WO2023080071A1 - Method for producing 4-hydroxybutyl aldehyde, method for producing gamma butyrolactone, method for producing n-methyl-2-pyrrolidone, and compound - Google Patents

Method for producing 4-hydroxybutyl aldehyde, method for producing gamma butyrolactone, method for producing n-methyl-2-pyrrolidone, and compound Download PDF

Info

Publication number
WO2023080071A1
WO2023080071A1 PCT/JP2022/040335 JP2022040335W WO2023080071A1 WO 2023080071 A1 WO2023080071 A1 WO 2023080071A1 JP 2022040335 W JP2022040335 W JP 2022040335W WO 2023080071 A1 WO2023080071 A1 WO 2023080071A1
Authority
WO
WIPO (PCT)
Prior art keywords
producing
hba
reaction
mol
hydroxybutyraldehyde
Prior art date
Application number
PCT/JP2022/040335
Other languages
French (fr)
Japanese (ja)
Inventor
真也 塚本
尚平 西澤
和宏 北川
博 内田
英雄 宮田
ジュヨン シム
英治 山本
美乃 村山
信 徳永
Original Assignee
株式会社レゾナック
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック, 国立大学法人九州大学 filed Critical 株式会社レゾナック
Publication of WO2023080071A1 publication Critical patent/WO2023080071A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • C07C47/19Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form

Definitions

  • the present invention is suitable for producing 4-hydroxybutyraldehyde, producing gamma-butyrolactone using the same, producing N-methyl-2-pyrrolidone, and producing 4-hydroxybutyraldehyde by hydroformylation of allyl alcohol. It relates to a ligand compound that constitutes a catalyst used in
  • 4-Hydroxybutyraldehyde (4-HBA) is a useful compound that can be used as a raw material for various compounds.
  • 1,4-butanediol (1,4-BDO) can be obtained by subjecting 4-HBA to a hydrogen reduction reaction.
  • 1,4-BDO is useful as a raw material for polybutylene terephthalate, urethane resin, and the like.
  • gamma-butyrolactone (GBL) can be produced by dehydrogenating 4-HBA or 1,4-BDO.
  • GBL is widely used industrially as a cleaning agent for electronic materials.
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • 4-HBA can be produced by hydroformylation of allyl alcohol.
  • an olefinic compound is hydroformylated using a rhodium catalyst and a ligand, the selectivity of linear and branched oxo compounds in the reaction product and the Yields are very different. This also applies to the hydroformylation reaction of allyl alcohol.
  • 4-HBA having a linear structure is produced, and 3-HBA having a branched structure is produced as a by-product.
  • Hydroxy-2-methylpropionaldehyde (HMPA) is produced, as well as low boiling by-products such as propionaldehyde.
  • Patent Document 1 discloses that allyl alcohol is reacted with carbon monoxide and hydrogen in the presence of a rhodium-containing hydroformylation catalyst to form hydroxybutyraldehydes, and the hydroxybutyraldehydes are hydrogenated to produce butanediols. A method for synthesizing is described.
  • Patent Document 2 describes a method for hydroformylating allyl alcohol in the presence of a rhodium complex compound and a trisubstituted phosphine. Specifically, it describes the hydroformylation of allyl alcohol using a rhodium complex, triphenylphosphine (monodentate ligand) and 1,4-bis(diphenylphosphino)butane (bidentate ligand). It is
  • Patent Document 3 describes the use of an optically active organic diphosphine compound and a specific organic diphosphine compound as ligands in a reaction to hydroformylate allyl alcohol in the presence of a rhodium complex catalyst.
  • Example 6 of Patent Document 3 rhodium-hydride(carbonyl)tri(triphenylphosphine) as a catalyst and trans-4,5-bis(diphenylphosphinomethyl)-2,2-dimethyl- Hydroformylations of allyl alcohols using 1,3-dioxolane (DIOP) and bis(diphenylphosphino)pentane, diphenylmethylphosphine have been described.
  • DIOP 1,3-dioxolane
  • Table 2 of Patent Document 3 describes that the 4-HBA selectivity in Example 6 was 84.8% and the HMPA selectivity was 13.8%.
  • Non-Patent Document 1 describes a calculation prediction when using a rhodium complex compound and a phosphine ligand having a xanthene skeleton as catalysts for the hydroformylation reaction.
  • Non-Patent Document 1 uses a simple olefin, 1-octene, as a model compound for hydroformylation.
  • Non-Patent Document 1 describes a prediction that when a phosphine ligand having a xanthene skeleton is used as a catalyst, the production ratio of linear compounds/branched compounds increases.
  • Non-Patent Document 1 describes the prediction that when a phosphine ligand having a xanthene skeleton is used as a catalyst for the hydroformylation reaction of 1-octene, the production ratio of linear compounds/branched compounds will increase. However, the hydroformylation reaction of a compound having a substituent such as allyl alcohol differs greatly from the hydroformylation reaction of a simple olefin such as 1-octene in the linear/branched compound selectivity. Non-Patent Document 1 does not describe predictions about the hydroformylation reaction of allyl alcohol.
  • the present invention has been made in view of the above circumstances, and a reaction product is obtained in which the amount of HMPA produced is small and the ratio of the amount of 4-HBA produced to the amount of HMPA produced (4-HBA/HMPA) is large. It is an object of the present invention to provide a method for producing 4-HBA that can be obtained.
  • the present invention also provides a ligand compound that constitutes a catalyst capable of increasing the ratio of the amount of 4-HBA produced to the amount of HMPA produced (4-HBA/HMPA) in the hydroformylation reaction of allyl alcohol. With the goal.
  • the present invention provides a high yield of GBL even when the reaction product containing 4-HBA produced in the process of producing 4-HBA is directly used in a reaction for producing gamma-butyrolactone (GBL) without purification. It is an object of the present invention to provide a GBL manufacturing method capable of manufacturing a GBL efficiently. Another object of the present invention is to provide a method for producing NMP that can efficiently produce N-methyl-2-pyrrolidone (NMP) by including a step of efficiently producing GBL.
  • NMP N-methyl-2-pyrrolidone
  • a first aspect of the present invention provides the following method for producing 4-hydroxybutyraldehyde.
  • Ar represents an aryl group which may have a substituent.
  • the manufacturing method of the first aspect of the present invention preferably includes the features described in [2] to [10] below. Combinations of two or more of these features are also preferred. [2]
  • the bidentate phosphine ligand is represented by the formula (1), and Ar in the formula (1) is represented by any one of the formulas (a), (b), and (c).
  • the bidentate phosphine ligand is represented by the formula (3), and Ar in the formula (3) is any one of the formulas (a), (b), (d), and (e) A method for producing 4-hydroxybutyraldehyde according to any one of [1] to [3].
  • the pressure of the mixed gas containing carbon monoxide gas and hydrogen gas in the reaction vessel for the hydroformylation reaction is in the range of 0.1 to 10 MPaG (gauge pressure), According to any one of [1] to [8], wherein the partial pressure ratio of carbon monoxide gas and hydrogen gas (hydrogen gas/carbon monoxide gas) in the reaction vessel is in the range of 1/10 to 10/1.
  • a method for producing 4-hydroxybutyraldehyde [10] The 4-hydroxybutyraldehyde according to any one of [1] to [9], wherein the carbon monoxide gas and the hydrogen gas are generated by thermal decomposition of waste plastics and/or biomass. Production method.
  • a second aspect of the present invention provides the following method for producing gamma-butyrolactone.
  • the manufacturing method of the second aspect of the present invention preferably includes the features described in [11] below.
  • the method for producing gamma-butyrolactone according to [11] wherein the copper-containing catalyst further contains an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum.
  • a third aspect of the present invention provides the following method for producing N-methyl-2-pyrrolidone.
  • a fourth aspect of the present invention provides the following compounds. [14] A compound represented by the following formula (10).
  • the above compound can be preferably used as a catalyst in the above production method.
  • a fourth aspect of the present invention provides the following compounds. [15] A compound represented by the following formula (8).
  • the above compound can be preferably used as a catalyst in the above production method.
  • the amount of HMPA produced by the hydroformylation reaction is small, and the ratio of the amount of 4-HBA produced to the amount of HMPA produced (4-HBA/HMPA) is large. A product is obtained.
  • the compound of the present invention is a compound represented by the formula (10) or a compound represented by the formula (8), it can be used as a catalyst ligand in the hydroformylation reaction of allyl alcohol with a high yield.
  • 4-HBA can be produced, and a reaction product having a large ratio of 4-HBA to HMPA (4-HBA/HMPA) can be obtained.
  • the method for producing GBL of the present invention includes a step of producing 4-HBA by the method for producing 4-HBA of the present invention, and a step of contacting the produced 4-HBA with a copper-containing catalyst. Therefore, the reaction product containing 4-HBA produced in the process of producing 4-HBA has a large ratio of the amount of 4-HBA produced to the amount of HMPA produced (4-HBA/HMPA). Therefore, even if a reaction product containing 4-HBA is directly used in a reaction for producing GBL without purification, GBL can be produced at a high yield and GBL can be produced efficiently.
  • the method for producing NMP of the present invention includes a step of producing GBL by the method for producing GBL of the present invention, and a step of reacting the produced GBL with monomethylamine. Therefore, GBL can be efficiently produced, and the produced GBL can be used to efficiently produce NMP, which is an industrially useful compound.
  • the hydroformylation reaction of allyl alcohol with carbon monoxide gas and hydrogen gas involves the step of inserting allyl alcohol into a rhodium complex catalyst in which carbon monoxide and hydrogen atoms are coordinated to form an intermediate (olefin insertion ) and a step of reductive elimination of the rhodium complex catalyst from the intermediate to form hydroxyaldehyde (reductive elimination step).
  • All of the bidentate phosphine ligands represented by formulas (1) to (3) have a Xantphos skeleton and are electron-rich.
  • the method for producing 4-hydroxybutyraldehyde (4-HBA) of the present embodiment comprises a rhodium catalyst and a catalyst containing at least one bidentate phosphine ligand selected from the following formulas (1) to (3).
  • allyl alcohol is hydroformylated with carbon monoxide gas and hydrogen gas.
  • Ar represents an aryl group which may have a substituent.
  • allyl alcohol is hydroformylated with carbon monoxide gas and hydrogen gas.
  • the allyl alcohol and the catalyst are added into any selected reaction vessel, such as common or pressure-resistant vessels used in the field.
  • the gas containing carbon monoxide gas and the gas containing hydrogen gas may be separately supplied to the reaction vessel, or may be supplied to the reaction vessel in the state of a mixed gas of the gas containing carbon monoxide gas and the gas containing hydrogen gas. may be supplied to
  • the gas containing carbon monoxide gas supplied to the reaction vessel may be only carbon monoxide gas, or may contain nitrogen gas, an inert gas such as argon, etc., in addition to carbon monoxide gas. .
  • the gas containing hydrogen gas to be supplied to the reaction vessel may be hydrogen gas only, or may contain inert gas such as nitrogen gas and argon in addition to hydrogen gas.
  • the gas containing carbon monoxide gas and the gas containing hydrogen gas preferably do not contain oxidizing gases such as air and oxygen.
  • the carbon monoxide gas and hydrogen gas used in the hydroformylation reaction of allyl alcohol may be those generated by thermal decomposition of waste plastics and/or biomass.
  • the pressure of the mixed gas containing carbon monoxide gas and hydrogen gas in the reaction vessel for the hydroformylation reaction is not particularly limited, but is preferably in the range of 0.1 to 10 MPaG (gauge pressure). It is more preferably in the range of 1 to 5.0 MPaG (gauge pressure), more preferably in the range of 0.5 to 2.5 MPaG (gauge pressure).
  • the pressure of the mixed gas in the reaction vessel was consumed by the hydroformylation reaction so as to be maintained within the range of 0.5 to 2.5 MPaG from the start to the end of the hydroformylation reaction. It is particularly preferable to carry out while supplementing with carbon monoxide gas and hydrogen gas.
  • the pressure of the mixed gas in the reaction vessel during the hydroformylation reaction is 0.1 MPaG or more, the hydroformylation reaction proceeds easily.
  • the pressure of the mixed gas in the reaction vessel is preferably high in order to promote the hydroformylation reaction.
  • 4-HBA can be produced using an industrially suitable apparatus and method.
  • the catalyst promotes the hydroformylation reaction, so even if the pressure of the mixed gas is 10 MPaG or less, a sufficient reaction rate can be obtained and 4-HBA can be produced with a sufficient yield.
  • the partial pressure ratio of carbon monoxide gas and hydrogen gas (hydrogen gas/carbon monoxide gas) in the reaction vessel in which the hydroformylation reaction is carried out is preferably in the range of 1/10 to 10/1, preferably 1/5 to 5. /1, more preferably 1/2 to 2/1.
  • the partial pressure ratio (hydrogen gas/carbon monoxide gas) of carbon monoxide gas and hydrogen gas in the reaction vessel during the hydroformylation reaction is in the range of 1/10 to 10/1, the progress of the hydroformylation reaction A sufficient reaction rate is obtained by supplying the necessary hydrogen gas and carbon monoxide gas.
  • the partial pressure ratio (hydrogen gas/carbon monoxide gas) is 2/1 or less, it is possible to prevent the hydrogen reduction reaction from proceeding and lowering the yield of 4-HBA.
  • rhodium catalyst As the rhodium catalyst used in the method for producing 4-HBA of the present embodiment, one that can be used as an olefin hydroformylation catalyst can be used. Only one rhodium catalyst may be used, or two or more rhodium catalysts may be used.
  • rhodium catalysts include rhodium oxides such as RhO, Rh 2 O 3 and RhO 2 , rhodium salts such as rhodium nitrate, rhodium sulfate, rhodium chloride, rhodium bromide, rhodium iodide and rhodium acetate, and Rhodium complexes such as acetylacetonatodicarbonylrhodium, acetylacetonatocarbonyl(triphenylphosphine)rhodium, hydridocarbonyltris(triphenylphosphine)rhodium(I), and Rh4 (CO) 12 , Rh6 (CO) 16 , etc.
  • rhodium oxides such as RhO, Rh 2 O 3 and RhO 2
  • rhodium salts such as rhodium nitrate, rhodium sulfate, r
  • rhodium complexes are preferred, and hydridocarbonyltris(triphenylphosphine)rhodium (I) is particularly preferred, in terms of catalytic activity, solubility in solvents, and ease of handling as a catalyst.
  • the amount of the rhodium catalyst used is not particularly limited, but it is preferably an amount such that the ratio of rhodium atoms is 0.01 mol% to 5 mol%, and the amount is 0.05 mol% to 2 mol%, relative to allyl alcohol. is more preferable, and an amount of 0.1 mol % to 1 mol % is even more preferable. Sufficient hydroformylation activity can be obtained when the proportion of rhodium atoms is 0.01 mol % or more. Further, when the proportion of rhodium atoms is 5 mol % or less, it is economical because loss during recovery of the rhodium catalyst can be suppressed.
  • the bidentate phosphine ligand used in the method for producing 4-HBA of the present embodiment is at least one selected from the above formulas (1) to (3). Only one type of bidentate phosphine ligand may be used, or two or more types may be used.
  • the value (ratio) of 4-HBA/HMPA is arbitrarily selected as required. For example, it may be 10.0 or more, 11.0 or more, 12.0 or more, 13.0 or more, 14.0 or more, or 15.0 or more, but it is not limited to these examples.
  • trans-4,5-bis(diphenylphosphinomethyl)-2,2 a bidentate phosphine ligand without an Xantphos skeleton conventionally used in hydroformylation reactions of allyl alcohol
  • DIOP -dimethyl-1,3-dioxolane
  • Ar in formulas (1) to (3) is an aryl group which may have a substituent.
  • the aryl group which may have a substituent is not particularly limited as long as it is an aromatic hydrocarbon group. Therefore, the aryl group which may have a substituent may be a monocyclic aromatic group or a polycyclic aromatic group.
  • the aryl groups, which may have four substituents, contained in one molecule of the bidentate phosphine ligand may be different, or may be partially or wholly the same, which facilitates production. Therefore, it is preferable that all are the same.
  • An optionally substituted aryl group may have one substituent or two or more substituents. When an aryl group has two or more substituents, all those substituents may be different, or some or all of them may be the same. When the aryl group which may have a substituent has a substituent, the bonding position of the substituent in the aryl group is not particularly limited.
  • Substituents possessed by the optionally substituted aryl group include, for example, linear or branched alkyl groups, dialkylamino groups, cyano groups, nitro groups, amino groups, hydroxy groups, halogenated alkyl groups, and the like. is mentioned.
  • a linear or branched alkyl group and/or a dialkylamino group function as an electron-donating group and the stability of the aryl group, which may have a substituent, is improved. Especially preferred.
  • the linear or branched alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms.
  • Examples of linear or branched alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group and tert-butyl group. and a methyl group is preferred in terms of ease of production.
  • the dialkylamino group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms.
  • Specific examples of the dialkylamino group include a dimethylamino group, a diethylamino group, a methylethylamino group, and the like, and the dimethylamino group is preferred in terms of ease of production.
  • the aryl group which may have a substituent is preferably a phenyl group or a phenyl group having a substituent.
  • Ar in the formulas (1) to (3) gives a reaction product with a large ratio of the amount of 4-HBA to the amount of HMPA (4-HBA/HMPA), so the following formulas (a) to (e) is more preferred, and formula (b) is even more preferred because 4-HBA can be produced in high yield.
  • "---" in each formula means a bond with the P atom.
  • the bidentate phosphine ligand is the difference in activation energy between 1,2 insertion and 2,1 insertion in the hydroformylation reaction calculated by the density functional theory described later (hereinafter simply referred to as "activation energy difference" is preferably 4.2 kcal/mol or more, more preferably 4.5 kcal/mol or more, even more preferably 5.0 kcal/mol or more, Larger is better.
  • activation energy difference is preferably 4.2 kcal/mol or more, more preferably 4.5 kcal/mol or more, even more preferably 5.0 kcal/mol or more, Larger is better.
  • the bidentate phosphine ligand has a difference in activation energy of 4.2 kcal/mol or more, the selectivity of 4-HBA becomes higher, and the amount of 4-HBA produced and the amount of HMPA produced increase. A reaction product with a greater ratio of (4-HBA/HMPA) is obtained. Therefore, the yield and selectivity of 4-HBA in the method for producing 4-H
  • the 1,2-insertion in the hydroformylation reaction of allyl alcohol means that, as shown in the following reaction formula, allyl alcohol (olefin) is Rh- It is a reaction pathway in which 4-HBA is produced by inserting between H bonds to form a linear rhodium complex.
  • 2,1-insertion is a reaction in which allyl alcohol is inserted between the Rh—H bonds of a rhodium catalyst to form a branched rhodium complex, and as shown in the reaction formula below, it is a reaction pathway in which HMPA is produced. be.
  • the difference between the activation energy of 1,2-insertion and the activation energy of 2,1-insertion (2,1-insertion - 1,2-insertion) is the ratio of the amount of 4-HBA produced to the amount of HMPA produced (4-
  • HBA/HMPA There is a correlation with HBA/HMPA.
  • 4-HBA/HMPA tends to increase as the activation energy for 1,2 insertion is smaller and the activation energy for 2,1 insertion is larger. Therefore, 4-HBA/HMPA can be predicted by obtaining the difference in activation energy between 1,2-insertion and 2,1-insertion in the hydroformylation reaction of allyl alcohol calculated by the density functional theory.
  • the difference in activation energy is a value that does not consider side reactions associated with isomerization of allyl alcohol.
  • the ratio of the amount of 4-HBA produced to the amount of HMPA produced (4-HBA/HMPA) may be slightly affected by side reactions associated with isomerization of allyl alcohol.
  • the activation energy for 1,2 insertion and the activation energy for 2,1 insertion in the hydroformylation reaction of allyl alcohol when a rhodium catalyst having an Rh—H bond is used is Change. Therefore, the difference in activation energy can be used as an index for selecting the bidentate phosphine ligand used in the hydroformylation reaction of allyl alcohol.
  • the bidentate phosphine ligand is used in an amount of 0.5 mol to 50 mol, preferably 1.5 mol to 20 mol, more preferably 2.5 mol to 50 mol, per 1 mol of rhodium atoms contained in the rhodium catalyst. It ranges from 0 mol to 10 mol.
  • the amount of the bidentate phosphine ligand to be used is 50 mol or less, a sufficient effect of improving the reaction rate of the hydroformylation reaction can be obtained, which is economically advantageous.
  • the selectivity of 4-HBA becomes higher, and the ratio of the amount of 4-HBA produced to the amount of HMPA produced (4-HBA/HMPA ) is obtained.
  • the bidentate phosphine ligand used in the method for producing 4-HBA of the present embodiment can be produced by appropriately combining known methods.
  • a bidentate phosphine ligand may be used by purchasing a commercially available product.
  • solvent In the method for producing 4-HBA of the present embodiment, it is preferable to carry out the hydroformylation reaction of allyl alcohol in a solvent.
  • the solvent it is preferable to use a solvent that is inert to the starting material, allyl alcohol, and the reaction product.
  • solvents tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, cyclohexanone, ethyl acetate, n-propyl acetate, n-butyl acetate, n-heptane, acetonitrile, benzene, toluene, xylene, N-methyl-2 -pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide and the like.
  • aromatic compounds such as benzene, toluene, and xylene are particularly preferable because they are highly separable from water.
  • water is added to the reaction solution after the hydroformylation reaction of allyl alcohol, and the desired 4-HBA is added to the aqueous layer side. can efficiently extract reaction products containing
  • the amount of the solvent to be used is 1 to 1 by weight with respect to allyl alcohol, since the separation of the organic layer and the aqueous layer is improved in the operation of adding water to the reaction solution after the hydroformylation reaction and separating the layers. It is preferably 50 times, more preferably 5 to 30 times, even more preferably 5 to 20 times.
  • reaction temperature in the hydroformylation reaction of allyl alcohol is preferably 40 to 100°C, more preferably 40 to 80°C, even more preferably 50 to 70°C.
  • reaction temperature is 40° C. or higher, 4-HBA can be efficiently produced without extremely slowing down the reaction rate. Further, when the reaction temperature is 100° C. or less, the selectivity of 4-HBA is not lowered due to excessively high reaction rate, and the stability of the catalyst is not impaired.
  • the reaction time in the hydroformylation reaction of allyl alcohol is preferably 0.5 to 10 hours, more preferably 0.5 to 5 hours, even more preferably 1 to 3 hours.
  • a reaction time of 0.5 to 10 hours ensures a high yield and good productivity.
  • a pressure-resistant reactor such as an autoclave can be used.
  • 4-HBA obtained in the hydroformylation step may be further purified. Alternatively, it may be stored as it is or used as a raw material for other production without purification.
  • the obtained 4-HBA may be used as it is in a method for producing gamma-butyrolactone and the like without being purified.
  • High yield may mean, for example, 70% or more, 80% or more, 85% or more, 90% or more, 95% or more, or 97% or more, but is limited to these examples only. not.
  • the method for producing gamma-butyrolactone (GBL) of the present embodiment includes the steps of producing 4-HBA by the method for producing 4-HBA of the present embodiment, and the steps of contacting the produced 4-HBA with a copper-containing catalyst. including.
  • 4-HBA is brought into contact with a copper-containing catalyst, and 4-HBA is dehydrogenated to produce GBL.
  • the method for producing GBL of the present embodiment includes a step of producing 4-HBA by the method for producing 4-HBA of the present embodiment. Therefore, the reaction product containing 4-HBA produced in the process of producing 4-HBA has a low HMPA content, and the ratio of the amount of 4-HBA produced to the amount of HMPA produced (4-HBA/HMPA) is large. Therefore, even if a reaction product containing 4-HBA is directly used in a reaction for producing GBL without purification, GBL can be produced at a high yield and GBL can be produced efficiently.
  • High yield may mean, for example, 70% or more, 80% or more, 85% or more, 90% or more, 95% or more, or 97% or more, but is limited to these examples only. not.
  • highly pure 4-HBA obtained by further purifying the reaction product containing 4-HBA produced by the method for producing 4-HBA of the present embodiment It may be used in reactions to produce GBL.
  • the reaction product containing 4-HBA produced in the step of producing 4-HBA has a large ratio of 4-HBA/HMPA, so purification is easy.
  • a method for purifying the reaction product containing 4-HBA for example, a known method such as a method of separating each component by distillation utilizing the boiling point difference of each component contained in the reaction product can be used. .
  • the copper-containing catalyst that is contacted with 4-HBA contains copper as the active metal.
  • the copper-containing catalyst preferably further contains an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum.
  • the copper-containing catalyst may further contain other metal oxides in addition to copper and oxides of at least one metal element selected from the group consisting of zinc, zirconium and aluminum.
  • chromium oxides are preferable.
  • Dehydrogenation reaction of 4-HBA when the copper-containing catalyst contains an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum, and an oxide of chromium in addition to metallic copper. can be expected to activate the reaction that produces GBL by lowering the activation barrier of
  • the copper-containing catalyst contains chromium oxide, it suppresses the side reaction that produces 1,4-butanediol produced by the reduction of 4-HBA and other impurities, and improves the selectivity of GBL. An improvement effect can be expected.
  • the copper-containing catalyst used in the dehydrogenation reaction of 4-HBA more preferably contains chromium oxide.
  • the copper-containing catalyst preferably consists of copper, at least one selected from the group consisting of zinc, zirconium and aluminum, chromium, and oxygen.
  • copper-containing catalysts containing chromium oxides include catalysts containing zinc and chromium oxides and metallic copper (CuZnCrOx); catalysts containing zirconium and chromium oxides and metallic copper (CuZrCrOx); catalysts containing oxides of aluminum and chromium and copper metal (CuAlCrOx); catalysts containing oxides of zinc, zirconium and chromium and copper metal (CuZnZrCrOx); oxidation of zinc, aluminum and chromium oxides of zirconium, aluminum and chromium, and copper metal (CuZrAlCrOx); oxides of zinc, zirconium, aluminum, and chromium, and copper metal catalyst (CuZnZrAlCrOx) and the like.
  • x representing the proportion of
  • each metal of copper, zinc, zirconium, aluminum, and chromium in the catalyst containing copper can be arbitrarily selected. Since the content of each metal in the catalyst containing copper can further promote the reaction that produces GBL, it is 1.0 mol or less of zinc, 5.0 mol or less of zirconium, and 5.0 mol or less of aluminum per 1 mol of copper. mol or less, preferably 0.5 mol or less of chromium.
  • Zinc in the copper-containing catalyst is preferably 1.0 mol or less, more preferably 0.005 to 0.4 mol, and 0.01 to 0.3 mol, relative to 1 mol of copper. is more preferably 0.01 to 0.2 mol, and particularly preferably 0.05 to 0.1 mol.
  • Zirconium in the copper-containing catalyst is preferably 5.0 mol or less, more preferably 0.01 to 1.0 mol, and 0.05 to 0.4 mol, per 1 mol of copper. is more preferably 0.05 to 0.3 mol, and particularly preferably 0.1 to 0.2 mol.
  • Aluminum in the catalyst containing copper is preferably 5.0 mol or less, more preferably 0.01 to 3.0 mol, and 0.05 to 1.0 mol, per 1 mol of copper. is more preferably 0.1 to 0.8 mol, and particularly preferably 0.2 to 0.6 mol.
  • the amount of chromium in the catalyst containing copper is preferably 0.5 mol or less, more preferably 0.01 to 0.4 mol, more preferably 0.03 to 0.3 mol, per 1 mol of copper. more preferably 0.05 to 0.2 mol, more preferably 0.07 to 0.15 mol.
  • a method for producing a copper-containing catalyst a known method such as a coprecipitation method, a pore filling method, or a hydrothermal synthesis method can be used.
  • Step of producing gamma-butyrolactone In the step of producing GBL by contacting 4-HBA with a copper-containing catalyst in the method for producing GBL of the present embodiment (hereinafter sometimes referred to as “GBL production step”), an aqueous solution of 4-HBA is It is preferable to vaporize and bring the vaporized 4-HBA into contact with the copper-containing catalyst.
  • the aqueous solution of 4-HBA it is preferable to use an aqueous solution containing 1 to 30% by mass of 4-HBA, more preferably 5 to 25% by mass, still more preferably 10 to 20% by mass.
  • This step may include a step of preparing or adjusting an aqueous solution of 4-HBA having a preferred concentration as described above.
  • the liquid hourly space velocity (LHSV) in terms of raw materials is preferably 1.6 hr -1 or less in order to maintain the yield of GBL. It is more preferable to make it 0.4 hr ⁇ 1 or less.
  • the lower limit of the liquid hourly space velocity (LHSV) can be selected as required, and may be, for example, 0.1 hr ⁇ 1 or more, but is not limited to this.
  • reaction temperature is higher than 200° C.
  • 4-HBA exists in the gaseous phase during the reaction, promoting the reaction to produce GBL and producing GBL at a higher yield.
  • the reaction temperature is preferably 400° C. or lower because the safety of the reaction to generate GBL is further enhanced.
  • the reaction temperature is more preferably 210 to 370°C, even more preferably 230 to 360°C, and particularly preferably 260 to 350°C.
  • the GBL production process can be performed, for example, using a fixed-bed gas-phase reactor having a reaction vessel filled with a copper-containing catalyst.
  • GBL obtained in the GBL manufacturing process may be purified by a general method such as distillation under reduced pressure.
  • GBL obtained in the GBL production process can be preferably used as a raw material for N-methyl-2-pyrrolidone.
  • the method for producing N-methyl-2-pyrrolidone (NMP) of the present embodiment includes a step of producing GBL by the method for producing GBL of the present embodiment, and a step of reacting the produced GBL with monomethylamine. .
  • the step of reacting GBL and monomethylamine in the method for producing NMP of the present embodiment is, for example, a step of producing NMP by putting GBL, monomethylamine, and a solvent into a reaction vessel and causing a liquid phase reaction. be able to.
  • a reaction vessel a reaction vessel made of stainless steel can be preferably used.
  • Alcohols or water can be used as the solvent, preferably water.
  • the molar ratio of monomethylamine to 1 mol of GBL used as a raw material is preferably in the range of 1 to 10, more preferably in the range of 1 to 5, and even more preferably. It ranges from 1 to 1.5.
  • the molar ratio of monomethylamine to 1 mol of GBL is in the range of 1 to 10, NMP can be produced in high yield.
  • the reaction between GBL and monomethylamine may be carried out in the air or in an inert gas atmosphere such as a nitrogen gas atmosphere or an argon atmosphere, preferably in a nitrogen gas atmosphere.
  • the reaction between GBL and monomethylamine is preferably carried out at a reaction temperature of 100 to 400°C, more preferably 150 to 350°C, still more preferably 200 to 300°C.
  • the reaction temperature is 100 to 400° C.
  • the reaction time of GBL and monomethylamine is preferably 0.1 to 10 hours, more preferably 0.5 to 7 hours, still more preferably 1 to 5 hours.
  • a reaction time of 0.1 to 10 hours ensures a high yield and good productivity.
  • High yield may mean, for example, 70% or more, 80% or more, 85% or more, 90% or more, 95% or more, or 97% or more, but is limited to these examples only. not.
  • the reaction solution containing NMP produced in the step of reacting GBL and monomethylamine may be purified by a general method such as distillation under reduced pressure.
  • the NMP manufacturing method of this embodiment includes a step of manufacturing a GBL by the GBL manufacturing method of this embodiment. Therefore, GBL can be efficiently produced, and the produced GBL can be used to efficiently produce NMP, which is an industrially useful compound.
  • the reaction vessel is filled with a mixed gas of carbon monoxide gas and hydrogen gas and the pressure is 2.0 MPaG (gauge pressure) (carbon monoxide gas partial pressure 1.0 MPaG (gauge pressure), hydrogen gas partial pressure
  • the pressure was adjusted to 1.0 MPaG (gauge pressure), and the reaction was carried out at a reaction temperature of 65°C for 3 hours while stirring the inside of the reaction vessel.
  • 30 g of water was added to the reaction solution for extraction, and a liquid separation operation was performed to recover the aqueous layer, thereby obtaining an aqueous solution containing a reaction product containing 4-HBA.
  • Example 2 ⁇ Production of bidentate phosphine ligand> 4,6-Bis(diphenylphosphino)phenoxazine (1 g, 1.81 mmol) and 20 mL of dehydrated tetrahydrofuran were placed in a 200-mL two-necked flask purged with nitrogen, and 0.1 g of sodium hydride was added. It was refluxed for 1 hour at a temperature of °C. Further, a mixed solution of 0.62 g of benzyl chloride and 5 mL of tetrahydrofuran was added, and the mixture was refluxed at a temperature of 70° C. for 16 hours for reaction.
  • a bidentate phosphine ligand As a bidentate phosphine ligand, 0.1496 g of a bidentate phosphine ligand represented by formula (4) (4 mol per 1 mol of rhodium atoms contained in the rhodium catalyst) was used, and the reaction time was 2 hours. An aqueous solution containing a reaction product containing 4-HBA was obtained in the same manner as in Example 1, except that
  • chlorodiphenylphosphine (4.93 ml, 27.4 mmol) was added while maintaining the temperature at 0°C. Then, the mixture was stirred at room temperature for 3 hours or longer to react. Dichloromethane and water were added to the reaction solution to separate the layers. After the organic layer was washed with water and dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was washed with hexane. Then, by recrystallizing with dichloromethane and hexane, 2.5 g of the compound represented by the following formula (6) was obtained as a pale yellow solid. The yield of the compound represented by formula (6) was 47%.
  • bis(3,5-dimethylphenyl)chlorophosphine (excess amount) represented by the formula (7) was added while maintaining the temperature at 0°C. After that, the mixture was stirred at room temperature for 16 hours to react. Dichloromethane and water were added to the reaction solution to separate the layers. After the organic layer was washed with water and dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain a solid reaction product.
  • the calculation time for the activation energy of 1,2 insertion and the activation energy of 2,1 insertion varies depending on the type and molecular size of the bidentate phosphine ligand. Therefore, depending on the type and molecular size of the bidentate phosphine ligand, the computational cost may become enormous. For this reason, in the present invention, the Gibbs free energy of the transition state was calculated using the calculation technique described below while balancing the trade-off between calculation time and calculation accuracy.
  • the yield of 4-HBA shown in Table 1 is the sum of the yield of 4-HBA and the yield of 2-hydroxytetrahydrofuran. Since 4-HBA in the aqueous solution is in equilibrium with 2-hydroxytetrahydrofuran, the yield of 2-hydroxytetrahydrofuran contained in the aqueous solution containing the reaction product was also converted into the yield of 4-HBA.
  • the 1,2-insertion activation energy and the 2,1-insertion activation energy calculated by the density functional theory difference was 4.2 kcal/mol or more.
  • the difference in activation energy was less than 4.2 kcal/mol in spite of using a bidentate phosphine ligand. Therefore, the magnitude relationship of the calculated value of the activation energy difference in the 4-HBA production methods of Examples 1 to 5 and Comparative Example 2 is the same as that in the 4-HBA production methods of Examples 1 to 5 and Comparative Example 2. This coincided with the magnitude relationship of the experimental results for 4-HBA/HMPA. From this, it can be confirmed that 4-HBA/HMPA tends to increase as the difference in activation energy between 1,2 insertion and 2,1 insertion calculated by the density functional theory increases. The validity of the calculation method was confirmed.
  • GHSV gas hourly space velocity
  • LHSV liquid hourly space velocity in terms of raw material
  • the conversion of 4-HBA was 98.5%
  • the GBL yield was 97.5%
  • the GBL selectivity was 99.0%.
  • the reaction product containing 4-HBA produced in Example 1 can produce GBL at a high yield even if it is used as it is for the reaction for producing GBL without purification, and GBL can be produced efficiently. I have confirmed that it is possible. This is because the 4-HBA/HMPA of the reaction product containing 4-HBA produced in Example 1 is large.
  • NMP N-methyl-2-pyrrolidone
  • the resulting reaction solution containing NMP was analyzed using HPLC to determine the conversion rate of GBL and the yield of NMP. As a result, the conversion rate of GBL was 98.4% and the yield of NMP was 97.9%. From this, it was confirmed that NMP can be efficiently produced at a high yield using GBL produced using the reaction product containing 4-HBA produced in Example 1 as a starting material.
  • the present invention provides a method for producing 4-HBA that produces a small amount of HMPA and yields a large 4-HBA/HMPA reaction product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyrrole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention provides a method for producing 4-hydroxybutyl aldehyde, the method comprising a step in which an allyl alcohol is subjected to a hydroformylation reaction together with a carbon monoxide gas and a hydrogen gas in the presence of a rhodium catalyst and a catalyst that contains at least one bidentate phosphine ligand which is selected from among formulae (1) to (3) (wherein Ar represents an optionally substituted aryl group).

