WO2023090187A1 - モータ駆動装置 - Google Patents

モータ駆動装置 Download PDF

Info

Publication number
WO2023090187A1
WO2023090187A1 PCT/JP2022/041378 JP2022041378W WO2023090187A1 WO 2023090187 A1 WO2023090187 A1 WO 2023090187A1 JP 2022041378 W JP2022041378 W JP 2022041378W WO 2023090187 A1 WO2023090187 A1 WO 2023090187A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
terminal
circuit
switching element
side switching
Prior art date
Application number
PCT/JP2022/041378
Other languages
English (en)
French (fr)
Inventor
大祐 福田
卓也 石井
亨 川西
昌大 高橋
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Priority to CN202280076020.XA priority Critical patent/CN118266172A/zh
Publication of WO2023090187A1 publication Critical patent/WO2023090187A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/298Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature and field supplies
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors

Definitions

  • the present disclosure relates to a motor drive device having an overvoltage protection function.
  • Patent Document 1 a motor drive device having an overvoltage protection function has been proposed (see Patent Document 1, for example).
  • a motor drive device is provided with two protection circuits in a main circuit that controls forward and reverse rotation of a motor by means of an H-type bridge circuit consisting of four switching elements.
  • the relay RY that connects the battery and the main circuit is opened, for example, the motor is rotated forward by an external force, the induced voltage generated in the motor raises the potential at the connection point of the high-side and low-side switching elements. , eventually charges the capacitor connected to the main circuit side of the relay via the body diode of the switching element.
  • the Zener diode of the protection circuit breaks down and current flows through the resistor connected in series with the Zener diode.
  • an object of the present disclosure is to provide a motor drive device capable of suppressing an increase in voltage applied to switching elements due to regenerative power.
  • a motor drive device includes a plurality of sets of series circuits each including a high-side switching element and a low-side switching element connected between a power supply line and ground, and an intermediate connection between the series circuits.
  • the high-side switching element has a first terminal, a second terminal and a control terminal, the first terminal is connected to the power supply line, and the second terminal is The high-side switching element is connected to the low-side switching element, and the high-side switching element switches between the first terminal and the second terminal when a voltage equal to or higher than a predetermined threshold is applied between the first terminal and the control terminal.
  • the motor drive device further includes a control circuit that outputs a drive signal for driving at least the high-side switching element, and the control terminal of the high-side switching element and the ground. is connected between the control terminal of the high side switching element and the ground, becomes conductive when the voltage between the control terminal of the high side switching element and the ground becomes equal to or greater than a first predetermined value, and is connected between the control terminal of the high side switching element and the ground.
  • a voltage detection circuit for outputting a detection signal to be in a first state when the voltage of the high side switching element is equal to or higher than a second predetermined value; and a logic circuit that opens the drive switch regardless of the drive signal when the detection signal from the voltage detection circuit is in the first state.
  • the motor drive device it is possible to suppress an increase in the voltage applied to the switching element by suppressing an increase in the power supply voltage due to the regenerated electric power of the motor or the like.
  • FIG. 1 is a circuit block diagram showing a motor drive device of a first embodiment;
  • FIG. It is a figure which shows the on-off operation
  • It is a circuit block diagram which shows the motor drive device of a 2nd Example.
  • It is a circuit block diagram which shows the motor drive device of 3rd Example.
  • It is a circuit block diagram which shows the motor drive device of a 4th Example.
  • the motor drive device when the voltage of the power supply line rises by a first threshold value or more, the high-side or low-side switching element in the off state is easily turned on. It is characterized by comprising a voltage detection circuit, a logic circuit, and a drive switch for turning on the switching element when the voltage rises above the second threshold.
  • FIG. 1 is a circuit block diagram of a motor drive device 10 of a first embodiment according to the present disclosure.
  • a motor driving device 10 is a device for driving a motor 4.
  • the motor driving device 10 is connected to an input power supply 1 such as a battery, and includes a diode 2 and a capacitor 3 for preventing reverse battery connection. Let the voltage of the capacitor 3 be Vc.
  • the input power source 1 may be an AC power source and the diode 2 may be a bridge diode.
  • the motor driving device 10 also includes a control circuit 5 and receives power supply from a control circuit power source 6 .
  • the voltage of the control circuit power supply 6 is assumed to be Vcc.
  • the motor driving device 10 also receives power supply from the high-side driving power supply 7 .
  • the high-side driving power supply 7 is a negative power supply with the positive electrode of the capacitor 3 as a reference potential.
  • the voltage of the high-side drive power supply 7 is assumed to be Vcc'.
  • the motor drive device 10 has a plurality of sets of series circuits of high-side switching elements and low-side switching elements connected between the power supply line and the ground, and an inductive load (motor 4) is connected to an intermediate connection point of each series circuit.
  • the bridge circuit includes a first high-side transistor 11 made of a P-channel MOSFET, a first low-side transistor 12 made of an N-channel MOSFET, a second high-side transistor 13 made of a P-channel MOSFET, and an N-channel MOSFET. It is composed of a second low-side transistor 14 made of.
  • the first high-side transistor 11, the first low-side transistor 12, the second high-side transistor 13, and the second low-side transistor 14 are hereinafter simply referred to as "transistors.”
  • Transistors 11-14 have body diodes D1-D4, respectively, and constitute an H-bridge drive circuit for driving motor 4 using voltage Vc of capacitor 3 as a power supply voltage.
  • the positive electrode of the capacitor 3 of the power supply voltage Vc is referred to as a power supply line
  • the negative electrode of the capacitor 3 serving as the reference potential of the H-bridge drive circuit is referred to as a ground.
  • a connection point between the first high-side transistor 11 and the first low-side transistor 12 is P1
  • a connection point between the second high-side transistor 13 and the second low-side transistor 14 is P2.
  • the control circuit 5 operates with the control circuit power supply voltage Vcc, and outputs drive signals t1', t2, t3' and t4 to the respective transistors 11-14.
  • the drive signal t1' is a pre-drive signal to the first high-side transistor 11 (hereinafter also referred to as "pre-drive signal t1'")
  • the drive signal t2 is a drive signal to the first low-side transistor 12
  • the drive signal t3' is a pre-driving signal to the second high-side transistor 13 (hereinafter also referred to as "pre-driving signal t3'")
  • the driving signal t4 is a driving signal to the second low-side transistor .
  • the pre-drive signal t1' and the pre-drive signal t3' are signals having the high-side drive power supply voltage Vcc' as a reference potential, and are level-shifted in the control circuit 5 and output.
  • the motor drive device 10 includes a first high side drive circuit 100 and a second high side drive circuit 100a.
  • the first high-side driving circuit 100 receives the pre-driving signal t1' and turns the first high-side transistor 11 on and off.
  • the second high-side drive circuit 100a receives the pre-drive signal t3' and turns the second high-side transistor 13 on and off.
  • the first high-side drive circuit 100 is composed of a resistor 101 connected between the gate and source of the first high-side transistor 11, and a P-channel MOSFET, which short-circuits between the source and gate terminals of the first high-side transistor 11.
  • a first drive transistor 102 connected to connect the gate terminal of the first high-side transistor 11 made of an N-channel MOSFET and a second drive transistor 102 connected to short-circuit between the high-side drive power supply 7 and the high-side drive power supply 7;
  • a drive transistor 103 is included.
  • the first drive transistor 102 is an example of a drive switch that is connected between the first terminal and the control terminal of the high-side switching element and opens and closes according to a drive signal.
  • the first high-side drive circuit 100 includes a series circuit of a Zener diode 104 with a Zener voltage Vz1 and a detection resistor 105, which are connected between the gate terminal of the first high-side transistor 11 and the ground, and A comparator 106 is included. A connection point between Zener diode 104 and detection resistor 105 is connected to a positive input terminal of comparator 106 .
  • voltage Vr is a reference voltage generated from control circuit power supply 6 and applied to the negative input terminal of comparator 106 .
  • Zener diode 104, detection resistor 105, and comparator 106 become conductive when the voltage between the control terminal of the high-side switching element and the ground reaches or exceeds a first predetermined value, and the voltage between the control terminal of the high-side switching element and ground becomes conductive. It constitutes a voltage detection circuit 120 that outputs a detection signal indicating a first state when the voltage between the two becomes equal to or higher than a second predetermined value.
  • the first high-side drive circuit 100 includes a level shift circuit 107 .
  • the output of the comparator 106 that operates with the control circuit power supply voltage Vcc is converted via the level shift circuit 107 to the high side drive power supply voltage Vcc' reference.
  • the pre-drive signal t1' is connected to the gate terminal of the second drive transistor 103.
  • the first high-side drive circuit 100 also includes an OR circuit 108 to which the pre-drive signal t1' and the output signal of the level shift circuit 107 are input.
  • the output of OR circuit 108 is connected to the gate terminal of first drive transistor 102 .
  • the OR circuit 108 is an example of a logic circuit that opens the drive switch regardless of the drive signal when the detection signal from the voltage detection circuit 120 is in the first state.
  • the configuration of the second high-side drive circuit 100a is the same as that of the first high-side drive circuit 100, so detailed illustration and description will be omitted.
  • FIG. 2(a) shows that the first high-side transistor 11 and the second low-side transistor 14 are in an ON state, and the first high-side transistor 11, the motor 4, the second In this state, a current flows through the path to the ground (negative electrode of the capacitor 3) via the low-side transistor 14 of .
  • a motor 4 which is an inductive load with coils, is energized and energy is stored.
  • Capacitor 3 is discharged but is powered by input source 1 through diode 2 .
  • FIG. 2(c) when the power supply voltage Vc exceeds a predetermined value, the first high-side transistor 11 is forcibly turned on and a loop is formed to discharge the capacitor 3. Suppress the rise of the voltage Vc.
  • FIG. 2D shows that the first low-side transistor 12 and the second high-side transistor 13 are in the ON state, the discharge current flowing through the first high-side transistor 11 exceeds the regenerative current, and the capacitor 3 is discharged and the power supply voltage Vc turns to drop.
  • the pre-drive signal t1' is at L level, the first drive transistor 102 is on, and the second drive transistor 103 is off. Therefore, the first high-side transistor 11 is in an off state, and the power supply voltage Vc is applied to the first high-side transistor 11 .
  • the power supply voltage Vc rises and exceeds the Zener voltage Vz1 of the Zener diode 104 (that is, when the voltage between the control terminal of the high-side switching element and the ground reaches or exceeds a first predetermined value)
  • the power supply line , first drive transistor 102 , Zener diode 104 and sense resistor 105 current flows to ground and a voltage is generated across sense resistor 105 .
  • the comparator 106 Inverts the output from L level to H level (first state).
  • the H level output of the comparator 106 is input to the OR circuit 108 via the level shift circuit 107, the output of the OR circuit 108 is inverted from the L level to the H level, and the first driving transistor 102 is turned off. .
  • the current flowing through the first drive transistor 102 flows from the power supply line through the resistor 101, the Zener diode 104, and the detection resistor 105 to the ground.
  • the discharge of the capacitor 3 causes the power supply voltage Vc to change from an increase to a decrease. Then, the source-gate voltage of the first high-side transistor 11 also drops, and when it falls below the gate threshold voltage, the first high-side transistor 11 is turned off. This prevents the discharge current of the capacitor 3 flowing through the first high-side transistor 11 from becoming excessive.
  • the comparator 106 When the first drive transistor 102 turns off, the voltage difference between the power supply voltage Vc and the Zener voltage Vz1 is divided by the resistor 101 and the detection resistor 105, so the voltage of the detection resistor 105 drops. It is desirable that the comparator 106 have a hysteresis characteristic so that the output of the comparator 106 does not return to L level due to this drop.
  • the operating current shown in FIG. 2 is also reversed. and the first low-side transistor 12 .
  • the second high-side drive circuit 100a operates to turn on the second high-side transistor 13, thereby suppressing an increase in the power supply voltage Vc.
