WO2023084596A1 - 光パラメトリック増幅装置 - Google Patents

光パラメトリック増幅装置 Download PDF

Info

Publication number
WO2023084596A1
WO2023084596A1 PCT/JP2021/041173 JP2021041173W WO2023084596A1 WO 2023084596 A1 WO2023084596 A1 WO 2023084596A1 JP 2021041173 W JP2021041173 W JP 2021041173W WO 2023084596 A1 WO2023084596 A1 WO 2023084596A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
signal
phase
control
Prior art date
Application number
PCT/JP2021/041173
Other languages
English (en)
French (fr)
Inventor
貴大 柏崎
毅伺 梅木
拓志 風間
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/041173 priority Critical patent/WO2023084596A1/ja
Priority to JP2023559228A priority patent/JPWO2023084596A1/ja
Publication of WO2023084596A1 publication Critical patent/WO2023084596A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves

Definitions

  • the present invention relates to an optical system using nonlinear optical effects, and more specifically to an optical parametric amplifier.
  • Nonlinear optical materials and electrooptic materials are used in a wide range of applications such as optical signal wavelength conversion and optical modulation in optical communication, optical measurement, optical processing, medical care, and biotechnology.
  • the wavelengths used also span the ultraviolet, visible, infrared, and terahertz regions, and various types of devices are being developed mainly for the generation and modulation of coherent light.
  • an oxide compound substrate such as lithium niobate (LiNbO 3 ) is a promising material having extremely high secondary nonlinear optical constants and electrooptic constants.
  • a wavelength conversion element using periodically poled lithium niobate (PPLN) is known.
  • the wavelength conversion element utilizes mechanisms of second harmonic generation (SHG), differential frequency generation (DFG), and sum frequency generation (SFG) by PPLN.
  • optical parametric amplification occurs due to energy transfer from pumping light power to signal light, and an optical amplifier for signal light can be configured.
  • a phase sensitive amplifier which has amplification characteristics according to the phase relationship between pump light and signal light, is expected as a technology capable of low-noise optical amplification.
  • photon pairs with quantum correlation are generated by the degenerate optical parametric amplification process, and non-classical states such as squeezed light and heralded single photon states are generated. It is possible. These lights are also expected to be important resources for optical quantum computers and sensing technology using quantum light.
  • Optical parametric amplification is sensitive to the optical phases of the signal light and pump light, regardless of whether amplification or attenuation is used. For application to an actual system, it is necessary to keep the optical phase relationship between the excitation light and the signal light entering the optical parametric amplifier in a predetermined state at all times.
  • pumping light and signal light pass through different optical paths, are spatially multiplexed by a multiplexer or the like, and enter an optical parametric amplifier. Since the excitation light and the signal light pass through different paths, they are affected by changes in the optical path lengths of various optical components due to disturbances, and it is difficult to always keep the phase relationship between the two lights constant.
  • optical phase feedback control is performed so as to reduce the influence of disturbance on the excitation light and signal light, stabilize the phase relationship, and keep the target characteristics of the device constant.
  • optical phase synchronization has been an obstacle to simplification and cost reduction of systems and devices using optical parametric amplification.
  • One aspect of the present invention is an optical multiplexer for one or more signal light and pump light, a phase modulator on the input side of the optical multiplexer and arranged in the signal light path or the pump light path, an optical parametric amplifier for optically amplifying the signal light; and a control light within a frequency band of the signal light, or a phase conjugation with respect to the control light, arranged in the signal light path on the input side of the optical parametric amplifier.
  • a monitor light separator for separating at least one of the control light and the control idler light as monitor light; and converting the light intensity of the monitor light into an electrical signal.
  • a feedback gain adjuster that receives the electrical signal as an error signal, sends a control signal to the phase modulator, and has at least an integrating circuit.
  • FIG. 1 is a diagram showing a schematic configuration of a conventional optical parametric amplifier; FIG. It is a figure explaining the basic operation
  • 1 is a diagram showing a schematic configuration of an optical parametric amplification device of the present disclosure;
  • FIG. 4 is a diagram for explaining an error signal for optical phase synchronization in comparison with a conventional technique;
  • 1 is a diagram showing the configuration of an optical parametric amplifier of Example 1;
  • FIG. FIG. 10 is a diagram showing the configuration of an optical parametric amplifier of Example 2;
  • FIG. 10 is a diagram showing the configuration of an optical parametric amplifier of Example 3;
  • FIG. 10 is a diagram showing the configuration of an optical parametric amplifier of Example 4;
  • the optical parametric amplification device of the present disclosure provides a novel scheme for optical phase synchronization between signal light and pump light.
  • a new control light phase-shifted with respect to the signal light is introduced.
  • the optical parametric amplifier can set the phase relationship between the signal light and the pump light to either amplifying operation or attenuating operation. Therefore, the optical parametric amplification device includes, for example, a PSA that uses an amplification operation, and also includes a squeezed light generation device that uses an attenuation operation.
  • FIG. 1 is a diagram showing a schematic configuration of a conventional optical parametric amplifier.
  • signal light 111 and pumping light 112 are input to phase modulator 101 .
  • the phase modulator 101 adjusts the optical phase difference between the signal light 111 and the pumping light 112 using a control signal 120 from a feedback control section, which will be described later.
  • the signal light 111 and pump light 112 whose optical phase difference, ie relative phase, has been adjusted are combined by a combiner 102 and input to an optical parametric amplifier 103 including a nonlinear optical device.
  • the amplified signal light is separated into output signal light 113 and monitor light 114 by monitor light separation section 104 .
  • the monitor light 114 is converted by a photodetector (PD: Photo Detector) 105 into a light intensity signal 115 which is an electrical signal.
  • PD Photodetector
  • the optical intensity signal 115 is input to a feedback controller that implements optical phase synchronization between the signal light 111 and the pump light 112 .
  • the feedback control unit is divided into the modulation/demodulation circuit unit 121 shown within the dotted line and the feedback gain control unit 109.
  • the modulation/demodulation circuit section 121 has a signal generator 108 that generates a modulation signal for feedback control, and one modulation signal 118 a is supplied to the mixer 106 . From the signal generator 108 , the other modulated signal 118 b is added with the feedback signal 119 via the adder 110 and supplied to the phase modulator 101 as the control signal 120 . The modulated signal 118 b gives phase modulation to the optical phase difference between the signal light 111 and the pump light 112 by the phase modulator 101 .
  • the optical parametric amplifier 103 controls the optical phase difference between the signal light 111 and the pump light 112 to be in-phase (0) or anti-phase ( ⁇ ), thereby converting the signal light 111 into light with the maximum gain. Amplify.
  • Phase modulation by the modulating signal 118b causes the optical parametric amplifier 103 to slightly deviate from the maximum gain state.
  • the phase modulation by the phase modulator 101 is converted into fluctuations in the optical amplification gain, and the optical intensity of the output light from the optical parametric amplifier 103 is amplitude-modulated by the modulation signal 118b.
  • the optical intensity signal 115 of the monitor light and the modulated signal 118a from the signal generator 108 will be the same, and the mixer output 116 will have only a DC component.
  • the mixer output 116 becomes an AC signal containing various frequency components, and the output band-limited by the LPF 107 is the target of the optical phase difference.
  • An error signal 117 (deviation between the target value and the output value) reflecting the deviation/deviation from the value is obtained.
  • a path from the PD 105 to the LPF 107 operates as a demodulation circuit.
  • the feedback gain control section 109 Based on the error signal 117 , the feedback gain control section 109 performs feedback control to generate the control signal 119 .
  • Feedback gain control section 109 can use, for example, PID (Proportional-Integral-Differential) control widely used in automatic control.
  • the method of modulating the optical phase difference between the signal light and pump light to be controlled, demodulating the modulated components again, and synchronizing the optical phase is based on the laser frequency This is the same as the Pound-Drever-Hall method (PDH method) used for stabilization and the like.
  • the error signal 117 is generated as shown in FIG. 1 because, in order to effectively utilize the optical parametric amplification characteristics, it is necessary to control the optical parametric amplification device so that the amplification or attenuation is maximized. .
  • FIG. 2 is a diagram explaining the basic operation of an optical parametric amplifier.
  • a non-degenerate phase sensitive optical amplifier PSA
  • FIG. 2(a) shows the frequency relationship among signal light, idler light, and excitation light in a non-degenerate PSA.
  • the non-degenerate PSA simultaneously optically amplifies the signal light 201a and the corresponding idler light (phase conjugate light) 202a.
  • the signal light 201a and the phase conjugate light 202a are positioned symmetrically about the reference frequency 203 (f/2) on the frequency axis, and the reference frequency 203 has half the frequency f of the excitation light 204.
  • the term "idler light” refers to light that is symmetrical and phase conjugate with the signal light with respect to a reference frequency, and may be used interchangeably with phase conjugate light in the following description.
  • (b) of FIG. 2 explains the amplification conditions and attenuation conditions in the non-degenerate PSA in a complex plane.
  • (b) of FIG. 2 shows the optical signal on the complex plane. The phase relationship of light 202b is shown.
  • the signal light and its idler light are represented as having their phases rotated in opposite directions as their frequencies depart from the reference frequency.
  • the phases of the signal light 201b and the idler light 202b rotate in opposite directions at the same speed as the frequency departs from the reference frequency, and the combined phase of the two lights is zero. or - ⁇ .
  • phase of the excitation light 204 is generated in direct relation to the reference frequency light on the signal light generation side (transmitting side), it has the same phase as the reference frequency light and is in the state of phase 0 on the complex plane. be.
  • (c) of FIG. 2 shows the relationship between the difference between the synthesis phase and the amplification phase, and the amplification operation and the attenuation operation.
  • the horizontal axis indicates the phase difference between the combined phase of the signal light 201b and the idler light 202b and the amplification phase (0°), and the vertical axis conceptually indicates the light intensity at the output of the non-degenerate PSA. .
  • the phase difference is 0 and ⁇
  • the amplification operation becomes maximum and peaks 210-1 and 210-2 are generated. -1, resulting in 211-2.
  • the relationship between the combined phase of the signal light and idler light and the amplification phase or attenuation phase described above is the same even in a degenerate PSA in which the signal light and idler light are arranged at the same frequency. Therefore, in order to use the PSA in a desired state such as maximum amplification or maximum attenuation, it is necessary to control the composite phase of the signal light and the idler light to a predetermined state according to the intended operating state.
  • a control signal 120 is applied to the phase modulator 101 for optical phase-synchronous feedback control to bring the combined phase into a predetermined operating state.
  • the optical intensity signal 115 obtained from the PD 105 cannot be used as an error signal indicating deviation of the combined phase from the target value.
  • the error signal in feedback control must change monotonically before and after the target value of the physical quantity to be controlled and the measured value.
  • the intensity signal is near a peak or dip in both the intended operation of maximum amplification and maximum attenuation.
  • the light intensity signal 115 from the PD 105 shifts in the same direction regardless of which direction the combined phase of the signal light and the idler light, which are objects to be controlled, shifts. For example, if the predetermined operation is maximum amplification, the light intensity signal 115 will decrease for either shift of the composite phase. Also, if the predetermined operation is maximum attenuation, the light intensity signal 115 increases regardless of the synthetic phase shift. Therefore, the optical intensity signal after optical parametric amplification cannot be used as it is as an error signal.