Description

4-ヒドロキシブチルアルデヒドの製造方法、ガンマブチロラクトンの製造方法、N-メチル-2-ピロリドンの製造方法、化合物Method for producing 4-hydroxybutyraldehyde, method for producing gamma-butyrolactone, method for producing N-methyl-2-pyrrolidone, compound
 本発明は、4-ヒドロキシブチルアルデヒドの製造方法、これを用いたガンマブチロラクトンの製造方法、およびN-メチル-2-ピロリドンの製造方法、アリルアルコールのヒドロホルミル化による4-ヒドロキシブチルアルデヒドの製造に好適に用いられる触媒を構成する配位子化合物に関する。 The present invention is suitable for producing 4-hydroxybutyraldehyde, producing gamma-butyrolactone using the same, producing N-methyl-2-pyrrolidone, and producing 4-hydroxybutyraldehyde by hydroformylation of allyl alcohol. It relates to a ligand compound that constitutes a catalyst used in
 4-ヒドロキシブチルアルデヒド(4-HBA)は、様々な化合物の原料として使用できる有用な化合物である。例えば、4-HBAを水素還元反応させることによって、1,4-ブタンジオール(1,4-BDO)が得られる。1,4-BDOは、ポリブチレンテレフタレート、ウレタン樹脂などの原料として有用である。また、4-HBAまたは1,4-BDOを脱水素反応させることによって、ガンマブチロラクトン(GBL)を製造できる。GBLは、電子材料用途の洗浄剤として、工業的に広く使用されている。また、GBLとモノメチルアミンとの反応によって、N-メチル-2-ピロリドン(NMP)へ誘導することも可能である。NMPは、エンジニアリングプラスチックと呼ばれる様々な樹脂に対して高い溶解性を示す。このため、NMPは、電子材料分野で用いられる洗浄剤用途など、工業的に広く使用されている。  4-Hydroxybutyraldehyde (4-HBA) is a useful compound that can be used as a raw material for various compounds. For example, 1,4-butanediol (1,4-BDO) can be obtained by subjecting 4-HBA to a hydrogen reduction reaction. 1,4-BDO is useful as a raw material for polybutylene terephthalate, urethane resin, and the like. Also, gamma-butyrolactone (GBL) can be produced by dehydrogenating 4-HBA or 1,4-BDO. GBL is widely used industrially as a cleaning agent for electronic materials. It is also possible to derive N-methyl-2-pyrrolidone (NMP) by reacting GBL with monomethylamine. NMP exhibits high solubility in various resins called engineering plastics. For this reason, NMP is widely used industrially, such as for cleaning agents used in the field of electronic materials.
 4-HBAは、アリルアルコールをヒドロホルミル化反応させることによって製造できる。オレフィン性化合物を、ロジウム触媒と配位子とを用いてヒドロホルミル化する場合、使用するオレフィン性化合物および配位子の種類によって、反応生成物中の直鎖オキソ化合物および分岐オキソ化合物の選択率および収率が大きく異なる。このことは、アリルアルコールのヒドロホルミル化反応においても同様である。ロジウム触媒と配位子とを用いてアリルアルコールをヒドロホルミル化反応させて4-HBAを製造する場合、直鎖型構造を有する4-HBAが生成するとともに、副生物として分岐型構造を有する3-ヒドロキシ-2-メチルプロピオンアルデヒド(HMPA)が生成し、さらにプロピオンアルデヒドなどの低沸点の副生物も生成する。 4-HBA can be produced by hydroformylation of allyl alcohol. When an olefinic compound is hydroformylated using a rhodium catalyst and a ligand, the selectivity of linear and branched oxo compounds in the reaction product and the Yields are very different. This also applies to the hydroformylation reaction of allyl alcohol. When allyl alcohol is hydroformylated using a rhodium catalyst and a ligand to produce 4-HBA, 4-HBA having a linear structure is produced, and 3-HBA having a branched structure is produced as a by-product. Hydroxy-2-methylpropionaldehyde (HMPA) is produced, as well as low boiling by-products such as propionaldehyde.
 オレフィン性化合物をロジウム触媒と配位子を用いてヒドロホルミル化する技術としては、例えば、特許文献1~特許文献3、非特許文献1に記載の技術がある。
 特許文献1には、ロジウムを含むヒドロホルミル化触媒の存在下にアリルアルコールを一酸化炭素および水素と反応させることにより、ヒドロキシブチルアルデヒド類となし、該ヒドロキシブチルアルデヒド類に水素添加してブタンジオール類を合成する方法が記載されている。具体的には、触媒として、ヒドリドカルボニルトリス(トリフェニルホスフィン)ロジウム(I)とトリフェニルホスフィン(単座配位子)とを用いて、アリルアルコールと一酸化炭素および水素とを反応させて4-HBAを含む生成物を生成したこと、生成物に水素添加して1,4-BDOが生成したことが記載されている。
Techniques for hydroformylating an olefinic compound using a rhodium catalyst and a ligand include, for example, the techniques described in Patent Documents 1 to 3 and Non-Patent Document 1.
Patent Document 1 discloses that allyl alcohol is reacted with carbon monoxide and hydrogen in the presence of a rhodium-containing hydroformylation catalyst to form hydroxybutyraldehydes, and the hydroxybutyraldehydes are hydrogenated to produce butanediols. A method for synthesizing is described. Specifically, using hydridocarbonyl tris(triphenylphosphine) rhodium (I) and triphenylphosphine (monodentate ligand) as catalysts, allyl alcohol is reacted with carbon monoxide and hydrogen to obtain 4- It is described that a product containing HBA was produced and that the product was hydrogenated to produce 1,4-BDO.
 特許文献2には、ロジウム錯化合物および三置換ホスフィンの存在下にアリルアルコールをヒドロホルミル化する方法が記載されている。具体的には、ロジウム錯化合物、トリフェニルホスフィン(単座配位子)および1,4-ビス(ジフェニルホスフィノ)ブタン(二座配位子)を用いて、アリルアルコールをヒドロホルミル化することが記載されている。 Patent Document 2 describes a method for hydroformylating allyl alcohol in the presence of a rhodium complex compound and a trisubstituted phosphine. Specifically, it describes the hydroformylation of allyl alcohol using a rhodium complex, triphenylphosphine (monodentate ligand) and 1,4-bis(diphenylphosphino)butane (bidentate ligand). It is
 特許文献3には、ロジウム錯体触媒の存在下にアリルアルコールをヒドロホルミル化する反応において、配位子として光学活性を有する有機ジホスフィン化合物、及び特定の有機ジホスフィン化合物を用いることが記載されている。特許文献3の実施例6には、触媒としてロジウム-ヒドリド(カルボニル)トリ(トリフェニルホスフィン)を、配位子としてトランス-4,5-ビス(ジフェニルホスフィノメチル)-2,2-ジメチル-1,3-ジオキソラン(DIOP)、及びビス(ジフェニルホスフィノ)ペンタン、ジフェニルメチルホスフィンを用いて、アリルアルコールをヒドロホルミル化する反応が記載されている。特許文献3の表2には、実施例6における4-HBA選択率が84.8%、HMPA選択率が13.8%であることが記載されている。 Patent Document 3 describes the use of an optically active organic diphosphine compound and a specific organic diphosphine compound as ligands in a reaction to hydroformylate allyl alcohol in the presence of a rhodium complex catalyst. In Example 6 of Patent Document 3, rhodium-hydride(carbonyl)tri(triphenylphosphine) as a catalyst and trans-4,5-bis(diphenylphosphinomethyl)-2,2-dimethyl- Hydroformylations of allyl alcohols using 1,3-dioxolane (DIOP) and bis(diphenylphosphino)pentane, diphenylmethylphosphine have been described. Table 2 of Patent Document 3 describes that the 4-HBA selectivity in Example 6 was 84.8% and the HMPA selectivity was 13.8%.
 非特許文献1には、ヒドロホルミル化反応の触媒として、ロジウム錯化合物とキサンテン骨格を有するホスフィン配位子とを用いた場合の計算予測が記載されている。非特許文献1では、ヒドロホルミル化反応させるモデル化合物として、単純なオレフィンである1-オクテンを使用している。非特許文献1には、触媒としてキサンテン骨格を有するホスフィン配位子を用いた場合、直鎖化合物/分岐化合物の生成比が大きくなる予測が記載されている。 Non-Patent Document 1 describes a calculation prediction when using a rhodium complex compound and a phosphine ligand having a xanthene skeleton as catalysts for the hydroformylation reaction. Non-Patent Document 1 uses a simple olefin, 1-octene, as a model compound for hydroformylation. Non-Patent Document 1 describes a prediction that when a phosphine ligand having a xanthene skeleton is used as a catalyst, the production ratio of linear compounds/branched compounds increases.
特開昭51-29412号公報JP-A-51-29412 特開昭54-106407号公報JP-A-54-106407 特開平6-279345号公報JP-A-6-279345
 しかしながら、従来の技術を用いて、アリルアルコールをヒドロホルミル化反応させて4-ヒドロキシブチルアルデヒド(4-HBA)を製造する場合、目的物である4-HBAの生成量と、副生物である3-ヒドロキシ-2-メチルプロピオンアルデヒド(HMPA)の生成量との比(4-HBA/HMPA)を、より大きくすることが要求されている。HMPAは、4-HBAと物性が類似しており、沸点も近い。したがって、反応生成物中の4-HBAとHMPAとを分離するには、煩雑な操作が必要である。このため、4-HBAを製造する工業的プロセスを確立するためには、アリルアルコールのヒドロホルミル化反応において、副生するHMPAの生成量を少なくし、反応生成物中の4-HBAの生成量とHMPAの生成量との比(4-HBA/HMPA)をより大きくすることが望ましい。 However, when conventional techniques are used to hydroformylate allyl alcohol to produce 4-hydroxybutyraldehyde (4-HBA), the amount of the target 4-HBA produced and the by-product 3- A greater ratio (4-HBA/HMPA) to the amount of hydroxy-2-methylpropionaldehyde (HMPA) produced is required. HMPA is similar in physical properties to 4-HBA and has a similar boiling point. Therefore, complicated operations are required to separate 4-HBA and HMPA in the reaction product. Therefore, in order to establish an industrial process for producing 4-HBA, in the hydroformylation reaction of allyl alcohol, the amount of HMPA produced as a by-product should be reduced, and the amount of 4-HBA produced in the reaction product should be reduced. It is desirable to increase the ratio (4-HBA/HMPA) to the amount of HMPA produced.
 非特許文献1には、1-オクテンをヒドロホルミル化反応させる触媒として、キサンテン骨格を有するホスフィン配位子を用いた場合、直鎖化合物/分岐化合物の生成比が大きくなる予測が記載されている。しかし、アリルアルコールのように置換基を有する化合物のヒドロホルミル化反応は、1-オクテンのような単純オレフィンのヒドロホルミル化反応と、直鎖化合物/分岐化合物の選択性が大きく異なる。非特許文献1には、アリルアルコールのヒドロホルミル化反応について予測したことの記載はない。 Non-Patent Document 1 describes the prediction that when a phosphine ligand having a xanthene skeleton is used as a catalyst for the hydroformylation reaction of 1-octene, the production ratio of linear compounds/branched compounds will increase. However, the hydroformylation reaction of a compound having a substituent such as allyl alcohol differs greatly from the hydroformylation reaction of a simple olefin such as 1-octene in the linear/branched compound selectivity. Non-Patent Document 1 does not describe predictions about the hydroformylation reaction of allyl alcohol.
 本発明は、上記事情に鑑みてなされたものであり、HMPAの生成量が少なく、4-HBAの生成量とHMPAの生成量との比(4-HBA/HMPA)の大きい反応生成物が得られる4-HBAの製造方法を提供することを目的とする。
 また、本発明は、アリルアルコールのヒドロホルミル化反応において、4-HBAの生成量とHMPAの生成量との比(4-HBA/HMPA)を大きくできる触媒を構成する配位子化合物を提供することを目的とする。
The present invention has been made in view of the above circumstances, and a reaction product is obtained in which the amount of HMPA produced is small and the ratio of the amount of 4-HBA produced to the amount of HMPA produced (4-HBA/HMPA) is large. It is an object of the present invention to provide a method for producing 4-HBA that can be obtained.
The present invention also provides a ligand compound that constitutes a catalyst capable of increasing the ratio of the amount of 4-HBA produced to the amount of HMPA produced (4-HBA/HMPA) in the hydroformylation reaction of allyl alcohol. With the goal.
 また、本発明は、4-HBAを製造する工程において製造した4-HBAを含む反応生成物を、精製することなくそのままガンマブチロラクトン(GBL)を生成させる反応に用いても、高い収率でGBLを製造でき、効率よくGBLを製造できるGBLの製造方法を提供することを目的とする。
 また、本発明は、効率よくGBLを製造する工程を含むことにより、効率よくN-メチル-2-ピロリドン(NMP)を製造できるNMPの製造方法を提供することを目的とする。
In addition, the present invention provides a high yield of GBL even when the reaction product containing 4-HBA produced in the process of producing 4-HBA is directly used in a reaction for producing gamma-butyrolactone (GBL) without purification. It is an object of the present invention to provide a GBL manufacturing method capable of manufacturing a GBL efficiently.
Another object of the present invention is to provide a method for producing NMP that can efficiently produce N-methyl-2-pyrrolidone (NMP) by including a step of efficiently producing GBL.
 すなわち、本発明は以下の事項に関する。
 本発明の第一の態様は、以下の4-ヒドロキシブチルアルデヒドの製造方法を提供する。[1] ロジウム触媒および下記式(1)~(3)から選択される少なくとも1種の二座ホスフィン配位子を含む触媒の存在下で、アリルアルコールを一酸化炭素ガスおよび水素ガスとヒドロホルミル化反応させる工程を含む、4-ヒドロキシブチルアルデヒドの製造方法。
That is, the present invention relates to the following matters.
A first aspect of the present invention provides the following method for producing 4-hydroxybutyraldehyde. [1] Hydroformylation of allyl alcohol with carbon monoxide gas and hydrogen gas in the presence of a rhodium catalyst and a catalyst containing at least one bidentate phosphine ligand selected from the following formulas (1) to (3) A method for producing 4-hydroxybutyraldehyde, comprising a step of reacting.
Figure JPOXMLDOC01-appb-C000005

