WO2023087922A1 - 谐波生成器、谐波调制组件、光模块和光通信设备 - Google Patents

谐波生成器、谐波调制组件、光模块和光通信设备 Download PDF

Info

Publication number
WO2023087922A1
WO2023087922A1 PCT/CN2022/121234 CN2022121234W WO2023087922A1 WO 2023087922 A1 WO2023087922 A1 WO 2023087922A1 CN 2022121234 W CN2022121234 W CN 2022121234W WO 2023087922 A1 WO2023087922 A1 WO 2023087922A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
harmonic
modulator
light beam
transmission path
Prior art date
Application number
PCT/CN2022/121234
Other languages
English (en)
French (fr)
Inventor
黄志辉
王启冰
郑博方
易兴文
Original Assignee
华为技术有限公司
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 中山大学 filed Critical 华为技术有限公司
Publication of WO2023087922A1 publication Critical patent/WO2023087922A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control

Definitions

  • the present application relates to the field of optical communication, in particular to a harmonic generator, a harmonic modulation component, an optical module and an optical communication device.
  • the bandwidth of many devices restricts the improvement of transmission rate.
  • the bandwidth of a complementary metal oxide semiconductor digital analog converter is generally below 100 GHz.
  • FIG. 1 is a schematic structural diagram of an optical communication device.
  • the optical communication device includes a light source 101 , a harmonic generator 102 , a modulator group 103 and a beam combiner 110 .
  • the optical communication device is used for dividing the electrical signal to be modulated into a first electrical signal and a second electrical signal.
  • the spectrum ranges of the first electrical signal and the second electrical signal are half of the spectrum range of the electrical signal to be modulated.
  • the bandwidths of the first electrical signal and the second electrical signal are the same, and both are smaller than the bandwidth of the electrical signal to be modulated.
  • the light source 101 is used to output light beams.
  • the harmonic generator 102 includes a beam splitter 104 , a modulator 105 , a phase shifter (phase shifter, PS) 106 and an optical coupler 107 .
  • the beam splitter 104 is used to split the beam into beam 1 and beam 2 .
  • the modulator 105 is used for modulating the light beam 1 according to the first driving signal.
  • the modulator 105 is also used for modulating the light beam 2 according to the second driving signal.
  • the first driving signal and the second driving signal are complementary.
  • the first driving signal and the second driving signal are clock signals.
  • the frequency of the clock signal is greater than or equal to half the bandwidth of the electrical signal to be modulated.
  • PS106 is used to change the phase of beam 1.
  • the optical coupler 107 is used to couple the light beam 1 and the light beam 2, and output the first light beam and the second light beam.
  • the carriers of the first beam and the second beam are in phase, and the first harmonic is opposite.
  • Modulator group 103 includes modulator 108 and modulator 109 .
  • the modulator 108 is used for modulating the first light beam according to the first electrical signal to obtain a modulated optical signal 1 .
  • the modulator 109 is used for modulating the second light beam according to the second electrical signal to obtain the modulated optical signal 2 .
  • the beam combiner 110 is used to combine the modulated optical signal 1 and the modulated optical signal 2 to obtain the modulated optical signal. Through optical domain spectrum mosaic technology, low bandwidth optoelectronic devices can be used to generate high baud rate optical modulation signals.
  • the bandwidth of modulator 108 and modulator 109 may be half of the frequency spectrum of the signal to be modulated.
  • the bandwidth of other devices can also be half of the frequency spectrum of the signal to be modulated.
  • a DAC for performing digital-to-analog conversion on the first electrical signal and a driver for amplifying the first electrical signal.
  • the optical equation is as follows.
  • phi is the phase shift value of the phase shifter 106 .
  • phi can be adjusted by DC bias voltage.
  • BW is the frequency of the first driving signal and the second driving signal.
  • t is time.
  • m is the modulation depth, which is set to 1 here.
  • J 0,1,2.... are the coefficients of the Bezier expansion. It can be seen from formulas 1 and 2 that in addition to the carrier wave and the first harmonic component, there is also a second harmonic component in the first light beam and the second light beam output by 107 . In the modulation process of the subsequent modulator group 103, the second harmonic with the same phase will introduce noise, thereby reducing the signal-to-noise ratio of the modulated optical signal.
  • the application provides a harmonic generator, a harmonic modulation component, an optical module and an optical communication device.
  • the power of the even harmonics in the first light beam and the second light beam can be reduced by the suppressor, thereby improving the signal-to-noise ratio of the subsequent modulated optical signal.
  • the first aspect of the present application provides a harmonic generator.
  • the harmonic generator includes a first beam splitter, a suppressor, a first optical coupler and a first phase shifter.
  • the first output port of the first beam splitter is connected to the first input port of the first optical coupler through the first optical transmission path.
  • the second output port of the first beam splitter is connected to the second input port of the first optical coupler through the second optical transmission path.
  • the first beam splitter is used to receive the light beam and split the light beam into two sub-beams.
  • the two sub-beams carry no or very little harmonic power. Therefore, the two sub-beams are also called two carrier beams.
  • a suppressor is arranged on the first optical transmission path.
  • the suppressor is used to receive the carrier beam, and modulate the carrier beam according to the driving signal to obtain a harmonic beam.
  • Harmonic beams carry carrier and harmonics.
  • Suppressors are also used to suppress carrier and even harmonics in harmonic beams.
  • the suppressor is used to output odd harmonics while ignoring the power of the carrier and even harmonics.
  • the first input port of the first optical coupler is used to receive odd harmonics.
  • the second input port of the first optocoupler is used to receive the carrier wave.
  • the first optical coupler is used for coupling odd harmonics and carriers.
  • the first optocoupler includes two output ports. One of the two output ports is connected to the first phase shifter.
  • the first phase shifter is used to output the first light beam.
  • the other output port of the two output ports is used to output the second light beam.
  • the first phase shifter is used to change the phase of the beam, so that the carrier of the first beam and the carrier of the second beam are in phase, and the odd harmonics of the first beam and the odd harmonics of the second beam are opposite.
  • the suppressor can suppress the even-numbered harmonics in the carrier and harmonics, so as to obtain relatively pure odd-numbered harmonics. Then through the first optical coupler and the first phase shifter, the first light beam and the second light beam with the carrier in phase and the odd harmonics reversed can be obtained. Therefore, the present application can reduce the power of the second harmonic in the first beam and the second beam, thereby improving the signal-to-noise ratio of the subsequent modulated optical signal.
  • the harmonic generator further includes a power regulator.
  • a power regulator is arranged on the first optical transmission path or the second optical transmission path. The power regulator is used to adjust the power of the beam.
  • the power ratio of the carrier wave and the first harmonic in the first beam or the second beam is related to the signal-to-noise ratio of the modulated optical signal.
  • the power ratio of the first harmonic to the carrier is R.
  • the present application can improve the signal-to-noise ratio of the modulated optical signal by adjusting the power ratio.
  • the harmonic generator further includes a second phase shifter.
  • a second phase shifter is arranged on the first optical transmission path or the second optical transmission path.
  • the second phase shifter is used to change the phase of the beam.
  • the lengths of the first optical transmission path and the second optical transmission path may be different, thereby generating a phase difference between the carrier wave and the odd harmonic.
  • the signal-to-noise ratio of the modulated optical signal will be reduced. Therefore, by adding the second phase shifter, the phase difference can be compensated, thereby improving the signal-to-noise ratio of the modulated optical signal.
  • the light splitting ratio of the first optical coupler is a:1-a.
  • the value range of a is between 0.4 and 0.6.
  • the difference between the value of a and 0.5 is too large, the power difference of the carrier in the first light beam and the second light beam will become larger, and the power difference of the first harmonic will also become larger.
  • the spectrum stitching noise generated by the coupling of the two output optical signals generated by the modulator group increases, thereby affecting the signal-to-noise ratio of the modulated optical signal. Therefore, the present application can improve the signal-to-noise ratio of the modulated optical signal.
  • the suppressor is a Mach-Zehnder modulator (mach-zehnder modulator, MZM).
  • MZM Mach-Zehnder modulator
  • the MZM includes a second beam splitter, an upper modulator, a lower modulator, a third phase shifter and a second optical coupler.
  • the input port of the second beam splitter is connected to the first output port of the first beam splitter.
  • the first output port of the second beam splitter is connected to the first input port of the second optical coupler through the third optical transmission path.
  • the second output port of the second beam splitter is connected to the second input port of the second optical coupler through the fourth optical transmission path.
  • An upper modulator is arranged on the third optical transmission path.
  • a down modulator is arranged on the fourth optical transmission path.
  • the upper modulator and the lower modulator are used to receive the differential clock driving signal, and modulate the carrier light beam according to the differential clock driving signal to obtain a harmonic light beam.
  • Harmonic beams carry carrier and harmonics.
  • a third phase shifter is arranged on the third optical transmission path or the fourth optical transmission path. The third phase shifter is used to generate a phase difference between the light beams transmitted in the third optical transmission path and the fourth optical transmission path.
  • the second optical coupler is used to suppress the carrier and even harmonics in the harmonic beam according to the phase difference.
  • the second optocoupler is used to output odd harmonics. Among them, by using MZM as suppressor, the cost of harmonic generator can be reduced.
  • the suppressor is a linearized light modulator.
  • the power ratio between the high-frequency sub-harmonic and the low-frequency sub-harmonic can be reduced.
  • the power ratio of the third harmonic to the first harmonic can be reduced.
  • the present application mainly relies on low frequency sub-harmonics. The power of the high frequency subharmonics is lost as losses. Therefore, by reducing the power ratio of high-frequency sub-harmonics and low-frequency sub-harmonics, the loss of the harmonic generator can be reduced.
  • the linearized optical modulator includes a first MZM, a second MZM, a second optical coupler, and a third phase shifter.
  • the input port of the first MZM is connected to the first output port of the first beam splitter.
  • the first output port of the first MZM is connected to the first input port of the second optical coupler through the third optical transmission path.
  • the second output port of the first MZM is connected to the second input port of the second optical coupler through the fourth optical transmission path.
  • a second MZM is set on the third optical transmission path.
  • a third phase shifter is arranged on the third optical transmission path or the fourth optical transmission path.
  • the linearized optical modulator includes a first MZM, a reflective sheet, a second optical coupler, and a third phase shifter.
  • the first input port of the first MZM is connected to the first output port of the first beam splitter.
  • the first output port of the first MZM is connected to the reflective sheet.
  • the second output port of the first MZM is connected to the first input port of the second optical coupler through the third optical transmission path.
  • the second input port of the first MZM is connected to the second input port of the second optical coupler through the fourth optical transmission path.
  • a third phase shifter is arranged on the third optical transmission path or the fourth optical transmission path. Among them, by adding reflectors, the number of MZMs can be reduced, thereby reducing the cost of the harmonic generator.
  • the light splitting ratio of the second optical coupler is r:1-r.
  • the value range of r is 0.02 to 0.2.
  • the power ratio of the high-frequency sub-harmonic to the low-frequency sub-harmonic is related to the linearity of the linearized optical modulator. The better the linearity, the lower the power ratio.
  • Linearity is related to the value of r. When the value of r ranges from 0.02 to 0.2, the linearized light modulator has better linearity. Therefore, the present application can reduce the power ratio of the high-frequency sub-harmonic to the low-frequency sub-harmonic, thereby reducing the loss of the harmonic generator.
  • the second optical coupler is an adjustable optical coupler.
  • the linearized light modulator has better linearity.
  • the optical path losses in the third optical transmission path and the fourth optical transmission path may be different. Different optical path losses will change the optimal value range of r.
  • the r value can be changed through the adjustable optical coupler, thereby reducing the power ratio of the high-frequency sub-harmonic to the low-frequency sub-harmonic and reducing the loss of the harmonic generator.
  • the second aspect of the present application provides a harmonic modulation component.
  • the harmonic modulation component includes a modulator group, a beam combiner, and the harmonic generator described in the first aspect or any one of the first aspects.
  • the modulator group includes a first modulator and a second modulator. An output port of the harmonic generator is connected to the first modulator. Another output port of the harmonic generator is connected to the second modulator. The output end of the first modulator is connected to the first input end of the beam combiner. The output end of the second modulator is connected to the second input end of the beam combiner.
  • the first modulator and the second modulator are intensity modulators.
  • the first modulator and the second modulator are IQ modulators.
  • the harmonic modulation component further includes a polarization splitter, another modulator group, another beam combiner, a polarization combiner, and another aforementioned first aspect or the first aspect A harmonic generator as described in any one of.
  • the first output port of the polarization splitter is connected with the input port of the harmonic generator.
  • the second output port of the polarization splitter is connected to the input port of another harmonic generator.
  • Another set of modulators includes a third modulator and a fourth modulator. An output port of another harmonic generator is connected to the third modulator. Another output port of another harmonic generator is connected to the fourth modulator.
  • the output port of the third modulator is connected to the first input port of another beam combiner.
  • the output port of the fourth modulator is connected to the second input port of another beam combiner.
  • the output port of the beam combiner is connected to the first input port of the polarization combiner.
  • the output port of the other beam combiner is connected to the second input port of the polarization combiner.
  • the first modulator and the second modulator are linearized light modulators.
  • the linearized optical modulator reduces the nonlinearity of the modulator, thereby reducing the in-band noise caused by the high-order harmonic component, and can further improve the signal-to-noise ratio of the modulated optical signal.
  • the third aspect of the present application provides an optical module.
  • the optical module includes a light source and the second aspect or the harmonic modulation component described in any one of the second aspects.
  • a light source is used to generate a light beam and transmit the light beam to the harmonic modulation component.
  • the harmonic modulation component is used to modulate the light beam to obtain a modulated optical signal.
  • a fourth aspect of the present application provides an optical communication device.
  • the optical communication device includes a processor and the optical module described in the aforementioned third aspect.
  • the processor is used for dividing the electrical signal to be modulated into a first electrical signal and a second electrical signal.
  • the bandwidths of the first electrical signal and the second electrical signal are the same, and both are smaller than the bandwidth of the electrical signal to be modulated.
  • the processor is also used for transmitting the first electrical signal and the second electrical signal to the optical module.
  • the light module is used to generate the light beam, and obtain the first light beam and the second light beam according to the light beam.
  • the carrier of the first beam is in phase with the carrier of the second beam.
  • the odd harmonics of the first light beam and the odd harmonics of the second light beam are reversed.
  • the optical module is also used to modulate the first light beam with the first electrical signal to obtain a first modulated optical signal.
  • the optical module is also used to modulate the second light beam with the second electrical signal to obtain a second modulated optical signal.
  • the optical module is also used to combine the first modulated optical signal and the second modulated optical signal to obtain the modulated optical signal.
  • the fifth aspect of the present application provides a method for generating harmonics.
  • the harmonic generating method includes the following steps: splitting a carrier light beam into two carrier light beams by a beam splitter. Modulating one of the two carrier beams results in a harmonic beam.
  • the harmonic beam includes a carrier and a harmonic. Carrier and even harmonics in the harmonic beam are suppressed to obtain odd harmonic beams.
  • the odd harmonic beam is coupled with the other of the two carrier beams to obtain two beams.
  • the phase of one of the two light beams is changed by a phase shifter, so that the carriers of the two light beams are in phase and the odd harmonics are in reverse.
  • the method for generating harmonics further includes the following step: adjusting the power of the one carrier light beam, the other carrier light beam, or the odd-order harmonic light beam through a power regulator.
  • the method for generating harmonics further includes the following step: changing the phase of the one carrier light beam, the other carrier light beam, or the odd-order harmonic light beams by using a phase shifter.
  • FIG. 1 is a schematic structural diagram of an optical communication device
  • Fig. 2 is the first schematic structural diagram of the harmonic generator provided in the embodiment of the present application.
  • Figure 3a is a schematic diagram of the carrier and harmonic distribution of the first light beam provided in the embodiment of the present application.
  • Fig. 3b is a schematic diagram of the carrier and harmonic distribution of the second light beam provided in the embodiment of the present application.
  • Fig. 4a is the first structural schematic diagram of the suppressor provided in the embodiment of the present application.
