WO2023077882A1 - 利用给水污泥制备污泥调理剂的方法及污泥调理剂的应用 - Google Patents

利用给水污泥制备污泥调理剂的方法及污泥调理剂的应用 Download PDF

Info

Publication number
WO2023077882A1
WO2023077882A1 PCT/CN2022/108161 CN2022108161W WO2023077882A1 WO 2023077882 A1 WO2023077882 A1 WO 2023077882A1 CN 2022108161 W CN2022108161 W CN 2022108161W WO 2023077882 A1 WO2023077882 A1 WO 2023077882A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
conditioner
pyrolysis
water supply
oxidation
Prior art date
Application number
PCT/CN2022/108161
Other languages
English (en)
French (fr)
Inventor
董滨
肖婷婷
徐祖信
吴海斌
王殿常
李翀
沈丹妮
王先恺
刘枫
陈思思
Original Assignee
同济大学
中国长江三峡集团有限公司
三峡环境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学, 中国长江三峡集团有限公司, 三峡环境科技有限公司 filed Critical 同济大学
Publication of WO2023077882A1 publication Critical patent/WO2023077882A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the invention relates to the field of sludge treatment and resource utilization, in particular to a method for preparing a sludge conditioner from feedwater sludge and its application.
  • the sources of sludge mainly include municipal sewage plants, water supply and purification plants, industrial water plants and river and lake sediments.
  • urban sludge has a large proportion, mainly composed of sewage sludge and water supply sludge.
  • Sewage sludge is produced by activated sludge water treatment. It has the characteristics of high water content, difficult dehydration, easy to rot, heavy odor, and also contains a large amount of extracellular polymers, pathogenic bacteria and heavy metals that are difficult to degrade.
  • Feedwater sludge is a large amount of sludge rich in iron or aluminum salts produced by adding coagulants or flocculants to drinking water sources to remove turbidity, color, pathogens and natural organic matter.
  • feedwater sludge is low in organic matter and high in silica, making it unsuitable for biodegradation and incineration treatment methods, and the high concentration of metals also makes it unsuitable for land-based applications.
  • Feedwater sludge is also difficult to dewater due to the high content of bound water. Therefore, as a key link in sludge treatment, dehydration can minimize the amount of sludge, facilitate transportation, and reduce treatment and disposal costs.
  • the resource utilization of dehydrated sludge is an effective way to avoid secondary pollution, and has become the focus of environmental pollution prevention and control. Sewage sludge and water supply sludge are often treated and disposed of separately.
  • Feedwater sludge mainly contains SiO 2 , Fe 2 O 3 , Al 2 O 3 , CaCO 3 and other inorganic components and a small amount of organic components. Excellent catalytic performance and adsorption performance. It is an important demand for sludge resource utilization to modify and scientifically reuse water supply sludge based on its own characteristics.
  • the application of feedwater sludge generally depends on its physicochemical properties and available application conditions. At present, feedwater sludge is mainly used as an adsorbent for phosphorus (P) and other pollutants in sewage, and as a substitute for the manufacture of ceramsite or building materials.
  • P phosphorus
  • patent CN106540650A discloses a preparation method of a water plant sludge-based phosphorus removal granular adsorbent
  • patent CN105903426A discloses a modified water supply sludge and its preparation method and application as an ammonia nitrogen adsorbent
  • patent CN103723999A discloses the use of urban A method for preparing flower ceramsite from feedwater sludge.
  • sludge-based conditioner by mixing feedwater sludge and sewage sludge for sludge conditioning.
  • Feedwater sludge contains a large amount of residual Fe 2 O 3 , Al 2 O 3 and inorganic particles which can be used as chemical and physical regulators respectively. Therefore, adding feedwater sludge to improve the dewatering ability of sludge is a feasible environment-friendly conditioning process. Due to its hardness, feedwater sludge can be used as a physical modifier to form a permeable and more rigid lattice structure to maintain porosity under high pressure during mechanical dewatering. Adding it directly to the remaining sludge may lead to the dissolution of organic matter in the feedwater sludge, which is not conducive to dehydration.
  • the purpose of the present invention is in order to overcome the problem that above-mentioned prior art exists, provide a kind of method and application thereof that utilizes feedwater sludge to prepare sludge conditioner, at first solve the problem of water supply sludge containing a large amount of iron/aluminum salt coagulant composition and The environmental problem of multi-source sludge conditioning with the goal of achieving enhanced dewatering performance and adsorption of heavy metals is not fully utilized.
  • a method for preparing a sludge conditioner from feedwater sludge is prepared by mixing feedwater sludge and sewage sludge.