  • the excitation light or signal light is phase-modulated, and the modulation/demodulation circuit section 121 shown in FIG. ing.
  • the modulation/demodulation circuit section 121 requires electric circuits such as the signal generator 108 for modulation, the mixer 106 for demodulation, and the LPF 107, which greatly complicates the system configuration.
  • the optical parametric amplification device of the present disclosure provides a novel scheme for optical phase synchronization between signal light and pump light.
  • a control light having a combined phase shifted from the combined phase of the signal light is newly introduced.
  • the optical intensity of the control light after being optically parametrically amplified as an error signal for feedback control many electric circuit components are unnecessary, and the optical parametric amplification device is simplified and reduced in cost. .
  • the optical parametric amplification device of the present disclosure includes an optical phase shifter that generates control light having a different combined phase with respect to signal light to be amplified or attenuated.
  • FIG. 3 is a diagram showing a schematic configuration of the optical parametric amplification device of the present disclosure.
  • the optical parametric amplifier 10 includes a phase modulator 1 to which signal light 11 and pumping light 12 are input, a multiplexer 2 , an optical parametric amplifier 3 , a monitor light separator 4 and a photodetector (PD) 5 .
  • Amplified (or attenuated) signal light 13 is output from the monitor light separator 4, and the monitor light 14 is also separated and output.
  • the operation of these elements that implement optical parametric amplification is exactly the same as the prior art optical parametric amplification device 100 shown in FIG. 1, and detailed description thereof is omitted here.
  • the second difference is that the optical intensity signal 15 of the control light (monitor light) from the PD 5 can be used as it is as the error signal 16, so the modulation/demodulation circuit section 121 required in the configuration of the prior art is no longer necessary. It is a point.
  • a PID controller that functions as a feedback gain control section 7 that generates a control signal 17 for controlling the phase modulator 1 is sufficient.
  • the electrical circuitry required for optical phase-locked feedback control can be greatly simplified compared to prior art configurations.
  • FIG. 4 is a diagram for explaining an error signal for optical phase synchronization in the optical parametric amplifier 10 of the present disclosure in comparison with the conventional technology.
  • FIG. 4(a) shows the process of generating an error signal in the prior art optical parametric amplifier shown in FIG.
  • a signal light group 220 including a plurality of signal lights and an idler light is optically amplified.
  • the idler light is positioned symmetrically to the signal light with respect to the reference frequency indicated by the dotted arrow on the frequency axis.
  • the signal light group may be a single signal light and its idler light, or may be a plurality of signal lights and a plurality of idler lights corresponding to each signal light. As described with reference to FIG.
  • the phase difference between the synthesized phase of the signal light and idler light and the amplified phase is controlled to be 0 or ⁇ .
  • the light intensity signal 115 is at peak positions 210-1 and 20-2. Since the error signal at the peak position cannot be used for feedback control, the monotonic error signal 117 is obtained by providing the modulation/demodulation circuit section 121 .
  • This error signal 117 has a sign that is inverted with respect to the reference voltage of the feedback control circuit when the phase difference between the target values is 0 or ⁇ , and has good linearity and can be used for feedback control.
  • FIG. 4 shows an error signal in the optical parametric amplifier of the present disclosure shown in FIG.
  • the signal light group 221 shown in (b) of FIG. 4 is the signal light closest to the reference frequency indicated by the dotted arrow on the frequency axis from the signal light group 220 shown in (a) of FIG. It excludes the idler light.
  • Light that can be used as signal light and its idler light in the prior art is used as control light 213a and control idler light 214a in the optical parametric amplifier 10 of the present disclosure. Referring to the control light 213b and control idler light 214b shown on the complex plane in FIG. is phase-shifted.
  • the signal light is controlled to the maximum amplification state. Therefore, as shown in FIG. 4(a), the intensity signals are measured as peak voltages 210-1 and 210-2 with zero phase difference.
  • the optical parametric amplifier 10 of the present disclosure only the control light phase-shifted with respect to the signal light is separated and detected by the monitor light separation section 4, and the light intensity signal 15 is directly used as the error signal 16.
  • the light intensity signal 15 output from the PD 5 deviates from the peak shown in FIG. 4(b). corresponds to the slanted portion 212 .
  • the intensity signal of the signal light controlled to the amplified phase (phase difference 0) is near the peak 210, whereas the slope portion 212 of the intensity signal of the control light whose composite phase 215 is shifted by ⁇ /4 is a monotonic function linearity is good. Therefore, the light intensity signal 15 obtained from the PD 5 can be used as it is as the error signal 16 for the phase synchronization feedback control without processing.
  • the optical parametric amplifying device 10 of the present disclosure includes one or more optical multiplexers 2 for signal light and pump light, and a phase shifter arranged on the input side of the optical multiplexer and in the signal light path or the pump light path.
  • a modulator 1 an optical parametric amplifier 3 for optically amplifying the signal light, and a control light within the frequency band of the signal light, arranged in the signal light path on the input side of the optical parametric amplifier, or the control light an optical phase shifter 6 that changes the optical phase of the control idler light that is phase conjugate with respect to the light; a monitor light separator 4 that separates at least one of the control light and the control idler light as monitor light 14;
  • a photodetector 5 for converting the optical intensity of light into an electrical signal 15 and a feedback gain adjuster 7 which receives the electrical signal as an error signal, sends a control signal 17 to the phase modulator, and has at least an integrating circuit. It can be implemented as provided.
  • the optical phase shifter 6 in the optical parametric amplifying device 10 of FIG. 3 gives a predetermined phase shift to the control light arranged within a band in which optical amplification of the signal light is possible, with reference to the phase of the signal light.
  • the control light is used as monitor light for optical phase-locked feedback control of signal light to be controlled.
  • the phase-shifted control light is optically parametrically amplified in the optical parametric amplifier while interfering with the control idler light at a position where the frequency is folded around a certain reference frequency.
  • control light is optically amplified in a state in which the amplification gain is suppressed compared to the signal light due to deviation from the maximum amplification state, the linear portion of the intensity signal deviated from the peak position is used as it is as an error signal. . Since the control light has insufficient amplification gain in optical parametric amplification, it is preferable that the control light does not contain transmission information, unlike the signal light.
  • the reference frequency described above corresponds to the excitation light wavelength of a third-order nonlinear optical medium.
  • the frequency is half the excitation light frequency.
  • the optical phase shifter 6 may shift the phase of only the control light, or may shift the phases of both the control light and the control idler light.
  • Optical amplification occurs, and in quadrature ( ⁇ /2-phase or 3 ⁇ /2-phase) optical attenuation occurs.
  • An optical parametric amplifier is generally required to collectively amplify all signal channels arranged within a frequency band in which signal light can be optically amplified. Therefore, all signal channels must be optically parametrically amplified with the combined phases of the signal light and the corresponding idler light matching the respective amplification phases.
  • phase fluctuation that occurs in the signal light in the optical transmission line.
  • each signal light and the corresponding idler light are The composite phases are aligned with the amplification phases (0 or ⁇ ) shown in FIG. 2(b).
  • a phase-locking field is used to suppress fluctuations in the phase difference between the pumping light and the signal light due to the effects of disturbance and noise occurring in each path of the pumping light and the signal light. Back control is performed.
  • the optical parametric amplifier 10 of the present disclosure prior to optical parametric amplification, the combined phase of the control light and its idler light is shifted with respect to the combined phase of the signal light and its idler light.
  • the obtained intensity signal can be used as an error signal as it is.
  • the optical intensity of the monitor light 24 is converted into the light intensity signal 15 by the PD 5 and used as the error signal 16 as it is.
  • the optical intensity signal 15 of the phase-shifted control light varies monotonically.
  • the target operating state e.g maximum amplification
  • the optical intensity signal 15 of the phase-shifted control light varies monotonically.
  • the combined phase of the control light is set to a phase shifted by ⁇ /4+n ⁇ /2 (where n is an integer)
  • the linear slope of the error signal around the target value becomes steep, and optical phase synchronization with good performance can be achieved.
  • the transmission band is not substantially limited by the optical parametric amplifier of the present disclosure.
  • a reference frequency may be used to set the control light and the control idler light with light of the same frequency.
  • the frequency channel may be set to the frequency channel farthest from the reference frequency in the frequency band of the signal light.
  • the optical phase shifter 6 may have a configuration in which only the control light is extracted, delayed, and returned to the original optical path (Embodiment 1).
  • a configuration (embodiment 2) in which control light is obtained by being incident on a medium may also be used.
  • the optical fiber itself which is a transmission medium, can be used as the secondary dispersion medium, and the control light is preferably positioned away from the reference frequency so as to be greatly affected by the secondary refractive index dispersion.
  • FIG. 5 is a diagram showing the configuration of the optical parametric amplifier of Example 1.
  • the optical parametric amplifier 20 of FIG. 5 has the same configuration as the optical parametric amplifier 10 shown in FIG. 3, and has a more specific configuration of the optical phase shifter 21 for generating the control light. Therefore, description of the overall configuration and basic operation of the optical parametric amplifier 20 is omitted.
  • a PPLN waveguide which is a second-order nonlinear element, is used as the optical parametric amplifier 3 .
  • the reference frequency is set to 194 THz, and the center of the wavelength band of optical parametric amplification for signal light is 1545.32 nm.
  • the wavelength of the excitation light was set to around 780 nm, which corresponds to the double wave of the signal light.
  • the wavelength of the control light was set to 1530.00 nm within the wavelength band of the signal light. At this time, the wavelength of the control idler light is 1560.95 nm.
  • the optical parametric amplifier 3 is not limited to one using a PPLN waveguide, and may be one using a highly nonlinear fiber.
  • the optical phase shifter 21 applies a phase shift to the control light arranged within the optical amplification band of the signal light.
  • the control light is optically parametrically amplified while interfering with the control idler light at a position folded around the reference frequency on the frequency axis.
  • the control light shifter 21 of this embodiment comprises a wavelength separator 22 for cutting out only the control light from the signal light path, a delay line 23 and a wavelength multiplexer 24 .
  • As the wavelength separator 22 an arrayed waveguide grating (AWG: Arrayed Waveguide Grating) was used.
  • the demultiplexing AWG 22 inputs the signal light as it is to the multiplexing AWG 24 .
  • the control light extracted by the demultiplexing AWG 22 is phase-shifted by the delay line 23 .
  • a multiplexing AWG as the wavelength multiplexer 24 , the signal light and the phase-shifted control light are multiplexed again and input to the phase modulator 1 .
  • the method for shifting the phase of the control light with the optical phase shifter 21 includes “Method 1" in which only the control light is phase-shifted and “Method 2" in which both the control light and the control idler light are shifted. What is important in any method is to shift the combined phase of the control light and the control idler light with respect to the signal light.