  • Fig. 4b is the second structural schematic diagram of the harmonic generator provided in the embodiment of the present application.
  • Fig. 5 is a second structural schematic diagram of the suppressor provided in the embodiment of the present application.
  • Fig. 6 is the third schematic structural diagram of the suppressor provided in the embodiment of the present application.
  • FIG. 7 is a third structural schematic diagram of the harmonic generator provided in the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a power conditioner provided in an embodiment of the present application.
  • FIG. 9 is a first structural schematic diagram of the harmonic modulation component provided in the embodiment of the present application.
  • FIG. 10 is a second structural schematic diagram of the harmonic modulation component provided in the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an optical module provided in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an optical communication device provided in an embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of an optical communication system provided in this application.
  • the application provides a harmonic generator, a harmonic modulation component, an optical module and an optical communication device.
  • the suppressor can suppress even harmonics in the carrier and harmonics. Therefore, the present application can reduce the power of the second harmonic in the first beam and the second beam, thereby improving the signal-to-noise ratio of the subsequent modulated optical signal.
  • first”, “second”, “target” and the like used in this application are only used for the purpose of distinguishing and describing, and cannot be interpreted as indicating or implying relative importance, nor indicating or implying order.
  • reference numerals and/or letters are repeated in the various figures of this application for the sake of brevity and clarity. Repetition does not imply a strictly limited relationship between the various embodiments and/or configurations.
  • the harmonic generator in this application is applied in the field of optical communication.
  • the bandwidth of the device restricts the transmission rate. Therefore, the requirement on the bandwidth of the device can be reduced through the optical domain spectrum mosaic technology.
  • the first light beam and the second light beam output by the harmonic generator 102 carry even harmonics.
  • the second harmonic in the even harmonics introduces spectral stitching noise.
  • the beam combiner 110 cannot eliminate the noise caused by the second harmonic. In subsequent processing, noise will reduce the signal-to-noise ratio of the modulated optical signal.
  • Fig. 2 is a first structural schematic diagram of the harmonic generator provided in the embodiment of the present application.
  • the harmonic generator 200 includes a beam splitter 201 , a suppressor 202 , a first optical coupler 204 and a first phase shifter (phase shifter, PS) 203 .
  • the first output port of the beam splitter 201 is connected to the first input port of the first optical coupler 204 through a first optical transmission path.
  • the second output port of the beam splitter 201 is connected to the second input port of the first optical coupler 204 through a second optical transmission path.
  • the beam splitter 201 is used to receive the beam and split the beam into two beams.
  • the light beam is a continuous optical signal.
  • the two beams include beam 1 and beam 2.
  • the first optical transmission path is used to transmit the light beam 1 .
  • the second optical transmission path is used to transmit the light beam 2 .
  • a suppressor 202 is provided on the first optical transmission path. The suppressor 202 is used for modulating the light beam 1 according to the driving signal to obtain the modulated light beam 1 .
  • the driving signal of the suppressor 202 may be a clock signal, or a periodic signal with a duty ratio of 50%.
  • Beam 1 is also called a carrier beam, and the modulated beam 1 is also called a harmonic beam.
  • the carrier beam carries the carrier wave.
  • Harmonic beams carry carrier and harmonics.
  • the frequency of the carrier wave is the same as the frequency of the beam received by the beam splitter 201 .
  • Harmonics include even-numbered harmonics and odd-numbered harmonics.
  • Even-numbered harmonics include second harmonics, fourth harmonics, and the like.
  • Odd-order harmonics include first harmonics, third harmonics, and the like.
  • the suppressor 202 is also used to suppress the carrier and even harmonics in the harmonic beam.
  • the suppressor 202 is used to transmit odd harmonics to the first optical coupler 204 .
  • the first optical coupler 204 is used to receive odd harmonics from the suppressor 202 .
  • the first optical coupler 204 is used to receive the carrier wave from the beam splitter 201 .
  • the first optical coupler 204 is used for optically coupling odd harmonics and carriers.
  • One output port of the first optical coupler 204 is connected to the first phase shifter 203 .
  • the first phase shifter 203 is a 90° phase shifter. In practical applications, the phase shift value of the first phase shifter 203 may have a difference from 90°.
  • the difference is used to compensate the optical path difference between the first light beam and the second light beam on the optical transmission path after the output of the optical coupler 204 .
  • the first phase shifter 203 is used to change the phase of the light beam to output the first light beam.
  • the other output port of the first optical coupler 204 is used to output the second light beam.
  • Fig. 3a is a schematic diagram of the carrier and harmonic distribution of the first light beam provided in the embodiment of the present application. As shown in Figure 3a, the abscissa is the frequency, and the ordinate is the amplitude.
  • the first light beam includes a carrier f0 and a first harmonic f11. The amplitude of the carrier f0 is higher than that of the first harmonic f11. In practical applications, the amplitude of the carrier f0 may be equal to or smaller than the amplitude of the first harmonic f11.
  • the frequency difference between the carrier f0 and the first harmonic f11 is equal to the frequency of the driving signal.
  • the frequency of the driving signal may be equal to half of the bandwidth of the subsequent electrical signal to be modulated.
  • Fig. 3b is a schematic diagram of the distribution of the carrier and harmonics of the second light beam provided in the embodiment of the present application.
  • the second light beam includes a carrier f0 and a first harmonic f12.
  • the carrier f0 of the second beam is in phase with the carrier f0 of the first beam.
  • the first harmonic f12 and the first harmonic f11 are opposite.
  • the carrier f0 of the second beam has the same power as the carrier f0 of the first beam.
  • the power of the first harmonic f12 and the first harmonic f11 is the same.
  • the high-frequency harmonics in the odd-numbered harmonics have little influence on the noise, so the third harmonic and above high-frequency harmonics can be ignored here.
  • the suppressor 202 suppresses the even-numbered harmonics, the even-numbered harmonics can also be ignored here.
  • the suppressor 202 can suppress the carrier and even harmonics in the harmonic light beam, so as to obtain relatively pure odd harmonics. Then through the first optical coupler and the first phase shifter, the first light beam and the second light beam with the carrier in phase and the odd harmonics reversed can be obtained.
  • the second harmonic in even harmonics is the main cause of noise. Therefore, the present application can reduce the power of the second harmonic in the first beam and the second beam, thereby improving the signal-to-noise ratio of the subsequent modulated optical signal.
  • the first phase shifter 203 is connected to the first output port of the first optical coupler 204 .
  • the first phase shifter 203 can be connected to the second output port of the first optical coupler 204.
  • the first phase shifter 203 is used to change the phase of the second light beam.
  • the harmonic generator 200 includes two first phase shifters 203 .
  • a first phase shifter 203 is connected to a first output port of a first optical coupler 204 .
  • Another first phase shifter 203 is connected to the second output port of the first optical coupler 204 .
  • One of the first phase shifters 203 is a 90° phase shifter.
  • Another first phase shifter 203 is a 180° phase shifter.
  • the splitting ratio of the first optical coupler 204 affects the power difference of the carrier in the first light beam and the second light beam, and also affects the power difference of the first harmonic in the first light beam and the second light beam.
  • the splitting ratio of the first optical coupler may be a:1-a.
  • the value range of a is between 0.4 and 0.6.
  • the difference between the value of a and 0.5 is too large, the power difference of the carrier in the first beam and the second beam will become larger, and the power difference of the first harmonic will also become larger.
  • Fig. 4a is a schematic diagram of the first structure of the suppressor provided in the embodiment of the present application.
  • the suppressor 202 includes a second beam splitter 401 , an upper modulator 402 , a lower modulator 403 , a third phase shifter 404 and a second optical coupler 405 .
  • the input port of the second beam splitter 401 is connected to the first output port of the first beam splitter (not shown in Fig. 4a).
  • the second beam splitter 401 is used to receive the beam 1 and split the beam 1 into a beam 11 and a beam 12 .
  • the first output port of the second beam splitter 401 is connected to the first input port of the second optical coupler 405 through a third optical transmission path.
  • the second output port of the second beam splitter 401 is connected to the second input port of the second optical coupler 405 through the fourth optical transmission path.
  • An upper modulator 402 is provided on the third optical transmission path.
  • a down modulator 403 is provided on the fourth optical transmission path.
  • the upper modulator 402 is used for receiving the first driving signal, and modulating the light beam 11 according to the first driving signal to obtain the light beam 21 .
  • the lower modulator 403 is used for receiving the second driving signal, and modulating the light beam 12 according to the first driving signal to obtain the light beam 22 .
  • the first driving signal and the second driving signal are differential clock driving signals.
  • the voltage of the second driving signal is opposite to that of the first driving signal.
  • beams 21 and 22 carry carrier waves and harmonics.
  • a third phase shifter 404 is provided on the third optical transmission path.
  • the third phase shifter 404 is used to change the phase of the beam 21 so that there is a phase difference between the beam 21 and the beam 22 .
  • the second optical coupler 405 is used for coupling the light beam 21 and the light beam 22 . Since there is a certain phase difference between the light beam 21 and the light beam 22 , during the coupling process, the second optical coupler 405 can suppress even harmonics and carriers.
  • the second optical coupler 405 is used to output odd harmonics.
  • Fig. 4b is a second structural schematic diagram of the harmonic generator provided in the embodiment of the present application.
  • the harmonic generator 200 includes a beam splitter 201 , a suppressor 202 , a first optical coupler 204 and a first phase shifter 203 .
  • the beam splitter 201 is used to split the beam into two beams.
  • the two beams include beam 1 and beam 2.
  • Beam 1 and Beam 2 are also called carrier beams.
  • a suppressor 202 is provided on the first optical transmission path.
  • the structure of the suppressor 202 is shown in Fig. 4a.
  • the suppressor 202 is used to modulate the beam 1 to obtain the modulated beam 1 .
  • the modulated light beam 1 includes a carrier and harmonics.
  • the suppressor 202 is also used to suppress the carrier and even harmonics in the modulated light beam 1, and output odd harmonics.
  • the first optical coupler 204 is used to receive the odd harmonics from the suppressor 202 and the carrier wave from the beam splitter 201 .
  • the first optical coupler 204 is used for optically coupling odd harmonics and carriers.
  • the harmonic generator 200 is used to output the first light beam and the second light beam.
  • the first phase shifter 203 is used to change the phase of the light beam, so that the carrier wave of the second light beam is in phase with the carrier wave of the first light beam, and the odd harmonic of the second light beam is opposite to that of the first light beam.
  • the suppressor 202 in Figure 4a is a nonlinear optical modulator. At this time, among the odd-numbered harmonics, the power ratio of the high-frequency sub-harmonics to the low-frequency sub-harmonics is high. In the subsequent processing, the power of the high-frequency sub-harmonic will be lost. To reduce losses, suppressor 202 may be a linearized light modulator. When there is an approximate linear relationship between the input and output of the linearized optical modulator, the power of the high-frequency subharmonic carried in the light beam output by the linearized optical modulator is relatively small. When there is a linear relationship between the input and output of the linearized optical modulator, the light beam output by the linearized optical modulator does not carry high-frequency subharmonics. Assume that the output Eout(t) of the linearized optical modulator is equal to Equation 3.
  • the first light beam output1 and the second light beam output2 output by the harmonic generator 200 can be expressed by the following formula.
  • Equation 3 is the magnitude of the light intensity of the input beam of the harmonic generator 200 .
  • Equation 5 and Equation 6 the function of the first phase shifter 203 is not calculated. At this time, there is an additional phase difference j between the first light beam and the second light beam.
  • the phase difference between the first light beam and the second light beam can be eliminated by the first phase shifter 203 .
  • the output of the harmonic generator 200 does not carry the third harmonic and above high frequency, odd harmonic Wave. Therefore, the present application can reduce loss.
  • linearized light modulators can have different structures.
  • the following describes the linearized light modulator in this application by taking two different structures as examples.
  • Fig. 5 is a second structural schematic diagram of the suppressor provided in the embodiment of the present application.
  • the suppressor 202 includes a first MZM, a second MZM, a second optical coupler 502 and a third phase shifter 501 .
  • the input port of the first MZM is used to connect with the first output port of the first beam splitter (not shown in FIG. 5 ).
  • the input port of the first MZM is used to receive beam 1.
  • the first MZM is used to modulate the beam 1 according to the first driving signal to obtain the beam 11 and the beam 12 .
  • the first MZM includes an optical coupler 503 .
  • the light splitting ratio of the optical coupler 503 is 0.5:0.5.
  • the optical coupler 503 is used to optically couple the light beam 11 and the light beam 12 to obtain the light beam 21 and the light beam 22 .
  • the light beam 22 is a light beam with suppressed carrier and even harmonics.
  • the light beam 21 is a light beam carrying a carrier wave and even harmonics.
  • the first output port of the first MZM is connected to the first input port of the second optical coupler 502 through the third optical transmission path.
  • the second output port of the first MZM is connected to the second input port of the second optical coupler 502 through the fourth optical transmission path.
  • the first MZM is used to output the light beam 21 through the first output port.
  • the first MZM is used to output the light beam 22 through the second output port.
  • a second MZM is set on the third optical transmission path.
  • the second MZM is used to modulate the light beam 21 according to the second driving signal, and convert the carrier wave and the even harmonics carried in the light beam 21 into odd harmonics.
  • the second MZM outputs odd harmonics.
  • the first driving signal and the second driving signal are differential clock driving signals.
  • the voltage of the second driving signal is opposite to that of the first driving signal.
  • a third phase shifter 501 is provided on the fourth optical transmission path.
  • the third phase shifter 501 is used to compensate the optical path difference between the third optical transmission path and the fourth optical transmission path. In practical applications, the optical path difference can also be compensated by adjusting the length of the fourth optical transmission path.
  • the second optical coupler 502 is used to receive the light beam 21 and the light beam 22 . During the coupling process, by adjusting the light splitting ratio of the second optical coupler 502, high-frequency subharmonics can be suppressed.
  • the second optical coupler 502 is used to output odd harmonic
  • the light field of the linearized light modulator in Fig. 5 can be expressed as the following formula.
  • Eout(t) is an odd harmonic.
  • the power ratio of the modulated beam 21 to the beam 22 is 1-r:r.
  • 1-r:r can also be referred to as the splitting ratio of the second optical coupler 502 .
  • V ⁇ is the half-wave voltage of the first MZM and the second MZM.
  • V(t) is the absolute value of the driving voltages of the first MZM and the second MZM.
  • Equation 9 The Taylor expansion of the sine function is shown in Equation 9. Since the absolute value of x is less than 1, it only needs to be expanded to the 5th power, and the influence of higher orders is very small. Therefore, in Formula 9, (x 5 ) represents a higher order power. Coefficients of higher order powers are denoted by O.
  • Equation 10 can be obtained.
  • the driving voltage V(t) is smaller than the half-wave voltage V ⁇ . Therefore, Formula 10 can be further simplified to obtain the aforementioned Formula 3.
  • Equation 8 From the normalized Taylor formula expansion of Equation 8, it can be seen that the nonlinearity of the first term of the light field can be compensated by the nonlinearity of the second term. Better linearity can be obtained by adjusting the coefficient r. It can be seen through numerical simulation that when r is in the range of 0.02 to 0.2, the linearized optical modulator has certain linearity. The value range of r includes 0.02 or 0.2. Moreover, when r is 0.112, the linearized light modulator has better linearity.
  • Fig. 6 is a third structural schematic diagram of the suppressor provided in the embodiment of the present application.
  • the suppressor 202 includes a first MZM, a reflector 601 , a second optical coupler 603 and a third phase shifter 602 .
  • the first input port of the first MZM is used to connect with the first output port of the first beam splitter (not shown in FIG. 6 ).
  • the first input port of the first MZM is used to receive beam 1 .
  • the first MZM is used to split beam 1 into beam 11 and beam 12 .
  • the first MZM is used to modulate the light beam 11 and the light beam 12 according to the driving signal.
  • the first MZM is also used to couple beam 11 and beam 12 to obtain beam 21 and beam 22 .
  • the light beam 22 is a light beam with suppressed carrier and even harmonics.
  • the light beam 21 is a light beam carrying a carrier wave and even harmonics.
  • the light beam 21 and the light beam 22 are complementary.
  • the first output port of the first MZM is connected to the reflective sheet 601 .
  • the first output port of the first MZM is used to output the light beam 21 .
  • the reflective sheet 601 is used to reflect the light beam 21 .
  • the reflected light beam 21 enters the first MZM through the first output port of the first MZM.
  • the first MZM is used to modulate the reflected light beam 21 according to the driving signal, and convert the carrier wave and even harmonics carried in the light beam 21 into odd harmonics.
  • the first MZM is used to output the modulated light beam 21 through the second input port.