  • the specific method is to mix the feedwater sludge and sewage plant sludge in proportion, and add Pore agent, stir evenly, after mechanical dehydration, air-dry, grind, sieve, and pyrolyze to obtain sludge conditioner.
  • the water content of the sewage sludge is 92-95wt.%.
  • the water content of the sewage sludge is 92-95wt.%, and the carbon content ranges from 15-30mg/g dry basis; the water content of the water supply sludge is 60-80wt.%, and the iron/aluminum salt content ranges from 50-250mg /g sludge dry basis.
  • the mixing ratio of feedwater sludge and sewage sludge is 1:3 to 5:1, and the mixing ratio is calculated on the basis of sludge dry basis.
  • the pore forming agent is an acid, alkali or inorganic salt that does not react with the matrix, such as one or more of phosphoric acid, sodium hydroxide, Na 2 SO 4 , NaCl or CaCl 2 , and the dosage is 0.5 ⁇ 2mmol/g sludge dry basis.
  • the drying method of the mixed sludge is natural air drying or drying at 30-60°C, and after grinding, it is sieved through a 40-80 mesh sieve.
  • the pyrolysis of mixed sludge is calcined in sections in a tube furnace, the calcining atmosphere is an inert atmosphere with nitrogen or argon as the carrier gas, and the gas flow rate is 80-260mL/min; among them, the low-temperature section takes 5-
  • the heating rate of 10°C/min starts the pyrolysis program from room temperature, the pyrolysis temperature is 100-260°C, and the pyrolysis residence time is 30-40min; the middle temperature section, the heating rate is 15-30°C/min, and the pyrolysis temperature is 260 ⁇ 600°C, the pyrolysis residence time is 20 ⁇ 50min; the high temperature section, the heating rate is 30 ⁇ 60°C/min, the pyrolysis temperature is 600 ⁇ 960°C, the pyrolysis residence time is 40 ⁇ 90min; the cooling rate at the end of pyrolysis is 10 ⁇ 20°C/min.
  • the preferred pyrolysis method is a segmented pyrolysis process, which is divided into low temperature section, medium temperature section and high temperature section.
  • the above sludge conditioner is used to catalyze/activate ozone, persulfate, Fenton/Fenton-like reaction, etc., adjust the target sludge to the applicable pH range, and add the prepared sludge conditioner to strengthen the target sludge Dehydration performance and adsorption of heavy metals and other organic pollutants in the sludge, simultaneously reducing the pollution of the dehydration filtrate.
  • the sludge to be conditioned can be any one of municipal sewage sludge, industrial sewage sludge or river and lake bottom sludge, with a water content of 90-99wt.%.
  • the sludge to be conditioned is adjusted to an applicable pH range of 2-9.
  • the dosage of the conditioner is 50-600 mg/g sludge dry basis.
  • the applicable pH range of the sludge to be conditioned by the ozone oxidation conditioning technology is 3 to 5, and the ozone dosage range is 20 to 100mg/g sludge dry basis; the sludge to be conditioned by the persulfate oxidation conditioning technology
  • the applicable pH range is 4-9, and the dosage range of persulfate is 0.5-1.8mmol/g sludge dry basis; the applicable pH range of the sludge to be conditioned by Fenton/Fenton-like conditioning technology is 2-4, peroxidation
  • the hydrogen dose ranges from 30 to 90 mg/g sludge dry basis.
  • the conditioned target sludge can be recycled to prepare a sludge conditioner.
  • the working principle of the present invention is: using sewage sludge as the carbon-based material, a large amount of iron/aluminum salt components remaining in the feedwater sludge are prepared by staged pyrolysis to prepare a conditioner with a large specific surface area, pore structure and rich surface functional groups Its surface characteristics increase the catalytic activity and adsorption active sites, which can effectively destroy the sludge floc structure when applied to the chemical conditioning sludge technology of advanced oxidation, degrade the hydrophilic extracellular polymer into soluble organic matter, and increase the The fluidity of the internally bound water improves the sludge dewatering performance.
  • the conditioner can use its adsorption characteristics to achieve effective adsorption of heavy metals and other organic pollutants, while achieving sludge reduction and Filtrate contamination blocking purpose.
  • the present invention has the following advantages:
  • the present invention adopts water supply sludge and sewage sludge to jointly prepare sludge conditioner, which is a new type of material preparation technology with high added value, and provides a new idea for sludge resource reuse.
  • the conditioner prepared by the present invention has the advantages of larger specific surface area, enhanced pore structure, significantly improved catalytic performance and adsorption performance.