  • the phase shift amount of the control light is ⁇ /2 + n ⁇ (n is an integer). It is preferable to At this time, since the phase of the control idler light is not shifted, the combined phase of the phase-shifted control light and the control idler light is ⁇ /4. Therefore, as shown in FIG. 4(b), the optical intensity signal 15 of the monitor light 14 uses the portion 212 with the best linearity and the largest slope in the vicinity of the ⁇ /4 shift from the amplification phase, and the feedback gain high feedback control becomes possible.
  • the AWG was used to extract the control light as the monitor light 14 .
  • the optical intensity signal 15 of this monitor light was input to the feedback gain control unit 7 and the feedback control signal 17 was returned to the phase modulator 1 inserted in the pumping light path on the upstream side of the optical parametric amplifier 3 .
  • the phase modulator 1 used an LN modulator that phase-modulates the excitation light.
  • an optical phase-locked feedback circuit that is simpler than that of the prior art realizes a stable signal light amplification operation in the maximum gain operation state. It was also confirmed that by reversing the polarity of the feedback gain, the phase of the optical parametric amplifier 20 can be synchronized with the feedback control signal having the opposite phase and the attenuation operation state.
  • Method 2 in which both the control light and the control idler light are cut out and their respective optical phases are shifted is also possible.
  • the sum of the phase shift amount of the control light and the phase shift amount of the control idler light is ⁇ /2+n ⁇ (where n is an integer).
  • the shift amounts of the control light and the control idler light may be the same 45° ( ⁇ /4).
  • the shift amount may be unbalanced, and one of the control light and the control idler light may be shifted by 20 degrees and the other by 70 degrees. Further, if the shift amount of the control light is 90° and the shift amount of the control idler light is 0°, it will be understood that this corresponds to the above-described "Method 1" in which only the control light is extracted and phase-shifted.
  • the wavelength separator 22 for cutting out control light and control idler light from signal light is not limited to AWG, and simpler directional couplers, diffraction gratings, etc. may be used.
  • the wavelength separator 4 for cutting out the monitor light is not limited to AWG, but may be a directional coupler, a diffraction grating, or the like. Furthermore, even if the light taken out as the monitor light is not the control light but the control idler light, the optical phase-locked feedback control is realized without any problem.
  • the wavelength of the control light may be placed anywhere within the wavelength band of the signal light to be optically parametrically amplified. As described in (b) of FIG. 4, the control light and the control idler light may be arranged at or near the center wavelength (corresponding to the reference frequency) of the wavelength band of the signal light. If the control light is set to have the central wavelength, the control light and the control idler light have the same wavelength and cannot be distinguished from each other (corresponding to degenerate phase sensitive amplification). However, from the viewpoint of optical phase-locked feedback control, the signal light was operated in the maximum gain state, and a stable amplification operation of the signal light was realized.
  • the wavelength of the control light can be set at the edge of the wavelength band of the signal light, and the control light and the control idler light can be arranged at both ends of the wavelength band of the signal light. Since the optical phase shifter 21 cuts out only one of the control light and the control idler light, it is possible to use a directional coupler with a lower cost and a simpler configuration than the AWG.
  • the feedback gain controller 7 used in the optical parametric amplifier 20 can perform a phase synchronization function if it includes an integrator. Therefore, the general-purpose PID controller shown in FIG. 5 is just an example, and does not need to include all elements of the deviation between the output value and the target value, its integration, and differentiation. Feedback gain controller 7 may further include a linear amplifier and a differentiator. By increasing the gain of the linear amplifier to widen the loop band, it is possible to cope with sudden characteristic deterioration due to disturbance.
  • the amount of shift of the composite phase is not limited to ⁇ /4 (45°). Note that a phase shift of the order of 20-70°, for example, will allow the linear portion of the intensity signal to be utilized. Therefore, the precision of the shift amount in the optical phase shifter 21 can be loose if the phase fluctuations assumed for optical phase synchronization are small.
  • the signal light and its idler light are input to the optical parametric amplifier.
  • pilot light may be transmitted together with signal light, or only signal light may be transmitted to regenerate pump light and idler light.
  • some optical repeater amplifiers regenerate excitation light and idler light from the signal light itself and perform optical parametric amplification for repeater amplification.
  • various variations are possible for the method of realizing the optical phase shift of the control light, and the method is not limited to the configuration shown in FIG.
  • control light or the control idler light is cut out and phase-shifted by giving a delay.
  • FIG. 6 is a diagram showing the configuration of an optical parametric amplifier according to the second embodiment.
  • the optical parametric amplifier 30 shown in (a) of FIG. 6 has the same configuration as the optical parametric amplifier 20 shown in FIG. For example. Therefore, description of the overall configuration and basic operation of the optical parametric amplifier 30 is omitted.
  • the reference frequency is set to 194 THz, and the center of the wavelength band of optical parametric amplification for signal light is 1545.32 nm.
  • the wavelength of the excitation light was set to around 780 nm, which corresponds to the double wave of the signal light.
  • the wavelength of the control light was set to 1530.00 nm within the wavelength band of the signal light. At this time, the wavelength of the control idler light is 1560.95 nm.
  • the optical phase shifter 31 does not use an optical component, but uses an optical fiber as a transmission line.
  • FIG. 6 illustrates the arrangement configuration of the control light in the second embodiment.
  • materials constituting an optical fiber have wavelength dispersion of refractive index.
  • the frequency of the signal light 217a is close to the center frequency of the optical parametric amplification band
  • the frequency of the idler light 218a which is in a conjugate relationship with the signal light, is also close to the center frequency. Therefore, the influence of the second-order refractive index dispersion of the optical fiber becomes small, and only the influence of the first-order refractive index dispersion becomes dominant.
  • (c) of FIG. 6 explains the phase shift caused by the refractive index dispersion of the optical fiber on the complex plane. Since the first-order refractive index dispersion does not change the direction of the composite phase 219 of the signal light 217b and its idler light 218b, the phase difference between the composite phase 219 and the amplification phase is kept constant even when propagating through the transmission line. However, as the signal channel becomes farther from the center frequency, the influence of the secondary refractive index dispersion of the optical fiber on the signal light and its idler light increases. Second-order refractive index dispersion changes the orientation of the combined phase of the signal light and idler light on the complex plane. In this embodiment, as shown in FIG.
  • the pair of control light 213a and control idler light 214a is arranged at a position distant from the center frequency.
  • the signal light including the control light and the control idler light, propagates through an optical phase shifter 31, which is a length of optical fiber with the required second-order dispersion.
  • the optical phase shifter 31 is a length of optical fiber with the required second-order dispersion.
  • an optical fiber which is a transmission line with second-order refractive index dispersion, can perform the phase shifting function of an optical phase shifter. Therefore, compared with the optical phase shifter 21 including the demultiplexer and the multiplexer of the first embodiment, the optical parametric amplification device similar to that of the first embodiment can be realized with the optical phase shifter 31 having a simpler configuration.
  • a high-dispersion fiber such as a photonic crystal fiber can be used in addition to an ordinary optical fiber.
  • the control light was taken out as the monitor light 14 using the AWG as in the first embodiment.
  • the optical intensity signal 15 of this monitor light was input to the feedback gain control unit 7 and the feedback control signal 17 was returned to the phase modulator 1 inserted in the pumping light path on the upstream side of the optical parametric amplifier 3 .
  • the phase modulator 1 used an LN modulator that phase-modulates the excitation light.
  • an optical phase-locked feedback circuit that is simpler than the prior art achieves stable signal light amplification operation in the maximum gain operation state.
  • phase synchronization was achieved with the attenuation operation by reversing the positive and negative of the feedback gain. Even if the light extracted as the monitor light by the monitor light separator 4 was used as the control idler light, the optical phase-locked feedback control was realized without any problem.
  • the optical phase shifter is placed on the front stage side of the phase modulator 1 .
  • the position of the optical phase shifter is not limited, and other variations are possible.
  • FIG. 7 is a diagram showing the configuration of the optical parametric amplifier of Example 3.
  • FIG. The optical parametric amplifier 40 of Example 3 has substantially the same configuration as the optical parametric amplifiers of Examples 1 and 2 described above. A difference is that an optical phase shifter 41 is provided in the signal light path between the phase modulator 1 and the multiplexer 2 . It is clear that the same error signal 16 as in Embodiments 1 and 2 can be obtained if a predetermined phase shift can be given to the signal light only to the combined phase of the control light and the control idler light. .
  • an actual optical amplifier such as a PSA
  • a plurality of PPLNs are often used for purposes other than optical parametric amplification, such as pump light regeneration circuits and pump light stabilization.
  • an optical circuit (not shown) exists on the front stage side of the phase modulator 1 and the optical multiplexer 2 in FIG. Therefore, in an actual device using optical parametric amplification, the location of the optical phase shifter 41 is also flexible.
  • FIG. 8 is a diagram showing the configuration of the optical parametric amplifier of the fourth embodiment.
  • This embodiment is another variation of the position of the optical phase shifter.
  • the optical parametric amplifier 50 of Example 4 also has substantially the same configuration as each of the optical parametric amplifiers of Examples 1-3. A difference is that an optical phase shifter 51 is provided in the signal light path between the multiplexer 2 and the optical parametric amplifier 3 . It is clear that an error signal 16 similar to that of the first to third embodiments can be obtained if a predetermined phase shift can be given to the signal light only to the combined phase of the control light and the control idler light.
  • the phase modulator 1 is depicted as passing through both the signal light path and the excitation light path in order to show the general configuration, but at least one of the signal light path and the excitation light path should go through
  • the phase modulator 1 only needs to be able to vary the phase difference between the signal light and the excitation light by means of the control signal 17 for optical phase synchronization feedback control. Therefore, either the signal light path or the excitation light path may be arranged, or both paths may be used depending on the form of the phase modulator. can.
  • each of the above embodiments has been described as an optical parametric amplification device, but as long as the optical parametric amplification mechanism is used, it can be used as an optical signal attenuation device or as a wavelength conversion device. Also, depending on the setting conditions of the phase relationship between the pumping light and the signal light, it can be used as an application device that handles non-classical light, and it should be noted that the application is not limited to the "optical amplification device".
  • the combined phase of the control light and the control idler light is shifted with respect to the combined phase of the signal light and its idler light, and the control light or the control idler light is shifted. is used as monitor light.
  • the present invention can be used for optical signal processing devices such as optical amplification.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本開示の光パラメトリック増幅装置は、信号光と励起光の間の光位相同期の新規な仕組みを提案し、簡略化された構成の光位相同期フィードバック回路を提供する。光の状態で、信号光に対して位相シフトされた制御光を新たに導入する。光パラメトリック増幅された後の、制御光の光強度信号をそのままフィードバック制御のための誤差信号として利用する。従来技術で必要だった多くの構成要素を不要とし、光パラメトリック増幅装置の構成を簡略化できる。光パラメトリック増幅装置は、信号光および励起光の間の位相関係を、増幅動作および減衰動作のいずれに設定することもできる。制御光は、信号光の光増幅帯域の中のいずれの位置に配置されても良い。

