WO2023085881A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2023085881A1
WO2023085881A1 PCT/KR2022/017864 KR2022017864W WO2023085881A1 WO 2023085881 A1 WO2023085881 A1 WO 2023085881A1 KR 2022017864 W KR2022017864 W KR 2022017864W WO 2023085881 A1 WO2023085881 A1 WO 2023085881A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
organic layer
compound
stirred
added
Prior art date
Application number
PCT/KR2022/017864
Other languages
English (en)
French (fr)
Inventor
김민준
이동훈
서상덕
김영석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220150688A external-priority patent/KR20230071074A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202280022978.0A priority Critical patent/CN117044429A/zh
Publication of WO2023085881A1 publication Critical patent/WO2023085881A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to an organic light emitting device.
  • the organic light emitting phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon has a wide viewing angle, excellent contrast, and a fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light emitting device generally has a structure including an anode, a cathode, and an organic material layer between the anode and the cathode.
  • the organic material layer is often composed of a multi-layered structure composed of different materials, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and when the injected holes and electrons meet, excitons are formed. When it falls back to the ground state, it glows.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to an organic light emitting diode having improved driving voltage, efficiency and lifetime.
  • the light emitting layer includes a compound represented by Formula 1 and a compound represented by Formula 2 below.
  • An organic light emitting device is provided:
  • Any one of Y 1 to Y 7 is N, the others are CR,
  • R are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted C 6-60 aryl; Or a C 2-60 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted N, O and S,
  • L 1 to L 3 are each independently a single bond; Substituted or unsubstituted C 6-60 arylene; Or a C 2-60 heteroarylene containing at least one selected from the group consisting of unsubstituted N, O and S,
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6-60 aryl; Or a C 2-60 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted N, O and S,
  • a 1 to A 10 is a substituent represented by Formula 2-1 below, and the others are each independently hydrogen or deuterium;
  • L' 1 to L' 3 are each independently a single bond; Substituted or unsubstituted C 6-60 arylene; Or a C 2-60 heteroarylene containing at least one selected from the group consisting of unsubstituted N, O and S,
  • Ar' 1 and Ar' 2 are each independently a substituted or unsubstituted C 6-60 aryl; Or a C 2-60 heteroaryl containing one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O and S.
  • the organic light emitting device described above is excellent in driving voltage, efficiency and lifetime.
  • FIG. 1 shows an example of an organic light emitting device composed of a substrate 1, an anode 2, a light emitting layer 3 and a cathode 4.
  • FIG. 2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 3, an electron transport layer 7, an electron injection layer 8, and a cathode 4. It shows an example of an organic light emitting device made of.
  • FIG. 3 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 9, a light emitting layer 3, a hole blocking layer 10, and an electron injection and transport layer. 11, and an example of an organic light emitting element composed of a cathode 4 is shown.
  • substituted or unsubstituted means deuterium; halogen group; nitrile group; nitro group; hydroxy group; carbonyl group; ester group; imide group; amino group; phosphine oxide group; alkoxy group; aryloxy group; Alkyl thioxy group; Arylthioxy group; an alkyl sulfoxy group; aryl sulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; Aralkenyl group; Alkyl aryl group; Alkylamine group; Aralkylamine group; heteroarylamine group; Arylamine group; Arylphosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing at least one of N, O, and S atoms, or substituted or unsub
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the ester group may be substituted with an aryl group having 6 to 25 carbon atoms or a straight-chain, branched-chain or cyclic chain alkyl group having 1 to 25 carbon atoms in the ester group.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group is specifically a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. but not limited to
  • the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, a phenyl boron group, but is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be straight-chain or branched-chain, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the number of carbon atoms of the alkyl group is 1 to 20. According to another exemplary embodiment, the number of carbon atoms of the alkyl group is 1 to 10. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, etc., but is not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the number of carbon atoms of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the number of carbon atoms of the cycloalkyl group is 3 to 6.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the number of carbon atoms of the aryl group is 6 to 30. According to one embodiment, the number of carbon atoms of the aryl group is 6 to 20.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as a monocyclic aryl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, etc.
  • it is not limited thereto.
  • the heterocyclic group is a heterocyclic group containing at least one of O, N, Si, and S as heterogeneous elements, and the number of carbon atoms is not particularly limited, but preferably has 2 to 60 carbon atoms.
  • the heterocyclic group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, and an acridyl group.
  • pyridazine group pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyridopyrimidinyl group, pyridopyrazinyl group, pyrazinopyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadia A zolyl group, a phenothiazinyl group, and a dibenzofuranyl group, but are not limited thereto.
  • the description of the aryl group described above may be applied except that the arylene is a divalent group.
  • the description of the heterocyclic group described above may be applied except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aryl group or cycloalkyl group described above may be applied, except that the hydrocarbon ring is formed by combining two substituents.
  • the heterocyclic group is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that it is formed by combining two substituents.
  • An anode and a cathode used in the present invention refer to electrodes used in an organic light emitting device.
  • the cathode material a material having a high work function is generally preferred so that holes can be smoothly injected into the organic layer.
  • the cathode material include metals such as vanadium, chromium, copper, zinc, and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function so as to easily inject electrons into the organic material layer.
  • Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multi-layered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • the light emitting layer used in the present invention means a layer capable of emitting light in the visible ray region by combining holes and electrons transferred from the anode and the cathode.
  • the light emitting layer includes a host material and a dopant material, and in the present invention, the compound represented by Formula 1 and the compound represented by Formula 2 are included as hosts.
  • the compound of Formula 1 includes a benzopuropyridine ring and a triazine substituent bonded thereto.
  • one or more hydrogens may be substituted with deuterium.
  • each R is independently hydrogen; heavy hydrogen; phenyl; biphenylyl; naphthyl; (phenyl) naphthyl; (naphthyl)phenyl; phenanthrenyl; chrysenyl; benzophenanthrenyl; triphenylenyl; carbazolyl; fluoranthenyl; benzocarbazolyl; dibenzofuranyl; dibenzothiophenyl; benzonaphthofuranil; or benzonaphthothiophenyl.
  • R is a substituent other than hydrogen or deuterium, it may be substituted with one or more deuterium.
  • any one of Y 1 to Y 7 may be N, and the others may be CH or CD, respectively.
  • any one of Y 1 to Y 7 is N and the others are CR, but any one of 6 R is phenyl; biphenylyl; naphthyl; (phenyl) naphthyl; (naphthyl)phenyl; phenanthrenyl; chrysenyl; benzophenanthrenyl; triphenylenyl; carbazolyl; fluoranthenyl; benzocarbazolyl; dibenzofuranyl; dibenzothiophenyl; benzonaphthofuranil; or benzonaphthothiophenyl, and the remaining 5 R's may all be hydrogen or deuterium.
  • the R that is not hydrogen or deuterium may be substituted with one or more deuterium.
  • L 1 to L 3 are each independently a single bond; or a substituted or unsubstituted C 6-20 arylene.
  • L 1 to L 3 are each independently a single bond; Or any one selected from the group consisting of:
  • one or more hydrogens may be replaced with deuterium.
  • Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-20 aryl; Or a C 2-20 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted N, O and S.
  • Ar 1 and Ar 2 are each independently phenyl; biphenylyl; terphenylyl; naphthyl; phenanthrenyl; fluoranthenyl; chrysenyl; benzophenanthrenyl; dibenzofuranyl; or dibenzothiophenyl.
  • Ar 1 and Ar 2 may each independently be substituted with one or more deuterium atoms.
  • the compound of Formula 1 may not contain deuterium or may contain one or more deuterium atoms.
  • the deuterium substitution rate of the compound may be 1% to 100%.
  • the deuterium substitution rate of the compound is 5% or more, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 75% or more, 80% or more, Alternatively, it may be 90% or more and 100% or less.
  • the deuterium substitution rate of these compounds is calculated as the number of substituted deuteriums relative to the total number of hydrogens that may exist in the formula. Spectrometer) analysis.
  • the present invention provides a method for preparing the compound represented by Formula 1 above.
  • Chemical Formula 1 may be prepared by a preparation method as shown in Reaction Scheme 1 below.
  • X is halogen, preferably X is chloro or bromo.
  • Scheme 1 is a Suzuki coupling reaction, which is preferably carried out in the presence of a palladium catalyst and a base, and a reactor for the Suzuki coupling reaction may be modified as known in the art.
  • the preparation method of the compound represented by Chemical Formula 1 may be more specific in a synthesis example to be described later.
  • Formula 2 includes a benzonaphthofuran core and an aryl amine substituent bonded thereto.
  • L' 1 to L' 3 are each independently a single bond; or a substituted or unsubstituted C 6-20 arylene.
  • L' 1 to L' 3 are each independently a single bond; phenylene; or naphthylene.
  • Each of the phenylene or naphthylene may be substituted with at least one deuterium.
  • Ar' 1 and Ar' 2 are each independently substituted or unsubstituted C 6-20 aryl; Or a C 2-20 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted N, O and S.
  • Ar' 1 and Ar' 2 are each independently phenyl; biphenylyl; terphenylyl; naphthyl; phenanthrenyl; 9,9-dimethylfluorenyl; 9,9-dimethylfluorenyl substituted with one phenyl; 9,9-diphenylfluorenyl; 9,9-diphenylfluorenyl substituted with one phenyl; 9,9'-spirobifluorenyl;9-phenylcarbazolyl;dibenzofuranyl; or dibenzothiophenyl.
  • 'substituted with one phenyl' means that any one of the hydrogens of the substituent is substituted with phenyl.
  • Ar' 1 and Ar' 2 may each independently be substituted with one or more deuterium atoms.
  • the compound of Formula 2 may not contain deuterium or may contain one or more deuterium atoms.
  • the deuterium substitution rate of the compound may be 1% to 100%.
  • the deuterium substitution rate of the compound is 5% or more, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 75% or more, 80% or more, Alternatively, it may be 90% or more and 100% or less.
  • the present invention provides a method for preparing the compound represented by Formula 2 above.
  • the compound of Formula 2 may be prepared by a preparation method shown in Scheme 2-1 below.
  • X' is as defined in Formula 2, X' is halogen, and preferably X' is chloro or bromo.
