WO2023085846A1 - Air cooling-type gas cooler for refrigeration compressor - Google Patents

Air cooling-type gas cooler for refrigeration compressor Download PDF

Info

Publication number
WO2023085846A1
WO2023085846A1 PCT/KR2022/017745 KR2022017745W WO2023085846A1 WO 2023085846 A1 WO2023085846 A1 WO 2023085846A1 KR 2022017745 W KR2022017745 W KR 2022017745W WO 2023085846 A1 WO2023085846 A1 WO 2023085846A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper pipe
corrugated
gas cooler
refrigerant
air
Prior art date
Application number
PCT/KR2022/017745
Other languages
French (fr)
Korean (ko)
Inventor
이정기
Original Assignee
캠코리아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캠코리아 주식회사 filed Critical 캠코리아 주식회사
Publication of WO2023085846A1 publication Critical patent/WO2023085846A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing

Definitions

  • the present invention relates to an air-cooled gas cooler for a refrigeration compressor, and more particularly, to install a double copper pipe by inserting another copper pipe inside a copper pipe for heat cooling in a condenser instead of an indirect cooling method using aluminum fins, Corrugated copper fins are wound spirally between the outer copper pipe and the inner copper pipe at intervals of 3 mm or less to direct the refrigerant flow path in a diagonal direction. It relates to an air-cooled gas cooler for a refrigeration compressor that cools.
  • Such prior art includes Korean Patent No. 10-0406047 (registered on November 5, 2003), "Outdoor heat exchanger cooling device using condensate from air conditioner” and Korean Patent No. 10-0555417 (registered on February 20, 2006).
  • Condensate discharge structure of an outdoor unit and Japanese Patent Laid-open Publication No. 2004-190877 (published on July 8, 2004) "air-cooled air conditioner” are disclosed.
  • condensate generated in the indoor unit of an air conditioner is supplied to the outdoor unit using a condensate connection pipe to wet the lower part of the heat exchanger of the outdoor unit with condensate (Patent No. 0406047), or is supplied to a water collection tank installed on the upper part of the heat exchanger of the outdoor unit. and the condensed water stored in the collecting tank drips onto the heat exchanger through the discharge groove.
  • the prior art has a disadvantage in that the amount of falling water is insignificant and the condensed water wets only the upper side of the heat exchanger, so that it is not very effective in improving the overall cooling efficiency.
  • the present invention spirally winds corrugated copper pins between the inner copper pipe and the outer copper pipe at intervals of 3 mm or less to the inner copper pipe, so that the gap between the corrugated copper pins forms a diagonal shape. It is to provide an air-cooled gas cooler for refrigeration compressors with a new structure of a direct cooling method in which the flow path is seated in a diagonal direction and the heated refrigerant passes between the corrugated copper fins so that the outer copper pipe and the corrugated copper fins that conduct cold heat cool the refrigerant.
  • the aluminum fin of the indirect cooling method is It is to provide an air-cooled gas cooler for a refrigeration compressor that can save energy by reducing the size of the housing and reducing the number of cooling blowers because the overall volume and cooling area are reduced without it.
  • the present invention to solve the above problems
  • a housing having an outdoor unit main body in a box shape and having a fan formed on one side of the main body;
  • An outer copper pipe that surrounds the inner copper pipe and the inner copper pipe disposed inside the housing and forms a space spaced inside to form a double pipe by winding the spiral corrugated pipe at intervals of 3 mm or less and seating the flow path in a diagonal direction. formed heat exchange unit;
  • An air-cooled gas cooler for refrigeration compressors is provided.
  • the heat exchange part may be characterized in that both sides of the inner copper pipe are closed to prevent refrigerant from flowing into the inner copper pipe.
  • the heat exchange part further includes an inlet hole through which the refrigerant flows into one side of the outer copper pipe and a discharge hole through which the refrigerant is discharged to the other side of the outer copper pipe. It can be characterized as doing.
  • the outer copper pipe may be formed with an outer diameter of ⁇ 28 mm to 38 mm.
  • the copper fins are spaced apart at intervals of 3 mm or less when they are spirally wound around the inner copper pipe by corrugating a plate portion formed to a predetermined thickness to form a diagonal path Forming a wrinkle portion; and a contact portion in which one side of the corrugated portion contacts the outer surface of the inner copper pipe and the other side of the corrugated portion contacts the inner surface of the outer copper pipe so that the refrigerant can pass along the diagonal flow path.
  • the corrugated portion when the refrigerant flows into one side of the outer copper pipe, the corrugated portion conducts cold and heat from the outer copper pipe that is primarily cooled by the rotation of the fan. It may be characterized in that the refrigerant is cooled.
  • the air-cooled gas cooler for a refrigeration compressor forms a diagonal flow path by winding a corrugated copper pin spirally between an inner copper pipe and an outer copper pipe so as to form a certain interval, and saddles the heated refrigerant flowing into the outer copper pipe.
  • the copper fin conducts cold heat to cool the refrigerant, which has an advantage of high cooling efficiency.
  • the air-cooled gas cooler for a refrigeration compressor forms a corrugated portion to form a diagonal flow path in which corrugated copper fins spiral, so that the cross-sectional area of contact of the refrigerant introduced into the outer copper pipe formed with an outer diameter of ⁇ 28 mm to 38 mm.
  • the air-cooled gas cooler for refrigeration compressors is indirect cooling in which a copper pipe having an outer diameter of 6 to 8 mm, which is a cooling method of an existing condenser, is formed in a hole inside an aluminum plate, and after expansion of the saddle, the aluminum plate is cooled by a blowing fan.
  • a copper pipe having an outer diameter of 6 to 8 mm which is a cooling method of an existing condenser
  • the aluminum plate is cooled by a blowing fan.
  • the installation area can be reduced, and the rotational speed of the cooling and blowing fan is reduced due to the small blowing area, so power consumption is reduced and the number of cooling and blowing fans can be reduced, so energy can be saved. there is.
  • FIG. 1 is a perspective view schematically showing the appearance of an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention.
  • Figure 2 is an exploded perspective view shown in Figure 1 is disassembled.
  • FIG 3 is a perspective view showing a copper pin of an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention.
  • FIG. 4 is a side view showing an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention from one side.
  • FIG. 5 is an exemplary view showing a state in which a corrugated copper fin of an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention is formed in a spiral shape.
  • FIG. 6 is an exemplary view showing a comparison between an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention and the prior art.
  • FIG. 7 and 8 are photographs showing an actual product of an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention.
  • FIG. 1 is a perspective view schematically showing the appearance of an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view showing FIG. 1 by disassembling it
  • FIG. 3 is a refrigeration compressor according to an embodiment of the present invention
  • Figure 4 is a side view showing an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention from one side
  • Figure 5 is an air-cooled gas for a refrigeration compressor according to an embodiment of the present invention. It is an exemplary view showing a state in which the corrugated copper fin of the cooler is formed in a spiral shape
