WO2023080049A1 - 含フッ素ポリウレタンの製造方法 - Google Patents

含フッ素ポリウレタンの製造方法 Download PDF

Info

Publication number
WO2023080049A1
WO2023080049A1 PCT/JP2022/040118 JP2022040118W WO2023080049A1 WO 2023080049 A1 WO2023080049 A1 WO 2023080049A1 JP 2022040118 W JP2022040118 W JP 2022040118W WO 2023080049 A1 WO2023080049 A1 WO 2023080049A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
group
mmol
compound
polyurethane
Prior art date
Application number
PCT/JP2022/040118
Other languages
English (en)
French (fr)
Inventor
明彦 津田
隆 岡添
浩志 和田
英明 田中
佳孝 砂山
俊文 柿内
Original Assignee
国立大学法人神戸大学
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学, Agc株式会社 filed Critical 国立大学法人神戸大学
Priority to JP2023557987A priority Critical patent/JPWO2023080049A1/ja
Priority to CN202280073341.4A priority patent/CN118201975A/zh
Publication of WO2023080049A1 publication Critical patent/WO2023080049A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/20Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G71/00Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
    • C08G71/04Polyurethanes

Definitions

  • the present invention relates to a method for producing high-quality fluorine-containing polyurethane without using isocyanate, and a fluorine-containing biscarbamate compound used in the method.
  • Non-Patent Document 1 summarizes a method for producing a polyurethane from a diisocyanate compound and a diol compound.
  • isocyanates are manufactured using highly toxic phosgene.
  • polyurethane can be synthesized from a biscarbamate compound and a diol compound in the presence or absence of a base.
  • a biscarbamate compound is called a blocked isocyanate, and is used with the isocyanate group exposed during the curing reaction.
  • Patent Document 1 also discloses a blocked isocyanate produced using a fluorine-containing aliphatic alcohol, but the conversion to a diisocyanate compound is also performed at a temperature of 200° C., which is one hundred and several tens of degrees. .
  • a blocked isocyanate produced using an aromatic alcohol as a blocking agent can be converted to a diisocyanate compound at a relatively low temperature (Non-Patent Document 2), but the eliminated aromatic alcohol cannot be removed from the polyurethane, Polyurethane quality may deteriorate.
  • Non-Patent Document 3 discloses a method of synthesizing polyurethane by converting a blocked isocyanate into a diisocyanate compound at room temperature using fluoride ions as a catalyst.
  • reagents such as n-Bu 4 NF are relatively expensive, cannot be easily removed from the synthesized polyurethane, and fluoride ions themselves exhibit toxicity. It is difficult.
  • isocyanates are used in the common industrial production of polyurethanes.
  • isocyanate is used as a starting material compound for synthesizing the blocked isocyanate, or the blocked isocyanate is intentionally converted to isocyanate. It is then reacted with a diol compound.
  • the toxicity of isocyanate is high, and it is thought that the restrictions on its use will become more and more severe in the future.
  • an object of the present invention is to provide a method for producing a high-quality fluorine-containing polyurethane without using isocyanate, and a fluorine-containing biscarbamate compound used in the method.
  • the present inventors have made intensive studies to solve the above problems. As a result, by reacting a specific fluorine-containing biscarbamate compound with a diol compound, it is possible to produce a fluorine-containing polyurethane at a relatively low temperature without isocyanate being detected in the reaction solution after the reaction.
  • the inventors have found that the fluorine-containing alcohol released from the fluorine-containing biscarbamate compound hardly remains in the fluorine-containing polyurethane, and completed the present invention.
  • the present invention is shown below.
  • Rf 1 represents a fluorine-containing C 1-6 alkyl group
  • Rf 2 represents a fluorine-containing divalent organic group
  • R 1 represents a divalent organic group.
  • the method according to [1] above, wherein the fluorine-containing biscarbamate compound represented by the above formula (I) and the diol compound represented by the above formula (II) are reacted at a temperature of 10°C or higher and 120°C or lower.
  • the fluorine-containing biscarbamate compound according to the present invention can be reacted with a diol compound at a relatively low temperature, the resulting fluorine-containing polyurethane is difficult to color.
  • the fluorine-containing alcohol produced from the fluorine-containing biscarbamate compound during the reaction has a relatively low boiling point and can be easily removed from the target fluorine-containing polyurethane. It may be possible to impart favorable properties to polyurethane.
  • the mechanism of the above reaction according to the present invention is unknown, at least isocyanate is not detected in the reaction solution after the reaction. Therefore, the present invention is industrially very excellent as a technique for safely producing high-quality fluorine-containing polyurethane.
  • FIG. 1 is a photograph of the appearance of a fluorine-containing polyurethane produced by the method of the present invention.
  • FIG. 2 is a photograph of the appearance of the fluorine-containing polyurethane produced by the method of the present invention.
  • FIG. 3 is a photograph of the appearance of the fluorine-containing polyurethane produced by the method of the present invention.
  • FIG. 4 is a photograph of the appearance of the fluorine-containing polyurethane produced by the method of the present invention.
  • the method for producing a fluorine-containing polyurethane according to the present invention includes a step of reacting a mixture containing a fluorine-containing biscarbamate compound represented by formula (I) and a diol compound represented by formula (II).
  • the method of the present invention will be specifically described below, but the present invention is not limited to the following specific examples.
  • compound represented by formula (x) is abbreviated as “compound (x)”.
  • the present invention uses a fluorine-containing biscarbamate compound (I).
  • a chain fluorine-containing alcohol is produced as a by-product, but the fluorine-containing alcohol is more easily distilled off than the aromatic alcohol.
  • Polyurethanes can be endowed with favorable properties due to the fluoro groups, such as their properties.
  • conventional blocked isocyanates require high heat for conversion to isocyanate compounds, but the fluorine-containing biscarbamate compound (I) according to the present invention converts to diol compound (II) even at relatively low temperatures. It is possible to react with
  • Rf 1 in the fluorine-containing biscarbamate compound (I) independently represents a fluorine-containing C 1-6 alkyl group.
  • the C 1-6 alkyl group refers to a linear or branched monovalent saturated aliphatic hydrocarbon group having 1 to 6 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl. , 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, 2,2-dimethylethyl, n-pentyl, n-hexyl, 2-hexyl and 3-hexyl.
  • a C 2-6 alkyl group is preferred, and a C 2-4 alkyl group is more preferred.
  • the number of substituents of the fluoro group in the fluorine-containing C 1-6 alkyl group is not particularly limited as long as it can be substituted. Preferably, 3 or more is more preferable. The upper limit of the number of substituents may be, for example, 20 or less, preferably 15 or less.
  • the C 1-6 alkyl group is preferably a sec-alkyl group or a tert-alkyl group.
  • Rf 1 is —CH 2 Rf 4 , —CH(Rf 4 ) 2 , or —C(Rf 4 ) 3 [wherein Rf 4 represents a perfluoro-C 1-5 alkyl group, a plurality of Rf 4 They may be the same or different.
  • the fluorine-containing biscarbamate compound (I) may be substituted with a halogeno group selected from chloro, bromo, and iodo, which are also electron-withdrawing groups, in addition to fluoro.
  • Two Rf 1 groups in the fluorine-containing biscarbamate compound (I) may be the same or different, but are preferably the same.
  • Rf 2 in the fluorine-containing biscarbamate compound (I) represents a fluorine-containing divalent organic group.
  • the fluorine-containing divalent organic group include fluorine-containing C 2-10 alkanediyl groups and fluorine-containing C 6-12 divalent aromatic groups.
  • the C 2-10 alkanediyl group in the fluorine-containing C 2-10 alkanediyl group refers to a linear or branched divalent saturated aliphatic hydrocarbon group having 2 or more and 10 or less carbon atoms. Examples include ethanediyl, n-propanediyl, methylethanediyl, n-butanediyl, methylpropanediyl, n-pentanediyl, n-hexanediyl, n-heptanediyl, n-octanediyl and the like.
  • a C 2-8 alkanediyl group is preferred, and a C 3-7 alkanediyl group is more preferred.
  • the number of substituents of the fluoro group in the fluorine-containing C 2-10 alkanediyl group is not particularly limited as long as it can be substituted. is preferred, and 3 or more is more preferred.
  • the upper limit of the number of substituents may be, for example, 20 or less, preferably 15 or less.
  • Rf 2 is more preferably represented by the formula CH 2 --(CF 2 ) n --CH 2 (wherein n represents an integer of 1 or more and 8 or less).
  • the fluorine-containing biscarbamate compound (I) having this group as Rf 2 has a more stable Rf 2 site and is superior in reactivity.
  • the fluorine-containing C 2-10 alkanediyl group may contain an ether group (--O--). That is, Rf 2 is represented by the formula: --CH 2 --Rf 5 --[--O--Rf 6 --]p--O--Rf 7 --CH 2 --[wherein Rf 5 to Rf 7 independently contain It represents a fluorine C 1-4 alkanediyl group, and p is an integer of 0 or more and 100 or less. ] The group represented by is mentioned. Rf 5 to Rf 7 are preferably perfluoro-C 1-4 alkanediyl groups, and p is preferably 50 or less. Examples of Rf 5 to Rf 7 independently include CF 2 , CF 2 CF 2 and CF(CF 3 ).
  • C 6-12 divalent arylene groups such as phenylene, naphthylene, indenylene and biphenylene
  • fluorine-containing C 6-12 divalent aromatic groups all hydrogen atoms on the aromatic ring may be substituted with fluoro, and alkanediyl groups such as bisphenols that bond two phenylene groups are also possible. may be substituted with fluoro.
  • the fluorine-containing biscarbamate compound (I) can be produced, for example, by the following method.
  • the following method does not require the use of isocyanate.
  • the diamino compound (IV) and the carbonate compound (V) may be commercially available, if available, or may be synthesized.
  • the carbonate compound (V) can be synthesized, for example, by a conventional method using phosgene. It can also be synthesized using
  • diamino compound (IV) examples include H 2 N—CH 2 —Rf 3 —CH 2 —NH 2 (wherein Rf 3 represents a fluorine-containing C 1-8 alkanediyl group), H 2 N --CH 2 --(CF 2 )n --CH 2 --NH 2 (wherein n represents an integer of 1 or more and 8 or less) can be used.
  • Examples of the carbonate compound (V) include bis(2,2,2-trifluoroethyl) carbonate, bis(2,2,3,3-tetrafluoropropyl) carbonate, bis(2,2,3,3, 3-pentafluoropropyl) carbonate, bis(1,1,1,3,3,3-hexafluoroisopropyl) carbonate, bis(1,1,1,2,2,4,5,5,5-nonafluoro- 4-trifluoromethyl-3-pentyl)carbonate, bis[1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl]carbonate, bis(2,2, 3,3,3-pentafluoropropyl) carbonate, bis(2,2,3,3,4,4,5,5-octafluoropentyl) carbonate, bis(2,2,3,3,4,4, 5,5-octafluorocyclopentyl) carbonate.
  • diamino compound (IV) and carbonate compound (V) may be adjusted as appropriate.
  • 2-fold molar ratio of carbonate compound (V) reacts with diamino compound (IV), so the molar ratio of carbonate compound (V) to diamino compound (IV) should be 2-fold molar or more.