Description

光パラメトリック増幅装置
 本発明は非線形光学効果を用いた光学システムに関し、より具体的には、光パラメトリック増幅装置に関する。
 非線形光学材料や電気光学材料などの非線形材料によるデバイスは、光通信における光信号波長変換や光変調、光計測、光加工、医療、生物工学など幅広い応用範囲に利用されている。使用される波長も、紫外域-可視域-赤外域-テラヘルツ域に渡り、主としてコヒーレント光の発生と変調のために、様々なタイプのデバイス開発が進められている。
 非線形光学媒質および電気光学媒質としては、例えば、ニオブ酸リチウム(LiNbO)などの酸化物系化合物基板は、2次非線形光学定数・電気光学定数が非常に高く有望な材料である。ニオブ酸リチウムの高い非線形性を用いた光デバイスの一例として、周期的に分極反転されたニオブ酸リチウム(PPLN:Periodically Poled Lithium Niobate)を利用した波長変換素子が知られている。波長変換素子では、PPLNによる第二高調波発生(SHG:Second Harmonic generation)、差周波発生(DFG:Differential Frequency Generation)、和周波発生(SFG:Sum Frequency Generation)の各機構が利用される。
 高い波長変換効率を有する波長変換素子を用いれば、励起光パワーから信号光へのエネルギーの移行により光パラメトリック増幅が生じ、信号光の光増幅器を構成することができる。光パラメトリック増幅器では、励起光と信号光の間の位相関係に応じた増幅特性を有する位相感応光増幅器(PSA:Phase Sensitive Amplifier)が、低雑音な光増幅が可能な技術として期待されている。
 光パラメトリック増幅において減衰動作を利用すると、縮退光パラメトリック増幅過程によって量子相関を持った光子対が生成され、スクィーズド光の生成や、伝令付き単一光子状態などの非古典的状態の光を生成可能である。これらの光は、光量子コンピュータや量子光を用いたセンシング技術等の重要リソースとしても期待されている。
 光パラメトリック増幅は、増幅動作および減衰動作のいずれを利用する場合も、信号光および励起光の各光位相に敏感である。実際のシステムに応用するには、光パラメトリック増幅器内に入射する励起光と信号光の光位相関係を、所定の状態に常に保つ必要がある。光パラメトリック増幅を利用する装置では、励起光と信号光は別の光経路を通ったのち、合波器などによって空間的に合波され、光パラメトリック増幅器内に入射される。励起光および信号光は別の経路を通ることから、外乱による種々の光学部品の光路長変化などの影響を受け、2つの光の間の位相関係を常に一定に保つことは難しい。
 そこで、励起光および信号光に与えられる外乱の影響を小さくし、位相関係を安定化して、装置の目標特性を一定に保つように光位相フィードバック制御が行われている。
特開2015-225127号 明細書
 しかしながら、フィードバック制御を用いて光パラメトリック増幅システムの光位相を制御する場合、信号生成器、周波数ミキサー、ローパスフィルタ等の電気回路を多く必要とし、システムを複雑化していた。光位相の同期のために必要な構成が、光パラメトリック増幅を利用するシステムや装置の簡素化や低コスト化の障害となっていた。
 本発明の1つの態様は、1つ以上の信号光および励起光の光合波器と、前記光合波器の入力側であって、信号光経路または励起光経路に配置された位相変調器と、前記信号光を光増幅する光パラメトリック増幅器と、前記光パラメトリック増幅器よりも入力側の前記信号光経路に配置され、前記信号光の周波数帯域内の制御光、または、前記制御光に対して位相共役にある制御アイドラ光の光位相を変化させる光位相シフタと、前記制御光または前記制御アイドラ光の少なくとも一方をモニタ光として分離するモニタ光分離器と、前記モニタ光の光強度を電気信号に変換する光検出器と前記電気信号が誤差信号として入力され、前記位相変調器に制御信号を送出し、少なくとも積分回路を有する帰還利得調整器とを備えた光パラメトリック増幅装置である。
 より簡素な構成で、低コストの光パラメトリック増幅装置を提供する。
従来技術の光パラメトリック増幅装置の概略構成を示した図である。 光パラメトリック増幅器の基本的な動作を説明する図である。 本開示の光パラメトリック増幅装置の概略構成を示した図である。 光位相同期のための誤差信号を、従来技術と対比して説明する図である。 実施例1の光パラメトリック増幅装置の構成を示す図である。 実施例2の光パラメトリック増幅装置の構成を示す図である。 実施例3の光パラメトリック増幅装置の構成を示す図である。 実施例4の光パラメトリック増幅装置の構成を示す図である。
 本開示の光パラメトリック増幅装置は、信号光と励起光の間の光位相同期の新規な仕組みを提供する。光の状態で、信号光に対して位相シフトされた制御光を新たに導入する。光パラメトリック増幅された後の、制御光の光強度をフィードバック制御のための誤差信号として利用することで、従来技術で必要だった多くの構成要素を不要とし、光パラメトリック増幅装置の構成を簡略化できる。光パラメトリック増幅装置は、信号光および励起光の間の位相関係を、増幅動作および減衰動作のいずれに設定することもできる。したがって、光パラメトリック増幅装置は例えば増幅動作を利用するPSAを含み、減衰動作を利用するスクィーズド光の生成装置も含む。以下、まず従来技術の光位相同期における問題について詳述し、その後、本開示の光パラメトリック増幅装置の光位相同期のための構成、動作を説明する。
 図1は、従来技術の光パラメトリック増幅装置の概略構成を示した図である。光パラメトリック増幅装置100では、信号光111および励起光112が位相変調器101へ入力される。位相変調器101は、信号光111と励起光112との間の光位相差を、後述するフィードバック制御部からの制御信号120によって調整する。光位相差すなわち相対位相が調整された信号光111と励起光112は、合波器102で合波され、非線形光学デバイスを含む光パラメトリック増幅器103に入力される。増幅された信号光は、モニタ光分離部104によって、出力信号光113とモニタ光114とに分離される。モニタ光114は、光検出器(PD:Photo Detector)105によって、電気信号である光強度信号115に変換される。
 光強度信号115は、信号光111と励起光112の間の光位相同期を実施するフィードバック制御部へ入力される。図1では、後述する本開示の光パラメトリック増幅装置との対比のために、フィードバック制御部を点線内に示した変調・復調回路部121と、帰還利得制御部109とに分けて描いている。
 変調・復調回路部121は、フィードバック制御のための変調信号を生成する信号生成器108を備え、一方の変調信号118aがミキサー106へ供給される。信号生成器108からは、もう一方の変調信号118bは、加算器110を経由して帰還信号119と加算され、制御信号120として位相変調器101に供給される。変調信号118bは、位相変調器101によって、信号光111と励起光112との間の光位相差に位相変調を与える。光パラメトリック増幅器103は、信号光111と励起光112との間の光位相差を同相(0)または逆相(π)となるように制御することで、ゲイン最大の状態で信号光111を光増幅する。上述の変調信号118bにより位相変調が加えられることで、光パラメトリック増幅器103はゲイン最大の状態からわずかに逸脱する。位相変調器101による位相変調は光増幅ゲインの変動に変換され、光パラメトリック増幅器103の出力光の光強度は、変調信号118bで振幅変調されることになる。
 信号光および励起光の各光位相に外乱や雑音がなければ、モニタ光の光強度信号115と、信号生成器108からの変調信号118aは同一となり、ミキサー出力116は直流成分のみを持つ。一方で、信号光および励起光の各光位相に外乱や雑音が加わっていれば、ミキサー出力116は種々の周波数成分を含む交流信号となり、LPF107によって帯域制限された出力は、光位相差の目標値からの逸脱・ずれを反映した誤差信号117(目標値と出力値の偏差)となる。PD105からLPF107までの経路は、復調回路として動作している。
 誤差信号117に基づいて、帰還利得制御部109によってフィードバック制御を行って制御信号119を生成する。帰還利得制御部109は、一例を挙げれば自動制御において広く用いられているPID(Proportional-Integral-Differential)制御を利用することができる。
 図1に示した光位相同期フィードバック制御のように、制御対象の信号光および励起光の光位相差に対して変調を加え、変調成分を再び復調して、光位相同期させる手法は、レーザー周波数安定化等に用いられるPound-Drever-Hall法(PDH法)と同様である。図1に示したように誤差信号117を生成するのは、光パラメトリック増幅特性を効果的に利用するため、増幅または減衰が最大となるように光パラメトリック増幅装置を制御する必要があるからである。
 図2は、光パラメトリック増幅器の基本的な動作を説明する図である。ここでは、非縮退型の位相感応光増幅器(PSA)を例に考える。図2の(a)は、非縮退型PSAにおける、信号光、アイドラ光および励起光の周波数関係を示している。非縮退型PSAでは、信号光201aおよび対応するアイドラ光(位相共役光)202aを同時に光増幅する。信号光201aおよび位相共役光202aは、周波数軸上で、基準周波数203(f/2)を中心に対称な位置にあり、基準周波数203は励起光204の周波数fの半分の周波数を持つ。用語「アイドラ光」は、基準周波数に対して信号光と対称な位置にあり、位相共役の関係にある光のことを言い、以下の説明では位相共役光と交換可能に使用できるものとする。