  • FIGS. 7 and 8 are an exemplary view of the present invention. It is a photograph showing the actual product of the air-cooled gas cooler for refrigeration compressors according to the embodiment.
  • the air-cooled gas cooler 10 for a refrigeration compressor includes a housing 100, a heat exchange unit 200, and a corrugated fin 300.
  • the air-cooled gas cooler 10 for a refrigeration compressor has an outdoor unit body 110 formed in an enclosure shape, and a fan is disposed on one side of the body.
  • the housing 100 in which 120 is formed, the inner copper pipe 210 disposed inside the housing, and the inner copper pipe are surrounded and spaced apart inside is formed to wind the spiral corrugated pipe at intervals of 3 mm or less so that the flow path runs in a diagonal direction.
  • the housing 100 is formed of a box-shaped outdoor unit body 110 having a space formed therein, and a fan 120 capable of blowing air is formed on one side.
  • the housing 100 forms a suction port capable of sucking external air on the other side, and external air is introduced into the inside through the suction port by rotation of the fan 120 . And discharged to one side of the housing (100).
  • the housing 100 is wider than the housing of a general outdoor unit of an indirect cooling method in which an aluminum plate is cooled and then the cooled aluminum plate cools the copper plate due to a simple structure composed of only a heat exchanger 200 and a copper fin 300 to be described later. It can be manufactured in a small size with a low length and height.
  • the heat exchange unit 200 surrounds the inner copper pipe 210 and the inner copper pipe 210 disposed inside the housing 100 and forms a space spaced apart therein to form a spiral corrugated pipe. It is formed of an outer copper pipe 220 that winds at intervals of 3 mm or less and forms a double pipe by saddled in a diagonal direction.
  • the heat exchange unit 200 preferably closes both sides of the inner copper pipe 210 to prevent refrigerant from flowing into the inner copper pipe 210 .
  • the heat exchange unit 200 prevents refrigerant from flowing into the inner copper pipe 210, and a corrugated copper fin 300 is installed between the outer copper pipe 220 and the inner copper pipe 210 to be described later. It is installed in a spiral diagonal shape, but the interval between the corrugated copper fins 300 constituting the spiral is set to 3 mm or less so that the refrigerant can flow in so that the flow path of the refrigerant can pass only between the diagonally wound corrugated copper fins 300.
  • a refrigerant pipe is connected to a copper pipe so that the refrigerant flows into the copper pipe. Then, the aluminum plate is cooled by the rotation of the blowing fan, and the copper pipe is cooled and heated by the cooled aluminum plate, so that the refrigerant is circulated and transported inside the copper pipe.
  • the outer copper pipe 220 is a pipe that surrounds the inner copper pipe 210 and forms a spaced space inside to form a double pipe.
  • the outer copper pipe 220 is formed with a larger diameter than the inner copper pipe 210 so that the refrigerant can flow into the inside.
  • the outer copper pipe 220 is preferably formed with an outer diameter of ⁇ 28 mm to 38 mm.
  • the heat exchange unit 200 further includes an inlet hole 230 and a discharge hole 240.
  • the inflow hole 230 is a hole through which the refrigerant flows into one side of the outer copper pipe 220, and the hot refrigerant flows in and moves along the inside of the outer copper pipe 220.
  • the discharge hole 240 is a hole through which the refrigerant is discharged to the other side of the outer copper pipe 220, and the outer copper pipe 220 is primarily cooled by the rotation of the fan 120 formed on one side of the housing 100. It serves to discharge the refrigerant cooled by the cooling heat of the
  • the corrugated copper pin 300 is spirally disposed between the inner copper pipe 210 and the outer copper pipe 220 . And it serves to more quickly cool the refrigerant located inside the outer copper pipe 220.
  • the corrugated pin 300 further includes a corrugated portion 310 and a contact portion 320 .
  • the corrugated portion 310 corrugates the plate portion formed to a predetermined thickness and is spaced apart at intervals of 3 mm or less when spirally wound around the inner copper pipe 210 to form a diagonal flow path.
  • the corrugation part 310 is arranged in a ring shape on the inner circumferential surface of the outer copper pipe 220 along the center of the circle to increase the contact cross-sectional area of the refrigerant flowing into the outer copper pipe 220.
  • one side of the corrugated portion 310 contacts the outer surface of the inner copper pipe 210 and the other side of the corrugated portion 310 contacts the inner surface of the outer copper pipe 220 so that the refrigerant is formed in a diagonal shape. It serves to allow passage along the flow path.
  • the contact portion 320 forms a radially partitioned space from the center of the circle, and the refrigerant introduced through the inflow hole 230 is cooled while being transported through each partitioned space.
  • the corrugated copper fin 300 is, as shown in FIG. 3 (c) and FIG. 5, when the refrigerant flows into one side of the outer copper pipe 220, the outer copper pipe is primarily cooled by the rotation of the fan 120.
  • the corrugated portion 310 from 220 serves to cool the refrigerant by conducting cold heat.
  • the plate of the part in contact with the outer circumferential surface of the inner copper pipe 210 and the part in contact with the inner circumferential surface of the outer copper pipe 220 are located radially from the center of the circle. Then, a wall is formed in a zigzag direction between the inner copper pipe 210 and the outer copper pipe 220.
  • a space partitioned radially from the center of the circle is formed by the contact portion 320, and the refrigerant introduced through the inlet hole 230 is cooled while being transported through each partitioned space.
  • the wrinkles 310 conduct cold heat to the refrigerant, and the heat-exchanged refrigerant moves through the discharge hole 240 .
  • the corrugated copper pin 300 is spirally wound around the inner copper pipe 210 at regular intervals of 1 to 3 mm. Due to this, the flow path of the corrugated fin 300 is installed in a diagonal direction so that the refrigerant gas passes through the corrugated fin 300 while continuously contacting the corrugated fin 300, thereby increasing the heat dissipation area and increasing the cooling efficiency.
  • the prior art has a structure in which the number of corrugated pins is small and installed in a straight line, so that the passing fluid passes through without contacting the corrugated pins. As a result, the heat dissipation area is small, and the cooling efficiency is reduced.
  • a hole of 8 to 10 ⁇ is drilled in an aluminum plate, and a copper pipe formed with an outer diameter of 8 to 10 ⁇ is inserted into the hole to expand and close the hole.
  • the refrigerant circulates in the copper pipe and cools the circulating refrigerant by blowing air from the blower to the aluminum fin to cool the copper pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The preset invention relates to an air cooling-type gas cooler for a refrigeration compressor and, more specifically, to an air cooling-type gas cooler for a refrigeration compressor, comprising: a housing which forms an outdoor unit body in a box shape and has a fan formed at one side of a body thereof; a heat exchange unit including an inner copper pipe, which is disposed inside the housing, and an outer copper pipe, which surrounds and is spaced apart from the inner copper pipe to form a space therein, to enable a spiral corrugated pipe to be wound at intervals of 3 mm or less so that a flow channel is seated in a diagonal direction to form double pipes; and a corrugated copper pin spirally disposed between the inner copper pipe and the outer copper pipe.