  • the molar ratio can be adjusted to 5-fold mol or more and 20-fold mol or less.
  • the molar ratio is preferably 15-fold mol or less, more preferably 10-fold mol or less.
  • a solvent may be used in the above reaction.
  • the solvent is not particularly limited, but includes, for example, Asahiklin series manufactured by AGC, Novec series manufactured by 3M, Elnova series manufactured by Tokuyama METEL, 1,3-bis(trifluoromethyl)benzene, and the like.
  • Fluorine solvents such as acetonitrile and benzonitrile
  • ether solvents such as diethyl ether, glyme, diglyme, triglyme, tetraglyme, tetrahydrofuran, and dioxane
  • ketone solvents such as acetone and methyl ethyl ketone
  • ester solvents such as ethyl acetate halogenated hydrocarbon solvents such as dichloromethane, chloroform and carbon tetrachloride
  • aromatic hydrocarbon solvents such as benzene, toluene and chlorobenzene.
  • the solvent a fluorine-containing solvent in which the fluorine-containing compound is highly soluble, or a mixed solvent of a fluorine-containing solvent and another solvent is preferable.
  • the solvent may not be used. From the viewpoint of cost and environmental load, it is preferable not to use a solvent.
  • a base may be used in the above reaction.
  • bases include organic bases such as pyridine, triethylamine, ethyldiisopropylamine, diazabicycloundecene (DBU), 1,4-diazabicyclo[2.2.2]octane (DABCO) and N-methylmorpholine;
  • Inorganic bases such as sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, cesium carbonate, calcium carbonate, sodium fluoride, potassium fluoride, and cesium fluoride are included, and the solubility and appropriate basicity in the reaction solution are considered.
  • the amount of the base to be used may be appropriately adjusted. For example, it can be used in an amount of 0.1 to 5 times the molar amount of the diamino compound (IV). However, from the viewpoint of cost and residue, it may be possible not to use a base.
  • the reaction conditions can be adjusted as appropriate.
  • the reaction temperature can be 10° C. or higher and 60° C. or lower, and the reaction may be performed at room temperature.
  • the reaction time may be adjusted as appropriate, and may be determined by a preliminary experiment or the like until the consumption of at least one of the diamino compound (IV) and the carbonate compound (V) is confirmed by chromatography, NMR spectrum, or the like. , 1 hour or more and 50 hours or less.
  • normal post-treatment should be performed.
  • water and/or a non-water-miscible organic solvent such as a fluorine-containing solvent is added to the reaction solution after the reaction, and the solution is separated.
  • the obtained organic phase may be dried using anhydrous sodium sulfate or anhydrous magnesium sulfate, and the solvent may be distilled off. Furthermore, it may be purified by chromatography or the like.
  • R 1 in diol compound (II) represents a divalent organic group.
  • R 1 include a C 2-10 divalent chain aliphatic hydrocarbon group, a C 3-10 divalent cycloaliphatic hydrocarbon group, a C 6-15 divalent aromatic hydrocarbon group, and two or more of these. , a divalent organic group to which 5 or less groups are bonded.
  • C 2-10 divalent chain aliphatic hydrocarbon group refers to a linear or branched divalent saturated or unsaturated aliphatic hydrocarbon group having 2 or more and 10 or less carbon atoms.
  • the C2-10 divalent chain aliphatic hydrocarbon group includes a C2-10 alkanediyl group, a C2-10 alkenediyl group, and a C2-10 alkynediyl group.
  • C 2-10 alkanediyl groups include ethylene, n-propylene, isopropylene, n-butylene, 1-methylpropylene, 2-methylpropylene, 1,1-dimethylethylene, 2,2-dimethylethylene, n -pentylene, n-hexylene, n-heptylene, n-octylene, n-decylene and the like.
  • a C 2-8 alkanediyl group or a C 2-6 alkanediyl group is preferred, and a C 2-4 alkanediyl group is more preferred.
  • the C 2-10 alkenediyl group includes, for example, ethenylene (vinylene), 1-propenylene, 2-propenylene (arylene), butenylene, hexenylene, octenylene, decenylene and the like.
  • a C 2-8 alkenediyl group is preferred, and a C 2-6 alkenediyl group or a C 2-4 alkenediyl group is more preferred.
  • C 2-10 alkynediyl groups include ethynylene, propynylene, butynylene, hexynylene, octinylene, pentadecinylene and the like.
  • a C 2-8 alkynediyl group is preferred, and a C 2-6 alkynediyl group or a C 2-4 alkynediyl group is more preferred.
  • C 3-10 divalent cyclic aliphatic hydrocarbon group refers to a cyclic divalent saturated or unsaturated aliphatic hydrocarbon group having 3 or more and 10 or less carbon atoms, and the number of rings is 1 or 2. or more. Examples include a C3-10 cycloalkanediyl group, a C4-10 cycloalkenediyl group, and a C4-10 cycloalkynediyl group. Examples of C 3-10 cycloalkanediyl groups include cyclobutanediyl, cyclopropanediyl, cyclohexanediyl and adamantanediyl.
  • C 6-15 divalent aromatic hydrocarbon group means a divalent aromatic hydrocarbon group having 6 or more and 15 or less carbon atoms. Examples include phenylene, indenylene, naphthylene, biphenylene, phenalenylene, phenanthrenylene, anthracenylene, etc., preferably a C6-12 divalent aromatic hydrocarbon group, more preferably phenylene.
  • C2-10 divalent linear aliphatic hydrocarbon groups C3-10 divalent cycloaliphatic hydrocarbon groups and C6-15 divalent aromatic hydrocarbon groups
  • divalent organic group to which is bonded examples include a C 3-10 divalent cycloaliphatic hydrocarbon group--C 2-10 divalent chain aliphatic hydrocarbon group, a C 2-10 divalent chain aliphatic hydrocarbon group Hydrogen group--C 3-10 divalent cycloaliphatic hydrocarbon group, C 6-15 divalent aromatic hydrocarbon group--C 2-10 divalent chain aliphatic hydrocarbon group, C 2-10 divalent chain Aliphatic hydrocarbon group -C 6-15 divalent aromatic hydrocarbon group, C 2-10 divalent linear aliphatic hydrocarbon group -C 3-10 divalent cycloaliphatic hydrocarbon group -C 2-10 a valence chain aliphatic hydrocarbon group, a C 3-10 divalent cyclic aliphatic hydrocarbon group--C 2-10 divalent chain aliphatic hydrocarbon group,
  • the divalent organic group in diol compound (II) may be substituted with one or more halogeno groups selected from fluoro, chloro, bromo, and iodo.
  • the halogeno group is preferably fluoro.
  • the C 3-10 divalent cycloaliphatic hydrocarbon group and the C 3-10 divalent cycloaliphatic hydrocarbon group may contain an ether group (--O--), furthermore, in addition to the halogeno group, It may be substituted with a C 1-6 alkyl group. Fluoro is preferred as a substituent.
  • the C 3-10 divalent cycloaliphatic hydrocarbon group containing an ether group includes, for example, a divalent group obtained by removing a hydrogen atom from the terminal hydroxyl group of isosorbide.
  • diol compound (II) examples include ethanediol, propanediol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, and isosorbide. These groups may be substituted with the above halogeno group or may be substituted with fluoro.
  • R 1 in the diol compound (II) examples include divalent organic groups represented by the following formula (VI).
  • R 11 and R 12 are independently -(CR 14 R 15 ) m3 - or -(-O-(CR 14 R 15 ) m4 -) m5 - (wherein R 14 and R 15 are independently represents an H or C 1-6 alkyl group, m3 represents an integer of 0 or more and 10 or less, m4 represents an integer of 1 or more and 10 or less, m5 represents an integer of 1 or more and 10 or less, When m3 or m4 is an integer of 2 or more, a plurality of R 14 and R 15 may be the same or different) represents R 13 represents any of the following divalent organic groups,
  • R 16 and R 17 are independently H, a halogeno group, a C 1-20 aliphatic hydrocarbon group optionally having a substituent ⁇ , a C 1-20 alkoxy group optionally having a substituent ⁇ , represents a C 6-20 aromatic hydrocarbon group optionally having a substituent ⁇ , or R 16 and R 17 combine to form a C 3-20 carbocyclic or 5-12 membered heterocyclic ring may be R 18 and R 19 independently represent H or a C 1-6 alkyl group, and when m6 is an integer of 2 or more, a plurality of R 18 and R 19 may be the same or different often, R 20 to R 27 are each independently a halogeno group, a C 1-20 aliphatic hydrocarbon group optionally having a substituent ⁇ , a C 1-20 alkoxy group optionally having a substituent ⁇ , or represents a C 6-12 aromatic hydrocarbon group optionally having a substituent ⁇ , R 28 represents a C 1-9 alkaned
  • the substituent ⁇ 1 and the substituent ⁇ 2 are independently a halogeno group, a C 1-20 aliphatic hydrocarbon group, a C 1-20 alkoxy group, a C 3-20 cycloalkyl group, and a C 6-20 aromatic hydrocarbon group.
  • the substituent ⁇ is one or more substituents selected from a C 1-6 alkoxy group, a C 1-7 acyl group, a halogeno group, a nitro group, a cyano group, and a carbamoyl group;
  • the substituent ⁇ is one or more substituents selected from a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-7 acyl group, a halogeno group, a nitro group, a cyano group and a carbamoyl group.
  • the substituent ⁇ is one or more substituents selected from a C 1-6 alkyl group, a C 1-6 alkoxy group, a C 1-7 acyl group, a halogeno group, a nitro group, a cyano group and a carbamoyl group.
  • —Ph—R 13 —Ph— in the divalent organic group (VI) includes bisphenol A, bisphenol AP, bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol S, Divalent organic groups in bisphenol TMC and bisphenol Z other than the hydroxyl groups are included.
  • the —(CR 14 R 15 ) m3 — group in the divalent organic group (VI) includes single bonds and C 1-2 alkyl groups, or —(—O—(CR 14 R 15 ) m4 —) m5
  • the - group includes -(-O-CH 2 CH 2 -) m5 -, -(-O-CH(CH 3 )CH 2 -) m5 -, and -(-O-CH 2 CH(CH 3 )-) m5- .
  • R 1 in the diol compound (II) may be represented by the formula —R 2 —[—X—R 2 —]m— (where X represents O or S, preferably O, and R 2 is substituted with a halogeno group). represents a C 1-8 alkanediyl group which may be may be different.).
  • halogeno group fluoro is preferred.
  • R 2 includes an ethylene group (--CH 2 CH 2 --), a propylene group [--CH(CH 3 )CH 2 -- or --CH 2 CH(CH 3 )--], and a tetramethylene group (--CH 2 CH 2 CH 2 —). These groups may be substituted with a halogeno group, and the halogeno group is preferably fluoro.
  • m is preferably 5 or more, more preferably 10 or more, still more preferably 20 or more, and preferably 160 or less, more preferably 150 or less.
  • a solvent may be used when the fluorine-containing biscarbamate compound (I) and the diol compound (II) are reacted.
  • the solvent is not particularly limited as long as it is liquid at normal temperature and pressure and does not adversely affect the reaction.
  • Fluorine-containing solvents such as Elnova series and 1,3-bis(trifluoromethyl)benzene; Aromatic hydrocarbon solvents such as benzene, toluene and chlorobenzene; Nitrile solvents such as acetonitrile and benzonitrile; Diethyl ether, glyme and diglyme ether solvents such as , triglyme, tetraglyme, tetrahydrofuran, and dioxane; ketone solvents such as acetone and methyl ethyl ketone; ester solvents such as ethyl acetate; and halogenated hydrocarbon solvents such as dichloromethane, chloroform, and carbon tet
  • the solvent may not be used. From the viewpoint of cost and environmental load, it is preferable not to use a solvent.
  • the amounts of the fluorine-containing biscarbamate compound (I) and the diol compound (II) may be adjusted as appropriate.
  • the fluorine-containing biscarbamate compound (I) and the diol compound (II) may be used in equimolar amounts or approximately equimolar amounts.
  • the molar ratio to one of the fluorine-containing biscarbamate compound (I) and the diol compound (II) can be adjusted to 0.8 or more and 1.2 or less.
