WO2023087674A1 - 太阳能空调及其控制方法、电子设备和存储介质 - Google Patents

太阳能空调及其控制方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2023087674A1
WO2023087674A1 PCT/CN2022/097355 CN2022097355W WO2023087674A1 WO 2023087674 A1 WO2023087674 A1 WO 2023087674A1 CN 2022097355 W CN2022097355 W CN 2022097355W WO 2023087674 A1 WO2023087674 A1 WO 2023087674A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
power supply
air conditioner
energy storage
electrically connected
Prior art date
Application number
PCT/CN2022/097355
Other languages
English (en)
French (fr)
Inventor
吕科磊
宋龙
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023087674A1 publication Critical patent/WO2023087674A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • H02S10/12Hybrid wind-PV energy systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • F24F2005/0067Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy with photovoltaic panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to the technical field of air conditioners, in particular to a solar air conditioner, a control method thereof, electronic equipment and a storage medium.
  • air conditioners have become one of the indispensable electrical appliances in people's daily life, but the large power consumption of air conditioners has always been one of the reasons for restricting its further development.
  • One of the existing solutions is to use solar energy to power the air conditioner, but when using solar power, if the solar supply voltage fluctuates, the current of the air conditioner will increase or decrease, and when the current increases, the air conditioner components will be damaged.
  • the change of temperature not only affects the working effect of the air conditioner, but also easily causes the loss of the air conditioner to increase, which will easily cause damage to the air conditioner in the long run.
  • Embodiments of the present application provide a solar air conditioner and its control method, electronic equipment, and storage media, which solve the problem of large energy consumption during operation of the existing air conditioner on the basis of ensuring stable operation of the air conditioner.
  • An embodiment of the present application provides a control method for a solar air conditioner, including:
  • connection state of the energy storage device and the mains circuit with the DC load and the AC load in the solar air conditioner is controlled.
  • the control of the connection state between the energy storage device and the mains circuit and the DC load and AC load in the solar air conditioner according to the judgment result includes:
  • control the energy storage device to be electrically connected to the DC load in the solar air conditioner, and control the mains power
  • the circuit is electrically connected to the AC load in the solar air conditioner
  • the DC load is a DC motor and/or a DC circuit board
  • the AC load is an AC motor and/or a compressor
  • An embodiment of the present application provides a solar air conditioner, including:
  • the main body of the air conditioner is equipped with a DC load and an AC load;
  • the control system is used to obtain the remaining power in the energy storage device and the power supply information of the mains; judge whether the remaining power reaches the preset power, and judge whether the power supply information meets the preset power supply conditions; according to the judgment result , controlling the connection status of the energy storage device and the mains circuit with the DC load and the AC load.
  • the solar air conditioner also includes:
  • a transfer switch electrically connected to the control system, has a first station and a second station;
  • the energy storage device is electrically connected to the DC load, and the mains circuit is electrically connected to the AC load;
  • the energy storage device is electrically connected to the DC load and the AC load.
  • the solar air conditioner further includes: an inverter;
  • the energy storage device is provided with a first power supply terminal and a second power supply terminal;
  • the first power supply terminal is electrically connected to the DC load, and the mains circuit is electrically connected to the AC load;
  • the first power supply terminal is electrically connected to the DC load
  • the second power supply terminal is electrically connected to the AC load through the inverter.
  • the transfer switch also has a third station
  • one end of the commercial power circuit is electrically connected to the AC load, and the other end of the commercial power circuit is electrically connected to the DC load through the rectifier.
  • An embodiment of the present application provides a control system for a solar air conditioner, including:
  • the obtaining module is used to obtain the remaining power in the energy storage device and the power supply information of the mains
  • a judging module configured to judge whether the remaining power reaches a preset power level, and judge whether the power supply information satisfies a preset power supply working condition
  • the execution module is used to control the connection status of the energy storage device, the mains circuit and the DC load and AC load in the solar air conditioner according to the judgment result.
  • An electronic device provided according to an embodiment of the present application includes a memory, a processor, and a computer program stored in the memory and operable on the processor, and the processor implements the control method of the solar air conditioner when executing the program step.
  • a non-transitory computer-readable storage medium stores a computer program thereon, and when the computer program is executed by a processor, the steps of the method for controlling a solar air conditioner are implemented.
  • the solar air conditioner and its control method, electronic equipment and storage medium provided by this application compare the remaining power with the preset power, judge whether the power supply information meets the preset power supply conditions, and control the energy storage device and the mains circuit according to the judgment result When the remaining power exceeds the preset power and the power supply information meets the preset power supply conditions, the control energy storage device is electrically connected to the DC load in the air conditioning system, and the AC load power in the mains circuit and the air conditioning system is controlled.
  • the connection can effectively reduce the energy consumption of the air conditioner while ensuring the stable operation of the air conditioner.
  • Fig. 1 is a schematic diagram of a solar air conditioner provided by an embodiment of the present application
  • Fig. 2 is a schematic flow chart of a control method for a solar air conditioner provided by an embodiment of the present application
  • Fig. 3 is a schematic structural diagram of a control system of a solar air conditioner provided by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • connection and “connected” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, Or integrated connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, Or integrated connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary.
  • the present application provides a solar air conditioner, as shown in FIG. 1 , including: an energy storage device 1 , an air conditioner body and a control system.