  • an increase in the voltage applied to the switching elements forming the bridge circuit due to the regenerated power is suppressed.
  • the motor drive device 10 includes a high-side switching element (first high-side transistor 11, etc.) and a low-side switching element (second 1 low-side transistor 12, etc.), and a bridge circuit in which the motor 4 is connected to the intermediate connection point of each series circuit. It has two terminals (drain terminal) and a control terminal (gate terminal), the first terminal is connected to the power supply line, the second terminal is connected to the low side switching element, and the high side switching element is connected to the first terminal and the control terminal. When a voltage equal to or higher than a predetermined threshold is applied between the first terminal and the second terminal, the motor driving device 10 further drives at least the high-side switching element.
  • a control circuit 5 for outputting a drive signal for switching is connected between the control terminal of the high-side switching element and the ground, and the voltage between the control terminal of the high-side switching element and the ground is equal to or greater than a first predetermined value.
  • a drive switch (first drive transistor 102) which is connected between the 1 terminal and the control terminal and which opens and closes according to the drive signal, and the detection signal from the voltage detection circuit 120 becomes the first state regardless of the drive signal.
  • a logic circuit OR circuit 108) that opens the drive switch.
  • the high-side switching element is forcibly turned on, suppressing the voltage rise of the power supply line and suppressing the rise of the voltage applied to the switching elements that make up the bridge circuit. be done.
  • the voltage detection circuit 120 includes a series circuit of a first constant voltage device (Zener diode 104) having a first predetermined value and the detection resistor 105, and a connection point between the first constant voltage device and the detection resistor 105. and a comparator 106 that compares the potential of V with a predetermined reference voltage Vr and outputs a detection signal.
  • a simple circuit suppresses an increase in the voltage applied to the switching element due to the regenerated power.
  • FIG. 3 is a circuit block diagram showing the motor driving device 10a of the second embodiment.
  • the same reference numerals are assigned to the same constituent elements as in FIG. 1, and the description thereof will be omitted.
  • the difference is that the Zener diode 110 constituting the voltage detection circuit 121 is connected in parallel with the detection resistor 105, and the Zener voltage Vz0 of the Zener diode 110 is set higher than the reference voltage Vr.
  • the first high-side drive circuit 130 of this embodiment includes the voltage detection circuit 121 to which the Zener diode 110 connected in parallel with the detection resistor 105 is added.
  • the second high-side drive circuit 130a also includes a voltage detection circuit to which a Zener diode connected in parallel with the detection resistor is added. The operation of the motor driving device 10a of this embodiment to turn on the first high-side transistor 11 when the power supply voltage Vc exceeds a predetermined value will be described below.
  • comparator 106 If this voltage is lower than reference voltage Vr, comparator 106 The output is at L level, and the output of level shift circuit 107 input to OR circuit 108 is also at L level. Accordingly, a signal voltage according to the pre-driving signal t1' is applied to the gate terminal of the first driving transistor 102, similarly to the second driving transistor 103.
  • FIG. 1 A signal voltage according to the pre-driving signal t1' is applied to the gate terminal of the first driving transistor 102, similarly to the second driving transistor 103.
  • the comparator 106 Inverts the output from L level to H level (first state).
  • the H level output of the comparator 106 is input to the OR circuit 108 via the level shift circuit 107, the output of the OR circuit 108 is inverted from the L level to the H level, and the first driving transistor 102 is turned off. .
  • the current flowing through the first drive transistor 102 flows from the power supply line through the resistor 101, the Zener diode 104, and the detection resistor 105 to the ground. - A voltage is generated across the gate. Eventually, the Zener diode 110 also becomes conductive, and when the source-gate voltage of the first high-side transistor 11 reaches the gate threshold value of the first high-side transistor 11, the first high-side transistor 11 becomes conductive.
  • the voltage detection circuit 121 is connected in parallel with the detection resistor 105 in addition to the voltage detection circuit 120 of the first embodiment. It has a second constant voltage device (Zener diode 110) with a voltage higher than Vr.
  • the first high-side transistor or the second high-side transistor is turned on to discharge the power supply voltage Vc, but the rise of the power supply voltage Vc can also be suppressed by turning on the low-side transistor. .
  • FIG. 4 is a circuit block diagram showing the motor driving device 10b of the third embodiment.
  • the same components as in FIG. 1 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the difference is that the control circuit 5 of FIG.
  • the point is that the drive circuit 200a is provided.
  • control circuit 5a operates with the control circuit power supply voltage Vcc and outputs drive signals t1, t2', t3 and t4' to the respective transistors 11-14.
  • the drive signal t1 is a drive signal for the first high-side transistor 11
  • the drive signal t2' is a pre-drive signal for the first low-side transistor 12 (hereinafter also referred to as "pre-drive signal t2'")
  • the drive signal t3 is
  • the drive signal to the second high-side transistor 13, drive signal t4' is a pre-drive signal to the second low-side transistor 14 (hereinafter also referred to as "pre-drive signal t4'").
  • the control circuit 5a includes a high-side drive power supply and a level shift circuit, and the drive signals t1 and t3 are directly transmitted to the gate terminals of the first high-side transistor 11 and the second high-side transistor 13. be done.
  • the first low-side drive circuit 200 receives a pre-drive signal t2' to turn on and off the first low-side transistor 12, and the second low-side drive circuit 200a receives a pre-drive signal t4' to turn on and off the second low-side transistor 12. Turn transistor 14 on and off.
  • the first low-side drive circuit 200 includes a resistor 201 connected between the gate and source of the first low-side transistor 12 and a P-channel MOSFET.
  • a first drive transistor 202 connected to short-circuit between the gate and the source terminal of the first low-side transistor 12 consisting of an N-channel MOSFET, a second drive transistor 203 connected to short-circuit between the gate and source terminals of include.
  • the second drive transistor 203 is an example of a drive switch that is connected between the control terminal and the second terminal of the low-side switching element and opens and closes according to the drive signal.
  • the first low-side drive circuit 200 includes a series circuit of a Zener diode 204 with a Zener voltage Vz2 and a detection resistor 205, which are connected between the power supply line and the gate terminal of the first low-side transistor 12, and a comparison circuit. 206.
  • a connection point between Zener diode 204 and detection resistor 205 is connected to a negative input terminal of comparator 206 .
  • the voltage Vra is a reference voltage created from the control circuit power supply voltage Vcc and applied to the positive input terminal of the comparator 206 .
  • Zener diode 204, detection resistor 205, and comparator 206 are connected between the power supply line and the control terminal of the low-side switching element, and the voltage between the power supply line and the control terminal of the low-side switching element is equal to or greater than a first predetermined value.
  • the voltage detection circuit 220 forms a voltage detection circuit 220 which is turned on when the voltage rises, and which outputs a detection signal indicating the first state when the voltage between the power supply line and the control terminal of the low-side switching element becomes equal to or higher than the second predetermined value.
  • the first low-side drive circuit 200 also includes an AND circuit 207 to which the pre-drive signal t2' and the output signal of the comparator 206 are input.
  • the output of AND circuit 207 is connected to the gate terminal of second drive transistor 203 .
  • the AND circuit 207 is an example of a logic circuit that opens the drive switch regardless of the drive signal when the detection signal from the voltage detection circuit 220 is in the first state.
  • the configuration of the second low-side driving circuit 200a is the same as that of the first low-side driving circuit 200, so detailed illustration and description will be omitted.
  • the second high-side transistor 13 and the first low-side transistor 12 are applied with the power supply voltage Vc that is charged during the energized phase switching operation, which is opposite in phase to that in FIG.
  • the operation of the motor driving device 10b of this embodiment shown in FIG. 4 in which the first low-side driving circuit 200 turns on the first low-side transistor 12 when the power supply voltage Vc exceeds a predetermined value will be described below.
  • the first drive transistor 202 is in the ON state, and the output of the AND circuit 207 is also at L level regardless of the output state of the comparator 206.
  • the transistor 203 is turned off.
  • a gate voltage at the control circuit power supply voltage Vcc level is applied to the first low-side transistor 12, and the first low-side transistor 12 is turned on.
  • the gate voltage is also applied to the negative input terminal of the comparator 206 via the detection resistor 205, and the output of the comparator 206 is at L level.
  • the first drive transistor 202 is in the off state. Further, in the normal state where the power supply voltage Vc is equal to or lower than the Zener voltage Vz2 of the Zener diode 204, the first low-side transistor 12 with no voltage supplied to the gate terminal is in the off state. A voltage equal to or higher than the voltage Vra does not occur at the negative input terminal of the comparator 206, the output of the comparator 206 becomes H level, the output of the AND circuit 207 becomes H level, and the second drive transistor 203 is turned on. As a result, the first low-side transistor 12 whose gate terminal is grounded maintains the off state.
  • the Zener diode Current flows through 204 , sense resistor 205 and second drive transistor 203 to ground, generating a voltage across sense resistor 205 .
  • the voltage of the detection resistor 205 that is, the negative input terminal of the comparator 206 generates a voltage equal to or higher than the voltage Vra as the power supply voltage Vc rises (that is, the voltage between the power supply line and the control terminal of the low-side switching element increases to the second exceeds a predetermined value)
  • the output of the comparator 206 becomes L level (first state)
  • the output of the AND circuit 207 also becomes L level
  • the second driving transistor 203 is turned off. Then, the current flowing through the second drive transistor 203 starts to flow from the power supply line to the ground via the Zener diode 204, the detection resistor 205, and the resistor 201, and the gate terminal of the first low-side transistor 12. voltage is generated.
  • the first low-side transistor 12 When this voltage reaches the gate threshold of the first low-side transistor 12, the first low-side transistor 12 becomes conductive, creating a loop that discharges the capacitor 3 via the first high-side transistor 11, thereby increasing the supply voltage Vc. suppress the increase in As a result, an increase in the voltage applied to the switching elements forming the bridge circuit due to the regenerated power is suppressed.
  • the discharge current flowing through the first low-side transistor 12 exceeds the regenerative current of the motor, and the discharge of the capacitor 3 reduces the power supply voltage Vc. It turns from an increase to a decrease. Then, the gate-source voltage of the first low-side transistor 12 also drops, and when it falls below the gate threshold voltage, the first low-side transistor 12 is turned off. This prevents the discharge current of the capacitor 3 flowing through the first low-side transistor 12 from becoming excessive.
  • the first high-side transistor 11 and the second low-side transistor 11 are applied with the power supply voltage Vc charged during the energized phase switching operation. It is the transistor 14 .
  • the second low-side drive circuit 200a operates to turn on the second low-side transistor 14, thereby suppressing an increase in the power supply voltage Vc. As a result, an increase in the voltage applied to the switching elements forming the bridge circuit due to the regenerated power is suppressed.
  • the Zener diode 210 forming the voltage detection circuit 220 may be connected in parallel with the detection resistor 205 in this embodiment as well.
  • the motor drive device 10b includes a high-side switching element (first high-side transistor 11, etc.) and a low-side switching element (second 1 low side transistor 12, etc.), a bridge circuit is provided in which the motor 4 is connected to the intermediate connection point of each series circuit, and the low side switching element has a first terminal (drain terminal) and a second terminal (source terminal) and a control terminal (gate terminal), the first terminal being connected to the high side switching element, the second terminal being connected to ground, and the low side switching element being between the control terminal and the second terminal.
  • the motor driving device 10b has a function of establishing conduction between the first terminal and the second terminal when a voltage equal to or higher than a predetermined threshold is applied, and the motor driving device 10b further outputs a driving signal for driving at least the low-side switching element. and a control circuit 5a connected between the power supply line and the control terminal of the low-side switching element.