  • the molar ratio is preferably 0.9 or more, more preferably 0.95 or more, and preferably 1.1 or less, more preferably 1.05 or less.
  • the above molar ratio may be adjusted to 1.
  • the fluorine-containing biscarbamate compound (I) and the diol compound (II) may be reacted in the presence of a base.
  • bases include organic bases such as pyridine, triethylamine, ethyldiisopropylamine, diazabicycloundecene (DBU), 1,4-diazabicyclo[2.2.2]octane (DABCO) and N-methylmorpholine;
  • Inorganic bases such as sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, cesium carbonate, calcium carbonate, sodium fluoride, potassium fluoride, and cesium fluoride are included, and the solubility and appropriate basicity in the reaction solution are considered.
  • the reaction temperature may be adjusted as appropriate, and can be, for example, 10°C or higher and 120°C or lower. Further, the reaction may be carried out at normal temperature, or may be carried out under heating and reflux conditions depending on the solvent used. The higher the reaction temperature, the better the reaction can proceed. Therefore, the reaction temperature is preferably 25° C. or higher or 40° C. or higher, more preferably 60° C. or higher, and even more preferably 80° C. or higher. On the other hand, if the temperature is too high, the fluorine-containing polyurethane may be colored, so the temperature is preferably 110° C. or lower, more preferably 105° C. or lower, and even more preferably 100° C. or lower.
  • the reaction time may be adjusted as appropriate, and may be determined by a preliminary experiment or the like until the consumption of at least one of the fluorine-containing biscarbamate compound (I) and the diol compound (II) is confirmed by chromatography, NMR spectrum, or the like. can be, for example, 1 hour or more and 200 hours or less.
  • fluorine-containing polyurethanes are often obtained as solids or viscous liquids, so the solvent and the like may be distilled off after the reaction. Also, the fluorine-containing polyurethane may be washed with a solvent.
  • the method of the present invention can produce a fluorine-containing polyurethane simply, safely and efficiently without using a highly toxic isocyanate compound.
  • the fluorine-containing polyurethane produced according to the present invention is excellent in heat resistance, flexibility, chemical resistance, water repellency, etc., because the main skeleton is a chain organic group having a fluoro group as a substituent.
  • the residual fluorine-containing alcohol may further improve the quality of the polyurethane.
  • Example 1 Bis(1,1,1,3,3,3-hexafluoropropan-2-yl)(2,2,3,3,4,4-hexafluoropentane-1,5-diyl)di Synthesis of carbamate [6FPBC] Bis(1,1,1,3,3,3-hexafluoropropan-2-yl) carbonate (BHFC) (33.9 mmol, 12.3 g), 2,2,3,3,4 ,4-hexafluoropentane-1,5-diamine hydrochloride (6FPDA ⁇ 2HCl) (5.7 mmol, 1.6 g), triethylamine (12.9 mmol, 1.8 mL), and a hydrofluoroether solvent (“Novec TM 7100" (manufactured by 3M, 34 mL) was added, and the mixture was stirred at room temperature for 2.5 hours.
  • BHFC Bis(1,1,1,3,3,3-hexafluoropropan-2-yl) carbonate
  • Example 2 Bis(1,1,1,3,3,3-hexafluoropropan-2-yl) (2,2,3,3,4,4,5,5-octafluorohexane-1,6 -diyl) dicarbamate [8FHBC] synthesis Bis(1,1,1,3,3,3-hexafluoropropan-2-yl) carbonate (BHFC) (10 mmol, 2.2 mL), 2,2,3,3,4,4, 5,5-octafluorohexane-1,6-diamine hydrochloride (8FHDA 2HCl) (2.0 mmol, 0.67 g), triethylamine (0.53 mmol, 3.8 mL), and a hydrofluoroether solvent (" Novec TM 7100" (manufactured by 3M, 10 mL) was added, and the mixture was stirred at room temperature for 2 hours.
  • BHFC bis(1,1,3,3,3-hexafluoropropan-2-yl) carbonate
  • Example 3 Synthesis of polyurethane from 6FPBC and 1,6-hexanediol
  • 6FPBC 0.2 mmol, 0.12 g
  • 1,6-hexanediol 0.2 mmol, 0.024 g
  • DABCO 1,4-diazabicyclo[2.2.2] octane
  • the target product obtained was a colorless white solid as shown in FIG.
  • Example 4 Polyurethane Synthesis from 6FPBC and PPG400 6FPBC (0.20 mmol, 0.12 g), polypropylene glycol (PPG, average molecular weight: 400) (0.2 mmol, 0.087 g), and 1,4-diazabicyclo [2.2.2] were added to a 10 mL eggplant flask.
  • Octane (DABCO) (0.027 mmol, 0.003 g) was added and stirred at 100° C. for 91 hours. After that, it was vacuum-dried at 100° C. for 2 hours to quantitatively obtain the desired product as a pale yellow viscous liquid (0.08 g, 0.26 mmol [converted to monomer]).
  • a photograph of the appearance of the obtained object is shown in FIG.
  • Example 5 Synthesis of polyurethane from 8FHBC and PPG400 using base 8FHBC (0.13 g, 0.20 mmol), PPG400 (80 mg, 0.20 mmol), DABCO (2.2 mg, 0.020 mmol), and 1,3-bis(trifluoromethyl)benzene ( 0.5 mL) was added and stirred at 100° C. for 35 hours. After the reaction, the reaction solution was analyzed by infrared absorption spectroscopy, but no strong signal at 2200 to 2300 cm -1 characteristic of isocyanate was observed.
  • FIG. 3 shows a photograph of the appearance of the obtained object.
  • IR ATR
  • Example 6 Synthesis of Polyurethane from 8FHBC and PPG400 Using a Base The reaction was carried out under the same conditions as in Example 5, except that the reaction time was extended from 35 hours to 47 hours. A solid was obtained.
  • Example 7 Polyurethane synthesis from 8FHBC and PPG400 (1) Bis(1,1,1,3,3,3-hexafluoropropan-2-yl) (2,2,3,3,4,4, Synthesis of 5,5-octafluorohexane-1,6-diyl)dicarbonate [8FHBC] Bis(1,1,1,3,3,3-hexafluoropropan-2-yl) carbonate (BHFC) (30 mmol, 6.6 mL), 2,2,3,3,4,4 ,5,5-octafluorohexane-1,6-diamine hydrochloride (8FHDA.2HCl) (10 mmol, 3.33 g) and tetrahydrofuran (10 mL) as a solvent were added.
  • 8FHBC Bis(1,1,3,3,3-hexafluoropropan-2-yl) (,2,3,3,4,4,4, Synthesis of 5,5-octafluorohexane-1,6-diy
  • Triethylamine (20 mmol, 2.8 mL) was added and stirred at room temperature for 3 hours. After that, 1M hydrochloric acid was added to the reaction solution, and chloroform and water were added to separate the layers. The organic layer was dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure and vacuum-dried at 70° C. for 4 hours to obtain 8FHBC as a white solid (yield: 90%, yield: 5.83 g, 9 mmol). Thus, compared with Example 2, a common solvent could be used and the scale of implementation could be expanded.
  • Example 8 Polyurethane Synthesis from 8FHBC and Ethylene Glycol A solution of 8FHBC (0.20 mmol, 0.13 g) and ethylene glycol (0.2 mmol, 11.2 ⁇ L) dissolved in tetrahydrofuran (0.5 mL) and 1,4-diazabicyclo[2. 2.2] Octane (DABCO) (0.02 mmol, 2.2 mg) was added and heated with stirring at 100° C. for 43 hours. A white precipitate, which is sparingly soluble in an organic solvent, was formed and filtered off by suction filtration to quantitatively obtain the desired product as a white solid.
  • DABCO 1,4-diazabicyclo[2. 2.2]
  • DABCO 1,4-diazabicyclo[2. 2.2]
  • DABCO 1,4-diazabicyclo[2. 2.2]
  • a white precipitate which is sparingly soluble in an organic solvent, was formed and filtered off by suction filtration to quantitatively obtain
  • Example 9 Polyurethane Synthesis from 8FHBC and Diethylene Glycol A solution of 8FHBC (0.2 mmol, 0.13 g) and diethylene glycol (0.2 mmol, 21 mg) dissolved in toluene (0.5 mL) and 1,4-diazabicyclo[2.2 .2] octane (DABCO) (0.02 mmol, 2.2 mg) was added, and the mixture was heated and stirred at 100° C. for 140 hours. When acetone was added to the reaction solution, a precipitate was formed, which was separated by suction filtration and vacuum-dried at 100° C. for 2 hours to quantitatively obtain the target product as a white solid.
  • DABCO 1,4-diazabicyclo[2.2 .2] octane
  • Example 10 Polyurethane Synthesis from 8FHBC and Triethylene Glycol (1) Using THF as a solvent In a 20 mL eggplant flask, a solution of 8FHBC (1.0 mmol, 0.65 g) and triethylene glycol (1.0 mmol, 150 mg) dissolved in tetrahydrofuran (1.0 mL), and 1 ,4-diazabicyclo[2.2.2]octane (DABCO) (0.1 mmol, 11 mg) was added and heated with stirring at 60° C. for 331 hours.
  • 8FHBC 1.0 mmol, 0.65 g
  • triethylene glycol 1.0 mmol, 150 mg
  • DABCO 1 ,4-diazabicyclo[2.2.2]octane
  • Example 11 Polyurethane Synthesis from 8FHBC and Tetraethylene Glycol (1) Using THF as a solvent A solution of 8FHBC (0.2 mmol, 0.13 g) and tetraethylene glycol (0.2 mmol, 34 ⁇ L) dissolved in tetrahydrofuran (0.5 mL) is placed in a 20 mL eggplant flask, and 1 ,4-diazabicyclo[2.2.2]octane (DABCO) (0.02mmol, 2.2mg) was added and heated with stirring at 100°C for 43 hours. The reaction solution was vacuum concentrated at 100° C.
  • DABCO 1 ,4-diazabicyclo[2.2.2]octane
  • Example 12 Polyurethane synthesis from 8FHBC and 1,3-propanediol A solution of 8FHBC (1.1 mmol, 0.74 g) and 1,3-propanediol (1.1 mmol, 86 mg) dissolved in toluene (1.0 mL) and 1,4-diazabicyclo [ 2.2.2] Octane (DABCO) (0.11 mmol, 12.5 mg) was added and heated with stirring at 100° C. for 209 hours.
  • DABCO 1,4-diazabicyclo [ 2.2.2] Octane
  • Example 13 Polyurethane Synthesis from 8FHBC and Polytetrahydrofuran (1) Using toluene as a solvent A solution of 8FHBC (5.0 mmol, 3.25 g) dissolved in toluene (5.0 mL) and polytetrahydrofuran (5.0 mmol, 1.25 g) in a 20 mL eggplant flask, and 1,4-Diazabicyclo[2.2.2]octane (DABCO) (0.5 mmol, 56 mg) was added and heated with stirring at 100° C. for 22 hours. Toluene (10 mL) was added and stirred for an additional 22 hours. The reaction solution was vacuum concentrated at 100° C.
  • DABCO 1,4-Diazabicyclo[2.2.2]octane
  • Example 14 Polyurethane synthesis from 8FHBC and hexafluoropentanediol A solution of 8FHBC (0.2 mmol, 0.13 g) and hexafluoropentanediol (0.2 mmol, 42 mg) dissolved in toluene (0.5 mL) and 1,4-diazabicyclo [ 2.2.2] Octane (DABCO) (0.02 mmol, 2.2 mg) was added and heated with stirring at 100° C. for 21 hours. The reaction solution was vacuum-dried at 100° C. for 2 hours to quantitatively obtain the desired product as a white solid.
  • DABCO 1,4-diazabicyclo [ 2.2.2] Octane
  • Example 15 Polyurethane Synthesis from 8FHBC and Octafluorohexanediol A solution of 8FHBC (0.2 mmol, 0.13 g) and octafluorohexanediol (0.2 mmol, 52 mg) dissolved in toluene (0.5 mL) and 1,4-diazabicyclo [ 2.2.2] Octane (DABCO) (0.02 mmol, 2.2 mg) was added and heated with stirring at 100° C. for 21 hours. The reaction solution was vacuum-dried at 100° C. for 2 hours to quantitatively obtain the desired product as a white solid.
  • 8FHBC 0.2 mmol, 0.13 g
  • octafluorohexanediol 0.2 mmol, 52 mg
  • DABCO 1,4-diazabicyclo [ 2.2.2] Octane
  • Example 16 Synthesis of polyurethane from 8FHBC and dodecafluorotetraethylene glycol A solution of 8FHBC (0.2 mmol, 0.13 g) and dodecafluorotetraethylene glycol (0.2 mmol, 82 mg) dissolved in toluene (0.5 mL) and 1,4-diazabicyclo in a 7 mL screw cap test tube. [2.2.2] Octane (DABCO) (0.02 mmol, 2.2 mg) was added and heated with stirring at 100° C. for 19 hours. The reaction solution was vacuum-dried at room temperature for 2 hours to quantitatively obtain the desired product as a white solid.
  • DABCO Octane
  • Example 17 Polyurethane synthesis from 8FHBC and bisphenol A diol A solution of 8FHBC (0.2 mmol, 130 mg) and bisphenol A (0.2 mmol, 46 mg) dissolved in toluene (0.5 mL) and 1,4-diazabicyclo[2.2. 2] Octane (DABCO) (0.02 mmol, 2.2 mg) was added and heated with stirring at 100° C. for 19 hours. When acetone was added to the reaction solution, a precipitate was formed, which was collected by suction filtration and vacuum-dried at 100°C for 2 hours to quantitatively obtain the desired product as a white solid (108 mg, 0.2 mmol [converted to monomer ]).
  • DABCO 1,4-diazabicyclo[2.2. 2] Octane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、イソシアネートを用いないで高品質な含フッ素ポリウレタンを製造する方法、及び当該方法で用いる含フッ素ビスカルバメート化合物を提供することを目的とする。本発明に係る下記式(III)で表される含フッ素ポリウレタンの製造方法は、下記式(I)で表される含フッ素ビスカルバメート化合物と下記式(II)で表されるジオール化合物を反応させる工程を含むことを特徴とする方法。[式中、Rf1は含フッ素C1-6アルキル基を示し、Rf2は、含フッ素C2-10アルカンジ イル基を示し、R1は二価有機基を示す。]