  • the sludge conditioner is prepared by using the water supply sludge and the sewage sludge to condition the sludge, which reduces the pollution of the dewatering filtrate during the high-efficiency dehydration of the sludge, and improves the application value of the sludge engineering.
  • Fig. 1 is the scanning electron microscope SEM figure of the sludge conditioning agent that the embodiment of the present invention 1 obtains;
  • Fig. 2 is the scanning electron microscope SEM figure of the sludge conditioner that the embodiment of the present invention 2 obtains;
  • Fig. 3 is a scanning electron microscope SEM picture of the sludge conditioner obtained in Example 3 of the present invention.
  • Sewage sludge with a water content of 97wt.% was selected as the sludge to be conditioned, and applied to the catalytic ozonation conditioning sludge technology, the pH of the sewage sludge to be conditioned was adjusted to 4, and 400mg/g sludge of sludge-based conditioner was added On a dry basis, stir and mix at a rotation speed of 800rpm, pour it into a sludge conditioning device, inject ozone at a dose of 60 mg/g sludge dry basis, and condition for 15 minutes.
  • the heating rate starts the pyrolysis program from room temperature, the pyrolysis temperature is 150°C, and the pyrolysis residence time is 30 minutes; the middle temperature section, the heating rate is 20°C/min, the pyrolysis temperature is 400°C, and the pyrolysis residence time is 30 minutes; the high temperature section , the heating rate is 40°C/min, the pyrolysis temperature is 800°C, and the pyrolysis residence time is 60min; the cooling rate at the end of pyrolysis is 15°C/min, and the sludge-based conditioner is collected at room temperature.
  • the CST reduction rate reached 85.3%
  • the SRF reduction rate reached 87.6%
  • the water content of the mud cake was 69.5%
  • the sludge dewatering performance was significantly improved
  • the heavy metals As, Cd, Cr, The content of Cu, Ni, Pb and Zn
  • the rate starts the pyrolysis program from room temperature, the pyrolysis temperature is 180°C, and the pyrolysis residence time is 40 minutes; the middle temperature section, the heating rate is 30°C/min, the pyrolysis temperature is 450°C, and the pyrolysis residence time is 40 minutes; the high temperature section, The heating rate is 40°C/min, the pyrolysis temperature is 900°C, and the pyrolysis residence time is 80min; the cooling rate at the end of pyrolysis is 20°C/min, and the sludge-based conditioner is collected at room temperature.