(式(1)~(3)中、Arは置換基を有してもよいアリール基を示す。)
Figure JPOXMLDOC01-appb-C000005

(In formulas (1) to (3), Ar represents an aryl group which may have a substituent.)
 本発明の第一の態様の製造方法は、以下の[2]~[10]に述べる特徴を好ましく含む。これらの特徴は2つ以上を組み合わせることも好ましい。[2] 前記式(1)~(3)中のArが、下記式(a)~(e)のいずれかで表される、[1]に記載の4-ヒドロキシブチルアルデヒドの製造方法。 The manufacturing method of the first aspect of the present invention preferably includes the features described in [2] to [10] below. Combinations of two or more of these features are also preferred. [2] The method for producing 4-hydroxybutyraldehyde according to [1], wherein Ar in the formulas (1) to (3) is represented by any one of the following formulas (a) to (e).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[3] ロジウム触媒および前記二座ホスフィン配位子を含む前記触媒の存在下におけるヒドロホルミル化反応は、密度汎関数法にて算出される、アリルアルコールへの1,2挿入の活性化エネルギーと2,1挿入の活性化エネルギーとの差が4.2kcal/mol以上である、[1]または[2]に記載の4-ヒドロキシブチルアルデヒドの製造方法。 [3] The hydroformylation reaction in the presence of the rhodium catalyst and the catalyst containing the bidentate phosphine ligand is calculated by the density functional theory, the activation energy of 1,2 insertion into allyl alcohol and 2 , 1-insertion activation energy difference is 4.2 kcal/mol or more.
[4] 前記二座ホスフィン配位子が前記式(1)で表され、前記式(1)中のArが前記式(a)、(b)、(c)のいずれかで表される、[1]~[3]のいずれかに記載の4-ヒドロキシブチルアルデヒドの製造方法。
[5] 前記二座ホスフィン配位子が前記式(2)で表され、前記式(2)中のArが前記式(a)で表される、[1]~[3]のいずれかに記載の4-ヒドロキシブチルアルデヒドの製造方法。
[6] 前記二座ホスフィン配位子が前記式(3)で表され、前記式(3)中のArが前記式(a)、(b)、(d)、(e)のいずれかで表される、[1]~[3]のいずれかに記載の4-ヒドロキシブチルアルデヒドの製造方法。
[4] The bidentate phosphine ligand is represented by the formula (1), and Ar in the formula (1) is represented by any one of the formulas (a), (b), and (c). A method for producing 4-hydroxybutyraldehyde according to any one of [1] to [3].
[5] Any one of [1] to [3], wherein the bidentate phosphine ligand is represented by the formula (2), and Ar in the formula (2) is represented by the formula (a) A process for the preparation of 4-hydroxybutyraldehyde described.
[6] The bidentate phosphine ligand is represented by the formula (3), and Ar in the formula (3) is any one of the formulas (a), (b), (d), and (e) A method for producing 4-hydroxybutyraldehyde according to any one of [1] to [3].
[7] 前記ロジウム触媒の使用量が、前記アリルアルコールに対してロジウム原子の割合が0.01mol%~5mol%となる量である、[1]~[6]のいずれかに記載の4-ヒドロキシブチルアルデヒドの製造方法。
[8] 前記二座ホスフィン配位子の使用量が、前記ロジウム触媒に含まれるロジウム原子1モルに対して0.5モル~50モルの範囲である、[1]~[7]のいずれかに記載の4-ヒドロキシブチルアルデヒドの製造方法。
[7] The 4- according to any one of [1] to [6], wherein the amount of the rhodium catalyst used is such that the ratio of rhodium atoms to the allyl alcohol is 0.01 mol% to 5 mol%. A method for producing hydroxybutyraldehyde.
[8] Any one of [1] to [7], wherein the bidentate phosphine ligand is used in an amount of 0.5 mol to 50 mol per 1 mol of rhodium atoms contained in the rhodium catalyst. The method for producing 4-hydroxybutyraldehyde according to .
[9] 前記ヒドロホルミル化反応を行う反応容器内における一酸化炭素ガスと水素ガスとを含む混合ガスの圧力が0.1~10MPaG(ゲージ圧)の範囲であり、
 前記反応容器内における一酸化炭素ガスと水素ガスの分圧比(水素ガス/一酸化炭素ガス)が、1/10~10/1の範囲である、[1]~[8]のいずれかに記載の4-ヒドロキシブチルアルデヒドの製造方法。
[10] 前記一酸化炭素ガスおよび前記水素ガスが、廃プラスチックおよび/またはバイオマスの加熱分解により発生させたものである、[1]~[9]のいずれかに記載の4-ヒドロキシブチルアルデヒドの製造方法。
[9] The pressure of the mixed gas containing carbon monoxide gas and hydrogen gas in the reaction vessel for the hydroformylation reaction is in the range of 0.1 to 10 MPaG (gauge pressure),
According to any one of [1] to [8], wherein the partial pressure ratio of carbon monoxide gas and hydrogen gas (hydrogen gas/carbon monoxide gas) in the reaction vessel is in the range of 1/10 to 10/1. A method for producing 4-hydroxybutyraldehyde.
[10] The 4-hydroxybutyraldehyde according to any one of [1] to [9], wherein the carbon monoxide gas and the hydrogen gas are generated by thermal decomposition of waste plastics and/or biomass. Production method.
 本発明の第二の態様は、以下のガンマブチロラクトンの製造方法を提供する。
[11] [1]~[10]のいずれかに記載の4-ヒドロキシブチルアルデヒドの製造方法により4-ヒドロキシブチルアルデヒドを製造する工程と、
 製造した前記4-ヒドロキシブチルアルデヒドと、銅を含む触媒とを接触させる工程とを含む、ガンマブチロラクトンの製造方法。
 本発明の第二の態様の製造方法は、以下の[11]に述べる特徴を好ましく含む。
[12] 前記銅を含む触媒がさらに、亜鉛、ジルコニウム及びアルミニウムからなる群より選ばれる少なくとも1種の金属元素の酸化物を含む、[11]に記載のガンマブチロラクトンの製造方法。
A second aspect of the present invention provides the following method for producing gamma-butyrolactone.
[11] A step of producing 4-hydroxybutyraldehyde by the method for producing 4-hydroxybutyraldehyde according to any one of [1] to [10];
A method for producing gamma-butyrolactone, comprising the step of contacting the produced 4-hydroxybutyraldehyde with a copper-containing catalyst.
The manufacturing method of the second aspect of the present invention preferably includes the features described in [11] below.
[12] The method for producing gamma-butyrolactone according to [11], wherein the copper-containing catalyst further contains an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum.
 本発明の第三の態様は、以下のN-メチル-2-ピロリドンの製造方法を提供する。
[13] [11]または[12]に記載のガンマブチロラクトンの製造方法によりガンマブチロラクトンを製造する工程と、
 製造した前記ガンマブチロラクトンと、モノメチルアミンとを反応させる工程とを含む、N-メチル-2-ピロリドンの製造方法。
A third aspect of the present invention provides the following method for producing N-methyl-2-pyrrolidone.
[13] A step of producing gamma-butyrolactone by the method for producing gamma-butyrolactone according to [11] or [12];
A method for producing N-methyl-2-pyrrolidone, comprising a step of reacting the produced gamma-butyrolactone with monomethylamine.
 本発明の第四の態様は、以下の化合物を提供する。
[14] 下記式(10)で表される化合物。
A fourth aspect of the present invention provides the following compounds.
[14] A compound represented by the following formula (10).
Figure JPOXMLDOC01-appb-C000007

上記化合物は、前記製造方法に触媒として好ましく使用されることができる。
Figure JPOXMLDOC01-appb-C000007

The above compound can be preferably used as a catalyst in the above production method.
 本発明の第四の態様は、以下の化合物を提供する。
[15] 下記式(8)で表される化合物。
A fourth aspect of the present invention provides the following compounds.
[15] A compound represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000008

上記化合物は、前記製造方法に触媒として好ましく使用されることができる。
Figure JPOXMLDOC01-appb-C000008

The above compound can be preferably used as a catalyst in the above production method.
 本発明の4-HBAの製造方法によれば、ヒドロホルミル化反応により生成するHMPAの生成量が少なく、4-HBAの生成量とHMPAの生成量との比(4-HBA/HMPA)の大きい反応生成物が得られる。 According to the method for producing 4-HBA of the present invention, the amount of HMPA produced by the hydroformylation reaction is small, and the ratio of the amount of 4-HBA produced to the amount of HMPA produced (4-HBA/HMPA) is large. A product is obtained.
 本発明の化合物は、式(10)で表される化合物または式(8)で表される化合物であるので、アリルアルコールのヒドロホルミル化反応における触媒の配位子として用いることで、高い収率で4-HBAを製造でき、かつ4-HBAの生成量とHMPAの生成量との比(4-HBA/HMPA)の大きい反応生成物が得られる。 Since the compound of the present invention is a compound represented by the formula (10) or a compound represented by the formula (8), it can be used as a catalyst ligand in the hydroformylation reaction of allyl alcohol with a high yield. 4-HBA can be produced, and a reaction product having a large ratio of 4-HBA to HMPA (4-HBA/HMPA) can be obtained.
 本発明のGBLの製造方法は、本発明の4-HBAの製造方法により4-HBAを製造する工程と、製造した4-HBAと銅を含む触媒とを接触させる工程とを含む。したがって、4-HBAを製造する工程において製造した4-HBAを含む反応生成物は、4-HBAの生成量とHMPAの生成量との比(4-HBA/HMPA)が大きい。このため、4-HBAを含む反応生成物を精製することなく、そのままGBLを生成させる反応に用いても、高い収率でGBLを製造でき、効率よくGBLを製造できる。 The method for producing GBL of the present invention includes a step of producing 4-HBA by the method for producing 4-HBA of the present invention, and a step of contacting the produced 4-HBA with a copper-containing catalyst. Therefore, the reaction product containing 4-HBA produced in the process of producing 4-HBA has a large ratio of the amount of 4-HBA produced to the amount of HMPA produced (4-HBA/HMPA). Therefore, even if a reaction product containing 4-HBA is directly used in a reaction for producing GBL without purification, GBL can be produced at a high yield and GBL can be produced efficiently.
 また、本発明のNMPの製造方法は、本発明のGBLの製造方法によりGBLを製造する工程と、製造したGBLとモノメチルアミンとを反応させる工程とを含む。このため、効率よくGBLを製造でき、製造したGBLを用いて、工業的に有用な化合物であるNMPを効率よく製造できる。 In addition, the method for producing NMP of the present invention includes a step of producing GBL by the method for producing GBL of the present invention, and a step of reacting the produced GBL with monomethylamine. Therefore, GBL can be efficiently produced, and the produced GBL can be used to efficiently produce NMP, which is an industrially useful compound.
 本発明者らは、上記課題を解決し、4-HBAの生成量とHMPAの生成量との比(4-HBA/HMPA)の大きい反応生成物を得るために、アリルアルコールを一酸化炭素ガスおよび水素ガスとヒドロホルミル化させる際に、ロジウム触媒とともに使用するホスフィン配位子に着目し、鋭意検討した。
 その結果、触媒として、ロジウム触媒と、上記式(1)~(3)から選択される少なくとも1種の二座ホスフィン配位子を含むものを用いればよいことを見出した。
In order to solve the above problems and obtain a reaction product with a large ratio of 4-HBA to HMPA (4-HBA/HMPA), allyl alcohol is mixed with carbon monoxide gas. We also focused on the phosphine ligand used together with the rhodium catalyst in the hydroformylation with hydrogen gas.
As a result, it was found that a rhodium catalyst and at least one bidentate phosphine ligand selected from the above formulas (1) to (3) should be used as the catalyst.
 後述のように、アリルアルコールの一酸化炭素ガスおよび水素ガスによるヒドロホルミル化反応は、一酸化炭素と水素原子が配位したロジウム錯体触媒に、アリルアルコールが挿入して中間体となる段階(オレフィン挿入)と、当該中間体からロジウム錯体触媒が還元的脱離して、ヒドロキシアルデヒドが生成する段階(還元的脱離段階)とからなる。式(1)~(3)で表される二座ホスフィン配位子は、いずれもXantphos骨格を有し、電子が豊富である。このことから、前記二座ホスフィン配位子がロジウム錯体に配位した触媒を用いた場合は、オレフィン挿入が律速段階となる。このため、ヒドロホルミル化反応における4-HBAの生成が促進されるとともにHMPAの生成が抑制されるものと推定される。
 本発明者らは、さらに検討を重ね、上記の触媒の存在下で、アリルアルコールを一酸化炭素ガスおよび水素ガスとヒドロホルミル化反応させることにより、4-HBA/HMPAの大きい反応生成物が得られることを確認し、本発明を想到した。
As will be described later, the hydroformylation reaction of allyl alcohol with carbon monoxide gas and hydrogen gas involves the step of inserting allyl alcohol into a rhodium complex catalyst in which carbon monoxide and hydrogen atoms are coordinated to form an intermediate (olefin insertion ) and a step of reductive elimination of the rhodium complex catalyst from the intermediate to form hydroxyaldehyde (reductive elimination step). All of the bidentate phosphine ligands represented by formulas (1) to (3) have a Xantphos skeleton and are electron-rich. Therefore, when the catalyst in which the bidentate phosphine ligand is coordinated to the rhodium complex is used, olefin insertion becomes the rate-limiting step. Therefore, it is presumed that the formation of 4-HBA is promoted and the formation of HMPA is suppressed in the hydroformylation reaction.
The present inventors conducted further studies and found that a large 4-HBA/HMPA reaction product can be obtained by hydroformylating allyl alcohol with carbon monoxide gas and hydrogen gas in the presence of the above catalyst. After confirming this, the present invention was conceived.
 以下、本発明の4-ヒドロキシブチルアルデヒドの製造方法、ガンマブチロラクトンの製造方法、N-メチル-2-ピロリドンの製造方法、本発明で提供される化合物、の好ましい例について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。本発明は、例えば、本発明の趣旨を逸脱しない範囲で、数、種類、位置、量、比率、材料、構成などについて、付加、省略、置換、変更などが可能である。 Preferred examples of the method for producing 4-hydroxybutyraldehyde, the method for producing gamma-butyrolactone, the method for producing N-methyl-2-pyrrolidone, and the compound provided by the present invention are described in detail below. In addition, this invention is not limited only to embodiment shown below. In the present invention, for example, the number, type, position, amount, ratio, material, configuration, etc. can be added, omitted, replaced, changed, etc. without departing from the gist of the present invention.
[4-ヒドロキシブチルアルデヒドの製造方法]
 本実施形態の4-ヒドロキシブチルアルデヒド(4-HBA)の製造方法は、ロジウム触媒および下記式(1)~(3)から選択される少なくとも1種の二座ホスフィン配位子を含む触媒の存在下で、アリルアルコールを一酸化炭素ガスおよび水素ガスとヒドロホルミル化反応させる工程を含む。
[Method for producing 4-hydroxybutyraldehyde]
The method for producing 4-hydroxybutyraldehyde (4-HBA) of the present embodiment comprises a rhodium catalyst and a catalyst containing at least one bidentate phosphine ligand selected from the following formulas (1) to (3). Below, allyl alcohol is hydroformylated with carbon monoxide gas and hydrogen gas.
Figure JPOXMLDOC01-appb-C000009