Description

含フッ素ポリウレタンの製造方法
 本発明は、イソシアネートを用いないで高品質な含フッ素ポリウレタンを製造する方法、及び当該方法で用いる含フッ素ビスカルバメート化合物に関するものである。
 ポリウレタンは、塗料、断熱材、マット、クッション等の材料として、広く使用されており、一般的に、工業的にはイソシアネートを原料として製造されている。例えば非特許文献1には、ジイソシアネート化合物とジオール化合物からポリウレタンを製造する方法がまとめられている。
 しかし、イソシアネートは高い毒性を有することから、欧州ではその使用が規制され始めている。その動きは今後、我が国をはじめ世界に広まることが予想されている。更に、イソシアネートは、毒性の高いホスゲンを使用して製造されている。
 一方、環境的および工業的に耐え得るポリウレタンの代替合成法は見つかっていない。例えば、ビスカルバメート化合物とジオール化合物から、塩基の存在下もしくは非存在下で、ポリウレタンが合成できることが知られている。かかるビスカルバメート化合物は、ブロック化イソシアネートと言われており、硬化反応時にイソシアネート基を露出させて使用される。
 ブロック化剤として脂肪族アルコールを用いて製造されたブロック化イソシアネートは、加熱によりジイソシアネート化合物に変換される。その加熱温度は百数十度以上であるため(非特許文献2)、ポリウレタンが着色したり、ジイソシアネート化合物が分解するおそれがある。特許文献1にも、含フッ素脂肪族アルコールを用いて製造されたブロック化イソシアネートが開示されているが、ジイソシアネート化合物への変換は、やはり200℃といった百数十度以上の温度で行われている。
 ブロック化剤として芳香族アルコールを用いて製造されたブロック化イソシアネートは、比較的低温度でジイソシアネート化合物に変換され得るが(非特許文献2)、脱離した芳香族アルコールがポリウレタンから除去できず、ポリウレタンの品質が低下するおそれがある。
 非特許文献3には、触媒としてフッ化物イオンを用い、ブロック化イソシアネートを室温下でジイソシアネート化合物に変換し、ポリウレタンを合成する方法が開示されている。しかし、n-Bu4NFなどの試薬は比較的高価であるし、合成されたポリウレタンから容易には除去できず、またフッ化物イオン自体が毒性を示すことから、この方法を工業的に実施することは難しい。
国際公開第2011/125429号パンフレット
R.Gosnellら,J.Macromol.Sci.-Phys.,B1(4),pp.831-850(1967) 長倉稔,色材,53(11),pp.676-688(1980) Madhu Sheriら,Angew.Chem.Int.Ed.,57,pp.4599-4602(2018)
 上述したように、ポリウレタンの一般的な工業的製造方法では、イソシアネートが用いられている。また、当該方法の代替方法として検討されているブロック化イソシアネートを用いる製造方法でも、ブロック化イソシアネートを合成するための出発原料化合物としてイソシアネートが用いられていたり、ブロック化イソシアネートが意図的にイソシアネートに変換された上でジオール化合物と反応されている。しかし、イソシアネートの毒性は高く、その使用制限は今後益々厳しくなっていくと考えられる。また、ブロック化イソシアネートをイソシアネートに変換する反応には高温を要し、得られるポリウレタンが着色するか、或いは比較的低温でもイソシアネートに変換され易い芳香族ブロック化イソシアネートをイソシアネートに変換すると、脱離した芳香族アルコールがポリウレタンに残留するおそれがある。
 そこで本発明は、イソシアネートを用いないで高品質な含フッ素ポリウレタンを製造する方法、及び当該方法で用いる含フッ素ビスカルバメート化合物を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、特定の含フッ素ビスカルバメート化合物とジオール化合物とを反応させれば、少なくとも反応後反応液中にイソシアネートが検出されずに比較的低温度で含フッ素ポリウレタンを製造することができ、しかも含フッ素ビスカルバメート化合物から脱離した含フッ素アルコールは含フッ素ポリウレタン中に残留し難いことを見出して、本発明を完成した。
 以下、本発明を示す。
 [1] 下記式(III)で表される含フッ素ポリウレタンを製造するための方法であって、
 下記式(I)で表される含フッ素ビスカルバメート化合物と下記式(II)で表されるジオール化合物を反応させる工程を含むことを特徴とする方法。
Figure JPOXMLDOC01-appb-C000003
[式中、
 Rf1は含フッ素C1-6アルキル基を示し、
 Rf2は含フッ素二価有機基を示し、
 R1は二価有機基を示す。]
 [2] 上記式(I)で表される含フッ素ビスカルバメート化合物と上記式(II)で表されるジオール化合物を10℃以上、120℃以下の温度で反応させる上記[1]に記載の方法。
 [3] Rf2が式CH2-Rf3-CH2(式中、Rf3は含フッ素C1-8アルカンジイル基を示す。)で表される基である上記[1]または[2]に記載の方法。
 [4] Rf2が式CH2-(CF2n-CH2(式中、nは1以上、8以下の整数を示す。)で表される基である上記[1]または[2]に記載の製造方法。
 [5] Rf1がCH(CF32である上記[1]~[4]のいずれかに記載の方法。
 [6] 塩基の存在下、上記式(I)で表される含フッ素ビスカルバメート化合物と上記式(II)で表されるジオール化合物を反応させる上記[1]~[5]のいずれかに記載の方法。
 [7] 下記式(I)で表されることを特徴とする含フッ素ビスカルバメート化合物。
Figure JPOXMLDOC01-appb-C000004
[式中、
 Rf1は含フッ素C1-6アルキル基を示し、
 Rf2は含フッ素二価有機基を示す。]
 本発明に係る含フッ素ビスカルバメート化合物は、比較的低温度でジオール化合物と反応させることができるため、得られる含フッ素ポリウレタンは着色し難い。また、反応の際に含フッ素ビスカルバメート化合物から生成する含フッ素アルコールは、比較的低沸点であり、目的化合物である含フッ素ポリウレタンから容易に除去することができ、たとえ残留したとしても、含フッ素ポリウレタンに好ましい特性を付与できる可能性がある。更に、本発明に係る上記反応の機構は不明であるが、少なくとも反応後の反応液中にはイソシアネートは検出されない。よって本発明は、高品質な含フッ素ポリウレタンを安全に製造することができる技術として、産業上非常に優れている。
図1は、本発明方法で製造された含フッ素ポリウレタンの外観写真である。 図2は、本発明方法で製造された含フッ素ポリウレタンの外観写真である。 図3は、本発明方法で製造された含フッ素ポリウレタンの外観写真である。 図4は、本発明方法で製造された含フッ素ポリウレタンの外観写真である。
 本発明に係る含フッ素ポリウレタンの製造方法は、式(I)で表される含フッ素ビスカルバメート化合物と式(II)で表されるジオール化合物とを含む混合物を反応させる工程を含む。以下、本発明方法を具体的に説明するが、本発明は以下の具体例に限定されるものではない。なお、以下、「式(x)で表される化合物」を「化合物(x)」と略記する。
 従来、イソシアネート化合物を用いるポリウレタンの製造方法の代替方法として、ブロック化イソシアネートと呼ばれるビスカルバメート化合物を用い、反応液中で加熱によりイソシアネート化合物に変換してジオール化合物と反応させるポリウレタンの製造方法が検討されていたが、ブロック化イソシアネートからイソシアネート化合物への変換には一般的に高熱が必要であり、かかる高熱がポリウレタンの着色の原因となっていた。比較的低温度でイソシアネート化合物に変換可能なブロック化イソシアネートとして、ブロック化剤として芳香族アルコールを用いたブロック化イソシアネートも開発されているが、重合反応時に芳香族アルコールが生じ、ポリウレタンから除去することができず残留し、ポリウレタンの品質が低下してしまう。
 それに対して本発明では、含フッ素ビスカルバメート化合物(I)を用いる。含フッ素ビスカルバメート化合物(I)とジオール化合物(II)との反応では、鎖状含フッ素アルコールが副生するが、含フッ素アルコールは芳香族アルコールに比べて留去し易い。また、たとえ含フッ素アルコールがポリウレタンに残留しても、芳香族アルコールに比べて明らかに酸化され難くポリウレタンの透明度に悪影響を与えないであろうし、かえって撥水性、防汚性、耐候性、耐摩耗性など、フルオロ基に起因する好ましい特性がポリウレタンに付与され得る。更に、従来のブロック化イソシアネートは、イソシアネート化合物への変換のために高熱が必要であったが、本発明に係る含フッ素ビスカルバメート化合物(I)は、比較的低温度下でもジオール化合物(II)と反応させることが可能である。
 含フッ素ビスカルバメート化合物(I)中のRf1は、独立して、含フッ素C1-6アルキル基を示す。C1-6アルキル基は、炭素数1以上、6以下の直鎖または分枝鎖状の一価飽和脂肪族炭化水素基をいい、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、1-メチルプロピル、2-メチルプロピル、1,1-ジメチルエチル、2,2-ジメチルエチル、n-ペンチル、n-ヘキシル、2-ヘキシル、3-ヘキシルが挙げられる。好ましくはC2-6アルキル基であり、より好ましくはC2-4アルキル基である。
 含フッ素C1-6アルキル基におけるフルオロ基の置換基数は、置換可能であれば特に制限されないが、フルオロ基が多いほど含フッ素ビスカルバメート化合物(I)の反応性は高くなるので、2以上が好ましく、3以上がより好ましい。上記置換基数の上限に関しては、例えば、20以下とすることができ、15以下が好ましい。また、C1-6アルキル基としてはsec-アルキル基またはtert-アルキル基が好ましい。Rf1としては、-CH2Rf4、-CH(Rf42、又は-C(Rf43[式中、Rf4はペルフルオロC1-5アルキル基を示し、複数のRf4は互いに同一であっても異なっていてもよい。]が好ましく、第1位炭素以外の炭素において全ての水素原子がフルオロ基に置換されたジ(トリフルオロメチル)メチル基[CH(CF32]またはトリ(トリフルオロメチル)メチル基[C(CF33]がより好ましい。更に、含フッ素ビスカルバメート化合物(I)は、フルオロに加えて、同じく電子吸引性基であるクロロ、ブロモ、及びヨードから選択されるハロゲノ基に置換されていてもよい。
 含フッ素ビスカルバメート化合物(I)中の2個のRf1は、互いに同一であっても異なっていてもよいが、互いに同一であることが好ましい。
 含フッ素ビスカルバメート化合物(I)中のRf2は、含フッ素二価有機基を示す。当該含フッ素二価有機基としては、例えば、含フッ素C2-10アルカンジイル基および含フッ素C6-12二価芳香族基が挙げられる。
 含フッ素C2-10アルカンジイル基中のC2-10アルカンジイル基は、炭素数2以上、10以下の直鎖状または分枝鎖状の二価飽和脂肪族炭化水素基をいう。例えば、エタンジイル、n-プロパンジイル、メチルエタンジイル、n-ブタンジイル、メチルプロパンジイル、n-ペンタンジイル、n-ヘキサンジイル、n-ヘプタンジイル、n-オクタンジイル等である。好ましくはC2-8アルカンジイル基であり、より好ましくはC3-7アルカンジイル基である。
 含フッ素C2-10アルカンジイル基におけるフルオロ基の置換基数は、置換可能であれば特に制限されないが、フルオロ基が多いほど含フッ素ビスカルバメート化合物(I)の反応性は高くなるので、2以上が好ましく、3以上がより好ましい。上記置換基数の上限に関しては、例えば、20以下とすることができ、15以下が好ましい。
 安定性の観点から、含フッ素ビスカルバメート化合物(I)においてカーボネート基(-NH-C(=O)-O-)に隣接するα位炭素は、フルオロ基に置換されないことが好ましく、α位基としてはメチレン基(-CH2-)またはメチン基(>CH-)が好ましい。より具体的には、含フッ素ビスカルバメート化合物(I)中のRf2としては、CH2-Rf3-CH2(式中、Rf3は含フッ素C1-8アルカンジイル基を示す。)が好ましい。Rf2として当該基を有する含フッ素ビスカルバメート化合物(I)は、より安定である。当該Rf2としては、式CH2-(CF2n-CH2(式中、nは1以上、8以下の整数を示す。)がより好ましい。Rf2として当該基を有する含フッ素ビスカルバメート化合物(I)は、Rf2部位がより安定である上に、反応性により優れる。
 含フッ素C2-10アルカンジイル基は、エーテル基(-O-)を含んでいてもよい。即ち、Rf2としては、式:-CH2-Rf5-[-O-Rf6-]p-O-Rf7-CH2-[式中、Rf5~Rf7は、独立して、含フッ素C1-4アルカンジイル基を示し、pは0以上、100以下の整数を示す。]で表される基が挙げられる。Rf5~Rf7としては、ペルフルオロC1-4アルカンジイル基が好ましく、pとしては50以下が好ましい。Rf5~Rf7としては、独立して、例えば、CF2、CF2CF2、CF(CF3)が挙げられる。
 含フッ素C6-12二価芳香族基中のC6-12二価芳香族基としては、例えば、フェニレン、ナフチレン、インデニレン、ビフェニレン等のC6-12二価アリーレン基;-Ph-O-Ph-、-Ph-CH2-Ph-、-Ph-S-Ph-、-Ph-S(=O)-Ph-、及び-Ph-S(=O)2-Ph-;ビスフェノールA、ビスフェノールAP、ビスフェノールAF、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールM、ビスフェノールS、ビスフェノールP、ビスフェノールPH、ビスフェノールTMC、ビスフェノールZ等のビスフェノール類の末端水酸基中の水素原子を除いた二価の基が挙げられる。
 含フッ素C6-12二価芳香族基中、芳香族環の水素原子は全てフルオロに置換されていてもよく、また、ビスフェノール類などの2個のフェニレン基を結合するアルカンジイル基も、可能であればフルオロに置換されていてもよい。
 含フッ素ビスカルバメート化合物(I)は、例えば、以下の方法により製造することができる。以下の方法では、イソシアネートを用いる必要が無い。
Figure JPOXMLDOC01-appb-C000005
 ジアミノ化合物(IV)とカーボネート化合物(V)は、市販のものがあれば市販のものを使用すればよいし、合成してもよい。特にカーボネート化合物(V)は、例えばホスゲンを用いた常法により合成できるが、トリクロロ酢酸のフルオロ脂肪族炭化水素エステルと含フッ素アルコールとの反応や、ホスゲンを用いないWO2018/211953に記載の方法を用いても合成することができる。
 ジアミノ化合物(IV)としては、例えば、H2N-CH2-Rf3-CH2-NH2(式中、Rf3は含フッ素C1-8アルカンジイル基を示す。)や、H2N-CH2-(CF2)n-CH2-NH2(式中、nは1以上、8以下の整数を示す。)を用いることができる。
 カーボネート化合物(V)としては、例えば、ビス(2,2,2-トリフルオロエチル)カーボネート、ビス(2,2,3,3-テトラフルオロプロピル)カーボネート、ビス(2,2,3,3,3-ペンタフルオロプロピル)カーボネート、ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル)カーボネート、ビス(1,1,1,2,2,4,5,5,5-ノナフルオロ-4-トリフルオロメチル-3-ペンチル)カーボネート、ビス[1,1,1,3,3,3-ヘキサフルオロ-2-(トリフルオロメチル)プロパン-2-イル]カーボネート、ビス(2,2,3,3,3-ペンタフルオロプロピル)カーボネート、ビス(2,2,3,3,4,4,5,5-オクタフルオロペンチル)カーボネート、ビス(2,2,3,3,4,4,5,5-オクタフルオロシクロペンチル)カーボネートが挙げられる。
 ジアミノ化合物(IV)とカーボネート化合物(V)の量は、適宜調整すればよい。例えば、理論的には、ジアミノ化合物(IV)に対して2倍モルのカーボネート化合物(V)が反応するため、ジアミノ化合物(IV)に対するカーボネート化合物(V)のモル比を2倍モル以上にすることが好ましい。当該モル比は、5倍モル以上、20倍モル以下に調整することができる。当該モル比としては15倍モル以下が好ましく、10倍モル以下がより好ましい。