  • the CST reduction rate reached 88.6%
  • the SRF reduction rate reached 85.8%
  • the water content of the mud cake was 68.2%
  • the sludge dewatering performance was significantly improved.
  • the heavy metals (As, Cd, Cr, The content of Cu, Ni, Pb and Zn) decreased obviously by 28.7-62.4%.
  • Fig. 1 is the scanning electron microscope SEM figure of the sludge conditioner obtained in Example 1 of the present invention
  • Fig. 2 is the scanning electron microscope SEM figure of the sludge conditioner obtained in Example 2 of the present invention
  • Fig. 3 is obtained in Example 3 of the present invention Scanning electron microscope SEM image of the sludge conditioner
  • Table 1 shows the specific surface area test results of the sludge conditioner obtained in Examples 1-3.
  • Example S BET (m 2 /g) Example 1 113.87 Example 2 108.74
  • Example 3 95.36

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本发明公开了一种利用给水污泥制备污泥调理剂的方法及其应用,调理剂由给水污泥和污水污泥混合制备得到,将给水污泥和污水厂污泥按比例混合,投加造孔剂,搅拌均匀,机械脱水后经风干、研磨、筛分、热解即制得污泥调理剂。将调理剂用于催化/活化臭氧、过硫酸盐、芬顿等高级氧化技术调理污泥强化脱水性能。本发明利用给水厂和污水厂污泥制备了一种具有高效催化性能和吸附性能的污泥碳基调理剂,耦合高级氧化的化学调理技术,高效提升污泥脱水性能并吸附重金属,并减少药剂投加、节省污泥后续的运输与处理处置成本,实现多源污泥协同资源化循环利用。

Description

利用给水污泥制备污泥调理剂的方法及污泥调理剂的应用
本申请要求于2021年11月05日提交中国专利局、申请号为CN202111304440.2、发明名称为“利用给水污泥制备污泥调理剂的方法及其应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及污泥处理处置及资源化利用领域,具体涉及一种利用给水污泥制备污泥调理剂的方法及其应用。
背景技术
污泥的来源主要包括市政污水厂、给水净水厂、工业水厂和河湖底泥。其中,城市污泥比重较大,主要有污水污泥和给水污泥组成。污水污泥是活性污泥法水处理产生的,具有含水量高、难脱水、易腐化、臭味重,而且还含有大量难以降解的胞外聚合物、病原菌和重金属等特点。给水污泥是在饮用水源中添加混凝剂或絮凝剂以去除浊度、颜色、病原体和天然有机物而产生的大量富含铁或铝盐的污泥。与污水污泥不同的是,给水污泥有机物含量低,二氧化硅含量高,因此不适用于生物降解和焚烧处理方法,高浓度的金属也使其不适合陆地应用。由于结合水含量高,给水污泥同样面临难脱水的问题。因此,作为污泥处理中的关键环节,脱水可以最大限度地减少污泥量,便于运输,降低处理处置成本。脱水后的污泥资源化利用是避免二次污染的有效途径,已成为环境污染防治的焦点。污水污泥和给水污泥往往是分别处理处置,随着对两种污泥特性认识的不断加深,供排水一体化体制的建立和完善,将两类水厂污泥联合处理处置的研究和应用值得考虑。
给水污泥主要含有SiO 2、Fe 2O 3、Al 2O 3、CaCO 3等无机成分和少量有机成分,具有一定的硬度,脱水后具有一定的孔隙率和较大的比表面积范围,体现出卓越的催化性能和吸附性能。结合给水污泥自身特点对其进行改性并科学回用是污泥资源化的重要需求。给水污泥的应用一般取决于其理化特性和可用的应用条件。目前给水污泥主要用于作为污水中磷(P)和其他污染物吸附剂,以及陶粒或建筑材料制造的替代品。例如专利CN106540650A公开了一种给水厂污泥基除磷颗粒吸附剂的制备方法;专利CN105903426A公开了一种改性给水污泥及其制备方法和应用,作为氨氮吸附剂;专利CN103723999A公开了利用城 市给水污泥制备花卉陶粒的方法。但是目前还没有利用给水污泥和污水污泥混合制备污泥基调理剂来进行污泥调理方面的报道。