  • the modulated light beam 21 carries odd harmonics.
  • the second output port of the first MZM is connected to the first input port of the second optical coupler 603 through the third optical transmission path.
  • the second output port of the first MZM is used to transmit the light beam 22 to the second optical coupler 603 .
  • the second input port of the first MZM is connected to the second input port of the second optical coupler 603 through the fourth optical transmission path.
  • the second input port of the first MZM is used to transmit the modulated light beam 21 to the second optical coupler 603 .
  • a third phase shifter 602 is provided on the third optical transmission path.
  • the third phase shifter 602 is used to compensate the optical path difference between the third optical transmission path and the fourth optical transmission path.
  • the second optical coupler 603 is used for coupling the light beam 21 and the light beam 22 . During the coupling process, by adjusting the light splitting ratio of the second optical coupler 603 , high frequency subharmonics can be suppressed.
  • the second optical coupler 603 is used to output odd harmonics and
  • the light beam 21 returns to the original path after passing through the reflective sheet 601 .
  • the reflected light beam 21 is used as the input light beam of the first MZM (the path delay of the light is not considered).
  • the first MZM modulates the reflected light beam 21 according to the drive signal.
  • the modulated light beam 21 (E3) can be expressed by the following formula.
  • the second optical coupler 603 After passing through the third phase shifter 602, the second optical coupler 603 obtains odd harmonics according to the light beam 22 (E1) and the modulated light beam 21 (E3). Odd harmonics can be expressed by the following formula.
  • Eout(t) is an odd harmonic.
  • the power ratio of the modulated beam 21 to the beam 22 is 1-r:r.
  • 1-r:r can also be referred to as the splitting ratio of the second optical coupler 603 .
  • V ⁇ is the half-wave voltage of the first MZM.
  • V(t) is the driving voltage of the first MZM.
  • Equation 14 is the same as Equation 7. Equation 14 can be obtained by simplifying Equation 14 in the manner of simplifying Equation 7 above.
  • the linearity of the linearized light modulator can also be adjusted by adjusting the value of r.
  • the third phase shifter 501 is disposed on the fourth optical transmission path.
  • the third phase shifter 501 is used to change the phase of the light beam 22 .
  • the third phase shifter can also be arranged on the third optical transmission path.
  • the third phase shifter 501 is used to change the phase of the modulated light beam 21 .
  • the third phase shifter 602 is disposed on the third optical transmission path.
  • the third phase shifter 602 is used to change the phase of the light beam 22 .
  • the third phase shifter 602 may also be arranged on the fourth optical transmission path.
  • the third phase shifter 602 is used to change the phase of the modulated light beam 21 .
  • the linearized light modulator has better linearity.
  • the optical path losses in the third optical transmission path and the fourth optical transmission path may be different. Different optical path losses will change the optimal value range of r.
  • the r value can be changed through the adjustable optical coupler, thereby reducing the power ratio of the high-frequency sub-harmonic to the low-frequency sub-harmonic and reducing the loss of the harmonic generator.
  • the lengths of the first optical transmission path and the second optical transmission path may be different. Different lengths produce phase differences. When there is a large phase difference between the carrier and the odd harmonics, the signal-to-noise ratio of the subsequent modulated optical signal will be reduced.
  • the harmonic generator may also include a second phase shifter. The second phase shifter is used to compensate the optical path difference caused by the different lengths of the optical transmission paths.
  • FIG. 7 is a third schematic structural diagram of the harmonic generator provided in the embodiment of the present application. As shown in FIG. 7 , on the basis of FIG. 2 , the harmonic generator further includes a second phase shifter 702 .
  • the second phase shifter 702 is disposed on the second optical transmission path.
  • the second phase shifter 702 is used to change the phase of the light beam 2 . It should be understood that in practical applications, the second phase shifter 702 may also be disposed on the first optical transmission path.
  • the first beam splitter 201 may be an adjustable beam splitter.
  • the signal-to-noise ratio of the modulated optical signal is adjusted by adjusting the splitting ratio of the optical splitter 201 .
  • the harmonic generator also includes a power conditioner.
  • the power regulator is used to adjust the power of the carrier or odd harmonics.
  • the harmonic generator further includes a power regulator 701 .
  • a power conditioner 701 is provided on the second optical transmission path.
  • the power regulator 701 is used to adjust the power of the power beam 2 .
  • the power of the carrier in the first beam or the second beam will change, thereby adjusting the power ratio between the carrier and the odd harmonics in the first beam or the second beam.
  • the power conditioner 701 may also be disposed on the first optical transmission path. At this time, the power regulator 701 is used to adjust the power of odd harmonics.
  • FIG. 8 is a schematic structural diagram of a power conditioner provided in an embodiment of the present application.
  • the power conditioner 701 includes a beam splitter 801 , a phase shifter 802 and an optical coupler 803 .
  • the beam splitter 801 is used to split the beam 2 into two beams.
  • the first output port of the beam splitter 801 is connected to the first input port of the optical coupler 803 through the optical transmission path 1 .
  • the second output port of the beam splitter 801 is connected to the second input port of the optical coupler 803 through the optical transmission path 2 .
  • a phase shifter 802 is provided on the optical transmission path 1 .
  • Phase shifter 802 is used to change the phase of the beam.
  • the optical coupler 803 is used to optically couple the two light beams, and output the light beam 2 with adjusted power. By controlling the phase shifter 802, the power of the beam 2 can be adjusted.
  • FIG. 9 is a first structural schematic diagram of the harmonic modulation component provided in the embodiment of the present application.
  • the harmonic modulation component 900 includes a harmonic generator 200 , a modulator bank 904 and a beam combiner 903 .
  • the harmonic generator 200 is used to receive the light beam, and obtain the first light beam and the second light beam according to the driving signal and the light beam.
  • the carrier of the first beam is in phase with the carrier of the second beam.
  • the odd harmonics of the first light beam and the odd harmonics of the second light beam are reversed.
  • the harmonic generator 200 is used to transmit the first light beam and the second light beam to the modulator set 904 .
  • the modulator group 904 includes a first modulator 901 and a second modulator 902 .
  • the first modulator 901 and the second modulator 902 may be intensity modulators or IQ modulators.
  • the first modulator 901 is used for receiving the first light beam.
  • the first modulator 901 is configured to modulate the first light beam according to the first electrical signal to obtain a first modulated optical signal.
  • the second modulator 902 is used for receiving the second light beam.
  • the second modulator 902 is configured to modulate the second light beam according to the second electrical signal to obtain a second modulated optical signal.
  • the first electrical signal and the second electrical signal are obtained according to the electrical signal to be modulated.
  • the bandwidths of the first electrical signal and the second electrical signal are the same, and both are smaller than the bandwidth of the electrical signal to be modulated.
  • the frequency spectrum of the electrical signal to be modulated ranges from 0 to 2B.
  • Two electrical signals with a bandwidth of B are generated by a digital signal processing (DSP) module.
  • the two electrical signals with a bandwidth of B are respectively a first electrical signal and a second electrical signal.
  • DSP digital signal processing
  • the first input end of the beam combiner 903 is connected to the output end of the first modulator 901 .
  • the second input end of the beam combiner 903 is connected to the output end of the second modulator 902 .
  • the beam combiner 903 is configured to combine the first modulated optical signal and the second modulated optical signal to obtain a modulated optical signal.
  • the interference phenomenon occurs between the first modulated optical signal and the second modulated optical signal, and spectrum splicing is realized.
  • Fig. 10 is a second structural schematic diagram of the harmonic modulation component provided in the embodiment of the present application.
  • the harmonic modulation component 1000 includes a polarization splitter 1001 and a polarization combiner 1005.
  • the polarization splitter 1001 is used to receive the light beam and divide the light beam into X polarized light beam and Y polarized light beam.
  • the first output port of the polarization multiplexer 1001 is connected to the first input port of the polarization multiplexer 1005 through the optical transmission path 3 .
  • the second output port of the polarization multiplexer 1001 is connected to the second input port of the polarization multiplexer 1005 through the optical transmission path 4 .
  • the first output port of the polarization splitter 1001 is used to output X-polarized light beams.
  • a harmonic generator 200 , a modulator group 904 and a beam combiner 903 are provided on the optical transmission path 3 .
  • the harmonic generator 200 , the modulator group 904 and the beam combiner 903 reference may be made to the related description of the harmonic modulation component 900 in FIG. 9 .
  • the harmonic modulation component 900 is used to output X-polarized modulated light beams.
  • the second output port of the polarization splitter 1001 is used to output Y-polarized light beams.
  • a harmonic generator 1002 , a modulator group 1003 and a beam combiner 1004 are provided on the optical transmission path 4 .
  • the harmonic generator 1002 is used to receive the Y polarized light beam, and obtain the third light beam and the fourth light beam according to the driving signal and the Y polarized light beam.
  • the carriers in the third and fourth beams are in phase, and the odd harmonics are in opposite directions.
  • the harmonic generator 1002 is used to transmit the third light beam and the fourth light beam to the modulator group 1003 .
  • Modulator group 1003 includes a third modulator and a fourth modulator.
  • the third modulator is used for receiving the third light beam, and modulating the first light beam according to the first electrical signal to obtain a third modulated light signal.
  • the fourth modulator is used to receive the fourth light beam, and modulate the fourth light beam according to the fourth electrical signal to obtain a fourth modulated optical signal.
  • the third electrical signal and the fourth electrical signal are obtained according to the Y-polarized electrical signal to be modulated.
  • the bandwidths of the third electrical signal and the fourth electrical signal are the same, and both are smaller than the bandwidth of the electrical signal to be modulated.
  • the beam combiner 1004 is used for receiving the third modulated optical signal and the fourth modulated optical signal.
  • the beam combiner 1004 is configured to combine the third modulated optical signal and the fourth modulated optical signal to obtain a Y polarization modulated optical signal. It should be understood that the description about the optical transmission path 4 may refer to the foregoing description of the optical transmission path 3 .
  • the first input port of the polarization combiner 1005 is connected to the output port of the beam combiner 903 .
  • the polarization combiner 1005 is used to receive the X polarization modulated optical signal from the beam combiner 903 .
  • the second input port of the polarization combiner 1005 is connected to the output port of the beam combiner 1004 .
  • the polarization combiner 1005 is used to receive the Y polarization modulated optical signal from the beam combiner 1004 .
  • the polarization multiplexer 1005 is used for multiplexing the Y polarization modulated optical signal and the X polarization modulated optical signal to obtain the target optical signal.
  • FIG. 11 is a schematic structural diagram of an optical module provided in an embodiment of the present application.
  • the optical module 1100 includes a light source 1101 and a harmonic modulation component 1102 .
  • the light source 1101 is used to generate light beams and transmit the light beams to the harmonic modulation component 1102 .
  • the harmonic modulation component 1102 is used to modulate the light beam according to the electrical signal to obtain a modulated optical signal.
  • FIG. 12 is a schematic structural diagram of an optical communication device provided in an embodiment of the present application.
  • an optical communication device 1200 includes a processor 1201 and an optical module 1100 .
  • the processor 1201 may be a central processing unit (central processing unit, CPU), a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor 1201 may further include a hardware chip or other general-purpose processors.
  • the aforementioned hardware chip may be an application specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the processor 1201 may be an optical digital signal processing (optical digital signal processing, oDSP) chip.
  • oDSP chips may include DSP modules.
  • the processor 1201 is configured to obtain a first electrical signal and a second electrical signal according to the electrical signal to be modulated.
  • the bandwidths of the first electrical signal and the second electrical signal are the same, and both are smaller than the bandwidth of the electrical signal to be modulated.
  • the processor 1201 may also perform modulation format mapping, shaping, filtering, or link pre-compensation on the electrical signal to be modulated.
  • the processor 1201 is configured to transmit the first electrical signal and the second electrical signal to the optical module 1100 .
  • the optical communication device 1200 may also include two DACs and two electric drivers.
  • the two DACs are used to perform digital-to-analog conversion on the first electrical signal and the second electrical signal respectively.
  • the two electric drivers are used to amplify the power of the first electric signal and the second electric signal respectively.
  • the optical module 1100 is used for receiving the first electrical signal and the second electrical signal.
  • the optical module 1100 is used to generate a light beam, and obtain a first light beam and a second light beam according to the light beam. The carriers of the first beam and the second beam are in phase, and the odd harmonics are opposite.
  • the optical module 1100 is configured to modulate a first optical signal with a first electrical signal to obtain a first modulated optical signal.
  • the optical module 1100 is further configured to modulate the second optical signal with the second electrical signal to obtain a second modulated optical signal.
  • the optical module 1100 is configured to combine the first modulated optical signal and the second modulated optical signal to obtain a modulated optical signal.
  • the bandwidth of the modulated optical signal is the same as the bandwidth of the electrical signal to be modulated.
  • the optical communication device 1200 may further include a memory.
  • the memory is used to store the electrical signal to be modulated.
  • Memory can be volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), or flash memory wait.
  • the volatile memory may be random access memory (RAM).
  • Fig. 13 is a schematic structural diagram of an optical communication system provided in this application. As shown in FIG. 13 , the optical communication system includes an optical communication device 1200 and an optical network device 1301 .
  • the optical communication device 1200 is configured to obtain a first electrical signal and a second electrical signal according to the electrical signal to be modulated.
  • the bandwidths of the first electrical signal and the second electrical signal are the same, and both are smaller than the bandwidth of the electrical signal to be modulated.
  • the optical communication device 1200 is configured to obtain the first light beam and the second light beam according to the light beams.
  • the carriers of the first beam and the second beam are in phase, and the odd harmonics are opposite.
  • the optical communication device 1200 is configured to modulate the first light beam according to the first electrical signal to obtain a first modulated optical signal.
  • the optical communication device 1200 is further configured to modulate the second light beam according to the second electrical signal to obtain a second modulated optical signal.
  • the optical communication device 1200 is further configured to combine the first modulated optical signal and the second modulated optical signal to obtain a modulated optical signal.
  • the optical communication device 1200 is configured to transmit a modulated optical signal to the optical network device 1301 .
  • the optical network device 1301 is configured to receive a modulated optical signal, demodulate the modulated optical signal, and obtain an electrical signal. In practical applications, the optical network device 1301 may also transmit optical signals to the optical communication device 1200 . For the method for the optical network device 1201 to obtain the optical signal, reference may be made to the related description of the optical communication device 1200 obtaining the modulated optical signal.
  • the optical communication system may further include a multiplexer (multiplexer, MUX) and a demultiplexer (demultiplexer, DEMUX).
  • the MUX connects N optical communication devices 1200 .
  • N is an integer greater than 0.
  • Each optical communication device 1200 is used to transmit modulated optical signals of different wavelengths to the MUX.
  • the MUX is used to multiplex modulated optical signals of N different wavelengths to obtain optical signals with N wavelengths.
  • the MUX is used to transmit optical signals with N wavelengths to the DEMUX.
  • DEMUX is used to demultiplex optical signals with N wavelengths to obtain N modulated optical signals with different wavelengths.
  • the DEMUX is connected to N optical network devices 1301 .
  • the DEMUX is used to transmit a modulated optical signal carrying one wavelength to each optical network device 1301 .
  • the present application also provides a harmonic generation method.
  • the harmonic generating method includes the following steps: splitting a carrier light beam into two carrier light beams by a beam splitter.
  • a harmonic beam is obtained by modulating one of the two carrier beams.
  • Harmonic beams include carrier and harmonics. Suppress the carrier and even harmonics in the harmonic beam to obtain odd harmonic beams.
  • Two beams are obtained by coupling an odd harmonic beam with the other of the two carrier beams.
  • the phase of one of the two beams is changed by a phase shifter, so that the carrier waves of the two beams are in phase and the odd harmonics are reversed.
  • the two carrier beams are beam 1 and beam 2.
  • the two beams are a first beam and a second beam.
  • the method for generating harmonics includes the following steps: adjusting the power of one carrier light beam, another carrier light beam, or odd-order harmonic light beams through a power regulator.
  • the method for generating harmonics further includes the following step: changing the phase of one carrier beam, another carrier beam, or odd-order harmonic beams through a second phase shifter.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