(式(1)~(3)中、Arは置換基を有してもよいアリール基を示す。)
Figure JPOXMLDOC01-appb-C000009

(In formulas (1) to (3), Ar represents an aryl group which may have a substituent.)
(水素ガス、一酸化炭素ガス)
 本実施形態の4-HBAの製造方法では、アリルアルコールを一酸化炭素ガスおよび水素ガスとヒドロホルミル化反応させる。本実施形態では、アリルアルコールと触媒は、この分野で使用される一般的な容器や耐圧性容器などの、任意に選択される反応容器中に加えられる。本実施形態では、アリルアルコールをヒドロホルミル化反応させる反応容器に、一酸化炭素ガスを含むガスおよび水素ガスを含むガスを供給することが好ましい。一酸化炭素ガスを含むガスおよび水素ガスを含むガスは、それぞれ別々に反応容器に供給してもよいし、一酸化炭素ガスを含むガスと水素ガスを含むガスとの混合ガスの状態で反応容器に供給してもよい。
(hydrogen gas, carbon monoxide gas)
In the method for producing 4-HBA of the present embodiment, allyl alcohol is hydroformylated with carbon monoxide gas and hydrogen gas. In this embodiment, the allyl alcohol and the catalyst are added into any selected reaction vessel, such as common or pressure-resistant vessels used in the field. In the present embodiment, it is preferable to supply a gas containing carbon monoxide gas and a gas containing hydrogen gas to a reaction vessel for hydroformylation reaction of allyl alcohol. The gas containing carbon monoxide gas and the gas containing hydrogen gas may be separately supplied to the reaction vessel, or may be supplied to the reaction vessel in the state of a mixed gas of the gas containing carbon monoxide gas and the gas containing hydrogen gas. may be supplied to
 反応容器に供給する一酸化炭素ガスを含むガスは、一酸化炭素ガスのみであってもよいし、一酸化炭素ガスの他に、窒素ガス、アルゴンなどの不活性ガスなどを含んでいてもよい。反応容器に供給する水素ガスを含むガスは、水素ガスのみであってもよいし、水素ガスの他に、窒素ガス、アルゴンなどの不活性ガスなどを含んでいてもよい。一酸化炭素ガスを含むガスおよび水素ガスを含むガスは、空気、酸素などの酸化性ガスを含まないことが好ましい。 The gas containing carbon monoxide gas supplied to the reaction vessel may be only carbon monoxide gas, or may contain nitrogen gas, an inert gas such as argon, etc., in addition to carbon monoxide gas. . The gas containing hydrogen gas to be supplied to the reaction vessel may be hydrogen gas only, or may contain inert gas such as nitrogen gas and argon in addition to hydrogen gas. The gas containing carbon monoxide gas and the gas containing hydrogen gas preferably do not contain oxidizing gases such as air and oxygen.
 本実施形態では、アリルアルコールのヒドロホルミル化反応に使用する一酸化炭素ガスおよび水素ガスとして、廃プラスチックおよび/またはバイオマスの加熱分解により発生させたものを用いてもよい。 In this embodiment, the carbon monoxide gas and hydrogen gas used in the hydroformylation reaction of allyl alcohol may be those generated by thermal decomposition of waste plastics and/or biomass.
 ヒドロホルミル化反応を行う反応容器内における一酸化炭素ガスと水素ガスとを含む混合ガスの圧力は、特に制限はないが、0.1~10MPaG(ゲージ圧)の範囲であることが好ましく、0.1~5.0MPaG(ゲージ圧)の範囲であることがより好ましく、0.5~2.5MPaG(ゲージ圧)の範囲であることがさらに好ましい。上記反応容器内の上記混合ガスの圧力は、ヒドロホルミル化反応を開始してから終了するまでの間、0.5~2.5MPaGの範囲内で維持されるように、ヒドロホルミル化反応により消費された一酸化炭素ガスおよび水素ガスを補いながら行うことが特に好ましい。 The pressure of the mixed gas containing carbon monoxide gas and hydrogen gas in the reaction vessel for the hydroformylation reaction is not particularly limited, but is preferably in the range of 0.1 to 10 MPaG (gauge pressure). It is more preferably in the range of 1 to 5.0 MPaG (gauge pressure), more preferably in the range of 0.5 to 2.5 MPaG (gauge pressure). The pressure of the mixed gas in the reaction vessel was consumed by the hydroformylation reaction so as to be maintained within the range of 0.5 to 2.5 MPaG from the start to the end of the hydroformylation reaction. It is particularly preferable to carry out while supplementing with carbon monoxide gas and hydrogen gas.
 ヒドロホルミル化反応時における上記反応容器内の上記混合ガスの圧力が0.1MPaG以上であると、ヒドロホルミル化反応が進行しやすい。上記反応容器内の上記混合ガスの圧力は、ヒドロホルミル化反応を促進させるために高いことが好ましい。しかし、ヒドロホルミル化反応時における上記反応容器内の上記混合ガスの圧力を10MPaG超とするには、高価な装置を使用する必要がある。ヒドロホルミル化反応時における上記混合ガスの圧力を10MPaG以下とすることにより、工業的に適した装置および方法を用いて4-HBAを製造できる。本実施形態では、触媒によってヒドロホルミル化反応が促進されるため、上記混合ガスの圧力が10MPaG以下であっても、十分な反応速度が得られ、十分な収率で4-HBAを製造できる。 When the pressure of the mixed gas in the reaction vessel during the hydroformylation reaction is 0.1 MPaG or more, the hydroformylation reaction proceeds easily. The pressure of the mixed gas in the reaction vessel is preferably high in order to promote the hydroformylation reaction. However, in order to increase the pressure of the mixed gas in the reaction vessel to over 10 MPaG during the hydroformylation reaction, it is necessary to use an expensive device. By setting the pressure of the mixed gas to 10 MPaG or less during the hydroformylation reaction, 4-HBA can be produced using an industrially suitable apparatus and method. In the present embodiment, the catalyst promotes the hydroformylation reaction, so even if the pressure of the mixed gas is 10 MPaG or less, a sufficient reaction rate can be obtained and 4-HBA can be produced with a sufficient yield.
 ヒドロホルミル化反応を行う反応容器内における一酸化炭素ガスと水素ガスの分圧比(水素ガス/一酸化炭素ガス)は、1/10~10/1の範囲であることが好ましく、1/5~5/1の範囲であることがより好ましく、1/2~2/1の範囲であることがさらに好ましい。ヒドロホルミル化反応時における上記反応容器内の一酸化炭素ガスと水素ガスの分圧比(水素ガス/一酸化炭素ガス)が、1/10~10/1の範囲であると、ヒドロホルミル化反応の進行に必要な水素ガスおよび一酸化炭素ガスが供給されることにより、十分な反応速度が得られる。上記分圧比(水素ガス/一酸化炭素ガス)が2/1以下であると、水素還元反応が進行して、4-HBAの収率が低下することを抑制できる。 The partial pressure ratio of carbon monoxide gas and hydrogen gas (hydrogen gas/carbon monoxide gas) in the reaction vessel in which the hydroformylation reaction is carried out is preferably in the range of 1/10 to 10/1, preferably 1/5 to 5. /1, more preferably 1/2 to 2/1. When the partial pressure ratio (hydrogen gas/carbon monoxide gas) of carbon monoxide gas and hydrogen gas in the reaction vessel during the hydroformylation reaction is in the range of 1/10 to 10/1, the progress of the hydroformylation reaction A sufficient reaction rate is obtained by supplying the necessary hydrogen gas and carbon monoxide gas. When the partial pressure ratio (hydrogen gas/carbon monoxide gas) is 2/1 or less, it is possible to prevent the hydrogen reduction reaction from proceeding and lowering the yield of 4-HBA.
(ロジウム触媒)
 本実施形態の4-HBAの製造方法において使用されるロジウム触媒としては、オレフィンのヒドロホルミル化触媒に使用できるものを用いることができる。ロジウム触媒は、1種のみ用いてもよいし、2種以上用いてもよい。
(rhodium catalyst)
As the rhodium catalyst used in the method for producing 4-HBA of the present embodiment, one that can be used as an olefin hydroformylation catalyst can be used. Only one rhodium catalyst may be used, or two or more rhodium catalysts may be used.
 ロジウム触媒としては、具体的には、RhO、Rh、RhOなどのロジウム酸化物、硝酸ロジウム、硫酸ロジウム、塩化ロジウム、臭化ロジウム、ヨウ化ロジウム、酢酸ロジウムなどのロジウム塩、およびアセチルアセトナートジカルボニルロジウム、アセチルアセトナートカルボニル(トリフェニルホスフィン)ロジウム、ヒドリドカルボニルトリス(トリフェニルホスフィン)ロジウム(I)などのロジウム錯体、およびRh(CO)12、Rh(CO)16などのロジウムカルボニルクラスターなどが挙げられる。これらのロジウム触媒の中でも、触媒活性、溶媒への溶解性および触媒としての取り扱い易さの面で、ロジウム錯体が好ましく、ヒドリドカルボニルトリス(トリフェニルホスフィン)ロジウム(I)が特に好ましい。 Specific examples of rhodium catalysts include rhodium oxides such as RhO, Rh 2 O 3 and RhO 2 , rhodium salts such as rhodium nitrate, rhodium sulfate, rhodium chloride, rhodium bromide, rhodium iodide and rhodium acetate, and Rhodium complexes such as acetylacetonatodicarbonylrhodium, acetylacetonatocarbonyl(triphenylphosphine)rhodium, hydridocarbonyltris(triphenylphosphine)rhodium(I), and Rh4 (CO) 12 , Rh6 (CO) 16 , etc. and a rhodium carbonyl cluster of. Among these rhodium catalysts, rhodium complexes are preferred, and hydridocarbonyltris(triphenylphosphine)rhodium (I) is particularly preferred, in terms of catalytic activity, solubility in solvents, and ease of handling as a catalyst.
 ロジウム触媒の使用量は特に制限されないが、アリルアルコールに対して、ロジウム原子の割合が0.01mol%~5mol%となる量であることが好ましく、0.05mol%~2mol%となる量であることがより好ましく、0.1mol%~1mol%となる量であることがさらに好ましい。ロジウム原子の割合が0.01mol%以上となる量であると、十分なヒドロホルミル化活性が得られる。また、ロジウム原子の割合が5mol%以下となる量であると、ロジウム触媒を回収する際における損失量を抑制でき経済的である。 The amount of the rhodium catalyst used is not particularly limited, but it is preferably an amount such that the ratio of rhodium atoms is 0.01 mol% to 5 mol%, and the amount is 0.05 mol% to 2 mol%, relative to allyl alcohol. is more preferable, and an amount of 0.1 mol % to 1 mol % is even more preferable. Sufficient hydroformylation activity can be obtained when the proportion of rhodium atoms is 0.01 mol % or more. Further, when the proportion of rhodium atoms is 5 mol % or less, it is economical because loss during recovery of the rhodium catalyst can be suppressed.
(二座ホスフィン配位子)
 本実施形態の4-HBAの製造方法において使用される二座ホスフィン配位子は、上記式(1)~(3)から選択される少なくとも1種である。二座ホスフィン配位子は、1種のみ用いてもよいし、2種以上用いてもよい。
(bidentate phosphine ligand)
The bidentate phosphine ligand used in the method for producing 4-HBA of the present embodiment is at least one selected from the above formulas (1) to (3). Only one type of bidentate phosphine ligand may be used, or two or more types may be used.
 式(1)~(3)で表される二座ホスフィン配位子は、いずれもXantphos骨格を有し、これらの二座ホスフィン配位子を用いた場合には、アリルアルコールのヒドロホルミル化反応におけるオレフィン挿入が律速段階となる。このことが、詳細は明らかではないが、アリルアルコールのヒドロホルミル化反応における4-HBAとHMPAの選択率に大きな影響を与えるものと推定される。その結果、4-HBAの生成が促進されるとともにHMPAの生成が抑制され、4-HBAの選択性が高くなり、4-HBA/HMPAの大きい反応生成物が得られるものと推定される。なお4-HBA/HMPAの値(比)は、必要に応じて任意に選択される。例えば、10.0以上や、11.0以上や、12.0以上や、13.0以上や、14.0以上や、15.0以上であってもよいが、この例のみに限定されない。 All of the bidentate phosphine ligands represented by formulas (1) to (3) have an Xantphos skeleton, and when these bidentate phosphine ligands are used, in the hydroformylation reaction of allyl alcohol Olefin insertion becomes the rate limiting step. Although the details are not clear, this is presumed to have a great effect on the selectivity between 4-HBA and HMPA in the hydroformylation reaction of allyl alcohol. As a result, it is presumed that the production of 4-HBA is promoted and the production of HMPA is suppressed, the selectivity of 4-HBA is increased, and a reaction product having a large ratio of 4-HBA/HMPA is obtained. The value (ratio) of 4-HBA/HMPA is arbitrarily selected as required. For example, it may be 10.0 or more, 11.0 or more, 12.0 or more, 13.0 or more, 14.0 or more, or 15.0 or more, but it is not limited to these examples.
 これに対し、例えば、アリルアルコールのヒドロホルミル化反応に従来使用されているXantphos骨格を有さない二座ホスフィン配位子である、トランス-4,5-ビス(ジフェニルホスフィノメチル)-2,2-ジメチル-1,3-ジオキソラン(DIOP)を用いた場合には、ヒドロホルミル化反応におけるロジウム触媒からの還元的脱離が律速段階となる。 In contrast, for example, trans-4,5-bis(diphenylphosphinomethyl)-2,2, a bidentate phosphine ligand without an Xantphos skeleton conventionally used in hydroformylation reactions of allyl alcohol When -dimethyl-1,3-dioxolane (DIOP) is used, the reductive elimination from the rhodium catalyst in the hydroformylation reaction becomes the rate-limiting step.
 式(1)~(3)中のArは、置換基を有してもよいアリール基である。置換基を有してもよいアリール基は、芳香族炭化水素基であればよく、特に限定されない。したがって、置換基を有してもよいアリール基は、単環芳香族基であってもよいし、多環芳香族基であってもよい。
 二座ホスフィン配位子1分子中に含まれる4つの置換基を有してもよいアリール基は、それぞれ異なっていてもよいし、一部または全部が同じであってもよく、製造が容易であるため、全部が同じであることが好ましい。
Ar in formulas (1) to (3) is an aryl group which may have a substituent. The aryl group which may have a substituent is not particularly limited as long as it is an aromatic hydrocarbon group. Therefore, the aryl group which may have a substituent may be a monocyclic aromatic group or a polycyclic aromatic group.
The aryl groups, which may have four substituents, contained in one molecule of the bidentate phosphine ligand may be different, or may be partially or wholly the same, which facilitates production. Therefore, it is preferable that all are the same.
 置換基を有してもよいアリール基は、1つの置換基を有していてもよいし、2以上の置換基を有していてもよい。アリール基が2以上の置換基を有する場合、それらの置換基は全て異なるものであってもよいし、一部または全部が同じであってもよい。
 置換基を有してもよいアリール基が、置換基を有する場合、アリール基における置換基の結合位置は特に限定されない。
An optionally substituted aryl group may have one substituent or two or more substituents. When an aryl group has two or more substituents, all those substituents may be different, or some or all of them may be the same.
When the aryl group which may have a substituent has a substituent, the bonding position of the substituent in the aryl group is not particularly limited.
 置換基を有してもよいアリール基の有する置換基としては、例えば、直鎖状または分岐を有するアルキル基、ジアルキルアミノ基、シアノ基、ニトロ基、アミノ基、ヒドロキシ基、ハロゲン化アルキル基などが挙げられる。置換基としては、電子供与基として機能し、置換基を有してもよいアリール基の安定性が良好なものとなるため、直鎖状または分岐を有するアルキル基および/またはジアルキルアミノ基が、特に好ましい。 Substituents possessed by the optionally substituted aryl group include, for example, linear or branched alkyl groups, dialkylamino groups, cyano groups, nitro groups, amino groups, hydroxy groups, halogenated alkyl groups, and the like. is mentioned. As a substituent, a linear or branched alkyl group and/or a dialkylamino group function as an electron-donating group and the stability of the aryl group, which may have a substituent, is improved. Especially preferred.
 直鎖状または分岐を有するアルキル基は、炭素数1~5であるものが好ましく、炭素数1~4であるものがより好ましい。直鎖状または分岐を有するアルキル基としては、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基などが挙げられ、製造が容易である点でメチル基が好ましい。 The linear or branched alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms. Examples of linear or branched alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group and tert-butyl group. and a methyl group is preferred in terms of ease of production.
 ジアルキルアミノ基は、炭素数1~5であるものが好ましく、炭素数1~4であるものがより好ましい。ジアルキルアミノ基としては、具体的には、ジメチルアミノ基、ジエチルアミノ基、メチルエチルアミノ基などが挙げられ、製造が容易である点でジメチルアミノ基が好ましい。 The dialkylamino group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms. Specific examples of the dialkylamino group include a dimethylamino group, a diethylamino group, a methylethylamino group, and the like, and the dimethylamino group is preferred in terms of ease of production.
 置換基を有してもよいアリール基は、具体的には、フェニル基、または置換基を有するフェニル基であることが好ましい。
 式(1)~(3)中のArは、4-HBAの生成量とHMPAの生成量との比(4-HBA/HMPA)の大きい反応生成物が得られるため、下記式(a)~(e)のいずれかであることがより好ましく、高い収率で4-HBAを製造できるため、式(b)であることが更に好ましい。なお、各式中の「---」はP原子との結合を意味する。
Specifically, the aryl group which may have a substituent is preferably a phenyl group or a phenyl group having a substituent.
Ar in the formulas (1) to (3) gives a reaction product with a large ratio of the amount of 4-HBA to the amount of HMPA (4-HBA/HMPA), so the following formulas (a) to (e) is more preferred, and formula (b) is even more preferred because 4-HBA can be produced in high yield. "---" in each formula means a bond with the P atom.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 二座ホスフィン配位子が、式(1)で表されるものである場合、4-HBA/HMPAのより大きい反応生成物が得られるため、式(1)中のArは、上記式(a)、(b)、(c)のいずれかであることがより好ましい。特に、高い収率で4-HBAを製造でき、4-HBA/HMPAの大きい反応生成物が得られるため、式(1)中のArが式(b)である下記式(10)で表される化合物であることが好ましい。 When the bidentate phosphine ligand is represented by formula (1), a larger reaction product of 4-HBA/HMPA is obtained, so Ar in formula (1) is represented by formula (a ), (b), or (c). In particular, 4-HBA can be produced in a high yield, and a reaction product with a large ratio of 4-HBA/HMPA can be obtained. It is preferably a compound that
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 二座ホスフィン配位子が、式(2)で表されるものである場合、4-HBA/HMPAのより大きい反応生成物が得られるため、式(2)中のArは、上記式(a)であることがより好ましい。
 二座ホスフィン配位子が、式(3)で表されるものである場合、4-HBA/HMPAのより大きい反応生成物が得られるため、式(3)中のArは、上記式(a)、(b)、(d)、(e)のいずれかであることがより好ましい。特に、高い収率で4-HBAを製造できるため、式(3)中のArが式(a)である化合物、または式(3)中のArが式(b)である下記式(8)で表される化合物であることが好ましい。
When the bidentate phosphine ligand is represented by formula (2), a larger reaction product of 4-HBA/HMPA is obtained, so Ar in formula (2) is represented by formula (a ) is more preferred.
When the bidentate phosphine ligand is represented by formula (3), a larger reaction product of 4-HBA/HMPA is obtained, so Ar in formula (3) is represented by formula (a ), (b), (d), or (e). In particular, since 4-HBA can be produced in high yield, a compound in which Ar in formula (3) is formula (a), or the following formula (8) in which Ar in formula (3) is formula (b) It is preferably a compound represented by.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 二座ホスフィン配位子は、後述する密度汎関数法にて算出されるヒドロホルミル化反応における1,2挿入と2,1挿入との活性化エネルギーの差(以下、単に「活性化エネルギーの差」と呼ぶ場合がある。)が、4.2kcal/mol以上となるものであることが好ましく、4.5kcal/mol以上であることがより好ましく、5.0kcal/mol以上であることがさらに好ましく、大きいほど好ましい。二座ホスフィン配位子が、活性化エネルギーの差が4.2kcal/mol以上となるものであると、4-HBAの選択性がより高くなり、4-HBAの生成量とHMPAの生成量との比(4-HBA/HMPA)のより大きい反応生成物が得られる。したがって、本実施形態の4-HBAの製造方法における4-HBAの収率および選択率をより高めることができる。 The bidentate phosphine ligand is the difference in activation energy between 1,2 insertion and 2,1 insertion in the hydroformylation reaction calculated by the density functional theory described later (hereinafter simply referred to as "activation energy difference" is preferably 4.2 kcal/mol or more, more preferably 4.5 kcal/mol or more, even more preferably 5.0 kcal/mol or more, Larger is better. When the bidentate phosphine ligand has a difference in activation energy of 4.2 kcal/mol or more, the selectivity of 4-HBA becomes higher, and the amount of 4-HBA produced and the amount of HMPA produced increase. A reaction product with a greater ratio of (4-HBA/HMPA) is obtained. Therefore, the yield and selectivity of 4-HBA in the method for producing 4-HBA of the present embodiment can be further increased.
[1,2挿入と2,1挿入との活性化エネルギーの差]
 本実施形態の製造方法を用いてアリルアルコールをヒドロホルミル化反応させると、目的物である4-HBAが生成するとともに、副生物であるHMPAが生成する。4-HBAは、直鎖型構造を有する直鎖化合物である。HMPAは、分岐型構造を有する分岐化合物である。ロジウム触媒としてRh-H結合を有するものを用いた場合、アリルアルコールのヒドロホルミル化反応における1,2挿入とは、下記反応式に示されるように、アリルアルコール(オレフィン)がロジウム触媒の有するRh-H結合間に挿入して、直鎖型ロジウム錯体となる反応であり、4-HBAが生成する反応経路である。2,1挿入とは、アリルアルコールがロジウム触媒の有するRh-H結合間に挿入して、分岐型ロジウム錯体となる反応であり、下記反応式に示されるように、HMPAが生成する反応経路である。
[Difference in activation energy between 1,2 insertion and 2,1 insertion]
When allyl alcohol is subjected to a hydroformylation reaction using the production method of the present embodiment, 4-HBA, which is the target product, is produced, and HMPA, which is a by-product, is produced. 4-HBA is a linear compound with a linear structure. HMPA is a branched compound with a branched structure. When a rhodium catalyst having an Rh—H bond is used, the 1,2-insertion in the hydroformylation reaction of allyl alcohol means that, as shown in the following reaction formula, allyl alcohol (olefin) is Rh- It is a reaction pathway in which 4-HBA is produced by inserting between H bonds to form a linear rhodium complex. 2,1-insertion is a reaction in which allyl alcohol is inserted between the Rh—H bonds of a rhodium catalyst to form a branched rhodium complex, and as shown in the reaction formula below, it is a reaction pathway in which HMPA is produced. be.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 1,2挿入の活性化エネルギーと2,1挿入の活性化エネルギーとの差(2,1挿入-1,2挿入)は、4-HBAの生成量とHMPAの生成量との比(4-HBA/HMPA)と相関がある。具体的には、1,2挿入の活性化エネルギーが小さく、2,1挿入の活性化エネルギーが大きいほど、4-HBA/HMPAが大きくなる傾向がある。したがって、密度汎関数法にて算出されるアリルアルコールのヒドロホルミル化反応における1,2挿入と2,1挿入との活性化エネルギーの差を求めることにより、4-HBA/HMPAを予測できる。ただし、前記活性化エネルギーの差は、アリルアルコールの異性化に伴う副反応を考慮しない値である。4-HBAの生成量とHMPAの生成量との比(4-HBA/HMPA)には、アリルアルコールの異性化に伴う副反応がわずかに影響する場合がある。 The difference between the activation energy of 1,2-insertion and the activation energy of 2,1-insertion (2,1-insertion - 1,2-insertion) is the ratio of the amount of 4-HBA produced to the amount of HMPA produced (4- There is a correlation with HBA/HMPA). Specifically, 4-HBA/HMPA tends to increase as the activation energy for 1,2 insertion is smaller and the activation energy for 2,1 insertion is larger. Therefore, 4-HBA/HMPA can be predicted by obtaining the difference in activation energy between 1,2-insertion and 2,1-insertion in the hydroformylation reaction of allyl alcohol calculated by the density functional theory. However, the difference in activation energy is a value that does not consider side reactions associated with isomerization of allyl alcohol. The ratio of the amount of 4-HBA produced to the amount of HMPA produced (4-HBA/HMPA) may be slightly affected by side reactions associated with isomerization of allyl alcohol.