给水污泥含有大量残留的Fe 2O 3、Al 2O 3和无机颗粒物可以分别作为化学和物理调节剂,因此添加给水污泥以提高污泥的脱水能力是可行的环境友好型调理工艺。给水污泥因其具有的硬度可被用作物理调节剂形成可渗透且更刚性的晶格结构,以在机械脱水过程中在高压下保持孔隙率。直接将其加入剩余污泥中,可能会导致给水污泥中有机物的溶出,不利于脱水。可以考虑经热改性后,水分和挥发组分逸出,有机质碳化后出现大量孔隙,形成骨架结构,可作为骨架材料和重金属(As,Cd,Cr,Cu,Ni,Pb和Zn)及有机污染物的吸附剂。
发明内容
本发明的目的是为了克服上述现有技术存在的问题,提供一种利用给水污泥制备污泥调理剂的方法及其应用,首先解决含有大量铁/铝盐混凝剂成分的给水污泥并没有充分利用的问题,同时实现强化脱水性能和吸附重金属为目标的多源污泥调理的环境问题。
为实现上述目的,本发明通过如下技术方案来实现:
一种利用给水污泥制备污泥调理剂的方法,所述调理剂由给水污泥和污水污泥混合制备得到,具体方法为,将给水污泥和污水厂污泥按比例混合,投加造孔剂,搅拌均匀,机械脱水后经风干、研磨、筛分、热解制得污泥调理剂。
优选地,污水厂污泥含水率为92~95wt.%。
所述污水厂污泥含水率为92~95wt.%,含碳量范围为15~30mg/g干基;给水污泥含水率为60~80wt.%,铁/铝盐含量范围为50~250mg/g污泥干基。
优选地,给水污泥和污水污泥的混合比例为1:3~5:1,混合比例按污泥干基比例计算。
优选地,造孔剂为不与基体发生反应的酸、碱或无机盐,例如磷酸、氢氧化钠、Na 2SO 4、NaCl或CaCl 2等中的一种或多种,投加量为0.5~2mmol/g污泥干基。
优选地,混合污泥烘干方式为自然风干或30~60℃烘干,研磨后经40~80目筛子筛分。
优选地,混合污泥热解是经过管式炉分段式煅烧,煅烧气氛是以氮气或氩气为载气的惰性气氛,气体流速为80~260mL/min;其中,低温段,以5~10℃/min 的升温速率从室温启动热解程序,热解温度为100~260℃,热解停留时间为30~40min;中温段,升温速率为15~30℃/min,热解温度为260~600℃,热解停留时间为20~50min;高温段,升温速率为30~60℃/min,热解温度为600~960℃,热解停留时间为40~90min;热解结束降温速率为10~20℃/min。
发明人研究发现,调理剂热解制备过程,影响其催化性能和吸附性能的影响因素较多。本发明为确保制备的调理剂具有较大的比表面积、孔隙结构和丰富的表面官能团,优选地热解方式为分段式热解过程,分为低温段、中温段和高温段。
将上述污泥调理剂用于催化/活化臭氧、过硫酸盐、芬顿/类芬顿反应等,调节目标污泥至适用的pH范围,投加制得的污泥调理剂,强化目标污泥脱水性能并吸附污泥中的重金属和其他有机污染物,同步降低脱水滤液的污染性。
优选地,待调理污泥可以是市政污水污泥、工业污水污泥或河湖底泥中的任意一种,含水率为90~99wt.%。
优选地,调节待调理的污泥至适用的pH范围为2~9。
优选地,调理剂的投加量为50~600mg/g污泥干基。
发明人研究发现,应用于臭氧氧化调理技术待调理的污泥适用的pH范围为3~5,臭氧剂量范围为20~100mg/g污泥干基;过硫酸盐氧化调理技术待调理的污泥适用的pH范围为4~9,过硫酸盐剂量范围为0.5~1.8mmol/g污泥干基;芬顿/类芬顿调理技术待调理的污泥适用的pH范围为2~4,过氧化氢剂量范围为30~90mg/g污泥干基。
优选地,调理后的目标污泥可循环利用制备污泥调理剂。
本发明的工作原理为:利用污水污泥作为碳基材料,给水污泥中残留的大量铁/铝盐成分经过分段式热解制备具有较大比表面积、孔隙结构和丰富的表面官能团的调理剂,其表面特性增加了催化活性和吸附活性位点,应用于高级氧化的化学调理污泥技术中可以有效破坏污泥絮体结构,氧化亲水性胞外聚合物降解为可溶性有机物,增加胞内结合水的流动性,提升污泥脱水性能。随着污泥絮体的瓦解,絮体中富集的重金属和其他有机污染物得以释放,调理剂利用其吸附特性可实现重金属和其他有机污染物的有效吸附,同时达到污泥减量化和滤液污染阻断的目的。
与现有技术相比,本发明具有以下优点:
(1)本发明采用给水污泥和污水污泥共同制备污泥调理剂是一种新型具有高附加值的材料制备技术,为污泥资源化再利用提供了新思路。
(2)本发明制备的调理剂比给水污泥或污水污泥单独热解制备的污泥基材料,具有更大的比表面积、孔隙结构增强、催化性能和吸附性能明显提升的优势。
(3)将给水污泥和污水污泥共同制备污泥调理剂用于调理污泥,在污泥高效脱水时降低脱水滤液的污染,提高了污泥工程应用价值。
附图说明
图1为本发明实施例1得到的污泥调理剂的扫描电镜SEM图;
图2为本发明实施例2得到的污泥调理剂的扫描电镜SEM图;
图3为本发明实施例3得到的污泥调理剂的扫描电镜SEM图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
本发明提供的利用给水污泥制备污泥调理剂的方法,具体实施过程如下:
(1)调理剂的制备:
将含水率为95wt.%的污水污泥与含水率为75wt.%的给水污泥按干基含量1:1混合,投加造孔剂磷酸0.5mmol/g污泥干基,搅拌均匀,通过机械脱水后自然风干、研磨后经40目筛子筛分;在管式炉中以氮气为载气,气体流速为100mL/min,经低温段以5℃/min的升温速率从室温启动热解程序,热解温度为120℃,热解停留时间为30min;中温段,升温速率为15℃/min,热解温度为300℃,热解停留时间为30min;高温段,升温速率为30℃/min,热解温度为600℃,热解停留时间为40min;热解结束降温速率为10℃/min,降至室温收集污泥基调理剂。