  • the input end of the energy storage device 1 is connected to the solar panel 2, and the energy storage device 1 is mainly used for storing solar energy.
  • Any air conditioner can be used for the air conditioner body, such as wall-mounted air conditioner, cabinet-type air conditioner, window-type air conditioner, and ceiling-mounted air conditioner.
  • the air conditioner body in this embodiment includes: an indoor unit 3 and an outdoor unit 4, and the indoor unit 3 and the outdoor unit 4 are provided with a DC load and an AC load.
  • the DC load is a DC motor or a DC circuit board, or a DC motor and a DC circuit board.
  • the AC load is an AC motor or a compressor, or has two structures of an AC motor and a compressor.
  • the control system is used to obtain the remaining power in the energy storage device 1 and the power supply information of the mains; judge whether the remaining power reaches the preset power, and judge whether the power supply information meets the preset power supply conditions. According to the judgment result, control the energy storage device 2 and The state of connection between the mains circuit 6 and the DC load and the AC load.
  • the energy storage device 1 When it is judged that the remaining power of the energy storage device 1 exceeds the preset power, and the power supply information of the commercial power meets the preset power supply conditions, the energy storage device 1 is controlled to be electrically connected to the DC load, and the commercial power circuit 6 is controlled to be connected to the AC load. electrical connection.
  • control system controls the energy storage device 1 to be electrically connected to the DC load and the AC load when it is determined that the remaining power of the energy storage device 1 exceeds the preset power and the power supply information does not meet the preset power supply conditions.
  • the control system of the solar air conditioner controls the sensor to acquire the remaining power in the energy storage device 1 .
  • the control system reads the information of the remaining power, and at the same time controls another sensor to obtain the power supply information of the mains.
  • the control system judges whether the remaining power reaches the preset power, for example, whether the remaining power reaches 80% of the total power, and if it reaches 80%, it means that the remaining power reaches the preset power. If it does not reach 80%, it means that the remaining power has not reached the preset power.
  • the control system judges whether the power supply information meets the preset power supply conditions.
  • the control system can determine whether the power supply is normal according to the power supply information. For example, when the mains power failure or severe voltage fluctuation occurs, it can be judged that the power supply information does not meet the preset power supply conditions.
  • the control system of the solar air conditioner judges that the remaining power exceeds the preset power.
  • the control system controls the energy storage device 1 and the DC load power in the solar air conditioner. Connection, the control mains circuit 6 is electrically connected with the AC load in the solar air conditioner.
  • the control system of the solar air conditioner judges that the remaining power exceeds the preset power and the power supply information does not meet the preset power supply conditions, then the energy storage device 1 is controlled to be electrically connected to the DC load and the AC load at the same time, and the energy storage device 1 can be fully utilized powered by.
  • the mains circuit 6 is electrically connected to the DC load and the AC load, and the mains is fully used for power supply.
  • the solar air conditioner provided by this application compares the remaining power with the preset power, and judges whether the power supply information meets the preset power supply conditions.
  • the control energy storage device is electrically connected to the DC load in the air conditioning system, and the mains circuit is electrically connected to the AC load in the air conditioning system. While ensuring the stable operation of the air conditioner, Effectively reduce the energy consumption of air conditioners.
  • the energy storage device can also store the electricity of other power supply devices while storing solar energy, or store the electricity of other power supply devices separately, for example, the energy storage device can be used to store Solar energy can store wind energy, geothermal or tidal energy, etc. at the same time, or store wind energy, geothermal or tidal energy separately, so as to meet the energy consumption demand of air conditioners.
  • a transfer switch 7 can also be added, the transfer switch 7 is electrically connected to the control system, and the transfer switch 7 has a first station and a second station.
  • the energy storage device 1 When the transfer switch 7 is in the first position, the energy storage device 1 is electrically connected to the DC load, and the mains circuit 6 is electrically connected to the AC load, which can reduce the power consumption of the DC load. At the same time, since the AC load is directly powered by the mains, it can effectively avoid the fluctuation of the solar power supply voltage from affecting the work of the air conditioner.
  • the energy storage device 1 When the transfer switch 7 is in the second position, the energy storage device 1 is electrically connected to the DC load and the AC load at the same time, and the energy storage device 1 can be fully used for power supply.
  • the air conditioner also includes: an inverter 5 .
  • Inverter is a converter that converts DC power (battery, storage battery) into constant frequency and constant voltage or frequency modulation and voltage modulation AC power.
  • the energy storage device 1 is provided with a first power supply terminal and a second power supply terminal.
  • the transfer switch 7 When the transfer switch 7 is in the first position, the first power supply terminal is electrically connected to the DC load, and the mains circuit 6 is electrically connected to the AC load.
  • the transfer switch 7 When the transfer switch 7 is in the second position, the first power supply terminal is electrically connected to the DC load, and the second power supply terminal is electrically connected to the AC load through the inverter 5 .
  • the air conditioner includes: rectifier.
  • a rectifier is a device that converts alternating current into direct current. It can be used for power supply and detection of radio signals, etc.
  • a third station can also be added to the transfer switch. When the transfer switch 7 is in the third position, one end of the commercial power circuit 6 is electrically connected to the AC load, and the other end of the commercial power circuit 6 is electrically connected to the DC load through a rectifier, so that the commercial power can be fully used for power supply.
  • the present application provides a control method for a solar air conditioner, as shown in FIG. 1 and FIG. 2 .