Description

냉동컴프레셔용 공냉식 가스냉각기Air-cooled gas cooler for refrigeration compressor
본 발명은 냉동컴프레셔용 공냉식 가스냉각기에 관한 것으로, 보다 상세하게는 알류미늄핀을 사용하는 간접냉각방식 대신 콘덴서에 열냉각 시키는 동파이프 내부에 또하나의 동파이프를 삽입하여 이중 동파이프를 설치하고, 외측 동파이프와 내측 동파이프의 사이에 주름동핀을 3mm이하의 간격의 나선형으로 감겨지게 하여 냉매의 유로를 대각선방향으로 함으로써, 뜨거워진 냉매를 외측동파이프와 냉열 전도된 나선형 주름동핀이 냉매를 직접 냉각시키는 냉동컴프레셔용 공냉식 가스냉각기에 관한 것이다.The present invention relates to an air-cooled gas cooler for a refrigeration compressor, and more particularly, to install a double copper pipe by inserting another copper pipe inside a copper pipe for heat cooling in a condenser instead of an indirect cooling method using aluminum fins, Corrugated copper fins are wound spirally between the outer copper pipe and the inner copper pipe at intervals of 3 mm or less to direct the refrigerant flow path in a diagonal direction. It relates to an air-cooled gas cooler for a refrigeration compressor that cools.
현재 시중에 사용중인 공랭식 기존 가스냉각기는 알루미늄판에 홀을 8mm로 형성한 동파이프를 삽입 안장 후 동파이를 확관하여 알루미늄판에 밀착시켜 설치하고, 동파이프내 순환되는 냉매를 알루미늄판을 냉각하여 순환되는 냉매를 냉각시키는 간접냉각방식으로 가스냉각기(CONDENSER)를 사용하고 있다.Existing air-cooled gas coolers currently in use on the market insert and saddle a copper pipe with an 8mm hole in an aluminum plate, expand the copper pipe, and install it closely to the aluminum plate, and circulate the refrigerant circulating in the copper pipe by cooling the aluminum plate. A gas condenser (CONDENSER) is used as an indirect cooling method that cools the refrigerant being used.
일반적으로 콘덴서(CONDENSER)의 열교환효율 즉 냉각효율을 향상시키고자 하는 시도가 오래전부터 이루어져 왔다.In general, attempts to improve the heat exchange efficiency of a condenser, that is, the cooling efficiency, have been made for a long time.
이러한 종래기술로는 대한민국 등록특허 제10-0406047호(2003.11.05. 등록)인 "에어컨의 응축수를 이용한 실외열교환기 냉각장치"와 대한민국 등록특허 제10-0555417호(2006.02.20. 등록)인 "실외기의 응축수 배출구조" 및 일본 공개특허 제2004-190877호(2004.07.08. 공개)인 "공냉식 냉방장치" 등이 개시되어 있다.Such prior art includes Korean Patent No. 10-0406047 (registered on November 5, 2003), "Outdoor heat exchanger cooling device using condensate from air conditioner" and Korean Patent No. 10-0555417 (registered on February 20, 2006). "Condensate discharge structure of an outdoor unit" and Japanese Patent Laid-open Publication No. 2004-190877 (published on July 8, 2004) "air-cooled air conditioner" are disclosed.
이러한 종래기술들은 에어컨의 실내기에서 발생한 응축수를 응축수 연결관을 사용하여 실외기 측으로 공급하여 실외기의 열교환기 하부를 응축수로 적시도록 하거나(특허 제0406047호), 실외기의 열교환기 상부에 설치된 집수탱크로 공급하고 집수탱크에 저장된 응축수는 배출홈을 통해 열교환기 위로 낙수되도록 한다.In these conventional technologies, condensate generated in the indoor unit of an air conditioner is supplied to the outdoor unit using a condensate connection pipe to wet the lower part of the heat exchanger of the outdoor unit with condensate (Patent No. 0406047), or is supplied to a water collection tank installed on the upper part of the heat exchanger of the outdoor unit. and the condensed water stored in the collecting tank drips onto the heat exchanger through the discharge groove.
이때, 열교환기를 적셔주게 됨으로써 에어컨의 열효율을 향상시킬 수 있도록(특허 제0555417호 및 일본공개특허 제2004-190877호)되어 있다.At this time, the heat exchanger is wetted to improve the thermal efficiency of the air conditioner (Patent No. 0555417 and Japanese Laid-open Patent No. 2004-190877).
또한, 종래기술들은 낙수되는 양이 미미하여 응축수가 열교환기의 상부측만을 적셔주게 됨으로써, 전체적인 냉각효율의 향상에는 그다지 효과적이지 못한 단점이 있었다.In addition, the prior art has a disadvantage in that the amount of falling water is insignificant and the condensed water wets only the upper side of the heat exchanger, so that it is not very effective in improving the overall cooling efficiency.
한편, 또 다른 종래기술로 에어컨의 응축수를 실외기의 열교환기에 분사시키는 스프레이 방식의 구성이 제안되었다.On the other hand, as another prior art, a configuration of a spray method in which condensed water from an air conditioner is sprayed to a heat exchanger of an outdoor unit has been proposed.
이러한, 스프레이식 실외기 냉각장치는 실외기의 팬을 이용하여 이젝터 방식으로 분사하는 경우에는 분사효율이 떨어져 실질적인 냉각성능의 향상을 도모하는 것이 불가능하였다In this spray type outdoor unit cooling device, when spraying using the ejector method using the fan of the outdoor unit, the spraying efficiency is low, making it impossible to improve the cooling performance substantially.
*그리고 별도의 분사장치를 사용할 경우에는 이 분사장치의 작동을 위한 전력이 추가로 소모되어야 하기 때문에, 에어컨의 소비전력이 상대적으로 증가하게 되어 런닝 코스트가 상승하게 되는 문제점이 발생하게 된다.* And when a separate injector is used, since the power for the operation of the injector must be additionally consumed, the power consumption of the air conditioner relatively increases, resulting in a problem that the running cost increases.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 내측동파이프와 외측동파이프의 사이에 나선형으로 주름동핀을 3mm이하 간격으로 내부동파이프 에 감음으로써, 주름동핀의 사이가 대각선형을 이루게 하여 유로가 대각선방향으로 안장되어 주름동핀의 사이로 뜨거워진 냉매를 통과시켜 외측동파이프와 냉열 전도된 주름동핀이 냉매를 냉각시키는 직접 냉각방식의 새로운 구조의 냉동컴프레셔용 공냉식 가스냉각기를 제공하는 것이다.In order to solve the above problems of the prior art, the present invention spirally winds corrugated copper pins between the inner copper pipe and the outer copper pipe at intervals of 3 mm or less to the inner copper pipe, so that the gap between the corrugated copper pins forms a diagonal shape. It is to provide an air-cooled gas cooler for refrigeration compressors with a new structure of a direct cooling method in which the flow path is seated in a diagonal direction and the heated refrigerant passes between the corrugated copper fins so that the outer copper pipe and the corrugated copper fins that conduct cold heat cool the refrigerant.
또한, 알루미늄판을 냉각하여 동파이프를 냉각시키는 간접 냉열전달방식보다 관경이 큰 ø28mm 내지 38mm이하의 동파이프로 형성하여 방열면적이 큰 동파이프의 외부를 직접 냉각시키기 때문에 간접냉각방식의 알루미늄핀이 없이도, 전체적인 체적 및 냉각면적이 줄어들어 하우징의 크기가 작아지고 냉각송풍기 수가 줄어들어 에너지를 절약할 수 있는 냉동컴프레셔용 공냉식 가스냉각기를 제공하는 것이다.In addition, since the outside of the copper pipe with a large heat dissipation area is directly cooled by forming a copper pipe with a diameter of ø28 mm to 38 mm or less rather than the indirect cold-heat transfer method in which the copper pipe is cooled by cooling the aluminum plate, the aluminum fin of the indirect cooling method is It is to provide an air-cooled gas cooler for a refrigeration compressor that can save energy by reducing the size of the housing and reducing the number of cooling blowers because the overall volume and cooling area are reduced without it.
본 발명은 상기와 같은 과제를 해결하기 위하여The present invention to solve the above problems
함체 형상으로 실외기 본체를 형성하고, 상기 본체의 일측에 팬이 형성된 하우징;a housing having an outdoor unit main body in a box shape and having a fan formed on one side of the main body;
*상기 하우징의 내부에 배치된 내측동파이프와 상기 내측동파이프를 둘러싸고 내부에 이격된 공간을 형성하여 나선형 주름관을 3mm이하의 간격으로 감아 유로가 대각선 방향으로 안장하여 이중관을 형성하는 외측동파이프로 형성된 열교환부; 및* An outer copper pipe that surrounds the inner copper pipe and the inner copper pipe disposed inside the housing and forms a space spaced inside to form a double pipe by winding the spiral corrugated pipe at intervals of 3 mm or less and seating the flow path in a diagonal direction. formed heat exchange unit; and
상기 내측동파이프와 상기 외측동파이프의 사이에 나선형으로 배치된 주름동핀을 포함하는Comprising a corrugated copper pin spirally disposed between the inner copper pipe and the outer copper pipe
냉동컴프레셔용 공냉식 가스냉각기를 제공한다.An air-cooled gas cooler for refrigeration compressors is provided.
본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기에 있어서, 상기 열교환부는 상기 내측동파이프에 냉매가 유입되는 것을 방지하기 위해 상기 내측 동파이프의 양측을 폐쇄한 것을 특징으로 할 수 있다.In the air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention, the heat exchange part may be characterized in that both sides of the inner copper pipe are closed to prevent refrigerant from flowing into the inner copper pipe.