 図2の(b)は、非縮退型PSAにおける増幅条件および減衰条件を複素平面で説明している。図2の(b)は、光信号を複素平面上に示したものであって、基準周波数(中心周波数)の光の位相を基準(0°)としたときの、信号光201bおよび対応するアイドラ光202bの位相関係を示している。複素平面で表した信号図では、信号光およびそのアイドラ光は、その周波数が基準周波数から離れるに従って、位相が逆方向に回転したものとして表される。伝送路に屈折率の波長分散が無い状態では、周波数が基準周波数から離れるに従って、信号光201bおよびアイドラ光202bの各位相は同じ速さで逆方向に回転し、2つの光の合成位相は0または-πとなる。非縮退型PSAでは、この合成位相205が励起光204の位相と同相(増幅位相:0またはπ)となれば、増幅が生じる。一方で、信号光201bおよびアイドラ光202bの合成位相205が、励起光の位相と直交(減衰位相:π/2または-π/2)となれば、減衰が生じる。励起光204の位相は、信号光の生成側(送信側)において基準周波数の光と直接関連して生成されるため、基準周波数の光と位相と同一を持ち、複素平面の位相0の状態にある。
 図2の(c)は、合成位相と増幅位相の差異と、増幅動作および減衰動作の関係を示している。横軸は、信号光201bおよびアイドラ光202bの合成位相と、増幅位相(0°)との位相差を示しており、縦軸は非縮退型PSAの出力における光強度を概念的に示している。位相差が0、πの時に増幅動作が最大となってピーク210-1、210-2を生じ、位相差がπ/2、-π/2のときに減衰動作が最大となって、ディップ211-1、211-2を生じる。
 上述の信号光およびアイドラ光の合成位相と、増幅位相または減衰位相の各関係は、信号光およびアイドラ光が同一周波数に配置される縮退型PSAであっても同様である。したがって、PSAを最大増幅または最大減衰などの所望の状態で使用するには、目的とする動作状態に応じて、信号光およびアイドラ光の合成位相を所定の状態に制御することが必要である。
 図1の従来技術の光パラメトリック増幅装置100では、合成位相を所定の動作状態とする光位相同期フィードバック制御のために、位相変調器101へ制御信号120を加えている。図1の光パラメトリック増幅装置100では、PD105から得られる光強度信号115を、合成位相の目標値からの逸脱を示す誤差信号として利用できない。フィードバック制御における誤差信号は、制御対象とする物理量、測定値の目標値の前後において、単調関数的に変化する必要がある。図2の(c)を再び参照すると、光パラメトリック増幅の場合、目的動作である最大増幅および最大減衰のいずれの状態でも、強度信号はピークまたはディップの近傍にある。制御対象である、信号光およびアイドラ光の合成位相がどちらの方向にずれても、PD105からの光強度信号115は、同じ方向にずれる。例えば、所定の動作が最大増幅の場合、合成位相がどちらにずれても光強度信号115は減少する。また、所定の動作が最大減衰の場合、合成位相がどちらにずれても光強度信号115は増加する。したがって、光パラメトリック増幅後の光強度信号をそのまま誤差信号として利用することができない。
 フィードバック制御に利用できる誤差信号を得るために、励起光または信号光に対して位相変調を掛けるとともに、図1に示した変調・復調回路部121を備えて、光強度信号115から誤差信号を作り出している。変調・復調回路部121は、変調用の信号生成器108、復調用のミキサー106、LPF107などの電気回路を必要とし、システム構成を大きく複雑にしてしまう。
 本開示の光パラメトリック増幅装置は、信号光と励起光の間の光位相同期の新規な仕組みを提供する。新たな仕組みでは、信号光の合成位相に対して、ずれた合成位相を持つ制御光を新たに導入する。光パラメトリック増幅された後の、制御光の光強度をフィードバック制御のための誤差信号として利用することで、多くの電気回路の構成要素を不要として、光パラメトリック増幅装置を簡略化、低コスト化する。
 本開示の光パラメトリック増幅装置では、増幅または減衰の対象となる信号光に対して異なる合成位相を有する制御光を生成する光位相シフタを備える。
[基本構成]
 図3は、本開示の光パラメトリック増幅装置の概略構成を示した図である。光パラメトリック増幅装置10は、信号光11および励起光12が入力される位相変調器1、合波器2、光パラメトリック増幅器3、モニタ光分離部4、光検出器(PD)5を備える。モニタ光分離部4からは、増幅(または減衰)された信号光13が出力され、モニタ光14も分離されて出力される。光パラメトリック増幅を実施するこれらの要素の動作は、図1に示した従来技術の光パラメトリック増幅装置100と全く同じであり、ここでは詳細な説明を省略する。
 図3の光パラメトリック増幅装置10と、図1の従来技術の光パラメトリック増幅装置100との第1の相違点は、光の状態において、入力される信号光の一部の位相を所定の値だけシフトさせた制御光を生成する光位相シフタ6を備えていることである。第2の相違点は、PD5からの制御光(モニタ光)の光強度信号15をそのまま誤差信号16として利用できるため、従来技術の構成で必要だった変調・復調回路部121が不要となった点である。PD5の出力側の電気回路としては、位相変調器1を制御するための制御信号17を生成する帰還利得制御部7として機能する例えばPIDコントローラだけで済む。従来技術構成と比べて、光位相同期フィードバック制御に必要な電気回路を、大幅に簡略化できる。
 図4は、本開示の光パラメトリック増幅装置10における、光位相同期のための誤差信号を、従来技術と対比して説明する図である。図4の(a)は、図1に示した従来技術の光パラメトリック増幅装置における誤差信号の生成過程を示している。非縮退型PSAを例にすれば、複数の信号光と、アイドラ光とを含む信号光群220が光増幅される。アイドラ光は、周波数軸上で、点線矢印で示した基準周波数に対し信号光と対称に位置している。信号光群は、単一の信号光とそのアイドラ光でも良いし、複数の信号光と、各々の信号光に対応する複数のアイドラ光でも良い。図2で説明したように、非縮退型PSAを増幅状態で利用する場合、信号光およびアイドラ光の合成位相と、増幅位相との位相差が、0またはπとなるように制御される。位相差を0またはπに制御するこの目標状態において、光強度信号115はピーク位置210-1、20-2にある。ピーク位置にある誤差信号はフィードバック制御に利用できないため、変調・復調回路部121を備えることによって、単調関数的な誤差信号117を得ていた。この誤差信号117は、目標値の位相差が0またはπの状態で、フィードバック制御回路の基準電圧に対して符号が反転し直線性の良く、フィードバック制御に利用できる。
 図4の(b)は、図3に示した本開示の光パラメトリック増幅装置における誤差信号を示している。図3の光パラメトリック増幅装置10では、信号光としても利用可能だった一部の光を予め位相シフトさせて制御光とし、光増幅後にこの制御光をモニタ光14として利用する。図4の(b)に示した信号光群221は、図4の(a)に示した信号光群220から、周波数軸上で、点線矢印で示した基準周波数に最も隣接する信号光およびそのアイドラ光を除いたものである。従来技術で信号光およびそのアイドラ光としても利用できる光は、本開示の光パラメトリック増幅装置10では制御光213aおよび制御アイドラ光214aとして利用される。図4の(b)で、複素平面上に示された制御光213bおよび制御アイドラ光214bを参照すれば、これら2つの光213b、214bの合成位相215は、増幅位相(0)からπ/4だけ位相がシフトしたものとなっている。
 従来技術のように信号光の一部をカプラなどで結合し、モニタ光としてPDによって検波して強度信号を得ていれば、信号光が最大増幅の状態に制御される。したがって、図4の(a)に示したように、強度信号は位相差0のピーク電圧210-1、210-2として測定される。一方で、本開示の光パラメトリック増幅装置10では、信号光に対して位相シフトした制御光のみをモニタ光分離部4によって分離および検波して、光強度信号15を誤差信号16として直接利用する。
 図4の(b)のように、制御光の信号光に対する位相シフト量をπ/4とすれば、PD5から出力される光強度信号15は、図4の(b)に示したピークから外れた傾斜部分212に相当する。増幅位相(位相差0)に制御される信号光の強度信号は、ピーク付近210にあるのに対し、合成位相215がπ/4シフトされた制御光の強度信号の傾斜部分212は、単調関数的に変動し直線性が良い。したがって、PD5から得られる光強度信号15を、位相同期フィードバック制御の誤差信号16として加工なしにそのまま利用できる。
 従って本開示の光パラメトリック増幅装置10は、1つ以上の信号光および励起光の光合波器2と、前記光合波器の入力側であって、信号光経路または励起光経路に配置された位相変調器1と、前記信号光を光増幅する光パラメトリック増幅器3と、前記光パラメトリック増幅器よりも入力側の前記信号光経路に配置され、前記信号光の周波数帯域内の制御光、または、前記制御光に対して位相共役にある制御アイドラ光の光位相を変化させる光位相シフタ6と、前記制御光または前記制御アイドラ光の少なくとも一方をモニタ光14として分離するモニタ光分離器4と、前記モニタ光の光強度を電気信号15に変換する光検出器5と前記電気信号が誤差信号として入力され、前記位相変調器に制御信号17を送出し、少なくとも積分回路を有する帰還利得調整器7とを備えたものとして実施できる。