  • Reaction Scheme 2-1 is a Suzuki coupling reaction, which is preferably carried out in the presence of a palladium catalyst and a base, and a reactor for the Suzuki coupling reaction may be modified as known in the art.
  • the compound of Formula 2 may be prepared by a preparation method shown in Scheme 2-2 below.
  • X' is as defined in Formula 2, X' is halogen, and preferably X' is chloro or bromo.
  • Reaction Scheme 2-2 is an amine substitution reaction, which is preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction may be modified as known in the art.
  • the preparation method of the compound of Chemical Formula 2 may be more specific in a synthesis example to be described later.
  • the weight ratio of the compound represented by Formula 1 and the compound represented by Formula 2 is 1:99 to 99:1, 5:95 to 95:5, or 10:90 to 90:10.
  • the dopant material is not particularly limited as long as it is a material used in an organic light emitting device.
  • aromatic amine derivatives there are aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, metal complexes, and the like.
  • aromatic amine derivatives are condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, such as pyrene, anthracene, chrysene, periplanthene, etc.
  • styrylamine compounds include substituted or unsubstituted arylamine is substituted with at least one arylvinyl group, wherein one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group, and an arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group, and an arylamino group are substituted or unsubstituted.
  • metal complexes include, but are not limited to, iridium complexes and platinum complexes.
  • one or more of the following compounds may be used as the dopant material, but is not limited thereto:
  • the organic light emitting device may include a hole transport layer between the light emitting layer and the anode.
  • the hole transport layer is a layer that receives holes from the anode or the hole injection layer and transports them to the light emitting layer.
  • the hole transport material is a material that can receive holes from the anode or the hole injection layer and transfer them to the light emitting layer, and has high hole mobility. material is suitable.
  • hole transport material examples include, but are not limited to, arylamine-based organic materials, conductive polymers, and block copolymers having both conjugated and non-conjugated parts.
  • the organic light emitting device may further include a hole injection layer between the anode and the hole transport layer, if necessary.
  • the hole injection layer is a layer for injecting holes from the electrode, and the hole injection material has the ability to transport holes and has a hole injection effect at the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and generated in the light emitting layer A compound that prevents migration of excitons to the electron injecting layer or electron injecting material and has excellent thin film formation ability is preferred.
  • the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic layer.
  • the hole injection material include metal porphyrins, oligothiophenes, arylamine-based organic materials, hexanitrilehexaazatriphenylene-based organic materials, quinacridone-based organic materials, and perylene-based organic materials. of organic materials, anthraquinone, polyaniline, and polythiophene-based conductive polymers, but are not limited thereto.
  • the organic light emitting device may include an electron blocking layer between the hole transport layer and the light emitting layer, if necessary.
  • the electron blocking layer prevents electrons injected from the cathode from passing to the hole transport layer without recombination in the light emitting layer, and is also called an electron blocking layer.
  • a material having a smaller electron affinity than the electron transport layer is preferable for the electron blocking layer.
  • the organic light emitting device may include an electron transport layer between the light emitting layer and the cathode.
  • the electron transport layer is a layer that receives electrons from the cathode or an electron injection layer formed on the cathode, transports electrons to the light emitting layer, and suppresses the transfer of holes in the light emitting layer.
  • an electron transport material electrons are well injected from the cathode.
  • a material that can be received and transferred to the light emitting layer a material having high electron mobility is suitable.
  • the electron transport material include Al complexes of 8-hydroxyquinoline; Complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used according to the prior art.
  • suitable cathode materials are conventional materials having a low work function followed by a layer of aluminum or silver. Specifically cesium, barium, calcium, ytterbium and samarium, followed in each case by a layer of aluminum or silver.
  • the organic light emitting device may further include an electron injection layer between the electron transport layer and the cathode, if necessary.
  • the electron injection layer is a layer for injecting electrons from an electrode, has the ability to transport electrons, has an excellent electron injection effect from a cathode, an excellent electron injection effect for a light emitting layer or a light emitting material, and injects holes of excitons generated in the light emitting layer. It is preferable to use a compound that prevents migration to a layer and has excellent thin film forming ability.
  • materials that can be used as the electron injection layer include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preore nylidene methane, anthrone, etc. and their derivatives, metal complex compounds, nitrogen-containing 5-membered ring derivatives, etc., but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato) aluminum, tris(2-methyl-8-hydroxyquinolinato) aluminum, tris(8-hydroxyquinolinato) gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( There are o-cresolato) gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, and bis(2-methyl-8-quinolinato)(2-naphtolato)gallium. Not limited to this.
  • the electron injection and transport layer may be formed as a single layer by simultaneously depositing the electron transport material and the electron injection material.
  • the organic light emitting device may include a hole blocking layer between the electron transport layer and the light emitting layer, if necessary.
  • the hole blocking layer prevents holes injected from the anode from passing to the electron transport layer without recombination in the light emitting layer, and a material having high ionization energy is preferably used for the hole blocking layer.
  • FIG. 1 shows an example of an organic light emitting device composed of a substrate 1, an anode 2, a light emitting layer 3 and a cathode 4.
  • 2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 3, an electron transport layer 7, an electron injection layer 8, and a cathode 4
  • It shows an example of an organic light emitting device made of.
  • 3 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 9, a light emitting layer 3, a hole blocking layer 10, electron injection
  • an example of an organic light emitting device composed of the transport layer 11 and the cathode 4 is shown.
  • the organic light emitting device according to the present invention can be manufactured by sequentially stacking the above-described components. At this time, by using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation, depositing a metal or a metal oxide having conductivity or an alloy thereof on the substrate to form an anode And, after forming each of the above-described layers thereon, it can be manufactured by depositing a material that can be used as a cathode thereon.
  • PVD physical vapor deposition
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material on a substrate and an anode material in the reverse order of the above configuration (WO 2003/012890).
  • the light emitting layer may be formed by a solution coating method as well as a vacuum deposition method of a host and a dopant.
  • the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
  • the organic light emitting device may be a top emission type, a bottom emission type, or a double side emission type depending on the material used.
  • a glass substrate coated with ITO (indium tin oxide) to a thickness of 1,000 ⁇ was put in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • a Fischer Co. product was used as the detergent
  • distilled water filtered through a second filter of a Millipore Co. product was used as the distilled water.
  • ultrasonic cleaning was performed for 10 minutes.
  • ultrasonic cleaning was performed with solvents such as isopropyl alcohol, acetone, and methanol, dried, and transported to a plasma cleaner.
  • solvents such as isopropyl alcohol, acetone, and methanol
  • the following compound HI-1 was formed to a thickness of 1150 ⁇ as a hole injection layer on the prepared ITO transparent electrode, but the following compound A-1 was p-doped at a concentration of 1.5%.
  • the following HT-1 compound was vacuum deposited to form a hole transport layer having a thickness of 800 ⁇ .
  • an electron blocking layer was formed on the hole transport layer by vacuum depositing the following EB-1 compound to a film thickness of 150 ⁇ .
  • Compound 1-1, Formula 2-1, and the following compound Dp-7 were vacuum co-deposited in a weight ratio of 49:49:2 as the host to form a red light emitting layer having a thickness of 400 ⁇ .
  • a hole blocking layer was formed on the light emitting layer by vacuum depositing the following HB-1 compound to a film thickness of 30 ⁇ . Then, on the hole blocking layer, the following ET-1 compound and the following LiQ compound were vacuum deposited at a weight ratio of 2:1 to form an electron injection and transport layer with a thickness of 300 ⁇ .
  • a negative electrode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 ⁇ and aluminum to a thickness of 1,000 ⁇ on the electron injection and transport layer.
  • the deposition rate of the organic material was maintained at 0.4 ⁇ 0.7 ⁇ /sec, the deposition rate of lithium fluoride on the anode was 0.3 ⁇ /sec, and the deposition rate of aluminum was 2 ⁇ /sec, and the vacuum level during deposition was 2 x 10 - Maintaining 7 to 5 x 10 -6 torr, an organic light emitting device was fabricated.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that the first host and the second host were co-deposited with the compounds of Table 1 in a ratio of 1:1.
  • An organic light-emitting device was manufactured in the same manner as in Example 1, except that the first host and the second host were co-deposited with the compounds of Table 2 in a ratio of 1:1.
  • Compounds B-1 to B-13 used as the first host are as follows.
  • the lifetime T95 means the time required for the luminance to decrease from the initial luminance (6,000 nit) to 95%.
  • Examples 1 to 210 using the compound of Formula 1 and the compound of Formula 2 as cohosts show a lower driving voltage and significantly improve efficiency and lifetime compared to Comparative Examples 1 to 65. can be checked. From this, it can be confirmed that the combination of the compound of Formula 1 and the compound of Formula 2 is effective in transferring energy to the dopant in the light emitting layer.
  • substrate 2 anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 유기 발광 소자를 제공한다.

Description

유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2021년 11월 15일자 한국 특허 출원 제10-2021-0156945호 및 2022년 11월 11일자 한국 특허 출원 제10-2022-0150688호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
상기 과제를 해결하기 위하여, 본 발명은,
양극; 음극; 및 상기 양극과 음극 사이의 발광층을 포함하고,
상기 발광층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는,
유기 발광 소자를 제공한다:
[화학식 1]
Figure PCTKR2022017864-appb-img-000001
상기 화학식 1에서,
Y1 내지 Y7 중 어느 하나는 N이고, 나머지는 CR이고,
R은 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
L1 내지 L3는 각각 독립적으로 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,
Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
[화학식 2]
Figure PCTKR2022017864-appb-img-000002
상기 화학식 2에서,
A1 내지 A10 중 어느 하나는 하기 화학식 2-1로 표시되는 치환기이고, 나머지는 각각 독립적으로 수소 또는 중수소이고,
[화학식 2-1]
Figure PCTKR2022017864-appb-img-000003
상기 화학식 2-1에서,
L'1 내지 L'3는 각각 독립적으로 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,
Ar'1 및 Ar'2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이다.
상술한 유기 발광 소자는, 구동 전압, 효율 및 수명이 우수하다.
