WO2023087999A1 - 一种厚壁大口径x80m级热煨弯管用板及其制造方法 - Google Patents

一种厚壁大口径x80m级热煨弯管用板及其制造方法 Download PDF

Info

Publication number
WO2023087999A1
WO2023087999A1 PCT/CN2022/125392 CN2022125392W WO2023087999A1 WO 2023087999 A1 WO2023087999 A1 WO 2023087999A1 CN 2022125392 W CN2022125392 W CN 2022125392W WO 2023087999 A1 WO2023087999 A1 WO 2023087999A1
Authority
WO
WIPO (PCT)
Prior art keywords
thick
temperature
diameter
simmered
walled
Prior art date
Application number
PCT/CN2022/125392
Other languages
English (en)
French (fr)
Inventor
黄一新
姜金星
谯明亮
翟冬雨
吴俊平
杜海军
刘帅
殷杰
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Publication of WO2023087999A1 publication Critical patent/WO2023087999A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the invention relates to the technical field of iron and steel production, in particular to a thick-walled large-diameter X80M grade hot-simmered pipe-bending plate and a manufacturing method thereof.
  • the technical key to the development of thick-walled and large-diameter hot-bending pipe plate X80 pipeline steel is how to simultaneously ensure the high strength and good low-temperature toughness of the product and the quenching and tempering performance of the hot-bending pipe. It is very difficult to develop plates for large-diameter thick-walled low-temperature hot-simmered pipe bends ( ⁇ 1422 ⁇ ( ⁇ )30mm specification X80 (applicable temperature -45°C)) for the China- Russia East Line, mainly using controlled rolling and controlled cooling, and micro-alloyed near-peritectic components design technology. After the steel plate is made into a pipe, the performance will decrease.
  • the present invention aims at the above technical problems, overcomes the shortcomings of the prior art, and provides a thick-walled and large-diameter X80M grade hot-simmered pipe bending plate.
  • Its chemical composition and mass percentage are as follows: C: 0.05% to 0.15%, Si: 0.10% ⁇ 0.40%, Mn: 1.50% ⁇ 1.80%, P ⁇ 0.015%, S ⁇ 0.0050%, Nb: 0.030% ⁇ 0.080%, V ⁇ 0.060%, Ti ⁇ 0.040%, Cr ⁇ 0.40%, Ni: 0.20% ⁇ 1.00%, Mo: 0.15% ⁇ 0.50%, Cu ⁇ 0.35%, Al: 0.015% ⁇ 0.050%, Ca: 0.0005% ⁇ 0.0040%, B ⁇ 0.0005%, N ⁇ 0.0050%, the balance is Fe and unavoidable Impurities.
  • the aforementioned thick-walled and large-diameter X80M grade hot-simmered pipe bending plate has the following chemical composition and mass percentage: C: 0.05% to 0.10%, Si: 0.10% to 0.30%, Mn: 1.50% to 1.70% , P ⁇ 0.013%, S ⁇ 0.0020%, Nb: 0.030% ⁇ 0.060%, V ⁇ 0.060%, Ti ⁇ 0.040%, Cr ⁇ 0.40%, Ni: 0.20% ⁇ 0.60%, Mo: 0.15% ⁇ 0.30%, Cu ⁇ 0.35%, Al: 0.015% ⁇ 0.040%, Ca: 0.0005% ⁇ 0.0030%, B ⁇ 0.0005%, N ⁇ 0.0050%, the balance is Fe and unavoidable impurities.
  • the aforementioned thick-walled and large-diameter X80M grade hot-simmered pipe bending plate has the following chemical composition and mass percentage: C: 0.06% to 0.11%, Si: 0.20% to 0.40%, Mn: 1.60% to 1.80% , P ⁇ 0.013%, S ⁇ 0.0050%, Nb: 0.050% ⁇ 0.080%, V ⁇ 0.060%, Ti ⁇ 0.040%, Cr ⁇ 0.40%, Ni: 0.40% ⁇ 0.70%, Mo: 0.20% ⁇ 0.40%, Cu ⁇ 0.35%, Al: 0.020% ⁇ 0.050%, Ca: 0.0008% ⁇ 0.0040%, B ⁇ 0.0005%, N ⁇ 0.0050%, and the balance is Fe and unavoidable impurities.