 二座ホスフィン配位子の種類によって、ロジウム触媒としてRh-H結合を有するものを用いた場合のアリルアルコールのヒドロホルミル化反応における1,2挿入の活性化エネルギーおよび2,1挿入の活性化エネルギーは変化する。このため、上記活性化エネルギーの差は、アリルアルコールのヒドロホルミル化反応に使用する二座ホスフィン配位子の選択の指標とすることができる。 Depending on the type of bidentate phosphine ligand, the activation energy for 1,2 insertion and the activation energy for 2,1 insertion in the hydroformylation reaction of allyl alcohol when a rhodium catalyst having an Rh—H bond is used is Change. Therefore, the difference in activation energy can be used as an index for selecting the bidentate phosphine ligand used in the hydroformylation reaction of allyl alcohol.
 二座ホスフィン配位子の使用量は、ロジウム触媒に含まれるロジウム原子1モルに対して0.5モル~50モルの範囲、好ましくは1.5モルから20モルの範囲、より好ましくは2.0モル~10モルの範囲である。二座ホスフィン配位子の使用量が50モル以下であると、ヒドロホルミル化反応の反応速度向上効果が十分に得られ、経済面で有利である。二座ホスフィン配位子の使用量が0.5モル以上であると、4-HBAの選択性がより高くなり、4-HBAの生成量とHMPAの生成量との比(4-HBA/HMPA)のより大きい反応生成物が得られる。 The bidentate phosphine ligand is used in an amount of 0.5 mol to 50 mol, preferably 1.5 mol to 20 mol, more preferably 2.5 mol to 50 mol, per 1 mol of rhodium atoms contained in the rhodium catalyst. It ranges from 0 mol to 10 mol. When the amount of the bidentate phosphine ligand to be used is 50 mol or less, a sufficient effect of improving the reaction rate of the hydroformylation reaction can be obtained, which is economically advantageous. When the amount of the bidentate phosphine ligand used is 0.5 mol or more, the selectivity of 4-HBA becomes higher, and the ratio of the amount of 4-HBA produced to the amount of HMPA produced (4-HBA/HMPA ) is obtained.
 本実施形態の4-HBAの製造方法において使用される二座ホスフィン配位子は、公知の方法を適宜組み合わせて用いることにより製造できる。
 二座ホスフィン配位子は、市販品を購入して使用してもよい。
The bidentate phosphine ligand used in the method for producing 4-HBA of the present embodiment can be produced by appropriately combining known methods.
A bidentate phosphine ligand may be used by purchasing a commercially available product.
(溶媒)
 本実施形態の4-HBAの製造方法においては、溶媒中でアリルアルコールのヒドロホルミル化反応を行うことが好ましい。溶媒としては、原料であるアリルアルコール及び反応生成物に対して不活性であるものを用いることが好ましい。具体的には、溶媒として、テトラヒドロフラン、ジオキサン、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸エチル、酢酸-n-プロピル、酢酸-n-ブチル、n-ヘプタン、アセトニトリル、ベンゼン、トルエン、キシレン、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどが挙げられる。これらの溶媒の中でも水との分離性が良い、ベンゼン、トルエン、キシレンなどの芳香族化合物が特に好ましい。これらの芳香族化合物を溶媒として使用することにより、アリルアルコールのヒドロホルミル化反応後の反応溶液に、水を添加して分液操作する方法を用いて、水層側に目的物である4-HBAを含む反応生成物を効率よく抽出できる。
(solvent)
In the method for producing 4-HBA of the present embodiment, it is preferable to carry out the hydroformylation reaction of allyl alcohol in a solvent. As the solvent, it is preferable to use a solvent that is inert to the starting material, allyl alcohol, and the reaction product. Specifically, as solvents, tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, cyclohexanone, ethyl acetate, n-propyl acetate, n-butyl acetate, n-heptane, acetonitrile, benzene, toluene, xylene, N-methyl-2 -pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide and the like. Among these solvents, aromatic compounds such as benzene, toluene, and xylene are particularly preferable because they are highly separable from water. By using these aromatic compounds as a solvent, water is added to the reaction solution after the hydroformylation reaction of allyl alcohol, and the desired 4-HBA is added to the aqueous layer side. can efficiently extract reaction products containing
 溶媒使用量は、ヒドロホルミル化反応後の反応溶液に水を添加して分液する操作において、有機層と水層との分離性が良好となるため、アリルアルコールに対して、重量比で1~50倍であることが好ましく、5~30倍であることがより好ましく、5~20倍であることがさらに好ましい。 The amount of the solvent to be used is 1 to 1 by weight with respect to allyl alcohol, since the separation of the organic layer and the aqueous layer is improved in the operation of adding water to the reaction solution after the hydroformylation reaction and separating the layers. It is preferably 50 times, more preferably 5 to 30 times, even more preferably 5 to 20 times.
(反応条件)
 アリルアルコールのヒドロホルミル化反応における反応温度は、40~100℃であることが好ましく、40~80℃であることがより好ましく、50~70℃であることがさらに好ましい。反応温度が40℃以上であると、反応速度が極端に遅くなることがなく、効率よく4-HBAを製造できる。また、反応温度が100℃以下であると、反応速度が高すぎることによる4-HBAの選択率の低下が生じることがないし、触媒の安定性が損なわれることもない。
(Reaction conditions)
The reaction temperature in the hydroformylation reaction of allyl alcohol is preferably 40 to 100°C, more preferably 40 to 80°C, even more preferably 50 to 70°C. When the reaction temperature is 40° C. or higher, 4-HBA can be efficiently produced without extremely slowing down the reaction rate. Further, when the reaction temperature is 100° C. or less, the selectivity of 4-HBA is not lowered due to excessively high reaction rate, and the stability of the catalyst is not impaired.
 アリルアルコールのヒドロホルミル化反応における反応時間があまりに短いと、アリルアルコールの転化率が不十分となる場合がある。また、反応時間があまりに長いと、反応生成物が分解する可能性がある。このため、反応時間は0.5~10時間とすることが好ましく、0.5~5時間がより好ましく、1~3時間がさらに好ましい。反応時間が0.5~10時間であると、高収率を確保でき、かつ良好な生産性が得られる。
 本実施形態の4-HBAの製造方法において使用する反応装置としては、例えば、オートクレーブなどの耐圧性反応装置を用いることができる。
 なおヒドロホルミル化反応させる工程で得られた4-HBAは、さらに精製を行う工程を行ってもよい。あるいは、精製を行うことなく、そのまま保管、又はそのまま原料として他の製造に用いられても良い。例えば、得られた4-HBAは、精製されることなく、そのままガンマブチロラクトンなどの製造方法に使用されてもよい。
 なお高い収率とは、例えば、70%以上や、80%以上や、85%以上や、90%以上や、95%以上や、97%以上を意味してもよいが、これら例のみに限定されない。
If the reaction time in the hydroformylation reaction of allyl alcohol is too short, the conversion of allyl alcohol may become insufficient. Also, if the reaction time is too long, the reaction product may decompose. Therefore, the reaction time is preferably 0.5 to 10 hours, more preferably 0.5 to 5 hours, even more preferably 1 to 3 hours. A reaction time of 0.5 to 10 hours ensures a high yield and good productivity.
As the reactor used in the method for producing 4-HBA of the present embodiment, for example, a pressure-resistant reactor such as an autoclave can be used.
4-HBA obtained in the hydroformylation step may be further purified. Alternatively, it may be stored as it is or used as a raw material for other production without purification. For example, the obtained 4-HBA may be used as it is in a method for producing gamma-butyrolactone and the like without being purified.
High yield may mean, for example, 70% or more, 80% or more, 85% or more, 90% or more, 95% or more, or 97% or more, but is limited to these examples only. not.
[ガンマブチロラクトンの製造方法]
 本実施形態のガンマブチロラクトン(GBL)の製造方法は、本実施形態の4-HBAの製造方法により4-HBAを製造する工程と、製造した4-HBAと、銅を含む触媒とを接触させる工程とを含む。本実施形態のGBLの製造方法では、4-HBAと銅を含む触媒とを接触させて、4-HBAの脱水素化反応を行うことによりGBLを生成する。
[Method for producing gamma-butyrolactone]
The method for producing gamma-butyrolactone (GBL) of the present embodiment includes the steps of producing 4-HBA by the method for producing 4-HBA of the present embodiment, and the steps of contacting the produced 4-HBA with a copper-containing catalyst. including. In the method for producing GBL of the present embodiment, 4-HBA is brought into contact with a copper-containing catalyst, and 4-HBA is dehydrogenated to produce GBL.
 本実施形態のGBLの製造方法では、本実施形態の4-HBAの製造方法により4-HBAを製造する工程を含む。したがって、4-HBAを製造する工程において製造した4-HBAを含む反応生成物は、HMPAの含有量が少なく、4-HBAの生成量とHMPAの生成量との比(4-HBA/HMPA)が大きい。このため、4-HBAを含む反応生成物を精製することなく、そのままGBLを生成させる反応に用いても、高い収率でGBLを製造でき、効率よくGBLを製造できる。なお高い収率とは、例えば、70%以上や、80%以上や、85%以上や、90%以上や、95%以上や、97%以上を意味してもよいが、これら例のみに限定されない。 The method for producing GBL of the present embodiment includes a step of producing 4-HBA by the method for producing 4-HBA of the present embodiment. Therefore, the reaction product containing 4-HBA produced in the process of producing 4-HBA has a low HMPA content, and the ratio of the amount of 4-HBA produced to the amount of HMPA produced (4-HBA/HMPA) is large. Therefore, even if a reaction product containing 4-HBA is directly used in a reaction for producing GBL without purification, GBL can be produced at a high yield and GBL can be produced efficiently. High yield may mean, for example, 70% or more, 80% or more, 85% or more, 90% or more, 95% or more, or 97% or more, but is limited to these examples only. not.
 また、本実施形態のGBLの製造方法では、本実施形態の4-HBAの製造方法により製造した4-HBAを含む反応生成物を、さらに精製して得た、高純度の4-HBAを、GBLを生成させる反応に用いてもよい。この場合、4-HBAを製造する工程において製造した4-HBAを含む反応生成物は、4-HBA/HMPAが大きいため、精製が容易である。4-HBAを含む反応生成物を精製する方法としては、例えば、反応生成物中に含まれる各成分の沸点差を利用した蒸留により、各成分を分離する方法など公知の方法を用いることができる。 Further, in the method for producing GBL of the present embodiment, highly pure 4-HBA obtained by further purifying the reaction product containing 4-HBA produced by the method for producing 4-HBA of the present embodiment, It may be used in reactions to produce GBL. In this case, the reaction product containing 4-HBA produced in the step of producing 4-HBA has a large ratio of 4-HBA/HMPA, so purification is easy. As a method for purifying the reaction product containing 4-HBA, for example, a known method such as a method of separating each component by distillation utilizing the boiling point difference of each component contained in the reaction product can be used. .
(銅を含む触媒)
 本実施形態において、4-HBAと接触させる銅を含む触媒は、活性金属として銅を含む。銅を含む触媒はさらに、亜鉛、ジルコニウム及びアルミニウムからなる群より選ばれる少なくとも1種の金属元素の酸化物を含むことが好ましい。銅を含む触媒は、亜鉛、ジルコニウム及びアルミニウムからなる群より選ばれる少なくとも1種の金属元素の酸化物と銅に加えて、他の金属酸化物を更に含んでもよい。
(Catalyst containing copper)
In this embodiment, the copper-containing catalyst that is contacted with 4-HBA contains copper as the active metal. The copper-containing catalyst preferably further contains an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum. The copper-containing catalyst may further contain other metal oxides in addition to copper and oxides of at least one metal element selected from the group consisting of zinc, zirconium and aluminum.
 他の金属酸化物としては、クロムの酸化物が好ましい。銅を含む触媒が、亜鉛、ジルコニウム及びアルミニウムからなる群より選ばれる少なくとも1種の金属元素の酸化物、並びに金属銅に加え、さらにクロムの酸化物を含む場合、4-HBAの脱水素化反応の活性障壁を低下させて、GBLを生成させる反応を活性化させることが期待できる。また、銅を含む触媒が、クロムの酸化物を含むことにより、4-HBAの還元によって生成する1,4-ブタンジオール、およびその他の不純物を生じさせる副反応を抑制し、GBLの選択性を向上させる効果が期待できる。これらのことから、4-HBAの脱水素化反応に使用する銅を含む触媒は、クロムの酸化物を含むことがより好ましい。 As for other metal oxides, chromium oxides are preferable. Dehydrogenation reaction of 4-HBA when the copper-containing catalyst contains an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum, and an oxide of chromium in addition to metallic copper. can be expected to activate the reaction that produces GBL by lowering the activation barrier of In addition, since the copper-containing catalyst contains chromium oxide, it suppresses the side reaction that produces 1,4-butanediol produced by the reduction of 4-HBA and other impurities, and improves the selectivity of GBL. An improvement effect can be expected. For these reasons, the copper-containing catalyst used in the dehydrogenation reaction of 4-HBA more preferably contains chromium oxide.
 銅を含む触媒は、銅と、亜鉛、ジルコニウム及びアルミニウムからなる群より選ばれる少なくとも1種と、クロムと、酸素のみからなることが好ましい。
 銅を含む触媒がクロムの酸化物を含む場合の具体例としては、亜鉛及びクロムの各酸化物、並びに金属銅を含む触媒(CuZnCrOx);ジルコニウム及びクロムの各酸化物、並びに金属銅を含む触媒(CuZrCrOx);アルミニウム及びクロムの各酸化物、並びに金属銅を含む触媒(CuAlCrOx);亜鉛、ジルコニウム及びクロムの各酸化物、並びに金属銅を含む触媒(CuZnZrCrOx);亜鉛、アルミニウム及びクロムの各酸化物、並びに金属銅を含む触媒(CuZnAlCrOx);ジルコニウム、アルミニウム及びクロムの各酸化物、並びに金属銅を含む触媒(CuZrAlCrOx);亜鉛、ジルコニウム、アルミニウム、及びクロムの各酸化物、並びに金属銅を含む触媒(CuZnZrAlCrOx)などが挙げられる。上記式において酸素原子の割合を示すxは、任意に選択される数である。式中のxは、例えば、0.025~13.5であってもよく、0.045~10.5であってもよく、0.065~6.5であってもよく、0.085~2.25であってもよい。
The copper-containing catalyst preferably consists of copper, at least one selected from the group consisting of zinc, zirconium and aluminum, chromium, and oxygen.
Specific examples of copper-containing catalysts containing chromium oxides include catalysts containing zinc and chromium oxides and metallic copper (CuZnCrOx); catalysts containing zirconium and chromium oxides and metallic copper (CuZrCrOx); catalysts containing oxides of aluminum and chromium and copper metal (CuAlCrOx); catalysts containing oxides of zinc, zirconium and chromium and copper metal (CuZnZrCrOx); oxidation of zinc, aluminum and chromium oxides of zirconium, aluminum and chromium, and copper metal (CuZrAlCrOx); oxides of zinc, zirconium, aluminum, and chromium, and copper metal catalyst (CuZnZrAlCrOx) and the like. In the above formula, x representing the proportion of oxygen atoms is an arbitrarily selected number. x in the formula may be, for example, 0.025 to 13.5, 0.045 to 10.5, 0.065 to 6.5, or 0.085 ~2.25.
 銅を含む触媒中における銅、亜鉛、ジルコニウム、アルミニウム、クロムの各金属の含有量は任意に選択できる。銅を含む触媒中の各金属の含有量は、GBLを生成させる反応をより一層促進できるため、銅1モルに対して、亜鉛1.0モル以下、ジルコニウム5.0モル以下、アルミニウム5.0モル以下、クロム0.5モル以下であることが好ましい。 The content of each metal of copper, zinc, zirconium, aluminum, and chromium in the catalyst containing copper can be arbitrarily selected. Since the content of each metal in the catalyst containing copper can further promote the reaction that produces GBL, it is 1.0 mol or less of zinc, 5.0 mol or less of zirconium, and 5.0 mol or less of aluminum per 1 mol of copper. mol or less, preferably 0.5 mol or less of chromium.
 銅1モルに対して、銅を含む触媒中の亜鉛は、1.0モル以下であることが好ましく、0.005~0.4モルであることがより好ましく、0.01~0.3モルであることがさらに好ましく、0.01~0.2モルであることが一層好ましく、0.05~0.1モルであることが特に好ましい。 Zinc in the copper-containing catalyst is preferably 1.0 mol or less, more preferably 0.005 to 0.4 mol, and 0.01 to 0.3 mol, relative to 1 mol of copper. is more preferably 0.01 to 0.2 mol, and particularly preferably 0.05 to 0.1 mol.
 銅1モルに対して、銅を含む触媒中のジルコニウムは、5.0モル以下であることが好ましく、0.01~1.0モルであることがより好ましく、0.05~0.4モルであることがさらに好ましく、0.05~0.3モルであることが一層好ましく、0.1~0.2モルであることが特に好ましい。 Zirconium in the copper-containing catalyst is preferably 5.0 mol or less, more preferably 0.01 to 1.0 mol, and 0.05 to 0.4 mol, per 1 mol of copper. is more preferably 0.05 to 0.3 mol, and particularly preferably 0.1 to 0.2 mol.
 銅1モルに対して、銅を含む触媒中のアルミニウムは、5.0モル以下であることが好ましく、0.01~3.0モルであることがより好ましく、0.05~1.0モルであることがさらに好ましく、0.1~0.8モルであることが一層好ましく、0.2~0.6モルであることが特に好ましい。 Aluminum in the catalyst containing copper is preferably 5.0 mol or less, more preferably 0.01 to 3.0 mol, and 0.05 to 1.0 mol, per 1 mol of copper. is more preferably 0.1 to 0.8 mol, and particularly preferably 0.2 to 0.6 mol.
 銅1モルに対して、銅を含む触媒中のクロムは0.5モル以下である事が好ましく、0.01~0.4モルであることがより好ましく、0.03~0.3モルであることがより好ましく、0.05~0.2モルであることがより好ましく、0.07~0.15モルであることがより好ましい。 The amount of chromium in the catalyst containing copper is preferably 0.5 mol or less, more preferably 0.01 to 0.4 mol, more preferably 0.03 to 0.3 mol, per 1 mol of copper. more preferably 0.05 to 0.2 mol, more preferably 0.07 to 0.15 mol.
 銅を含む触媒の製造方法としては、例えば、共沈法、ポアフィリング法、水熱合成法など、公知の方法を用いることができる。 As a method for producing a copper-containing catalyst, a known method such as a coprecipitation method, a pore filling method, or a hydrothermal synthesis method can be used.
(ガンマブチロラクトンを製造する工程)
 本実施形態のGBLの製造方法における4-HBAと銅を含む触媒とを接触させてGBLを製造する工程(以下、「GBL製造工程」と呼ぶ場合がある。)では、4-HBAの水溶液を気化させて、気化した4-HBAと銅を含む触媒とを接触させることが好ましい。4-HBAの水溶液としては、4-HBAを1~30質量%含有する水溶液を用いることが好ましく、より好ましくは5~25質量%であり、さらに好ましくは10~20質量%である。4-HBAを1~30質量%含有する水溶液を気化させて、気相で4-HBAと銅を含む触媒とを接触させることにより、GBLの生成する反応をより一層促進できる。本工程では、前述したような好ましい濃度の4-HBAの水溶液を用意する又は調整して得る工程を含んでもよい。
(Step of producing gamma-butyrolactone)
In the step of producing GBL by contacting 4-HBA with a copper-containing catalyst in the method for producing GBL of the present embodiment (hereinafter sometimes referred to as “GBL production step”), an aqueous solution of 4-HBA is It is preferable to vaporize and bring the vaporized 4-HBA into contact with the copper-containing catalyst. As the aqueous solution of 4-HBA, it is preferable to use an aqueous solution containing 1 to 30% by mass of 4-HBA, more preferably 5 to 25% by mass, still more preferably 10 to 20% by mass. By vaporizing an aqueous solution containing 1 to 30% by mass of 4-HBA and bringing the 4-HBA into contact with a copper-containing catalyst in the vapor phase, the reaction to generate GBL can be further accelerated. This step may include a step of preparing or adjusting an aqueous solution of 4-HBA having a preferred concentration as described above.
 GBL製造工程において、4-HBAの水溶液として4-HBAを30質量%以上含有する水溶液を用いる場合、原料換算した液空間速度(LHSV)を調整することが好ましい。例えば、4-HBAを30~50質量%含有する水溶液を用いる場合、GBLの収率を維持するために、原料換算した液空間速度(LHSV)を1.6hr-1以下とすることが好ましく、0.4hr-1以下とすることがより好ましい。液空間速度(LHSV)の下限は、必要に応じて選択でき、例えば0.1hr-1以上であってもよいが、これに限定されない。 In the GBL production process, when an aqueous solution containing 30% by mass or more of 4-HBA is used as the aqueous solution of 4-HBA, it is preferable to adjust the liquid hourly space velocity (LHSV) in terms of raw materials. For example, when an aqueous solution containing 30 to 50% by mass of 4-HBA is used, the liquid hourly space velocity (LHSV) in terms of raw material is preferably 1.6 hr -1 or less in order to maintain the yield of GBL. It is more preferable to make it 0.4 hr −1 or less. The lower limit of the liquid hourly space velocity (LHSV) can be selected as required, and may be, for example, 0.1 hr −1 or more, but is not limited to this.
 GBL製造工程においては、4-HBAと銅を含む触媒とを、気相において200℃超の反応温度で接触させることが好ましい。反応温度が200℃超であると、反応中の4-HBAが気相で存在し、GBLの生成する反応が促進され、GBLをより高い収率で製造できる。反応温度は、GBLの生成する反応の安全性がより一層高くなるため、400℃以下であることが好ましい。反応温度は、210~370℃であることがより好ましく、230~360℃であることがさらに好ましく、260~350℃であることが特に好ましい。 In the GBL production process, it is preferable to bring 4-HBA and a copper-containing catalyst into contact in the gas phase at a reaction temperature of over 200°C. When the reaction temperature is higher than 200° C., 4-HBA exists in the gaseous phase during the reaction, promoting the reaction to produce GBL and producing GBL at a higher yield. The reaction temperature is preferably 400° C. or lower because the safety of the reaction to generate GBL is further enhanced. The reaction temperature is more preferably 210 to 370°C, even more preferably 230 to 360°C, and particularly preferably 260 to 350°C.
 GBL製造工程は、例えば、銅を含む触媒を充填した反応容器を有する固定床式気相反応装置を用いて行うことができる。
 GBL製造工程において得られたGBLは、一般的な減圧蒸留などの方法により精製してもよい。GBL製造工程において得られたGBLは、N-メチル-2-ピロリドンの原料として好ましく使用できる。
The GBL production process can be performed, for example, using a fixed-bed gas-phase reactor having a reaction vessel filled with a copper-containing catalyst.
GBL obtained in the GBL manufacturing process may be purified by a general method such as distillation under reduced pressure. GBL obtained in the GBL production process can be preferably used as a raw material for N-methyl-2-pyrrolidone.
[N-メチル-2-ピロリドンの製造方法]
 本実施形態のN-メチル-2-ピロリドン(NMP)の製造方法は、本実施形態のGBLの製造方法によりGBLを製造する工程と、製造したGBLと、モノメチルアミンとを反応させる工程とを含む。
[Method for producing N-methyl-2-pyrrolidone]
The method for producing N-methyl-2-pyrrolidone (NMP) of the present embodiment includes a step of producing GBL by the method for producing GBL of the present embodiment, and a step of reacting the produced GBL with monomethylamine. .
 本実施形態のNMPの製造方法におけるGBLとモノメチルアミンとを反応させる工程は、例えば、反応容器内にGBLとモノメチルアミンと溶媒とを入れて液相反応させることにより、NMPを生成する工程とすることができる。
 反応容器としては、ステンレス製の反応容器を好ましく用いることができる。
 溶媒としては、アルコール類または水を用いることができ、好ましくは水である。
The step of reacting GBL and monomethylamine in the method for producing NMP of the present embodiment is, for example, a step of producing NMP by putting GBL, monomethylamine, and a solvent into a reaction vessel and causing a liquid phase reaction. be able to.
As the reaction vessel, a reaction vessel made of stainless steel can be preferably used.
Alcohols or water can be used as the solvent, preferably water.
 GBLとモノメチルアミンとを反応させる工程において、原料として使用するGBL1モルに対するモノメチルアミンのモル比は、1~10の範囲であることが好ましく、より好ましくは1~5の範囲であり、さらに好ましくは1~1.5の範囲である。GBL1モルに対するモノメチルアミンのモル比が1~10の範囲であると、高い収率でNMPを製造できる。 In the step of reacting GBL with monomethylamine, the molar ratio of monomethylamine to 1 mol of GBL used as a raw material is preferably in the range of 1 to 10, more preferably in the range of 1 to 5, and even more preferably. It ranges from 1 to 1.5. When the molar ratio of monomethylamine to 1 mol of GBL is in the range of 1 to 10, NMP can be produced in high yield.