도 1은, 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는, 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(3), 전자수송층(7), 전자주입층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 3은, 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(9), 발광층(3), 정공억제층(10), 전자 주입 및 수송층(11), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서,
Figure PCTKR2022017864-appb-img-000004
또는
Figure PCTKR2022017864-appb-img-000005
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2022017864-appb-img-000006
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2022017864-appb-img-000007
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2022017864-appb-img-000008
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2022017864-appb-img-000009
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
이하, 각 구성 별로 본 발명을 상세히 설명한다.
양극 및 음극
본 발명에서 사용되는 양극 및 음극은, 유기 발광 소자에서 사용되는 전극을 의미한다.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
발광층
본 발명에서 사용되는 발광층은, 양극과 음극으로부터 전달받은 정공과 전자를 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 층을 의미한다. 일반적으로, 발광층은 호스트 재료와 도펀트 재료를 포함하며, 본 발명에는 상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물을 호스트로 포함한다.
상기 화학식 1의 화합물은 벤조퓨로피리딘 고리 및 이와 결합하는 트리아진 치환기를 포함한다. 상기 화학식 1에서, 1 이상의 수소는 중수소로 치환될 수 있다.
바람직하게는, R은 각각 독립적으로 수소; 중수소; 페닐; 비페닐릴; 나프틸; (페닐)나프틸; (나프틸)페닐; 페난쓰레닐; 크리세닐; 벤조페난쓰레닐; 트리페닐레닐; 카바졸릴; 플루오란테닐; 벤조카바졸릴; 디벤조퓨라닐; 디벤조티오페닐; 벤조나프토퓨라닐; 또는 벤조나프토티오페닐이다. 상기 R이 수소 또는 중수소 외의 치환기인 경우, 이는 하나 이상의 중수소로 치환된 것일 수 있다.
일 구현예에서, 상기 Y1 내지 Y7 중 어느 하나는 N이고, 나머지는 각각 CH 또는 CD일 수 있다.
또는, 상기 Y1 내지 Y7 중 어느 하나는 N이고, 나머지는 CR이되, 6 개의 R 중 어느 하나는 페닐; 비페닐릴; 나프틸; (페닐)나프틸; (나프틸)페닐; 페난쓰레닐; 크리세닐; 벤조페난쓰레닐; 트리페닐레닐; 카바졸릴; 플루오란테닐; 벤조카바졸릴; 디벤조퓨라닐; 디벤조티오페닐; 벤조나프토퓨라닐; 또는 벤조나프토티오페닐이고, 나머지 5개의 R은 모두 수소 또는 중수소일 수 있다. 상기 수소 또는 중수소가 아닌 R은 하나 이상의 중수소로 치환될 수 있다.
바람직하게는, L1 내지 L3는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C6-20 아릴렌이다.
바람직하게는, L1 내지 L3는 각각 독립적으로 단일 결합; 또는 하기로 구성되는 군에서 선택되는 어느 하나이다:
Figure PCTKR2022017864-appb-img-000010
상기에서, 하나 이상의 수소는 중수소로 치환될 수 있다.
바람직하게는, Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴이다.
바람직하게는, Ar1 및 Ar2는 각각 독립적으로 페닐; 비페닐릴; 터페닐릴; 나프틸; 페난쓰레닐; 플루오란테닐; 크리세닐; 벤조페난쓰레닐; 디벤조퓨라닐; 또는 디벤조티오페닐이다. 이때 상기 Ar1 및 Ar2는 각각 독립적으로 하나 이상의 중수소로 치환된 것일 수 있다.
상기 화학식 1의 화합물은 중수소를 포함하지 않거나, 또는 1개 이상의 중수소를 포함할 수 있다.
일 예로, 상기 화학식 1의 화합물이 중수소를 포함하는 경우, 화합물의 중수소 치환율은 1% 내지 100%일 수 있다. 구체적으로는, 상기 화합물의 중수소 치환율은 5% 이상, 10% 이상, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 75% 이상, 80% 이상, 또는 90% 이상이면서, 100% 이하일 수 있다. 이러한 화합물의 중수소 치환율은 화학식 내 존재할 수 있는 수소의 총 개수 대비 치환된 중수소의 개수로 계산되며, 이때 치환된 중수소의 개수는 MALDI-TOF MS(Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer) 분석을 통해 구해질 수 있다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2022017864-appb-img-000011
Figure PCTKR2022017864-appb-img-000012
Figure PCTKR2022017864-appb-img-000013
Figure PCTKR2022017864-appb-img-000014
Figure PCTKR2022017864-appb-img-000015
Figure PCTKR2022017864-appb-img-000016
Figure PCTKR2022017864-appb-img-000017
Figure PCTKR2022017864-appb-img-000018
Figure PCTKR2022017864-appb-img-000019
Figure PCTKR2022017864-appb-img-000020
Figure PCTKR2022017864-appb-img-000021
Figure PCTKR2022017864-appb-img-000022
Figure PCTKR2022017864-appb-img-000023
Figure PCTKR2022017864-appb-img-000024
Figure PCTKR2022017864-appb-img-000025
Figure PCTKR2022017864-appb-img-000026
Figure PCTKR2022017864-appb-img-000027
Figure PCTKR2022017864-appb-img-000028
Figure PCTKR2022017864-appb-img-000029
Figure PCTKR2022017864-appb-img-000030
Figure PCTKR2022017864-appb-img-000031
Figure PCTKR2022017864-appb-img-000032
Figure PCTKR2022017864-appb-img-000033
Figure PCTKR2022017864-appb-img-000034
Figure PCTKR2022017864-appb-img-000035
Figure PCTKR2022017864-appb-img-000036
Figure PCTKR2022017864-appb-img-000037
Figure PCTKR2022017864-appb-img-000038
Figure PCTKR2022017864-appb-img-000039
Figure PCTKR2022017864-appb-img-000040
Figure PCTKR2022017864-appb-img-000041
Figure PCTKR2022017864-appb-img-000042
Figure PCTKR2022017864-appb-img-000043
Figure PCTKR2022017864-appb-img-000044
Figure PCTKR2022017864-appb-img-000045
Figure PCTKR2022017864-appb-img-000046
Figure PCTKR2022017864-appb-img-000047
Figure PCTKR2022017864-appb-img-000048
Figure PCTKR2022017864-appb-img-000049
Figure PCTKR2022017864-appb-img-000050
Figure PCTKR2022017864-appb-img-000051
Figure PCTKR2022017864-appb-img-000052
Figure PCTKR2022017864-appb-img-000053
Figure PCTKR2022017864-appb-img-000054
Figure PCTKR2022017864-appb-img-000055
Figure PCTKR2022017864-appb-img-000056
Figure PCTKR2022017864-appb-img-000057
Figure PCTKR2022017864-appb-img-000058
Figure PCTKR2022017864-appb-img-000059
Figure PCTKR2022017864-appb-img-000060
Figure PCTKR2022017864-appb-img-000061
Figure PCTKR2022017864-appb-img-000062
Figure PCTKR2022017864-appb-img-000063
Figure PCTKR2022017864-appb-img-000064
Figure PCTKR2022017864-appb-img-000065
Figure PCTKR2022017864-appb-img-000066
Figure PCTKR2022017864-appb-img-000067
Figure PCTKR2022017864-appb-img-000068
Figure PCTKR2022017864-appb-img-000069
Figure PCTKR2022017864-appb-img-000070
Figure PCTKR2022017864-appb-img-000071
Figure PCTKR2022017864-appb-img-000072
Figure PCTKR2022017864-appb-img-000073
Figure PCTKR2022017864-appb-img-000074
Figure PCTKR2022017864-appb-img-000075
Figure PCTKR2022017864-appb-img-000076
Figure PCTKR2022017864-appb-img-000077
Figure PCTKR2022017864-appb-img-000078
Figure PCTKR2022017864-appb-img-000079
Figure PCTKR2022017864-appb-img-000080
Figure PCTKR2022017864-appb-img-000081
Figure PCTKR2022017864-appb-img-000082
Figure PCTKR2022017864-appb-img-000083
Figure PCTKR2022017864-appb-img-000084
Figure PCTKR2022017864-appb-img-000085
Figure PCTKR2022017864-appb-img-000086
Figure PCTKR2022017864-appb-img-000087
Figure PCTKR2022017864-appb-img-000088
Figure PCTKR2022017864-appb-img-000089
Figure PCTKR2022017864-appb-img-000090
Figure PCTKR2022017864-appb-img-000091
Figure PCTKR2022017864-appb-img-000092
Figure PCTKR2022017864-appb-img-000093
또한, 본 발명은 상기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다.
일례로, 상기 화학식 1은 하기 반응식 1과 같은 제조 방법으로 제조될 수 있다.
[반응식 1]
Figure PCTKR2022017864-appb-img-000094
상기에서, X를 제외한 나머지는 화학식 1에서 정의한 바와 같고, X는 할로겐이고, 바람직하게는 X는 클로로 또는 브로모이다.
상기 반응식 1은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다.
상기 화학식 1의 화합물의 제조 방법은 후술할 합성예에서 보다 구체화될 수 있다.
상기 화학식 2는 벤조나프토퓨란 코어와, 이와 결합하는 아릴 아민 치환기를 포함한다.
바람직하게는, L'1 내지 L'3는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C6-20 아릴렌이다.
바람직하게는, L'1 내지 L'3는 각각 독립적으로 단일 결합; 페닐렌; 또는 나프틸렌이다. 상기 페닐렌 또는 나프틸렌은 각각 1 이상의 중수소로 치환된 것일 수 있다.
바람직하게는, Ar'1 및 Ar'2는 각각 독립적으로 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴이다.
바람직하게는, Ar'1 및 Ar'2는 각각 독립적으로 페닐; 비페닐릴; 터페닐릴; 나프틸; 페난쓰레닐; 9,9-디메틸플루오레닐; 1개의 페닐로 치환된 9,9-디메틸플루오레닐; 9,9-디페닐플루오레닐; 1개의 페닐로 치환된 9,9-디페닐플루오레닐; 9,9'-스피로비플루오레닐; 9-페닐카바졸릴; 디벤조퓨라닐; 또는 디벤조티오페닐이다. 상기에서‘1개의 페닐로 치환된’이라 함은, 치환기의 수소 중 어느 하나가 페닐로 치환된 것을 의미한다. 상기 Ar'1 및 Ar'2는 각각 독립적으로 하나 이상의 중수소로 치환된 것일 수 있다.