  • a voltage detection circuit 220 that outputs a detection signal to be in the first state when the voltage between the control terminal of the low-side switching element and the control terminal of the low-side switching element reaches or exceeds a second predetermined value; and a drive switch (second drive transistor 203) that opens and closes according to the drive signal, and logic that opens the drive switch regardless of the drive signal when the detection signal from the voltage detection circuit 220 is in the first state.
  • circuit (AND circuit 207)
  • the low-side switching element is forcibly turned on, suppressing the voltage rise of the power supply line and suppressing the rise of the voltage applied to the switching elements constituting the bridge circuit.
  • the voltage detection circuit 220 includes a series circuit of a first constant voltage device (Zener diode 204) having a first predetermined value and the detection resistor 205, and a connection point between the first constant voltage device and the detection resistor 205. and a comparator 206 that compares the potential with a predetermined reference voltage Vr and outputs a detection signal.
  • a simple circuit suppresses an increase in the voltage applied to the switching element due to the regenerated power.
  • the voltage detection circuit 220 further has a second constant voltage device (Zener diode 210) connected in parallel with the detection resistor 205 and having a voltage higher than the predetermined reference voltage Vr.
  • a second constant voltage device Zener diode 210 connected in parallel with the detection resistor 205 and having a voltage higher than the predetermined reference voltage Vr.
  • the first or second high-side transistor is a P-channel MOSFET, but even if it is an N-channel MOSFET, it is possible to suppress the rise of the power supply voltage Vc.
  • FIG. 5 is a circuit block diagram showing the motor driving device 10c of the fourth embodiment.
  • the same components as in FIG. 1 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the first or second high-side transistors are N-channel MOSFETs, which are referred to as a first high-side transistor 11b and a second high-side transistor 13b for distinction from FIG.
  • the control circuit 5 of FIG. 1 is replaced with the control circuit 5b, and the configurations of the first high side driving circuit 100 and the second high side driving circuit 100a of FIG. 1 is provided with a high side drive circuit 300a.
  • the control circuit 5b operates with the control circuit power supply voltage Vcc, and outputs drive signals t1'', t2, t3'' and t4 for the respective transistors 11b, 12, 13b and 14.
  • the drive signal t1'' is a pre-drive signal (hereinafter also referred to as "pre-drive signal t1''") to the first high-side transistor 11b
  • the drive signal t2 is a drive signal to the first low-side transistor 12
  • the drive signal t3'' is a pre-driving signal to the second high-side transistor 13b (hereinafter also referred to as "pre-driving signal t3''")
  • the driving signal t4 is a driving signal to the second low-side transistor .
  • the first high-side drive circuit 300 receives the pre-drive signal t1'' to turn on/off the first high-side transistor 11b
  • the second high-side drive circuit 300a receives the pre-drive signal t3'' to turn on and off the first high-side transistor 11b.
  • 2 high-side transistor 13b is turned on and off.
  • the control circuit 5b includes a level shift circuit, and the drive signals t1'' and t3'' are signals whose reference potential is the source terminal potential of the first high-side transistor 11b and the second high-side transistor 13b. is converted to
  • the high-side drive power supply voltage Vbc is created by a bootstrap circuit, which will be described later.
  • the first high-side drive circuit 300 includes a resistor 301 connected between the gate and source of the first high-side transistor 11b and a P-channel MOSFET.
  • a first drive transistor 302 connected to short-circuit between the power supply voltage Vbc and a second drive transistor 302 made of an N-channel MOSFET and connected to short-circuit between the gate and source terminals of the first high-side transistor 11b.
  • drive transistor 303 is an example of a drive switch that is connected between the control terminal and the second terminal of the high-side switching element and opens and closes according to the drive signal.
  • the first high-side drive circuit 300 includes a series circuit of a Zener diode 304 with a Zener voltage Vz3 and a detection resistor 305, which are connected between the power supply line and the gate terminal of the first high-side transistor 11b, and , including a comparator 306 .
  • a connection point between Zener diode 304 and detection resistor 305 is connected to a negative input terminal of comparator 306 .
  • the voltage Vrb is a reference voltage created from the high-side driving power supply voltage Vbc and applied to the positive input terminal of the comparator 306 .
  • the Zener diode 304, the detection resistor 305 and the comparator 306 are connected between the power supply line and the control terminal of the high side switching element so that the voltage between the power supply line and the control terminal of the high side switching element is a first predetermined value.
  • the voltage detection circuit 320 outputs a detection signal that is in the first state. .
  • the first high-side drive circuit 300 also includes an AND circuit 307 to which the pre-drive signal t1′′ and the output signal of the comparator 306 are input. applied.
  • the output of AND circuit 307 is connected to the gate terminal of second drive transistor 303 .
  • the AND circuit 307 is an example of a logic circuit that opens the drive switch regardless of the drive signal when the detection signal from the voltage detection circuit 320 is in the first state.
  • the first high-side drive circuit 300 includes a diode 308 and a capacitor 309 .
  • the diode 308 and the capacitor 309 charge the capacitor 309 from the control circuit power supply voltage Vcc through the diode 308 when the first low-side transistor 12 is turned on, thereby causing the capacitor 309 to generate the high-side drive power supply voltage Vbc.
  • It is a strap circuit.
  • the configuration of the second high-side drive circuit 300a is the same as that of the first high-side drive circuit 300, so illustration and description thereof are omitted.
  • the first drive transistor 302 is in the ON state, and the high-side drive power supply voltage Vbc is applied to the gate terminal of the first high-side transistor 11b.
  • the negative input terminal of the comparator 306 is dropped to the source terminal of the first high-side transistor 11b via the Zener diode 304, and no voltage is generated.
  • the comparator 306 outputs an H level.
  • the AND circuit 307 receiving the L level pre-drive signal t1'' outputs an L level
  • the second driving transistor 303 is in an off state, and the first maintains the ON state.
  • the first drive transistor 302 is in the OFF state. Further, in the normal state where the power supply voltage Vc is equal to or lower than the Zener voltage Vz3 of the Zener diode 304, the voltage to the gate terminal is The first high-side transistor 11b to which no voltage is supplied is in an off state, and a voltage equal to or higher than the voltage Vrb does not occur at the negative input terminal of the comparator 306, and the output of the comparator 306 becomes H level. The output becomes H level, the second drive transistor 303 is turned on, and the first high-side transistor 11b whose gate terminal is grounded maintains the off state.
  • the Zener A current flows to ground through the diode 304 , the sensing resistor 305 , the second driving transistor 303 and the first low-side transistor 12 , and a voltage is generated across the sensing resistor 305 .
  • the voltage of the detection resistor 305 that is, the negative input terminal of the comparator 306 generates a voltage equal to or higher than the voltage Vrb as the power supply voltage Vc rises (that is, the voltage between the power supply line and the control terminal of the high-side switching element rises to the first 2)
  • the output of the comparator 306 becomes L level (first state)
  • the output of the AND circuit 307 also becomes L level
  • the second drive transistor 303 is turned off.
  • the current flowing through the second drive transistor 303 flows from the power supply line through the Zener diode 304, the detection resistor 305, the resistor 301, and the first low-side transistor 12 to the ground.
  • a voltage is generated at the gate terminal of the high-side transistor 11b.
  • the first high-side transistor 11b When this voltage reaches the gate threshold value of the first high-side transistor 11b, the first high-side transistor 11b becomes conductive, creating a loop that discharges the capacitor 3, thereby suppressing the rise of the power supply voltage Vc. As a result, an increase in the voltage applied to the switching elements forming the bridge circuit due to the regenerated power is suppressed.
  • the discharge current flowing through the first high-side transistor 11b exceeds the regenerative current of the motor, and the discharge of the capacitor 3 reduces the power supply voltage Vc. It turns from an increase to a decrease. Then, the gate-source voltage of the first high-side transistor 11b also drops, and when it falls below the gate threshold voltage, the first high-side transistor 11b is turned off. This prevents the discharge current of the capacitor 3 flowing through the first high-side transistor 11b from becoming excessive.
  • the operating current is also reversed, and the power supply voltage Vc charged during the energized phase switching operation is applied to the second high-side transistor 13b and the first low-side transistor 12. is.
  • the second high-side drive circuit 300a operates to turn on the second high-side transistor 13b, thereby suppressing an increase in the power supply voltage Vc.
  • an increase in the voltage applied to the switching elements forming the bridge circuit due to the regenerated power is suppressed.
  • the Zener diode 310 forming the voltage detection circuit 320 may be connected in parallel with the detection resistor 305 in this embodiment as well.
  • the subsequent increase in the power supply voltage Vc is added to the gate voltage of the first high-side transistor 11b, the on-resistance between the drain and source of the first high-side transistor 11b rapidly decreases, increasing the discharge current. . Therefore, the effect of suppressing the rise of the power supply voltage Vc is improved. As a result, an increase in the voltage applied to the switching elements forming the bridge circuit due to the regenerated power is more reliably suppressed.
  • the motor drive device 10c includes a high-side switching element (first high-side transistor 11b, etc.) and a low-side switching element (second 1 low-side transistor 12, etc.), and a bridge circuit in which the motor 4 is connected to the intermediate connection point of each series circuit. It has a terminal (source terminal) and a control terminal (gate terminal), the first terminal is connected to the power supply line, the second terminal is connected to the low side switching element, and the high side switching element is connected between the control terminal and the second terminal.
  • the motor driving device 10c has a function of establishing conduction between the first terminal and the second terminal when a voltage equal to or higher than a predetermined threshold is applied between the first terminal and the second terminal.
  • a control circuit 5b for outputting a signal is connected between the power supply line and the control terminal of the high-side switching element, and when the voltage between the power supply line and the control terminal of the high-side switching element reaches or exceeds a first predetermined value.
  • a voltage detection circuit 320 which is turned on and outputs a detection signal to enter the first state when the voltage between the power supply line and the control terminal of the high side switching element reaches a second predetermined value or more, and the control terminal of the high side switching element. and a second terminal and is opened and closed according to a drive signal, and a drive switch (second drive transistor 303) that opens and closes according to a drive signal, and when the detection signal from the voltage detection circuit 320 becomes the first state, the drive is driven regardless of the drive signal. and a logic circuit (AND circuit 307) that opens the switch.
  • the high-side switching element is forcibly turned on, suppressing the voltage rise of the power supply line and suppressing the rise of the voltage applied to the switching elements that make up the bridge circuit. be done.
  • the voltage detection circuit 320 includes a series circuit of a first constant voltage device (Zener diode 304) having a first predetermined value and the detection resistor 305, and a connection point between the first constant voltage device and the detection resistor 305. and a comparator 306 that compares the potential with a predetermined reference voltage Vr and outputs a detection signal.
  • a simple circuit suppresses an increase in the voltage applied to the switching element due to the regenerated power.
  • the voltage detection circuit 320 also has a second constant voltage device (Zener diode 310) connected in parallel with the detection resistor 305 and having a voltage higher than the predetermined reference voltage Vr.
  • the voltage detection circuit is not limited to the circuit shown in each embodiment, and may be a first comparator having a first predetermined value as a threshold and a second comparator having a second predetermined value as a threshold. may be configured.
  • the comparator that constitutes the voltage detection circuit does not necessarily need to be configured with an operational amplifier (IC), and may be a discrete circuit configured with transistors.
  • IC operational amplifier
  • control circuits 5, 5a, and 5b do not necessarily have to be provided in the motor driving device, and may be external devices that provide drive signals to the motor driving device. Also, the control circuits 5, 5a and 5b may be composed of an IC, a discrete circuit, or a combination thereof.
  • the motor drive device can be used as a motor drive device having an overvoltage protection function, particularly as a motor drive device capable of suppressing an increase in voltage applied to switching elements due to regenerated power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