본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기에 있어서, 상기 열교환부는 상기 외측동파이프의 일측으로 냉매가 유입되는 유입홀과 상기 외측동파이프의 타측으로 상기 냉매를 배출하는 토출홀을 더 포함하는 것을 특징으로 할 수 있다.In the air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention, the heat exchange part further includes an inlet hole through which the refrigerant flows into one side of the outer copper pipe and a discharge hole through which the refrigerant is discharged to the other side of the outer copper pipe. It can be characterized as doing.
본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기에 있어서, 상기 외측동파이프는 ø28mm 내지 38mm의 외경으로 형성된 것을 특징으로 할 수 있다.In the air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention, the outer copper pipe may be formed with an outer diameter of ø28 mm to 38 mm.
본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기에 있어서, 상기 동핀은 소정의 두께로 형성된 판부를 주름지게 하여 상기 내측동파이프에 나선형으로 한바퀴 감겨질 때 3mm이하의 간격으로 이격되어 대각형유로를 형성한 주름부; 및 상기 주름부의 일측이 상기 내측동파이프의 외측면에 접촉하고, 상기 주름부의 타측이 상기 외측동파이프의 내측면에 접촉되어 냉매가 상기 대각형유로를 따라 통과될 수 있게 한 접촉부를 더 포함할 수 있다.In the air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention, the copper fins are spaced apart at intervals of 3 mm or less when they are spirally wound around the inner copper pipe by corrugating a plate portion formed to a predetermined thickness to form a diagonal path Forming a wrinkle portion; and a contact portion in which one side of the corrugated portion contacts the outer surface of the inner copper pipe and the other side of the corrugated portion contacts the inner surface of the outer copper pipe so that the refrigerant can pass along the diagonal flow path. can
본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기에 있어서, 상기 동핀은 상기 외측동파이프의 일측으로 냉매가 유입되면 상기 팬의 회전으로 1차 냉각된 상기 외측동파이프로부터 상기 주름부가 냉열 전도되어 상기 냉매를 냉각시키는 것을 특징으로 할 수 있다.In the air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention, when the refrigerant flows into one side of the outer copper pipe, the corrugated portion conducts cold and heat from the outer copper pipe that is primarily cooled by the rotation of the fan. It may be characterized in that the refrigerant is cooled.
본 발명에 따른 냉동컴프레셔용 공냉식 가스냉각기는 내측동파이프와 외측동파이프의 사이에 주름동핀을 나선형으로 일정간격을 형성하도록 감아 안장하여 대각형유로를 형성하여 외측동파이프로 유입되는 뜨거워진 냉매를 팬의 회전에 의해 외측동파이프가 1차 냉각 시, 동핀이 냉열 전도되어 냉매를 냉각시킴으로써, 냉각 효율이 높은 장점이 있다.The air-cooled gas cooler for a refrigeration compressor according to the present invention forms a diagonal flow path by winding a corrugated copper pin spirally between an inner copper pipe and an outer copper pipe so as to form a certain interval, and saddles the heated refrigerant flowing into the outer copper pipe. When the outer copper pipe is first cooled by the rotation of the fan, the copper fin conducts cold heat to cool the refrigerant, which has an advantage of high cooling efficiency.
또한, 본 발명에 따른 냉동컴프레셔용 공냉식 가스냉각기는 주름 형상의 동핀을 나선형으로 하는 대각형유로를 형성하도록 주름부를 형성함으로써, ø28mm 내지 38mm의 외경으로 형성된 외측동파이프로 유입된 냉매의 접촉하는 단면적을 넓게 하여, 외측동파이프의 냉열을 신속하게 전도하기 때문에 뜨거워진 냉매를 신속하게 냉각시키는 장점이 있다.In addition, the air-cooled gas cooler for a refrigeration compressor according to the present invention forms a corrugated portion to form a diagonal flow path in which corrugated copper fins spiral, so that the cross-sectional area of contact of the refrigerant introduced into the outer copper pipe formed with an outer diameter of ø28 mm to 38 mm There is an advantage in rapidly cooling the hot refrigerant because the cold heat of the outer copper pipe is quickly conducted by widening the outer copper pipe.
또한, 본 발명에 따른 냉동컴프레셔용 공냉식 가스냉각기는 기존 콘덴서의 냉각방식인 6 내지 8mm 외경의 동파이프를 알루미늄판의 내부에 홀을 형성하고 안장 확관 후, 알루미늄판을 송풍팬으로 냉각시키는 간접냉각방식보다 효율적인 직접냉각방식으로 냉각함에 따라, 하우징의 크기를 줄일 수 있어서 기존 제품보다 소형으로 제조할 수 있는 장점이 있다.In addition, the air-cooled gas cooler for refrigeration compressors according to the present invention is indirect cooling in which a copper pipe having an outer diameter of 6 to 8 mm, which is a cooling method of an existing condenser, is formed in a hole inside an aluminum plate, and after expansion of the saddle, the aluminum plate is cooled by a blowing fan. As the direct cooling method is more efficient than the cooling method, the size of the housing can be reduced, so there is an advantage in that it can be manufactured in a smaller size than existing products.
또한, 하우징의 크기를 작게 만들기 때문에 설치면적을 줄일 수 있고, 송풍면적이 작아 냉각송풍 팬의 회전수가 줄어 소요전력도 줄어들고, 냉각송풍 팬의 수를 줄일 수 있기 때문에 에너지를 절약할 수 있는 장점이 있다.In addition, since the size of the housing is made small, the installation area can be reduced, and the rotational speed of the cooling and blowing fan is reduced due to the small blowing area, so power consumption is reduced and the number of cooling and blowing fans can be reduced, so energy can be saved. there is.
도 1은 본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기의 외관을 개략적으로 나타낸 사시도이다.1 is a perspective view schematically showing the appearance of an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention.
도 2는 도 1을 분해하여 나타낸 분해사시도이다.Figure 2 is an exploded perspective view shown in Figure 1 is disassembled.
도 3은 본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기의 동핀을 나타낸 사시도이다.3 is a perspective view showing a copper pin of an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기를 일측면으로 나타낸 측면도이다.4 is a side view showing an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention from one side.
도 5는 본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기의 주름동핀이 나선형으로 형성된 상태를 나타낸 예시도이다.5 is an exemplary view showing a state in which a corrugated copper fin of an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention is formed in a spiral shape.
도 6은 본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기와 종래기술을 비교하여 나타낸 예시도이다.6 is an exemplary view showing a comparison between an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention and the prior art.
도 7 및 도 8은 본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기의 실제품을 나타낸 사진이다.7 and 8 are photographs showing an actual product of an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있는 바람직한 실시 예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시 예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.Hereinafter, preferred embodiments in which a person skilled in the art can easily practice the present invention will be described in detail with reference to the accompanying drawings. However, in the detailed description of the operating principle of the preferred embodiment of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다.In addition, the same reference numerals are used for parts having similar functions and actions throughout the drawings.