  • This control method can be used to control the above-mentioned solar air conditioner.
  • control method of the solar air conditioner includes the following steps: S110-S130.
  • Step S110 Obtain the remaining power in the energy storage device and the power supply information of the mains.
  • the control system of the solar air conditioner controls the sensor to acquire the remaining power in the energy storage device 1 .
  • the control system reads the information of the remaining power, and at the same time controls another sensor to obtain the power supply information of the mains.
  • the power supply information at least includes information such as current, electric quantity and voltage.
  • Step S120 Determine whether the remaining power reaches the preset power level, and determine whether the power supply information meets the preset power supply conditions.
  • the control system judges whether the remaining power reaches the preset power, for example, whether the remaining power reaches 80% of the total power, and if it reaches 80%, it means that the remaining power reaches the preset power. If it does not reach 80%, it means that the remaining power has not reached the preset power.
  • the control system judges whether the power supply information meets the preset power supply conditions.
  • the control system can determine whether the power supply is normal according to the power supply information. For example, when the mains power failure or severe voltage fluctuation occurs, it can be judged that the power supply information does not meet the preset power supply conditions.
  • Step S130 According to the judgment result, control the connection status of the energy storage device, the mains circuit and the DC load and AC load in the solar air conditioner.
  • the control system of the solar air conditioner judges that the remaining power exceeds the preset power and the power supply information meets the preset power supply conditions, for example, the remaining power exceeds 80% of the total power, and the mains voltage meets the rated voltage and is stable, the control system controls the transfer switch 7 At the first station, the energy storage device 1 is electrically connected to the DC load in the solar air conditioner, and the commercial power circuit 6 is electrically connected to the AC load in the solar air conditioner.
  • the energy storage device 1 When the energy storage device 1 supplies power, the generated direct current is directly supplied to the direct current load.
  • the energy storage device 1 can supply power to the DC motor and/or the DC circuit board, which can reduce the power consumption of the DC motor and/or the DC circuit board, and this part of the load will not cause a large impact on the operation of the air conditioner when the voltage or current fluctuates. Influence.
  • the AC power of the mains circuit 6 is directly supplied to the AC load.
  • the mains circuit 6 can supply power to the AC motor and/or the compressor, since the AC load is directly powered by the mains, it can effectively prevent the fluctuation of the solar power supply voltage from affecting the operation of the air conditioner.
  • control system of the solar air conditioner determines that the remaining power exceeds the preset power and the power supply information does not meet the preset power supply conditions, it controls the energy storage device 1 to be electrically connected to the DC load and the AC load at the same time.
  • the control system controls the transfer switch 7 to be in the second position.
  • the energy storage device 1 is provided with a first power supply terminal and a second power supply terminal, and the energy storage device 1 The first power supply end is electrically connected to the DC load, and the second power supply end of the energy storage device 1 is electrically connected to the AC load through the inverter 5 , so that the energy storage device 1 can be fully used for power supply.
  • the mains circuit 6 is controlled to be electrically connected to the DC load and the AC load.
  • the control system controls the transfer switch 7 to be in the third position, and then controls one end of the mains circuit 6 to be electrically connected to the AC load, and the other end of the mains circuit is connected to the AC load through a rectifier.
  • the DC load is electrically connected and can be completely powered by the mains.
  • the control method of the solar air conditioner provided by this application compares the remaining power with the preset power, and judges whether the power supply information meets the preset power supply conditions. When the remaining power exceeds the preset power and the power supply information meets the preset power supply conditions, the control energy storage device is electrically connected to the DC load in the air conditioning system, and the mains circuit is electrically connected to the AC load in the air conditioning system to ensure the stable operation of the air conditioner. At the same time, effectively reduce the energy consumption of the air conditioner.
  • control system of the solar air conditioner provided by the embodiment of the present application is described below, and the control system of the solar air conditioner described below and the control method described above can be referred to in correspondence.
  • the control system of the solar air conditioner includes: an acquisition module 310 , a judgment module 320 , and an execution module 330 .
  • the obtaining module 310 is used for obtaining the remaining power in the energy storage device and the power supply information of the mains.
  • the judging module 320 is used to judge whether the remaining power reaches the preset power, and judges whether the power supply information meets the preset power supply conditions;
  • the execution module 330 is used to control the energy storage device, the mains circuit and the DC load in the solar air conditioner according to the judgment result and the connection status of the AC load.
  • FIG. 4 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 410, a communication interface (Communications Interface) 420, a memory (memory) 430 and a communication bus 440, Wherein, the processor 410 , the communication interface 420 , and the memory 430 communicate with each other through the communication bus 440 .
  • the processor 410 can call the logic instructions in the memory 430 to execute the control method of the solar air conditioner.
  • the control method includes: obtaining the remaining power in the energy storage device and the power supply information of the mains; judging whether the remaining power reaches the preset power , and judge whether the power supply information satisfies the preset power supply conditions; according to the judgment result, control the connection status of the energy storage device and the mains circuit with the DC load and the AC load in the solar air conditioner.
  • the electronic device in this embodiment may be a server, a PC, or other devices during specific implementation, as long as its structure includes a processor 410, a communication interface 420 as shown in FIG. 4 , the memory 430 and the communication bus 440, wherein the processor 410, the communication interface 420, and the memory 430 communicate with each other through the communication bus 440, and the processor 410 can call the logic instructions in the memory 430 to execute the above method.