一种谐波生成器、谐波调制组件、光模块和光通信设备,应用于光通信领域。在谐波生成器中,第一分束器的第一输出端口通过第一光传输路径和第一光耦合器的第一输入端口相连;第一分束器的第二输出端口通过第二光传输路径和第一光耦合器的第二输入端口相连;第一光传输路径上设置有抑制器;抑制器用于通过调制载波光束得到谐波光束,抑制谐波光束中的载波和偶数次谐波;第一光耦合器的一个输出端口连接有第一移相器;第一移相器用于输出第一光束;第一光耦合器的另一个输出端口用于输出第二光束;第一光束和第二光束中的载波同相,奇数次谐波反向。通过抑制器抑制偶数次谐波的功率,从而提高后续调制光信号的信噪比。

Description

谐波生成器、谐波调制组件、光模块和光通信设备
本申请要求于2021年11月16日提交中国国家知识产权局、申请号为CN202111356375.8、申请名称为“谐波生成器、谐波调制组件、光模块和光通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及谐波生成器、谐波调制组件、光模块和光通信设备。
背景技术
在光通信领域中,许多器件的带宽制约了传输速率的提升。例如,互补式金属氧化物半导体数模转换器(complementary metal oxide semiconductor digital analog converter CMOS DAC)的带宽一般在100GHz以下。
为此,可以通过光域频谱拼接技术降低对器件的带宽的要求。图1为光通信设备的结构示意图。如图1所示,光通信设备包括光源101、谐波生成器102、调制器组103和合束器110。光通信设备用于将待调制的电信号分为第一电信号和第二电信号。第一电信号和第二电信号的频谱范围为待调制的电信号的频谱范围的一半。第一电信号和第二电信号的带宽相同,且都小于待调制电信号的带宽。光源101用于输出光束。谐波生成器102包括分束器104、调制器105、移相器(phase shifter,PS)106和光耦合器107。分束器104用于将光束分为光束1和光束2。调制器105用于根据第一驱动信号调制光束1。调制器105还用于根据第二驱动信号调制光束2。第一驱动信号和第二驱动信号互补。第一驱动信号和第二驱动信号是时钟信号。时钟信号的频率大于或等于待调制的电信号的带宽的一半。PS106用于改变光束1的相位。光耦合器107用于耦合光束1和光束2,输出第一光束和第二光束。第一光束和第二光束的载波同相,一次谐波反向。调制器组103包括调制器108和调制器109。调制器108用于根据第一电信号调制第一光束,以得到调制光信号1。调制器109用于根据第二电信号调制第二光束,以得到调制光信号2。合束器110用于对调制光信号1和调制光信号2进行合束,得到调制光信号。通过光域频谱拼接技术,可以用低带宽的光电器件产生高波特率的光调制信号。例如,调制器108和调制器109的带宽可以为待调制信号频谱的一半。类似地,其它的器件的带宽也可以为待调制信号频谱的一半。例如对第一电信号进行数模转换的DAC和放大第一电信号的驱动器。
但是,调制器105会产生相位同相的偶数次谐波。例如二次谐波。因此,第一光束和第二光束也会携带二次谐波。例如,当phi=π/2,S=m*π/4*cos(2*pi*BW*t)时,图1中光耦合器107输出的第一光束(Esout1)和第二光束(Esout2)的光学方程如下。
Figure PCTCN2022121234-appb-000001
Figure PCTCN2022121234-appb-000002
其中,“*”表示两个数值相乘。phi为移相器106的移相值。phi可以通过直流偏置电 压调整。BW为第一驱动信号和第二驱动信号的频率。t为时间。m为调制深度,此处设为1。J 0,1,2….为贝塞尔展开式的系数。从公式1和2可以看出,107输出后的第一光束和第二光束中除了有载波和一次谐波分量,还存在二次谐波分量。在经过后续调制器组103的调制过程中,相位相同的二次谐波会引入噪声,从而降低调制光信号的信噪比。
发明内容
本申请提供了一种谐波生成器、谐波调制组件、光模块和光通信设备。在本申请中,可以通过抑制器降低第一光束和第二光束中偶数次谐波的功率,从而提高后续调制光信号的信噪比。
本申请第一方面提供了一种谐波生成器。谐波生成器包括第一分束器、抑制器、第一光耦合器和第一移相器。第一分束器的第一输出端口通过第一光传输路径和第一光耦合器的第一输入端口相连。第一分束器的第二输出端口通过第二光传输路径和第一光耦合器的第二输入端口相连。第一分束器用于接收光束,将光束分为两个子光束。两个子光束不携带谐波或谐波的功率很小。因此,两个子光束也称为两个载波光束。第一光传输路径上设置有抑制器。抑制器用于接收载波光束,根据驱动信号调制载波光束,以得到谐波光束。谐波光束携带载波和谐波。抑制器还用于抑制谐波光束中的载波和偶数次谐波。在忽略载波和偶数次谐波的功率的情况下,抑制器用于输出奇数次谐波。第一光耦合器的第一输入端口用于接收奇数次谐波。第一光耦合器的第二输入端口用于接收载波。第一光耦合器用于耦合奇数次谐波和载波。第一光耦合器包括两个输出端口。两个输出端口中的一个输出端口连接有第一移相器。第一移相器用于输出第一光束。两个输出端口中的另一个输出端口用于输出第二光束。第一移相器用于改变光束的相位,使得第一光束的载波和第二光束的载波同相,第一光束的奇数次谐波和第二光束的奇数次谐波反向。
在本申请中,抑制器可以抑制载波和谐波中的偶数次谐波,从而得到较为纯净的奇数次谐波。再通过第一光耦合器和第一移相器,可以得到载波同相,奇数次谐波反向的第一光束和第二光束。因此,本申请可以降低第一光束和第二光束中二次谐波的功率,从而提高后续调制光信号的信噪比。
在第一方面的一种可选方式中,谐波生成器还包括功率调节器。第一光传输路径或第二光传输路径上设置有功率调节器。功率调节器用于调节光束的功率。其中,第一光束或第二光束中的载波和一次谐波的功率比值与调制光信号的信噪比相关。具体地,假设一次谐波和载波的功率比值为R。当后续调制器组的电信号的噪声较大时,较大的R值会增大调制后的光信号噪声,进而降低调制光信号的信噪比。在预处理过程中,较小的R值会降低有效电信号的功率,从而也会降低调制后光信号的信噪比。因此,在增加功率调节器后,本申请可以通过调节功率比值来提高调制光信号的信噪比。
在第一方面的一种可选方式中,谐波生成器还包括第二移相器。第一光传输路径或第二光传输路径上设置有第二移相器。第二移相器用于改变光束的相位。其中,第一光传输路径和第二光传输路径的长度可能不同,从而产生载波和奇数次谐波之间的相位差。当载波和奇数次谐波之间存在相位差时,会降低调制光信号的信噪比。因此,通过增加第二移相器,可以补偿相位差,从而提高调制光信号的信噪比。
在第一方面的一种可选方式中,第一光耦合器的分光比为a∶1-a。a的取值范围在0.4至0.6之间。其中,当a的取值和0.5的差值过大时,第一光束和第二光束中载波的功率差值会变大,一次谐波的功率差值也会变大。在后续通过调制器组调制第一光束和第二光束后,调制器组产生的两路输出光信号经过耦合后产生的频谱拼接噪声增大,从而影响调制光信号的信噪比。因此,本申请可以提高调制光信号的信噪比。
在第一方面的一种可选方式中,抑制器为马赫曾德调制器(mach-zehnder modulator,MZM)。MZM包括第二分束器、上调制器、下调制器、第三移相器和第二光耦合器。第二分束器的输入端口连接第一分束器的第一输出端口。第二分束器的第一输出端口通过第三光传输路径和第二光耦合器的第一输入端口相连。第二分束器的第二输出端口通过第四光传输路径和第二光耦合器的第二输入端口相连。第三光传输路径上设置有上调制器。第四光传输路径上设置有下调制器。上调制器和下调制器用于接收差分时钟驱动信号,根据差分时钟驱动信号调制载波光束得到谐波光束。谐波光束携带载波和谐波。第三光传输路径或第四光传输路径上设置有第三移相器。第三移相器用于使得第三光传输路径和第四光传输路径中传输的光束之间产生相位差。第二光耦合器用于根据相位差抑制谐波光束中的载波和偶数次谐波。第二光耦合器用于输出奇数次谐波。其中,通过使用MZM作为抑制器,可以降低谐波生成器的成本。
在第一方面的一种可选方式中,抑制器为线性化光调制器。其中,通过使用线性化光调制器,可以降低高频次谐波和低频次谐波的功率比值。例如可以降低三次谐波和一次谐波的功率比值。在后续调制第一光束和第二光束的过程中,本申请主要依赖于低频次谐波。高频次谐波的功率作为损耗丢失。因此,通过降低高频次谐波和低频次谐波的功率比值,可以降低谐波生成器的损耗。
在第一方面的一种可选方式中,线性化光调制器包括第一MZM、第二MZM、第二光耦合器和第三移相器。第一MZM的输入端口和第一分束器的第一输出端口相连。第一MZM的第一输出端口通过第三光传输路径和第二光耦合器的第一输入端口相连。第一MZM的第二输出端口通过第四光传输路径和第二光耦合器的第二输入端口相连。第三光传输路径上设置有第二MZM。第三光传输路径或第四光传输路径上设置有第三移相器。
在第一方面的一种可选方式中,线性化光调制器包括第一MZM、反光片、第二光耦合器和第三移相器。第一MZM的第一输入端口和第一分束器的第一输出端口相连。第一MZM的第一输出端口连接反光片。第一MZM的第二输出端口通过第三光传输路径和第二光耦合器的第一输入端口相连。第一MZM的第二输入端口通过第四光传输路径和第二光耦合器的第二输入端口相连。第三光传输路径或第四光传输路径上设置有第三移相器。其中,通过增加反光片,可以减少MZM的数量,从而降低谐波生成器的成本。
在第一方面的一种可选方式中,第二光耦合器的分光比为r∶1-r。r的取值范围为0.02至0.2。其中,在线性化光调制器输出的光束中,高频次谐波和低频次谐波的功率比值和线性化光调制器的线性度相关。线性度越好,功率比值越低。线性度和r的值相关。当r的取值范围为0.02至0.2时,线性化光调制器有较好的线性度。因此,本申请可以降低高频次谐波和低频次谐波的功率比值,从而降低谐波生成器的损耗。
在第一方面的一种可选方式中,第二光耦合器为可调光耦合器。其中,当第一MZM 输出的分光比为0.5∶0.5,r取0.02至0.2时,线性化光调制器具较好的线性度。但是,第三光传输路径和第四光传输路径中的光路损耗可能不同。不同的光路损耗会改变r的较优取值范围。当第二光耦合器为可调光耦合器时,可以通过可调光耦合器改变r值,从而降低高频次谐波和低频次谐波的功率比值,降低谐波生成器的损耗。
本申请第二方面提供了一种谐波调制组件。谐波调制组件包括调制器组、合束器和前述第一方面或第一方面中任意一项所述的谐波生成器。调制器组包括第一调制器和第二调制器。谐波生成器的一个输出端口和第一调制器相连。谐波生成器的另一个输出端口和第二调制器相连。第一调制器的输出端和合束器的第一输入端相连。第二调制器的输出端和合束器的第二输入端相连。
在第二方面的一种可选方式中,第一调制器和第二调制器为强度调制器。
在第二方面的一种可选方式中,第一调制器和第二调制器为IQ调制器。
在第二方面的一种可选方式中,谐波调制组件还包括偏振分波器、另一调制器组、另一合束器、偏振合波器和另一前述第一方面或第一方面中任意一项所述的谐波生成器。偏振分波器的第一输出端口和谐波生成器的输入端口相连。偏振分波器的第二输出端口和另一谐波生成器的输入端口相连。另一调制器组包括第三调制器和第四调制器。另一谐波生成器的一个输出端口和所述第三调制器相连。另一谐波生成器的另一个输出端口和第四调制器相连。第三调制器的输出端口和另一合束器的第一输入端口相连。第四调制器的输出端口和另一合束器的第二输入端口相连。合束器的输出端口和偏振合波器的第一输入端口相连。另一合束器的输出端口和偏振合波器的第二输入端口相连。
在第二方面的一种可选方式中,第一调制器和第二调制器为线性化光调制器。其中,线性化光调制器降低了调制器的非线性,从而减少了高次谐波分量带来的带内噪声,可以进一步提高调制光信号的信噪比。
本申请第三方面提供了一种光模块。光模块包括光源和前述第二方面或第二方面中任意一项所述的谐波调制组件。光源用于生成光束,向谐波调制组件传输光束。谐波调制组件用于调制光束,得到调制光信号。
本申请第四方面提供了一种光通信设备。光通信设备包括处理器和前述第三方面所述的光模块。处理器用于将待调制的电信号分为第一电信号和第二电信号。第一电信号和第二电信号的带宽相同,且都小于待调制电信号的带宽。处理器还用于向光模块传输第一电信号和第二电信号。光模块用于生成光束,根据光束得到第一光束和第二光束。第一光束的载波和第二光束的载波同相。第一光束的奇数次谐波和第二光束的奇数次谐波反向。光模块还用于通过第一电信号调制第一光束,得到第一调制光信号。光模块还用于通过第二电信号调制第二光束,得到第二调制光信号。光模块还用于对第一调制光信号和第二调制光信号进行合束,得到调制光信号。
本申请第五方面提供了一种谐波生成方法。谐波生成方法包括以下步骤:通过分束器将载波光束分为两个载波光束。调制所述两个载波光束中的一个载波光束得到谐波光束。所述谐波光束包括载波和谐波。抑制所述谐波光束中的载波和偶数次谐波,得到奇数次谐波光束。耦合所述奇数次谐波光束和所述两个载波光束中的另一个载波光束,得到两个光束。通过移相器改变所述两个光束中的一个光束的相位,使得所述两个光束的载波同相, 奇数次谐波反向。
在第五方面的一种可选方式中,谐波生成方法还包括以下步骤:通过功率调节器调节所述一个载波光束、所述另一个载波光束、或所述奇数次谐波光束的功率。
在第五方面的一种可选方式中,谐波生成方法还包括以下步骤:通过移相器改变所述一个载波光束、所述另一个载波光束、或所述奇数次谐波光束的相位。
附图说明
图1为光通信设备的结构示意图;
图2为本申请实施例中提供的谐波生成器的第一个结构示意图;
图3a为本申请实施例中提供的第一光束的载波和谐波的分布示意图;
图3b为本申请实施例中提供的第二光束的载波和谐波的分布示意图;
图4a为本申请实施例中提供的抑制器的第一个结构示意图;
图4b为本申请实施例中提供的谐波生成器的第二个结构示意图
图5为本申请实施例中提供的抑制器的第二个结构示意图;
图6为本申请实施例中提供的抑制器的第三个结构示意图;