 上記反応では、溶媒を用いてもよい。溶媒としては、特に制限されないが、例えば、AGC社製のアサヒクリンシリーズ、3M社製のノベックシリーズ、トクヤマMETEL社製のエルノバシリーズ、1,3-ビス(トリフルオロメチル)ベンゼン等の含フッ素溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;ジエチルエーテル、グリム、ジグリム、トリグリム、テトラグリム、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;酢酸エチル等のエステル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素溶媒;ベンゼン、トルエン、クロロベンゼン等の芳香族炭化水素溶媒などが挙げられる。溶媒としては、含フッ素化合物の溶解性に優れる含フッ素溶媒や、含フッ素溶媒とその他の溶媒との混合溶媒が好ましい。但し、ジアミノ化合物(IV)またはカーボネート化合物(V)の少なくとも一方が反応条件下で液体である場合には、溶媒を用いなくてもよい。コストや環境負荷の観点からは、溶媒を用いないことが好ましい。
 上記反応では、塩基を用いてもよい。塩基としては、例えば、ピリジン、トリエチルアミン、エチルジイソプロピルアミン、ジアザビシクロウンデセン(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、N-メチルモルホリン等の有機塩基;炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸カルシウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等の無機塩基が挙げられ、反応液に対する溶解性や適度な塩基性の観点からは有機塩基が好ましい。また、反応後、有機塩基は蒸留により反応液から除去できる場合がある。塩基の使用量は適宜調整すればよいが、例えば、ジアミノ化合物(IV)に対して、0.1倍モル以上、5倍モル以下用いることができる。但し、コストや残留の観点からは、塩基を用いないこともでき得る。
 反応条件は、適宜調整すればよい。例えば、反応温度としては10℃以上、60℃以下とすることができ、常温下で反応を行ってもよい。反応時間も適宜調整すればよく、ジアミノ化合物(IV)またはカーボネート化合物(V)の少なくとも一方の消費がクロマトグラフィーやNMRスペクトル等で確認されるまでや、予備実験などで決定すればよいが、例えば、1時間以上、50時間以下とすることができる。
 反応後は、通常の後処理を行えばよい。例えば、反応後の反応液に水および/または含フッ素溶媒などの非水混和性有機溶媒を加え、分液する。得られた有機相を無水硫酸ナトリウムや無水硫酸マグネシウムを使って乾燥し、溶媒を留去すればよい。更に、クロマトグラフィー等で精製してもよい。
 ジオール化合物(II)中のR1は、二価の有機基を示す。R1としては、例えば、C2-10二価鎖状脂肪族炭化水素基、C3-10二価環状脂肪族炭化水素基、C6-15二価芳香族炭化水素基、及びこれら2以上、5以下の基が結合した二価有機基が挙げられる。
 「C2-10二価鎖状脂肪族炭化水素基」は、炭素数2以上、10以下の直鎖状または分枝鎖状の二価飽和または不飽和脂肪族炭化水素基をいう。例えばC2-10二価鎖状脂肪族炭化水素基としては、C2-10アルカンジイル基、C2-10アルケンジイル基、及びC2-10アルキンジイル基を挙げることができる。
 C2-10アルカンジイル基としては、例えば、エチレン、n-プロピレン、イソプロピレン、n-ブチレン、1-メチルプロピレン、2-メチルプロピレン、1,1-ジメチルエチレン、2,2-ジメチルエチレン、n-ペンチレン、n-ヘキシレン、n-ヘプチレン、n-オクチレン、n-デシレン等である。好ましくはC2-8アルカンジイル基またはC2-6アルカンジイル基であり、より好ましくはC2-4アルカンジイル基である。
 C2-10アルケンジイル基としては、例えば、エテニレン(ビニレン)、1-プロペニレン、2-プロペニレン(アリレン)、ブテニレン、ヘキセニレン、オクテニレン、デセニレン等である。好ましくはC2-8アルケンジイル基であり、より好ましくはC2-6アルケンジイル基またはC2-4アルケンジイル基である。
 C2-10アルキンジイル基としては、例えば、エチニレン、プロピニレン、ブチニレン、ヘキシニレン、オクチニレン、ペンタデシニレン等である。好ましくはC2-8アルキンジイル基であり、より好ましくはC2-6アルキンジイル基またはC2-4アルキンジイル基である。
 「C3-10二価環状脂肪族炭化水素基」は、炭素数3以上、10以下の環状の二価飽和または不飽和脂肪族炭化水素基をいい、環の数は1であっても2以上であってもよい。例えば、C3-10シクロアルカンジイル基、C4-10シクロアルケンジイル基、及びC4-10シクロアルキンジイル基を挙げることができる。C3-10シクロアルカンジイル基としては、例えば、シクロブタンジイル、シクロプロパンジイル、シクロヘキサンジイル、アダマンタンジイルが挙げられる。
 「C6-15二価芳香族炭化水素基」とは、炭素数が6以上、15以下の二価芳香族炭化水素基をいう。例えば、フェニレン、インデニレン、ナフチレン、ビフェニレン、フェナレニレン、フェナントレニレン、アントラセニレン等であり、好ましくはC6-12二価芳香族炭化水素基であり、より好ましくはフェニレンである。
 C2-10二価鎖状脂肪族炭化水素基、C3-10二価環状脂肪族炭化水素基、及びC6-15二価芳香族炭化水素基から選択される2以上、5以下の基が結合した二価有機基としては、例えば、C3-10二価環状脂肪族炭化水素基-C2-10二価鎖状脂肪族炭化水素基、C2-10二価鎖状脂肪族炭化水素基-C3-10二価環状脂肪族炭化水素基、C6-15二価芳香族炭化水素基-C2-10二価鎖状脂肪族炭化水素基、C2-10二価鎖状脂肪族炭化水素基-C6-15二価芳香族炭化水素基、C2-10二価鎖状脂肪族炭化水素基-C3-10二価環状脂肪族炭化水素基-C2-10二価鎖状脂肪族炭化水素基、C3-10二価環状脂肪族炭化水素基-C2-10二価鎖状脂肪族炭化水素基-C3-10二価環状脂肪族炭化水素基、及びC2-10二価鎖状脂肪族炭化水素基-C6-15二価芳香族炭化水素基-C2-10二価鎖状脂肪族炭化水素基が挙げられる。
 ジオール化合物(II)中の上記二価有機基は、フルオロ、クロロ、ブロモ、及びヨードから選択される1以上のハロゲノ基で置換されていてもよい。当該ハロゲノ基としては、フルオロが好ましい。また、C3-10二価環状脂肪族炭化水素基およびC3-10二価環状脂肪族炭化水素基は、エーテル基(-O-)を含んでいてもよく、更に、ハロゲノ基の他、C1-6アルキル基で置換されていてもよい。置換基としては、フルオロが好ましい。エーテル基を含むC3-10二価環状脂肪族炭化水素基としては、例えば、イソソルビドの末端水酸基から水素原子を除いた二価の基を挙げることができる。
 ジオール化合物(II)としては、例えば、エタンジオール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、イソソルビドが挙げられる。これら基は、上記ハロゲノ基で置換されていてもよく、フルオロで置換されていてもよい。
 ジオール化合物(II)中のR1としては、下記式(VI)で表される二価有機基を挙げることができる。
Figure JPOXMLDOC01-appb-C000006
[式中、
 R11とR12は、独立して、-(CR1415m3-、または-(-O-(CR1415m4-)m5-(式中、R14とR15は、独立して、HまたはC1-6アルキル基を表し、m3は0以上、10以下の整数を表し、m4は1以上、10以下の整数を表し、m5は1以上、10以下の整数を表し、m3またはm4が2以上の整数である場合、複数のR14とR15は互いに同一であっても異なっていてもよい)を表し、
 R13は、以下のいずれかの二価有機基を示し、
Figure JPOXMLDOC01-appb-C000007
(式中、
 R16とR17は、独立して、H、ハロゲノ基、置換基βを有してもよいC1-20脂肪族炭化水素基、置換基βを有してもよいC1-20アルコキシ基、置換基γを有してもよいC6-20芳香族炭化水素基を表すか、或いはR16とR17が結合して、C3-20炭素環または5-12員複素環を形成してもよく、
 R18とR19は、独立して、HまたはC1-6アルキル基を表し、m6が2以上の整数である場合、複数のR18とR19は互いに同一であっても異なっていてもよく、
 R20~R27は、独立して、ハロゲノ基、置換基βを有してもよいC1-20脂肪族炭化水素基、置換基βを有してもよいC1-20アルコキシ基、または置換基γを有してもよいC6-12芳香族炭化水素基を表し、
 R28は置換基βを有してもよいC1-9アルカンジイル基を表し、
 m6は1以上、20以下の整数を表し、
 m7は1以上、500以下の整数を表す。)
 置換基α1と置換基α2は、独立して、ハロゲノ基、C1-20脂肪族炭化水素基、C1-20アルコキシ基、C3-20シクロアルキル基、C6-20芳香族炭化水素基、C7-20アラルキル基、C6-20芳香族炭化水素オキシ基、及びC3-20シクロアルコキシ基からなる群より選択される1以上の置換基を表し、
 m1とm2は、独立して、0以上、4以下の整数を表し、
 置換基βは、C1-6アルコキシ基、C1-7アシル基、ハロゲノ基、ニトロ基、シアノ基、及びカルバモイル基から選択される1以上の置換基であり、
 置換基γは、C1-6アルキル基、C1-6アルコキシ基、C1-7アシル基、ハロゲノ基、ニトロ基、シアノ基、及びカルバモイル基から選択される1以上の置換基である。]
 二価有機基(VI)中の-Ph-R13-Ph-としては、ビスフェノールA、ビスフェノールAP、ビスフェノールAF、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールS、ビスフェノールTMC、ビスフェノールZ中の水酸基を除いた部分の二価有機基が挙げられる。
 二価有機基(VI)中の-(CR1415m3-基としては単結合およびC1-2アルキル基が挙げられ、または-(-O-(CR1415m4-)m5-基としては-(-O-CH2CH2-)m5-、-(-O-CH(CH3)CH2-)m5-、及び-(-O-CH2CH(CH3)-)m5-が挙げられる。
 その他、ジオール化合物(II)中のR1としては、式-R2-[-X-R2-]m-(XはOまたはSを示し、Oが好ましく、R2は、ハロゲノ基で置換されていてもよいC1-8アルカンジイル基を示し、mは1以上、180以下の整数を示し、mが2以上の整数である場合、複数のXおよびR2はそれぞれ互いに同一であっても異なっていてもよい。)で表される二価有機基が挙げられる。上記ハロゲノ基としては、フルオロが好ましい。
 R2としては、エチレン基(-CH2CH2-)、プロピレン基[-CH(CH3)CH2-または-CH2CH(CH3)-]、及びテトラメチレン基(-CH2CH2CH2CH2-)が挙げられる。これら基はハロゲノ基で置換されていてもよく、当該ハロゲノ基としてはフルオロが好ましい。
 mとしては、5以上が好ましく、10以上がより好ましく、20以上がより更に好ましく、また、160以下が好ましく、150以下がより好ましい。
 含フッ素ビスカルバメート化合物(I)とジオール化合物(II)とを反応させる際、溶媒を使ってもよい。溶媒は、常温常圧で液体であり、且つ反応に悪影響を及ぼさないものであれば特に制限されないが、例えば、AGC社製のアサヒクリンシリーズ、3M社製のノベックシリーズ、トクヤマMETEL社製のエルノバシリーズ、1,3-ビス(トリフルオロメチル)ベンゼン等の含フッ素溶媒;ベンゼン、トルエン、クロロベンゼン等の芳香族炭化水素溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;ジエチルエーテル、グリム、ジグリム、トリグリム、テトラグリム、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;酢酸エチル等のエステル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素溶媒などが挙げられる。但し、含フッ素ビスカルバメート化合物(I)またはジオール化合物(II)の少なくとも一方が反応条件下で液体である場合には、溶媒を用いなくてもよい。コストや環境負荷の観点からは、溶媒を用いないことが好ましい。
 含フッ素ビスカルバメート化合物(I)とジオール化合物(II)の量は、適宜調整すればよい。例えば、含フッ素ビスカルバメート化合物(I)とジオール化合物(II)は、等モル量または略等モル量用いればよい。例えば、含フッ素ビスカルバメート化合物(I)とジオール化合物(II)のうち一方に対するモル比を0.8以上、1.2以下に調整することができる。当該モル比は、0.9以上が好ましく、0.95以上がより好ましく、また、1.1以下が好ましく、1.05以下がより好ましい。勿論、上記モル比を1に調整してもよい。
 塩基の存在下、含フッ素ビスカルバメート化合物(I)とジオール化合物(II)を反応させてもよい。塩基としては、例えば、ピリジン、トリエチルアミン、エチルジイソプロピルアミン、ジアザビシクロウンデセン(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、N-メチルモルホリン等の有機塩基;炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸カルシウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等の無機塩基が挙げられ、反応液に対する溶解性や適度な塩基性の観点からは有機塩基が好ましい。また、反応後、有機塩基は蒸留により反応液から除去できる場合がある。塩基の使用量は適宜調整すればよいが、例えば、含フッ素ビスカルバメート化合物(I)とジオール化合物(II)のうちモル数の少ない方に対して、0.01倍モル以上、1倍モル以下用いることができる。但し、コストや残留の観点からは、塩基を用いないこともでき得る。
 反応温度は適宜調整すればよく、例えば、10℃以上、120℃以下とすることができる。また、常温下で反応を行ってもよいし、使用する溶媒などに応じて、加熱還流条件下で反応を行ってもよい。当該反応温度が高いほど、反応は良好に進行し得る。よって、当該反応温度としては25℃以上または40℃以上が好ましく、60℃以上がより好ましく、80℃以上がより更に好ましい。一方、当該温度が高過ぎると含フッ素ポリウレタンが着色するおそれがあり得るため、当該温度としては110℃以下が好ましく、105℃以下がより好ましく、100℃以下がより更に好ましい。
 反応時間も適宜調整すればよく、含フッ素ビスカルバメート化合物(I)またはジオール化合物(II)の少なくとも一方の消費がクロマトグラフィーやNMRスペクトル等で確認されるまでや、予備実験などで決定すればよいが、例えば、1時間以上、200時間以下とすることができる。
 反応後は、通常の後処理を行うことができる。例えば、含フッ素ポリウレタンは固体または粘性液体として得られる場合が多いため、反応後、溶媒などを留去すればよい。また、含フッ素ポリウレタンを溶媒で洗浄してもよい。
 本発明者らの実験によれば、少なくとも含フッ素ビスカルバメート化合物(I)とジオール化合物(II)との反応後反応液からは、イソシアネートは検出されなかった。よって、本発明方法は、毒性の高いイソシアネート化合物を用いることなく、含フッ素ポリウレタンを簡便、安全、且つ効率的に製造することができる。また、本発明により製造される含フッ素ポリウレタンは、主骨格が置換基としてフルオロ基を有する鎖状有機基であるため、耐熱性、柔軟性、耐薬品性、撥水性などに優れる。更に、残留し得る含フッ素アルコールにより、ポリウレタンの品質がより一層高まる場合もあり得る。