상기 화학식 2의 화합물은 중수소를 포함하지 않거나, 또는 1개 이상의 중수소를 포함할 수 있다.
일 예로, 상기 화학식 2의 화합물이 중수소를 포함하는 경우, 화합물의 중수소 치환율은 1% 내지 100%일 수 있다. 구체적으로는, 상기 화합물의 중수소 치환율은 5% 이상, 10% 이상, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 75% 이상, 80% 이상, 또는 90% 이상이면서, 100% 이하일 수 있다.
상기 화학식 2로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2022017864-appb-img-000095
Figure PCTKR2022017864-appb-img-000096
Figure PCTKR2022017864-appb-img-000097
Figure PCTKR2022017864-appb-img-000098
Figure PCTKR2022017864-appb-img-000099
Figure PCTKR2022017864-appb-img-000100
Figure PCTKR2022017864-appb-img-000101
Figure PCTKR2022017864-appb-img-000102
Figure PCTKR2022017864-appb-img-000103
Figure PCTKR2022017864-appb-img-000104
Figure PCTKR2022017864-appb-img-000105
Figure PCTKR2022017864-appb-img-000106
Figure PCTKR2022017864-appb-img-000107
Figure PCTKR2022017864-appb-img-000108
Figure PCTKR2022017864-appb-img-000109
Figure PCTKR2022017864-appb-img-000110
Figure PCTKR2022017864-appb-img-000111
Figure PCTKR2022017864-appb-img-000112
Figure PCTKR2022017864-appb-img-000113
Figure PCTKR2022017864-appb-img-000114
Figure PCTKR2022017864-appb-img-000115
Figure PCTKR2022017864-appb-img-000116
Figure PCTKR2022017864-appb-img-000117
Figure PCTKR2022017864-appb-img-000118
Figure PCTKR2022017864-appb-img-000119
Figure PCTKR2022017864-appb-img-000120
Figure PCTKR2022017864-appb-img-000121
Figure PCTKR2022017864-appb-img-000122
또한, 본 발명은 상기 화학식 2로 표시되는 화합물의 제조 방법을 제공한다.
구체적으로, 상기 화학식 2에서 A5가 화학식 2-1인 경우를 예로 들면, 화학식 2의 화합물은 하기 반응식 2-1와 같은 제조 방법으로 제조될 수 있다.
[반응식 2-1]
Figure PCTKR2022017864-appb-img-000123
상기에서, X’를 제외한 나머지는 화학식 2에서 정의한 바와 같고, X'은 할로겐이고, 바람직하게는 X'은 클로로 또는 브로모이다.
상기 반응식 2-1은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다.
또는, L’1이 단일 결합인 경우, 화학식 2의 화합물은 하기 반응식 2-2와 같은 제조 방법으로 제조될 수 있다.
[반응식 2-2]
Figure PCTKR2022017864-appb-img-000124
상기에서, X’를 제외한 나머지는 화학식 2에서 정의한 바와 같고, X'은 할로겐이고, 바람직하게는 X'은 클로로 또는 브로모이다.
상기 반응식 2-2는 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다.
상기 화학식 2의 화합물의 제조 방법은 후술할 합성예에서 보다 구체화될 수 있다.
상기 발광층에서, 상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물의 중량비는 1:99 내지 99:1, 5:95 내지 95:5, 또는 10:90 내지 90:10이다.
상기 도펀트 재료로는 유기 발광 소자에 사용되는 물질이면 특별히 제한되지 않는다. 일례로, 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
일 구현예에서, 상기 도펀트 재료로는 하기의 화합물 중 1 이상을 사용할 수 있으나, 이에 제한되는 것은 아니다:
Figure PCTKR2022017864-appb-img-000125
Figure PCTKR2022017864-appb-img-000126
Figure PCTKR2022017864-appb-img-000127
Figure PCTKR2022017864-appb-img-000128
정공수송층
본 발명에 따른 유기 발광 소자는, 상기 발광층과 양극 사이에 정공수송층을 포함할 수 있다.
상기 정공수송층은 양극 또는 정공주입층으로부터 정공을 수취하여 발광층까지 수송하는 층으로, 정공 수송 물질로는 양극이나 정공주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로서 정공에 대한 이동성이 큰 물질이 적합하다.
상기 정공 수송 물질의 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
정공주입층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 양극과 정공수송층 사이에 정공주입층을 추가로 포함할 수 있다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 또한, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다.
정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
전자억제층
본 발명에 따른 유기 발광 소자는, 필요에 따라 정공수송층과 발광층 사이에 전자억제층을 포함할 수 있다.
상기 전자억제층은 음극에서 주입된 전자가 발광층에서 재결합되지 않고 정공수송층으로 넘어가는 것을 방지하며, 전자차단층으로 불리기도 한다. 전자억제층에는 전자수송층보다 전자 친화력이 작은 물질이 바람직하다.
전자수송층
본 발명에 따른 유기 발광 소자는, 상기 발광층과 음극 사이에 전자수송층을 포함할 수 있다.
상기 전자수송층은, 음극 또는 음극 상에 형성된 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하고, 또한 발광층에서 정공이 전달되는 것을 억제하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다.
상기 전자 수송 물질의 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
전자주입층
본 발명에 따른 유기 발광 소자는 필요에 따라 상기 전자수송층과 음극 사이에 전자주입층을 추가로 포함할 수 있다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자 주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물을 사용하는 것이 바람직하다.
상기 전자주입층으로 사용될 수 있는 물질의 구체적인 예로는, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
본 발명의 일 구현예에 따르면, 상기 전자 수송 물질 및 전자 주입 물질을 동시에 증착하여 전자 주입 및 수송층의 단일층으로 제조할 수 있다.
정공억제층
본 발명에 따른 유기 발광 소자는, 필요에 따라 전자수송층과 발광층 사이에 정공억제층을 포함할 수 있다.
상기 정공억제층은 양극에서 주입된 정공이 발광층에서 재결합되지 않고 전자수송층으로 넘어가는 것을 방지하며, 정공저지층에는 이온화에너지가 큰 물질이 바람직하다.
유기 발광 소자
본 발명에 따른 유기 발광 소자의 구조를 도 1에 예시하였다. 도 1은, 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 또한, 도 2는, 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(3), 전자수송층(7), 전자주입층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 또한, 도 3은, 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(9), 발광층(3), 정공억제층(10), 전자 주입 및 수송층(11), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
본 발명에 따른 유기 발광 소자는 상술한 구성을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 상술한 각 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다.
이와 같은 방법 외에도, 기판 상에 음극 물질부터 상술한 구성의 역순으로 양극 물질까지 차례로 증착시켜 유기 발광 소자를 만들 수 있다(WO 2003/012890). 또한, 발광층은 호스트 및 도펀트를 진공 증착법 뿐만 아니라 용액 도포법에 의하여 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
한편, 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
상술한 본 발명에 따른 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
<합성예 1: 화학식 1로 표시되는 화합물의 제조>
합성예 1-1
Figure PCTKR2022017864-appb-img-000129
화합물 A (15g, 45.5mmol)와 Trz1 (15.2g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subA-1를 13.9g 제조하였다. (수율 63%, MS: [M+H]+= 485)
화합물 subA-1 (15g, 30.9mmol)와 sub1 (7.2g, 32.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.8g, 92.8mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-1 11.6g 제조하였다. (수율 60%, MS: [M+H]+= 627)
합성예 1-2
Figure PCTKR2022017864-appb-img-000130
화합물 B (15g, 45.5mmol)와 Trz2 (12.8g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subB-1를 13.6g 제조하였다. (수율 69%, MS: [M+H]+= 435)
화합물 subB-1 (15g, 34.5mmol)와 sub2 (9.9g, 36.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3g, 103.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-2 14.5g 제조하였다. (수율 67%, MS: [M+H]+= 627)
합성예 1-3
Figure PCTKR2022017864-appb-img-000131
화합물 C (15g, 45.5mmol)와 Trz2 (12.8g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subC-1를 12.6g 제조하였다. (수율 64%, MS: [M+H]+= 435)
화합물 subC-1 (15g, 34.5mmol)와 sub3 (8.9g, 36.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3g, 103.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-3 14.1g 제조하였다. (수율 68%, MS: [M+H]+= 601)
합성예 1-4
Figure PCTKR2022017864-appb-img-000132
화합물 D (15g, 45.5mmol)와 Trz3 (21.2g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subD-1를 21.1g 제조하였다. (수율 76%, MS: [M+H]+= 611)
화합물 subD-1 (15g, 24.5mmol)와 sub4 (3.1g, 25.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.2g, 73.6mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-4 12.8g 제조하였다. (수율 80%, MS: [M+H]+= 653)
합성예 1-5
Figure PCTKR2022017864-appb-img-000133
화합물 E (15g, 50.8mmol)와 Trz4 (25g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-5 20.4g 제조하였다. (수율 67%, MS: [M+H]+= 601)
합성예 1-6
Figure PCTKR2022017864-appb-img-000134
화합물 E (15g, 50.8mmol)와 Trz5 (25.8g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-6 20.4g 제조하였다. (수율 65%, MS: [M+H]+= 617)
합성예 1-7
Figure PCTKR2022017864-appb-img-000135
화합물 E (15g, 50.8mmol)와 Trz6 (28.5g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-7 20.7g 제조하였다. (수율 61%, MS: [M+H]+= 667)
합성예 1-8
Figure PCTKR2022017864-appb-img-000136
화합물 E (15g, 50.8mmol)와 Trz7 (26.4g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-8 24.2g 제조하였다. (수율 76%, MS: [M+H]+= 627)
합성예 1-9
Figure PCTKR2022017864-appb-img-000137
화합물 F (15g, 45.5mmol)와 Trz8 (19.5g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subF-1를 17g 제조하였다. (수율 65%, MS: [M+H]+= 575)
화합물 subF-1 (15g, 26.1mmol)와 sub4 (3.3g, 27.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.8g, 78.3mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-9 12.9g 제조하였다. (수율 80%, MS: [M+H]+= 617)
합성예 1-10
Figure PCTKR2022017864-appb-img-000138
화합물 G (15g, 45.5mmol)와 Trz9 (20.7g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subG-1를 21.9g 제조하였다. (수율 80%, MS: [M+H]+= 601)
화합물 subG-1 (15g, 25mmol)와 sub5 (4.5g, 26.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.3g, 74.9mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.2mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-10 13g 제조하였다. (수율 75%, MS: [M+H]+= 693)
합성예 1-11
Figure PCTKR2022017864-appb-img-000139
화합물 G (15g, 45.5mmol)와 Trz2 (12.8g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subG-2를 13.8g 제조하였다. (수율 70%, MS: [M+H]+= 435)