图7为本申请实施例中提供的谐波生成器的第三个结构示意图;
图8为本申请实施例中提供的功率调节器的结构示意图;
图9为本申请实施例中提供的谐波调制组件的第一个结构示意图;
图10为本申请实施例中提供的谐波调制组件的第二个结构示意图;
图11为本申请实施例中提供的光模块的结构示意图;
图12为本申请实施例中提供的光通信设备的结构示意图;
图13为本申请中提供的光通信***的结构示意图。
具体实施方式
本申请提供了一种谐波生成器、谐波调制组件、光模块和光通信设备。在本申请中,抑制器可以抑制载波和谐波中的偶数次谐波。因此,本申请可以降低第一光束和第二光束中二次谐波的功率,从而提高后续调制光信号的信噪比。应理解,本申请中使用的“第一”、“第二”、“目标”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。另外,为了简明和清楚,本申请多个附图中重复参考编号和/或字母。重复并不表明各种实施例和/或配置之间存在严格的限定关系。
本申请中的谐波生成器应用于光通信领域。在光通信领域中,器件的带宽制约了传输速率。因此,可以通过光域频谱拼接技术降低对器件的带宽的要求。但是,在图1中,谐波生成器102输出的第一光束和第二光束携带偶数次谐波。偶数次谐波中的二次谐波会引入频谱拼接噪声。合束器110并不能消除二次谐波带来的噪声。在后续的处理中,噪声会降低调制光信号的信噪比。
为此,本申请提供了一种谐波生成器。图2为本申请实施例中提供的谐波生成器的第一个结构示意图。如图2所示,谐波生成器200包括分束器201、抑制器202、第一光耦合器204和第一移相器(phase shifter,PS)203。
分束器201的第一输出端口通过第一光传输路径和第一光耦合器204的第一输入端口相连。分束器201的第二输出端口通过第二光传输路径和第一光耦合器204的第二输入端口相连。分束器201用于接收光束,将光束分为两个光束。光束为连续光信号。两个光束包括光束1和光束2。第一光传输路径用于传输光束1。第二光传输路径用于传输光束2。第一光传输路径上设置有抑制器202。抑制器202用于根据驱动信号调制光束1,得到调制后的光束1。抑制器202的驱动信号可以为时钟信号,也可以为占空比百分之五十的周期信号。光束1也称为载波光束,调制后的光束1也称为谐波光束。载波光束携带载波。谐波光束携带载波和谐波。载波的频率和分束器201接收的光束的频率相同。谐波包括偶数次谐波和奇数次谐波。偶数次谐波包括二次谐波、四次谐波等。奇数次谐波包括一次谐波、三次谐波等。抑制器202还用于抑制谐波光束中的载波和偶数次谐波。在抑制载波和偶数次谐波后,可以忽略载波和偶数次谐波的功率。此时,抑制器202用于向第一光耦合器204传输奇数次谐波。第一光耦合器204用于从抑制器202接收奇数次谐波。第一光耦合器204用于从分束器201接收载波。第一光耦合器204用于对奇数次谐波和载波进行光耦合。第一光耦合器204的一个输出端口连接第一移相器203。第一移相器203为90°移相器。在实际应用中,第一移相器203的移相值可以和90°存在差值。差值用于补偿第一光束和第二光束在光耦合器204输出后的光传输路径上的光程差。第一移相器203用于改变光束的相位,输出第一光束。第一光耦合器204的另一个输出端口用于输出第二光束。
第一光束的载波和第二光束的载波的相位相同(简称同相)。第一光束的奇数次谐波和第二光束的奇数次谐波的相位相反(简称反相)。图3a为本申请实施例中提供的第一光束的载波和谐波的分布示意图。如图3a所示,横坐标为频率,纵坐标表示幅度。第一光束包括载波f0和一次谐波f11。载波f0的幅度高于一次谐波f11的幅度。实际应用中,载波f0的幅度可以等于或小于一次谐波f11的幅度。载波f0和一次谐波f11的频率差等于驱动信号的频率。驱动信号的频率可以等于后续待调制的电信号的带宽的一半。图3b为本申请实施例中提供的第二光束的载波和谐波的分布示意图。如图3b所示,第二光束包括载波f0和一次谐波f12。第二光束的载波f0和第一光束的载波f0同相。一次谐波f12和一次谐波f11反向。第二光束的载波f0和第一光束的载波f0的功率相同。一次谐波f12和一次谐波f11的功率相同。其中,奇数次谐波中的高频次谐波对噪声的影响较小,因此此处可以忽略三次谐波及以上的高频次谐波。在抑制器202抑制偶数次谐波后,此处也可以忽略偶数次谐波。
在本申请中,抑制器202可以抑制谐波光束中的载波和偶数次谐波,从而得到较为纯净的奇数次谐波。再通过第一光耦合器和第一移相器,可以得到载波同相,奇数次谐波反向的第一光束和第二光束。在实际应用中,偶数次谐波中的二次谐波是产生噪音的主要原因。因此,本申请可以降低第一光束和第二光束中二次谐波的功率,从而提高后续调制光信号的信噪比。
应理解,在实际应用中,由于器件的制造误差,第一光束的载波和第二光束中的载波的相位可能会存在一些偏差。类似地,第一光束的奇数次谐波和第二光束中的奇数次谐波的相位差和180°也可能会存在一些偏差。
应理解,在图2中,第一移相器203与第一光耦合器204的第一输出端口相连。在实 际应用中,第一移相器203可以与第一光耦合器204的第二输出端口相连。此时,第一移相器203用于改变第二光束的相位。或者,谐波生成器200包括两个第一移相器203。一个第一移相器203连接第一光耦合器204的第一输出端口。另一个第一移相器203连接第一光耦合器204的第二输出端口。其中一个第一移相器203为90°移相器。另一个第一移相器203为180°移相器。
第一光耦合器204的分光比影响第一光束和第二光束中载波的功率差值,同时也影响第一光束和第二光束中一次谐波功率差值。第一光耦合器的分光比可以为a∶1-a。a的取值范围在0.4至0.6之间。当a的取值和0.5的差值过大时,第一光束和第二光束中载波的功率差值会变大,一次谐波的功率差值也会变大。在后续通过调制器组调制第一光束和第二光束后,两路光信号经过耦合后产生的频谱拼接噪声增大,从而影响调制光信号的信噪比。因此,本申请可以提高调制光信号的信噪比。下面对本申请中提供的抑制器202的结构进行描述。图4a为本申请实施例中提供的抑制器的第一个结构示意图。如图4a所示,抑制器202包括第二分束器401、上调制器402、下调制器403、第三移相器404和第二光耦合器405。第二分束器401的输入端口连接第一分束器(图4a中未示出)的第一输出端口。第二分束器401用于接收光束1,将光束1分为光束11和光束12。第二分束器401的第一输出端口通过第三光传输路径和第二光耦合器405的第一输入端口相连。第二分束器401的第二输出端口通过第四光传输路径和第二光耦合器405的第二输入端口相连。第三光传输路径上设置有上调制器402。第四光传输路径上设置有下调制器403。上调制器402用于接收第一驱动信号,根据第一驱动信号调制光束11,得到光束21。下调制器403用于接收第二驱动信号,根据第一驱动信号调制光束12,得到光束22。第一驱动信号和第二驱动信号为差分时钟驱动信号。第二驱动信号和第一驱动信号的电压相反。经过调制后,光束21和光束22携带载波和谐波。第三光传输路径上设置有第三移相器404。第三移相器404用于改变光束21的相位,使得光束21和光束22存在相位差。第二光耦合器405用于耦合光束21和光束22。由于光束21和光束22中存在一定的相位差,因此,在耦合过程中,第二光耦合器405可以抑制偶数次谐波和载波。第二光耦合器405用于输出奇数次谐波。
图4b为本申请实施例中提供的谐波生成器的第二个结构示意图。如图4b所示,当采用图4a所示的抑制器时,谐波生成器200包括分束器201、抑制器202、第一光耦合器204和第一移相器203。分束器201用于将光束分为两个光束。两个光束包括光束1和光束2。光束1和光束2也称为载波光束。第一光传输路径上设置有抑制器202。抑制器202的结构如图4a所示。抑制器202用于调制光束1,得到调制后的光束1。调制后的光束1包括载波和谐波。抑制器202还用于抑制调制后的光束1中的载波和偶数次谐波,输出奇数次谐波。第一光耦合器204用于从抑制器202接收奇数次谐波,从分束器201接收载波。第一光耦合器204用于对奇数次谐波和载波进行光耦合。谐波生成器200用于输出第一光束和第二光束。第一移相器203用于改变光束的相位,使得第二光束的载波和第一光束的载波同相,第二光束的奇数次谐波和第一光束的奇数次谐波反向。图4a中的抑制器202为非线性光调制器。此时,在奇数次谐波中,高频次谐波和低频次谐波的功率比值较高。在后续的处理中,高频次谐波的功率将作为损耗。为了降低损耗,抑制器202可以为线性化光调制器。当线性化光调制器的输入和输出存在近似的线性关系时,线性化光调制器输出的 光束中携带的高频次谐波的功率较小。当线性化光调制器的输入和输出存在线性关系时,线性化光调制器输出的光束不携带的高频次谐波。假设线性化光调制器的输出Eout(t)等于公式3。
Figure PCTCN2022121234-appb-000003
此时,谐波生成器200输出的第一光束output1和第二光束output2可以用以下公式表示。
Figure PCTCN2022121234-appb-000004
其中,“*”表示两个数值相乘。OC为谐波生成器200的输入光束的光强幅值。将公式3代入到公式4,得到公式5和公式6。
Figure PCTCN2022121234-appb-000005
Figure PCTCN2022121234-appb-000006
在公式5和公式6中,并未计算第一移相器203的功能。此时,第一光束和第二光束存在额外的相位差j。通过第一移相器203可以消除第一光束和第二光束的相位差。在消除相位差后,根据公式5和公式6可知,当线性化光调制器的输入和输出存在线性关系时,谐波生成器200的输出不携带三次谐波及以上的高频、奇数次谐波。因此,本申请可以降低损耗。
根据前面的描述可知,当抑制器202为线性化光调制器时,可以降低损耗。在实际应用中,线性化光调制器可以拥有不同的结构。下面以两个不同的结构为例,对本申请中的线性化光调制器进行描述。
图5为本申请实施例中提供的抑制器的第二个结构示意图。如图5所示,抑制器202包括第一MZM、第二MZM、第二光耦合器502和第三移相器501。第一MZM的输入端口用于和第一分束器(图5中未示出)的第一输出端口相连。第一MZM的输入端口用于接收光束1。第一MZM用于根据第一驱动信号调制光束1,得到光束11和光束12。第一MZM包括光耦合器503。光耦合器503的分光比为0.5∶0.5。光耦合器503用于对光束11和光束12进行光耦合,得到光束21和光束22。其中,光束22是被抑制了载波和偶数次谐波的光束。光束21为携带载波和偶数次谐波的光束。第一MZM的第一输出端口通过第三光传输路径和第二光耦合器502的第一输入端口相连。第一MZM的第二输出端口通过第四光传输路径和第二光耦合器502的第二输入端口相连。第一MZM用于通过的第一输出端口输出光束21。第一MZM用于通过第二输出端口输出光束22。
第三光传输路径上设置有第二MZM。第二MZM用于根据第二驱动信号调制光束21,将光束21中携带的载波和偶数次谐波转换为奇数次谐波。第二MZM输出奇数次谐波。第一驱动信号和第二驱动信号为差分时钟驱动信号。第二驱动信号和第一驱动信号的电压相反。第四光传输路径上设置有第三移相器501。第三移相器501用于补偿第三光传输路径和第四光传输路径的光程差。在实际应用中,也可以通过调整第四光传输路径的长度来补偿光程差。第二光耦合器502用于接收光束21和光束22。在耦合过程中,通过调整第二 光耦合器502的分光比,可以抑制高频次谐波。第二光耦合器502用于输出奇数次谐波且其中高频次谐波的能量被抑制。
图5中的线性化光调制器的光场可以表示为如下公式。
Figure PCTCN2022121234-appb-000007
其中,Eout(t)为奇数次谐波。调制后的光束21和光束22的功率比值为1-r∶r。1-r∶r也可以称为第二光耦合器502的分光比。Vπ为第一MZM和第二MZM的半波电压。V(t)为第一MZM和第二MZM的驱动电压的绝对值。
Figure PCTCN2022121234-appb-000008
将公式7化简为如下公式。
Figure PCTCN2022121234-appb-000009
正弦函数的泰勒展开式,如公式9所示。由于x的绝对值小于1,所以只要展开到5次方即可,更高阶的影响很小。因此,在公式9中,(x 5)表示更高阶的次方。更高阶的次方的系数用O表示。
Figure PCTCN2022121234-appb-000010
将公式9带入公式8中。当r=0.112时,可以得到公式10。
Eout(t)≈0.98x(t)      公式10
驱动电压V(t)小于半波电压Vπ。因此,可以对公式10进一步化简,得到前述公式3。
Figure PCTCN2022121234-appb-000011
由公式8的归一化泰勒公式展开可知,光场第一项的非线性可以由第二项非线性进行补偿。通过调整系数r可以得到更好的线性度。通过数值仿真可知,r在区间范围0.02至0.2时,线性化光调制器具有一定的线性度。r的取值范围包括0.02或0.2。并且,当r取0.112时,线性化光调制器具有较好的线性度。
图6为本申请实施例中提供的抑制器的第三个结构示意图。如图6所示,抑制器202包括第一MZM、反光片601、第二光耦合器603和第三移相器602。第一MZM的第一输入端口用于和第一分束器(图6中未示出)的第一输出端口相连。第一MZM的第一输入端口用于接收光束1。第一MZM用于将光束1分为光束11和光束12。第一MZM用于根据驱动信号调制光束11和光束12。第一MZM还用于耦合光束11和光束12,得到光束21和光束22。其中,光束22是被抑制了载波和偶数次谐波的光束。光束21为携带载波和偶数次谐波的光束。光束21和光束22互补。第一MZM的第一输出端口连接反光片601。第一MZM的第一输出端口用于输出光束21。反光片601用于反射光束21。反射的光束21通过第一MZM的第一输出端口进入第一MZM。第一MZM用于根据驱动信号调制反射的光束21,将光束21中携带的载波和偶数次谐波转换为奇数次谐波。第一MZM用于通过第二输入端口输出调制后的光束21。调制后的光束21携带奇数次谐波。