 図3の光パラメトリック増幅装置10における光位相シフタ6は、信号光の光増幅か可能な帯域内に配置された制御光に、信号光の位相を基準として所定の位相シフトを与える。上述のように、制御光は、制御対象の信号光の光位相同期フィードバック制御のためのモニタ光として利用される。位相シフトされた制御光は、光パラメトリック増幅器内において、ある基準周波数を中心としてその周波数が折り返された位置にある制御アイドラ光と干渉しながら、光パラメトリック増幅される。しかしながら、最大増幅状態からずれ、信号光に比べて増幅ゲインが抑えられた状態で制御光は光増幅されるので、強度信号も、ピーク位置からずれた直線部がそのままで誤差信号として利用される。制御光は、光パラメトリック増幅において増幅ゲインが十分でない状態となるので、信号光とは異なり、制御光は伝送情報を含まないものであるのが好ましい。
 上述の基準周波数は、三次の非線形光学媒体であればその励起光波長に相当する。また、二次の非線形光学媒体であれば励起光周波数の半分の周波数となる。光位相シフタ6は制御光のみの位相をシフトしても良いし、制御光および制御アイドラ光の両方の光の位相をシフトしても良い。図2で説明したように光パラメトリック増幅では、信号光と信号光のアイドラ光との合成位相が、励起光の位相から決まる増幅位相と同相(0相)または逆相(π相)であれば光増幅が生じ、直交(π/2相または3π/2相)であると光減衰が生じる。光パラメトリック増幅装置では、通常、信号光を光増幅可能な周波数帯域内に配置されるすべての信号チャネルを一括して増幅することが求められる。したがって、すべての信号チャネルについて、信号光と対応するアイドラ光の合成位相が、それぞれ増幅位相に一致する状態で、光パラメトリック増幅されなければならない。
 ここで、光伝送路において信号光に生じる位相変動を考えてみる。一般に伝送路に一次の屈折率分散のみが存在している場合は、光増幅の帯域内に対象となる複数の信号光(複数チャネル)があっても、各々の信号光と対応するアイドラ光の合成位相は、それぞれ、図2の(b)に示した増幅位相(0またはπ)に揃ったものとなる。従来技術および本開示の光パラメトリック増幅装置のいずれにおいても、励起光および信号光の各経路に生じる外乱や雑音の影響による、励起光および信号光間の位相差の変動を抑えるために位相同期フォードバック制御が行われる。
 本開示の光パラメトリック増幅装置10では、光パラメトリック増幅に先立って、制御光およびそのアイドラ光の合成位相を、信号光およびそのアイドラ光の合成位相に対してシフトさせておくことで、制御光から得られる強度信号を、そのまま誤差信号として利用できる。
 図3の光パラメトリック増幅器3を通った後で、制御光および制御アイドラ光の一方または両方の光を、モニタ光分離部4で分離してモニタ光14として取り出す。モニタ光24の光強度をPD5により光強度信号15に変換し、そのまま誤差信号16として利用する。図4で既に説明したように、信号光の目標の動作状態(例えば最大増幅)において、位相シフトされた制御光の光強度信号15は、単調関数的に変化する。特に、制御光の合成位相をπ/4+ nπ/2(nは整数)シフトした位相に設定すると、誤差信号の目標値周りの直線傾きが急峻になり、性能の良い光位相同期を実現できる。
 制御光として用いる光は、伝送に用いない周波数帯も活用できるため、本開示の光パラメトリック増幅装置により、実質的に伝送帯域が制限されることはない。例えば基準周波数を用いて、制御光および制御アイドラ光を同じ周波数の光で設定しても良い。また、信号光の周波数帯域の中で基準周波数から最も離れた周波数チャネルに設定しても良い。光位相シフタ6としては、制御光のみを切り出して遅延させ、元の光路に戻すような構成(実施例1)であっても良いし、制御光を切り出さずに信号光全体を二次の分散媒体に入射して、制御光を得る構成(実施例2)でも良い。二次の分散媒体として、伝送媒体となる光ファイバ自身を利用することができ、二次の屈折率分散の影響を大きく受けるよう、制御光は基準周波数から離れた位置とするのが好ましい。以下、より具体的な光パラメトリック増幅装置の構成および動作を説明する。
 図5は、実施例1の光パラメトリック増幅装置の構成を示す図である。図5の光パラメトリック増幅装置20は、図3に示した光パラメトリック増幅装置10と同一の構成を持ち、制御光を生成するための光位相シフタ21の構成をより具体的にしたものである。従って、光パラメトリック増幅装置20の全体構成および基本的な動作については、説明を省略する。
 本実施例では、光パラメトリック増幅器3として、2次の非線形素子であるPPLN導波路を用いた。基準周波数を194THzに設定し、信号光に対する光パラメトリック増幅の波長帯域の中心は1545.32nmとなる。励起光の波長を信号光の2倍波に相当する780nm付近とした。信号光の波長帯域内において、1530.00nmに制御光の波長を設定した。この時、制御アイドラ光の波長は1560.95nmとなる。光パラメトリック増幅器3としては、PPLN導波路を用いたものだけに限られず、高非線形ファイバを用いたものでも良い。
 光位相シフタ21では、信号光の光増幅の帯域内に配置された制御光に対して、位相シフトが加えられる。制御光は、周波数軸上で基準周波数を中心として折り返された位置にある制御アイドラ光と干渉しながら、光パラメトリック増幅される。本実施例の制御光シフタ21は、制御光のみを信号光経路から切り出す波長分離器22、遅延線23、波長合波器24から構成される。波長分離器22として、分波用アレイ導波路回折格子(AWG:Arrayed Waveguide Grating)を用いた。分波用AWG22は、信号光をそのまま合波用AWG24に入力する。分波用AWG22で切り出された制御光は、遅延線23により位相シフトされる。波長合波器24として合波用AWGを用い、信号光および位相シフトされた制御光が再び合波され、位相変調器1へ入力される。
 光位相シフタ21で、制御光の位相をシフトさせる方法には、制御光のみ位相をシフトさせる「方法1」と、制御光および制御アイドラ光の両方をシフトさせる「方法2」がある。いずれの方法においても重要なことは、信号光に対して、制御光および制御アイドラ光の合成位相をシフトさせることである。
 光パラメトリック増幅装置20を最大ゲインで使用し、分波用AWG22によって制御光のみを切り出して位相シフトさせる「方法1」の場合、制御光の位相シフト量をπ/2 + nπ(nは整数)にするのが好ましい。この時、制御アイドラ光の位相はシフトされていないので、位相シフトされた制御光と、制御アイドラ光の合成位相はπ/4となる。したがって図4の(b)に示したように、モニタ光の14の光強度信号15は、増幅位相からπ/4ずれた付近の直線性が良く最も傾きが大きい部分212が使用され、帰還利得の高いフィードバック制御が可能となる。
 図5のモニタ光分離部4についても、AWGを用いて制御光をモニタ光14として取り出した。このモニタ光の光強度信号15を、帰還利得制御部7に入力し、光パラメトリック増幅器3より前段側の励起光経路に挿入された位相変調器1へフィードバック制御信号17を返した。位相変調器1は、励起光に位相変調を加えるLN変調器を利用した。図5の構成によって、従来技術よりも簡略化された光位相同期フィードバック回路により、最大ゲイン動作状態で、安定して信号光の増幅動作が実現された。帰還利得の正負を反対にすることで、フィードバック制御信号を逆位相として、光パラメトリック増幅装置20を減衰動作状態で、位相同期させることができることも確認した。
 上述の説明は、光位相シフタが制御光のみを位相シフトを行う例であったが、制御光および制御アイドラ光の両方を切り出して、それぞれの光位相をシフトさせる「方法2」でも良い。方法2の場合、制御光の位相シフト量および制御アイドラ光の位相シフト量の合計がπ/2 + nπ(nは整数)となることが望ましい。2つの光の位相シフト量の合計がπ/2となるとき、複素平面上で合成位相は必ずπ/4近傍となり、モニタ光14の光強度信号15は、直線性が良く最も傾きが大きい部分となる。
 「方法2」において上述の2つの光の位相シフト量の合計をπ/2とする例として、例えば、制御光および制御アイドラ光のシフト量をそれぞれ同じ45°(π/4)としても良い。またシフト量をアンバランスとして、制御光および制御アイドラ光の一方のシフト量を20°、他方のシフト量を70°としても良い。さらに、制御光のシフト量を90°、制御アイドラ光のシフト量を0°とすれば、上述の制御光のみを切り出して位相シフトさせる「方法1」に対応することが理解されるだろう。
 信号光から、制御光および制御アイドラ光を切り出すための波長分離器22は、AWGだけに限られず、より簡素な方向性結合器や回折格子等を利用しても良い。また、モニタ光を切り出すための波長分離器4もAWGだけに限られず、方向性結合器や回折格子等とすることができる。さらに、モニタ光として取り出す光を、制御光ではなくて制御アイドラ光としても、何ら問題なく光位相同期フィードバック制御が実現された。