モータ駆動装置(10)は、第1のハイサイドトランジスタ(11)のゲート端子とグランドとの間に接続された、ツェナーダイオード(104)と検出抵抗(105)との直列回路と、検出抵抗(105)の電圧を基準電圧Vrと比較する比較器(106)と、比較器(106)が出力する検出信号によって第1のハイサイドトランジスタ(11)のゲートーソース端子間を短絡する第1の駆動トランジスタ(102)と、制御回路(5)と、制御回路(5)からの駆動信号にかかわらず第1の駆動トランジスタ(102)を開状態とするOR回路(108)とを有することにより、電源電圧Vcが上昇し、第1のハイサイドトランジスタ(11)のゲート端子が所定電圧以上になると第1のハイサイドトランジスタ(11)を導通させることにより、電源電圧Vcの上昇を抑制する。

Description

モータ駆動装置
 本開示は過電圧保護機能を有するモータ駆動装置に関する。
 従来、過電圧保護機能を有するモータ駆動装置が提案されている(例えば、特許文献1参照)。
 特許文献1では、モータ駆動装置には、4つのスイッチング素子からなるH型ブリッジ回路によりモータを正逆回転制御する主回路に、2つの保護回路が設けられている。バッテリと主回路とを接続するリレーRYが開放され、例えばモータが外力で正転回転されると、モータに発生する誘起電圧はハイサイド及びローサイドの2つのスイッチング素子の接続点の電位を上昇させ、やがてスイッチング素子のボディダイオードを介して、リレーの主回路側に接続されたコンデンサを充電する。ローサイドスイッチング素子への印加電圧、即ち上記接続点の電位が所定値を越えると、保護回路のツェナーダイオードがブレークダウンし、ツェナーダイオードと直列に接続された抵抗に電流が流れる。この電流によって抵抗に生じた電圧はローサイドスイッチング素子を駆動し、ローサイドスイッチング素子が導通する。このことによって、モータからローサイドスイッチング素子を通って電流が流れ出し、上記接続点の電位上昇は抑制され、ハイサイド及びローサイドのスイッチング素子への過電圧印加を防ぐ。
特開平10-70897号公報
 上記従来技術では、リレーが開放して主回路がバッテリから遮断され、モータが外力により回転されて誘起電圧が発生する場合に、スイッチング素子への過電圧印加を抑制している。また、誘起電圧が発生していない通常の状態であれば、保護回路がローサイドスイッチング素子に出力する駆動信号はLレベルの状態である(つまり、ローサイドスイッチング素子を導通させることはない)。しかしながら、現実では、リレーの導通/開放にかかわらず、また主回路の動作中であってもモータの回生電力によるスイッチング素子への印加電圧は上昇する。ところが、上記従来技術では、そのような回生電力によるスイッチング素子への印加電圧の上昇を抑制することができない。特に主回路の動作中においては制御回路からのスイッチング素子への駆動信号があり、特許文献1のように単に保護回路を設けてスイッチング素子を駆動する方法では、回生電力によるスイッチング素子への印加電圧の上昇を抑制できないといった問題がある。
 そこで、本開示は、回生電力によるスイッチング素子への印加電圧の上昇を抑制できるモータ駆動装置を提供することを目的とする。
 以上に鑑み、本開示の一形態に係るモータ駆動装置は、電源ライン-グランド間に接続されるハイサイドスイッチング素子とローサイドスイッチング素子との直列回路を複数組有し、前記各直列回路の中間接続点にモータが接続されるブリッジ回路を備え、前記ハイサイドスイッチング素子は第1端子と第2端子と制御端子とを有し、前記第1端子は前記電源ラインに接続され、前記第2端子は前記ローサイドスイッチング素子に接続され、前記ハイサイドスイッチング素子は前記第1端子と前記制御端子との間に所定のしきい値以上の電圧が印加されると前記第1端子と前記第2端子との間が導通する機能を有し、前記モータ駆動装置は、さらに、少なくとも前記ハイサイドスイッチング素子を駆動するための駆動信号を出力する制御回路と、前記ハイサイドスイッチング素子の前記制御端子と前記グランドとの間に接続され、前記ハイサイドスイッチング素子の前記制御端子と前記グランドとの間の電圧が第1の所定値以上になると導通し、前記ハイサイドスイッチング素子の前記制御端子と前記グランドとの間の電圧が第2の所定値以上になると第1状態となる検出信号を出力する電圧検出回路と、前記ハイサイドスイッチング素子の前記第1端子と前記制御端子との間に接続され、前記駆動信号に応じて開閉する駆動スイッチと、前記電圧検出回路からの検出信号が第1状態になると前記駆動信号にかかわらず前記駆動スイッチを開状態とする論理回路とを有する。
 本開示に係るモータ駆動装置よれば、モータの回生電力等による電源電圧の上昇を抑制することで、スイッチング素子への印加電圧の上昇を抑制することが可能となる。
第1の実施例のモータ駆動装置を示す回路ブロック図である。 第1の実施例のモータ駆動装置のオンオフ動作を示す図である。 第2の実施例のモータ駆動装置を示す回路ブロック図である。 第3の実施例のモータ駆動装置を示す回路ブロック図である。 第4の実施例のモータ駆動装置を示す回路ブロック図である。
 本開示に係るモータ駆動装置は、電源ラインの電圧が第1閾値以上、上昇した場合に、オフ状態にあるハイサイド又はローサイドのスイッチング素子がオン状態になり易い状態にしておき、さらに電源ラインの電圧が上昇して第2閾値以上になった場合に、そのスイッチング素子をオン状態にするための電圧検出回路、論理回路、及び、駆動スイッチを備えることを特徴とする。これにより、従来とは異なり、主回路の動作中であっても、モータの回生電力等による電源ラインの電圧上昇が抑制され、スイッチング素子への印加電圧の上昇が抑制される。 以下、制御対象となるスイッチング素子の位置(ハイサイド/ローサイド)、及び、制御対象となるスイッチング素子のタイプ(Pチャネルトランジスタ/Nチャネルトランジスタ)の組み合わせによって定まる具体的な3種類のモータ駆動装置を、3つの実施例として、図面を参照して説明する。なお、以下で説明する実施例は、いずれも本開示の実施の形態に係るモータ駆動装置の一具体例を示す。以下の実施例で示される数値、形状、材料、回路部品、回路部品の配置位置及び接続形態等は、一例であり、本開示を限定する主旨ではない。また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化する。また、本開示において、トランジスタのスイッチング動作における導通状態を、「オン」、「ON」又は「閉状態」ともいい、非導通状態を、「オフ」、「OFF」又は「開状態」ともいう。
 (第1の実施例)
 図1は本開示に係る第1の実施例のモータ駆動装置10の回路ブロック図である。モータ駆動装置10は、モータ4を駆動する装置であり、図1において、バッテリなどの入力電源1に接続され、バッテリ逆接続防止用のダイオード2、コンデンサ3を含む。コンデンサ3の電圧をVcとする。尚、入力電源1は交流電源でダイオード2はブリッジダイオードといった構成でもよい。また、モータ駆動装置10は、制御回路5を含み、制御回路用電源6から電力供給を受ける。制御回路用電源6の電圧をVccとする。モータ駆動装置10は、ハイサイド駆動用電源7からも電力供給を受ける。ハイサイド駆動用電源7は、コンデンサ3の正極を基準電位とした負電源である。ハイサイド駆動用電源7の電圧をVcc’とする。
 また、モータ駆動装置10は、電源ライン-グランド間に接続されるハイサイドスイッチング素子とローサイドスイッチング素子との直列回路を複数組有し、各直列回路の中間接続点に誘導性負荷(モータ4)が接続されるブリッジ回路を含む。具体的には、ブリッジ回路は、PチャネルMOSFETよりなる第1のハイサイドトランジスタ11、NチャネルMOSFETよりなる第1のローサイドトランジスタ12、PチャネルMOSFETよりなる第2のハイサイドトランジスタ13、NチャネルMOSFETよりなる第2のローサイドトランジスタ14で構成される。なお、第1のハイサイドトランジスタ11、第1のローサイドトランジスタ12、第2のハイサイドトランジスタ13、第2のローサイドトランジスタ14は、以下、単に、「トランジスタ」とも呼ぶ。トランジスタ11~14は、それぞれボディダイオードD1~D4を有し、コンデンサ3の電圧Vcを電源電圧としてモータ4を駆動するHブリッジ駆動回路を構成する。以降、電源電圧Vcのコンデンサ3の正極を電源ライン、Hブリッジ駆動回路の基準電位となるコンデンサ3の負極をグランドと称する。また、第1のハイサイドトランジスタ11と第1のローサイドトランジスタ12の接続点をP1、第2のハイサイドトランジスタ13と第2のローサイドトランジスタ14の接続点をP2とする。
 制御回路5は制御回路用電源電圧Vccで動作し、各トランジスタ11~14への駆動信号t1’、t2、t3’及びt4を出力する。駆動信号t1’は第1のハイサイドトランジスタ11へのプリ駆動信号(以下、「プリ駆動信号t1’」とも呼ぶ)、駆動信号t2は第1のローサイドトランジスタ12への駆動信号、駆動信号t3’は第2のハイサイドトランジスタ13へのプリ駆動信号(以下、「プリ駆動信号t3’」とも呼ぶ)、駆動信号t4は第2のローサイドトランジスタ14への駆動信号である。プリ駆動信号t1’とプリ駆動信号t3’は、ハイサイド駆動用電源電圧Vcc’を基準電位とする信号であり、制御回路5の中でレベルシフトされて出力される。モータ駆動装置10は、第1のハイサイド駆動回路100及び第2のハイサイド駆動回路100aを含む。第1のハイサイド駆動回路100は、プリ駆動信号t1’を受電して第1のハイサイドトランジスタ11をオンオフする。第2のハイサイド駆動回路100aは、プリ駆動信号t3’を受電して第2のハイサイドトランジスタ13をオンオフする。
 第1のハイサイド駆動回路100は、第1のハイサイドトランジスタ11のゲート-ソース間に接続される抵抗101、PチャネルMOSFETよりなる、第1のハイサイドトランジスタ11のソース-ゲート端子間を短絡するように接続される第1の駆動トランジスタ102、NチャネルMOSFETよりなる、第1のハイサイドトランジスタ11のゲート端子とハイサイド駆動用電源7との間を短絡するように接続される第2の駆動トランジスタ103を含む。第1の駆動トランジスタ102は、ハイサイドスイッチング素子の第1端子と制御端子との間に接続され、駆動信号に応じて開閉する駆動スイッチの一例である。
 また、第1のハイサイド駆動回路100は、第1のハイサイドトランジスタ11のゲート端子とグランドとの間に接続された、ツェナー電圧Vz1のツェナーダイオード104と検出抵抗105との直列回路、及び、比較器106を含む。ツェナーダイオード104と検出抵抗105との接続点は、比較器106の正入力端子に接続される。図示しないが、電圧Vrは制御回路用電源6から創出される基準電圧であり、比較器106の負入力端子に印加される。ツェナーダイオード104、検出抵抗105及び比較器106は、ハイサイドスイッチング素子の制御端子とグランドとの間の電圧が第1の所定値以上になると導通し、ハイサイドスイッチング素子の制御端子とグランドとの間の電圧が第2の所定値以上になると第1状態となる検出信号を出力する電圧検出回路120を構成している。
 また、第1のハイサイド駆動回路100は、レベルシフト回路107を含む。制御回路用電源電圧Vccで動作する比較器106の出力は、レベルシフト回路107を介してハイサイド駆動用電源電圧Vcc’基準に変換される。プリ駆動信号t1’は第2の駆動トランジスタ103のゲート端子に接続される。また、第1のハイサイド駆動回路100は、プリ駆動信号t1’とレベルシフト回路107の出力信号とが入力されるOR回路108を含む。OR回路108の出力は第1の駆動トランジスタ102のゲート端子に接続される。OR回路108は、電圧検出回路120からの検出信号が第1状態になると駆動信号にかかわらず駆動スイッチを開状態とする論理回路の一例である。
 尚、第2のハイサイド駆動回路100aの構成は、第1のハイサイド駆動回路100と同様であるので、詳細な図示と説明は省略する。