덧붙여, 명세서 전체에서 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때 이는 직접적으로 연결되어 있는 경우뿐만 아니라 그 중간에 다른 구성요소를 사이에 두고 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, when a part is said to be 'connected' to another part in the entire specification, this includes not only the case where it is directly connected but also the case where it is indirectly connected with other components intervening therebetween. In addition, 'including' a certain component means that other components may be further included without excluding other components unless otherwise stated.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기에 대하여 상세히 설명한다.Hereinafter, an air-cooled gas cooler for a refrigeration compressor according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기의 외관을 개략적으로 나타낸 사시도이고, 도 2는 도 1을 분해하여 나타낸 분해사시도이고, 도 3은 본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기의 동핀을 나타낸 사시도이고, 도 4는 본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기를 일측면으로 나타낸 측면도이고, 도 5는 본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기의 주름동핀이 나선형으로 형성된 상태를 나타낸 예시도이고, 도 6은 본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기와 종래기술을 비교하여 나타낸 예시도이고, 도 7 및 도 8은 본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기의 실제품을 나타낸 사진이다.1 is a perspective view schematically showing the appearance of an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention, FIG. 2 is an exploded perspective view showing FIG. 1 by disassembling it, and FIG. 3 is a refrigeration compressor according to an embodiment of the present invention. Figure 4 is a side view showing an air-cooled gas cooler for a refrigeration compressor according to an embodiment of the present invention from one side, Figure 5 is an air-cooled gas for a refrigeration compressor according to an embodiment of the present invention. It is an exemplary view showing a state in which the corrugated copper fin of the cooler is formed in a spiral shape, and FIG. 6 is an exemplary view showing a comparison between an air-cooled gas cooler for a refrigerating compressor according to an embodiment of the present invention and the prior art, and FIGS. 7 and 8 are an exemplary view of the present invention. It is a photograph showing the actual product of the air-cooled gas cooler for refrigeration compressors according to the embodiment.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기(10)는 하우징(100), 열교환부(200) 및 주름동핀(300)을 포함한다.1 and 2, the air-cooled gas cooler 10 for a refrigeration compressor according to an embodiment of the present invention includes a housing 100, a heat exchange unit 200, and a corrugated fin 300.
보다 상세하게는, 도 1 및 도 2에 도시된 바와 같이, 본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기(10)는 함체 형상으로 실외기 본체(110)를 형성하고, 본체의 일측에 팬(120)이 형성된 하우징(100), 하우징의 내부에 배치된 내측동파이프(210)와 내측동파이프를 둘러싸고 내부에 이격된 공간을 형성하여 나선형 주름관을 3mm이하의 간격으로 감아 유로가 대각선 방향으로 안장하여 이중관을 형성하는 외측동파이프(220)로 형성된 열교환부(200) 및 내측동파이프와 외측동파이프의 사이에 나선형으로 배치된 주름동핀(300)을 포함한다.More specifically, as shown in FIGS. 1 and 2 , the air-cooled gas cooler 10 for a refrigeration compressor according to an embodiment of the present invention has an outdoor unit body 110 formed in an enclosure shape, and a fan is disposed on one side of the body. The housing 100 in which 120 is formed, the inner copper pipe 210 disposed inside the housing, and the inner copper pipe are surrounded and spaced apart inside is formed to wind the spiral corrugated pipe at intervals of 3 mm or less so that the flow path runs in a diagonal direction. It includes a heat exchange unit 200 formed of an outer copper pipe 220 that is seated to form a double pipe, and a corrugated copper fin 300 spirally disposed between the inner copper pipe and the outer copper pipe.
도 1을 참조하면, 하우징(100)은 내부에 공간이 형성된 박스형상의 실외기 본체(110)로 형성되고, 일측에 송풍가능한 팬(120)이 형성된다.Referring to FIG. 1 , the housing 100 is formed of a box-shaped outdoor unit body 110 having a space formed therein, and a fan 120 capable of blowing air is formed on one side.
이때, 하우징(100)은 타측에 외부의 공기를 흡입할 수 있는 흡입구를 형성하여 팬(120)의 회전으로 외부의 공기가 흡입구를 통해 내부로 유입된다. 그리고 하우징(100)의 일측으로 배출된다.At this time, the housing 100 forms a suction port capable of sucking external air on the other side, and external air is introduced into the inside through the suction port by rotation of the fan 120 . And discharged to one side of the housing (100).
특히, 하우징(100)은 후술하는 열교환부(200) 및 동핀(300)으로만 이루어지는 단순한 구조로 인하여 알루미늄판을 냉각 후, 냉각된 알루미늄판이 동판을 냉각시키는 간접 냉각방식의 일반적인 실외기의 하우징보다 폭과 길이 및 높이가 낮은 크기의 소형으로 제작이 가능하다.In particular, the housing 100 is wider than the housing of a general outdoor unit of an indirect cooling method in which an aluminum plate is cooled and then the cooled aluminum plate cools the copper plate due to a simple structure composed of only a heat exchanger 200 and a copper fin 300 to be described later. It can be manufactured in a small size with a low length and height.
도 2 및 도 5를 참조하면, 열교환부(200)는 하우징(100)의 내부에 배치된 내측동파이프(210)와 내측동파이프(210)를 둘러싸고 내부에 이격된 공간을 형성하여 나선형 주름관을 3mm이하의 간격으로 감아 유로가 대각선 방향으로 안장하여 이중관을 형성하는 외측동파이프(220)로 형성된다.2 and 5, the heat exchange unit 200 surrounds the inner copper pipe 210 and the inner copper pipe 210 disposed inside the housing 100 and forms a space spaced apart therein to form a spiral corrugated pipe. It is formed of an outer copper pipe 220 that winds at intervals of 3 mm or less and forms a double pipe by saddled in a diagonal direction.
특히, 열교환부(200)는 내측동파이프(210)의 내부로 냉매가 유입되는 것을 방지하기 위해 상기 내측 동파이프의 양측을 폐쇄하는 것이 바람직하다.In particular, the heat exchange unit 200 preferably closes both sides of the inner copper pipe 210 to prevent refrigerant from flowing into the inner copper pipe 210 .
이로 인해, 열교환부(200)는 내측동파이프(210)의 내부로 냉매가 유입되는 것을 방지하고, 후술하는 외측동파이프(220)와 내측동파이프(210)의 사이에 주름동핀(300)을 나선 대각형으로 설치하되, 나선을 이루는 주름동핀(300)의 간격을 3mm 이하로 하여 냉매의 유로가 대각형으로 감겨져 있는 주름동핀(300)의 사이로만 통과할 수 있도록 냉매를 유입시킬 수 있다.Due to this, the heat exchange unit 200 prevents refrigerant from flowing into the inner copper pipe 210, and a corrugated copper fin 300 is installed between the outer copper pipe 220 and the inner copper pipe 210 to be described later. It is installed in a spiral diagonal shape, but the interval between the corrugated copper fins 300 constituting the spiral is set to 3 mm or less so that the refrigerant can flow in so that the flow path of the refrigerant can pass only between the diagonally wound corrugated copper fins 300.
이때, 팬의 회전으로 외측동파이프(220)를 냉각시키기 때문에 냉매를 보다 신속하게 냉각시키는 것이 가능하다.At this time, since the outer copper pipe 220 is cooled by rotation of the fan, it is possible to cool the refrigerant more quickly.
일례로, 일반적인 실외기는 동파이프에 냉매관이 연결되어 동파이프의 내부로 냉매가 유입된다. 그리고 송풍팬의 회전으로 알루미늄판이 냉각되고, 냉각된 알루미늄판에 의해 동파이프가 냉열 전도되어 냉매가 동파이프의 내부에서 순환이송되는 동안 냉각된다.For example, in a typical outdoor unit, a refrigerant pipe is connected to a copper pipe so that the refrigerant flows into the copper pipe. Then, the aluminum plate is cooled by the rotation of the blowing fan, and the copper pipe is cooled and heated by the cooled aluminum plate, so that the refrigerant is circulated and transported inside the copper pipe.
도 2 및 도 3을 참조하면, 외측동파이프(220)는 내측동파이프(210)를 둘러싸고 내부에 이격된 공간을 형성하여 이중관을 형성하는 파이프이다.Referring to Figures 2 and 3, the outer copper pipe 220 is a pipe that surrounds the inner copper pipe 210 and forms a spaced space inside to form a double pipe.
특히, 외측동파이프(220)는 내부로 냉매가 유입될 수 있도록 내측동파이프(210)보다 큰 직경으로 형성된다.In particular, the outer copper pipe 220 is formed with a larger diameter than the inner copper pipe 210 so that the refrigerant can flow into the inside.
이를 위해, 외측동파이프(220)는 ø28mm 내지 38mm의 외경으로 형성되는 것이 바람직하다.To this end, the outer copper pipe 220 is preferably formed with an outer diameter of ø28 mm to 38 mm.
한편, 도 2에 도시된 바와 같이 본 발명의 실시예에 따른 냉동컴프레셔용 공냉식 가스냉각기(10)에 있어서, 열교환부(200)는 유입홀(230) 및 토출홀(240)을 더 포함한다.Meanwhile, as shown in FIG. 2 , in the air-cooled gas cooler 10 for a refrigerating compressor according to an embodiment of the present invention, the heat exchange unit 200 further includes an inlet hole 230 and a discharge hole 240.
유입홀(230)은 외측동파이프(220)의 일측으로 냉매가 유입되는 홀을 형성한 것으로, 뜨거워진 냉매를 유입시켜 외측동파이프(220)의 내부를 따라 이동한다.The inflow hole 230 is a hole through which the refrigerant flows into one side of the outer copper pipe 220, and the hot refrigerant flows in and moves along the inside of the outer copper pipe 220.