第一MZM的第二输出端口通过第三光传输路径和第二光耦合器603的第一输入端口相连。第一MZM的第二输出端口用于向第二光耦合器603传输光束22。第一MZM的第 二输入端口通过第四光传输路径和第二光耦合器603的第二输入端口相连。第一MZM的第二输入端口用于向第二光耦合器603传输调制后的光束21。第三光传输路径上设置有第三移相器602。第三移相器602用来补偿第三光传输路径和第四光传输路径的光程差。第二光耦合器603用于耦合光束21和光束22。在耦合过程中,通过调整第二光耦合器603的分光比,可以抑制高频次谐波。第二光耦合器603用于输出奇数次谐波且其中高频次谐波的能量被抑制。
在图6中,通过一个MZM实现了两个MZM的功能。因此,相比于图5,该方案可以降低谐波生成器的成本或体积。光束21(E2)和光束22(E1)可以用如下公式表示。
Figure PCTCN2022121234-appb-000012
Figure PCTCN2022121234-appb-000013
光束21经过反光片601后原路返回。此时,反射的光束21作为第一MZM的输入光束(不考虑光的路径延迟)。第一MZM根据驱动信号调制反射的光束21。调制后的光束21(E3)可以用如下公式表示。
Figure PCTCN2022121234-appb-000014
经过第三移相器602后,第二光耦合器603根据光束22(E1)和调制后的光束21(E3)得到奇数次谐波。奇数次谐波可以通过以下公式表达。
Figure PCTCN2022121234-appb-000015
其中,Eout(t)为奇数次谐波。调制后的光束21和光束22的功率比值为1-r∶r。1-r∶r也可以称为第二光耦合器603的分光比。Vπ为第一MZM的半波电压。V(t)为第一MZM的驱动电压。公式14和公式7相同。按照前述简化公式7的方式简化公式14,可以得到公式3。并且,也可以通过调节r的值来调整线性化光调制器的线性度。
应理解,在图5,第三移相器501被设置于第四光传输路径。第三移相器501用于改变光束22的相位。在实际应用中,第三移相器也可以被设置于第三光传输路径。第三移相器501用于改变调制后的光束21的相位。类似地,在图6中,第三移相器602被设置于第三光传输路径。第三移相器602用于改变光束22的相位。在实际应用中,第三移相器602也可以被设置于第四光传输路径。第三移相器602用于改变调制后的光束21的相位。
根据前述对图5的描述可知,当光耦合器503的分光比为0.5∶0.5,r取0.02至0.2时,线性化光调制器具较好的线性度。但是,第三光传输路径和第四光传输路径中的光路损耗可能不同。不同的光路损耗会改变r的较优取值范围。当第二光耦合器为可调光耦合器时,可以通过可调光耦合器改变r值,从而降低高频次谐波和低频次谐波的功率比值,降低谐波生成器的损耗。
在图2中,第一光传输路径和第二光传输路径的长度可能不同。不同的长度会产生相位差。当载波和奇数次谐波之间存在较大的相位差时,会降低后续调制光信号的信噪比。为此,谐波生成器还可以包括第二移相器。第二移相器用于补偿由于光传输路径的长度不同产生的光程差。例如,图7为本申请实施例中提供的谐波生成器的第三个结构示意图。 如图7所示,在图2的基础上,谐波生成器还包括第二移相器702。第二移相器702被设置于第二光传输路径。第二移相器702用于改变光束2的相位。应理解,在实际应用中,第二移相器702也可以被设置于第一光传输路径。
在图2中,当第一分光器201的分光比发生改变时,第一光束或第二光束中的载波和奇数次谐波的功率比值会发生改变。功率比值和调制光信号的信噪比相关。因此,第一分光器201可以为可调分束器。通过调节分光器201的分光比来调节调制光信号的信噪比。或者,谐波生成器还包括功率调节器。功率调节器用于调节载波或奇数次谐波的功率。例如,如图7所示,在图2的基础上,谐波生成器还包括功率调节器701。第二光传输路径上设置有功率调节器701。功率调节器701用于调节功率光束2的功率。当光束2的功率发生改变时,第一光束或第二光束中载波的功率会发生改变,从而调节第一光束或第二光束中的载波和奇数次谐波的功率比值。应理解,在实际应用中,功率调节器701也可以被设置于第一光传输路径。此时,功率调节器701用于调节奇数次谐波的功率。
图8为本申请实施例中提供的功率调节器的结构示意图。如图8所示,功率调节器701包括分束器801、移相器802和光耦合器803。分束器801用于将光束2分为两个光束。分束器801的第一输出端口通过光传输路径1和光耦合器803的第一输入端口相连。分束器801的第二输出端口通过光传输路径2和光耦合器803的第二输入端口相连。光传输路径1上设置有移相器802。移相器802用于改变光束的相位。光耦合器803用于对两个光束进行光耦合,输出功率调节后的光束2。通过控制移相器802,可以调节光束2的功率。
前面对本申请中提供的谐波生成器进行描述,下面对本申请中提供的谐波调制组件进行描述。图9为本申请实施例中提供的谐波调制组件的第一个结构示意图。如图9所示。谐波调制组件900包括谐波生成器200、调制器组904和合束器903。
关于谐波生成器200的描述可以参考前述图2-8中的相关描述。谐波生成器200用于接收光束,根据驱动信号和光束得到第一光束和第二光束。第一光束的载波和第二光束的载波同相。第一光束的奇数次谐波和第二光束的奇数次谐波反向。谐波生成器200用于向调制器组904传输第一光束和第二光束。
调制器组904包括第一调制器901和第二调制器902。第一调制器901和第二调制器902可以为强度调制器或IQ调制器。第一调制器901用于接收第一光束。第一调制器901用于根据第一电信号调制第一光束,得到第一调制光信号。第二调制器902用于接收第二光束。第二调制器902用于根据第二电信号调制第二光束,得到第二调制光信号。其中,第一电信号和第二电信号是根据待调制的电信号得到的。第一电信号和第二电信号的带宽相同,且都小于待调制电信号的带宽。例如,待调制的电信号的频谱范围为0至2B。通过数字信号预处理(digital signal processing,DSP)模块产生两个带宽为B的电信号。两个带宽为B的电信号分别为第一电信号和第二电信号。
合束器903的第一输入端和第一调制器901的输出端相连。合束器903的第二输入端和第二调制器902的输出端相连。合束器903用于对第一调制光信号和第二调制光信号进行合束,得到调制光信号。在合束过程中,第一调制光信号和第二调制光信号发生干涉现象,实现频谱拼接。
图10为本申请实施例中提供的谐波调制组件的第二个结构示意图。如图10所示。谐 波调制组件1000包括偏振分波器1001和偏振合波器1005。偏振分波器1001用于接收光束,将光束分为X偏振光束和Y偏振光束。偏振分波器1001的第一输出端口通过光传输路径3和偏振合波器1005第一输入端口相连。偏振分波器1001的第二输出端口通过光传输路径4和偏振合波器1005第二输入端口相连。
偏振分波器1001的第一输出端口用于输出X偏振光束。在光传输路径3上设置有谐波生成器200、调制器组904和合束器903。关于谐波生成器200、调制器组904和合束器903的描述,可以参考图9中对谐波调制组件900的相关描述。谐波调制组件900用于输出X偏振调制光束。
偏振分波器1001的第二输出端口用于输出Y偏振光束。在光传输路径4上设置有谐波生成器1002、调制器组1003和合束器1004。谐波生成器1002用于接收Y偏振光束,根据驱动信号和Y偏振光束得到第三光束和第四光束。第三光束和第四光束中的载波同相,奇数次谐波反向。谐波生成器1002用于向调制器组1003传输第三光束和第四光束。调制器组1003包括第三调制器和第四调制器。第三调制器用于接收第三光束,根据第一电信号调制第一光束,得到第三调制光信号。第四调制器用于接收第四光束,根据第四电信号调制第四光束,得到第四调制光信号。其中,第三电信号和第四电信号是根据待调制的Y偏振电信号得到的。第三电信号和第四电信号的带宽相同,且都小于待调制电信号的带宽。合束器1004用于接收第三调制光信号和第四调制光信号。合束器1004用于对第三调制光信号和第四调制光信号进行合束,得到Y偏振调制光信号。应理解,关于光传输路径4的描述可以参考前述对光传输路径3的描述。
偏振合波器1005的第一输入端口和合束器903的输出端口相连。偏振合波器1005用于从合束器903接收X偏振调制光信号。偏振合波器1005的第二输入端口和合束器1004的输出端口相连。偏振合波器1005用于从合束器1004接收Y偏振调制光信号。偏振合波器1005用于对Y偏振调制光信号和X偏振调制光信号进行合波,得到目标光信号。
前面对本申请中的谐波调制组件进行描述,下面对本申请中提供的光模块进行描述。图11为本申请实施例中提供的光模块的结构示意图。如图11所示。光模块1100包括光源1101和谐波调制组件1102。光源1101用于生成光束,向谐波调制组件1102传输光束。关于谐波调制组件1102的描述可以参考前述图9或图10中谐波调制组件的相关描述。谐波调制组件1102用于根据电信号调制光束,得到调制光信号。
前面对本申请中的光模块进行描述,下面对本申请中提供的光通信设备进行描述。图12为本申请实施例中提供的光通信设备的结构示意图。如图12所示,光通信设备1200包括处理器1201和光模块1100。
处理器1201可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器1201还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。具体地,处理器1201可以是光数字信号处理(optical digital signal processing,oDSP)芯片。oDSP芯片可以包括DSP模块。
处理器1201用于根据待调制的电信号得到第一电信号和第二电信号。第一电信号和第 二电信号的带宽相同,且都小于待调制电信号的带宽。此外,处理器1201还可以对待调制的电信号进行调制格式映射、整形、滤波、或链路预补偿等。处理器1201用于向光模块1100传输第一电信号和第二电信号。在实际应用中,光通信设备1200还可以包括两个DAC和两个电驱动器。两个DAC用于分别对第一电信号和第二电信号进行数模转换。两个电驱动器用于分别对第一电信号和第二电信号进行功率放大。
光模块1100用于接收第一电信号和第二电信号。关于光模块1100的描述,可以参考前述图11中的相关描述。光模块1100用于生成光束,根据光束得到第一光束和第二光束。第一光束和第二光束的载波同相,奇数次谐波反向。光模块1100用于通过第一电信号调制第一光信号,得到第一调制光信号。光模块1100还用于通过第二电信号调制第二光信号,得到第二调制光信号。光模块1100用于对第一调制光信号和第二调制光信号进行合束,得到调制光信号。调制光信号的带宽和待调制的电信号的带宽相同。
在其它实施例中,光通信设备1200还可以包括存储器。存储器用于存储待调制的电信号。存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、或闪存等。易失性存储器可以是随机存取存储器(random access memory,RAM)。
前面对本申请中提供的光通信设备进行描述,下面对本申请中提供的光通信***进行描述。图13为本申请中提供的光通信***的结构示意图。如图13所示,光通信***包括光通信设备1200和光网络设备1301。
关于光通信设备1200的描述可以参考前述对图12的相关描述。光通信设备1200用于根据待调制的电信号得到第一电信号和第二电信号。第一电信号和第二电信号的带宽相同,且都小于待调制电信号的带宽。光通信设备1200用于根据光束得到第一光束和第二光束。第一光束和第二光束的载波同相,奇数次谐波反向。光通信设备1200用于根据第一电信号调制第一光束,得到第一调制光信号。光通信设备1200还用于根据第二电信号调制所述第二光束,得到第二调制光信号。光通信设备1200还用于对第一调制光信号和第二调制光信号进行合束,得到调制光信号。光通信设备1200用于向光网络设备1301传输调制光信号。
光网络设备1301用于接收调制光信号,解调调制光信号,得到电信号。在实际应用中,光网络设备1301还可以向光通信设备1200传输光信号。光网络设备1201得到光信号的方法可以参考前述光通信设备1200得到调制光信号的相关描述。
在其它实施例中,光通信***还可以包括复用器(multiplexer,MUX)和解复用器(demultiplexer,DEMUX)。MUX连接N个光通信设备1200。N为大于0的整数。每个光通信设备1200用于向MUX传输不同波长的调制光信号。MUX用于对N个不同波长的调制光信号进行合波,得到具有N个波长的光信号。MUX用于向DEMUX传输具有N个波长的光信号。DEMUX用于对具有N个波长的光信号进行分波,得到N个具有不同波长的调制光信号。DEMUX和N个光网络设备1301相连。DEMUX用于向每个光网络设备1301传输携带一个波长的调制光信号。
本申请还提供了一种谐波生成方法。谐波生成方法包括以下步骤:通过分束器将载波光束分为两个载波光束。调制两个载波光束中的一个载波光束得到谐波光束。谐波光束包 括载波和谐波。抑制谐波光束中的载波和偶数次谐波,得到奇数次谐波光束。耦合奇数次谐波光束和两个载波光束中的另一个载波光束,得到两个光束。通过移相器改变两个光束中的一个光束的相位,使得两个光束的载波同相,奇数次谐波反向。
关于谐波生成方法的描述,可以参考前述谐波生成器的相关描述。例如,两个载波光束为光束1和光束2。两个光束为第一光束和第二光束。又如,谐波生成方法包括以下步骤:通过功率调节器调节一个载波光束、另一个载波光束、或奇数次谐波光束的功率。又如,谐波生成方法还包括以下步骤:通过第二移相器改变一个载波光束、另一个载波光束、或奇数次谐波光束的相位。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (17)