 以上のように構成されたモータ駆動装置10について、モータ駆動装置10のオンオフ動作を示す図2を用いて、その動作を説明する。図2の(a)は、第1のハイサイドトランジスタ11と第2のローサイドトランジスタ14がオン状態で、電源ライン(コンデンサ3の正極)から、第1のハイサイドトランジスタ11、モータ4、第2のローサイドトランジスタ14を介して、グランド(コンデンサ3の負極)に至る経路で電流が流れている状態である。コイルを有する誘導性負荷であるモータ4は励磁され、エネルギーが蓄えられる。コンデンサ3は放電されるが、ダイオード2を介して入力電源1から電力供給される。通電相切換動作によって第1のハイサイドトランジスタ11と第2のローサイドトランジスタ14がターンオフすると、モータ4への印加電圧は反転し、図2の(b)のようにグランドから、第1のローサイドトランジスタ12(ボディダイオードD2)、モータ4、第2のハイサイドトランジスタ13(ボディダイオードD3)を介して、電源ラインに至る経路で回生電流が流れて、コンデンサ3が充電される。以上のようなスイッチング動作に伴う回生動作が繰り返されると、電源電圧Vc及び点P2の電位が上昇し、電源電圧Vcが印加される第1のハイサイドトランジスタ11と第2のローサイドトランジスタ14の耐圧を越える可能性が有る。そこで、本実施例では、図2の(c)のように、電源電圧Vcが所定値を越えると第1のハイサイドトランジスタ11を強制的に導通させ、コンデンサ3を放電するループを作って電源電圧Vcの上昇を抑制する。図2の(d)は、さらに第1のローサイドトランジスタ12と第2のハイサイドトランジスタ13がオン状態であって、第1のハイサイドトランジスタ11を流れる放電電流が回生電流を上回って、コンデンサ3を放電して電源電圧Vcが低下に転じた場合を示す。
 以下に、図1に示される本実施例のモータ駆動装置10が、電源電圧Vcが所定値を越えると第1のハイサイドトランジスタ11を導通させる動作を説明する。
 まず、電源電圧Vcがツェナーダイオード104のツェナー電圧Vz1以下の通常値の場合、検出抵抗105には電圧が発生せず、比較器106の出力はLレベルであり、OR回路108へ入力されるレベルシフト回路107の出力もLレベルである。従って、第1の駆動トランジスタ102のゲート端子には第2の駆動トランジスタ103と同様に、プリ駆動信号t1’に従った信号電圧が印加される。
 図2の(b)の状態において、プリ駆動信号t1’はLレベルであり、第1の駆動トランジスタ102はオン、第2の駆動トランジスタ103はオフ状態である。このため第1のハイサイドトランジスタ11はオフ状態であり、第1のハイサイドトランジスタ11に電源電圧Vcが印加されている。この電源電圧Vcが上昇して、ツェナーダイオード104のツェナー電圧Vz1を越えると(つまり、ハイサイドスイッチング素子の制御端子とグランドとの間の電圧が第1の所定値以上になると)、電源ラインから、第1の駆動トランジスタ102、ツェナーダイオード104、検出抵抗105を介して、グランドへと電流が流れ、検出抵抗105に電圧が発生する。電源電圧Vcの上昇に伴い、検出抵抗105の電圧が基準電圧Vrを越えると(つまり、ハイサイドスイッチング素子の制御端子とグランドとの間の電圧が第2の所定値以上になると)、比較器106は出力をLレベルからHレベル(第1状態)に反転する。Hレベルとなった比較器106の出力はレベルシフト回路107を介してOR回路108に入力され、OR回路108の出力はLレベルからHレベルに反転し第1の駆動トランジスタ102はオフ状態となる。このため第1の駆動トランジスタ102に流れていた電流は、電源ラインから、抵抗101、ツェナーダイオード104、検出抵抗105を介して、グランドへと流れるようになり、第1のハイサイドトランジスタ11のソース-ゲート間に電圧が発生する。この電圧が第1のハイサイドトランジスタ11のゲートしきい値に至ると、第1のハイサイドトランジスタ11が導通し、図2の(c)の状態となってコンデンサ3を放電するループを作って電源電圧Vcの上昇を抑制する。その結果、回生電力による、ブリッジ回路を構成するスイッチング素子へ印加電圧の上昇は、抑制される。
 以上の動作における電源電圧Vcを、抵抗101の抵抗値をR1、検出抵抗105の抵抗値をR5、第1のハイサイドトランジスタ11のゲートしきい値をVgthとして、事象と電圧Vcとの関係をまとめると、
 ツェナーダイオード104と検出抵抗105とが導通:Vc=Vz1
 比較器106が反転、第1の駆動トランジスタ102がターンオフ:Vc=Vz1+Vr
 第1のハイサイドトランジスタ11が導通:Vc=Vz1+(1+R5/R1)Vgth
となる。
 この時、制御回路5によって第1のローサイドトランジスタ12がオン状態であると、第1のハイサイドトランジスタ11を介して流れる放電電流はモータ4の回生電流を上回り、図2の(d)のように、コンデンサ3の放電によって電源電圧Vcは上昇から低下に転じる。すると第1のハイサイドトランジスタ11のソース-ゲート間電圧も低下し、ゲートしきい値電圧を下回ると第1のハイサイドトランジスタ11はオフ状態になる。このことにより、第1のハイサイドトランジスタ11を流れるコンデンサ3の放電電流が過大になることは抑制される。
 尚、第1の駆動トランジスタ102がターンオフする際に電源電圧Vcとツェナー電圧Vz1との差電圧が抵抗101と検出抵抗105とで分割されるので、検出抵抗105の電圧が低下する。この低下によって比較器106の出力がLレベルに戻らないように、比較器106はヒステリシス特性を有していることが望ましい。
 また、モータ4の動作が逆相の場合、図2に示した動作電流も逆となって、通電相切換動作時に充電される電源電圧Vcが印加されるのは、第2のハイサイドトランジスタ13と第1のローサイドトランジスタ12である。この場合は第2のハイサイド駆動回路100aが動作して、第2のハイサイドトランジスタ13を導通させることにより電源電圧Vcの上昇を抑制する。その結果、回生電力による、ブリッジ回路を構成するスイッチング素子へ印加電圧の上昇は、抑制される。
 以上のように、本実施例に係るモータ駆動装置10は、電源ライン(電源電圧Vc)-グランド間に接続されるハイサイドスイッチング素子(第1のハイサイドトランジスタ11等)とローサイドスイッチング素子(第1のローサイドトランジスタ12等)との直列回路を複数組有し、各直列回路の中間接続点にモータ4が接続されるブリッジ回路を備え、ハイサイドスイッチング素子は第1端子(ソース端子)と第2端子(ドレイン端子)と制御端子(ゲート端子)とを有し、第1端子は電源ラインに接続され、第2端子はローサイドスイッチング素子に接続され、ハイサイドスイッチング素子は第1端子と制御端子との間に所定のしきい値以上の電圧が印加されると第1端子と第2端子との間が導通する機能を有し、モータ駆動装置10は、さらに、少なくともハイサイドスイッチング素子を駆動するための駆動信号を出力する制御回路5と、ハイサイドスイッチング素子の制御端子とグランドとの間に接続され、ハイサイドスイッチング素子の制御端子とグランドとの間の電圧が第1の所定値以上になると導通し、ハイサイドスイッチング素子の制御端子とグランドとの間の電圧が第2の所定値以上になると第1状態となる検出信号を出力する電圧検出回路120と、ハイサイドスイッチング素子の第1端子と制御端子との間に接続され、駆動信号に応じて開閉する駆動スイッチ(第1の駆動トランジスタ102)と、電圧検出回路120からの検出信号が第1状態になると駆動信号にかかわらず駆動スイッチを開状態とする論理回路(OR回路108)とを有する。
 これにより、回生電力によって電源ラインの電圧が所定値を越えるとハイサイドスイッチング素子が強制的に導通され、電源ラインの電圧上昇が抑制され、ブリッジ回路を構成するスイッチング素子へ印加電圧の上昇は抑制される。
 また、電圧検出回路120は、第1の所定値を有する第1の定電圧デバイス(ツェナーダイオード104)と検出抵抗105との直列回路と、第1の定電圧デバイスと検出抵抗105との接続点の電位を所定の基準電圧Vrと比較して検出信号を出力する比較器106とを有する。これにより、簡単な回路で、回生電力によるスイッチング素子への印加電圧の上昇が抑制される。
 (第2の実施例)
 図3は第2の実施例のモータ駆動装置10aを示す回路ブロック図である。図3において、図1と同様の構成要素については同一の符号を付与し、それらの説明を省略する。異なるのは検出抵抗105と並列に、電圧検出回路121を構成するツェナーダイオード110を接続した点であり、ツェナーダイオード110のツェナー電圧Vz0は基準電圧Vrより高く設定する。つまり、本実施例の第1のハイサイド駆動回路130は、検出抵抗105と並列に接続されるツェナーダイオード110を追加した電圧検出回路121を備える。なお、第2のハイサイド駆動回路130aについても、同様に、検出抵抗と並列に接続されるツェナーダイオードを追加した電圧検出回路を備える。以下に、本実施例のモータ駆動装置10aが、電源電圧Vcが所定値を越えると第1のハイサイドトランジスタ11を導通させる動作を説明する。
 まず、電源電圧Vcがツェナーダイオード104のツェナー電圧Vz1以下の場合、検出抵抗105及びツェナーダイオード110には電圧は発生しない。電源電圧Vcがツェナーダイオード104のツェナー電圧Vz1を越えると(つまり、電源ラインとローサイドスイッチング素子の制御端子との間の電圧が第1の所定値以上になると)、電源ラインから、第1の駆動トランジスタ102、ツェナーダイオード104、検出抵抗105を介して、グランドへと電流が流れ、検出抵抗105及びツェナーダイオード110に電圧が発生するが、この電圧が基準電圧Vr以下であれば、比較器106の出力はLレベルであり、OR回路108へ入力されるレベルシフト回路107の出力もLレベルである。従って、第1の駆動トランジスタ102のゲート端子には第2の駆動トランジスタ103と同様に、プリ駆動信号t1’に従った信号電圧が印加される。
 電源電圧Vcの上昇に伴い、検出抵抗105及びツェナーダイオード110の電圧が基準電圧Vrを越えると(つまり、電源ラインとローサイドスイッチング素子の制御端子との間の電圧が第2の所定値以上になると)、比較器106は出力をLレベルからHレベル(第1状態)に反転する。Hレベルとなった比較器106の出力はレベルシフト回路107を介してOR回路108に入力され、OR回路108の出力はLレベルからHレベルに反転し第1の駆動トランジスタ102はオフ状態となる。このため第1の駆動トランジスタ102に流れていた電流は、電源ラインから、抵抗101、ツェナーダイオード104、検出抵抗105を介して、グランドへと流れるようになり、第1のハイサイドトランジスタ11のソース-ゲート間に電圧が発生する。やがてツェナーダイオード110も導通し、第1のハイサイドトランジスタ11のソース-ゲート間電圧が第1のハイサイドトランジスタ11のゲートしきい値に至ると、第1のハイサイドトランジスタ11が導通する。第1の実施例では、この時の電源電圧Vcは、Vc=Vz1+(1+R5/R1)Vgthであったが、本実施例では、Vc=Vz1+Vz0+Vgthであり、抵抗値によらなくなる。さらに以降の電源電圧Vcの上昇分は第1のハイサイドトランジスタ11のゲート電圧に加わるので、第1のハイサイドトランジスタ11のソース-ドレイン間のオン抵抗は急速に低くなって放電電流を増加する。従って電源電圧Vcの上昇抑制効果は向上する。その結果、回生電力による、ブリッジ回路を構成するスイッチング素子へ印加電圧の上昇は、より確実に抑制される。
 以上のように、本実施例に係るモータ駆動装置10aは、電圧検出回路121は、第1の実施例の電圧検出回路120に加えて、検出抵抗105と並列に接続された、所定の基準電圧Vrより高い電圧を有する第2の定電圧デバイス(ツェナーダイオード110)を有する。これにより、回生電力によって電源ラインの電圧が所定値を越えるとハイサイドスイッチング素子が、より急速に、強制的に導通され、電源ラインの電圧上昇がより確実に抑制される。
 (第3の実施例)
 第1及び第2の実施例では第1のハイサイドトランジスタまたは第2のハイサイドトランジスタを導通させて電源電圧Vcを放電したが、ローサイドトランジスタを導通させることによっても電源電圧Vcの上昇抑制はできる。
 図4は第3の実施例のモータ駆動装置10bを示す回路ブロック図である。図4において、図1と同様の構成要素については同一の符号を付与し、それらの説明を省略する。異なるのは図1の制御回路5を制御回路5aとし、図1の第1のハイサイド駆動回路100及び第2のハイサイド駆動回路100aの代わりに第1のローサイド駆動回路200及び第2のローサイド駆動回路200aを設けた点である。
 また、制御回路用電源6及びハイサイド駆動用電源7の図示は省略し、制御回路用電源電圧Vccのみ図示した。制御回路5aは制御回路用電源電圧Vccで動作し、各トランジスタ11~14への駆動信号t1、t2’、t3及びt4’を出力する。駆動信号t1は第1のハイサイドトランジスタ11への駆動信号、駆動信号t2’は第1のローサイドトランジスタ12へのプリ駆動信号(以下、「プリ駆動信号t2’」とも呼ぶ)、駆動信号t3は第2のハイサイドトランジスタ13への駆動信号、駆動信号t4’は第2のローサイドトランジスタ14へのプリ駆動信号(以下、「プリ駆動信号t4’」とも呼ぶ)である。図示は省略したが、制御回路5aはハイサイド駆動用電源やレベルシフト回路を内包し、駆動信号t1、t3は第1のハイサイドトランジスタ11及び第2のハイサイドトランジスタ13のゲート端子に直接送信される。第1のローサイド駆動回路200は、プリ駆動信号t2’を受電して第1のローサイドトランジスタ12をオンオフし、第2のローサイド駆動回路200aは、プリ駆動信号t4’を受電して第2のローサイドトランジスタ14をオンオフする。