화합물 subG-2 (15g, 34.5mmol)와 sub6 (17.5g, 36.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3g, 103.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-11 14g 제조하였다. (수율 65%, MS: [M+H]+= 627)
합성예 1-12
Figure PCTKR2022017864-appb-img-000140
화합물 G (15g, 45.5mmol)와 Trz10 (16.4g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subG-3를 14.2g 제조하였다. (수율 61%, MS: [M+H]+= 511)
질소 분위기에서 화합물 subG-3 (10 g, 19.6mmol), sub7 (4.3g, 20 mmol), sodium tert-butoxide (2.4 g, 25.4 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입했다. 5시간 후 반응이 종결되어 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-12 9.5g을 얻었다. (수율 70%, MS: [M+H]+= 692)
합성예 1-13
Figure PCTKR2022017864-appb-img-000141
화합물 H (15g, 45.5mmol)와 Trz11 (17.1g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subH-1를 16.2g 제조하였다. (수율 68%, MS: [M+H]+= 525)
화합물 subH-1 (15g, 28.6mmol)와 sub5 (5.2g, 30mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.8g, 85.7mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-13 10.9g 제조하였다. (수율 62%, MS: [M+H]+= 617)
합성예 1-14
Figure PCTKR2022017864-appb-img-000142
화합물 I (15g, 50.8mmol)와 Trz12 (23.7g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-14 17.6g 제조하였다. (수율 60%, MS: [M+H]+= 577)
합성예 1-15
Figure PCTKR2022017864-appb-img-000143
화합물 I (15g, 50.8mmol)와 Trz13 (25g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-15 21.7g 제조하였다. (수율 71%, MS: [M+H]+= 601)
합성예 1-16
Figure PCTKR2022017864-appb-img-000144
화합물 I (15g, 50.8mmol)와 Trz14 (25.1g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-16 21.4g 제조하였다. (수율 70%, MS: [M+H]+= 603)
합성예 1-17
Figure PCTKR2022017864-appb-img-000145
화합물 J (15g, 45.5mmol)와 Trz15 (17.6g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subJ-1를 15.6g 제조하였다. (수율 64%, MS: [M+H]+= 535)
화합물 subJ-1 (15g, 28mmol)와 sub5 (5.1g, 29.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.6g, 84.1mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-17 13.7g 제조하였다. (수율 78%, MS: [M+H]+= 627)
합성예 1-18
Figure PCTKR2022017864-appb-img-000146
화합물 K (15g, 45.5mmol)와 Trz1 (15.2g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subK-1를 13.9g 제조하였다. (수율 63%, MS: [M+H]+= 485)
화합물 subK-1 (15g, 30.9mmol)와 sub8 (6.9g, 32.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.8g, 92.8mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-18 12.4g 제조하였다. (수율 65%, MS: [M+H]+= 617)
합성예 1-19
Figure PCTKR2022017864-appb-img-000147
화합물 L (15g, 45.5mmol)와 Trz2 (12.8g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subL-1를 13.6g 제조하였다. (수율 69%, MS: [M+H]+= 435)
화합물 subL-1 (15g, 34.5mmol)와 sub9 (8.9g, 36.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3g, 103.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-19 13.2g 제조하였다. (수율 64%, MS: [M+H]+= 601)
합성예 1-20
Figure PCTKR2022017864-appb-img-000148
화합물 subL-1 (15g, 34.5mmol)와 sub10 (10.1g, 36.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3g, 103.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-20 14.4g 제조하였다. (수율 66%, MS: [M+H]+= 633)
합성예 1-21
Figure PCTKR2022017864-appb-img-000149
화합물 K (15g, 45.5mmol)와 Trz16 (17.9g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subK-2를 16.7g 제조하였다. (수율 68%, MS: [M+H]+= 541)
질소 분위기에서 화합물 subK-2 (10 g, 18.5mmol), sub11 (3.2g, 18.9 mmol), sodium tert-butoxide (2.3 g, 24 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입했다. 5시간 후 반응이 종결되어 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-21 7.8g을 얻었다. (수율 63%, MS: [M+H]+= 672)
합성예 1-22
Figure PCTKR2022017864-appb-img-000150
화합물 K (15g, 45.5mmol)와 Trz17 (16.4g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subK-3를 15.3g 제조하였다. (수율 66%, MS: [M+H]+= 511)
화합물 subK-3 (15g, 29.4mmol)와 sub5 (5.3g, 30.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.2g, 88.1mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-22 13.8g 제조하였다. (수율 78%, MS: [M+H]+= 603)
합성예 1-23
Figure PCTKR2022017864-appb-img-000151
화합물 M (15g, 50.8mmol)와 Trz18 (25.1g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-23 19.9g 제조하였다. (수율 65%, MS: [M+H]+= 603)
합성예 1-24
Figure PCTKR2022017864-appb-img-000152
화합물 M (15g, 50.8mmol)와 Trz19 (25g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-24 20.4g 제조하였다. (수율 67%, MS: [M+H]+= 601)
합성예 1-25
Figure PCTKR2022017864-appb-img-000153
화합물 M (15g, 50.8mmol)와 Trz20 (25.8g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-25 19.7g 제조하였다. (수율 63%, MS: [M+H]+= 617)
합성예 1-26
Figure PCTKR2022017864-appb-img-000154
화합물 N (15g, 45.5mmol)와 Trz1 (15.2g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subN-1를 15.9g 제조하였다. (수율 72%, MS: [M+H]+= 485)
화합물 subN-1 (15g, 30.9mmol)와 sub5 (5.6g, 32.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.8g, 92.8mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-26 12.7g 제조하였다. (수율 71%, MS: [M+H]+= 577)
합성예 1-27
Figure PCTKR2022017864-appb-img-000155
화합물 O (15g, 45.5mmol)와 Trz2 (12.8g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subO-1를 15g 제조하였다. (수율 76%, MS: [M+H]+= 435)
화합물 subO-1 (15g, 34.5mmol)와 sub12 (9.9g, 36.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3g, 103.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-27 15.8g 제조하였다. (수율 73%, MS: [M+H]+= 627)
합성예 1-28
Figure PCTKR2022017864-appb-img-000156
화합물 N (15g, 45.5mmol)와 Trz8 (12.8g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subN-2를 20.4g 제조하였다. (수율 78%, MS: [M+H]+= 575)
화합물 subN-2 (15g, 26.1mmol)와 sub13 (5.4g, 27.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.8g, 78.3mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-28 10.8g 제조하였다. (수율 60%, MS: [M+H]+= 693)
합성예 1-29
Figure PCTKR2022017864-appb-img-000157
화합물 P (15g, 45.5mmol)와 Trz1 (15.2g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subP-1를 13.7g 제조하였다. (수율 62%, MS: [M+H]+= 485)
질소 분위기에서 화합물 subP-1 (10 g, 20.6mmol), sub11 (3.5g, 21 mmol), sodium tert-butoxide (2.6 g, 26.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입했다. 4시간 후 반응이 종결되어 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-29 6.5g 을 얻었다. (수율 51%, MS: [M+H]+= 616)
합성예 1-30
Figure PCTKR2022017864-appb-img-000158
화합물 Q (15g, 45.5mmol)와 Trz21 (17.1g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subQ-1를 16.5g 제조하였다. (수율 69%, MS: [M+H]+= 525)
화합물 subQ-1 (15g, 28.6mmol)와 sub14 (5.9g, 30mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.8g, 85.7mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-30 14.7g 제조하였다. (수율 80%, MS: [M+H]+= 643)
합성예 1-31
Figure PCTKR2022017864-appb-img-000159
화합물 R (15g, 50.8mmol)와 Trz22 (23.7g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-31 18.7g 제조하였다. (수율 64%, MS: [M+H]+= 577)
합성예 1-32
Figure PCTKR2022017864-appb-img-000160
화합물 R (15g, 50.8mmol)와 Trz23 (23.6g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-32 23.1g 제조하였다. (수율 79%, MS: [M+H]+= 575)
합성예 1-33
Figure PCTKR2022017864-appb-img-000161
화합물 R (15g, 50.8mmol)와 Trz24 (29.9g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-33 26g 제조하였다. (수율 74%, MS: [M+H]+= 693)
합성예 1-34
Figure PCTKR2022017864-appb-img-000162
화합물 S (15g, 45.5mmol)와 Trz15 (17.6g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subS-1를 19g 제조하였다. (수율 78%, MS: [M+H]+= 535)
화합물 subS-1 (15g, 28mmol)와 sub15 (6.5g, 29.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.6g, 84.1mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-34 13.3g 제조하였다. (수율 70%, MS: [M+H]+= 677)
합성예 1-35
Figure PCTKR2022017864-appb-img-000163
화합물 T (15g, 45.5mmol)와 Trz2 (12.8g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subT-1를 14.4g 제조하였다. (수율 73%, MS: [M+H]+= 435)
화합물 subT-1 (15g, 34.5mmol)와 sub16 (9.5g, 36.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3g, 103.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-35를 17g 제조하였다. (수율 80%, MS: [M+H]+= 617)
합성예 1-36
Figure PCTKR2022017864-appb-img-000164
화합물 S (15g, 45.5mmol)와 Trz25 (18.8g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subS-2를 19.6g 제조하였다. (수율 77%, MS: [M+H]+= 561)
질소 분위기에서 화합물 subS-2 (10 g, 17.8mmol), sub17 (4g, 18.2 mmol), sodium tert-butoxide (2.2 g, 23.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol)을 투입했다. 5시간 후 반응이 종결되어 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-36 7.3g 을 얻었다. (수율 55%, MS: [M+H]+= 742)
합성예 1-37
Figure PCTKR2022017864-appb-img-000165
화합물 U (15g, 45.5mmol)와 Trz26 (17.9g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subU-1를 18.7g 제조하였다. (수율 76%, MS: [M+H]+= 541)
