℃时延度进行测试分析。
1.4.2热储存稳定性研究
为了验证地沟油/糠醛渣复合改性沥青胶浆是否具有良好的热储存稳定性,采用《公路工程沥青及沥青混合料试验规程》(JTG E20-2011)中聚合物改性沥青离析试验标准对沥青热储性能进行测定。
1.4.3高温流变学性能测试
按照《公路工程沥青及沥青混合料试验规程》(JTG E20-2011)中沥青流变性质实验方法,利用动态剪切流变仪(DSR),以2℃/min的升温速率对沥青试样在40℃~90℃的相位角(δ)和复数剪切模量(G*)进行测定。
1.4.4低温弯曲蠕变劲度性能测试
根据《公路工程沥青混合料试验规程》(JTG E20-2011)中沥青弯曲蠕变劲度试验方案,应用弯曲梁流变仪(BBR)对沥青在-18℃、-24℃和-30℃下的低温性能进行测定,通过劲度模量(S)和蠕变速率(m)对沥青低温性能进行分析。
1.4.5红外光谱测试
采用赛默飞IN10红外光谱仪对糠醛渣、地沟油、糠醛渣地沟油混合物、基质沥青、糠醛渣/地沟油改性沥青试样进行扫描测试,含沥青试样扫描波长范围为600-4000cm -1,其余样品扫描波长范围为400-4000cm -1
1.4.6扫描电镜分析
采用蔡司G300扫描电子显微镜对糠醛渣、糠醛渣地沟油混合物、糠醛渣/地沟油改性沥青试样微观形貌进行观察分析。
2结果与讨论
2.1三大指标试验数据分析
沥青针入度、软化点、延度是表征其基本性能的重要指标。针入度与沥青粘度密切相关,它可以反映沥青在25℃条件下的稠度和软硬程度。软化点表示沥青在温度作用下其流动性达到特定状态的临界点,它可以反映沥青在高温条件下的稳定性。延度表现了沥青在低温条件下的拉伸变形能力。本试验通过针入度、软化点延度对地沟油、糠醛渣以及地沟油/糠醛渣复合改性剂在不同掺量下的沥青基本性能进行探究。
针入度试验结果如图1所示,由图1可以看出:沥青胶浆针入度随地沟油/糠醛渣复合改性剂掺量的增加而增大,当改性剂掺量为8%时,沥青针入度仍能达到99dmm,满足《公路沥青路面施工技术规范》中90号道路石油沥青针入度在80-100dmm范围内的技术要求;地沟油的掺加也会增大沥青胶浆的针入度,且其增加速率远大于地沟油/糠醛渣 复合改性沥青,4%地沟油掺量下的沥青针入度已不符合标准要求,当掺量达12%时其针入度超过量程;糠醛渣可以降低沥青胶浆的针入度,但掺加糠醛渣后针入度无法满足90#基质沥青的标准要求。结果表明地沟油和糠醛渣/地沟油复合改性剂的加入会降低沥青的稠度,抗变形能力有所降低;糠醛渣的掺入能提高沥青的稠度,分析原因是糠醛渣能吸收沥青中部分油分并与沥青中的沥青质交联成紧密的结构,从而增加其硬度。
图2为三种改性剂的掺配比例对沥青软化点的影响,由图可知:随着地沟油/糠醛渣掺配比例增大,沥青软化点随之降低,当改性剂掺加量在12%时,沥青软化点降至42.1℃,仍能满足《公路沥青路面施工技术规范》中90号道路石油沥青的技术要求;地沟油的掺入会使沥青软化点急剧下降,掺量为4%时已无法满足标准要求;糠醛渣的加入能提高沥青软化点。结果表明地沟油和糠醛渣/地沟油复合改性剂会对沥青高温稳定性造成不利影响,糠醛渣能提高沥青的高温稳定性。
图3为不同改性剂质量分数对沥青胶浆10℃下延度的影响,由图可见:随着糠醛渣/地沟油复合改性剂掺量增加,沥青胶浆延度呈先升高后降低的趋势,在改性剂掺量为4%时,沥青延度从103cm上升至112cm,提升了8.7%,但再添加改性剂时其延度呈下降趋势,改性剂掺量为12%时,沥青延度仍能达到《公路沥青路面施工技术规范》中90号A级沥青的标准要求;适量地沟油的掺加也能提高沥青胶浆的延度,当地沟油掺量为8%时其延度为125cm,相较于基质沥青增大了21.4%;而糠醛渣的加入会大幅降低沥青胶浆的延度。结果表明,适量地沟油、糠醛渣/地沟油改性剂的掺加能提升沥青胶浆低温延展性,分析其原因主要是两种改性剂在常温和低温条件下流动性远好于基质沥青,因此改性剂的加入可以改善沥青在低温条件下的流动性,但是同时也会降低基质沥青的粘度,过量改性剂掺加会对其拉伸性能造成不利影响;糠醛渣会降低沥青低温性能,这是因为糠醛渣会吸持沥青中的部分油分、树脂等轻质组分,降低其塑性和流动性,从而降低沥青低温延展性。