  • the aforementioned thick-walled and large-diameter X80M grade hot-simmered pipe bending plate has the following chemical composition and mass percentage: C: 0.07% to 0.12%, Si: 0.15% to 0.35%, Mn: 1.60% to 1.70% , P ⁇ 0.013%, S ⁇ 0.0030%, Nb: 0.040% ⁇ 0.070%, V ⁇ 0.060%, Ti: 0.006 ⁇ 0.040%, Cr: 0.10 ⁇ 0.40%, Ni: 0.30% ⁇ 0.70%, Mo: 0.20% ⁇ 0.35%, Cu ⁇ 0.35%, Al: 0.020% ⁇ 0.040%, Ca: 0.0008% ⁇ 0.0035%, B ⁇ 0.0005%, N ⁇ 0.0050%, the balance is Fe and unavoidable impurities.
  • Another object of the present invention is to provide a method for manufacturing thick-walled and large-diameter X80M grade hot-simmered pipe bending plates, which includes the following steps:
  • the slab is passed the surface inspection and goes to the walking heating furnace for austenitizing heating. Digital pulse flame control and secondary computer combustion control are adopted.
  • the austenitizing temperature is 1160-1180°C, and the temperature uniformity is ⁇ 10°C;
  • the first-stage rolling temperature is 1030-1060°C
  • the second-stage rolling temperature is 820-850°C
  • the final rolling temperature is 770-800°C
  • the water inlet temperature is 740-800°C 760°C, reddening temperature 400-450°C.
  • step S1 is casting through a curved continuous casting machine with a section of 260 mm to 320 mm.
  • the present invention analyzes the relationship between the microstructural morphology and low-temperature toughness of high-strength thick plates, and analyzes the effect of multi-phase microstructures such as large-angle grain boundaries and finely and evenly distributed M/A on the low-temperature toughness Control mechanism, build a new strengthening and toughening mechanism, so as to solve the key technical problems of comprehensive mechanical properties control, break through the technical bottleneck of thick-walled large-diameter low-temperature hot-simmered elbow X80 high-strength and high-toughness, and form a full-process production technology for stable mass production.
  • the BOF+LF+RH smelting process in the present invention effectively improves the cleanliness of molten steel, reduces other contents of the steel plate, and obtains a high-quality cast slab whose cleanliness meets high-grade steel pipeline products;
  • the medium and low temperature austenitization technology of the present invention is fully based on the melting principle of the alloy, which ensures the solid solution strengthening effect of alloy elements such as Ni, Mo, Nb, and also achieves the effect of reducing the original austenitized grain size. Improve the low temperature toughness and pipe deformation ability of the product;
  • the present invention obtains a small amount of multi-phase fine and uniform structure of proeutectoid ferrite+acicular ferrite+granular bainite, and realizes the product thickness direction. Microstructure uniformity, while ensuring high strength, realizes low-temperature impact toughness of KV 2 ⁇ 200J at -45°C.
  • FIG. 1 is a metallographic structure diagram of Example 1 of the present invention.
  • a thick-walled large-diameter X80M grade hot-simmered pipe bending plate provided in this example has the following chemical composition and mass percentage: C: 0.058%, Si: 0.18%, Mn: 1.65%, P: 0.011%, S: 0.0012%, Nb: 0.039%, V: 0.010%, Ti: 0.019%, Cr: 0.03%, Ni: 0.39%, Mo: 0.19%, Cu: 0.03%, Al: 0.029%, Ca: 0.0019%, B: 0.0003%, N: 0.0031%, the balance is Fe and unavoidable impurities.