  • This embodiment does not limit the specific implementation form of the electronic device.
  • the above logic instructions in the memory 430 may be implemented in the form of software function units and be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the embodiment of the present application discloses a computer program product
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium
  • the computer program includes program instructions, when the program instructions are executed by the computer
  • the control method includes: obtaining the remaining power in the energy storage device and the power supply information of the mains; judging whether the remaining power reaches the preset power , and judge whether the power supply information satisfies the preset power supply conditions; according to the judgment result, control the connection status of the energy storage device and the mains circuit with the DC load and the AC load in the solar air conditioner.
  • the embodiments of the present application also provide a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the control of the solar air conditioner provided by the above-mentioned embodiments method, the control method includes: obtaining the remaining power in the energy storage device and the power supply information of the mains; judging whether the remaining power reaches the preset power, and judging whether the power supply information meets the preset power supply conditions; according to the judgment result , controlling the connection state of the energy storage device and the mains circuit with the DC load and the AC load in the solar air conditioner.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • each implementation can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种太阳能空调及其控制方法、电子设备和存储介质,所述控制方法包括:获取储能装置(1)中的剩余电量和市电的供电信息;判断所述剩余电量是否达到预设电量,并判断所述供电信息是否满足预设供电工况;根据判断结果,控制所述储能装置(1)和市电电路(6)与所述太阳能空调中的直流负载和交流负载的连接状态。所述控制方法将剩余电量与预设电量比较,并判断供电信息是否满足预设供电工况,根据判断结果,控制储能装置(1)和市电电路(6)与负载的连接状态,在剩余电量超过预设电量,供电信息满足预设供电工况时,控制储能装置(1)与空调***中的直流负载电连接,控制市电电路(6)与空调***中的交流负载电连接,保证空调稳定工作的同时,降低空调的能耗。

Description

太阳能空调及其控制方法、电子设备和存储介质
相关申请的交叉引用
本申请要求于2021年11月17日提交的申请号为202111362579.2,名称为“太阳能空调及其控制方法、电子设备和存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及空调技术领域,尤其涉及一种太阳能空调及其控制方法、电子设备和存储介质。
背景技术
现今,空调已成为人们日常生活中不可或缺的电器之一,但由于空调的耗电量大,一直是限制其进一步发展的原因之一。
现有的解决方式之一是采用太阳能来为空调进行供电,但在利用太阳能供电时,若太阳能供给电压发生波动会引起空调电流的增大或者减少,而当电流增大就会引起空调元器件温度的变化,不仅影响空调的工作效果,还易引起空调的损耗增加,长期以往极易造成空调的损坏。
发明内容
本申请实施例提供一种太阳能空调及其控制方法、电子设备和存储介质,在保证空调稳定工作的基础上,解决现有空调运行时能耗较大的问题。
本申请实施例提供一种太阳能空调的控制方法,包括:
获取储能装置中的剩余电量和市电的供电信息;
判断所述剩余电量是否达到预设电量,并判断所述供电信息是否满足预设供电工况;
根据判断结果,控制所述储能装置和市电电路与所述太阳能空调中的直流负载和交流负载的连接状态。
根据本申请一个实施例提供的太阳能空调的控制方法,所述根据判断结果,控制所述储能装置和市电电路与所述太阳能空调中的直流负载和交流负载的连接状态,包括:
若判断获知所述剩余电量超过所述预设电量,且所述供电信息满足所述预设供电工况,则控制所述储能装置与所述太阳能空调中的直流负载电连接,控制市电电路与所述太阳能空调中的交流负载电连接;