화합물 subU-1 (15g, 27.7mmol)와 sub18 (6.6g, 29.1mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.5g, 83.2mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-37 13.5g 제조하였다. (수율 71%, MS: [M+H]+= 689)
합성예 1-38
Figure PCTKR2022017864-appb-img-000166
화합물 V (15g, 50.8mmol)와 Trz27 (22.3g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-38 16.8g 제조하였다. (수율 60%, MS: [M+H]+= 551)
합성예 1-39
Figure PCTKR2022017864-appb-img-000167
화합물 V (15g, 50.8mmol)와 Trz28 (23.2g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-39 20.1g 제조하였다. (수율 70%, MS: [M+H]+= 567)
합성예 1-40
Figure PCTKR2022017864-appb-img-000168
화합물 V (15g, 50.8mmol)와 Trz29 (30.4g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-40 24.6g 제조하였다. (수율 69%, MS: [M+H]+= 703)
합성예 1-41
Figure PCTKR2022017864-appb-img-000169
화합물 V (15g, 50.8mmol)와 Trz30 (25.8g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-41 23.8g 제조하였다. (수율 76%, MS: [M+H]+= 617)
합성예 1-42
Figure PCTKR2022017864-appb-img-000170
화합물 W (15g, 45.5mmol)와 Trz2 (12.8g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subW-1를 13g 제조하였다. (수율 66%, MS: [M+H]+= 435)
화합물 subW-1 (15g, 34.5mmol)와 sub19 (9.9g, 36.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3g, 103.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-42 16.4g 제조하였다. (수율 76%, MS: [M+H]+= 627)
합성예 1-43
Figure PCTKR2022017864-appb-img-000171
화합물 X (15g, 45.5mmol)와 Trz2 (12.8g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subX-1를 14g 제조하였다. (수율 71%, MS: [M+H]+= 435)
화합물 subX-1 (15g, 34.5mmol)와 sub20 (10.1g, 36.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3g, 103.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-43 14g 제조하였다. (수율 64%, MS: [M+H]+= 633)
합성예 1-44
Figure PCTKR2022017864-appb-img-000172
화합물 Y (15g, 45.5mmol)와 Trz2 (12.6g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subY-1를 15.8g 제조하였다. (수율 80%, MS: [M+H]+= 435)
화합물 subY-1 (15g, 34.5mmol)와 sub21 (9.5g, 36.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3g, 103.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-44 14.9g 제조하였다. (수율 70%, MS: [M+H]+= 617)
합성예 1-45
Figure PCTKR2022017864-appb-img-000173
화합물 X (15g, 45.5mmol)와 Trz31 (18.8g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subX-2를 18.1g 제조하였다. (수율 71%, MS: [M+H]+= 561)
화합물 subX-2 (15g, 26.7mmol)와 sub22 (7.6g, 28.1mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1g, 80.2mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-45 15.7g 제조하였다. (수율 78%, MS: [M+H]+= 753)
합성예 1-46
Figure PCTKR2022017864-appb-img-000174
화합물 Z (15g, 50.8mmol)와 Trz32 (21g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-46 16.6g 제조하였다. (수율 62%, MS: [M+H]+= 527)
합성예 1-47
Figure PCTKR2022017864-appb-img-000175
화합물 Z (15g, 50.8mmol)와 Trz33 (22.3g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-47 19.3g 제조하였다. (수율 69%, MS: [M+H]+= 551)
합성예 1-48
Figure PCTKR2022017864-appb-img-000176
화합물 Z (15g, 50.8mmol)와 Trz34 (25.7g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-48 23.1g 제조하였다. (수율 74%, MS: [M+H]+= 615)
합성예 1-49
Figure PCTKR2022017864-appb-img-000177
화합물 Z (15g, 50.8mmol)와 Trz35 (25.8g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-49 22.9g 제조하였다. (수율 73%, MS: [M+H]+= 617)
합성예 1-50
Figure PCTKR2022017864-appb-img-000178
화합물 Z (15g, 50.8mmol)와 Trz36 (25.8g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-50 19.4g 제조하였다. (수율 62%, MS: [M+H]+= 617)
합성예 1-51
Figure PCTKR2022017864-appb-img-000179
화합물 Z (15g, 50.8mmol)와 Trz37 (27.8g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-51 19.9g 제조하였다. (수율 60%, MS: [M+H]+= 653)
합성예 1-52
Figure PCTKR2022017864-appb-img-000180
화합물 AA (15g, 45.5mmol)와 Trz1 (15.2g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subAA-1를 17.2g 제조하였다. (수율 78%, MS: [M+H]+= 485)
화합물 subAA-1 (15g, 30.9mmol)와 sub23 (7.4g, 32.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.8g, 92.8mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-52 13.9g 제조하였다. (수율 71%, MS: [M+H]+= 633)
합성예 1-53
Figure PCTKR2022017864-appb-img-000181
화합물 AB (15g, 45.5mmol)와 Trz2 (12.8g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subAB-1를 14g 제조하였다. (수율 71%, MS: [M+H]+= 435)
화합물 subAB-1 (14 g, 32mmol), sub24 (8.9g, 33.8 mmol) 를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.3g, 96.6mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 5시간 후 반응이 종결되어 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-53 12.5g을 얻었다. (수율 62%, MS: [M+H]+= 617)
합성예 1-54
Figure PCTKR2022017864-appb-img-000182
화합물 AA (15g, 45.5mmol)와 Trz2 (12.8g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subAA-2를 12.6g 제조하였다. (수율 64%, MS: [M+H]+= 435)
화합물 subAA-2 (15g, 34.5mmol)와 sub25 (10.1g, 36.2mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3g, 103.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-54 13.3g 제조하였다. (수율 61%, MS: [M+H]+= 633)
합성예 1-55
Figure PCTKR2022017864-appb-img-000183
화합물 AB (15g, 45.5mmol)와 Trz21 (17.1g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subAB-2를 15.5g 제조하였다. (수율 65%, MS: [M+H]+= 525)
화합물 subAB-2 (15g, 28.6mmol)와 sub26 (7.4g, 30mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.8g, 85.7mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-55 12.5g 제조하였다. (수율 63%, MS: [M+H]+= 693)
합성예 1-56
Figure PCTKR2022017864-appb-img-000184
화합물 AB (15g, 45.5mmol)와 Trz38 (20.1g, 47.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.9g, 136.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 subAB-3를 18.4g 제조하였다. (수율 69%, MS: [M+H]+= 587)
화합물 subAB-3 (15g, 25.6mmol)와 sub27 (5.7g, 26.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.6g, 76.7mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.1g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-56 13.4g 제조하였다. (수율 73%, MS: [M+H]+= 719)
합성예 1-57
Figure PCTKR2022017864-appb-img-000185
화합물 AC (15g, 50.8mmol)와 Trz39 (22.3g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-57 22.1g 제조하였다. (수율 79%, MS: [M+H]+= 551)
합성예 1-58
Figure PCTKR2022017864-appb-img-000186
화합물 AC (15g, 50.8mmol)와 Trz40 (23.7g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-58 19.3g 제조하였다. (수율 66%, MS: [M+H]+= 577)
합성예 1-59
Figure PCTKR2022017864-appb-img-000187
화합물 AC (15g, 50.8mmol)와 Trz41 (28.5g, 53.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21.1g, 152.5mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.5mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-59 24.7g 제조하였다. (수율 73%, MS: [M+H]+= 667)
<합성예 2: 화학식 2로 표시되는 화합물의 제조>
합성예 2-1
Figure PCTKR2022017864-appb-img-000188
질소 분위기에서 sub1 (15 g, 59.4mmol), amine1 (20.5g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-1 21.3g을 얻었다. (수율 64%, MS: [M+H]+= 562)
합성예 2-2
Figure PCTKR2022017864-appb-img-000189
질소 분위기에서 sub1 (15 g, 59.4mmol), amine2 (28.7g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-2 26.1g을 얻었다. (수율 63%, MS: [M+H]+= 700)
합성예 2-3
Figure PCTKR2022017864-appb-img-000190
질소 분위기에서 sub1 (15 g, 59.4mmol), amine3 (25.4g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-3 28.3g을 얻었다. (수율 74%, MS: [M+H]+= 644)
합성예 2-4
Figure PCTKR2022017864-appb-img-000191
sub1 (15g, 59.4mmol)와 amine4 (27.9g, 62.3mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(24.6g, 178.1mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.6mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-4를 19.5g 제조하였다. (수율 61%, MS: [M+H]+= 538)
합성예 2-5
Figure PCTKR2022017864-appb-img-000192
질소 분위기에서 sub2 (15 g, 59.4mmol), amine5 (19.1g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-5 21.7g을 얻었다. (수율 68%, MS: [M+H]+= 538)
합성예 2-6
Figure PCTKR2022017864-appb-img-000193
질소 분위기에서 sub2 (15 g, 59.4mmol), amine6 (21.7g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-6 25.2g을 얻었다. (수율 73%, MS: [M+H]+= 582)
합성예 2-7
Figure PCTKR2022017864-appb-img-000194
sub2 (15g, 59.4mmol)와 amine7 (35.7g, 62.3mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(24.6g, 178.1mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.6mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-7를 28.3g 제조하였다. (수율 72%, MS: [M+H]+= 664)
합성예 2-8
Figure PCTKR2022017864-appb-img-000195
sub2 (15g, 59.4mmol)와 amine8 (37.4g, 62.3mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(24.6g, 178.1mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.6mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-8를 28.2g 제조하였다. (수율 69%, MS: [M+H]+= 690)
합성예 2-9
Figure PCTKR2022017864-appb-img-000196