 制御光の波長は、光パラメトリック増幅の対象となる信号光の波長帯域内であればどこに配置をしても良い。図4の(b)で説明したように、信号光の波長帯域の中心波長(基準周波数に対応)またはその近傍に、制御光および制御アイドラ光を配置しても良い。制御光を中心波長に設定した場合は、制御光および制御アイドラ光が同一の波長の光となり、両者を区別できなくなる(縮退型の位相感応増幅に対応)。しかしながら、光位相同期フィードバック制御の観点からは、信号光を最大ゲイン状態で動作させ、安定して信号光の増幅動作が実現された。また、制御光の波長を、信号光の波長帯域の端の位置に設定し、制御光および制御アイドラ光を、信号光の波長帯域の両端に配置することもできる。光位相シフタ21によって制御光または制御アイドラ光の一方のみを切り出すために、AWGよりも低コストで簡素な構成の方向性結合器を利用することも可能となる。
 光パラメトリック増幅装置20に用いる帰還利得制御器7は、積分器を含んでいれば、位相同期の機能を果たすことができる。したがって、図5に示した汎用的なPIDコントローラは一例であって、出力値と目標値との偏差、その積分、および微分の全ての要素を含んでいる必要はない。帰還利得制御器7は、線形増幅器および微分器をさらに含んでいても良い。線形増幅器の利得を大きくして、ループ帯域を広くすることで、外乱による急な特性劣化にも対応可能となる。
 本開示の光パラメトリック増幅装置において重要なことは、信号光の合成位相と、制御光の合成位相を異なるものとすることである。したがって、合成位相のシフト量は、π/4(45°)だけに限定されない。例えば、20~70°程度位相シフトであれば、強度信号の直線部分を利用できることに留意されたい。したがって、光位相シフタ21におけるシフト量の精度は、光位相同期のために想定される位相変動が小さければ、緩いもので済む。
 また上述の説明では、光パラメトリック増幅装置へ信号光およびそのアイドラ光が入力されるものとして説明した。光伝送システムによっては、信号光とともにパイロット光を同送したり、信号光のみを伝送したりして、励起光やアイドラ光を自己再生する場合もある。例えば中継光増幅装置では、信号光自身から励起光やアイドラ光を再生して、中継増幅のための光パラメトリック増幅するものもある。このような場合、制御光の光位相シフトの実現方法には、様々なバリエーションが可能であって、図5の構成に限定されない。
 実施例1の光位相シフタ21では、制御光または制御アイドラ光を切り出して、遅延を付与することで位相シフトさせる構成を示したが、光位相シフタとして光伝送路の屈折率分散を利用することもできる。
 図6は、実施例2の光パラメトリック増幅装置の構成を示す図である。図6の(a)に示した光パラメトリック増幅装置30は、図5に示した光パラメトリック増幅装置20と同一の構成を持ち、制御光を生成するための光位相シフタ31を光ファイバによって実現する例である。従って、光パラメトリック増幅装置30の全体構成および基本動作については、説明を省略する。
 光パラメトリック増幅器3としては、実施例1と同様に、2次の非線形素子であるPPLN導波路を用いた。基準周波数を194THzに設定し、信号光に対する光パラメトリック増幅の波長帯域の中心は1545.32nmとなる。励起光の波長を信号光の2倍波に相当する780nm付近とした。信号光の波長帯域内において、1530.00nmに制御光の波長を設定した。この時、制御アイドラ光の波長は1560.95nmとなる。本実施例では、光位相シフタ31として光学部品は使用せずに、伝送路である光ファイバを用いた。
 図6の(b)は、実施例2における制御光の配置構成を説明している。一般に、光ファイバを構成する物質は屈折率の波長分散を持っている。信号光217aの周波数が、光パラメトリック増幅の帯域の中心周波数に近い場合、その信号光と共役な関係にあるアイドラ光218aの周波数も中心周波数に近い。このため、光ファイバの二次の屈折率分散の影響は小さくなり、一次の屈折率分散の影響のみが支配的となる。
 図6の(c)は、複素平面上で光ファイバの屈折率分散により生じる位相シフトを説明している。一次の屈折率分散は、信号光217bおよびそのアイドラ光218bの合成位相219の向きを変化させないので、伝送路を伝搬しても合成位相219と増幅位相との位相差は一定に保たれる。しかし、中心周波数から離れた信号チャネルになるに従い、信号光およびそのアイドラ光に対する光ファイバの二次の屈折率分散の影響が大きくなる。二次の屈折率分散は、複素平面上で、信号光およびアイドラ光の合成位相の向きを変化させる。本実施例では、図6の(b)に示したように、制御光213aおよび制御アイドラ光214aのペアを中心周波数より離れた位置に配置する。図6の(b)のような配置で、制御光および制御アイドラ光を含む信号光は、必要な二次分散を有する長さの光ファイバである光位相シフタ31を伝搬する。結果として、図6の(c)に示したように、制御光213bおよび制御アイドラ光214bの合成位相215は、増幅位相(0°)からシフトしたものとなる。
 上述のように、二次の屈折率分散を有する伝送路である光ファイバが、光位相シフタの位相シフト機能を果たすことができる。したがって、実施例1の分波器および合波器を含む光位相シフタ21と比べ、よりも簡単な構成の光位相シフタ31で、実施例1と同様の光パラメトリック増幅装置を実現できる。光位相シフタ31を実現する光ファイバとしては、通常の光ファイバに加え、フォトニック結晶ファイバのような高分散なものを用いることもできる。
 図6の(a)のモニタ光分離部4についても、実施例1と同様にAWGを用いて制御光をモニタ光14として取り出した。このモニタ光の光強度信号15を、帰還利得制御部7に入力し、光パラメトリック増幅器3より前段側の励起光経路に挿入された位相変調器1へフィードバック制御信号17を返した。位相変調器1は、励起光に位相変調を加えるLN変調器を利用した。図6の(a)の構成によって、従来技術よりも簡略化された光位相同期フィードバック回路により、最大ゲイン動作状態で、安定して信号光の増幅動作が実現された。実施例1と同様に、帰還利得の正負を反対にすることで減衰動作に位相同期することも確認した。モニタ光分離部4でモニタ光として取り出す光を、制御アイドラ光としても、問題なく光位相同期フィードバック制御が実現された。
 上述の実施例1および実施例2のいずれにおいても、光位相シフタを位相変調器1の前段側に置いていた。しかしながら、信号光の合成位相に対して、制御光の合成位相のみをシフトすることができれば、光位相シフタの位置は限定されず、他のバリエーションが可能である。
 図7は、実施例3の光パラメトリック増幅装置の構成を示す図である。実施例3の光パラメトリック増幅装置40は、上述の実施例1、実施例2の光パラメトリック増幅装置の各構成と概ね同一である。相違点は、光位相シフタ41が、位相変調器1と合波器2との間の信号光経路に設けられていることある。制御光および制御アイドラ光の合成位相のみに、信号光に対して所定の位相シフトを与えることができれば、実施例1、実施例2と同様の誤差信号16を得ることができるのは明らかである。
 実際のPSAなど光増幅装置の構成では、励起光再生回路や励起光の安定化のために、光パラメトリック増幅とは別の目的で複数のPPLNを使用する場合が多い。そのような場合、図7の位相変調器1と光合波器2の前段側には図示しない光回路が存在する。したがって、光パラメトリック増幅を利用する実際の装置では、光位相シフタ41の配置場所にも柔軟性がある。
 図8は、実施例4の光パラメトリック増幅装置の構成を示す図である。本実施例は、光位相シフタの位置の別のバリエーションである。実施例4の光パラメトリック増幅装置50も、実施例1~3の各光パラメトリック増幅装置と概ね同一の構成である。相違点は、光位相シフタ51が、合波器2と光パラメトリック増幅器3との間の信号光経路に設けられていることある。制御光および制御アイドラ光の合成位相のみに、信号光に対して所定の位相シフトを与えることができれば、実施例1~3と同様の誤差信号16を得ることができるのは明らかである。
 上述の各実施例で、一般的な構成を示すため、位相変調器1は信号光経路および励起光経路の両方を経由するように描かれているが、信号光経路または励起光経路の少なくとも一方を経由すれば良い。位相変調器1は、光位相同期フィードバック制御のために、信号光と励起光との間の位相差に、制御信号17によって変動を生じさせることができれば良い。したがって、信号光経路または励起光経路のいずれか一方だけを経由するように配置しても良いし、位相変調器の形態に依って必要に応じて両方の経路を経由するように構成することもできる。
 また、上述の各実施例は光パラメトリック増幅装置として説明したが、光パラメトリック増幅機構を利用する限り、光信号の減衰装置として利用することもできるし、波長変換装置として利用することもできる。また、励起光と信号光の位相関係の設定条件によって、非古典的な光を扱う応用装置としても利用可能であって、「光増幅装置」としての用途に限られないことに留意されたい。
 以上詳細に説明をしたように、本開示の光パラメトリック増幅装置では、信号光とそのアイドラ光の合成位相に対して、制御光および制御アイドラ光の合成位相をシフトし、制御光または制御アイドラ光をモニタ光として利用する。これによって、従来技術における変調・復調回路を省略して、光パラメトリック増幅装置の構成を簡略化、低コスト化を実現できる。
 本発明は、光増幅などの光信号処理装置に利用できる。