若判断获知所述剩余电量超过所述预设电量,且所述供电信息不满足所述预设供电工况,则控制所述储能装置与所述直流负载和所述交流负载电连接;
若判断获知所述剩余电量未所述预设电量,则控制所述市电电路与所述直流负载和所述交流负载电连接。
根据本申请一个实施例提供的太阳能空调的控制方法,所述直流负载为直流电机和/或直流电路板,所述交流负载为交流电机和/或压缩机。
本申请实施例提供一种太阳能空调,包括:
储能装置,用于储存太阳能;
空调本体,设有直流负载和交流负载;
控制***,用于获取所述储能装置中的剩余电量和市电的供电信息;判断所述剩余电量是否达到预设电量,并判断所述供电信息是否满足预设供电工况;根据判断结果,控制所述储能装置和市电电路与所述直流负载和所述交流负载的连接状态。
根据本申请一个实施例提供的太阳能空调,所述太阳能空调还包括:
转换开关,与所述控制***电连接,具有第一工位和第二工位;
在所述第一工位,所述储能装置与所述直流负载电连接,所述市电电路与所述交流负载电连接;
在所述第二工位,所述储能装置与所述直流负载和所述交流负载电连接。
根据本申请一个实施例提供的太阳能空调,所述太阳能空调还包括:逆变器;
所述储能装置设有第一供电端和第二供电端;
在所述第一工位,所述第一供电端与所述直流负载电连接,所述市电电路与所述交流负载电连接;
在所述第二工位,所述第一供电端与所述直流负载电连接,所述第二供电端通过所述逆变器与所述交流负载电连接。
根据本申请一个实施例提供的太阳能空调,所述转换开关还具有第三工位;
在所述第三工位,所述市电电路的一端与所述交流负载电连接,所述市电电路另一端通过所述整流器与所述直流负载电连接。
本申请实施例提供一种太阳能空调的控制***,包括:
获取模块,用于获取储能装置中的剩余电量和市电的供电信息
判断模块,用于判断所述剩余电量是否达到预设电量,并判断所述供电信息是否满足预设供电工况;
执行模块,用于根据判断结果,控制所述储能装置和市电电路与所述太阳能空调中的直流负载和交流负载的连接状态。
根据本申请一个实施例提供的电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现所述太阳能空调的控制方法的步骤。
根据本申请一个实施例提供的非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现所述太阳能空调的控制方法的步骤。
本申请提供的太阳能空调及其控制方法、电子设备和存储介质,将剩余电量与预设电量比较,并判断供电信息是否满足预设供电工况,根据判断结果,控制储能装置和市电电路与负载的连接状态,在剩余电量超过预设电量,供电信息满足预设供电工况时,控制储能装置与空调***中的直流负载电连接,控制市电电路与空调***中的交流负载电连接,在保证空调稳定工作的同时,有效降低空调的能耗。
附图说明
实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的太阳能空调的示意图;
图2是本申请一实施例提供的太阳能空调的控制方法的流程示意图;
图3是本申请一实施例提供的太阳能空调的控制***的结构示意图;
图4是本申请实施例提供的一种电子设备的结构示意图。
附图标记:
1:储能装置;       2:太阳能板;        3:室内机;
4:室外机;         5:逆变器;          6:市电电路;
7:转换开关;       310:获取模块;      320:判断模块;
330:执行模块;     410:处理器;        420:通信接口;
430:存储器;       440:通信总线。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例用于说明本申请,但不能用来限制本申请的范围。
在本申请实施例的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
本申请提供一种太阳能空调,如图1所述,包括:储能装置1、空调本体和控制***。
本实施例中,储能装置1的输入端与太阳能板2连接,储能装置1主要用于储存太阳能。空调本体可选用任意空调,例如挂壁式空调、立柜式空调、窗式空调和吊顶式空调等。本实施例中的空调本体包括:室内机3 和室外机4,室内机3和室外机4设有直流负载和交流负载。例如,直流负载为直流电机或直流电路板,或为直流电机和直流电路板两结构。同样交流负载为交流电机或压缩机,或为交流电机和压缩机两结构。
控制***用于获取储能装置1中的剩余电量和市电的供电信息;判断剩余电量是否达到预设电量,并判断供电信息是否满足预设供电工况根据判断结果,控制储能装置2和市电电路6与直流负载和交流负载的连接状态。
在判断获知储能装置1的剩余电量超过预设电量,且市电的供电信息满足预设供电工况的状态下,控制储能装置1与直流负载电连接,控制市电电路6与交流负载电连接。
同时,控制***还在判断获知储能装置1的剩余电量超过预设电量,且供电信息不满足预设供电工况的状态下,控制储能装置1与直流负载和交流负载电连接。
在空调上电开机前,太阳能空调的控制***控制传感器获取储能装置1中的剩余电量。传感器获取储能装置1剩余电量后,控制***读取剩余电量的信息,同时控制另一传感器获取市电的供电信息。
在获取剩余电量和供电信息后,控制***判断剩余电量是否达到预设电量,例如剩余电量是否达到总电量的80%,如达到80%,则说明剩余电量达到预设电量。如未达到80%,则说明剩余电量未达到预设电量。
与此同时,控制***判断供电信息是否满足预设供电工况。控制***可根据供电信息,确定供电是否正常,例如当市电停电或出现严重的电压波动时,则判断供电信息不满足预设供电工况。
太阳能空调的控制***判断获知剩余电量超过预设电量,在供电信息满足预设供电工况时,且市电电压满足额定电压且稳定,控制***控制储能装置1与太阳能空调中的直流负载电连接,控制市电电路6与太阳能空调中的交流负载电连接。
太阳能空调的控制***若判断获知剩余电量超过预设电量,且供电信息不满足预设供电工况,则控制储能装置1同时与直流负载和交流负载电连接,可完全利用储能装置1进行供电。
若判断获知剩余电量未超过预设电量,则说明储能装置1不能满足供 电要求,此时控制市电电路6与直流负载和交流负载电连接,完全利用市电进行供电。
本申请提供的太阳能空调,将剩余电量与预设电量比较,并判断供电信息是否满足预设供电工况,根据判断结果,控制储能装置和市电电路与负载的连接状态,在剩余电量超过预设电量,供电信息满足预设供电工况时,控制储能装置与空调***中的直流负载电连接,控制市电电路与空调***中的交流负载电连接,在保证空调稳定工作的同时,有效降低空调的能耗。