  • Its manufacturing method comprises the following steps:
  • the cast slab passed the surface inspection and went to the walking heating furnace for austenitization heating. Digital pulse flame control and secondary computer combustion control were adopted. The austenitization temperature was 1169°C and the temperature uniformity was 6°C;
  • the rolling temperature of the first stage is 1039°C
  • the rolling temperature of the second stage is 836°C
  • the final rolling temperature is 789°C
  • the water entry temperature is 755°C
  • the redness temperature is 436°C .
  • Its manufacturing method comprises the following steps:
  • the slab is passed the surface inspection and goes to the walking heating furnace for austenitization heating. Digital pulse flame control and secondary computer combustion control are adopted.
  • the austenitization temperature is 1178°C and the temperature uniformity is 5°C;
  • the first-stage rolling temperature is 1056°C
  • the second-stage rolling temperature is 829°C
  • the final rolling temperature is 778°C
  • the water entry temperature is 749°C
  • the redness temperature is 421°C .
  • Its manufacturing method comprises the following steps:
  • the cast slab passes the surface inspection and goes to the walking heating furnace for austenitization heating. Digital pulse flame control and secondary computer combustion control are adopted.
  • the austenitization temperature is 1169°C, and the temperature uniformity is not greater than 3°C;
  • the slab is rolled using two-stage rolling technology.
  • the first-stage rolling temperature is 1059°C
  • the second-stage rolling temperature is 842°C
  • the final rolling temperature is 796°C
  • the water entry temperature is 756°C
  • the redness temperature is 436°C.
  • the present invention adopts the design of near-peritectic carbon to improve the low-temperature toughness and weldability of the steel plate while ensuring the structural stability of the steel plate tube after deformation and the quenching and tempering performance during the production process of the hot-simmered bent tube;