 第1のローサイド駆動回路200は、第1のローサイドトランジスタ12のゲート-ソース間に接続される抵抗201、PチャネルMOSFETよりなる、第1のローサイドトランジスタ12のゲート端子と制御回路用電源電圧Vccとの間を短絡するように接続される第1の駆動トランジスタ202、NチャネルMOSFETよりなる、第1のローサイドトランジスタ12のゲート-ソース端子間を短絡するように接続される第2の駆動トランジスタ203を含む。第2の駆動トランジスタ203は、ローサイドスイッチング素子の制御端子と第2端子との間に接続され、駆動信号に応じて開閉する駆動スイッチの一例である。
 また、第1のローサイド駆動回路200は、電源ラインと第1のローサイドトランジスタ12のゲート端子との間に接続された、ツェナー電圧Vz2のツェナーダイオード204と検出抵抗205との直列回路、及び、比較器206を含む。ツェナーダイオード204と検出抵抗205との接続点が比較器206の負入力端子に接続される。図示しないが、電圧Vraは制御回路用電源電圧Vccから創出される基準電圧であり、比較器206の正入力端子に印加される。ツェナーダイオード204、検出抵抗205及び比較器206は、電源ラインとローサイドスイッチング素子の制御端子との間に接続され、電源ラインとローサイドスイッチング素子の制御端子との間の電圧が第1の所定値以上になると導通し、電源ラインとローサイドスイッチング素子の制御端子との間の電圧が第2の所定値以上になると第1状態となる検出信号を出力する電圧検出回路220を構成している。
 また、第1のローサイド駆動回路200は、プリ駆動信号t2’と比較器206の出力信号とが入力されるAND回路207を含む。AND回路207の出力は第2の駆動トランジスタ203のゲート端子に接続される。AND回路207は、電圧検出回路220からの検出信号が第1状態になると駆動信号にかかわらず駆動スイッチを開状態とする論理回路の一例である。
 尚、第2のローサイド駆動回路200aの構成は、第1のローサイド駆動回路200と同様であるので、詳細な図示と説明は省略する。
 本実施例では図2とは逆相で、通電相切換動作時に充電される電源電圧Vcが印加されるのは、第2のハイサイドトランジスタ13と第1のローサイドトランジスタ12である。以下に、図4に示される本実施例のモータ駆動装置10bが、電源電圧Vcが所定値を越えると第1のローサイド駆動回路200が第1のローサイドトランジスタ12を導通させる動作を説明する。
 まず、プリ駆動信号t2’がLレベルの時、第1の駆動トランジスタ202はオン状態であり、比較器206の出力状態に関わらずAND回路207の出力もLレベルとなるので、第2の駆動トランジスタ203はオフ状態となる。第1のローサイドトランジスタ12には制御回路用電源電圧Vccレベルのゲート電圧が印加され、第1のローサイドトランジスタ12はオン状態とある。この時、比較器206の負入力端子にも検出抵抗205を介してゲート電圧が印加され、比較器206の出力はLレベルである。
 次にプリ駆動信号t2’がHレベルの時、第1の駆動トランジスタ202はオフ状態である。さらに電源電圧Vcがツェナーダイオード204のツェナー電圧Vz2以下である通常時であれば、ゲート端子への電圧供給の無い第1のローサイドトランジスタ12はオフ状態である。比較器206の負入力端子にも電圧Vra以上の電圧は発生せず、比較器206の出力はHレベルとなり、AND回路207の出力はHレベルとなり、第2の駆動トランジスタ203はオン状態となって、ゲート端子を地絡された第1のローサイドトランジスタ12はオフ状態を維持する。
 ところが、電源電圧Vcがツェナーダイオード204のツェナー電圧Vz2を越えると(つまり、電源ラインとローサイドスイッチング素子の制御端子との間の電圧が第1の所定値以上になると)、電源ラインから、ツェナーダイオード204、検出抵抗205、第2の駆動トランジスタ203を介して、グランドへと電流が流れ、検出抵抗205に電圧が発生する。電源電圧Vcの上昇に伴い、検出抵抗205の電圧即ち比較器206の負入力端子に電圧Vra以上の電圧が発生すると(つまり、電源ラインとローサイドスイッチング素子の制御端子との間の電圧が第2の所定値以上になると)、比較器206の出力はLレベル(第1状態)となり、AND回路207の出力もLレベルとなり、第2の駆動トランジスタ203はオフ状態となる。すると第2の駆動トランジスタ203を流れていた電流は、電源ラインから、ツェナーダイオード204、検出抵抗205、抵抗201を介して、グランドへと流れるようになり、第1のローサイドトランジスタ12のゲート端子に電圧が発生する。この電圧が第1のローサイドトランジスタ12のゲートしきい値に至ると、第1のローサイドトランジスタ12が導通し、第1のハイサイドトランジスタ11を介してコンデンサ3を放電するループを作って電源電圧Vcの上昇を抑制する。その結果、回生電力による、ブリッジ回路を構成するスイッチング素子へ印加電圧の上昇は、抑制される。
 以上の動作における電源電圧Vcを、抵抗201の抵抗値をR1、検出抵抗205の抵抗値をR5、第1のローサイドトランジスタ12のゲートしきい値をVgthとして、事象と電圧Vcとの関係をまとめると、
 ツェナーダイオード204と検出抵抗205が導通:Vc=Vz2
 比較器206が反転、第2の駆動トランジスタ203がターンオフ:Vc=Vz2+Vra
 第1のローサイドトランジスタ12が導通:Vc=Vz2+(1+R5/R1)Vgth
となる。
 この時、制御回路5によって第1のハイサイドトランジスタ11がオン状態であると、第1のローサイドトランジスタ12を介して流れる放電電流はモータの回生電流を上回り、コンデンサ3の放電によって電源電圧Vcは上昇から低下に転じる。すると第1のローサイドトランジスタ12のゲート-ソース間電圧も低下し、ゲートしきい値電圧を下回ると第1のローサイドトランジスタ12はオフ状態になる。このことにより、第1のローサイドトランジスタ12を流れるコンデンサ3の放電電流が過大になることは抑制される。
 また、モータ4の動作が第1の実施例で説明した場合と同様の場合、通電相切換動作時に充電される電源電圧Vcが印加されるのは第1のハイサイドトランジスタ11と第2のローサイドトランジスタ14である。この場合は第2のローサイド駆動回路200aが動作して、第2のローサイドトランジスタ14を導通させることにより電源電圧Vcの上昇を抑制する。その結果、回生電力による、ブリッジ回路を構成するスイッチング素子へ印加電圧の上昇は、抑制される。
 尚、第1の実施例に対して第2の実施例で説明したように、本実施例でも検出抵抗205と並列に、電圧検出回路220を構成するツェナーダイオード210を接続してもよい。図4においてはツェナーダイオード210を括弧内で示した。動作や効果は第2の実施例と同様であり、第1のローサイドトランジスタ12が導通するのは、ツェナーダイオード210のツェナー電圧をVz0とすると、電源電圧VcがVc=Vz2+Vz0+Vgthに至った時であり、抵抗値によらなくなる。さらに以降の電源電圧Vcの上昇分は第1のローサイドトランジスタ12のゲート電圧に加わるので、第1のローサイドトランジスタ12のドレイン-ソース間のオン抵抗は急速に低くなって放電電流を増加する。従って電源電圧Vcの上昇抑制効果は向上する。その結果、回生電力による、ブリッジ回路を構成するスイッチング素子へ印加電圧の上昇は、より確実に抑制される。
 以上のように、本実施例に係るモータ駆動装置10bは、電源ライン(電源電圧Vc)-グランド間に接続されるハイサイドスイッチング素子(第1のハイサイドトランジスタ11等)とローサイドスイッチング素子(第1のローサイドトランジスタ12等)の直列回路を複数組有し、各直列回路の中間接続点にモータ4が接続されるブリッジ回路を備え、ローサイドスイッチング素子は第1端子(ドレイン端子)と第2端子(ソース端子)と制御端子(ゲート端子)を有し、第1端子はハイサイドスイッチング素子に接続され、第2端子はグランドに接続され、ローサイドスイッチング素子は制御端子と第2端子との間に所定のしきい値以上の電圧が印加されると第1端子と第2端子間が導通する機能を有し、モータ駆動装置10bは、さらに、少なくともローサイドスイッチング素子を駆動するための駆動信号を出力する制御回路5aと、電源ラインとローサイドスイッチング素子の制御端子との間に接続され、電源ラインとローサイドスイッチング素子の制御端子との間の電圧が第1の所定値以上になると導通し、電源ラインとローサイドスイッチング素子の制御端子との間の電圧が第2の所定値以上になると第1状態となる検出信号を出力する電圧検出回路220と、ローサイドスイッチング素子の制御端子と第2端子との間に接続され、駆動信号に応じて開閉する駆動スイッチ(第2の駆動トランジスタ203)と、電圧検出回路220からの検出信号が第1状態になると駆動信号にかかわらず駆動スイッチを開状態とする論理回路(AND回路207)とを有する。
 これにより、回生電力によって電源ラインの電圧が所定値を越えるとローサイドスイッチング素子が強制的に導通され、電源ラインの電圧上昇が抑制され、ブリッジ回路を構成するスイッチング素子へ印加電圧の上昇は抑制される。
 また、電圧検出回路220は、第1の所定値を有する第1の定電圧デバイス(ツェナーダイオード204)と検出抵抗205との直列回路と、第1の定電圧デバイスと検出抵抗205との接続点電位を所定の基準電圧Vrと比較して検出信号を出力する比較器206とを有する。これにより、簡単な回路で、回生電力によるスイッチング素子への印加電圧の上昇が抑制される。
 また、電圧検出回路220は、さらに、検出抵抗205と並列に接続された、所定の基準電圧Vrより高い電圧を有する第2の定電圧デバイス(ツェナーダイオード210)を有する。これにより、回生電力によって電源ラインの電圧が所定値を越えるとローサイドスイッチング素子が、より急速に、強制的に導通され、電源ラインの電圧上昇がより確実に抑制される。
 (第4の実施例)
 第1の実施例では第1または第2のハイサイドトランジスタはPチャネルMOSFETであったが、NチャネルMOSFETであっても電源電圧Vcの上昇抑制はできる。
 図5は第4の実施例のモータ駆動装置10cを示す回路ブロック図である。図5において、図1と同様の構成要素については同一符号を付与し、それらの説明を省略する。異なるのは、第1または第2のハイサイドトランジスタがNチャネルMOSFETであり、図1と区別のため、第1のハイサイドトランジスタ11b、第2のハイサイドトランジスタ13bとした。また、図1の制御回路5を制御回路5bとし、図1の第1のハイサイド駆動回路100及び第2のハイサイド駆動回路100aの構成を変えて第1のハイサイド駆動回路300及び第2のハイサイド駆動回路300aを設けた点である。
 制御回路5bは制御回路用電源電圧Vccで動作し、各トランジスタ11b、12、13b、14の駆動信号t1”、t2、t3”及びt4を出力する。駆動信号t1”は第1のハイサイドトランジスタ11bへのプリ駆動信号(以下、「プリ駆動信号t1”」とも呼ぶ)、駆動信号t2は第1のローサイドトランジスタ12への駆動信号、駆動信号t3”は第2のハイサイドトランジスタ13bへのプリ駆動信号(以下、「プリ駆動信号t3”」とも呼ぶ)、駆動信号t4は第2のローサイドトランジスタ14への駆動信号である。第1のハイサイド駆動回路300は、プリ駆動信号t1”を受電して第1のハイサイドトランジスタ11bをオンオフし、第2のハイサイド駆動回路300aは、プリ駆動信号t3”を受電して第2のハイサイドトランジスタ13bをオンオフする。図示は省略したが、制御回路5bはレベルシフト回路を内包し、駆動信号t1”、t3”は第1のハイサイドトランジスタ11b及び第2のハイサイドトランジスタ13bのソース端子電位を基準電位とする信号に変換される。
 第1のハイサイド駆動回路300において、ハイサイド駆動用電源電圧Vbcは、後述するブートストラップ回路によって創出される。第1のハイサイド駆動回路300は、第1のハイサイドトランジスタ11bのゲート-ソース間に接続される抵抗301、PチャネルMOSFETよりなる、第1のハイサイドトランジスタ11bのゲート端子とハイサイド駆動用電源電圧Vbcとの間を短絡するように接続される第1の駆動トランジスタ302、NチャネルMOSFETよりなる、第1のハイサイドトランジスタ11bのゲート-ソース端子間を短絡するように接続される第2の駆動トランジスタ303を含む。第2の駆動トランジスタ303は、ハイサイドスイッチング素子の制御端子と第2端子との間に接続され、駆動信号に応じて開閉する駆動スイッチの一例である。