需要说明的是,根据用户的需求,在其它实施例中,储能装置还能在储存太阳能的同时储存其它供电装置的电量,亦或者单独储存其它供电装置的电量,例如储能装置可用于储存太阳能的同时储存风能、地热或潮汐能等,或者单独储存风能、地热或潮汐能,以此满足空调的能耗需求。
为便于切换供电方式,还可增设转换开关7,转换开关7与控制***电连接,转换开关7具有第一工位和第二工位。
转换开关7处于第一工位时,储能装置1与直流负载电连接,市电电路6与交流负载电连接,可以减少直流负载的耗电。同时由于交流负载直接由市电供电,可以有效避免太阳能供给电压发生波动影响空调工作。
转换开关7处于第二工位时,储能装置1同时与直流负载和交流负载电连接,可完全利用储能装置1进行供电。
其中,空调还包括:逆变器5。逆变器能够把直流电能(电池、蓄电瓶)转变成定频定压或调频调压交流电的转换器。储能装置1设有第一供电端和第二供电端。转换开关7处于第一工位时,第一供电端与直流负载电连接,市电电路6与交流负载电连接。转换开关7处于第二工位时,第一供电端与直流负载电连接,第二供电端通过逆变器5与交流负载电连接。
此外,空调还包括:整流器。整流器是把交流电转换成直流电的装置,可用于供电装置及侦测无线电信号等。对应的,转换开关还可增设第三工位。在转换开关7处于第三工位时,市电电路6的一端与交流负载电连接,市电电路6另一端通过整流器与直流负载电连接,可完全利用市电进行供电。
本申请提供一种太阳能空调的控制方法,如图1和图2所示。该控制 方法可用于控制上述太阳能空调。
如图1所示,本申请实施例的太阳能空调的控制方法包括如下步骤:S110-S130。
步骤S110:获取储能装置中的剩余电量和市电的供电信息。
在空调上电开机前,太阳能空调的控制***控制传感器获取储能装置1中的剩余电量。传感器获取储能装置1剩余电量后,控制***读取剩余电量的信息,同时控制另一传感器获取市电的供电信息。供电信息至少包括:电流、电量和电压等信息。
步骤S120:判断剩余电量是否达到预设电量,并判断供电信息是否满足预设供电工况。
在获取剩余电量和供电信息后,控制***判断剩余电量是否达到预设电量,例如剩余电量是否达到总电量的80%,如达到80%,则说明剩余电量达到预设电量。如未达到80%,则说明剩余电量未达到预设电量。
预设电量依据用户需求自行设置,例如用户设置的储能装置1需要保证空调两小时的运行时,剩余电量需至少满足△E=80%×E=p×h。其中,△E为剩余电量,E为总电量,p为太阳能空调的功率,h为时间。
与此同时,控制***判断供电信息是否满足预设供电工况。控制***可根据供电信息,确定供电是否正常,例如当市电停电或出现严重的电压波动时,则判断供电信息不满足预设供电工况。
步骤S130:根据判断结果,控制储能装置和市电电路与太阳能空调中的直流负载和交流负载的连接状态。
太阳能空调的控制***判断获知剩余电量超过预设电量,且供电信息满足预设供电工况时,例如剩余电量超过总电量80%,且市电电压满足额定电压且稳定,控制***控制转换开关7处于第一工位,储能装置1与太阳能空调中的直流负载电连接,市电电路6与太阳能空调中的交流负载电连接。
储能装置1供电时,产生的直流电直接供给直流负载。例如,储能装置1可对直流电机和/或直流电路板进行供电,可以减少直流电机和/或直流电路板的耗电,这部分负载在电压或电流波动时不会对空调工作造成较大影响。而市电电路6的交流电则直接供给交流负载。例如,市电电路6 可对交流电机和/或压缩机进行供电,由于交流负载直接由市电供电,可以有效避免太阳能供给电压发生波动影响空调工作。
太阳能空调的控制***若判断获知剩余电量超过预设电量,且供电信息不满足预设供电工况,则控制储能装置1同时与直流负载和交流负载电连接。
例如,停电或电压不稳定时,控制***控制转换开关7处于第二工位,通过设置逆变器5,储能装置1设有第一供电端和第二供电端,将储能装置1的第一供电端与直流负载电连接,储能装置1的第二供电端通过逆变器5与交流负载电连接,可完全利用储能装置1进行供电。
若判断获知剩余电量未超过预设电量,则控制市电电路6与直流负载和交流负载电连接。
例如,储能装置1电量不足,未达到80%时,控制***控制转换开关7处于第三工位,则控制市电电路6的一端与交流负载电连接,市电电路的另一端通过整流器与直流负载电连接,可完全利用市电进行供电。
本申请提供的太阳能空调的控制方法,将剩余电量与预设电量比较,并判断供电信息是否满足预设供电工况,根据判断结果,控制储能装置和市电电路与负载的连接状态,在剩余电量超过预设电量,供电信息满足预设供电工况时,控制储能装置与空调***中的直流负载电连接,控制市电电路与空调***中的交流负载电连接,在保证空调稳定工作的同时,有效降低空调的能耗。
下面对本申请实施例提供的太阳能空调的控制***进行描述,下文描述的太阳能空调的控制***与上文描述的控制方法可相互对应参照。
如图3所示,太阳能空调的控制***包括:获取模块310、判断模块320、执行模块330。
其中,获取模块310用于获取储能装置中的剩余电量和市电的供电信息。判断模块320用于判断剩余电量是否达到预设电量,并判断供电信息是否满足预设供电工况;执行模块330用于根据判断结果,控制储能装置和市电电路与太阳能空调中的直流负载和交流负载的连接状态。
图4示例了一种电子设备的实体结构示意图,如图4所示,该电子设备可以包括:处理器(processor)410、通信接口(Communications Interface)420、 存储器(memory)430和通信总线440,其中,处理器410,通信接口420,存储器430通过通信总线440完成相互间的通信。处理器410可以调用存储器430中的逻辑指令,以执行太阳能空调的控制方法,该控制方法包括:获取储能装置中的剩余电量和市电的供电信息;判断所述剩余电量是否达到预设电量,并判断所述供电信息是否满足预设供电工况;根据判断结果,控制所述储能装置和市电电路与所述太阳能空调中的直流负载和交流负载的连接状态。
需要说明的是,本实施例中的电子设备在具体实现时可以为服务器,也可以为PC机,还可以为其他设备,只要其结构中包括如图4所示的处理器410、通信接口420、存储器430和通信总线440,其中处理器410,通信接口420,存储器430通过通信总线440完成相互间的通信,且处理器410可以调用存储器430中的逻辑指令以执行上述方法即可。本实施例不对电子设备的具体实现形式进行限定。
此外,上述的存储器430中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