질소 분위기에서 sub3 (15 g, 59.4mmol), amine9 (26g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-9 25.6g을 얻었다. (수율 66%, MS: [M+H]+= 654)
합성예 2-10
Figure PCTKR2022017864-appb-img-000197
질소 분위기에서 sub3 (15 g, 59.4mmol), amine10 (19.9g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-10 23.6g을 얻었다. (수율 72%, MS: [M+H]+= 552)
합성예 2-11
Figure PCTKR2022017864-appb-img-000198
sub3 (15g, 59.4mmol)와 amine11 (34.1g, 62.3mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(24.6g, 178.1mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.6mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-11를 23.5g 제조하였다. (수율 62%, MS: [M+H]+= 638)
합성예 2-12
Figure PCTKR2022017864-appb-img-000199
sub3 (15g, 59.4mmol)와 amine12 (32.6g, 62.3mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(24.6g, 178.1mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.6mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-12를 25.8g 제조하였다. (수율 71%, MS: [M+H]+= 614)
합성예 2-13
Figure PCTKR2022017864-appb-img-000200
질소 분위기에서 sub4 (15 g, 59.4mmol), amine13 (23.6g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-13 24.8g을 얻었다. (수율 68%, MS: [M+H]+= 614)
합성예 2-14
Figure PCTKR2022017864-appb-img-000201
질소 분위기에서 sub4 (15 g, 59.4mmol), amine14 (21.5g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-14 21.9g을 얻었다. (수율 64%, MS: [M+H]+= 578)
합성예 2-15
Figure PCTKR2022017864-appb-img-000202
질소 분위기에서 sub4 (15 g, 59.4mmol), amine15 (20.7g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-15 23.8g을 얻었다. (수율 71%, MS: [M+H]+= 566)
합성예 2-16
Figure PCTKR2022017864-appb-img-000203
sub4 (15g, 59.4mmol)와 amine16 (34.5g, 62.3mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(24.6g, 178.1mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.6mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-16를 23.7g 제조하였다. (수율 62%, MS: [M+H]+= 644)
합성예 2-17
Figure PCTKR2022017864-appb-img-000204
질소 분위기에서 sub5 (15 g, 59.4mmol), amine17 (22.1g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-17 24.4g을 얻었다. (수율 70%, MS: [M+H]+= 588)
합성예 2-18
Figure PCTKR2022017864-appb-img-000205
질소 분위기에서 sub5 (15 g, 59.4mmol), amine18 (24.4g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-18 24.9g을 얻었다. (수율 67%, MS: [M+H]+= 627)
합성예 2-19
Figure PCTKR2022017864-appb-img-000206
질소 분위기에서 sub5 (15 g, 59.4mmol), amine19 (21.5g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-19 24.3g을 얻었다. (수율 71%, MS: [M+H]+= 578)
합성예 2-20
Figure PCTKR2022017864-appb-img-000207
sub5 (15g, 59.4mmol)와 amine20 (34.5g, 62.3mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(24.6g, 178.1mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.6mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-20를 29.4g 제조하였다. (수율 77%, MS: [M+H]+= 644)
합성예 2-21
Figure PCTKR2022017864-appb-img-000208
질소 분위기에서 sub6 (15 g, 59.4mmol), amine21 (17.5g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-21 20.6g을 얻었다. (수율 68%, MS: [M+H]+= 512)
합성예 2-22
Figure PCTKR2022017864-appb-img-000209
질소 분위기에서 sub6 (15 g, 59.4mmol), amine22 (24.4g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-22 25.6g을 얻었다. (수율 69%, MS: [M+H]+= 627)
합성예 2-23
Figure PCTKR2022017864-appb-img-000210
질소 분위기에서 sub6 (15 g, 59.4mmol), amine23 (23.6g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-23 22.6g을 얻었다. (수율 62%, MS: [M+H]+= 614)
합성예 2-24
Figure PCTKR2022017864-appb-img-000211
sub6 (15g, 59.4mmol)와 amine24 (33.5g, 62.3mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(24.6g, 178.1mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.6mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-24를 26.4g 제조하였다. (수율 71%, MS: [M+H]+= 628)
합성예 2-25
Figure PCTKR2022017864-appb-img-000212
질소 분위기에서 sub7 (15 g, 59.4mmol), amine25 (23.6g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 5시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-25 22.2g을 얻었다. (수율 61%, MS: [M+H]+= 614)
합성예 2-26
Figure PCTKR2022017864-appb-img-000213
질소 분위기에서 sub7 (15 g, 59.4mmol), amine10 (19.9g, 59.4 mmol), sodium tert-butoxide (8.6 g, 89 mmol)을 Xylene 300ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol)을 투입했다. 4시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-26 23.2g을 얻었다. (수율 71%, MS: [M+H]+= 552)
합성예 2-27
Figure PCTKR2022017864-appb-img-000214
sub7 (15g, 59.4mmol)와 amine26 (31g, 62.3mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(24.6g, 178.1mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.6mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-27를 25.8g 제조하였다. (수율 74%, MS: [M+H]+= 588)
합성예 2-28
Figure PCTKR2022017864-appb-img-000215
sub7 (15g, 59.4mmol)와 amine27 (34.1g, 62.3mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(24.6g, 178.1mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.6mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-28를 30.3g 제조하였다. (수율 80%, MS: [M+H]+= 638)
합성예 2-29
Figure PCTKR2022017864-appb-img-000216
sub7 (15g, 59.4mmol)와 amine28 (37.4g, 62.3mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(24.6g, 178.1mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.3g, 0.6mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-29를 29.9g 제조하였다. (수율 73%, MS: [M+H]+= 690)
<실시예 및 비교예>
실시예 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-doping 했다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800Å의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150Å으로 하기 EB-1 화합물을 진공 증착하여 전자억제층을 형성했다. 이어서, 상기 EB-1 증착막 위에 하기 호스트로 화합물 1-1 과 화학식 2-1 및 하기 Dp-7 화합물을 49:49:2의 중량비로 진공 공증착하여 400Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공억제층을 형성했다. 이어서, 상기 정공억제층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성했다.
Figure PCTKR2022017864-appb-img-000217
상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 x 10-7 ~ 5 x 10-6 torr를 유지하여, 유기 발광 소자를 제작했다.
실시예 2 내지 실시예 210
제1 호스트 및 제2 호스트로 하기 표 1의 화합물을 1:1로 공증착한 것을 제외하고, 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 1 내지 비교예 65
제1 호스트 및 제2 호스트로 하기 표 2의 화합물을 1:1로 공증착한 것을 제외하고, 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
제1 호스트로 사용된 B-1 내지 B-13 화합물은 다음과 같다.
Figure PCTKR2022017864-appb-img-000218
<실험예>
상기 실시예 1 내지 실시예 210 및 비교예 1 내지 비교예 60에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율을 측정(15mA/cm2 기준)하고 그 결과를 하기 표 1 및 표 2에 나타냈다. 수명 T95는 휘도가 초기 휘도(6,000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
Figure PCTKR2022017864-appb-img-000219
Figure PCTKR2022017864-appb-img-000220
Figure PCTKR2022017864-appb-img-000221
Figure PCTKR2022017864-appb-img-000222
Figure PCTKR2022017864-appb-img-000223
Figure PCTKR2022017864-appb-img-000224
Figure PCTKR2022017864-appb-img-000225
Figure PCTKR2022017864-appb-img-000226
표 1 및 2를 참조하면 화학식 1의 화합물 및 화학식 2의 화합물을 코호스트로 사용한 실시예 1 내지 210은, 비교예 1 내지 65와 비교하여 낮은 구동 전압을 나타내고, 효율 및 수명이 현저히 개선되는 효과를 확인할 수 있다. 이로부터, 화학식 1의 화합물 및 화학식 2의 화합물의 조합이 발광층 내에서 도펀트로의 에너지 전달에 효과적임을 확인할 수 있다.
[부호의 설명]
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자수송층 8: 전자주입층
9: 전자억제층 10: 정공억제층
11: 전자 주입 및 수송층

Claims (8)

  1. 양극; 음극; 및 상기 양극과 음극 사이의 발광층을 포함하고,
    상기 발광층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는,
    유기 발광 소자:
    [화학식 1]
    Figure PCTKR2022017864-appb-img-000227
    상기 화학식 1에서,
    Y1 내지 Y7 중 어느 하나는 N이고, 나머지는 CR이고,
    R은 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
    L1 내지 L3는 각각 독립적으로 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,
    Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
    [화학식 2]
    Figure PCTKR2022017864-appb-img-000228
    상기 화학식 2에서,
    A1 내지 A10 중 어느 하나는 하기 화학식 2-1로 표시되는 치환기이고, 나머지는 각각 독립적으로 수소 또는 중수소이고,
    [화학식 2-1]
    Figure PCTKR2022017864-appb-img-000229
    상기 화학식 2-1에서,
    L'1 내지 L'3는 각각 독립적으로 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,
    Ar'1 및 Ar'2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이다.
  2. 제1항에 있어서,
    R은 각각 독립적으로 수소; 중수소; 페닐; 비페닐릴; 나프틸; (페닐)나프틸; (나프틸)페닐; 페난쓰레닐; 크리세닐; 벤조페난쓰레닐; 트리페닐레닐; 카바졸릴; 플루오란테닐; 벤조카바졸릴; 디벤조퓨라닐; 디벤조티오페닐; 벤조나프토퓨라닐; 또는 벤조나프토티오페닐인,
    수소 또는 중수소가 아닌 R은 비치환되거나 또는 1 이상의 중수소로 치환된 것인,
    유기 발광 소자.
  3. 제1항에 있어서,
    L1 내지 L3는 각각 독립적으로 단일 결합; 또는 하기로 구성되는 군에서 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2022017864-appb-img-000230
  4. 제1항에 있어서,
    Ar1 및 Ar2는 각각 독립적으로 페닐; 비페닐릴; 터페닐릴; 나프틸; 페난쓰레닐; 플루오란테닐; 크리세닐; 벤조페난쓰레닐; 디벤조퓨라닐; 또는 디벤조티오페닐이고,
    상기 Ar1 및 Ar2는 각각 독립적으로 비치환되거나 또는 1 이상의 중수소로 치환된 것인,
    유기 발광 소자.