 GBLとモノメチルアミンとの反応は、大気中で行ってもよいし、窒素ガス雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下で行ってもよく、窒素ガス雰囲気下で行うことが好ましい。
 GBLとモノメチルアミンとの反応は、100~400℃の反応温度で行うことが好ましく、より好ましくは150~350℃であり、さらに好ましくは200~300℃である。反応温度が100~400℃であると、NMPの生成する反応が促進され、NMPをより高い収率で製造できる。
 GBLとモノメチルアミンとの反応時間は、0.1~10時間であることが好ましく、より好ましくは0.5~7時間であり、さらに好ましくは1~5時間である。反応時間が0.1~10時間であると、高い収率を確保でき、かつ良好な生産性が得られる。
 なお高い収率とは、例えば、70%以上や、80%以上や、85%以上や、90%以上や、95%以上や、97%以上を意味してもよいが、これら例のみに限定されない。
The reaction between GBL and monomethylamine may be carried out in the air or in an inert gas atmosphere such as a nitrogen gas atmosphere or an argon atmosphere, preferably in a nitrogen gas atmosphere.
The reaction between GBL and monomethylamine is preferably carried out at a reaction temperature of 100 to 400°C, more preferably 150 to 350°C, still more preferably 200 to 300°C. When the reaction temperature is 100 to 400° C., the reaction to produce NMP is promoted, and NMP can be produced in a higher yield.
The reaction time of GBL and monomethylamine is preferably 0.1 to 10 hours, more preferably 0.5 to 7 hours, still more preferably 1 to 5 hours. A reaction time of 0.1 to 10 hours ensures a high yield and good productivity.
High yield may mean, for example, 70% or more, 80% or more, 85% or more, 90% or more, 95% or more, or 97% or more, but is limited to these examples only. not.
 GBLとモノメチルアミンとを反応させる工程において生成したNMPを含む反応溶液は、一般的な減圧蒸留などの方法により精製してもよい。
 本実施形態のNMPの製造方法は、本実施形態のGBLの製造方法によりGBLを製造する工程を含む。このため、効率よくGBLを製造でき、製造したGBLを用いて、工業的に有用な化合物であるNMPを効率よく製造できる。
The reaction solution containing NMP produced in the step of reacting GBL and monomethylamine may be purified by a general method such as distillation under reduced pressure.
The NMP manufacturing method of this embodiment includes a step of manufacturing a GBL by the GBL manufacturing method of this embodiment. Therefore, GBL can be efficiently produced, and the produced GBL can be used to efficiently produce NMP, which is an industrially useful compound.
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明は、以下の実施例のみに限定されない。 The present invention will be described in more detail below with reference to examples and comparative examples. In addition, the present invention is not limited only to the following examples.
[分析方法]
 以下に示す4-ヒドロキシブチルアルデヒド(4-HBA)の製造方法、ガンマブチロラクトン(GBL)の製造方法、N-メチル-2-ピロリドン(NMP)の製造方法において、製造した化合物の転化率および収率を求めた。具体的には、下記の分析条件で、高速液体クロマトグラフィー(HPLC)に用いて、反応液中の原料および反応生成物の分析を行い、絶対検量線法を用いて定量し、その結果を用いて各値を算出した。
[Analysis method]
Conversion rate and yield of the compound produced in the method for producing 4-hydroxybutyraldehyde (4-HBA), the method for producing gamma-butyrolactone (GBL), and the method for producing N-methyl-2-pyrrolidone (NMP) shown below asked for Specifically, under the following analysis conditions, using high performance liquid chromatography (HPLC), the raw materials and reaction products in the reaction solution are analyzed, quantified using the absolute calibration curve method, and the results are used. Each value was calculated by
<分析条件:4-HBAの製造方法>
 カラム:Shodex SUGAR SH-1011(昭和電工株式会社製)
 カラムサイズ:8.0mm×300mm
 カラム温度:40℃
 溶離液:0.01N 硫酸水溶液
 溶離液の流速:0.5ml/min
 検出器:UV(紫外線)210nm、RI(示差屈折率)
<Analysis conditions: 4-HBA production method>
Column: Shodex SUGAR SH-1011 (manufactured by Showa Denko K.K.)
Column size: 8.0mm x 300mm
Column temperature: 40°C
Eluent: 0.01 N sulfuric acid aqueous solution Flow rate of eluent: 0.5 ml/min
Detector: UV (ultraviolet) 210 nm, RI (differential refractive index)
<分析条件:GBLの製造方法、NMPの製造方法>
 カラム:Shodex RSpak KS-801(昭和電工株式会社製)
 カラムサイズ:8.0mm×250mm
 カラム温度:40℃
 溶離液:純水
 溶離液の流速:0.6ml/min
 検出器:UV(紫外線)210nm、RI(示差屈折率)
<Analysis conditions: GBL manufacturing method, NMP manufacturing method>
Column: Shodex RSpak KS-801 (manufactured by Showa Denko KK)
Column size: 8.0mm x 250mm
Column temperature: 40°C
Eluent: pure water Eluent flow rate: 0.6 ml/min
Detector: UV (ultraviolet) 210 nm, RI (differential refractive index)
[4-ヒドロキシブチルアルデヒド(4-HBA)の製造方法]
(実施例1)
 ステンレス製の容量100mLのオートクレーブの反応容器内に、アリルアルコール(AAL)1.89gと、溶媒としてのトルエン30gと、触媒としてのヒドリドカルボニルトリス(トリフェニルホスフィン)ロジウム(I)(RhH(CO)(PPh(東京化成工業株式会社社製))0.0536g(アリルアルコールに対して0.18mol%)と、二座ホスフィン配位子である4,6-ビス(ジフェニルホスフィノ)フェノキサジン(Nixantphos、富士フイルム和光純薬株式会社製社製)0.129g(ロジウム触媒に含まれるロジウム原子1モルに対して4モル)とを入れた。
[Method for producing 4-hydroxybutyraldehyde (4-HBA)]
(Example 1)
In a stainless steel autoclave reaction vessel with a capacity of 100 mL, 1.89 g of allyl alcohol (AAL), 30 g of toluene as a solvent, and hydridocarbonyl tris(triphenylphosphine) rhodium (I) (RhH(CO) (PPh 3 ) 3 (manufactured by Tokyo Chemical Industry Co., Ltd.)) 0.0536 g (0.18 mol % with respect to allyl alcohol), and 4,6-bis(diphenylphosphino)phenoxy which is a bidentate phosphine ligand 0.129 g of sardine (Nixantphos, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) (4 mol per 1 mol of rhodium atoms contained in the rhodium catalyst) was added.
 そして、反応容器内に一酸化炭素ガスと水素ガスとの混合ガスを充填して圧力2.0MPaG(ゲージ圧)(一酸化炭素ガスの分圧1.0MPaG(ゲージ圧)、水素ガスの分圧1.0MPaG(ゲージ圧))とし、反応容器内を攪拌しながら、反応温度65℃で3時間反応させた。反応後の反応溶液に水30gを添加して抽出し、分液操作を行うことにより、水層を回収し、4-HBAを含む反応生成物を含む水溶液を得た。 Then, the reaction vessel is filled with a mixed gas of carbon monoxide gas and hydrogen gas and the pressure is 2.0 MPaG (gauge pressure) (carbon monoxide gas partial pressure 1.0 MPaG (gauge pressure), hydrogen gas partial pressure The pressure was adjusted to 1.0 MPaG (gauge pressure), and the reaction was carried out at a reaction temperature of 65°C for 3 hours while stirring the inside of the reaction vessel. After the reaction, 30 g of water was added to the reaction solution for extraction, and a liquid separation operation was performed to recover the aqueous layer, thereby obtaining an aqueous solution containing a reaction product containing 4-HBA.
(実施例2)
<二座ホスフィン配位子の製造>
 窒素置換した容量200mLの二口フラスコ内に、4,6-ビス(ジフェニルホスフィノ)フェノキサジン(1g、1.81mmol)と、脱水テトラヒドロフラン20mLとを仕込み、水素化ナトリウム0.1gを加え、40℃の温度で1時間還流した。さらに、ベンジルクロリド0.62gとテトラヒドロフラン5mLとの混合溶液を加え、70℃の温度で16時間還流し、反応させた。その後、反応液の温度を室温まで下げて、ベンゼンと塩化ナトリウム水溶液とを加えて分液した。そして、有機層を水洗し、無水硫酸ナトリウムで乾燥した後、減圧下で溶媒を留去し、残渣をヘキサンで洗浄した。その後、ジクロロメタンとエタノールで再結晶させることにより、下記式(4)で表される化合物0.9gを、うすい灰色固体として得た。式(4)で表される化合物の収率は78%であった。
(Example 2)
<Production of bidentate phosphine ligand>
4,6-Bis(diphenylphosphino)phenoxazine (1 g, 1.81 mmol) and 20 mL of dehydrated tetrahydrofuran were placed in a 200-mL two-necked flask purged with nitrogen, and 0.1 g of sodium hydride was added. It was refluxed for 1 hour at a temperature of °C. Further, a mixed solution of 0.62 g of benzyl chloride and 5 mL of tetrahydrofuran was added, and the mixture was refluxed at a temperature of 70° C. for 16 hours for reaction. After that, the temperature of the reaction solution was lowered to room temperature, and benzene and an aqueous sodium chloride solution were added to separate the solution. After the organic layer was washed with water and dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was washed with hexane. After that, by recrystallizing with dichloromethane and ethanol, 0.9 g of the compound represented by the following formula (4) was obtained as a pale gray solid. The yield of the compound represented by formula (4) was 78%.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 得られた式(4)で表される化合物のH-NMRおよび31P-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(400MHz,CDCl):δ7.33(m,5H),7.24(m,20H),6.59(t,J=9.6Hz,2H),6.31(dd,J=7.9,1.3Hz,2H),6.04(dq,J=7.8,1.6,1.6Hz,2H),4.80(s,2H)
31P-NMR(162MHz,CDCl):δ-18.4
1 H-NMR and 31 P-NMR measurements were performed on the obtained compound represented by formula (4), and the structure was identified by the following results.
1 H-NMR (400 MHz, CDCl 3 ): δ 7.33 (m, 5H), 7.24 (m, 20H), 6.59 (t, J = 9.6Hz, 2H), 6.31 (dd, J = 7.9, 1.3 Hz, 2H), 6.04 (dq, J = 7.8, 1.6, 1.6 Hz, 2H), 4.80 (s, 2H)
31 P-NMR (162 MHz, CDCl 3 ): δ -18.4
 二座ホスフィン配位子として、式(4)で表される二座ホスフィン配位子を0.1496g(ロジウム触媒に含まれるロジウム原子1モルに対して4モル)使用し、反応時間を2時間としたこと以外は、実施例1と同様にして、4-HBAを含む反応生成物を含む水溶液を得た。 As a bidentate phosphine ligand, 0.1496 g of a bidentate phosphine ligand represented by formula (4) (4 mol per 1 mol of rhodium atoms contained in the rhodium catalyst) was used, and the reaction time was 2 hours. An aqueous solution containing a reaction product containing 4-HBA was obtained in the same manner as in Example 1, except that
(実施例3)
<二座ホスフィン配位子の製造>
 窒素置換した容量200mLの二口フラスコ内に、炭酸セシウム(18.07g、55.5mol)を仕込み、150℃の温度で2時間かけて真空乾燥させた後、酢酸パラジウム(II)(0.15g、0.70mmol)と、トリフェニルホスフィン(0.73g、2.77mmol)と、1-ナフトール(2g、13.87mmol)と、1,2-ジブロモベンゼン(2mL、16.6mmol)と、N,N-ジメチルホルムアミド80mLとを加え、140℃の温度で72時間還流し、反応させた。その後、反応液の温度を室温まで下げて、ジエチルエーテルと水とを加えて分液した。そして、有機層を水洗し、無水硫酸ナトリウムで乾燥した後、減圧下で溶媒を留去し、残渣をクロマトグラフィーで精製した。このことにより、下記式(5)で表される化合物2.5gを、白色固体として得た。式(5)で表される化合物の収率は83%であった。
(Example 3)
<Production of bidentate phosphine ligand>
Cesium carbonate (18.07 g, 55.5 mol) was introduced into a two-necked flask with a capacity of 200 mL that was purged with nitrogen, dried in vacuo at a temperature of 150° C. for 2 hours, and then palladium (II) acetate (0.15 g , 0.70 mmol), triphenylphosphine (0.73 g, 2.77 mmol), 1-naphthol (2 g, 13.87 mmol), 1,2-dibromobenzene (2 mL, 16.6 mmol), N, 80 mL of N-dimethylformamide was added, and the mixture was refluxed at a temperature of 140° C. for 72 hours for reaction. Thereafter, the temperature of the reaction solution was lowered to room temperature, and diethyl ether and water were added to separate the solution. After the organic layer was washed with water and dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by chromatography. As a result, 2.5 g of a compound represented by the following formula (5) was obtained as a white solid. The yield of the compound represented by formula (5) was 83%.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 窒素置換した容量200mLの三口フラスコ内に、式(5)で表される化合物(2g、9.13mmol)と、N,N,N’,N’-テトラメチルエチレンジアミン(4.11ml、27.49mmol)と、脱水ジエチルエーテル100mLとを仕込み、0℃の温度を保ちながらn-ブチルリチウム溶液(2.5Mヘキサン溶液、11mL、27.49mmol)を20分間にかけて滴下した。滴下終了後、室温で16時間撹拌した。さらに、0℃の温度を保ちながらクロロジフェニルホスフィン(4.93ml、27.4mmol)を加えた。その後、室温で3時間以上攪拌し、反応させた。反応液にジクロロメタンと水を加えて分液した。そして、有機層を水洗し、無水硫酸ナトリウムで乾燥した後、減圧下で溶媒を留去し、残渣をヘキサンで洗浄した。その後、ジクロロメタンとヘキサンで再結晶させることで、下記式(6)で表される化合物2.5gを、淡黄色固体として得た。式(6)で表される化合物の収率は47%であった。 In a nitrogen-substituted three-necked flask with a capacity of 200 mL, the compound represented by the formula (5) (2 g, 9.13 mmol) and N,N,N',N'-tetramethylethylenediamine (4.11 ml, 27.49 mmol) ) and 100 mL of dehydrated diethyl ether were charged, and an n-butyllithium solution (2.5 M hexane solution, 11 mL, 27.49 mmol) was added dropwise over 20 minutes while maintaining the temperature at 0°C. After completion of dropping, the mixture was stirred at room temperature for 16 hours. Further, chlorodiphenylphosphine (4.93 ml, 27.4 mmol) was added while maintaining the temperature at 0°C. Then, the mixture was stirred at room temperature for 3 hours or longer to react. Dichloromethane and water were added to the reaction solution to separate the layers. After the organic layer was washed with water and dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was washed with hexane. Then, by recrystallizing with dichloromethane and hexane, 2.5 g of the compound represented by the following formula (6) was obtained as a pale yellow solid. The yield of the compound represented by formula (6) was 47%.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 得られた式(6)で表される化合物のH-NMRおよび31P-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(400MHz,CDCl):δ7.85(d,J=7.8Hz,1H),7.67(d,J=6.4Hz,1H),7.53(d,J=7.8Hz,1H),7.45(t,J=7.7Hz,1H),7.23(m,21H),7.01(t,J=7.7Hz,1H),6.80(dd,J=8.5,3.6Hz,1H),6.66(ddd,J=7.5,3.6,1.4Hz,1H).
31P-NMR(162MHz,CDCl):δ-17.4(d,J=21.9Hz,1P),-20.5(d,J=21.9Hz,1P)
1 H-NMR and 31 P-NMR measurements were performed on the obtained compound represented by formula (6), and the structure was identified according to the following results.
1 H-NMR (400 MHz, CDCl 3 ): δ 7.85 (d, J = 7.8 Hz, 1 H), 7.67 (d, J = 6.4 Hz, 1 H), 7.53 (d, J = 7 .8Hz, 1H), 7.45 (t, J = 7.7Hz, 1H), 7.23 (m, 21H), 7.01 (t, J = 7.7Hz, 1H), 6.80 (dd , J=8.5, 3.6 Hz, 1 H), 6.66 (ddd, J=7.5, 3.6, 1.4 Hz, 1 H).
31 P-NMR (162 MHz, CDCl 3 ): δ -17.4 (d, J = 21.9 Hz, 1 P), -20.5 (d, J = 21.9 Hz, 1 P)
 二座ホスフィン配位子として、式(6)で表される二座ホスフィン配位子を0.1369g(ロジウム触媒に含まれるロジウム原子1モルに対して4モル)使用したこと以外は、実施例2と同様にして、4-HBAを含む反応生成物を含む水溶液を得た。 Example except that 0.1369 g (4 mol per 1 mol of rhodium atoms contained in the rhodium catalyst) of the bidentate phosphine ligand represented by formula (6) was used as the bidentate phosphine ligand An aqueous solution containing a reaction product containing 4-HBA was obtained in the same manner as in 2.
(実施例4)
<二座ホスフィン配位子の製造>
 窒素置換した容量500mLの三口フラスコ内に、三塩化リン(4.3mL、50mmol)と、脱水ジエチルエーテル300mLとを仕込み、ジエチルアミン(10.4mL、100mmol)を-78℃の温度で30分間かけて滴下した。滴下終了後、室温で16時間攪拌して反応させ、反応液をろ過した。得られたろ液を蒸留して溶媒を除去した後、残渣を減圧蒸留することにより、ジクロロジエチルアミノホスフィン6.5gを、無色液体として得た。ジクロロジエチルアミノホスフィンの収率は75%であった。
(Example 4)
<Production of bidentate phosphine ligand>
Phosphorus trichloride (4.3 mL, 50 mmol) and 300 mL of dehydrated diethyl ether were charged into a 500 mL three-necked flask that was purged with nitrogen, and diethylamine (10.4 mL, 100 mmol) was added thereto at -78°C over 30 minutes. Dripped. After completion of the dropwise addition, the mixture was stirred at room temperature for 16 hours to react, and the reaction solution was filtered. After the obtained filtrate was distilled to remove the solvent, the residue was distilled under reduced pressure to obtain 6.5 g of dichlorodiethylaminophosphine as a colorless liquid. The yield of dichlorodiethylaminophosphine was 75%.
 窒素置換した容量500mLの三口フラスコ内に、5-ブロモ-m-キシレン(25g、135.09mmol)と、脱水ジエチルエーテル250mLとを仕込み、0℃の温度を保ちながらn-ブチルリチウム溶液(2.5Mヘキサン溶液、88.4mL、141.5mmol)を20分間かけて滴下した。滴下終了後、0℃の温度で4時間攪拌した。さらに、ジクロロジエチルアミノホスフィン(11.19g、64.33mmol)を加えて0℃の温度で4時間攪拌し、[ビス-(3,5-ジメチルフェニル)](ジエチルアミノ)ホスフィンを合成した。その後、[ビス-(3,5-ジメチルフェニル)](ジエチルアミノ)ホスフィンを合成した反応液に、0℃の温度を保ちながら塩化水素溶液33mLを加え、室温で1時間攪拌し、反応させた。反応液をセライトろ過し、得られたろ液を減圧乾燥することにより溶媒を除去し、残渣を1日かけて減圧乾燥し、下記式(7)で表されるビス(3,5-ジメチルフェニル)クロロホスフィンを得た。得られたビス(3,5-ジメチルフェニル)クロロホスフィンは、精製することなく次の反応に用いた。 5-bromo-m-xylene (25 g, 135.09 mmol) and 250 mL of dehydrated diethyl ether were charged in a three-necked flask with a capacity of 500 mL that was purged with nitrogen, and n-butyllithium solution (2. 5M hexane solution, 88.4 mL, 141.5 mmol) was added dropwise over 20 minutes. After completion of the dropwise addition, the mixture was stirred at a temperature of 0°C for 4 hours. Furthermore, dichlorodiethylaminophosphine (11.19 g, 64.33 mmol) was added and stirred at a temperature of 0° C. for 4 hours to synthesize [bis-(3,5-dimethylphenyl)](diethylamino)phosphine. After that, 33 mL of hydrogen chloride solution was added to the reaction solution in which [bis-(3,5-dimethylphenyl)](diethylamino)phosphine was synthesized while maintaining the temperature at 0° C., and the mixture was stirred at room temperature for 1 hour to react. The reaction solution was filtered through celite, the resulting filtrate was dried under reduced pressure to remove the solvent, and the residue was dried under reduced pressure over 1 day. A chlorophosphine was obtained. The obtained bis(3,5-dimethylphenyl)chlorophosphine was used for the next reaction without purification.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 窒素置換した容量200mLの三口フラスコ内に、式(5)で表される化合物(2g、9.13mmol)と、N,N,N’,N’-テトラメチルエチレンジアミン(4.11ml、27.49mmol)と、脱水ジエチルエーテル100mLとを仕込み、0℃の温度を保ちながらn-ブチルリチウム溶液(2.5Mヘキサン溶液、11mL、27.49mmol)を20分間かけて滴下した。滴下終了後、室温で16時間撹拌した。さらに、0℃の温度を保ちながら式(7)で表されるビス(3,5-ジメチルフェニル)クロロホスフィン(過剰量)を加えた。その後、室温で3時間以上攪拌し、反応させた。反応液にジクロロメタンと水を加えて分液した。そして、有機層を水洗し、無水硫酸ナトリウムで乾燥した後、減圧下で溶媒を留去し、残渣をヘキサンで洗浄した。その後、ジクロロメタンとヘキサンで再結晶させることで、下記式(8)で表される化合物1.9gを、淡黄色固体として得た。式(8)で表される化合物の収率は30%であった。 In a nitrogen-substituted three-necked flask with a capacity of 200 mL, the compound represented by the formula (5) (2 g, 9.13 mmol) and N,N,N',N'-tetramethylethylenediamine (4.11 ml, 27.49 mmol) ) and 100 mL of dehydrated diethyl ether were charged, and an n-butyllithium solution (2.5 M hexane solution, 11 mL, 27.49 mmol) was added dropwise over 20 minutes while maintaining the temperature at 0°C. After completion of dropping, the mixture was stirred at room temperature for 16 hours. Furthermore, bis(3,5-dimethylphenyl)chlorophosphine (excess amount) represented by the formula (7) was added while maintaining the temperature at 0°C. Then, the mixture was stirred at room temperature for 3 hours or longer to react. Dichloromethane and water were added to the reaction solution to separate the layers. After the organic layer was washed with water and dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was washed with hexane. After that, by recrystallizing with dichloromethane and hexane, 1.9 g of the compound represented by the following formula (8) was obtained as a pale yellow solid. The yield of the compound represented by formula (8) was 30%.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 得られた式(8)で表される化合物のH-NMRおよび31P-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(400MHz,CDCl):δ7.81(d,J=7.4Hz,1H),7.64(d,J=6.9Hz,1H),7.51(d,J=7.4Hz,1H),7.47(t,J=7.4Hz,1H),7.17(d,J=8.2Hz,1H),7.00(t,J=7.4Hz,1H),6.86-6.82.(m,9H),6.80(d,J=7.4Hz,4H),6.66(ddd,J=7.3,3.4,1.4Hz,1H),2.18(d,J=4.6Hz,24H).
31P-NMR(162MHz,CDCl):δ-17.5(d,J=21.9Hz,1P),-21.2(d,J=21.9Hz,1P)
1 H-NMR and 31 P-NMR measurements were performed on the obtained compound represented by formula (8), and the structure was identified by the following results.
1 H-NMR (400 MHz, CDCl 3 ): δ 7.81 (d, J = 7.4 Hz, 1 H), 7.64 (d, J = 6.9 Hz, 1 H), 7.51 (d, J = 7 .4Hz, 1H), 7.47 (t, J = 7.4Hz, 1H), 7.17 (d, J = 8.2Hz, 1H), 7.00 (t, J = 7.4Hz, 1H) , 6.86-6.82.(m, 9H), 6.80(d, J=7.4Hz, 4H), 6.66(ddd, J=7.3, 3.4, 1.4Hz, 1H), 2.18 (d, J=4.6Hz, 24H).
31 P-NMR (162 MHz, CDCl 3 ): δ -17.5 (d, J = 21.9 Hz, 1 P), -21.2 (d, J = 21.9 Hz, 1 P)
 二座ホスフィン配位子として、式(8)で表される二座ホスフィン配位子を0.1631g(ロジウム触媒に含まれるロジウム原子1モルに対して4モル)使用したこと以外は、実施例2と同様にして、4-HBAを含む反応生成物を含む水溶液を得た。 Example except that 0.1631 g (4 mol per 1 mol of rhodium atoms contained in the rhodium catalyst) of the bidentate phosphine ligand represented by formula (8) was used as the bidentate phosphine ligand An aqueous solution containing a reaction product containing 4-HBA was obtained in the same manner as in 2.
(実施例5)
<二座ホスフィン配位子の製造>
 窒素置換した容量200mLの二口フラスコ内に、フェノキサジン(5g、1.81mmol)と、脱水テトラヒドロフラン80mLとを仕込み、水素化ナトリウム1.65gを加え、40℃の温度で1時間かけて還流した。その後、溶液温度を室温まで下げて、tert-ブチルジメチルクロロシラン6.17gとテトラヒドロフラン10mLとの混合溶液を加え、70℃の温度で3時間以上還流し、反応させた。次いで、反応液の温度を室温まで下げ、反応液に氷水に入れて反応を停止した。その後、反応液に酢酸エチルを加えて、有機層を水洗し、無水硫酸ナトリウムで乾燥した後、減圧下で溶媒を留去し、残渣をクロマトグラフィーで精製した。このことにより、下記式(9)で表される化合物2.5gを、白色固体として得た。式(9)で表される化合物の収率は60%であった。
(Example 5)
<Production of bidentate phosphine ligand>