由三大指标试验数据分析可知,添加糠醛渣/地沟油复合改性剂的沥青综合性能优于糠醛渣和地沟油单独添加,且糠醛渣与地沟油单独添加时沥青三大指标无法满足标准要求,因此,后续试验仅对糠醛渣/地沟油改性沥青性能进行分析测试。
2.2热储存稳定性试验结果分析
糠醛渣和地沟油这两种物质化学成分及分子结构与沥青都存在很多相似的地方,因此它们三者可以很好的进行融合,但其混合仍主要为物理共混,并且沥青在使用前需要长时间储存在高温环境下,为了验证改性剂在长时间热储存条件下是否会与沥青发生离析现象而导致沥青性能受到影响,本试验采用软化点差值法对改性沥青热储存稳定性进行分析, 试验结果如图4所示。由图可知:糠醛渣/地沟油改性沥青上下段软化点差值随热储时间延长而不断增大,但其变化速率随时间延长而减小,这表明糠醛渣/地沟油改性沥青发生小部分离析后内部的分子结构趋于稳定;在相同的热储时间下,糠醛渣/地沟油复合改性剂掺量越大,沥青软化点差值越高,当改性剂添加量达8%时,其72小时热储存稳定性仍能满足标准要求。结果表明糠醛渣/地沟油复合改性剂与基质沥青有较好的相容性。
2.3低温弯曲蠕变劲度性能分析
本实验采用弯曲梁流变仪(BBR)对改性沥青在低温抗裂性进行测试,并以蠕变劲度S和蠕变速率m对其低温性能进行评价,S值越小m值越大表明其低温抗裂性能越好。改性沥青BBR试验结果如图5、图6所示,由图5可以看出:在相同改性剂掺量下,沥青S值随温度下降而增大,表明温度越低沥青内部越容易产生温度应力,从而导致材料易于开裂;在相同温度下,沥青S值随改性剂掺量升高而减小,表明在极寒条件下糠醛渣/地沟油复合改性剂的加入能降低沥青内部温度应力,降低材料开裂的可能性。由图6可知:当糠醛渣/地沟油复合改性剂掺量相同时,改性沥青蠕变速率随温度下降而降低,说明温度越低,改性沥青松弛性能力越低;当温度相同时,改性沥青m值随改性剂掺加量增大而增大,说明糠醛渣/地沟油复合改性剂的掺加能增强沥青低温条件下的应力消散能力。按照美国Superpave的沥青规范要求,在设计温度下沥青材料60s的S值不大于300MPa,并且m值不低于0.3,由图5、图6结果可知,四种改性剂掺量下的沥青在-18℃下的S值和m值均能满足规范要求;当温度降至-24℃时,除基质沥青和4%掺加量下的改性沥青S值略低于标准要求,其余沥青S值和m值均能达到规范要求;当温度继续降低到-30℃时,除掺加12%改性剂的沥青m值复合标准要求外,其余S值和m值均不满足要求。结果表明,糠醛渣/地沟油复合改性剂能改善沥青的低温抗裂性能,并且在一定范围内改性剂掺量越高沥青低温性能越好。
图7-图9为糠醛渣、糠醛渣/地沟油混合物、糠醛渣/地沟油混合物改性沥青的微观形貌图。由图7可以看出,糠醛渣形状不规则且大小不均一,颗粒表面粗糙,可见很多明显的凹槽,与地沟油混合制备生物质沥青后(图8),地沟油很好地浸润糠醛渣并与其形成良好的界面,进而在与沥青混合后(图9),糠醛渣均匀地分散于地沟油和沥青体系中,表明三者具有良好地相容性。
3结论
1、糠醛渣/地沟油复合改性剂的掺入会增大沥青胶浆针入度,降低其软化点,其延度值随掺量增加出现先增大后减小的趋势。掺入糠醛渣/地沟油复合改性剂相较于地沟油和 糠醛渣单独掺加的沥青三大指标波动幅度更低,并且在掺入8%糠醛渣/地沟油复合改性剂后其三大指标均能满足90#基质沥青标准要求。
2、糠醛渣/地沟油改性沥青具有良好的热储存稳定性,当糠醛渣/地沟油复合改性剂掺量为8%时,其72小时热储存稳定性仍能满足标准要求。
3、加入糠醛渣/地沟油复合改性剂后沥青低温抗裂性优于基质沥青。随糠醛渣/地沟油复合改性剂掺量增加,沥青蠕变速率随之增大,蠕变劲度随之下降,低温应力松弛性能增强,沥青低温抗裂性提高。
4、糠醛渣能均匀地分散于地沟油与沥青体系中,相容性较好。