 また、第1のハイサイド駆動回路300は、電源ラインと第1のハイサイドトランジスタ11bのゲート端子との間に接続された、ツェナー電圧Vz3のツェナーダイオード304と検出抵抗305との直列回路、及び、比較器306を含む。ツェナーダイオード304と検出抵抗305との接続点は、比較器306の負入力端子に接続される。図示しないが、電圧Vrbはハイサイド駆動用電源電圧Vbcから創出される基準電圧であり、比較器306の正入力端子に印加される。ツェナーダイオード304、検出抵抗305及び比較器306は、電源ラインとハイサイドスイッチング素子の制御端子との間に接続され、電源ラインとハイサイドスイッチング素子の制御端子との間の電圧が第1の所定値以上になると導通し、電源ラインとハイサイドスイッチング素子の制御端子との間の電圧が第2の所定値以上になると第1状態となる検出信号を出力する電圧検出回路320を構成している。
 また、第1のハイサイド駆動回路300は、プリ駆動信号t1”と比較器306の出力信号が入力されるAND回路307を含む。プリ駆動信号t1”は第1の駆動トランジスタ302のゲート端子に印加される。AND回路307の出力は第2の駆動トランジスタ303のゲート端子に接続される。AND回路307は、電圧検出回路320からの検出信号が第1状態になると駆動信号にかかわらず駆動スイッチを開状態とする論理回路の一例である。
 また、第1のハイサイド駆動回路300は、ダイオード308、コンデンサ309を含む。ダイオード308及びコンデンサ309は、第1のローサイドトランジスタ12のオン時に制御回路用電源電圧Vccからダイオード308を介してコンデンサ309を充電することにより、コンデンサ309にハイサイド駆動用電源電圧Vbcを発生させるブートストラップ回路である。尚、第2のハイサイド駆動回路300aの構成は、第1のハイサイド駆動回路300と同様であるので、図示と説明は省略する。
 以下に、図5に示される本実施例のモータ駆動装置10cが、電源電圧Vcが所定値を越えると第1のハイサイドトランジスタ11bを導通させる動作を説明する。
 まず、プリ駆動信号t1”がLレベルの時、第1の駆動トランジスタ302はオン状態であり、第1のハイサイドトランジスタ11bのゲート端子にはハイサイド駆動用電源電圧Vbcが印加される。しかしこの時、第1のハイサイドトランジスタ11bはオン状態であるので、比較器306の負入力端子はツェナーダイオード304を介して第1のハイサイドトランジスタ11bのソース端子に落とされて電圧は発生せず、比較器306はHレベルを出力する。しかしLレベルのプリ駆動信号t1”を入力しているAND回路307はLレベルを出力し、第2の駆動トランジスタ303はオフ状態であって、第1のハイサイドトランジスタ11bはオン状態を維持する。
 次にプリ駆動信号t1”がHレベルの時、第1の駆動トランジスタ302はオフ状態である。さらに電源電圧Vcがツェナーダイオード304のツェナー電圧Vz3以下である通常時であれば、ゲート端子への電圧供給の無い第1のハイサイドトランジスタ11bはオフ状態である。比較器306の負入力端子にも電圧Vrb以上の電圧は発生せず、比較器306の出力はHレベルとなり、AND回路307の出力はHレベルとなり、第2の駆動トランジスタ303はオン状態となって、ゲート端子を地絡された第1のハイサイドトランジスタ11bはオフ状態を維持する。
 ところが、電源電圧Vcがツェナーダイオード304のツェナー電圧Vz3を越えると(つまり、電源ラインとハイサイドスイッチング素子の制御端子との間の電圧が第1の所定値以上になると)、電源ラインから、ツェナーダイオード304、検出抵抗305、第2の駆動トランジスタ303、第1のローサイドトランジスタ12を介して、グランドへと電流が流れ、検出抵抗305に電圧が発生する。電源電圧Vcの上昇に伴い、検出抵抗305の電圧即ち比較器306の負入力端子に電圧Vrb以上の電圧が発生すると(つまり、電源ラインとハイサイドスイッチング素子の制御端子との間の電圧が第2の所定値以上になる)、比較器306の出力はLレベル(第1状態)となり、AND回路307の出力もLレベルとなって、第2の駆動トランジスタ303はオフ状態となる。すると第2の駆動トランジスタ303を流れていた電流は、電源ラインから、ツェナーダイオード304、検出抵抗305、抵抗301、第1のローサイドトランジスタ12を介して、グランドへと流れるようになり、第1のハイサイドトランジスタ11bのゲート端子に電圧が発生する。この電圧が第1のハイサイドトランジスタ11bのゲートしきい値に至ると、第1のハイサイドトランジスタ11bが導通し、コンデンサ3を放電するループを作って電源電圧Vcの上昇を抑制する。その結果、回生電力による、ブリッジ回路を構成するスイッチング素子へ印加電圧の上昇は、抑制される。
 以上の動作における電源電圧Vcを、抵抗301の抵抗値をR1、検出抵抗305の抵抗値をR5、第1のハイサイドトランジスタ11bのゲートしきい値をVgthとして、事象と電圧Vcとの関係をまとめると、
 ツェナーダイオード304と検出抵抗305が導通:Vc=Vz3
 比較器306が反転、第2の駆動トランジスタ303がターンオフ:Vc=Vz3+Vrb
 第1のハイサイドトランジスタ11bが導通:Vc=Vz3+(1+R5/R1)Vgth
となる。
 この時、制御回路5によって第1のローサイドトランジスタ12がオン状態であると、第1のハイサイドトランジスタ11bを介して流れる放電電流はモータの回生電流を上回り、コンデンサ3の放電によって電源電圧Vcは上昇から低下に転じる。すると第1のハイサイドトランジスタ11bのゲート-ソース間電圧も低下し、ゲートしきい値電圧を下回ると第1のハイサイドトランジスタ11bはオフ状態になる。このことにより、第1のハイサイドトランジスタ11bを流れるコンデンサ3の放電電流が過大になることは抑制される。
 また、モータ4の動作が逆相の場合、動作電流も逆となって通電相切換動作時に充電される電源電圧Vcが印加されるのは第2のハイサイドトランジスタ13bと第1のローサイドトランジスタ12である。この場合は第2のハイサイド駆動回路300aが動作して、第2のハイサイドトランジスタ13bを導通させることにより電源電圧Vcの上昇を抑制する。その結果、回生電力による、ブリッジ回路を構成するスイッチング素子へ印加電圧の上昇は、抑制される。
 尚、第1の実施例に対して第2の実施例で説明したように、本実施例でも検出抵抗305と並列に、電圧検出回路320を構成するツェナーダイオード310を接続してもよい。図5においてはツェナーダイオード310を括弧内で示した。動作や効果は第2の実施例と同様であり、第1のハイサイドトランジスタ11bが導通するのは、ツェナーダイオード310のツェナー電圧をVz0とすると、電源電圧VcがVc=Vz3+Vz0+Vgthに至った時であり、抵抗値によらなくなる。さらに以降の電源電圧Vcの上昇分は第1のハイサイドトランジスタ11bのゲート電圧に加わるので、第1のハイサイドトランジスタ11bのドレイン-ソース間のオン抵抗は急速に低くなって放電電流を増加する。従って電源電圧Vcの上昇抑制効果は向上する。その結果、回生電力による、ブリッジ回路を構成するスイッチング素子へ印加電圧の上昇は、より確実に抑制される。
 以上のように、本実施例に係るモータ駆動装置10cは、電源ライン(電源電圧Vc)-グランド間に接続されるハイサイドスイッチング素子(第1のハイサイドトランジスタ11b等)とローサイドスイッチング素子(第1のローサイドトランジスタ12等)の直列回路を複数組有し、各直列回路の中間接続点にモータ4が接続されるブリッジ回路を備え、ハイサイドスイッチング素子は第1端子(ドレイン端子)と第2端子(ソース端子)と制御端子(ゲート端子)を有し、第1端子は電源ラインに接続され、第2端子はローサイドスイッチング素子に接続され、ハイサイドスイッチング素子は制御端子と第2端子との間に所定のしきい値以上の電圧が印加されると第1端子と第2端子間が導通する機能を有し、モータ駆動装置10cは、さらに、少なくともハイサイドスイッチング素子を駆動するための駆動信号を出力する制御回路5bと、電源ラインとハイサイドスイッチング素子の制御端子との間に接続され、電源ラインとハイサイドスイッチング素子の制御端子との間の電圧が第1の所定値以上になると導通し、電源ラインとハイサイドスイッチング素子の制御端子との間の電圧が第2の所定値以上になると第1状態となる検出信号を出力する電圧検出回路320と、ハイサイドスイッチング素子の制御端子と第2端子との間に接続され、駆動信号に応じて開閉する駆動スイッチ(第2の駆動トランジスタ303)と、電圧検出回路320からの検出信号が第1状態になると駆動信号にかかわらず駆動スイッチを開状態とする論理回路(AND回路307)とを有する。
 これにより、回生電力によって電源ラインの電圧が所定値を越えるとハイサイドスイッチング素子が強制的に導通され、電源ラインの電圧上昇が抑制され、ブリッジ回路を構成するスイッチング素子へ印加電圧の上昇は抑制される。
 また、電圧検出回路320は、第1の所定値を有する第1の定電圧デバイス(ツェナーダイオード304)と検出抵抗305との直列回路と、第1の定電圧デバイスと検出抵抗305との接続点電位を所定の基準電圧Vrと比較して検出信号を出力する比較器306と、を有する。これにより、簡単な回路で、回生電力によるスイッチング素子への印加電圧の上昇が抑制される。
 また、電圧検出回路320は、さらに、検出抵抗305と並列に接続された、所定の基準電圧Vrより高い電圧を有する第2の定電圧デバイス(ツェナーダイオード310)を有する。これにより、回生電力によって電源ラインの電圧が所定値を越えるとハイサイドスイッチング素子が、より急速に、強制的に導通され、電源ラインの電圧上昇がより確実に抑制される。
 以上、本開示に係るモータ駆動装置について、実施の形態及び実施例に基づいて説明したが、本開示は、これらの実施の形態及び実施例に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態及び実施例に施したものや、実施の形態及び実施例における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲内に含まれる。
 例えば、以上の本開示に係る実施の形態及び各実施例では単相のモータ駆動装置で説明してきたが、本開示に係るモータ駆動装置はこの構成に限定されるものではない。電源電圧検出及び電源電圧上昇の抑制は、電源ライン-グランド間に接続されるハイサイドトランジスタとローサイドトランジスタの各直列回路に施す構成であるので、例えば3相の駆動装置であってもその各直列回路に設けることができるのは言うまでもない。
 また、電圧検出回路は、各実施例で示された回路に限られず、第1の所定値を閾値とする第1比較器、及び、第2の所定値を閾値とする第2比較器等で構成されてもよい。
 また、電圧検出回路を構成する比較器は、必ずしも演算増幅器(IC)で構成される必要はなく、トランジスタで構成されるディスクリート回路であってもよい。
 また、制御回路5、5a及び5bは、必ずしもモータ駆動装置に備えられる必要はなく、モータ駆動装置に対して駆動信号を提供する外部デバイスであってもよい。また、制御回路5、5a及び5bは、IC、ディスクリート回路及びそれらの混在のいずれで構成されてもよい。
 本開示に係るモータ駆動装置は、過電圧保護機能を有するモータ駆動装置として、特に、回生電力によるスイッチング素子への印加電圧の上昇を抑制できるモータ駆動装置として、利用できる。
 1 入力電源(バッテリ)
 2 逆接続防止用のダイオード
 3 コンデンサ
 4 モータ
 5、5a、5b 制御回路
 6 制御回路用電源
 7 ハイサイド駆動用電源
 10、10a、10b、10c モータ駆動装置
 11、11b 第1のハイサイドトランジスタ
 12 第1のローサイドトランジスタ
 13、13b 第2のハイサイドトランジスタ
 14 第2のローサイドトランジスタ
 100、130、300 第1のハイサイド駆動回路
 200 第1のローサイド駆動回路
 100a、130a、300a 第2のハイサイド駆動回路
 200a 第2のローサイド駆動回路
 101、201、301 抵抗
 102、202、302 第1の駆動トランジスタ
 103、203、303 第2の駆動トランジスタ
 104、110、204、210、304、310 ツェナーダイオード
 105、205、305 検出抵抗
 106、206、306 比較器
 107 レベルシフト回路
 108 OR回路
 120、121、220、320 電圧検出回路
 207、307 AND回路
 308 ダイオード
 309 コンデンサ