(2)目标污泥调理
选用含水率为97wt.%的污水污泥作为待调理污泥,应用于催化臭氧氧化调理污泥技术,调节待调理的污水污泥pH为4,投加污泥基调理剂400mg/g污泥干基,以转数800rpm搅拌混匀后,倒入污泥调理装置中,通入臭氧剂量为60mg/g污泥干基,调理时间为15min,调理结束后测定污泥脱水性能指标毛细吸水时间CST、污泥比阻SRF和泥饼含水率(是指测定SRF抽滤产生的泥饼含水率, 抽滤压力为0.07MPa),以及污泥体系中重金属的含量变化。与调理前污水污泥相比,CST削减率达81.7%,SRF削减率达84.6%,泥饼含水率为70.1%,污泥脱水性能显著提升,脱水滤液中的重金属(As,Cd,Cr,Cu,Ni,Pb和Zn)的含量明显下降23.3~67.1%。
实施例2
本发明提供的一种利用给水污泥制备污泥调理剂的应用,具体实施过程如下:
(1)调理剂的制备:
将含水率为90wt.%的污水污泥与含水率为70wt.%的给水污泥按干基含量2:1混合,投加造孔剂氢氧化钠1mmol/g污泥干基,搅拌均匀,通过机械脱水后置于30℃烘箱中烘干、研磨后经60目筛子筛分;在管式炉中以氩气为载气,气体流速为150mL/min,经低温段以8℃/min的升温速率从室温启动热解程序,热解温度为150℃,热解停留时间为30min;中温段,升温速率为20℃/min,热解温度为400℃,热解停留时间为30min;高温段,升温速率为40℃/min,热解温度为800℃,热解停留时间为60min;热解结束降温速率为15℃/min,降至室温收集污泥基调理剂。
(2)目标污泥调理
选用含水率为95wt.%的工业污泥作为待调理污泥,应用于活化过硫酸盐氧化调理污泥技术,调节待调理的污水污泥pH为6,投加污泥基调理剂500mg/g污泥干基,过硫酸盐剂量为0.6mmol/g污泥干基,以转数800rpm搅拌15min,静置10min后测定污泥脱水性能指标毛细吸水时间CST、污泥比阻SRF和泥饼含水率(是指测定SRF抽滤产生的泥饼含水率,抽滤压力为0.07MPa),以及污泥体系中重金属的含量变化。与调理前污水污泥相比,CST削减率达85.3%,SRF削减率达87.6%,泥饼含水率为69.5%,污泥脱水性能显著提升,脱水滤液中的重金属(As,Cd,Cr,Cu,Ni,Pb和Zn)的含量明显下降31.7~68.1%。
实施例3
本发明提供的一种利用给水污泥制备污泥调理剂的应用,具体实施过程如下:
(1)调理剂的制备:
将含水率为94wt.%的污水污泥与含水率为65wt.%的给水污泥按干基含量 1:5混合,投加造孔剂CaCl 21.5mmol/g污泥干基,搅拌均匀,通过机械脱水后置于45℃烘箱中烘干、研磨后经80目筛子筛分;在管式炉中以氮气为载气,气体流速为200mL/min,经低温段以10℃/min的升温速率从室温启动热解程序,热解温度为180℃,热解停留时间为40min;中温段,升温速率为30℃/min,热解温度为450℃,热解停留时间为40min;高温段,升温速率为40℃/min,热解温度为900℃,热解停留时间为80min;热解结束降温速率为20℃/min,降至室温收集污泥基调理剂。
(2)目标污泥调理
选用含水率为92wt.%的河湖污泥作为待调理污泥,应用于活类芬顿氧化调理污泥技术,调节待调理的污水污泥pH为2,投加污泥基调理剂600mg/g污泥干基,过氧化氢剂量为60mg/g污泥干基,以转数800rpm搅拌15min,静置10min后测定污泥脱水性能指标毛细吸水时间CST、污泥比阻SRF和泥饼含水率(是指测定SRF抽滤产生的泥饼含水率,抽滤压力为0.07MPa),以及污泥体系中重金属的含量变化。与调理前污水污泥相比,CST削减率达88.6%,SRF削减率达85.8%,泥饼含水率为68.2%,污泥脱水性能显著提升,脱水滤液中的重金属(As,Cd,Cr,Cu,Ni,Pb和Zn)的含量明显下降28.7~62.4%。
图1为本发明实施例1得到的污泥调理剂的扫描电镜SEM图;图2为本发明实施例2得到的污泥调理剂的扫描电镜SEM图;图3为本发明实施例3得到的污泥调理剂的扫描电镜SEM图;表1为实施例1~3得到的污泥调理剂的比表面积测试结果。
表1实施例1~3得到的调理剂的比表面积
实施例 S BET(m 2/g)
实施例1 113.87
实施例2 108.74
实施例3 95.36
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (15)

  1. 一种利用给水污泥制备污泥调理剂的方法,其特征在于,所述污泥调理剂由给水污泥和污水厂污泥混合制备得到:将给水污泥和污水厂污泥按比例混合,投加造孔剂,搅拌均匀,机械脱水后经风干、研磨、筛分、热解即制得所述污泥调理剂。
  2. 根据权利要求1所述的方法,其特征在于,所述污水厂污泥的含水率为92~95wt.%,含碳量范围为15~30mg/g干基;所述给水污泥的含水率为60~80wt.%,铁/铝盐含量范围为50~250mg/g干基。
  3. 根据权利要求1所述的方法,其特征在于,所述给水污泥和污水厂污泥的混合比例为1:3~5:1,混合比例按污泥干基比例计算。
  4. 根据权利要求1所述的方法,其特征在于,所述造孔剂为不与基体发生反应的酸、碱或无机盐。
  5. 根据权利要求1或4所述的方法,其特征在于,所述造孔剂为磷酸、氢氧化钠、Na 2SO 4、NaCl和CaCl 2中的一种或多种;
    所述造孔剂的投加量为0.5~2mmol/g污泥干基。