 本願は、2021年11月2日に出願された日本国特許出願第2021-179746号に基づく優先権の利益を主張するものである。2021年11月2日に出願された日本国特許出願第2021-179746号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実施例1: ビス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル) (2,2,3,3,4,4-ヘキサフルオロペンタン-1,5-ジイル)ジカルバメート[6FPBC]の合成
Figure JPOXMLDOC01-appb-C000008
 100mLナスフラスコに、ビス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)カーボネート(BHFC)(33.9mmol,12.3g)、2,2,3,3,4,4-ヘキサフルオロペンタン-1,5-ジアミン塩酸塩(6FPDA・2HCl)(5.7mmol,1.6g)、トリエチルアミン(12.9mmol,1.8mL)、及び溶媒としてハイドロフルオロエーテル溶媒(「NovecTM 7100」3M社製,34mL)を加え、室温で2.5時間撹拌した。その後、反応溶液に、1M塩酸、クロロホルム、同ハイドロフルオロエーテル溶媒および水を加えて分液した。得られた有機層を無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、70℃で2時間真空乾燥することによって、白色固体の目的化合物を得た(1.37g,2.3mmol,収率:40%)。
1H NMR(400MHz,CDCl3,293K):δ/ppm:5.68(sep,J=6.0Hz,2H,CH),5.41(t,J=6.6Hz,2H,NH),3.98(td,J=15.2,6.4Hz,4H,CH2
13C NMR(100MHz,DMSO-d6,293K):δ/ppm:153.2,120.9(q,1C-F=280.7Hz),115.6(tt,1C-F=254.4Hz,2C-F=32Hz),111.0(m),67.0(m),41.1(m)
19F NMR(376MHz,CDCl3,293K,C66 as external standard):δ/ppm:-73.6(d,J=6.8Hz),-118.5(m),-125.7
IR(ATR):3344,2972,1749,1560,1383,1358,1265,1189,1145,1110,1006,901,690cm-1
HRMS(ESI Orbitrap) m/z: [M-H]- Calcd for C1371824 597.0118; Found 597.0126
 実施例2: ビス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル) (2,2,3,3,4,4,5,5-オクタフルオロヘキサン-1,6-ジイル)ジカルバメート[8FHBC]の合成
Figure JPOXMLDOC01-appb-C000009
 50mLナスフラスコにビス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)カーボネート(BHFC)(10mmol,2.2mL)、2,2,3,3,4,4,5,5-オクタフルオロヘキサン-1,6-ジアミン塩酸塩(8FHDA・2HCl)(2.0mmol,0.67g)、トリエチルアミン(0.53mmol,3.8mL)、及び溶媒としてハイドロフルオロエーテル溶媒(「NovecTM 7100」3M社製,10mL)を加え、室温で2時間撹拌した。その後、反応溶液に、1M塩酸、クロロホルム、同ハイドロフルオロエーテル溶媒および水を加えて分液した。得られた有機層を無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、70℃で2時間真空乾燥することによって、白色固体の目的化合物を得た(0.92g,1.42mmol,収率:71%)。
1H NMR(400MHz,CDCl3,293K):δ/ppm:5.68(sep,2H,J=6.0Hz,CH),5.40(t,J=6.6Hz,2H,NH),3.98(td,J=6.4,15.2Hz,4H,CH2
13C NMR(100MHz,DMSO-d6,293K):δ/ppm:153.3,121.0(q,1C-F=282.8Hz),115.6(m),111.0(m),67.1(m),41.1(m)
19F NMR(376MHz,CDCl3,293K):δ/ppm:-73.6(d,J=5.3Hz),-118.8,-123.5(m)
IR(ATR)ν(cm-1):3342,3094,2981,1736,1560,1438,1382,1360,1257,1201,1155,1106,1081,1014,924,906,872,751,734,691,650
HRMS(ESI Orbitrap)m/z: [M-H]- Calcd for C1472024 647.0092; Found 647.0083
 実施例3: 6FPBCと1,6-ヘキサンジオールからのポリウレタンの合成
Figure JPOXMLDOC01-appb-C000010
 10mLのナスフラスコに、6FPBC(0.2mmol,0.12g)、1,6-ヘキサンジオール(0.2mmol,0.024g)、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.027mmol,0.003g)を入れ、100℃で67時間撹拌した。
 反応後反応液を赤外吸収分光法で分析した。反応液中にイソシアネートが存在すると、2200~2300cm-1に強いシグナルが観察されるはずであるが、以下の分析結果の通り、当該範囲にはシグナルは認められなかった。
IR(ATR):3321,2931,1702,1550,1262,1143,758cm-1
 その後、反応液を100℃で2時間真空乾燥に付して、目的物を定量的に得た(0.08g,0.21mmol[モノマー換算])。赤外吸収分光法による生成物の分析結果は、反応後反応液の分析結果とほぼ同じであった。また、生成物を溶解できる溶媒が見付からなかったが、懸濁液を1H NMRで分析したところ、少なくとも含フッ素アルコールのピークは確認されず、目的物から含フッ素アルコールが除去できていることが分かった。更に、得られた目的物は、図1の通り、着色の無い白色固体であった。
 実施例4: 6FPBCとPPG400からのポリウレタンの合成
Figure JPOXMLDOC01-appb-C000011
 10mLのナスフラスコに、6FPBC(0.20mmol,0.12g)、ポリプロピレングリコール(PPG,平均分子量:400)(0.2mmol,0.087g)、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.027mmol,0.003g)を入れ、100℃で91時間撹拌した。その後、100℃で2時間真空乾燥することにより、淡黄色粘性液体の目的物を定量的に得た(0.08g,0.26mmol[モノマー換算])。得られた目的物の外観写真を図2に示す。なお、少し着色したのはPPGの分解によると考えられるので、ジオール化合物としてPPGを用いる場合には、反応温度を低く調整するか或いは反応温度を短くすべきであることが分かった。
1H NMR(400MHz,CDCl3,293K):δ5.38(br.,2H,NH),4.95(br.,2H,CH),3.87(br.,4H,CH2),3.59-3.40(m,22H,CH2+CH),1.25(d,6H,J=6.4Hz,CH3),1.13(br.,18H,CH3
13C NMR(125MHz,DMSO-d6,293K):δ154.3,75.5-75.0(m),73.6-72.8(m),72.4-71.9(m),60.2-59.7(m),47.9-47.6(m),17.8,17.6,17.1
19F NMR(376MHz,CDCl3,293K,C66 as external standard):δ-118.78(m,4F,CF2),-125.99(m,2F,CF2
IR(ATR):3328,2974,2935,2873,1726,1541,1455,1376,1352,1278,1254,1139,1100,1070,1014,932,776,756cm-1
HPLC: Mw=21649,Mn=11195,Mw/Mn=1.93
 実施例5: 塩基を使用した8FHBCとPPG400からのポリウレタンの合成
Figure JPOXMLDOC01-appb-C000012
 7mLの試験管に、8FHBC(0.13g,0.20mmol)、PPG400(80mg,0.20mmol)、DABCO(2.2mg,0.020mmol)、及び1,3-ビス(トリフルオロメチル)ベンゼン(0.5mL)を入れ、100℃で35時間撹拌した。反応後反応液を赤外吸収分光法で分析したが、イソシアネートに特徴的な2200~2300cm-1の強いシグナルは認められなかった。
 反応液から溶媒を減圧蒸留で除去した後、ガラスチューブオーブンを用いて減圧蒸留し、塩基を除去した後に、50℃で2時間真空乾燥させることにより、無色透明粘性固体の目的物を得た(0.14g,0.19mmol[モノマー換算],収率:94%)。得られたポリウレタンを1H NMRと19F NMRで分析したが、副生したヘキサフルオロイソプロパノールに由来するピーク、即ち1H NMRにおける4.40ppmと3.06ppmのピーク、及び19F NMRにおける-75.77ppmのピークは認められなかった。よって、得られたポリウレタンには副生した含フッ素アルコールは残留していないと判断された。また、得られた目的物の外観写真を図3に示す。
1H NMR(400MHz,CDCl3,293K):δ5.48(br.,2H,NH),4.95(br.,2H,CH),3.90(br.,4H,CH2),3.56-3.36(m,22H,CH2+CH),1.25(d,6H,J=6.4Hz,CH3),1.12(br.,18H,CH3
19F NMR(376MHz,CDCl3,293K):δ-119.07(m,4F,CF2),-123.67(m,4F,CF2
IR(ATR):3309,2974,2937,1713,1542,1379,1258,1163,1106cm-1
HPLC: Mw=42,000,Mn=16,000,Mw/Mn=2.6
 実施例6: 塩基を使用した8FHBCとPPG400からのポリウレタンの合成
 反応時間を35時間から47時間に延長した以外は実施例5と同条件で反応を行ったところ、分子量が更に大きくなり、不溶性の固体が得られた。
 実施例7: 8FHBCとPPG400からのポリウレタンの合成
 (1)ビス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル) (2,2,3,3,4,4,5,5-オクタフルオロヘキサン-1,6-ジイル)ジカーボネート[8FHBC]の合成
Figure JPOXMLDOC01-appb-C000013
 100mLナスフラスコに、ビス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル) カーボネート(BHFC)(30mmol,6.6mL)、2,2,3,3,4,4,5,5-オクタフルオロヘキサン-1,6-ジアミン塩酸塩(8FHDA・2HCl)(10mmol,3.33g)、溶媒としてテトラヒドロフラン(10mL)を加えた。トリエチルアミン(20mmol,2.8mL)を添加して、室温で3時間撹拌した。その後、反応溶液に1M塩酸を添加し、クロロホルムと水を加えて分液した。有機層を無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、70℃で4時間真空乾燥することによって、白色固体の8FHBCを得た(収率:90%,収量:5.83g,9mmol)。この様に、実施例2と比較して、一般的な溶媒を用いることができ、また、実施規模を拡大することができた。
 (2)ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000014
 反応条件を表1に示す反応条件に変更した以外は実施例5と同様にして、ポリウレタンを合成した。表1中、第2列目の実験例は実施例5である。また、収率は単離収率である。第3列目の実験例で分子量が測定できなかった理由は、ポリウレタンの分子量が大きくなり過ぎて溶媒に不溶であったことによる。
Figure JPOXMLDOC01-appb-T000015
 実施例8: 8FHBCとエチレングリコールからのポリウレタンの合成
Figure JPOXMLDOC01-appb-C000016
 20mLのナスフラスコに、テトラヒドロフラン(0.5mL)に溶解させた8FHBC(0.20mmol,0.13g)とエチレングリコール(0.2mmol,11.2μL)の溶液、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.02mmol,2.2mg)を入れ、100℃で43時間加熱撹拌した。有機溶媒に難溶の白色沈殿が生成し、それを吸引濾過で濾別して、白色固体の目的物を定量的に得た。
1H NMR(400MHz,DMSO-d6,293K):δ/ppm=8.01(t,J=6.0Hz,2H,NH),4.19(s,4H,CH2),3.81(td,J=16.4,5.6Hz,4H,CF2CH2
13C NMR(100MHz,DMSO-d6,293K):δ/ppm=157.2,156.8,116.2(tt,1C-F=255.1Hz,2C-F=29.2Hz),111.5(tt,1C-F=261.7Hz,2C-F=32.8Hz),63.60,59.3,66.9,40.91(t,2C-F=21.9Hz)
19F NMR(376MHz,DMSO-d6,293K):δ/ppm=-118.12(s,4F,CF2),-123.47(s,4F,CF2
IR(ATR):3311,3080,2962,1702,1553,1430,1266,1151,1036,737cm-1
 実施例9: 8FHBCとジエチレングリコールからのポリウレタンの合成
Figure JPOXMLDOC01-appb-C000017
 7mLのネジ口試験管に、トルエン(0.5mL)に溶解させた8FHBC(0.2mmol,0.13g)とジエチレングリコール(0.2mmol,21mg)の溶液、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.02mmol,2.2mg)を入れ、100℃で140時間加熱撹拌した。反応溶液にアセトンを添加すると沈殿が生成し、それを吸引ろ過で濾別して、100℃で2時間真空乾燥して、白色固体の目的物を定量的に得た。
1H NMR(400MHz,DMSO-d6,293K):δ/ppm=7.99(t,J=5.6Hz,2H,NH),4.12(t,J=4.0Hz,4H,CH2),3.80(td,J=16.4,6.0Hz,4H,CF22),3.60(t,J=4.4Hz,4H,CH2
13C NMR(100MHz,DMSO-d6,293K):δ/ppm=157.01,155.51,116.2(tt,1C-F=254.4Hz,2C-F=31.4Hz),111.5(tt,1C-F=261.7Hz,2C-F=32.8Hz),69.05,64.39,40.90(t,J=22.6Hz)
19F NMR(376MHz,DMSO-d6,293K):δ/ppm=-118.02(s,4F,CF2),-123.49(s,4F,CF2
IR(ATR):3322,3088,2951,2886,1701,1550,1428,1262,1164,1149,1118,738cm-1
HPLC:Mw=22600,Mn=10300,Mw/Mn=2.2
 実施例10: 8FHBCとトリエチレングリコールからのポリウレタンの合成
Figure JPOXMLDOC01-appb-C000018
 (1)溶媒としてTHFを使用
 20mLのナスフラスコに、テトラヒドロフラン(1.0mL)に溶解させた8FHBC(1.0mmol,0.65g)とトリエチレングリコール(1.0mmol,150mg)の溶液、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.1mmol,11mg)を入れ、60℃で331時間加熱撹拌した。反応溶液にアセトンを添加すると沈殿が生成し、それを吸引濾過で濾別して、100℃で2時間真空乾燥して、白色固体の目的物を定量的に得た(225mg,0.49mmol[モノマー換算])。