  • High manganese design improves product strength and effectively refines the microstructure; adopts nickel, molybdenum, and niobium design, and cooperates with controlled rolling and controlled cooling process to ensure that a small amount of proeutectoid ferrite and acicular iron are uniformly refined for wide and thick X80M grade steel plates
  • the multi-phase composite structure of ferrite and granular bainite ensures high strength and toughness while obtaining good quenching and tempering performance after hot simmering.
  • the present invention can also have other implementations. All technical solutions formed by equivalent replacement or equivalent transformation fall within the scope of protection required by the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明公开了一种厚壁大口径X80M级热煨弯管用板及其制造方法,涉及钢铁生产技术领域,其化学成分及质量百分比如下:C:0.05%~0.15%,Si:0.10%~0.40%,Mn:1.50%~1.80%,P≤0.015%,S≤0.0050%,Nb:0.030%~0.080%,V≤0.060%,Ti≤0.040%,Cr≤0.40%,Ni:0.20%~1.00%,Mo:0.15%~0.50%,Cu≤0.35%,Al:0.015%~0.050%,Ca:0.0005%~0.0040%,B≤0.0005%,N≤0.0050%,余量为Fe和不可避免的杂质。采用了微合金化近包晶成分设计、纯净钢冶炼技术,通过轧制冷却工艺,得到少量先共析铁素体、针状铁素体、粒状贝氏体多相复合组织,满足了产品低温韧性和高强度的要求,满足了后续热煨弯管的使用要求。

Description

一种厚壁大口径X80M级热煨弯管用板及其制造方法 技术领域
本发明涉及钢铁生产技术领域,特别是涉及一种厚壁大口径X80M级热煨弯管用板及其制造方法。
背景技术
随着我国天然气工业的高速发展和石油、天然气等资源需求的日益增长,输送效率进一步提高,管道输送正向大口径、大壁厚和高压输送方向发展。中俄东线天然气管道工程,全长3371公里,是我国目前口径最大、压力最高的长距离天然气输送管道,干线线路管径1422mm,设计压力12MPa,设计输量380×108m 3/a。中俄东线北段(黑河—长岭)的部分地段热煨弯管管道采用φ1422×33.8mm规格X80管线钢,强韧性要求高。长距离天然气管道建设采用高压、大直径、厚壁的方式,以降低天然气管道建设和运营成本,提高其输送效率,要求更为优良的低温冲击韧性(-45℃KV2≥200J)适用于更恶劣的服役环境。
厚壁大口径热煨弯管用板X80管线钢研制的技术关键是如何同时保证产品的高强度和良好的低温韧性以及热煨弯管的调质性能。中俄东线大口径厚壁低温热煨弯管(φ1422×(≥)30mm规格X80(适用温度-45℃))用板研制难度大,主要采用控轧控冷、微合金化近包晶成分设计技术。钢板制成管后性能会下降,为确保弯管最终的强度和低温韧性达到设计要求,需提高钢的“淬透性”,以保证得到强韧匹配优异的中低温转变组织。又由于X80管线钢宽厚板压缩比有限,如何优化关键合金成分和TMCP工艺,以获得数量较多、细化的大角度晶界及亚结构,从而调控优异的-45℃低温韧性的管线钢板,是目前要解决的难题。
发明内容
本发明针对上述技术问题,克服现有技术的缺点,提供一种厚壁大口径X80M级热煨弯管用板,其化学成分及质量百分比如下:C:0.05%~0.15%,Si:0.10%~ 0.40%,Mn:1.50%~1.80%,P≤0.015%,S≤0.0050%,Nb:0.030%~0.080%,V≤0.060%,Ti≤0.040%,Cr≤0.40%,Ni:0.20%~1.00%,Mo:0.15%~0.50%,Cu≤0.35%,Al:0.015%~0.050%,Ca:0.0005%~0.0040%,B≤0.0005%,N≤0.0050%,余量为Fe和不可避免的杂质。