토출홀(240)은 외측동파이프(220)의 타측으로 냉매를 배출하는 홀을 형성한 것으로, 하우징(100)의 일측에 형성된 팬(120)의 회전으로 1차 냉각된 외측동파이프(220)의 냉열에 의해 냉각된 냉매를 토출시키는 역할을 한다.The discharge hole 240 is a hole through which the refrigerant is discharged to the other side of the outer copper pipe 220, and the outer copper pipe 220 is primarily cooled by the rotation of the fan 120 formed on one side of the housing 100. It serves to discharge the refrigerant cooled by the cooling heat of the
도 2 및 도 3을 참조하면, 주름동핀(300)은 내측동파이프(210)와 외측동파이프(220)의 사이에 나선형으로 배치된다. 그리고 외측동파이프(220)의 내부에 위치한 냉매를 더욱 신속하게 냉각시키는 역할을 한다.Referring to FIGS. 2 and 3 , the corrugated copper pin 300 is spirally disposed between the inner copper pipe 210 and the outer copper pipe 220 . And it serves to more quickly cool the refrigerant located inside the outer copper pipe 220.
이를 위해, 주름동핀(300)은 주름부(310) 및 접촉부(320)를 더 포함한다.To this end, the corrugated pin 300 further includes a corrugated portion 310 and a contact portion 320 .
주름부(310)는 도 3 및 도 5에 도시된 바와 같이 소정의 두께로 형성된 판부를 주름지게 하여 내측동파이프(210)에 나선형으로 한바퀴 감겨질 때 3mm이하의 간격으로 이격되어 대각형유로를 형성한다.As shown in FIGS. 3 and 5, the corrugated portion 310 corrugates the plate portion formed to a predetermined thickness and is spaced apart at intervals of 3 mm or less when spirally wound around the inner copper pipe 210 to form a diagonal flow path. form
여기서, 주름부(310)는 외측동파이프(220)의 내주면에 원의 중심을 따라 링 형상으로 배치되어 외측동파이프(220)의 내부로 유입되는 냉매의 접촉하는 단면적을 넓혀주는 역할을 한다.Here, the corrugation part 310 is arranged in a ring shape on the inner circumferential surface of the outer copper pipe 220 along the center of the circle to increase the contact cross-sectional area of the refrigerant flowing into the outer copper pipe 220.
접촉부(320)는 주름부(310)의 일측이 내측동파이프(210)의 외측면에 접촉하고, 주름부(310)의 타측이 외측동파이프(220)의 내측면에 접촉되어 냉매가 대각형유로를 따라 통과될 수 있게 하는 역할을 한다.In the contact portion 320, one side of the corrugated portion 310 contacts the outer surface of the inner copper pipe 210 and the other side of the corrugated portion 310 contacts the inner surface of the outer copper pipe 220 so that the refrigerant is formed in a diagonal shape. It serves to allow passage along the flow path.
이러한, 접촉부(320)는 원의 중심으로부터 방사형으로 구획된 공간을 형성하고, 유입홀(230)을 통해 유입된 냉매는 각 구획된 공간을 통해 이송하면서 냉각된다.The contact portion 320 forms a radially partitioned space from the center of the circle, and the refrigerant introduced through the inflow hole 230 is cooled while being transported through each partitioned space.
이와 같은, 주름동핀(300)은 도 3의 (c) 및 도 5에 도시된 바와 같이 외측동파이프(220)의 일측으로 냉매가 유입되면 팬(120)의 회전으로 1차 냉각된 외측동파이프(220)로부터 주름부(310)가 냉열 전도되어 냉매를 냉각시키는 역할을 한다.As such, the corrugated copper fin 300 is, as shown in FIG. 3 (c) and FIG. 5, when the refrigerant flows into one side of the outer copper pipe 220, the outer copper pipe is primarily cooled by the rotation of the fan 120. The corrugated portion 310 from 220 serves to cool the refrigerant by conducting cold heat.
즉, 동핀(300)은 내측동파이프(210)의 외주면에 접촉한 부분과 외측동파이프(220)의 내주면에 접촉한 부분의 판은 원의 중심으로부터 방사형으로 위치한다. 그리고 내측동파이프(210) 및 외측동파이프(220)의 사이에서 지그재그 방향으로 벽체를 형성한다.That is, in the copper pin 300, the plate of the part in contact with the outer circumferential surface of the inner copper pipe 210 and the part in contact with the inner circumferential surface of the outer copper pipe 220 are located radially from the center of the circle. Then, a wall is formed in a zigzag direction between the inner copper pipe 210 and the outer copper pipe 220.
이때, 접촉부(320)에 의해 원의 중심으로부터 방사형으로 구획된 공간을 형성하고, 유입홀(230)을 통해 유입된 냉매는 각 구획된 공간을 통해 이송하면서 냉각된다.At this time, a space partitioned radially from the center of the circle is formed by the contact portion 320, and the refrigerant introduced through the inlet hole 230 is cooled while being transported through each partitioned space.
특히, 도 4에 도시된 바와 같이 팬(120)이 회전하면서 외부의 공기를 하우징(100)의 내부로 유입시키면 외부의 공기는 외측동파이프(220)를 1차 냉각시키고, 1차 냉각된 외측동파이프(220)는 동핀(300)으로 냉열을 전도한다.In particular, as shown in FIG. 4 , when external air is introduced into the housing 100 while the fan 120 rotates, the external air primarily cools the outer copper pipe 220, and the primarily cooled outer The copper pipe 220 conducts cold heat to the copper fin 300 .
이로 인해, 주름부(310)가 냉열을 냉매로 전도하여 열교환된 냉매가 토출홀(240)을 통해 이동하는 것이다.Due to this, the wrinkles 310 conduct cold heat to the refrigerant, and the heat-exchanged refrigerant moves through the discharge hole 240 .
일례로, 도 6의 (a)에 도시된 바와 같이 주름동핀(300)이 나선형으로 일정간격 1~3mm로 내측동파이프(210)를 둘러싸며 감겨져 있다. 이로 인해, 주름동핀(300)의 유로가 대각방향으로 설치되어 냉매가스가 주름동핀(300)에 연속적으로 접촉하면서 통과되어 방열면적이 커져서 냉각효율이 높아진다.For example, as shown in (a) of FIG. 6, the corrugated copper pin 300 is spirally wound around the inner copper pipe 210 at regular intervals of 1 to 3 mm. Due to this, the flow path of the corrugated fin 300 is installed in a diagonal direction so that the refrigerant gas passes through the corrugated fin 300 while continuously contacting the corrugated fin 300, thereby increasing the heat dissipation area and increasing the cooling efficiency.
반면에, 도 6의 (b)에 도시된 바와 같이, 종래의 기술은 주름핀의 수량이 적고 직선형으로 설치되어 있어 통과유체가 주름핀에 접촉하지 않고 스쳐지나가는 구조이다. 이로 인해, 방열면적이 적어 냉각효율이 감소한다.On the other hand, as shown in (b) of FIG. 6, the prior art has a structure in which the number of corrugated pins is small and installed in a straight line, so that the passing fluid passes through without contacting the corrugated pins. As a result, the heat dissipation area is small, and the cooling efficiency is reduced.
특히, 종래의 기술은 알루미늄판에 8 내지 10ㅨ의 구멍홀을 뚫고, 구멍홀의 내부에 8 내지 10ㅨ의 외경으로 형성된 동파이프를 삽입하여 확관 밀착시킨다. 그리고 동파이프관내로 냉매가 순환 알루미늄핀에 송풍기 바람을 불어 동파이프를 냉각하여 순환되는 냉매를 냉각 시키는 간접냉각방식이다.In particular, in the prior art, a hole of 8 to 10ㅨ is drilled in an aluminum plate, and a copper pipe formed with an outer diameter of 8 to 10ㅨ is inserted into the hole to expand and close the hole. In addition, it is an indirect cooling method in which the refrigerant circulates in the copper pipe and cools the circulating refrigerant by blowing air from the blower to the aluminum fin to cool the copper pipe.
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관해서 설명하였으나, 이는 본 발명의 가장 양호한 실시 예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자라면 누구나 본 발명의 기술사상의 범주를 벗어나지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 물론이다.As described above, the detailed description of the present invention has been described with respect to the preferred embodiments of the present invention, but this is the best embodiment of the present invention described by way of example, but does not limit the present invention. In addition, it is of course possible for anyone having ordinary knowledge in the technical field to which the present invention belongs to various modifications and imitations without departing from the scope of the technical idea of the present invention.
따라서, 본 발명의 권리범위는 상술한 실시 예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시 예로 구현될 수 있다. 그리고 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.Therefore, the scope of the present invention is not limited to the above-described embodiments, but may be implemented in various forms of embodiments within the scope of the appended claims. And without departing from the subject matter of the present invention claimed in the claims, anyone with ordinary knowledge in the art to which the invention pertains is considered to be within the scope of the claims of the present invention to various extents that can be modified.