HPLC:Mw=18000,Mn=10000,Mw/Mn=1.8
 (2)溶媒としてトルエンを使用
 7mLのネジ口試験管に、トルエン(0.5mL)に溶解させた8FHBC(0.2mmol,0.13g)とトリエチレングリコール(0.2mmol,30mg)の溶液、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.02mmol,2.2mg)を入れ、100℃で140時間加熱撹拌した。反応溶液にアセトンを添加すると沈殿が生成し、それを吸引濾過で濾別して、100℃で2時間真空乾燥して、白色固体の目的物を定量的に得た(79mg,0.17mmol[モノマー換算])。
1H NMR(400MHz,DMSO-d6,293K):δ/ppm=7.98(t,J=6.0Hz,2H,NH),4.11(t,J=4.4Hz,4H,CH2),3.80(td,J=16.4,6.4Hz,4H,CF2CH2),3.58(t,J=4.8Hz,4H,CH2),3.52(s,4H,CH2
13C NMR(100MHz,DMSO-d6,293K):δ/ppm=157.03,116.2(tt,1C-F=254.4Hz,2C-F=33.6Hz),111.5(tt,1C-F=264.7Hz,2C-F=32.8Hz),70.13,69.11,64.43,40.89(t,J=22.6Hz)
19F NMR(376MHz,DMSO-d6,293K):δ/ppm=-118.16(s,4F,CF2),-123.50(s,4F,CF2
IR(ATR):3323,3080,2955,2902,1704,1546,1428,1266,1153,1122,732cm-1
HPLC:Mw=8400,Mn=2900,Mw/Mn=2.9
 (3)溶媒としてアセトニトリルを使用
 7mLのネジ口試験管に、アセトニトリル(0.5mL)に溶解させた8FHBC(0.2mmol,0.13g)とトリエチレングリコール(0.2mmol,30mg)の溶液、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.02mmol,2.2mg)を入れ、80℃で145時間加熱撹拌した。反応溶液にアセトンを添加すると沈殿が生成し、それを吸引濾過で濾別して、100℃で2時間真空乾燥して、白色固体の目的物を得た(収率:74%,収量:68mg,0.15mmol[モノマー換算])。
HPLC: Mw=5500,Mn=3200,Mw/Mn=1.7
 実施例11: 8FHBCとテトラエチレングリコールからのポリウレタンの合成
Figure JPOXMLDOC01-appb-C000019
 (1)溶媒としてTHFを使用
 20mLのナスフラスコに、テトラヒドロフラン(0.5mL)に溶解させた8FHBC(0.2mmol,0.13g)とテトラエチレングリコール(0.2mmol,34μL)の溶液、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.02mmol,2.2mg)を入れ、100℃で43時間加熱撹拌した。反応液を100℃で2時間真空濃縮して、無色粘性液体の目的物を得た(収率:99%,収量:100mg,0.199mmol[モノマー換算])。
1H NMR(400MHz,CDCl3,293K):δ/ppm=5.80(brs,2H,NH),4.27(s,4H,CH2),3.88(t,J=12.0Hz,4H,CF2CH2),3.70-3.64(brs,12H,CH2
13C NMR(100MHz,CDCl3,293K):δ/ppm=156.73,155.86,116.2(tt,1C-F=254.4Hz,2C-F=33.6Hz),111.5(tt,1C-F=264.7Hz,2C-F=32.8Hz),70.40,70.10,69.27,64.57,64.47,41.08(t,J=24.1Hz)
19F NMR(376MHz,CDCl3,293K):δ/ppm=-119.12(s,4F,CF2),-123.74(s,4F,CF2
IR(ATR):3316,3080,2875,1712,1545,1454,1256,1161,1119,937,864cm-1
HPLC:Mw=5700,Mn=2600,Mw/Mn=2.2
 (2)溶媒としてトルエンを使用
 7mLのネジ口試験管に、トルエン(0.5mL)に溶解させた8FHBC(0.2mmol,0.13g)とテトラエチレングリコール(0.2mmol,39mg)の溶液、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.02mmol,2.2mg)を入れ、100℃で140時間加熱撹拌した。反応液を100℃で2時間真空濃縮して、無色粘性液体の目的物を得た(収率:89%,収量:90mg,0.18mmol[モノマー換算])。
HPLC:Mw=20000,Mn=6300,Mw/Mn=3.2
 実施例12: 8FHBCと1,3-プロパンジオールからのポリウレタンの合成
Figure JPOXMLDOC01-appb-C000020
 20mLのナスフラスコに、トルエン(1.0mL)に溶解させた8FHBC(1.1mmol,0.74g)と1,3-プロパンジオール(1.1mmol,86mg)の溶液、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.11mmol,12.5mg)を入れ、100℃で209時間加熱撹拌した。反応溶液にアセトンを添加すると沈殿が生成し、それを吸引濾過で濾別して、100℃で2時間真空乾燥して、白色固体の目的物を定量的に得た(402mg,1.01mmol[モノマー換算])。
1H NMR(400MHz,DMSO-d6,293K):δ/ppm=7.92(t,J=6.0Hz,2H,NH),4.06(t,J=6.4Hz,4H,CH2),3.80(td,J=16.0,5.2Hz,4H,CF2CH2),1.87(quin,J=6.4Hz,2H,CH2
13C NMR(100MHz,DMSO-d6,293K):δ/ppm=156.99,155.43,116.2(tt,1C-F=254.4Hz,2C-F=29.9Hz),111.5(tt,1C-F=263.1Hz,2C-F=33.5Hz),61.84,40.88(t,J=22.6Hz), 28.71
19F NMR(376MHz,DMSO-d6,293K):δ/ppm=-118.19(s,4F,CF2),-123.51(s,4F,CF2
IR(ATR):3330,3080,2968,2361,1702,1542,1430,1260,1163,1119,1042,742cm-1
HPLC:Mw=20600,Mn=6400,Mw/Mn=3.2
 実施例13: 8FHBCとポリテトラヒドロフランからのポリウレタンの合成
Figure JPOXMLDOC01-appb-C000021
 (1)溶媒としてトルエンを使用
 20mLのナスフラスコに、トルエン(5.0mL)に溶解させた8FHBC(5.0mmol,3.25g)とポリテトラヒドロフラン(5.0mmol,1.25g)の溶液、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.5mmol,56mg)を入れ、100℃で22時間加熱撹拌した。トルエン(10mL)を追加し、更に22時間撹拌した。反応液を100℃で3時間真空濃縮して、無色透明強弾性固体の目的物を定量的に得た。
1H NMR(400MHz,CDCl3,293K):δ/ppm=5.36(brs,2H,NH),4.12(brs,4H,CH2),3.88(t,J=14.0Hz,4H,CF2CH2),3.42(brs,8.8H,CH2),1.70-1.62(brs,12.8H,CH2CH2
13C NMR(100MHz,CDCl3,293K):δ/ppm=156.81,155.87,115.4(tt,1C-F=253.7Hz,2C-F=30.6Hz),111.3(tt,1C-F=263.9Hz,2C-F=32.8Hz),70.59,70.08,65.54,41.10(t,J=22.6Hz),26.38,25.99,25.73
19F NMR(376MHz,CDCl3,293K,C66 as external standard):δ/ppm=-119.07(s,4F,CF2),-123.68(s,4F,CF2
IR(ATR):3323,2943,2859,1700,1541,1374,1256,1153,1120,732cm-1
HPLC:Mw=191900,Mn=117500,Mw/Mn=1.63
 (2)溶媒としてTHFを使用
 7mLのネジ口試験管に、THF(0.25mL)に溶解させた8FHBC(0.2mmol,0.13g)とポリテトラヒドロフラン(0.2mmol,50mg)の溶液、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.02mmol,2.2mg)を入れ、60℃で353時間加熱撹拌した。反応液を室温で2時間真空乾燥して、無色透明固体の目的物を定量的に得た。得られた目的物の外観写真を図4に示す。
HPLC:Mw=36400,Mn=18300,Mw/Mn=2.0
 実施例14: 8FHBCとヘキサフルオロペンタンジオールからのポリウレタンの合成
Figure JPOXMLDOC01-appb-C000022
 7mLのネジ口試験管に、トルエン(0.5mL)に溶解させた8FHBC(0.2mmol,0.13g)とヘキサフルオロペンタンジオール(0.2mmol,42mg)の溶液、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.02mmol,2.2mg)を入れ、100℃で21時間加熱撹拌した。反応液を100℃で2時間真空乾燥して、白色固体の目的物を定量的に得た。
1H NMR(400MHz,DMSO-d6,293K):δ/ppm=8.44(t,J=6.4Hz,2H,NH),4.75(t,J=14.0Hz,4H,CH2),3.86(td,J=16.0,6.0Hz,4H,CF2CH2
13C NMR(100MHz,DMSO-d6,293K):δ/ppm=155.62,153.87,118.99-108.31(m),60.02(t,J=25.5Hz),41.19(t,J=22.6Hz)
19F NMR(376MHz,DMSO-d6,293K,C66 as external standard):δ/ppm=-118.05(s,4F,CF2),-119.46(s,4F,CF2),-123.43(s,4F,CF2),-125.55(s,2F,CF2
IR(ATR):3343,3092,2980,1724,1552,1433,1262,1149,999,738cm-1
HPLC: 検出不可
 実施例15: 8FHBCとオクタフルオロヘキサンジオールからのポリウレタンの合成
Figure JPOXMLDOC01-appb-C000023
 7mLのネジ口試験管に、トルエン(0.5mL)に溶解させた8FHBC(0.2mmol,0.13g)とオクタフルオロヘキサンジオール(0.2mmol,52mg)の溶液、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.02mmol,2.2mg)を入れ、100℃で21時間加熱撹拌した。反応液を100℃で2時間真空乾燥して、白色固体の目的物を定量的に得た。
1H NMR(400MHz,DMSO-d6,293K):δ/ppm=8.45(t,J=6.0Hz,2H,NH),4.79(t,J=15.2Hz,4H,CH2),3.86(td,J=16.4,4.8Hz,4H,CH2
13C NMR(100MHz,DMSO-d6,293K):δ/ppm=155.54,153.79,118.91-108.18(m),59.96(t,J=24.8Hz),41.20(t,J=22.6Hz)
19F NMR(376MHz,DMSO-d6,293K,C66 as external standard):δ/ppm=-118.05(s,4F,CF2),-119.42(s,4F,CF2),-123.43(s,8F,CF2
IR(ATR):3346,3084,2976,1725,1540,1434,1263,1118,1004,734cm-1
HPLC:Mw=25300,Mn=9400,Mw/Mn=2.68
 実施例16: 8FHBCとドデカフルオロテトラエチレングリコールからのポリウレタンの合成
Figure JPOXMLDOC01-appb-C000024
 7mLのネジ口試験管に、トルエン(0.5mL)に溶解させた8FHBC(0.2mmol,0.13g)とドデカフルオロテトラエチレングリコール(0.2mmol,82mg)の溶液、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.02mmol,2.2mg)を入れ、100℃で19時間加熱撹拌した。反応液を室温で2時間真空乾燥して、白色固体の目的物を定量的に得た。
1H NMR(400MHz,DMSO-d6,293K):δ/ppm=8.42(t,J=4.8Hz,2H,NH),4.71(t,J=8.0Hz,4H,CH2),3.83(td,J=14.8,5.2Hz,4H,CH2
13C NMR(100MHz,DMSO-d6,293K):δ/ppm=155.32,153.60,122.29(t,J=277Hz),118.88-108.42(m),61.69(t,J=32.1Hz),41.12(t,J=24.0Hz)
19F NMR(376MHz,DMSO-d6,293K,C66 as external standard):δ/ppm=-76.96(s,4F,CF2),-88.30(s,4F,CF2),-88.68(s,4F,CF2),-118.31(s,4F,CF2),-123.62(s,4F,CF2
IR(ATR):3341,3088,2981,2359,1726,1552,1411,1106,1000,737cm-1
HPLC:Mw=34600,Mn=20100,Mw/Mn=1.72
 実施例17: 8FHBCとビスフェノールAのジオールからのポリウレタン合成
Figure JPOXMLDOC01-appb-C000025
 7mLのネジ口試験管に、トルエン(0.5mL)に溶解させた8FHBC(0.2mmol,130mg)とビスフェノールA(0.2mmol,46mg)の溶液、及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.02mmol,2.2mg)を入れ、100℃で19時間加熱撹拌した。反応溶液にアセトンを添加すると沈殿が生成し、それを吸引濾過で濾別して、100℃で2時間真空乾燥して、白色固体の目的物を定量的に得た(108mg,0.2mmol[モノマー換算])。
1H NMR(400MHz,DMSO-d6,293K):δ/ppm=8.51(t,J=6.0Hz,2H,NH),7.21(dd,J=14.0,8.8Hz,4H,phenyl),7.01(dd,J=14.0,8.8Hz,4H,phenyl),3.91(td,J=16.8,5.6Hz,4H,CF2CH2),1.64(s,6H,CH3),1.58(s,6H,CH3
13C NMR(100MHz,DMSO-d6,293K):δ/ppm=157.14,155.06,154.95,140.19,127.35,127.29,114.65,118.89-107.46(m),41.84,40.65(t,J=22.6Hz),30.60,30.42
19F NMR(376MHz,DMSO-d6,293K,C66 as external standard):δ/ppm=-117.83(s,4F,CF2),-118.04(s,4F,CF2),-123.34(s,4F,CF2
IR(ATR):2970,2358,1732,1614,1542,1499,1212,1169,1120,1017,829cm-1
HPLC:Mw=8200,Mn=5100,Mw/Mn=1.6