Claims (10)

  1. 糠醛渣/地沟油改性沥青,其特征在于所述糠醛渣/地沟油改性沥青由糠醛渣/地沟油复合改性剂和沥青组成,糠醛渣/地沟油复合改性剂中地沟油与糠醛渣的质量比为(2~1)∶(1~2),糠醛渣/地沟油复合改性剂在糠醛渣/地沟油改性沥青中的质量百分比为4%~20%。
  2. 根据权利要求1所述糠醛渣/地沟油改性沥青,其特征在于所述沥青型号为90#沥青。
  3. 根据权利要求1所述糠醛渣/地沟油改性沥青,其特征在于所述糠醛渣/地沟油复合改性剂在糠醛渣/地沟油改性沥青中的质量百分比为8%。
  4. 根据权利要求1所述糠醛渣/地沟油改性沥青,其特征在于所述糠醛渣/地沟油复合改性剂中地沟油与糠醛渣的质量比为1:1。
  5. 权利要求1所述糠醛渣/地沟油改性沥青制备方法,其特征在于所述糠醛渣/地沟油改性沥青制备方法按照以下步骤进行:
    一、将糠醛渣烘干后放入粉碎机中打碎并过80目网筛;
    二、将糠醛渣与地沟油以质量比1∶3的比例混合,以5000r/min的转速剪切15min,以200目滤网滤出油分,得到糠醛渣/地沟油复合改性剂,糠醛渣/地沟油复合改性剂中地沟油与糠醛渣的质量比为(2~1)∶(1~2);
    三、将糠醛渣/地沟油复合改性剂和沥青放在140℃烘箱中2h,然后将糠醛渣/地沟油复合改性剂倒入沥青中,在140℃以5000r/min的转速剪切30min,然后在140℃放置1h后取出冷却,即得糠醛渣/地沟油改性沥青。
  6. 根据权利要求5所述糠醛渣/地沟油改性沥青制备方法,其特征在于步骤一所述地沟油为棕黄色、pH值6.8、密度0.943g·mL -1
  7. 根据权利要求5所述糠醛渣/地沟油改性沥青制备方法,其特征在于步骤二中所述糠醛渣中纤维素含量47.63%、半纤维素含量1.44%、木质素含量41.26%、灰分含量4.4%。
  8. 根据权利要求5所述糠醛渣/地沟油改性沥青制备方法,其特征在于步骤二中糠醛渣/地沟油复合改性剂中地沟油与糠醛渣的质量比为1:1.125。
  9. 根据权利要求5所述糠醛渣/地沟油改性沥青制备方法,其特征在于步骤三中所述沥青型号为90#沥青。
  10. 根据权利要求5所述糠醛渣/地沟油改性沥青制备方法,其特征在于步骤三中所述糠醛渣/地沟油复合改性剂在糠醛渣/地沟油改性沥青中的质量百分比为4%~20%。
PCT/CN2021/140272 2021-11-29 2021-12-22 糠醛渣/地沟油改性沥青及其制备方法 WO2023092776A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111430998.5A CN113897070B (zh) 2021-11-29 2021-11-29 糠醛渣/地沟油改性沥青及其制备方法
CN202111430998.5 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023092776A1 true WO2023092776A1 (zh) 2023-06-01

Family

ID=79195222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140272 WO2023092776A1 (zh) 2021-11-29 2021-12-22 糠醛渣/地沟油改性沥青及其制备方法

Country Status (3)