进一步地,本申请实施例公开一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法实施例所提供的太阳能空调的控制方法,该控制方法包括:获取储能装置中的剩余电量和市电的供电信息;判断所述剩余电量是否达到预设电量,并判断所述供电信息是否满足预设供电工况;根据判断结果,控制所述储能装置和市电电路与所述太阳能空调中的直流负载和交流负载的连接状态。
另一方面,本申请实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以执行上述各实施例提供的太阳能空调的控制方法,该控制方法包括:获取储能装置中的剩余电量和市电的供电信息;判断所述剩余电量是否达到预设电量,并判断所述供电信息是否满足预设供电工况;根据判断结果,控制所述储能装置和市电电路与所述太阳能空调中的直流负载和交流负载的连接状态。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
以上实施方式仅用于说明本申请,而非对本申请的限制。尽管参照实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,对本申请的技术方案进行各种组合、修改或者等同替换,都不脱离本申请技术方案的精神和范围,均应涵盖在本申请的权利要求范围中。

Claims (10)

  1. 一种太阳能空调的控制方法,包括:
    获取储能装置中的剩余电量和市电的供电信息;
    判断所述剩余电量是否达到预设电量,并判断所述供电信息是否满足预设供电工况;
    根据判断结果,控制所述储能装置和市电电路与所述太阳能空调中的直流负载和交流负载的连接状态。
  2. 根据权利要求1所述的太阳能空调的控制方法,其中,所述根据判断结果,控制所述储能装置和市电电路与所述太阳能空调中的直流负载和交流负载的连接状态,包括:
    若判断获知所述剩余电量超过所述预设电量,且所述供电信息满足所述预设供电工况,则控制所述储能装置与所述直流负载电连接,控制所述市电电路与所述交流负载电连接;
    若判断获知所述剩余电量超过所述预设电量,且所述供电信息不满足所述预设供电工况,则控制所述储能装置与所述直流负载和所述交流负载电连接;
    若判断获知所述剩余电量未所述预设电量,则控制所述市电电路与所述直流负载和所述交流负载电连接。
  3. 根据权利要求1或2所述的太阳能空调的控制方法,其中,所述直流负载为直流电机和/或直流电路板,所述交流负载为交流电机和/或压缩机。
  4. 一种太阳能空调,包括:
    储能装置,用于储存太阳能;
    空调本体,设有直流负载和交流负载;
    控制***,用于获取所述储能装置中的剩余电量和市电的供电信息;判断所述剩余电量是否达到预设电量,并判断所述供电信息是否满足预设供电工况;根据判断结果,控制所述储能装置和市电电路与所述直流负载和所述交流负载的连接状态。
  5. 根据权利要求4所述的太阳能空调,还包括:
    转换开关,与所述控制***电连接,具有第一工位和第二工位;
    在所述第一工位,所述储能装置与所述直流负载电连接,所述市电电路与所述交流负载电连接;
    在所述第二工位,所述储能装置与所述直流负载和所述交流负载电连接。
  6. 根据权利要求5所述的太阳能空调,还包括:逆变器;
    所述储能装置设有第一供电端和第二供电端;
    在所述第一工位,所述第一供电端与所述直流负载电连接,所述市电电路与所述交流负载电连接;
    在所述第二工位,所述第一供电端与所述直流负载电连接,所述第二供电端通过所述逆变器与所述交流负载电连接。
  7. 根据权利要求6所述的太阳能空调,还包括:整流器;
    所述转换开关还具有第三工位;
    在所述第三工位,所述市电电路的一端与所述交流负载电连接,所述市电电路另一端通过所述整流器与所述直流负载电连接。
  8. 一种太阳能空调的控制***,包括:
    获取模块,用于获取储能装置中的剩余电量和市电的供电信息
    判断模块,用于判断所述剩余电量是否达到预设电量,并判断所述供电信息是否满足预设供电工况;
    执行模块,用于根据判断结果,控制所述储能装置和市电电路与所述太阳能空调中的直流负载和交流负载的连接状态。
  9. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1至3任一项所述太阳能空调的控制方法的步骤。
  10. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至3任一项所述太阳能空调的控制方法的步骤。
PCT/CN2022/097355 2021-11-17 2022-06-07 太阳能空调及其控制方法、电子设备和存储介质 WO2023087674A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111362579.2 2021-11-17
CN202111362579.2A CN114234307B (zh) 2021-11-17 2021-11-17 太阳能空调及其控制方法、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023087674A1 true WO2023087674A1 (zh) 2023-05-25

Family

ID=80749801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097355 WO2023087674A1 (zh) 2021-11-17 2022-06-07 太阳能空调及其控制方法、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN114234307B (zh)
WO (1) WO2023087674A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114234307B (zh) * 2021-11-17 2024-06-18 青岛海尔空调器有限总公司 太阳能空调及其控制方法、电子设备和存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101876472A (zh) * 2010-03-04 2010-11-03 广东美的电器股份有限公司 太阳能空调器的控制装置及其控制方法
US20120235493A1 (en) * 2009-11-30 2012-09-20 Kyocera Corporation Control device, control system, and control method
CN103940045A (zh) * 2014-04-22 2014-07-23 广东美的集团芜湖制冷设备有限公司 太阳能空调及其控制方法和控制装置