本发明进一步限定的技术方案是:
前所述的一种厚壁大口径X80M级热煨弯管用板,其化学成分及质量百分比如下:C:0.05%~0.10%,Si:0.10%~0.30%,Mn:1.50%~1.70%,P≤0.013%,S≤0.0020%,Nb:0.030%~0.060%,V≤0.060%,Ti≤0.040%,Cr≤0.40%,Ni:0.20%~0.60%,Mo:0.15%~0.30%,Cu≤0.35%,Al:0.015%~0.040%,Ca:0.0005%~0.0030%,B≤0.0005%,N≤0.0050%,余量为Fe和不可避免的杂质。
前所述的一种厚壁大口径X80M级热煨弯管用板,其化学成分及质量百分比如下:C:0.06%~0.11%,Si:0.20%~0.40%,Mn:1.60%~1.80%,P≤0.013%,S≤0.0050%,Nb:0.050%~0.080%,V≤0.060%,Ti≤0.040%,Cr≤0.40%,Ni:0.40%~0.70%,Mo:0.20%~0.40%,Cu≤0.35%,Al:0.020%~0.050%,Ca:0.0008%~0.0040%,B≤0.0005%,N≤0.0050%,余量为Fe和不可避免的杂质。
前所述的一种厚壁大口径X80M级热煨弯管用板,其化学成分及质量百分比如下:C:0.07%~0.12%,Si:0.15%~0.35%,Mn:1.60%~1.70%,P≤0.013%,S≤0.0030%,Nb:0.040%~0.070%,V≤0.060%,Ti:0.006~0.040%,Cr:0.10~0.40%,Ni:0.30%~0.70%,Mo:0.20%~0.35%,Cu≤0.35%,Al:0.020%~0.040%,Ca:0.0008%~0.0035%,B≤0.0005%,N≤0.0050%,余量为Fe和不可避免的杂质。
本发明的另一目的在于提供一种厚壁大口径X80M级热煨弯管用板制造方法,包括以下步骤:
S1、采用顶底复吹转炉冶炼,实现低碳、低磷硫出钢,LF+RH精炼进行升温、 造渣、脱硫、夹杂物球化、去气去夹杂操作,浇铸得到成分均匀、内部组织优异的合格铸坯;
S2、铸坯表检合格到步进式加热炉进行奥氏体化加热,采用数字脉冲火焰控制及二级计算机燃烧控制,奥氏体化温度1160~1180℃,温度均匀性≤10℃;
S3、采用两阶段轧制技术进行铸坯轧制,第一阶段轧制开轧温度1030~1060℃,第二阶段轧制温度820~850℃,终轧温度770~800℃,入水温度740~760℃,返红温度400~450℃。
前所述的一种厚壁大口径X80M级热煨弯管用板制造方法,步骤S1,通过260mm~320mm断面弧形连铸机浇铸。
本发明的有益效果是:
(1)本发明通过研究高强厚板微结构形态与低温韧性之间的关系,分析数量多而细化的大角度晶界和细匀分布的M/A等复相组织微结构对低温韧性的调控机理,构建新的强韧化机理,从而解决综合力学性能调控的关键技术问题,突破厚壁大口径低温热煨弯管X80高强高韧的技术瓶颈,形成稳定批量生产的全流程生产技术,为实现工业规模生产及应用奠定基础;
(2)本发明中高锰基础上适量控制Ni/Mo/Nb元素含量,通过合理的控轧控冷工艺,保证了宽厚规格X80M获得均匀细化的少量先共析铁素体、针状铁素体、粒状贝氏体多相复合组织,在保证高强度和低温韧性的同时,获得热煨后优异的调质性能;
(3)本发明中BOF+LF+RH冶炼工艺,有效提升了钢水洁净度,降低了钢板的其它含量,获得了洁净度满足高钢级管线产品的优质铸坯;
(4)本发明中低温奥氏体化技术是充分依据合金的熔化原理,保证了Ni、Mo、Nb等合金元素固溶强化作用,也达到了降低原始奥氏体化晶粒度的作用,提升了产品的低温韧性及制管形变能力;
(5)本发明根据产品规格及成分设计的轧制冷却温度,得到少量先共析铁素体+针状铁素体+粒状贝氏体的多相细匀组织,实现了产品厚度方向上的组织均匀性,在保证高强度的同时,实现低温冲击韧性-45℃的KV 2≥200J性能。
附图说明
图1为本发明实施例1的金相组织图。
具体实施方式
实施例1
本实施例提供的一种厚壁大口径X80M级热煨弯管用板,其化学成分及质量百分比如下:C:0.058%,Si:0.18%,Mn:1.65%,P:0.011%,S:0.0012%,Nb:0.039%,V:0.010%,Ti:0.019%,Cr:0.03%,Ni:0.39%,Mo:0.19%,Cu:0.03%,Al:0.029%,Ca:0.0019%,B:0.0003%,N:0.0031%,余量为Fe和不可避免的杂质。
其制造方法包括以下步骤:
S1、采用顶底复吹转炉冶炼,实现低碳、低磷硫出钢,LF+RH精炼进行升温、造渣、脱硫、夹杂物球化、去气去夹杂操作,通过320mm断面弧形连铸机浇铸,得到成分均匀、内部组织优异的合格铸坯;
S2、铸坯表检合格到步进式加热炉进行奥氏体化加热,采用数字脉冲火焰控制及二级计算机燃烧控制,奥氏体化温度1169℃,温度均匀性6℃;
S3、采用两阶段轧制技术进行铸坯轧制,第一阶段轧制开轧温度1039℃,第二阶段轧制温度836℃,终轧温度789℃,入水温度755℃,返红温度436℃。
实施例2
本实施例提供的一种厚壁大口径X80M级热煨弯管用板及其制造方法,其化学成分及质量百分比如下:C:0.10%,Si:0.33%,Mn:1.69%,P:0.010%,S:0.0010%,Nb:0.073%,V:0.020%,Ti:0.013%,Cr:0.03%,Ni:0.62%,Mo: 0.33%,Cu:0.03%,Al:0.029%,Ca:0.0017%,B:0.0001%,N:0.0029%,余量为Fe和不可避免的杂质。
其制造方法包括以下步骤:
S1、采用顶底复吹转炉冶炼,实现低碳、低磷硫出钢,LF+RH精炼进行升温、造渣、脱硫、夹杂物球化、去气去夹杂操作,通过260mm断面弧形连铸机浇铸,得到成分均匀、内部组织优异的合格铸坯;
S2、铸坯表检合格到步进式加热炉进行奥氏体化加热,采用数字脉冲火焰控制及二级计算机燃烧控制,奥氏体化温度1178℃,温度均匀性5℃;
S3、采用两阶段轧制技术进行铸坯轧制,第一阶段轧制开轧温度1056℃,第二阶段轧制温度829℃,终轧温度778℃,入水温度749℃,返红温度421℃。
实施例3
本实施例提供的一种厚壁大口径X80M级热煨弯管用板及其制造方法,其化学成分及质量百分比如下:C:0.09%,Si:0.30%,Mn:1.67%,P:0.012%,S:0.0013%,Nb:0.055%,V:0.010%,Ti:0.015%,Cr:0.13%,Ni:0.56%,Mo:0.31%,Cu:0.03%,Al:0.036%,Ca:0.0019%,B:0.0002%,N:0.0038%,余量为Fe和不可避免的杂质。
其制造方法包括以下步骤:
S1、采用顶底复吹转炉冶炼,实现低碳、低磷硫出钢,LF+RH精炼进行升温、造渣、脱硫、夹杂物球化、去气去夹杂操作,通过320mm断面弧形连铸机浇铸,得到成分均匀、内部组织优异的合格铸坯;
S2、铸坯表检合格到步进式加热炉进行奥氏体化加热,采用数字脉冲火焰控制及二级计算机燃烧控制,奥氏体化温度1169℃,温度均匀性不大于3℃;
S3、采用二阶段轧制技术进行铸坯轧制,第一阶段轧制开轧温度1059℃, 二阶段轧制温度842℃,终轧温度796℃,入水温度756℃,返红温度436℃。
实施例1、实施例2、实施例3产品的力学性能测试结果如下表:
Figure PCTCN2022125392-appb-000001
综上所述,本发明采用近包晶碳设计,提高钢板的低温韧性和可焊性的同时,保证钢板制管变形后的组织稳定性和热煨弯管制作过程中的调质性能;采用高锰设计,提高产品强度,有效细化组织;采用镍、钼、铌设计,配合控轧控冷工艺,保证宽厚规格X80M级钢板获得均匀细化的少量先共析铁素体、针状铁素体、粒状贝氏体多相复合组织,在保证高强韧性的同时获得热煨后良好的调质性能。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (6)

  1. 一种厚壁大口径X80M级热煨弯管用板,其特征在于:其化学成分及质量百分比如下:C:0.05%~0.15%,Si:0.10%~0.40%,Mn:1.50%~1.80%,P≤0.015%,S≤0.0050%,Nb:0.030%~0.080%,V≤0.060%,Ti≤0.040%,Cr≤0.40%,Ni:0.20%~1.00%,Mo:0.15%~0.50%,Cu≤0.35%,Al:0.015%~0.050%,Ca:0.0005%~0.0040%,B≤0.0005%,N≤0.0050%,余量为Fe和不可避免的杂质。
  2. 根据权利要求1所述的一种厚壁大口径X80M级热煨弯管用板,其特征在于:其化学成分及质量百分比如下:C:0.05%~0.10%,Si:0.10%~0.30%,Mn:1.50%~1.70%,P≤0.013%,S≤0.0020%,Nb:0.030%~0.060%,V≤0.060%,Ti≤0.040%,Cr≤0.40%,Ni:0.20%~0.60%,Mo:0.15%~0.30%,Cu≤0.35%,Al:0.015%~0.040%,Ca:0.0005%~0.0030%,B≤0.0005%,N≤0.0050%,余量为Fe和不可避免的杂质。