Claims (7)

  1.  1つ以上の信号光および励起光の光合波器と、
     前記光合波器の入力側であって、信号光経路または励起光経路に配置された位相変調器と、
     前記信号光を光増幅する光パラメトリック増幅器と、
     前記光パラメトリック増幅器よりも入力側の前記信号光経路に配置され、前記信号光の周波数帯域内の制御光、または、前記制御光に対して位相共役にある制御アイドラ光の光位相を変化させる光位相シフタと、
     前記制御光または前記制御アイドラ光の少なくとも一方をモニタ光として分離するモニタ光分離器と、
     前記モニタ光の光強度を電気信号に変換する光検出器と
     前記電気信号が誤差信号として入力され、前記位相変調器に制御信号を送出し、少なくとも積分回路を有する帰還利得調整器と
     を備えた光パラメトリック増幅装置。
  2.  前記制御光および前記制御アイドラ光の合成位相が、前記信号光および前記信号光のアイドラ光の合成位相とは異なるように設定される、請求項1に記載の光パラメトリック増幅装置。
  3.  前記1つ以上の信号光は、各々が情報を含む複数の信号光と、前記複数の信号光に対応する複数のアイドラ光を含み、
     前記光パラメトリック増幅器は、二次非線形光学素子または三次非線形光学素子を含む、 請求項1または2に記載の光パラメトリック増幅装置。
  4.  前記制御光および前記制御アイドラ光は、周波数軸上で、前記信号光の前記周波数帯域の両端に配置され、前記光位相シフタは光ファイバである、請求項1乃至3いずれかに記載の光パラメトリック増幅装置。
  5.  前記光位相シフタは、前記制御光および前記制御アイドラ光の両方の光位相を同方向にシフトさせる、請求項1乃至4いずれかに記載の光パラメトリック増幅装置。
  6.  前記制御光の位相シフト量および前記制御アイドラ光の位相シフト量の合計が、π/2 + nπ(nは整数)である、請求項5に記載の光パラメトリック増幅装置。
  7.  前記光位相シフタは、前記制御光または前記制御アイドラ光のいずれか一方の光位相をπ/2 + nπ(nは整数)シフトさせる、請求項1乃至4いずれかに記載の光パラメトリック増幅装置。
     
     
PCT/JP2021/041173 2021-11-09 2021-11-09 光パラメトリック増幅装置 WO2023084596A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/041173 WO2023084596A1 (ja) 2021-11-09 2021-11-09 光パラメトリック増幅装置
JP2023559228A JPWO2023084596A1 (ja) 2021-11-09 2021-11-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041173 WO2023084596A1 (ja) 2021-11-09 2021-11-09 光パラメトリック増幅装置

Publications (1)

Publication Number Publication Date
WO2023084596A1 true WO2023084596A1 (ja) 2023-05-19

Family

ID=86335321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041173 WO2023084596A1 (ja) 2021-11-09 2021-11-09 光パラメトリック増幅装置

Country Status (2)

Country Link
JP (1) JPWO2023084596A1 (ja)
WO (1) WO2023084596A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049970A (ja) * 2009-08-28 2011-03-10 Nippon Telegr & Teleph Corp <Ntt> 位相雑音低減装置
JP2015169847A (ja) * 2014-03-07 2015-09-28 国立大学法人徳島大学 位相感応型光増幅器及び励起光位相同期回路
JP2016059040A (ja) * 2014-09-05 2016-04-21 富士通株式会社 二重偏波変調フォーマットのための低雑音光位相センシティブ増幅
JP2016206390A (ja) * 2015-04-22 2016-12-08 日本電信電話株式会社 光増幅装置およびそれを用いた光伝送システム
JP2017062473A (ja) * 2015-09-23 2017-03-30 富士通株式会社 ブラッグ反射導波路を用いる高調波生成及び位相感応型増幅
JP2017198781A (ja) * 2016-04-26 2017-11-02 日本電信電話株式会社 位相感応光増幅器および位相同期安定化方法
CN111983872A (zh) * 2020-08-18 2020-11-24 南京信息工程大学 一种基于正交模的参量光子放大方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049970A (ja) * 2009-08-28 2011-03-10 Nippon Telegr & Teleph Corp <Ntt> 位相雑音低減装置
JP2015169847A (ja) * 2014-03-07 2015-09-28 国立大学法人徳島大学 位相感応型光増幅器及び励起光位相同期回路
JP2016059040A (ja) * 2014-09-05 2016-04-21 富士通株式会社 二重偏波変調フォーマットのための低雑音光位相センシティブ増幅
JP2016206390A (ja) * 2015-04-22 2016-12-08 日本電信電話株式会社 光増幅装置およびそれを用いた光伝送システム
JP2017062473A (ja) * 2015-09-23 2017-03-30 富士通株式会社 ブラッグ反射導波路を用いる高調波生成及び位相感応型増幅
JP2017198781A (ja) * 2016-04-26 2017-11-02 日本電信電話株式会社 位相感応光増幅器および位相同期安定化方法
CN111983872A (zh) * 2020-08-18 2020-11-24 南京信息工程大学 一种基于正交模的参量光子放大方法

Also Published As

Publication number Publication date
JPWO2023084596A1 (ja) 2023-05-19

Similar Documents

Publication Publication Date Title
US11811433B2 (en) Integrated coherent optical transceiver
US20200358258A1 (en) Polarization insensitive colorless optical devices
US7079780B1 (en) Linearized optical link using a single Mach-Zehnder modulator and two optical carriers
EP2107418B1 (en) Optical qam system including an optical modulator and a controlling apparatus and method of controlling the optical modulator
US11387909B2 (en) Optical signal transmitter
US8849126B2 (en) Electronic phase conjugation for impairment compensation in a fiber communication system
JP6661913B2 (ja) 光モジュール、及びこれを用いた光送信機
US6211996B1 (en) Angle modulator
JP5881580B2 (ja) 位相感応型光増幅装置
JP5945212B2 (ja) 光増幅装置
EP1376902B1 (en) Optical vestigial sideband transmitter/receiver
WO2007080950A1 (ja) 角度変調装置
WO2023084596A1 (ja) 光パラメトリック増幅装置
JP6774381B2 (ja) 光送信器およびこれを使用した光伝送システム
WO2007096454A1 (en) All-optical polarization-independent clock recovery
JP6830790B2 (ja) ネットワークシステム
US7010234B2 (en) All-optical regenerator for retiming, reshaping and retransmitting an optical signal
JP6796027B2 (ja) 光送信器およびこれを使用した光伝送システム
JP6796028B2 (ja) 光増幅装置およびそれを用いた伝送システム
JP4949620B2 (ja) 光波形整形器
US7486896B2 (en) Optical clock recovery
WO2023175691A1 (ja) 波長変換装置
JP2007215165A (ja) 角度変調装置
JP2000250084A (ja) 波長変換装置
WO2023156502A1 (en) Apparatus and method for synthesizing a broadband electromagnetic signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963959

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023559228

Country of ref document: JP