  5. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2022017864-appb-img-000231
    Figure PCTKR2022017864-appb-img-000232
    Figure PCTKR2022017864-appb-img-000233
    Figure PCTKR2022017864-appb-img-000234
    Figure PCTKR2022017864-appb-img-000235
    Figure PCTKR2022017864-appb-img-000236
    Figure PCTKR2022017864-appb-img-000237
    Figure PCTKR2022017864-appb-img-000238
    Figure PCTKR2022017864-appb-img-000239
    Figure PCTKR2022017864-appb-img-000240
    Figure PCTKR2022017864-appb-img-000241
    Figure PCTKR2022017864-appb-img-000242
    Figure PCTKR2022017864-appb-img-000243
    Figure PCTKR2022017864-appb-img-000244
    Figure PCTKR2022017864-appb-img-000245
    Figure PCTKR2022017864-appb-img-000246
    Figure PCTKR2022017864-appb-img-000247
    Figure PCTKR2022017864-appb-img-000248
    Figure PCTKR2022017864-appb-img-000249
    Figure PCTKR2022017864-appb-img-000250
    Figure PCTKR2022017864-appb-img-000251
    Figure PCTKR2022017864-appb-img-000252
    Figure PCTKR2022017864-appb-img-000253
    Figure PCTKR2022017864-appb-img-000254
    Figure PCTKR2022017864-appb-img-000255
    Figure PCTKR2022017864-appb-img-000256
    Figure PCTKR2022017864-appb-img-000257
    Figure PCTKR2022017864-appb-img-000258
    Figure PCTKR2022017864-appb-img-000259
    Figure PCTKR2022017864-appb-img-000260
    Figure PCTKR2022017864-appb-img-000261
    Figure PCTKR2022017864-appb-img-000262
    Figure PCTKR2022017864-appb-img-000263
    Figure PCTKR2022017864-appb-img-000264
    Figure PCTKR2022017864-appb-img-000265
    Figure PCTKR2022017864-appb-img-000266
    Figure PCTKR2022017864-appb-img-000267
    Figure PCTKR2022017864-appb-img-000268
    Figure PCTKR2022017864-appb-img-000269
    Figure PCTKR2022017864-appb-img-000270
    Figure PCTKR2022017864-appb-img-000271
    Figure PCTKR2022017864-appb-img-000272
    Figure PCTKR2022017864-appb-img-000273
    Figure PCTKR2022017864-appb-img-000274
    Figure PCTKR2022017864-appb-img-000275
    Figure PCTKR2022017864-appb-img-000276
    Figure PCTKR2022017864-appb-img-000277
    Figure PCTKR2022017864-appb-img-000278
    Figure PCTKR2022017864-appb-img-000279
    Figure PCTKR2022017864-appb-img-000280
    Figure PCTKR2022017864-appb-img-000281
    Figure PCTKR2022017864-appb-img-000282
    Figure PCTKR2022017864-appb-img-000283
    Figure PCTKR2022017864-appb-img-000284
    Figure PCTKR2022017864-appb-img-000285
    Figure PCTKR2022017864-appb-img-000286
    Figure PCTKR2022017864-appb-img-000287
    Figure PCTKR2022017864-appb-img-000288
    Figure PCTKR2022017864-appb-img-000289
    Figure PCTKR2022017864-appb-img-000290
    Figure PCTKR2022017864-appb-img-000291
    Figure PCTKR2022017864-appb-img-000292
    Figure PCTKR2022017864-appb-img-000293
    Figure PCTKR2022017864-appb-img-000294
    Figure PCTKR2022017864-appb-img-000295
    Figure PCTKR2022017864-appb-img-000296
    Figure PCTKR2022017864-appb-img-000297
    Figure PCTKR2022017864-appb-img-000298
    Figure PCTKR2022017864-appb-img-000299
    Figure PCTKR2022017864-appb-img-000300
    Figure PCTKR2022017864-appb-img-000301
    Figure PCTKR2022017864-appb-img-000302
    Figure PCTKR2022017864-appb-img-000303
    Figure PCTKR2022017864-appb-img-000304
    Figure PCTKR2022017864-appb-img-000305
    Figure PCTKR2022017864-appb-img-000306
    Figure PCTKR2022017864-appb-img-000307
    Figure PCTKR2022017864-appb-img-000308
    Figure PCTKR2022017864-appb-img-000309
    Figure PCTKR2022017864-appb-img-000310
    Figure PCTKR2022017864-appb-img-000311
    Figure PCTKR2022017864-appb-img-000312
    Figure PCTKR2022017864-appb-img-000313
  6. 제1항에 있어서,
    L'1 내지 L'3는 각각 독립적으로 단일 결합; 1 이상의 중수소로 치환 또는 비치환된 페닐렌; 또는 1 이상의 중수소로 치환 또는 비치환된 나프틸렌인,
    유기 발광 소자.
  7. 제1항에 있어서,
    Ar'1 및 Ar'2는 각각 독립적으로 페닐; 비페닐릴; 터페닐릴; 나프틸; 페난쓰레닐; 9,9-디메틸플루오레닐; 1개의 페닐로 치환된 9,9-디메틸플루오레닐; 9,9-디페닐플루오레닐; 1개의 페닐로 치환된 9,9-디페닐플루오레닐; 9,9'-스피로비플루오레닐; 9-페닐카바졸릴; 디벤조퓨라닐; 또는 디벤조티오페닐이고,
    상기 Ar'1 및 Ar'2는 각각 독립적으로 비치환되거나 또는 1 이상의 중수소로 치환된 것인,
    유기 발광 소자.
  8. 제1항에 있어서,
    상기 화학식 2로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2022017864-appb-img-000314
    Figure PCTKR2022017864-appb-img-000315
    Figure PCTKR2022017864-appb-img-000316
    Figure PCTKR2022017864-appb-img-000317
    Figure PCTKR2022017864-appb-img-000318
    Figure PCTKR2022017864-appb-img-000319
    Figure PCTKR2022017864-appb-img-000320
    Figure PCTKR2022017864-appb-img-000321
    Figure PCTKR2022017864-appb-img-000322
    Figure PCTKR2022017864-appb-img-000323
    Figure PCTKR2022017864-appb-img-000324
    Figure PCTKR2022017864-appb-img-000325
    Figure PCTKR2022017864-appb-img-000326
    Figure PCTKR2022017864-appb-img-000327
    Figure PCTKR2022017864-appb-img-000328
    Figure PCTKR2022017864-appb-img-000329
    Figure PCTKR2022017864-appb-img-000330
    Figure PCTKR2022017864-appb-img-000331
    Figure PCTKR2022017864-appb-img-000332
    Figure PCTKR2022017864-appb-img-000333
    Figure PCTKR2022017864-appb-img-000334
    Figure PCTKR2022017864-appb-img-000335
    Figure PCTKR2022017864-appb-img-000336
    Figure PCTKR2022017864-appb-img-000337
    Figure PCTKR2022017864-appb-img-000338
    Figure PCTKR2022017864-appb-img-000339
    Figure PCTKR2022017864-appb-img-000340
    Figure PCTKR2022017864-appb-img-000341
PCT/KR2022/017864 2021-11-15 2022-11-14 유기 발광 소자 WO2023085881A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280022978.0A CN117044429A (zh) 2021-11-15 2022-11-14 有机发光器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0156945 2021-11-15
KR20210156945 2021-11-15
KR10-2022-0150688 2022-11-11
KR1020220150688A KR20230071074A (ko) 2021-11-15 2022-11-11 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2023085881A1 true WO2023085881A1 (ko) 2023-05-19

Family

ID=86336448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017864 WO2023085881A1 (ko) 2021-11-15 2022-11-14 유기 발광 소자

Country Status (1)

Country Link
WO (1) WO2023085881A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140079306A (ko) * 2012-12-18 2014-06-26 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
US20190248804A1 (en) * 2016-09-05 2019-08-15 Idemitsu Kosan Co., Ltd. Specifically substituted aza-dibenzofurans and aza-dibenzothiophenes for organic electronic devices
US20200308201A1 (en) * 2019-03-29 2020-10-01 Samsung Electronics Co., Ltd. Composition and organic light-emitting device including the same
CN112961131A (zh) * 2021-02-04 2021-06-15 吉林奥来德光电材料股份有限公司 有机化合物、其制备方法和应用
WO2021210911A1 (ko) * 2020-04-14 2021-10-21 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140079306A (ko) * 2012-12-18 2014-06-26 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
US20190248804A1 (en) * 2016-09-05 2019-08-15 Idemitsu Kosan Co., Ltd. Specifically substituted aza-dibenzofurans and aza-dibenzothiophenes for organic electronic devices
US20200308201A1 (en) * 2019-03-29 2020-10-01 Samsung Electronics Co., Ltd. Composition and organic light-emitting device including the same
WO2021210911A1 (ko) * 2020-04-14 2021-10-21 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
CN112961131A (zh) * 2021-02-04 2021-06-15 吉林奥来德光电材料股份有限公司 有机化合物、其制备方法和应用

Similar Documents

Publication Publication Date Title
WO2021182893A1 (ko) 유기 발광 소자
WO2021096228A1 (ko) 유기 발광 소자
WO2021210911A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021049843A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021221475A1 (ko) 유기 발광 소자
WO2021261977A1 (ko) 유기 발광 소자
WO2021230714A1 (ko) 유기 발광 소자
WO2022086296A1 (ko) 유기 발광 소자
WO2021230715A1 (ko) 유기 발광 소자
WO2021261962A1 (ko) 유기 발광 소자
WO2022086171A1 (ko) 유기 발광 소자
WO2022019536A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022019535A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021210910A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020263000A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020189984A1 (ko) 유기 발광 소자
WO2023085881A1 (ko) 유기 발광 소자
WO2023090836A1 (ko) 유기 발광 소자
WO2022086297A1 (ko) 유기 발광 소자
WO2023085878A1 (ko) 유기 발광 소자
WO2022216019A1 (ko) 유기 발광 소자
WO2022231319A1 (ko) 유기 발광 소자
WO2022216018A1 (ko) 유기 발광 소자
WO2021261907A1 (ko) 유기 발광 소자
WO2022231322A1 (ko) 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22893300

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280022978.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18284055

Country of ref document: US