Phenoxazine (5 g, 1.81 mmol) and 80 mL of dehydrated tetrahydrofuran were placed in a 200 mL two-necked flask purged with nitrogen, 1.65 g of sodium hydride was added, and the mixture was refluxed at 40° C. for 1 hour. . Thereafter, the temperature of the solution was lowered to room temperature, a mixed solution of 6.17 g of tert-butyldimethylchlorosilane and 10 mL of tetrahydrofuran was added, and the mixture was refluxed at a temperature of 70° C. for 3 hours or more to react. Then, the temperature of the reaction solution was lowered to room temperature, and the reaction solution was put into ice water to stop the reaction. Thereafter, ethyl acetate was added to the reaction solution, the organic layer was washed with water, dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by chromatography. As a result, 2.5 g of a compound represented by the following formula (9) was obtained as a white solid. The yield of the compound represented by formula (9) was 60%.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 窒素置換した容量200mLの三口フラスコ内に、式(9)で表される化合物(2g、6.73mmol)と、N,N,N’,N’-テトラメチルエチレンジアミン(1.64ml、14.12mmol)と、脱水ジエチルエーテル100mLとを仕込み、0℃の温度を保ちながらn-ブチルリチウム溶液(2.5Mヘキサン溶液、8.82mL、14.12mmol)を10分間かけて滴下した。滴下終了後、室温で16時間撹拌した。さらに、0℃の温度を保ちながら式(7)で表されるビス(3,5-ジメチルフェニル)クロロホスフィン(過剰量)を加えた。その後、室温で16時間攪拌し、反応させた。反応液にジクロロメタンと水を加えて分液した。そして、有機層を水洗し、無水硫酸ナトリウムで乾燥した後、減圧下で溶媒を留去し、固体の反応生成物を得た。 In a nitrogen-substituted three-necked flask with a capacity of 200 mL, the compound represented by the formula (9) (2 g, 6.73 mmol) and N,N,N',N'-tetramethylethylenediamine (1.64 ml, 14.12 mmol) ) and 100 mL of dehydrated diethyl ether were charged, and an n-butyllithium solution (2.5 M hexane solution, 8.82 mL, 14.12 mmol) was added dropwise over 10 minutes while maintaining the temperature at 0°C. After completion of dropping, the mixture was stirred at room temperature for 16 hours. Furthermore, bis(3,5-dimethylphenyl)chlorophosphine (excess amount) represented by the formula (7) was added while maintaining the temperature at 0°C. After that, the mixture was stirred at room temperature for 16 hours to react. Dichloromethane and water were added to the reaction solution to separate the layers. After the organic layer was washed with water and dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain a solid reaction product.
 続いて、得られた固体の反応生成物を乾燥させて、テトラヒドロフラン50mLを加えた後、テトラブチルアンモニウムフルオリド三水和物(3.4g、10.76mmol)を加え、室温で48時間攪拌し、反応させた。その後、減圧下で溶媒を留去し、ジクロロメタンと水を加えて分液した。そして、有機層を水洗し、無水硫酸ナトリウムで乾燥し、残渣をヘキサンとエタノールで洗浄した。その後、ジクロロメタンとエタノールで再結晶させることで、下記式(10)で表される化合物2.3gを、うすい灰色固体として得た。式(10)で表される化合物の収率は50%であった。 Subsequently, the obtained solid reaction product was dried, 50 mL of tetrahydrofuran was added, followed by tetrabutylammonium fluoride trihydrate (3.4 g, 10.76 mmol), and stirred at room temperature for 48 hours. , reacted. After that, the solvent was distilled off under reduced pressure, and dichloromethane and water were added to separate the layers. The organic layer was washed with water and dried over anhydrous sodium sulfate, and the residue was washed with hexane and ethanol. After that, by recrystallizing with dichloromethane and ethanol, 2.3 g of the compound represented by the following formula (10) was obtained as a pale gray solid. The yield of the compound represented by formula (10) was 50%.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 得られた式(10)で表される化合物のH-NMRおよび31P-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(400MHz,C):δ7.18(m,8H),6.66(s,4H),6.46(m,4H),5.74(dd,J=6.9,2.8Hz,2H),4.01(s,2H),1.96(s,24H)
31P-NMR(162MHz,CDCl):δ-18.0
1 H-NMR and 31 P-NMR measurements were performed on the obtained compound represented by formula (10), and the structure was identified by the following results.
1 H-NMR (400 MHz, C 6 D 6 ): δ 7.18 (m, 8H), 6.66 (s, 4H), 6.46 (m, 4H), 5.74 (dd, J=6. 9, 2.8Hz, 2H), 4.01 (s, 2H), 1.96 (s, 24H)
31 P-NMR (162 MHz, CDCl 3 ): δ -18.0
 二座ホスフィン配位子として、式(10)で表される二座ホスフィン配位子を0.1549g(ロジウム触媒に含まれるロジウム原子1モルに対して4モル)使用したこと以外は、実施例1と同様にして、4-HBAを含む反応生成物を含む水溶液を得た。 Example except that 0.1549 g (4 mol per 1 mol of rhodium atoms contained in the rhodium catalyst) of the bidentate phosphine ligand represented by formula (10) was used as the bidentate phosphine ligand An aqueous solution containing a reaction product containing 4-HBA was obtained in the same manner as in 1.
(比較例1)
 二座ホスフィン配位子に代えて、単座ホスフィン配位子であるトリフェニルホスフィン(PPh)(富士フイルム和光純薬株式会社製)0.0612g(ロジウム触媒に含まれるロジウム原子1モルに対して4モル)を使用したこと以外は、実施例1と同様にして、4-HBAを含む反応生成物を含む水溶液を得た。
(Comparative example 1)
Instead of the bidentate phosphine ligand, triphenylphosphine (PPh 3 ) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), which is a monodentate phosphine ligand, is 0.0612 g (per mol of rhodium atoms contained in the rhodium catalyst). An aqueous solution containing a reaction product containing 4-HBA was obtained in the same manner as in Example 1, except that 4 mol) was used.
(比較例2)
 二座ホスフィン配位子として、トランス-4,5-ビス(ジフェニルホスフィノメチル)-2,2-ジメチル-1,3-ジオキソラン(DIOP)(富士フイルム和光純薬株式会社製)0.116g(ロジウム触媒に含まれるロジウム原子1モルに対して4モル)を使用したこと以外は、実施例2と同様にして、4-HBAを含む反応生成物を含む水溶液を得た。
(Comparative example 2)
As a bidentate phosphine ligand, trans-4,5-bis(diphenylphosphinomethyl)-2,2-dimethyl-1,3-dioxolane (DIOP) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 0.116 g ( An aqueous solution containing a reaction product containing 4-HBA was obtained in the same manner as in Example 2, except that 4 mol per 1 mol of rhodium atoms contained in the rhodium catalyst was used.
 実施例1~実施例5、比較例1、比較例2の4-HBAの製造方法におけるアリルアルコールのヒドロホルミル化反応の条件(反応容器内の一酸化炭素ガスの分圧(ゲージ圧)、水素ガスの分圧(ゲージ圧))、反応温度、反応時間)をそれぞれ表1に示す。 Conditions for the hydroformylation reaction of allyl alcohol in the methods for producing 4-HBA of Examples 1 to 5, Comparative Examples 1 and 2 (partial pressure (gauge pressure) of carbon monoxide gas in reaction vessel, hydrogen gas Partial pressure (gauge pressure)), reaction temperature, reaction time) are shown in Table 1, respectively.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 実施例1~実施例5、比較例2の4-HBAの製造方法において、それぞれアリルアルコールのヒドロホルミル化反応における1,2挿入と2,1挿入との活性化エネルギーの差を、以下に示す方法により算出した。その結果を表1に示す。 In the methods for producing 4-HBA of Examples 1 to 5 and Comparative Example 2, the difference in activation energy between 1,2-insertion and 2,1-insertion in the hydroformylation reaction of allyl alcohol is shown below. Calculated by Table 1 shows the results.
[1,2挿入と2,1挿入との活性化エネルギーの差の算出方法]
 量子化学計算用ソフトウェアであるGaussian16を使用し、密度汎関数法(DFT法)wB97XD/6-31+G*法に基づいて、1,2挿入過程および2,1挿入過程の遷移状態計算を実施し、その状態における振動解析からそれぞれの遷移状態におけるギブズ自由エネルギーを求めた。
[Method for calculating the difference in activation energy between 1,2 insertion and 2,1 insertion]
Using Gaussian 16, which is a software for quantum chemical calculation, the transition state calculation of the 1,2-insertion process and the 2,1-insertion process is performed based on the density functional theory (DFT method) wB97XD/6-31+G* method, The Gibbs free energy in each transition state was obtained from the vibrational analysis in that state.
 そして、(1)1,2挿入の遷移状態のギブズ自由エネルギー(活性化エネルギー)と、(2)2,1挿入の遷移状態のギブズ自由エネルギー(活性化エネルギー)との差分((2)-(1))を算出し、活性化エネルギー差とした。 Then, the difference between (1) the Gibbs free energy (activation energy) of the transition state of 1,2 insertion and (2) the Gibbs free energy (activation energy) of the transition state of 2,1 insertion ((2)- (1)) was calculated as the activation energy difference.
 1,2挿入の活性化エネルギーおよび2,1挿入の活性化エネルギーの計算時間は、二座ホスフィン配位子の種類および分子の大きさによって異なる。このため、二座ホスフィン配位子の種類および分子の大きさによっては、計算コストが膨大になる場合がある。このことから、本発明では、以下に示す計算技法を用いて、計算時間と計算精度のトレードオフのバランスを取りつつ、遷移状態のギブズ自由エネルギーを計算した。 The calculation time for the activation energy of 1,2 insertion and the activation energy of 2,1 insertion varies depending on the type and molecular size of the bidentate phosphine ligand. Therefore, depending on the type and molecular size of the bidentate phosphine ligand, the computational cost may become enormous. For this reason, in the present invention, the Gibbs free energy of the transition state was calculated using the calculation technique described below while balancing the trade-off between calculation time and calculation accuracy.
 すなわち、分子量が700以下である比較的分子量の小さい二座ホスフィン配位子に関しては、連続誘電体モデル(以下、「PCMモデル」という場合がある。)にて、トルエン溶媒条件下における上記遷移状態計算を実施し、ギブズ自由エネルギーを求めた。また、分子量が700超である比較的分子量の大きい二座ホスフィン配位子に関しては、気相条件において、上記遷移状態計算もしくは構造最適化を実施した。その後、最適化した構造において、PCMモデルにて、トルエン溶媒条件下で振動解析を実施し、ギブズ自由エネルギー(活性化エネルギー)を計算した。 That is, for bidentate phosphine ligands with a relatively small molecular weight of 700 or less, the above transition state under toluene solvent conditions in a continuous dielectric model (hereinafter sometimes referred to as "PCM model") Calculations were performed to obtain the Gibbs free energy. For bidentate phosphine ligands with a relatively large molecular weight of more than 700, the above transition state calculation or structure optimization was performed under gas phase conditions. After that, the optimized structure was subjected to vibrational analysis under toluene solvent conditions in the PCM model to calculate the Gibbs free energy (activation energy).
 なお、後述する計算例1の二座ホスフィン配位子については、分子量が700を超えるにもかかわらず、ギブズ自由エネルギーの計算時間が膨大にならなかったため、分子量が700以下ある場合に用いる上記の手法を適用して、ギブズ自由エネルギーを求めた。 Regarding the bidentate phosphine ligand in Calculation Example 1 described later, although the molecular weight exceeds 700, the calculation time of the Gibbs free energy did not become enormous, so the above-mentioned used when the molecular weight is 700 or less We applied the method to obtain the Gibbs free energy.
 また、二座ホスフィン配位子の有する置換基を有してもよいアリール基におけるアリール基の種類、アリール基の有する置換基の結合位置などによっては、数値計算の収束が芳しくない場合がある。具体的には、Gaussian16における収束条件として設定されている4つの閾値内に、実用的な時間内に同時に収まらない状況が発生する。その場合には、int(grid=ultrafine)オプションを用いて積分精度を向上させることによって、活性化エネルギーの計算に必要な分子構造を得た。 In addition, depending on the type of aryl group in the aryl group that may have a substituent on the bidentate phosphine ligand, the bonding position of the substituent on the aryl group, etc., the convergence of the numerical calculation may not be good. Specifically, a situation occurs in which the four thresholds set as the convergence conditions in Gaussian 16 cannot be simultaneously satisfied within a practical time. In that case, the int (grid=ultrafine) option was used to improve the precision of integration to obtain the molecular structure necessary for calculating the activation energy.
 また、実施例1~5、比較例1、2の4-HBAの製造方法で得られた4-HBA、HMPA、その他の副生物(プロピオンアルデヒド、1-プロピルアルコール(PrOH)、GBL)について、上記の分析条件で液体クロマトグラフィーを用いて分析し、アリルアルコール(AAL)の転化率、4-HBAの収率、HMPAの収率、その他の副生物の収率、4-HBAの生成量とHMPAの生成量との比(4-HBA/HMPA)を求めた。その結果を表1に示す。 In addition, with regard to 4-HBA, HMPA, and other by-products (propionaldehyde, 1-propyl alcohol (PrOH), GBL) obtained by the 4-HBA production methods of Examples 1 to 5 and Comparative Examples 1 and 2, Analyzed using liquid chromatography under the above analysis conditions, the conversion rate of allyl alcohol (AAL), the yield of 4-HBA, the yield of HMPA, the yield of other by-products, the amount of 4-HBA produced, and The ratio (4-HBA/HMPA) to the amount of HMPA produced was determined. Table 1 shows the results.
 表1に示す4-HBAの収率は、4-HBAの収率と2-ヒドロキシテトラヒドロフランの収率とを合計した値である。水溶液中の4-HBAは、2-ヒドロキシテトラヒドロフランと平衡関係にあるため、反応生成物を含む水溶液中に含まれる2-ヒドロキシテトラヒドロフランの収率も4-HBAの収率として換算した。 The yield of 4-HBA shown in Table 1 is the sum of the yield of 4-HBA and the yield of 2-hydroxytetrahydrofuran. Since 4-HBA in the aqueous solution is in equilibrium with 2-hydroxytetrahydrofuran, the yield of 2-hydroxytetrahydrofuran contained in the aqueous solution containing the reaction product was also converted into the yield of 4-HBA.
 表1に示すように、二座ホスフィン配位子として、式(1)~(3)から選択される少なくとも1種を用いた実施例1~5の4-HBAの製造方法で得られた反応生成物は、いずれも、比較例1、2の4-HBAの製造方法で得られた反応生成物と比較して、HMPAの生成量が少なく、4-HBA/HMPAが10.0以上であり、大きかった。
 特に、二座ホスフィン配位子として、置換基を有してもよいアリール基が式(b)で表される化合物である式(8)で表される化合物または式(10)で表される化合物を用いた実施例4、5では、4-HBAの収率が90%以上であり、高い収率で4-HBAを製造できることが確認できた。
As shown in Table 1, reactions obtained in the methods for producing 4-HBA of Examples 1 to 5 using at least one selected from formulas (1) to (3) as bidentate phosphine ligands All of the products had a smaller amount of HMPA and a 4-HBA/HMPA ratio of 10.0 or more compared to the reaction products obtained by the 4-HBA production methods of Comparative Examples 1 and 2. , was big.
In particular, as a bidentate phosphine ligand, an optionally substituted aryl group is a compound represented by formula (8) or a compound represented by formula (10) represented by formula (b) In Examples 4 and 5 using the compound, the yield of 4-HBA was 90% or more, confirming that 4-HBA can be produced in high yield.
 また、表1に示すように、実施例1~5の4-HBAの製造方法では、密度汎関数法にて算出される1,2挿入の活性化エネルギーと2,1挿入の活性化エネルギーとの差が4.2kcal/mol以上であった。これに対し、比較例2の4-HBAの製造方法では、二座ホスフィン配位子を用いているにも関わらず、上記活性化エネルギーの差が4.2kcal/mol未満であった。したがって、実施例1~5、比較例2の4-HBAの製造方法における上記活性化エネルギーの差の計算値の大小関係は、実施例1~5、比較例2の4-HBAの製造方法における4-HBA/HMPAの実験結果の大小関係と合致した。このことから、密度汎関数法にて算出される1,2挿入と2,1挿入との活性化エネルギーの差が大きいほど、4-HBA/HMPAが大きくなる傾向にあることが確認でき、上記計算手法の妥当性を確認できた。 Further, as shown in Table 1, in the 4-HBA production methods of Examples 1 to 5, the 1,2-insertion activation energy and the 2,1-insertion activation energy calculated by the density functional theory difference was 4.2 kcal/mol or more. On the other hand, in the method for producing 4-HBA of Comparative Example 2, the difference in activation energy was less than 4.2 kcal/mol in spite of using a bidentate phosphine ligand. Therefore, the magnitude relationship of the calculated value of the activation energy difference in the 4-HBA production methods of Examples 1 to 5 and Comparative Example 2 is the same as that in the 4-HBA production methods of Examples 1 to 5 and Comparative Example 2. This coincided with the magnitude relationship of the experimental results for 4-HBA/HMPA. From this, it can be confirmed that 4-HBA/HMPA tends to increase as the difference in activation energy between 1,2 insertion and 2,1 insertion calculated by the density functional theory increases. The validity of the calculation method was confirmed.
(計算例1~計算例3)
 二座ホスフィン配位子として表2に示す化合物を用いた場合について、それぞれアリルアルコールのヒドロホルミル化反応における1,2挿入と2,1挿入との活性化エネルギーの差を、上記の計算方法を用いて算出した。その結果を表2に示す。
(Calculation example 1 to calculation example 3)
When the compounds shown in Table 2 are used as bidentate phosphine ligands, the difference in activation energy between 1,2-insertion and 2,1-insertion in the hydroformylation reaction of allyl alcohol is calculated using the above calculation method. calculated by Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表2に示すように、表2に示す二座ホスフィン配位子を用いた計算例1~計算例3の場合においても、実施例1~5の4-HBAの製造方法と同様に、密度汎関数法にて算出される1,2挿入の活性化エネルギーと2,1挿入の活性化エネルギーとの差が4.2kcal/mol以上であった。このことより、実施例1~5の4-HBAの製造方法において使用した二座ホスフィン配位子に代えて、表2に示す二座ホスフィン配位子を用いた場合においても、4-HBA/HMPAが大きい反応生成物が得られることが見込まれる。 As shown in Table 2, in the case of Calculation Examples 1 to 3 using the bidentate phosphine ligand shown in Table 2, the same density generalization as in the method for producing 4-HBA in Examples 1 to 5 The difference between the 1,2-insertion activation energy and the 2,1-insertion activation energy calculated by the function method was 4.2 kcal/mol or more. From this, even when the bidentate phosphine ligands shown in Table 2 were used instead of the bidentate phosphine ligands used in the methods for producing 4-HBA in Examples 1 to 5, 4-HBA/ Reaction products with high HMPA are expected to be obtained.
[ガンマブチロラクトン(GBL)の製造方法]
 固定床式気相反応装置として、直径4.5mm高さ50mmの円筒型の反応容器を有し、反応容器の上部に気化器が備えられ、気化器の上部にキャリアーガス導入口と原料流入口とが設けられ、反応容器の下部にガス抜け口を有する反応液捕集容器(冷却)が設けられているものを用いた。
 共沈法により、銅を含む触媒として、CuZnZrAlCrOx(モル比Cu:Zn:Zr:Al:Cr=1.0:0.1:0.1:0.45:0.1)を製造した。
[Method for producing gamma-butyrolactone (GBL)]
As a fixed-bed gas-phase reactor, it has a cylindrical reaction vessel with a diameter of 4.5 mm and a height of 50 mm. and a reaction liquid collecting container (cooling) having a gas vent at the bottom of the reaction container was used.
CuZnZrAlCrOx (molar ratio Cu:Zn:Zr:Al:Cr=1.0:0.1:0.1:0.45:0.1) was produced as a copper-containing catalyst by a coprecipitation method.
 上記の銅を含む触媒0.8gを、固定床式気相反応装置の反応容器に充填し、反応容器内に300℃の水素ガスを流量30mL/minで1時間流通させて、銅を含む触媒の水素還元を行った。
 その後、実施例1で製造した4-HBAを含む反応生成物の20質量%水溶液を、0.1ml/minで気化器に送液して気化させ、反応容器の上部からキャリアーガスである窒素ガス10ml/minとともに供給し、300℃で銅を含む触媒とを接触させて反応させ、GBLを製造した。この時のGHSV(ガス空間速度)は8707hr-1、LHSV(原料換算した液空間速度)は1.5hr-1であった。実施例1で製造した4-HBAを含む反応生成物は、精製することなく、そのまま使用した。
0.8 g of the above copper-containing catalyst is packed in a reaction vessel of a fixed bed gas phase reactor, and hydrogen gas at 300 ° C. is passed through the reaction vessel at a flow rate of 30 mL / min for 1 hour to obtain a copper-containing catalyst. hydrogen reduction was performed.
After that, the 20% by mass aqueous solution of the reaction product containing 4-HBA produced in Example 1 was sent to the vaporizer at 0.1 ml/min to be vaporized, and nitrogen gas as a carrier gas was supplied from the top of the reaction vessel. It was fed at 10 ml/min and was brought into contact with a copper-containing catalyst at 300° C. for reaction to produce GBL. At this time, GHSV (gas hourly space velocity) was 8707 hr -1 and LHSV (liquid hourly space velocity in terms of raw material) was 1.5 hr -1 . The reaction product containing 4-HBA prepared in Example 1 was used as it was without purification.
 得られたGBLをHPLCで分析した結果、4-HBAの転化率は98.5%であり、GBL収率は97.5%、GBLの選択率は99.0%であった。
 このことから、実施例1で製造した4-HBAを含む反応生成物は、精製することなく、そのままGBLを生成させる反応に用いても、高い収率でGBLを製造でき、効率よくGBLを製造できることが確認できた。これは、実施例1で製造した4-HBAを含む反応生成物の4-HBA/HMPAが大きいためである。
As a result of analyzing the obtained GBL by HPLC, the conversion of 4-HBA was 98.5%, the GBL yield was 97.5%, and the GBL selectivity was 99.0%.
From this, the reaction product containing 4-HBA produced in Example 1 can produce GBL at a high yield even if it is used as it is for the reaction for producing GBL without purification, and GBL can be produced efficiently. I have confirmed that it is possible. This is because the 4-HBA/HMPA of the reaction product containing 4-HBA produced in Example 1 is large.
[N-メチル-2-ピロリドン(NMP)の製造方法]
 ステンレス製の容量100mLのオートクレーブの反応容器内に、実施例1で製造した4-HBAを含む反応生成物を用いて上記の製造方法により製造したGBL12.92gと、40%モノメチルアミン水溶液(富士フイルム和光純薬社製)12.89g(GBL1モルに対するモノメチルアミンのモル比:1.1)と、溶媒としての水51.66gとを入れた。そして、窒素ガス雰囲気下で、反応開始圧力を101.3kPaとし、240℃で3時間撹拌しながら反応させてNMPを生成させた。
[Method for producing N-methyl-2-pyrrolidone (NMP)]
12.92 g of GBL produced by the above production method using the reaction product containing 4-HBA produced in Example 1 and 40% monomethylamine aqueous solution (Fujifilm 12.89 g (manufactured by Wako Pure Chemical Industries, Ltd.) (molar ratio of monomethylamine to 1 mol of GBL: 1.1) and 51.66 g of water as a solvent were added. Then, under a nitrogen gas atmosphere, the reaction initiation pressure was set to 101.3 kPa, and the reaction was allowed to proceed while stirring at 240° C. for 3 hours to generate NMP.
 得られたNMPを含む反応液を、HPLCを用いて分析し、GBLの転化率と、NMPの収率とを求めた。その結果、GBLの転化率は98.4%であり、NMPの収率は97.9%であった。
 このことから、実施例1で製造した4-HBAを含む反応生成物を原料として製造したGBLを用いて、高い収率で効率よくNMPを製造できることが確認できた。
The resulting reaction solution containing NMP was analyzed using HPLC to determine the conversion rate of GBL and the yield of NMP. As a result, the conversion rate of GBL was 98.4% and the yield of NMP was 97.9%.
From this, it was confirmed that NMP can be efficiently produced at a high yield using GBL produced using the reaction product containing 4-HBA produced in Example 1 as a starting material.
 本発明は、HMPAの生成量が少なく、4-HBA/HMPAの大きい反応生成物が得られる4-HBAの製造方法を提供する。 The present invention provides a method for producing 4-HBA that produces a small amount of HMPA and yields a large 4-HBA/HMPA reaction product.