Claims (5)

  1. 함체 형상으로 실외기 본체를 형성하고, 상기 본체의 일측에 팬이 형성된 하우징;a housing having an outdoor unit main body in a box shape and having a fan formed on one side of the main body;
    상기 하우징의 내부에 배치된 내측동파이프와 상기 내측동파이프를 둘러싸고 내부에 이격된 공간을 형성하여 나선형 주름관을 3mm이하의 간격으로 감아 유로가 대각선 방향으로 안장하여 이중관을 형성하는 외측동파이프로 형성된 열교환부; 및It is formed of an inner copper pipe disposed inside the housing and an outer copper pipe that surrounds the inner copper pipe and forms a space spaced inside so that the spiral corrugated pipe is wound at intervals of 3 mm or less and the flow path is saddled in a diagonal direction to form a double pipe. heat exchange unit; and
    상기 내측동파이프와 상기 외측동파이프의 사이에 나선형으로 배치된 주름동핀을 포함하고,Including a corrugated copper pin spirally disposed between the inner copper pipe and the outer copper pipe,
    상기 열교환부는 상기 내측동파이프의 내부로 냉매가 유입되는 것을 방지하기 위해 상기 내측 동파이프의 양측을 폐쇄한 것을 특징으로 하는The heat exchange part is characterized in that both sides of the inner copper pipe are closed to prevent the refrigerant from flowing into the inner copper pipe.
    냉동컴프레셔용 공냉식 가스냉각기.Air-cooled gas cooler for refrigeration compressors.
  2. 제 1 항에 있어서,According to claim 1,
    상기 열교환부는The heat exchange part
    상기 외측동파이프의 일측으로 냉매가 유입되는 유입홀과 상기 외측동파이프의 타측으로 상기 냉매를 배출하는 토출홀을 더 포함하는 것을 특징으로 하는Characterized in that it further comprises an inlet hole through which the refrigerant flows into one side of the outer copper pipe and a discharge hole through which the refrigerant is discharged to the other side of the outer copper pipe.
    냉동컴프레셔용 공냉식 가스냉각기.Air-cooled gas cooler for refrigeration compressors.
  3. 제 1 항에 있어서,According to claim 1,
    상기 외측동파이프는 ø28mm 내지 38mm의 외경으로 형성된 것을 특징으로 하는Characterized in that the outer copper pipe is formed with an outer diameter of ø28 mm to 38 mm
    냉동컴프레셔용 공냉식 가스냉각기.Air-cooled gas cooler for refrigeration compressors.
  4. 제 1 항에 있어서,According to claim 1,
    상기 주름동핀은The corrugated pin is
    소정의 두께로 형성된 판부를 주름지게 하여 상기 내측동파이프에 나선형으로 한바퀴 감겨질 때 3mm이하의 간격으로 이격되어 대각형유로를 형성한 주름부; 및Corrugated parts formed with a predetermined thickness and spaced apart at intervals of 3 mm or less to form a diagonal flow path when spirally wound around the inner copper pipe; and
    상기 주름부의 일측이 상기 내측동파이프의 외측면에 접촉하고, 상기 주름부의 타측이 상기 외측동파이프의 내측면에 접촉되어 냉매가 상기 대각형유로를 따라 통과될 수 있게 한 접촉부를 더 포함하는One side of the corrugated portion is in contact with the outer surface of the inner copper pipe, and the other side of the corrugated portion is in contact with the inner surface of the outer copper pipe to allow the refrigerant to pass along the diagonal flow path Further comprising a contact portion
    냉동컴프레셔용 공냉식 가스냉각기.Air-cooled gas cooler for refrigeration compressors.
  5. 제 4 항에 있어서,According to claim 4,
    상기 주름동핀은The corrugated pin is
    상기 외측동파이프의 일측으로 냉매가 유입되면 상기 팬의 회전으로 1차 냉각된 상기 외측동파이프로부터 상기 주름부가 냉열 전도되어 상기 냉매를 냉각시키는 것을 특징으로 하는Characterized in that when the refrigerant flows into one side of the outer copper pipe, the corrugated portion cools and heats the refrigerant from the outer copper pipe that is primarily cooled by the rotation of the fan.
    냉동컴프레셔용 공냉식 가스냉각기.Air-cooled gas cooler for refrigeration compressors.
PCT/KR2022/017745 2021-11-15 2022-11-11 Air cooling-type gas cooler for refrigeration compressor WO2023085846A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0156473 2021-11-15
KR1020210156473A KR102402382B1 (en) 2021-11-15 2021-11-15 Air-cooled gas cooler for refrigeration compressor