  1. 一种谐波生成器,其特征在于,包括第一分束器、抑制器、第一光耦合器和第一移相器,其中:
    所述第一分束器的第一输出端口通过第一光传输路径和所述第一光耦合器的第一输入端口相连;
    所述第一分束器的第二输出端口通过第二光传输路径和所述第一光耦合器的第二输入端口相连;
    所述第一光传输路径上设置有所述抑制器,所述抑制器用于通过调制载波光束得到谐波光束,抑制所述谐波光束中的载波和偶数次谐波;
    所述第一光耦合器包括两个输出端口,所述两个输出端口中的一个输出端口连接有所述第一移相器,所述第一移相器用于输出第一光束,所述两个输出端口中的另一个输出端口用于输出第二光束,所述第一光束的载波和所述第二光束的载波同相,所述第一光束的奇数次谐波和所述第二光束的奇数次谐波反向。
  2. 根据权利要求1所述的谐波生成器,其特征在于,所述谐波生成器还包括功率调节器;
    所述第一光传输路径或所述第二光传输路径上设置有所述功率调节器。
  3. 根据权利要求1或2所述的谐波生成器,其特征在于,所述谐波生成器还包括第二移相器;
    所述第一光传输路径或所述第二光传输路径上设置有所述第二移相器。
  4. 根据权利要求1至3中任意一项所述的谐波生成器,其特征在于,所述第一光耦合器的分光比为a∶1-a,所述a的取值范围在0.4至0.6之间。
  5. 根据权利要求1至4中任意一项所述的谐波生成器,其特征在于,所述抑制器包括第二分束器、上调制器、下调制器、第三移相器和第二光耦合器;
    所述第二分束器的输入端口连接所述第一分束器的第一输出端口;
    所述第二分束器的第一输出端口通过第三光传输路径和所述第二光耦合器的第一输入端口相连;
    所述第二分束器的第二输出端口通过第四光传输路径和所述第二光耦合器的第二输入端口相连;
    所述第三光传输路径上设置有所述上调制器,所述第四光传输路径上设置有所述下调制器,所述上调制器和所述下调制器用于接收差分时钟驱动信号,根据所述差分时钟驱动信号调制所述载波光束,以得到所述谐波光束;
    所述第三光传输路径或所述第四光传输路径上设置有所述第三移相器,所述第三移相器用于产生所述第三光传输路径和所述第四光传输路径中传输的光束之间的相位差,所述第二光耦合器用于根据所述相位差抑制所述谐波光束中的载波和偶数次谐波。
  6. 根据权利要求1至4中任意一项所述的谐波生成器,其特征在于,所述抑制器为线性化光调制器。
  7. 根据权利要求6所述的谐波生成器,其特征在于,所述线性化光调制器包括第一马赫曾德调制器MZM、第二MZM、第二光耦合器和第三移相器;
    所述第一MZM的输入端口和所述第一分束器的第一输出端口相连;
    所述第一MZM的第一输出端口通过第三光传输路径和所述第二光耦合器的第一输入端口相连;
    所述第一MZM的第二输出端口通过第四光传输路径和所述第二光耦合器的第二输入端口相连;
    所述第三光传输路径上设置有所述第二MZM;
    所述第三光传输路径或所述第四光传输路径上设置有所述第三移相器。
  8. 根据权利要求6所述的谐波生成器,其特征在于,所述线性化光调制器包括第一MZM、反光片、第二光耦合器和第三移相器;
    所述第一MZM的第一输入端口和所述第一分束器的第一输出端口相连;
    所述第一MZM的第一输出端口连接所述反光片;
    所述第一MZM的第二输出端口通过第三光传输路径和所述第二光耦合器的第一输入端口相连;
    所述第一MZM的第二输入端口通过第四光传输路径和所述第二光耦合器的第二输入端口相连;
    所述第三光传输路径或所述第四光传输路径上设置有所述第三移相器。
  9. 根据权利要求7或8所述的谐波生成器,其特征在于,所述第二光耦合器的分光比r∶1-r,其中,r的取值范围为0.02至0.2。
  10. 根据权利要求7至9中任意一项所述的谐波生成器,其特征在于,所述第二光耦合器为可调光耦合器。
  11. 一种谐波调制组件,其特征在于,包括调制器组、合束器和前述权利要求1至10中任意一项所述的谐波生成器,其中:
    所述调制器组包括第一调制器和第二调制器;
    所述谐波生成器的一个输出端口和所述第一调制器相连;
    所述谐波生成器的另一个输出端口和所述第二调制器相连;
    所述第一调制器的输出端和所述合束器的第一输入端相连;
    所述第二调制器的输出端和所述合束器的第二输入端相连。
  12. 根据权利要求11所述的谐波调制组件,其特征在于,所述第一调制器和所述第二调制器为强度调制器。
  13. 根据权利要求11所述的谐波调制组件,其特征在于,所述第一调制器和所述第二调制器为IQ调制器。
  14. 根据权利要求13所述的谐波调制组件,其特征在于,所述谐波调制组件还包括偏振分波器、另一调制器组、另一合束器、偏振合波器和另一前述权利要求1至10中任意一项所述的谐波生成器;
    所述偏振分波器的第一输出端口和所述谐波生成器的输入端口相连;
    所述偏振分波器的第二输出端口和所述另一谐波生成器的输入端口相连;
    所述另一调制器组包括第三调制器和第四调制器;
    所述另一谐波生成器的一个输出端口和所述第三调制器相连;
    所述另一谐波生成器的另一个输出端口和所述第四调制器相连;
    所述第三调制器的输出端口和所述另一合束器的第一输入端口相连;
    所述第四调制器的输出端口和所述另一合束器的第二输入端口相连;
    所述合束器的输出端口和所述偏振合波器的第一输入端口相连;
    所述另一合束器的输出端口和所述偏振合波器的第二输入端口相连。
  15. 根据权利要求11至14任意一项所述的谐波调制组件,其特征在于,所述第一调制器和所述第二调制器为线性化光调制器。
  16. 一种光模块,其特征在于,包括光源和前述权利要求11至15中任意一项所述的谐波调制组件,其中:
    所述光源用于生成光束,向所述谐波调制组件传输所述光束;
    所述谐波调制组件用于调制所述光束,得到调制光信号。
  17. 一种光通信设备,其特征在于,包括处理器和前述权利要求16所述的光模块,其中:
    所述处理器用于将待调制的电信号分为第一电信号和第二电信号,所述第一电信号和所述第二电信号的带宽相同且都小于所述待调制的电信号的带宽,向所述光模块传输所述第一电信号和所述第二电信号;
    所述光模块用于生成光束,根据所述光束得到第一光束和第二光束,所述第一光束的载波和所述第二光束的载波同相,所述第一光束的奇数次谐波和所述第二光束的奇数次谐波反向;
    所述光模块还用于通过所述第一电信号调制所述第一光束,得到第一调制光信号,通过所述第二电信号调制所述第二光束,得到第二调制光信号;
    所述光模块还用于对所述第一调制光信号和所述第二调制光信号进行合束,得到调制光信号。
PCT/CN2022/121234 2021-11-16 2022-09-26 谐波生成器、谐波调制组件、光模块和光通信设备 WO2023087922A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111356375.8A CN116137548A (zh) 2021-11-16 2021-11-16 谐波生成器、谐波调制组件、光模块和光通信设备
CN202111356375.8 2021-11-16