Country Link
CN (1) CN113897070B (zh)
WO (1) WO2023092776A1 (zh)
ZA (1) ZA202301925B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724276A (zh) * 2008-10-29 2010-06-09 中国石油化工股份有限公司 一种热储存稳定的木质素改性沥青组合物及其制备方法
CN105461258A (zh) * 2015-11-24 2016-04-06 东南大学 一种冷再生沥青混合料
CN108350226A (zh) * 2015-11-24 2018-07-31 因比肯公司 包含木质素的沥青组合物
CN110511574A (zh) * 2018-05-21 2019-11-29 广东怡和科洁科技有限公司 一种木质素沥青改性剂
US20200277496A1 (en) * 2017-11-13 2020-09-03 Stichting Wageningen Research Lignin-based bio-asphalt
CN112724692A (zh) * 2020-12-17 2021-04-30 华运通达(广东)道路科技有限公司 一种利用木质素的改性沥青及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180340068A1 (en) * 2017-05-24 2018-11-29 Alexander T. McCurdy Vegetable oil and asphalt compositions and methods of using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724276A (zh) * 2008-10-29 2010-06-09 中国石油化工股份有限公司 一种热储存稳定的木质素改性沥青组合物及其制备方法
CN105461258A (zh) * 2015-11-24 2016-04-06 东南大学 一种冷再生沥青混合料
CN108350226A (zh) * 2015-11-24 2018-07-31 因比肯公司 包含木质素的沥青组合物
US20200277496A1 (en) * 2017-11-13 2020-09-03 Stichting Wageningen Research Lignin-based bio-asphalt
CN110511574A (zh) * 2018-05-21 2019-11-29 广东怡和科洁科技有限公司 一种木质素沥青改性剂
CN112724692A (zh) * 2020-12-17 2021-04-30 华运通达(广东)道路科技有限公司 一种利用木质素的改性沥青及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZENG FEI, LI SHIQI: "Study on the Performance of Waste Edible Oil Modified Asphalt", PETROLEUM ASPHALT, vol. 34, no. 1, 25 February 2020 (2020-02-25), pages 21 - 26, XP093068603 *

Also Published As

Publication number Publication date
CN113897070B (zh) 2023-02-17
ZA202301925B (en) 2023-04-26
CN113897070A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
Fang et al. Comprehensive review on the application of bio-rejuvenator in the regeneration of waste asphalt materials
Yan et al. Characteristics of compound asphalt modified by waste tire rubber (WTR) and ethylene vinyl acetate (EVA): Conventional, rheological, and microstructural properties
US9481793B2 (en) Development of a renewable carbon-based bio-modifier for asphalt cement
Gao et al. High temperature performance of asphalt modified with Sasobit and Deurex
CN112500711B (zh) 一种高粘弹改性沥青及其制备方法
Yu et al. Rheological and microstructural properties of foamed epoxy asphalt
Elkashef et al. Thermal stability and evolved gas analysis of rejuvenated reclaimed asphalt pavement (RAP) bitumen using thermogravimetric analysis–Fourier transform infrared (TG–FTIR)
Liu et al. Investigation of physiochemical and rheological properties of waste cooking oil/SBS/EVA composite modified petroleum asphalt
Abo-Shanab et al. Improved dynamic mechanical properties of sustainable bio-modified asphalt using agriculture waste
CN104591575A (zh) 一种煤直接液化残渣改性沥青胶浆的制备方法
CN109142148A (zh) 一种基于cam模型分析thfs改性沥青感温性能的方法
Li et al. Study on pavement performance of cotton straw cellulose modified asphalt
CN106336673B (zh) 一种生物油复配纳米硅藻土改性沥青及其制备方法
Wang et al. Effect of Biowaste on the High‐and Low‐Temperature Rheological Properties of Asphalt Binders
Wang et al. Stability improvement technology of SBS/crumb rubber composite modified asphalt from Xinjiang China
Meng et al. Study on aging resistance and micro characteristics of bio-asphalt/TLA composite modified asphalt binder
WO2023092776A1 (zh) 糠醛渣/地沟油改性沥青及其制备方法
Tang et al. Molecular dynamics simulation and experimental analysis on fluidity improvement of liquid rubber modified asphalt binder
Zhao et al. Full-component cascade utilization of waste cooking oil in asphalt materials
Zhang et al. Mechanism analysis of Lignin's effect on Asphalt's resistance to moisture damage
Warid et al. Effect of styrene-butadiene on rheological properties of asphalt emulsion
Forton et al. Critical temperatures blending chart for binder blends produced with rap binder and rejuvenator
Fu et al. Research on short-term aging of lignin modified asphalt
Zhang et al. Roles of recycled oils, polyphosphoric acid and sulfur on chemo-rheological and morphological properties of high-viscosity modified asphalt
CN112574581B (zh) 一种寒区用高模量沥青结合料、混合料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965495

Country of ref document: EP

Kind code of ref document: A1