  6. 根据权利要求1所述的方法,其特征在于,所述风干替换为30~60℃烘干,研磨后经40~80目筛子筛分。
  7. 根据权利要求1所述的方法,其特征在于:所述热解的方式为采用管式炉进行分段式煅烧;所述分段式煅烧包括依次进行低温段煅烧、中温段煅烧和高温煅煅烧;
    所述分段式煅烧的气氛是以氮气或氩气为载气的惰性气氛,气体流速为80~260mL/min;
    其中,所述低温段煅烧以5~10℃/min的升温速率从室温启动热解程序,热解温度为100~260℃,热解停留时间为30~40min;所述中温段煅烧,升温速率为15~30℃/min,热解温度为260~600℃,热解停留时间为20~50min;所述高温段煅烧,升温速率为30~60℃/min,热解温度为600~960℃,热解停留时间为40~90min;所述热解结束后的降温速率为10~20℃/min。
  8. 权利要求1~7任一项所述的方法制备得到的污泥调理剂,其特征在于:所述污泥调理剂的孔隙率为40~80%,比表面积为60~350m 2/g。
  9. 权利要求8所述污泥调理剂在高级氧化的化学调理污泥中的应用,其特征在于,所述高级氧化包括催化/活化臭氧氧化、过硫酸盐氧化、芬顿/类芬顿氧化,所述应用包括以下步骤:调节目标污泥至适用的pH范围,投加所述污泥调理剂,进行调理,经过滤得到调理污泥和脱水滤液。
  10. 根据权利要求9所述的应用,其特征在于,所述目标污泥为市政污水污泥、工业污水污泥和河湖底泥中的任意一种或组合,含水率为90~99wt.%。
  11. 根据权利要求10所述的应用,其特征在于,所述目标污泥的适用pH范围为2~9;所述污泥调理剂的投加量为50~600mg/g污泥干基。
  12. 根据权利要求11所述的应用,其特征在于,当所述高级氧化为催化/活化臭氧氧化时,臭氧的投加量为20~100mg/g污泥干基;
    所述目标污泥的适用pH范围为3~5。
  13. 根据权利要求11所述的应用,其特征在于,当所述高级氧化为过硫酸盐氧化时,过硫酸盐的投加量为0.5~1.8mmol/g污泥干基;
    所述目标污泥的适用pH范围为4~9。
  14. 根据权利要求11所述的应用,其特征在于,当所述高级氧化为芬顿/类芬顿氧化时,氧化剂为过氧化氢;所述过氧化氢的投加量为30~90mg/g污泥干基;
    所述目标污泥的适用pH范围为2~4。
  15. 根据权利要求9所述的应用,其特征在于,所述调理污泥作为制备所述污泥调理剂的原料进行循环利用。
PCT/CN2022/108161 2021-11-05 2022-07-27 利用给水污泥制备污泥调理剂的方法及污泥调理剂的应用 WO2023077882A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111304440.2A CN114044620B (zh) 2021-11-05 2021-11-05 利用给水污泥制备污泥调理剂的方法及其应用
CN202111304440.2 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023077882A1 true WO2023077882A1 (zh) 2023-05-11

Family

ID=80207234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108161 WO2023077882A1 (zh) 2021-11-05 2022-07-27 利用给水污泥制备污泥调理剂的方法及污泥调理剂的应用

Country Status (2)

Country Link
CN (1) CN114044620B (zh)
WO (1) WO2023077882A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116891276A (zh) * 2023-08-18 2023-10-17 上海勘测设计研究院有限公司 一种铁碳填料及其制备方法和用途

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114044620B (zh) * 2021-11-05 2022-11-18 同济大学 利用给水污泥制备污泥调理剂的方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362127B1 (en) * 1998-07-10 2002-03-26 Illinois Institute Of Technology Synthesis of a carbon-based catalyst from sludge
CN102757255A (zh) * 2012-07-13 2012-10-31 哈尔滨工业大学 利用给水污泥与污水污泥制备轻质陶粒的方法
CN106753462A (zh) * 2016-12-05 2017-05-31 中国科学院广州能源研究所 一种分级定向热解污泥碳化方法
CN107459237A (zh) * 2017-09-18 2017-12-12 华中科技大学 基于含铁污泥热解残渣的污泥复合调理剂及其制备与应用
CN110092553A (zh) * 2019-04-10 2019-08-06 浙江清风源环保科技有限公司 一种基于污泥热解固化重金属的方法