Claims (9)

  1.  モータ駆動装置であって、
     電源ライン-グランド間に接続されるハイサイドスイッチング素子とローサイドスイッチング素子との直列回路を複数組有し、前記各直列回路の中間接続点にモータが接続されるブリッジ回路を備え、
     前記ハイサイドスイッチング素子は第1端子と第2端子と制御端子とを有し、前記第1端子は前記電源ラインに接続され、前記第2端子は前記ローサイドスイッチング素子に接続され、前記ハイサイドスイッチング素子は前記第1端子と前記制御端子との間に所定のしきい値以上の電圧が印加されると前記第1端子と前記第2端子との間が導通する機能を有し、
     前記モータ駆動装置は、さらに、
     少なくとも前記ハイサイドスイッチング素子を駆動するための駆動信号を出力する制御回路と、
     前記ハイサイドスイッチング素子の前記制御端子と前記グランドとの間に接続され、前記ハイサイドスイッチング素子の前記制御端子と前記グランドとの間の電圧が第1の所定値以上になると導通し、前記ハイサイドスイッチング素子の前記制御端子と前記グランドとの間の電圧が第2の所定値以上になると第1状態となる検出信号を出力する電圧検出回路と、
     前記ハイサイドスイッチング素子の前記第1端子と前記制御端子との間に接続され、前記駆動信号に応じて開閉する駆動スイッチと、
     前記電圧検出回路からの検出信号が第1状態になると前記駆動信号にかかわらず前記駆動スイッチを開状態とする論理回路とを有する、モータ駆動装置。
  2.  前記電圧検出回路は、前記第1の所定値を有する第1の定電圧デバイスと検出抵抗との直列回路と、前記第1の定電圧デバイスと前記検出抵抗との接続点の電位を所定の基準電圧と比較して前記検出信号を出力する比較器とを有する、請求項1記載のモータ駆動装置。
  3.  前記電圧検出回路は、さらに、前記検出抵抗と並列に接続された、前記所定の基準電圧より高い電圧を有する第2の定電圧デバイスを有する、請求項2記載のモータ駆動装置。
  4.  モータ駆動装置であって、
     電源ライン-グランド間に接続されるハイサイドスイッチング素子とローサイドスイッチング素子の直列回路を複数組有し、前記各直列回路の中間接続点にモータが接続されるブリッジ回路を備え、
     前記ローサイドスイッチング素子は第1端子と第2端子と制御端子を有し、前記第1端子は前記ハイサイドスイッチング素子に接続され、前記第2端子は前記グランドに接続され、前記ローサイドスイッチング素子は前記制御端子と前記第2端子との間に所定のしきい値以上の電圧が印加されると前記第1端子と前記第2端子間が導通する機能を有し、
     前記モータ駆動装置は、さらに、
     少なくとも前記ローサイドスイッチング素子を駆動するための駆動信号を出力する制御回路と、
     前記電源ラインと前記ローサイドスイッチング素子の制御端子との間に接続され、前記電源ラインと前記ローサイドスイッチング素子の前記制御端子との間の電圧が第1の所定値以上になると導通し、前記電源ラインと前記ローサイドスイッチング素子の前記制御端子との間の電圧が第2の所定値以上になると第1状態となる検出信号を出力する電圧検出回路と、
     前記ローサイドスイッチング素子の前記制御端子と前記第2端子との間に接続され、前記駆動信号に応じて開閉する駆動スイッチと、
     前記電圧検出回路からの検出信号が第1状態になると前記駆動信号にかかわらず前記駆動スイッチを開状態とする論理回路とを有する、モータ駆動装置。
  5.  前記電圧検出回路は、前記第1の所定値を有する第1の定電圧デバイスと検出抵抗との直列回路と、前記第1の定電圧デバイスと前記検出抵抗との接続点電位を所定の基準電圧と比較して前記検出信号を出力する比較器とを有する、請求項4記載のモータ駆動装置。
  6.  前記電圧検出回路は、さらに、前記検出抵抗と並列に接続された、前記所定の基準電圧より高い電圧を有する第2の定電圧デバイスを有する、請求項5記載のモータ駆動装置。
  7.  モータ駆動装置であって、
     電源ライン-グランド間に接続されるハイサイドスイッチング素子とローサイドスイッチング素子の直列回路を複数組有し、前記各直列回路の中間接続点にモータが接続されるブリッジ回路を備え、
     前記ハイサイドスイッチング素子は第1端子と第2端子と制御端子を有し、前記第1端子は前記電源ラインに接続され、前記第2端子は前記ローサイドスイッチング素子に接続され、前記ハイサイドスイッチング素子は前記制御端子と前記第2端子との間に所定のしきい値以上の電圧が印加されると前記第1端子と前記第2端子間が導通する機能を有し、
     前記モータ駆動装置は、さらに、
     少なくとも前記ハイサイドスイッチング素子を駆動するための駆動信号を出力する制御回路と、
     前記電源ラインと前記ハイサイドスイッチング素子の前記制御端子との間に接続され、前記電源ラインと前記ハイサイドスイッチング素子の前記制御端子との間の電圧が第1の所定値以上になると導通し、前記電源ラインと前記ハイサイドスイッチング素子の前記制御端子との間の電圧が第2の所定値以上になると第1状態となる検出信号を出力する電圧検出回路と、
     前記ハイサイドスイッチング素子の前記制御端子と前記第2端子との間に接続され、前記駆動信号に応じて開閉する駆動スイッチと、
     前記電圧検出回路からの検出信号が第1状態になると前記駆動信号にかかわらず前記駆動スイッチを開状態とする論理回路とを有する、モータ駆動装置。
  8.  前記電圧検出回路は、前記第1の所定値を有する第1の定電圧デバイスと検出抵抗との直列回路と、前記第1の定電圧デバイスと前記検出抵抗との接続点電位を所定の基準電圧と比較して前記検出信号を出力する比較器と、を有する請求項4記載のモータ駆動装置。
  9.  前記電圧検出回路は、さらに、前記検出抵抗と並列に接続された、前記所定の基準電圧より高い電圧を有する第2の定電圧デバイスを有する、請求項8記載のモータ駆動装置。
PCT/JP2022/041378 2021-11-19 2022-11-07 モータ駆動装置 WO2023090187A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280076020.XA CN118266172A (zh) 2021-11-19 2022-11-07 马达驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021189003 2021-11-19
JP2021-189003 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023090187A1 true WO2023090187A1 (ja) 2023-05-25

Family

ID=86396932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041378 WO2023090187A1 (ja) 2021-11-19 2022-11-07 モータ駆動装置

Country Status (2)

Country Link
CN (1) CN118266172A (ja)
WO (1) WO2023090187A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191620A (ja) * 1987-10-02 1989-04-11 Hitachi Ltd Hブリツジ保護回路
JPH06245585A (ja) * 1993-02-21 1994-09-02 Nissan Motor Co Ltd 半導体装置
JPH0884055A (ja) * 1994-09-14 1996-03-26 Nissan Motor Co Ltd ハイサイドスイッチ回路
JP2005269885A (ja) * 2004-02-16 2005-09-29 Denso Corp Hブリッジ回路の駆動装置及びhブリッジ回路の保護方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191620A (ja) * 1987-10-02 1989-04-11 Hitachi Ltd Hブリツジ保護回路
JPH06245585A (ja) * 1993-02-21 1994-09-02 Nissan Motor Co Ltd 半導体装置
JPH0884055A (ja) * 1994-09-14 1996-03-26 Nissan Motor Co Ltd ハイサイドスイッチ回路
JP2005269885A (ja) * 2004-02-16 2005-09-29 Denso Corp Hブリッジ回路の駆動装置及びhブリッジ回路の保護方法

Also Published As

Publication number Publication date
CN118266172A (zh) 2024-06-28

Similar Documents

Publication Publication Date Title
US7554276B2 (en) Protection circuit for permanent magnet synchronous motor in field weakening operation
US4459498A (en) Switch with series-connected MOS-FETs
US7038522B2 (en) System and method for redundant power supply connection
US9871440B2 (en) Internal power supply circuit and semiconductor device
JP5590031B2 (ja) 電源保護回路およびそれを備えたモータ駆動装置
US10355472B2 (en) Over temperature protection circuit and semiconductor device
US20080258808A1 (en) Circuit to optimize charging of bootstrap capacitor with bootstrap diode emulator
WO2016204122A1 (ja) 半導体装置
JP4018077B2 (ja) 電力用スイッチのためのバッテリ逆接続の保護回路
JP2002290221A (ja) 半導体出力回路の消費電力低減回路
JP7095388B2 (ja) トーテムポール回路用駆動装置
US6577173B2 (en) Inductive load driving circuit
JP2004260730A (ja) パルス発生回路及びそれを用いたハイサイドドライバ回路
US6369533B1 (en) Piloting circuit for an inductive load in particular for a DC electric motor
WO2001059918A1 (fr) Dispositif onduleur
JP2017017688A (ja) 電界効果トランジスタを備えたパワー半導体回路
US7724047B2 (en) Semiconductor integrated circuit driving external FET and power supply incorporating the same
WO2023090187A1 (ja) モータ駆動装置
JP2013127864A (ja) 車両用電源リレー回路
JP7247903B2 (ja) 電気回路及び電源装置
JPH11215871A (ja) モータ制御装置
US4977477A (en) Short-circuit protected switched output circuit
JP2003133926A (ja) 突入電流抑止回路
JP3191661B2 (ja) 半導体素子の過負荷保護回路
JP5226474B2 (ja) 半導体出力回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023561535

Country of ref document: JP

Kind code of ref document: A