  3. 根据权利要求1所述的一种厚壁大口径X80M级热煨弯管用板,其特征在于:其化学成分及质量百分比如下:C:0.06%~0.11%,Si:0.20%~0.40%,Mn:1.60%~1.80%,P≤0.013%,S≤0.0050%,Nb:0.050%~0.080%,V≤0.060%,Ti≤0.040%,Cr≤0.40%,Ni:0.40%~0.70%,Mo:0.20%~0.40%,Cu≤0.35%,Al:0.020%~0.050%,Ca:0.0008%~0.0040%,B≤0.0005%,N≤0.0050%,余量为Fe和不可避免的杂质。
  4. 根据权利要求1所述的一种厚壁大口径X80M级热煨弯管用板,其特征在于:其化学成分及质量百分比如下:C:0.07%~0.12%,Si:0.15%~0.35%,Mn:1.60%~1.70%,P≤0.013%,S≤0.0030%,Nb:0.040%~0.070%,V≤0.060%,Ti:0.006~0.040%,Cr:0.10~0.40%,Ni:0.30%~0.70%,Mo:0.20%~0.35%,Cu≤0.35%,Al:0.020%~0.040%,Ca:0.0008%~0.0035%,B≤0.0005%,N≤0.0050%,余量为Fe和不可避免的杂质。
  5. 根据权利要求1所述的一种厚壁大口径X80M级热煨弯管用板制造方法,其特征在于:应用于权利要求1-4任意一项,包括以下步骤:
    S1、采用顶底复吹转炉冶炼,实现低碳、低磷硫出钢,LF+RH精炼进行升温、造渣、脱硫、夹杂物球化、去气去夹杂操作,浇铸得到成分均匀、内部组织优异的合格铸坯;
    S2、铸坯表检合格到步进式加热炉进行奥氏体化加热,采用数字脉冲火焰控制及二级计算机燃烧控制,奥氏体化温度1160~1180℃,温度均匀性≤10℃;
    S3、采用两阶段轧制技术进行铸坯轧制,第一阶段轧制开轧温度1030~1060℃,第二阶段轧制温度820~850℃,终轧温度770~800℃,入水温度740~760℃,返红温度400~450℃。
  6. 根据权利要求1所述的一种厚壁大口径X80M级热煨弯管用板及其制造方法,其特征在于:所述步骤S1,通过260mm~320mm断面弧形连铸机浇铸。
PCT/CN2022/125392 2021-11-22 2022-10-14 一种厚壁大口径x80m级热煨弯管用板及其制造方法 WO2023087999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111385420.2A CN114182169A (zh) 2021-11-22 2021-11-22 一种厚壁大口径x80m级热煨弯管用板及其制造方法
CN202111385420.2 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023087999A1 true WO2023087999A1 (zh) 2023-05-25

Family

ID=80602310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125392 WO2023087999A1 (zh) 2021-11-22 2022-10-14 一种厚壁大口径x80m级热煨弯管用板及其制造方法

Country Status (2)

Country Link
CN (1) CN114182169A (zh)
WO (1) WO2023087999A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182169A (zh) * 2021-11-22 2022-03-15 燕山大学 一种厚壁大口径x80m级热煨弯管用板及其制造方法
CN115747672A (zh) * 2022-10-20 2023-03-07 北京首钢股份有限公司 一种包晶钢及其制备方法
CN117568706A (zh) * 2023-09-25 2024-02-20 江苏沙钢集团淮钢特钢股份有限公司 一种无缝低温三通、无缝热煨弯管用钢及其生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100236668A1 (en) * 2006-07-04 2010-09-23 Takuya Hara High strength steel pipe for line pipe superior in low temperature toughness and high strength steel plate for line pipe and methods of production of the same
CN109402500A (zh) * 2018-10-08 2019-03-01 鞍钢股份有限公司 低温韧性良好的热煨弯管用x80宽厚钢板及其生产方法