Publications (1)

Publication Number Publication Date
WO2023085846A1 true WO2023085846A1 (en) 2023-05-19

Family

ID=81799937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017745 WO2023085846A1 (en) 2021-11-15 2022-11-11 Air cooling-type gas cooler for refrigeration compressor

Country Status (2)

Country Link
KR (1) KR102402382B1 (en)
WO (1) WO2023085846A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102402382B1 (en) * 2021-11-15 2022-05-30 캠코리아 주식회사 Air-cooled gas cooler for refrigeration compressor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066987U (en) * 1991-11-26 1994-01-28 東京ラヂエーター製造株式会社 Heat exchanger
KR20080098206A (en) * 2007-05-04 2008-11-07 주식회사 한국번디 Turn fin type heat exchanger
US20150107806A1 (en) * 2012-05-01 2015-04-23 Benteler Automobiltechnik Gmbh Double-walled heat exchanger tube
KR20200033054A (en) * 2018-09-19 2020-03-27 정연철 Flat pipe for heat exchange of fluid in pipe and device for heating the fluid in pipe
CN111412754A (en) * 2020-02-27 2020-07-14 浙江武精机器制造有限公司 Heat exchanger for heat recovery
KR102402382B1 (en) * 2021-11-15 2022-05-30 캠코리아 주식회사 Air-cooled gas cooler for refrigeration compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319429U (en) * 1989-07-05 1991-02-26
JP2511831Y2 (en) * 1991-09-30 1996-09-25 東京ラヂエーター製造株式会社 Heat exchanger
KR100386982B1 (en) 2000-05-18 2003-06-09 신기현 Automatic cable winding apparatus with guider rolling system
KR101309312B1 (en) * 2013-03-08 2013-09-17 주식회사 한국쿨러 Double-pipe heat exchanger and method of maufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066987U (en) * 1991-11-26 1994-01-28 東京ラヂエーター製造株式会社 Heat exchanger
KR20080098206A (en) * 2007-05-04 2008-11-07 주식회사 한국번디 Turn fin type heat exchanger
US20150107806A1 (en) * 2012-05-01 2015-04-23 Benteler Automobiltechnik Gmbh Double-walled heat exchanger tube
KR20200033054A (en) * 2018-09-19 2020-03-27 정연철 Flat pipe for heat exchange of fluid in pipe and device for heating the fluid in pipe
CN111412754A (en) * 2020-02-27 2020-07-14 浙江武精机器制造有限公司 Heat exchanger for heat recovery
KR102402382B1 (en) * 2021-11-15 2022-05-30 캠코리아 주식회사 Air-cooled gas cooler for refrigeration compressor

Also Published As

Publication number Publication date
KR102402382B1 (en) 2022-05-30

Similar Documents

Publication Publication Date Title
KR102098103B1 (en) Temperature-controlled quad-effect dehumidification drying system
US7322401B2 (en) Ventilator
KR20190079655A (en) Automatic thermostatic dehumidifier
CN205864945U (en) A kind of data center cooling system
CN214666272U (en) Heat exchanger, electric control box and air conditioning system
WO2023085846A1 (en) Air cooling-type gas cooler for refrigeration compressor
CN214676255U (en) Air conditioner and electric control box
WO2023056814A1 (en) Box-type heat exchange device
WO2023169286A1 (en) Server cabinet and data center
WO2012057493A2 (en) Air conditioner
WO2010050663A1 (en) Hybrid heat pump style air condition system
CN116771644A (en) Heat abstractor and have its oxygenerator
CN105972729A (en) Machine room cooling system provided with set-top type units
CN208187188U (en) A kind of more iris type cooling towers of curved tube
CN201199078Y (en) Air conditioner
JP3100253B2 (en) Water-cooled air conditioner
CN217685493U (en) Air conditioner outdoor unit and air conditioner
CN213362999U (en) Quick heat abstractor of condenser pipe for refrigerator
CN217383114U (en) Indoor machine of air conditioner
KR200162288Y1 (en) Incoming air cooling apparatus of home window type airconditioner
CN216203950U (en) Circular air conditioning unit with cold source
CN221098853U (en) Pipeline multistage refrigeration fresh air system
CN215337596U (en) Heat pump drying system with precooling heat exchanger
CN218787165U (en) Cooling structure for integrated compressor, integrated compressor and air conditioning system
CN215765390U (en) Heat exchange device, fan coil and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22893265

Country of ref document: EP

Kind code of ref document: A1