Claims (7)

  1.  下記式(III)で表される含フッ素ポリウレタンを製造するための方法であって、
     下記式(I)で表される含フッ素ビスカルバメート化合物と下記式(II)で表されるジオール化合物を反応させる工程を含むことを特徴とする方法。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     Rf1は含フッ素C1-6アルキル基を示し、
     Rf2は含フッ素二価有機基を示し、
     R1は二価有機基を示す。]
  2.  上記式(I)で表される含フッ素ビスカルバメート化合物と上記式(II)で表されるジオール化合物を10℃以上、120℃以下の温度で反応させる請求項1に記載の方法。
  3.  Rf2が式CH2-Rf3-CH2(式中、Rf3は含フッ素C1-8アルカンジイル基を示す。)で表される基である請求項1に記載の方法。
  4.  Rf2が式CH2-(CF2n-CH2(式中、nは1以上、8以下の整数を示す。)で表される基である請求項1に記載の製造方法。
  5.  Rf1がCH(CF32である請求項1に記載の方法。
  6.  塩基の存在下、上記式(I)で表される含フッ素ビスカルバメート化合物と上記式(II)で表されるジオール化合物を反応させる請求項1~5のいずれかに記載の方法。
  7.  下記式(I)で表されることを特徴とする含フッ素ビスカルバメート化合物。
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     Rf1は含フッ素C1-6アルキル基を示し、
     Rf2は含フッ素二価有機基を示す。]
PCT/JP2022/040118 2021-11-02 2022-10-27 含フッ素ポリウレタンの製造方法 WO2023080049A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023557987A JPWO2023080049A1 (ja) 2021-11-02 2022-10-27
CN202280073341.4A CN118201975A (zh) 2021-11-02 2022-10-27 含氟聚氨酯的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021179746 2021-11-02
JP2021-179746 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023080049A1 true WO2023080049A1 (ja) 2023-05-11

Family

ID=86241054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040118 WO2023080049A1 (ja) 2021-11-02 2022-10-27 含フッ素ポリウレタンの製造方法

Country Status (3)

Country Link
JP (1) JPWO2023080049A1 (ja)
CN (1) CN118201975A (ja)
WO (1) WO2023080049A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621149A (en) * 1981-12-25 1986-11-04 Asahi Kasei Kogyo Kabushiki Kaisha Production of urethane compounds
JPS63213535A (ja) * 1987-03-03 1988-09-06 Dainichi Color & Chem Mfg Co Ltd 樹脂変性剤及び樹脂の変性方法
JPH09302069A (ja) * 1996-05-14 1997-11-25 Kyowa Yuka Kk ブロック化イソシアネート化合物
JP2002500654A (ja) * 1997-05-31 2002-01-08 ハンツマン・アイシーアイ・ケミカルズ・エルエルシー 有機イソシアネート類の製造方法
WO2011125429A1 (ja) 2010-04-02 2011-10-13 旭硝子株式会社 カルバメート化合物の製造方法、カルバメート化合物、およびこれを用いたイソシアネート化合物の製造方法
JP2015225689A (ja) * 2014-05-26 2015-12-14 三洋化成工業株式会社 電池用添加剤
WO2018211953A1 (ja) 2017-05-16 2018-11-22 国立大学法人神戸大学 フッ素化カーボネート誘導体の製造方法
CN110092888A (zh) * 2019-04-26 2019-08-06 同济大学 含氟异氰酸酯固化剂及其制备方法和应用
JP2021179746A (ja) 2020-05-12 2021-11-18 キヤノン株式会社 監視制御装置、監視制御方法、監視システム及びプログラム
JP2022041367A (ja) * 2020-09-01 2022-03-11 旭化成株式会社 ブロックイソシアネート組成物、塗料組成物及び塗膜

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621149A (en) * 1981-12-25 1986-11-04 Asahi Kasei Kogyo Kabushiki Kaisha Production of urethane compounds
JPS63213535A (ja) * 1987-03-03 1988-09-06 Dainichi Color & Chem Mfg Co Ltd 樹脂変性剤及び樹脂の変性方法
JPH09302069A (ja) * 1996-05-14 1997-11-25 Kyowa Yuka Kk ブロック化イソシアネート化合物
JP2002500654A (ja) * 1997-05-31 2002-01-08 ハンツマン・アイシーアイ・ケミカルズ・エルエルシー 有機イソシアネート類の製造方法
WO2011125429A1 (ja) 2010-04-02 2011-10-13 旭硝子株式会社 カルバメート化合物の製造方法、カルバメート化合物、およびこれを用いたイソシアネート化合物の製造方法
JP2015225689A (ja) * 2014-05-26 2015-12-14 三洋化成工業株式会社 電池用添加剤
WO2018211953A1 (ja) 2017-05-16 2018-11-22 国立大学法人神戸大学 フッ素化カーボネート誘導体の製造方法
CN110092888A (zh) * 2019-04-26 2019-08-06 同济大学 含氟异氰酸酯固化剂及其制备方法和应用
JP2021179746A (ja) 2020-05-12 2021-11-18 キヤノン株式会社 監視制御装置、監視制御方法、監視システム及びプログラム
JP2022041367A (ja) * 2020-09-01 2022-03-11 旭化成株式会社 ブロックイソシアネート組成物、塗料組成物及び塗膜

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MADHU SHERI ET AL., ANGEW. CHEM. INT. ED., vol. 57, 2018, pages 4599 - 4602
NAGAKURA MINORU, JOURNAL OF THE JAPAN SOCIETY OF COLOR MATERIAL, vol. 53, no. 11, 1980, pages 676 - 688
R. GOSNELL ET AL., J. MACROMOL. SCI., 1967, pages 831 - 850

Also Published As

Publication number Publication date
JPWO2023080049A1 (ja) 2023-05-11
CN118201975A (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
Rousseau et al. Tosylated glycerol carbonate, a versatile bis-electrophile to access new functionalized glycidol derivatives
CN104011040A (zh) 2-氧代-1,3-二氧戊环-4-甲酰胺、其制备方法和用途
Heydari et al. N-tert-Butoxycarbonylation of amines using H3PW12O40 as an efficient heterogeneous and recyclable catalyst
JP6453888B2 (ja) アミド連結基を有する5員環ビスカーボネート、それらの調製、及びポリマーの調製のためのそれらの使用
Furusho et al. Synthesis of [2]-and [3] rotaxanes by an end-capping approach utilizing urethane formation
US20160096914A1 (en) Urethanes, polymers thereof, coating compositions and their production from cyclic carbonates
JP5296354B2 (ja) ロタキサン、及びその製造方法
WO2023080049A1 (ja) 含フッ素ポリウレタンの製造方法
WO2021230151A1 (ja) ポリウレタンの製造方法
Veerapandian et al. Amine-and blocked isocyanate-terminated polyurethane dendrimers: integrated synthesis, photophysical properties and application in a heat curable system
JP5689321B2 (ja) 2−アミノ−4−トリフルオロメチルピリジン類の製造方法
JP4107845B2 (ja) アルキルカルバメートの製造方法
US9115160B2 (en) Solvent-free process for the preparation of cyclophosphamide
JP7130997B2 (ja) ジアミノ-p-クォーターフェニルの製造方法
WO2023080052A1 (ja) ポリウレタンの製造方法
JP2022109444A (ja) ニトリルオキシド化合物の製造方法
JP7141219B2 (ja) 脂環式カーボネートの製造方法
CN112939983A (zh) 一种SYK激酶抑制剂Lanraplenib的合成方法
JPH0147470B2 (ja)
JP7475638B2 (ja) 光学活性化合物およびその製造方法、光学活性化合物を含む配位化合物、環状化合物、ならびに中間体化合物
US7645798B2 (en) N-(2-hydroxyalkanoyl)-N,N′-dialkylureas and a process for their preparation
JP2017160340A (ja) N,n−ジクロロアミノ変性シリコーン及びその製造方法、並びにシアノ変性シリコーンの製造方法
JPH11171965A (ja) 定序性ポリウレタン及びその製造法
JP2022135366A (ja) 化合物及びその製造方法
US20230399293A1 (en) Method for producing fluorine-containing compound and fluorine-containing compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023557987

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022889869

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022889869

Country of ref document: EP

Effective date: 20240603