Publications (1)

Publication Number Publication Date
WO2023087922A1 true WO2023087922A1 (zh) 2023-05-25

Family

ID=86334141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121234 WO2023087922A1 (zh) 2021-11-16 2022-09-26 谐波生成器、谐波调制组件、光模块和光通信设备

Country Status (2)

Country Link
CN (1) CN116137548A (zh)
WO (1) WO2023087922A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644665A (en) * 1995-07-27 1997-07-01 The United States Of America As Represented By The Secretary Of The Navy Multi-octave, high dynamic range operation of low-biased modulators by balanced detection
WO2009138019A1 (zh) * 2008-05-16 2009-11-19 华为技术有限公司 多载波产生装置、光发射机以及多载波产生方法
US20100266289A1 (en) * 2009-04-21 2010-10-21 The Government Of The Us, As Represented By The Secretary Of The Navy Even-Order Harmonic Cancellation and Increased RF Gain Using Dual-Output Mach-Zehnder Modulator with Two Wavelength Input
US20170310520A1 (en) * 2016-04-26 2017-10-26 Analog Devices, Inc. Apparatus and methods for wideband receivers
CN110048782A (zh) * 2019-05-15 2019-07-23 中国电子科技集团公司第三十四研究所 一种强度调制直接检测链路中的偶次谐波抑制***
JP2020027146A (ja) * 2018-08-09 2020-02-20 ミハル通信株式会社 光変調装置
CN111010172A (zh) * 2019-11-05 2020-04-14 东南大学 一种频率可调谐倍频三角波、方波的产生装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644665A (en) * 1995-07-27 1997-07-01 The United States Of America As Represented By The Secretary Of The Navy Multi-octave, high dynamic range operation of low-biased modulators by balanced detection
WO2009138019A1 (zh) * 2008-05-16 2009-11-19 华为技术有限公司 多载波产生装置、光发射机以及多载波产生方法
US20100266289A1 (en) * 2009-04-21 2010-10-21 The Government Of The Us, As Represented By The Secretary Of The Navy Even-Order Harmonic Cancellation and Increased RF Gain Using Dual-Output Mach-Zehnder Modulator with Two Wavelength Input
US20170310520A1 (en) * 2016-04-26 2017-10-26 Analog Devices, Inc. Apparatus and methods for wideband receivers
JP2020027146A (ja) * 2018-08-09 2020-02-20 ミハル通信株式会社 光変調装置
CN110048782A (zh) * 2019-05-15 2019-07-23 中国电子科技集团公司第三十四研究所 一种强度调制直接检测链路中的偶次谐波抑制***
CN111010172A (zh) * 2019-11-05 2020-04-14 东南大学 一种频率可调谐倍频三角波、方波的产生装置及方法

Also Published As

Publication number Publication date
CN116137548A (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
CN110212987B (zh) 基于频谱拼接的射频线性调频信号生成方法及装置
CN112152720B (zh) 多频段双啁啾微波信号产生及抗光纤色散传输***及方法
CN110350981B (zh) 一种基于光子学的宽带调频微波信号生成方法及装置
US8824900B2 (en) Optical single-sideband transmitter
US10270632B2 (en) Modulator, modulation system, and method for implementing higher order modulation
JP6540952B2 (ja) 光ツートーン信号の生成方法およびdp−mzm型光変調器の制御方法
JP4878358B2 (ja) 光ssb変調器
CN102710335A (zh) 一种产生微波/毫米波光子4倍频的装置及其方法
CN110890901A (zh) 双光梳多倍频因子频谱扩展调频信号产生***及实现方法
WO2017177372A1 (zh) 生成光信号的器件、方法和芯片
JP4889661B2 (ja) 光マルチキャリア発生装置およびそれを用いた光マルチキャリア送信装置
US20070177252A1 (en) Light modulating apparatus
US9280032B2 (en) Method and device for converting optical frequency
CN111585656A (zh) 一种倍频三角波生成装置及方法
WO2023087922A1 (zh) 谐波生成器、谐波调制组件、光模块和光通信设备
CN106961306B (zh) 利用嵌入IM调制器的Sagnac环和DPMZM调制器级联产生八倍频毫米波的装置
US6535316B1 (en) Generation of high-speed digital optical signals
CN114448511A (zh) 可重构多波段微波光子收发链路
Lin et al. Photonic microwave multi-band frequency conversion based on a DP-QPSK modulator for satellite communication
WO2021079710A1 (ja) 任意波形生成装置及び任意波形生成方法
JP6363933B2 (ja) 光送受信装置、光受信器及び光送受信方法
CN115314114B (zh) 单一频率的信号产生方法、***及应用
WO2022244115A1 (ja) 光変調回路およびデジタル信号処理方法
Kashiwagi et al. Compensation of third-order inter modulation distortion by using frequency chirp modulation for electro-optic modulator
CN107819520B (zh) 一种四倍频奈奎斯特波形光学发生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894460

Country of ref document: EP

Kind code of ref document: A1