CN114182169A (zh) * 2021-11-22 2022-03-15 燕山大学 一种厚壁大口径x80m级热煨弯管用板及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880818B (zh) * 2010-06-04 2012-05-30 中国石油天然气集团公司 一种x80弯管和管件的制备方法
CN104789863B (zh) * 2015-03-20 2017-01-18 宝山钢铁股份有限公司 具有良好抗应变时效性能的x80管线钢、管线管及其制造方法
CN109055864B (zh) * 2018-10-08 2019-09-20 鞍钢股份有限公司 高强韧性低屈强比热煨弯管用宽厚钢板及其生产方法
CN109536831A (zh) * 2018-11-28 2019-03-29 张家港宏昌钢板有限公司 热煨弯管母管用x80热轧钢板及其制造方法
CN112375967B (zh) * 2020-10-20 2022-04-19 包头钢铁(集团)有限责任公司 一种强韧性优良热煨弯管钢带及其生产方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100236668A1 (en) * 2006-07-04 2010-09-23 Takuya Hara High strength steel pipe for line pipe superior in low temperature toughness and high strength steel plate for line pipe and methods of production of the same
CN109402500A (zh) * 2018-10-08 2019-03-01 鞍钢股份有限公司 低温韧性良好的热煨弯管用x80宽厚钢板及其生产方法
CN114182169A (zh) * 2021-11-22 2022-03-15 燕山大学 一种厚壁大口径x80m级热煨弯管用板及其制造方法

Also Published As

Publication number Publication date
CN114182169A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2023087999A1 (zh) 一种厚壁大口径x80m级热煨弯管用板及其制造方法
JP6574307B2 (ja) 高強靭性継目無鋼管及びその製造方法
CN102373387B (zh) 大应变冷弯管用钢板及其制造方法
WO2020098306A1 (zh) 一种大厚度nm500耐磨钢及生产方法
CN102747300B (zh) 一种高强高韧性结构用无缝钢管及其制造方法
CN104357754B (zh) 一种耐硫酸露点腐蚀钢板及其制造方法
CN101200790A (zh) 油气输送大型高压管件用钢及其所制作的钢管、管件及焊接材料
CN102021497A (zh) 一种x80管线钢热轧板卷及其制造方法
CN101906575A (zh) 一种高强度经济型x70管线钢热轧平板及其生产方法
WO2020228232A1 (zh) TMCP型屈服370MPa高性能桥梁钢板及生产方法
WO2012113119A1 (zh) 一种x90钢级弯管和管件的制备方法
CN104498834B (zh) 一种高韧性超高强度钢的成分及其制备工艺
CN102400039A (zh) 具有良好低温韧性的浆体输送管线用钢及其制造方法
WO2023000584A1 (zh) 一种1000MPa级调质型水电用钢板及其生产方法
CN106811700A (zh) 一种厚规格抗酸性x60ms热轧卷板及其制造方法
CN103789685A (zh) 一种高强度、高韧性石油钻杆及其生产方法
CN103160746A (zh) 一种高强度厚壁输水管用钢及其制造方法
CN107988548B (zh) 一种适应低温祼露环境的x80管线钢板及其生产方法
CN102383057A (zh) 耐低温k60管线钢及其所制弯管和弯管的制作方法
CN108411196A (zh) 抗拉强度为680MPa级大型移动式压力容器用钢及生产方法
CN106591718A (zh) 屈服420MPa级高韧抗酸调质型管件钢板及生产方法
WO2024027526A1 (zh) 特厚Q500qE桥梁钢板及其生产方法
WO2017050227A1 (zh) 一种高强韧性无缝钢管及其制造方法
CN107488812A (zh) 屈服485MPa级低温环境服役管件钢板及其生产方法
CN105369132A (zh) 大断面海洋平台用钢的生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894536

Country of ref document: EP

Kind code of ref document: A1