Claims (15)

  1.  ロジウム触媒および下記式(1)~(3)から選択される少なくとも1種の二座ホスフィン配位子を含む触媒の存在下で、アリルアルコールを一酸化炭素ガスおよび水素ガスとヒドロホルミル化反応させる工程を含む、4-ヒドロキシブチルアルデヒドの製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)~(3)中、Arは置換基を有してもよいアリール基を示す。)
    A step of hydroformylating allyl alcohol with carbon monoxide gas and hydrogen gas in the presence of a rhodium catalyst and a catalyst containing at least one bidentate phosphine ligand selected from the following formulas (1) to (3): A method for producing 4-hydroxybutyraldehyde, comprising:
    Figure JPOXMLDOC01-appb-C000001

    (In formulas (1) to (3), Ar represents an aryl group which may have a substituent.)
  2.  前記式(1)~(3)中のArが、下記式(a)~(e)のいずれかで表される、請求項1に記載の4-ヒドロキシブチルアルデヒドの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    The method for producing 4-hydroxybutyraldehyde according to claim 1, wherein Ar in the formulas (1) to (3) is represented by any one of the following formulas (a) to (e).
    Figure JPOXMLDOC01-appb-C000002
  3.  ロジウム触媒および前記二座ホスフィン配位子を含む前記触媒の存在下におけるヒドロホルミル化反応は、密度汎関数法にて算出される、アリルアルコールへの1,2挿入の活性化エネルギーと2,1挿入の活性化エネルギーとの差が4.2kcal/mol以上である、請求項1または請求項2に記載の4-ヒドロキシブチルアルデヒドの製造方法。 The hydroformylation reaction in the presence of a rhodium catalyst and said catalyst containing said bidentate phosphine ligand is calculated by the density functional theory, the activation energy of 1,2 insertion into allyl alcohol and 2,1 insertion The method for producing 4-hydroxybutyraldehyde according to claim 1 or 2, wherein the difference from the activation energy of is 4.2 kcal/mol or more.
  4.  前記二座ホスフィン配位子が前記式(1)で表され、前記式(1)中のArが前記式(a)、(b)、(c)のいずれかで表される、請求項1~請求項3のいずれか一項に記載の4-ヒドロキシブチルアルデヒドの製造方法。 Claim 1, wherein the bidentate phosphine ligand is represented by the formula (1), and Ar in the formula (1) is represented by any one of the formulas (a), (b), and (c). The method for producing 4-hydroxybutyraldehyde according to any one of claims 3 to 4.
  5.  前記二座ホスフィン配位子が前記式(2)で表され、前記式(2)中のArが前記式(a)で表される、請求項1~請求項3のいずれか一項に記載の4-ヒドロキシブチルアルデヒドの製造方法。 The bidentate phosphine ligand is represented by the formula (2), and Ar in the formula (2) is represented by the formula (a), according to any one of claims 1 to 3. A method for producing 4-hydroxybutyraldehyde.
  6.  前記二座ホスフィン配位子が前記式(3)で表され、前記式(3)中のArが前記式(a)、(b)、(d)、(e)のいずれかで表される、請求項1~請求項3のいずれか一項に記載の4-ヒドロキシブチルアルデヒドの製造方法。 The bidentate phosphine ligand is represented by the formula (3), and Ar in the formula (3) is represented by any one of the formulas (a), (b), (d), and (e). , The method for producing 4-hydroxybutyraldehyde according to any one of claims 1 to 3.
  7.  前記ロジウム触媒の使用量が、前記アリルアルコールに対してロジウム原子の割合が0.01mol%~5mol%となる量である、請求項1~請求項6のいずれか一項に記載の4-ヒドロキシブチルアルデヒドの製造方法。 The 4-hydroxy according to any one of claims 1 to 6, wherein the amount of the rhodium catalyst used is such that the ratio of rhodium atoms to the allyl alcohol is 0.01 mol% to 5 mol%. A method for producing butyraldehyde.
  8.  前記二座ホスフィン配位子の使用量が、前記ロジウム触媒に含まれるロジウム原子1モルに対して0.5モル~50モルの範囲である、請求項1~請求項7のいずれか一項に記載の4-ヒドロキシブチルアルデヒドの製造方法。 The amount of the bidentate phosphine ligand used is in the range of 0.5 mol to 50 mol per 1 mol of rhodium atoms contained in the rhodium catalyst, according to any one of claims 1 to 7. A process for the preparation of 4-hydroxybutyraldehyde described.
  9.  前記ヒドロホルミル化反応を行う反応容器内における一酸化炭素ガスと水素ガスとを含む混合ガスの圧力が0.1~10MPaG(ゲージ圧)の範囲であり、
     前記反応容器内における一酸化炭素ガスと水素ガスの分圧比(水素ガス/一酸化炭素ガス)が、1/10~10/1の範囲である、請求項1~請求項8のいずれか一項に記載の4-ヒドロキシブチルアルデヒドの製造方法。
    The pressure of the mixed gas containing carbon monoxide gas and hydrogen gas in the reaction vessel for the hydroformylation reaction is in the range of 0.1 to 10 MPaG (gauge pressure),
    Any one of claims 1 to 8, wherein the partial pressure ratio of carbon monoxide gas and hydrogen gas (hydrogen gas/carbon monoxide gas) in the reaction vessel is in the range of 1/10 to 10/1. The method for producing 4-hydroxybutyraldehyde according to .
  10.  前記一酸化炭素ガスおよび前記水素ガスが、廃プラスチックおよび/またはバイオマスの加熱分解により発生させたものである、請求項1~請求項9のいずれか一項に記載の4-ヒドロキシブチルアルデヒドの製造方法。 The production of 4-hydroxybutyraldehyde according to any one of claims 1 to 9, wherein the carbon monoxide gas and the hydrogen gas are generated by thermal decomposition of waste plastics and/or biomass. Method.
  11.  請求項1~請求項10のいずれか一項に記載の4-ヒドロキシブチルアルデヒドの製造方法により4-ヒドロキシブチルアルデヒドを製造する工程と、
     製造した前記4-ヒドロキシブチルアルデヒドと、銅を含む触媒とを接触させる工程とを含む、ガンマブチロラクトンの製造方法。
    A step of producing 4-hydroxybutyraldehyde by the method for producing 4-hydroxybutyraldehyde according to any one of claims 1 to 10;
    A method for producing gamma-butyrolactone, comprising the step of contacting the produced 4-hydroxybutyraldehyde with a copper-containing catalyst.
  12.  前記銅を含む触媒がさらに、亜鉛、ジルコニウム及びアルミニウムからなる群より選ばれる少なくとも1種の金属元素の酸化物を含む、請求項11に記載のガンマブチロラクトンの製造方法。 The method for producing gamma-butyrolactone according to claim 11, wherein the catalyst containing copper further contains an oxide of at least one metal element selected from the group consisting of zinc, zirconium and aluminum.
  13.  請求項11または請求項12に記載のガンマブチロラクトンの製造方法によりガンマブチロラクトンを製造する工程と、
     製造した前記ガンマブチロラクトンと、モノメチルアミンとを反応させる工程とを含む、N-メチル-2-ピロリドンの製造方法。
    a step of producing gamma-butyrolactone by the method for producing gamma-butyrolactone according to claim 11 or 12;
    A method for producing N-methyl-2-pyrrolidone, comprising a step of reacting the produced gamma-butyrolactone with monomethylamine.
  14.  下記式(10)で表される化合物。
    Figure JPOXMLDOC01-appb-C000003
    A compound represented by the following formula (10).
    Figure JPOXMLDOC01-appb-C000003
  15.  下記式(8)で表される化合物。
    Figure JPOXMLDOC01-appb-C000004
    A compound represented by the following formula (8).
    Figure JPOXMLDOC01-appb-C000004
PCT/JP2022/040335 2021-11-02 2022-10-28 Method for producing 4-hydroxybutyl aldehyde, method for producing gamma butyrolactone, method for producing n-methyl-2-pyrrolidone, and compound WO2023080071A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-179658 2021-11-02
JP2021179658 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023080071A1 true WO2023080071A1 (en) 2023-05-11

Family

ID=86241081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040335 WO2023080071A1 (en) 2021-11-02 2022-10-28 Method for producing 4-hydroxybutyl aldehyde, method for producing gamma butyrolactone, method for producing n-methyl-2-pyrrolidone, and compound

Country Status (2)

Country Link
TW (1) TW202334072A (en)
WO (1) WO2023080071A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612241B1 (en) * 2009-03-23 2009-11-03 Lyondell Chemical Technology, L.P. Hydroformylation process
JP2010523558A (en) * 2007-04-02 2010-07-15 ライオンデル ケミカル テクノロジー、 エル.ピー. Hydroformylation process
US20100292514A1 (en) * 2009-05-13 2010-11-18 White Daniel F Hydroformylation process
CN103204764A (en) * 2012-01-17 2013-07-17 中国石油化学工业开发股份有限公司 Heterogeneous catalyst and method for co-production of 1, 4-butanediol, gamma-butyrolactone and tetrahydrofuran
JP2014502254A (en) * 2010-10-05 2014-01-30 ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー Method of hydroformylation
JP2015086200A (en) * 2013-11-01 2015-05-07 公益財団法人相模中央化学研究所 3-(perfluoroalkyl)propanal production method
US10807934B1 (en) * 2019-05-31 2020-10-20 Lyondell Chemical Technology, L.P. High linear selectivity ligand for allyl alcohol hydroformylation
WO2021045153A1 (en) * 2019-09-06 2021-03-11 昭和電工株式会社 Method for producing gamma-butyrolactone and method for producing n-methylpyrrolidone

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523558A (en) * 2007-04-02 2010-07-15 ライオンデル ケミカル テクノロジー、 エル.ピー. Hydroformylation process
US7612241B1 (en) * 2009-03-23 2009-11-03 Lyondell Chemical Technology, L.P. Hydroformylation process
US20100292514A1 (en) * 2009-05-13 2010-11-18 White Daniel F Hydroformylation process
JP2014502254A (en) * 2010-10-05 2014-01-30 ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー Method of hydroformylation
CN103204764A (en) * 2012-01-17 2013-07-17 中国石油化学工业开发股份有限公司 Heterogeneous catalyst and method for co-production of 1, 4-butanediol, gamma-butyrolactone and tetrahydrofuran
JP2015086200A (en) * 2013-11-01 2015-05-07 公益財団法人相模中央化学研究所 3-(perfluoroalkyl)propanal production method
US10807934B1 (en) * 2019-05-31 2020-10-20 Lyondell Chemical Technology, L.P. High linear selectivity ligand for allyl alcohol hydroformylation
WO2021045153A1 (en) * 2019-09-06 2021-03-11 昭和電工株式会社 Method for producing gamma-butyrolactone and method for producing n-methylpyrrolidone

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KUMAR MANOJ, CHAUDHARI RAGHUNATH V., SUBRAMANIAM BALA, JACKSON TIMOTHY A.: "Importance of Long-Range Noncovalent Interactions in the Regioselectivity of Rhodium-Xantphos-Catalyzed Hydroformylation", ORGANOMETALLICS, AMERICAN CHEMICAL SOCIETY, vol. 34, no. 6, 23 March 2015 (2015-03-23), pages 1062 - 1073, XP093062339, ISSN: 0276-7333, DOI: 10.1021/om5012775 *
LARS A. VAN DER VEEN, PETER H. KEEVEN, GERARD C. SCHOEMAKER, JOOST N. H. REEK, PAUL C. J. KAMER, PIET W. N. M. VAN LEEUWEN, MARTIN: "Origin of the Bite Angle Effect on Rhodium Diphosphine Catalyzed Hydroformylation", ORGANOMETALLICS, AMERICAN CHEMICAL SOCIETY, vol. 19, no. 5, 6 March 2000 (2000-03-06), pages 872 - 883, XP008147527, ISSN: 0276-7333, DOI: 10.1021/om990734o *
OGURI MOTOHIRO, TOSHIKI NODA, TAKAMISHI OAYAMA: "The Effect of Ligands on the Activity and Product Selectivity of the Rhodium Complex Catalysts for the Hydroformylation of Allyl Alcohol", JOURNAL OF TOSOH RESEARCH, vol. 37, no. 2, 1 January 1993 (1993-01-01), pages 101 - 108, XP093062335 *

Also Published As

Publication number Publication date
TW202334072A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
EP0104197B1 (en) Process for the production of ethanol
EP0429963B1 (en) Method for recovering a group viii metal solid complex and hydroformylation method
US4247486A (en) Cyclic hydroformylation process
Tejel et al. Rhodium (III)-catalyzed dimerization of aldehydes to esters
CA2665911A1 (en) Hydroformylation process
JPS5828857B2 (en) Circulating hydroformylation method
US11708316B2 (en) Hydrogenation of esters to alcohols in the presence of a Ru-PNN complex
CA2761037A1 (en) Hydroformylation process
JPS6261577B2 (en)
JP2007506691A (en) Process for producing 1,7-octadiene and use thereof
EP3538264B1 (en) Methods to rejuvenate a deactivated hydroformylation catalyst solution
US4258214A (en) Process for the production of aldehydes
EP3374340B1 (en) Process for producing aldehydes
CN113179638B (en) Hydroformylation process
JP6558742B2 (en) Method for producing aldehyde compound and acetal compound
WO2023080071A1 (en) Method for producing 4-hydroxybutyl aldehyde, method for producing gamma butyrolactone, method for producing n-methyl-2-pyrrolidone, and compound
WO2012116977A1 (en) PROCESS FOR THE PREPARATION OF 3-METHYLENE-γ-BUTYROLACTONE
US4337363A (en) Process for the preparation of 3-(4-methyl-3-cyclohexen-1-yl) butyraldehyde
JPS5840533B2 (en) Production method of 3-methylpentane-1,5-diol
JPH06279344A (en) Production of hydroxybutyraldehyde compounds
US4950797A (en) Preparation of carbonyl compounds by isomerization of allyl alcohols
US4533742A (en) Preparation of 2-hydroxytetrahydrofuran by hydroformylation of allyl alcohol using ketone solvents
JP7438945B2 (en) Method for producing cyclic hemiacetal compound
KR20210015839A (en) Control method of hydroformylation process
JPWO2017150337A1 (en) Method for producing dialdehyde compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889891

Country of ref document: EP

Kind code of ref document: A1