CN104197469A (zh) * 2014-08-22 2014-12-10 青岛海尔空调器有限总公司 一种太阳能空调的控制方法
CN104728968A (zh) * 2013-12-24 2015-06-24 珠海格力电器股份有限公司 光伏空调***及其控制方法
CN105202666A (zh) * 2015-10-22 2015-12-30 广东美的制冷设备有限公司 太阳能空调***及其控制方法
CN105281370A (zh) * 2015-11-30 2016-01-27 珠海格力电器股份有限公司 能源控制***及方法
CN106568171A (zh) * 2016-11-07 2017-04-19 广东美的制冷设备有限公司 太阳能空调器控制方法、装置及太阳能空调器
CN114234307A (zh) * 2021-11-17 2022-03-25 青岛海尔空调器有限总公司 太阳能空调及其控制方法、电子设备和存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206546006U (zh) * 2017-03-05 2017-10-10 湖南新风科技有限公司 太阳能空调装置
CN108336812B (zh) * 2018-01-12 2022-11-18 青岛海尔空调器有限总公司 空调供电的控制方法
CN110247388A (zh) * 2019-06-25 2019-09-17 珠海格力电器股份有限公司 空调***
CN211655754U (zh) * 2020-03-10 2020-10-09 成都城电电力工程设计有限公司 一种多功能集成的一体化空调
CN211556975U (zh) * 2020-03-27 2020-09-22 青岛海信日立空调***有限公司 一种直驱空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120235493A1 (en) * 2009-11-30 2012-09-20 Kyocera Corporation Control device, control system, and control method
CN101876472A (zh) * 2010-03-04 2010-11-03 广东美的电器股份有限公司 太阳能空调器的控制装置及其控制方法
CN104728968A (zh) * 2013-12-24 2015-06-24 珠海格力电器股份有限公司 光伏空调***及其控制方法
CN103940045A (zh) * 2014-04-22 2014-07-23 广东美的集团芜湖制冷设备有限公司 太阳能空调及其控制方法和控制装置
CN104197469A (zh) * 2014-08-22 2014-12-10 青岛海尔空调器有限总公司 一种太阳能空调的控制方法
CN105202666A (zh) * 2015-10-22 2015-12-30 广东美的制冷设备有限公司 太阳能空调***及其控制方法
CN105281370A (zh) * 2015-11-30 2016-01-27 珠海格力电器股份有限公司 能源控制***及方法
CN106568171A (zh) * 2016-11-07 2017-04-19 广东美的制冷设备有限公司 太阳能空调器控制方法、装置及太阳能空调器
CN114234307A (zh) * 2021-11-17 2022-03-25 青岛海尔空调器有限总公司 太阳能空调及其控制方法、电子设备和存储介质

Also Published As

Publication number Publication date
CN114234307B (zh) 2024-06-18
CN114234307A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
US10508825B2 (en) Solar air conditioner, method and device for controlling solar air conditioner
WO2023087674A1 (zh) 太阳能空调及其控制方法、电子设备和存储介质
CN111947277A (zh) 空调器、运行控制方法和计算机可读存储介质
CN107461972B (zh) 太阳能制冷设备的控制方法及相关设备、太阳能空调
WO2023087675A1 (zh) 太阳能空调及其控制方法、电子设备和存储介质
EP3862823B1 (en) Device control method, device control apparatus and device using control apparatus
CN103246336A (zh) 电子装置及其驱动控制方法
JP2014057384A (ja) 電気機器を含む電源システム
WO2023098024A1 (zh) 新能源空调及其控制方法、电子设备和存储介质
WO2023098025A1 (zh) 新能源空调及其控制方法、电子设备和存储介质
WO2023050793A1 (zh) 空调***供电控制方法、装置及空调***
CN114838459A (zh) 一种空调控制方法及装置
CN110829817B (zh) 控制电路、控制电路的控制方法、装置及空调器
CN114893875A (zh) 空调的控制方法、装置及空调
CN114061076A (zh) 空调器的机能力补偿控制方法、装置及空调***
CN113251584A (zh) 空调运行控制方法、装置、设备和存储介质
JP5461458B2 (ja) Ac/dcアダプタおよび電源システム
WO2024124479A1 (zh) 连续制冷的供电控制方法、装置、设备及存储介质
CN219204185U (zh) 储能电源和控制该储能电源的控制***
CN110601186B (zh) 房车电力调配***和房车电力***
CN209730337U (zh) 一种可调式过流保护计时插座
CN108662723B (zh) 空调器控制方法、装置、空调器及计算机可读存储介质
CN114234310A (zh) 新能源空调及其控制方法、电子设备和存储介质
CN115483817A (zh) 供电***及其控制方法、空调器
CN115076915A (zh) 一种空调的控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894217

Country of ref document: EP

Kind code of ref document: A1