CN114044620A (zh) * 2021-11-05 2022-02-15 同济大学 利用给水污泥制备污泥调理剂的方法及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745879B (zh) * 2012-07-05 2013-10-30 华中科技大学 一种用于烟气脱硫脱汞的污泥基吸附剂及其制备方法
CN106977068A (zh) * 2017-04-14 2017-07-25 中国科学院广州能源研究所 一种提高污泥碳产量的方法
CN108033657B (zh) * 2017-12-18 2020-04-24 北京城市排水集团有限责任公司 一种提高污泥热解碳化吸附性能的方法
CN109179927B (zh) * 2018-09-20 2021-07-23 重庆三峡学院 一种剩余污泥循环式处理的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362127B1 (en) * 1998-07-10 2002-03-26 Illinois Institute Of Technology Synthesis of a carbon-based catalyst from sludge
CN102757255A (zh) * 2012-07-13 2012-10-31 哈尔滨工业大学 利用给水污泥与污水污泥制备轻质陶粒的方法
CN106753462A (zh) * 2016-12-05 2017-05-31 中国科学院广州能源研究所 一种分级定向热解污泥碳化方法
CN107459237A (zh) * 2017-09-18 2017-12-12 华中科技大学 基于含铁污泥热解残渣的污泥复合调理剂及其制备与应用
CN110092553A (zh) * 2019-04-10 2019-08-06 浙江清风源环保科技有限公司 一种基于污泥热解固化重金属的方法
CN114044620A (zh) * 2021-11-05 2022-02-15 同济大学 利用给水污泥制备污泥调理剂的方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANGYANG YOU, LU XUEQIANG, XU DANYU, ZHANG TAO, SHI YAN, YANG ANG: "Degradation of Rhodamine B in Water by Ozone Oxidation Catalyzed by Composite Sludge-Based Activated Carbon ", INDUSTRIAL WATER TREATMENT, vol. 35, no. 1, 20 January 2015 (2015-01-20), pages 56 - 59, XP093062947 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116891276A (zh) * 2023-08-18 2023-10-17 上海勘测设计研究院有限公司 一种铁碳填料及其制备方法和用途
CN116891276B (zh) * 2023-08-18 2024-05-14 上海勘测设计研究院有限公司 一种铁碳填料及其制备方法和用途

Also Published As

Publication number Publication date
CN114044620B (zh) 2022-11-18
CN114044620A (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2023077882A1 (zh) 利用给水污泥制备污泥调理剂的方法及污泥调理剂的应用
US11858836B2 (en) Sludge composite conditioner based on iron-containing sludge pyrolysis residue as well as preparation method and use thereof
CN105859105A (zh) 一种污泥处理及资源化方法
CN107744832B (zh) 一种高分子材料改性的污泥生物炭催化剂、其制备及应用
WO2020215775A1 (zh) 一种新型市政污泥调理剂
CN110092569A (zh) 一种污泥脱水方法
CN105642221A (zh) 一种除磷净水剂及其制备方法
CN106830621B (zh) 一种复合污泥脱水剂及其制备方法和应用
Gu et al. Preparation of porous biochar by urine assisted pyrolysis of sewage sludge and their application for Eriochrome Black T adsorption
WO2020147303A1 (zh) 一种污泥基除磷材料及其制备方法和含磷污水的处理方法
CN104445863A (zh) 在板框压滤机上实现污泥深度脱水和能源化利用的方法
CN111018036A (zh) 一种复合型生活污水处理剂的制备方法
CN111646534A (zh) 一种焦化酚氰废水净水剂及其制备方法与应用
CN103708704B (zh) 污泥深度脱水的预处理方法
CN111116012A (zh) 一种污泥调理剂及其应用处理方法
CN110590121A (zh) 一种污泥脱水剂及污泥脱水方法
CN113880088A (zh) 一种造纸污泥基生物炭的制备方法
CN110590117A (zh) 一种杀菌脱水多功能污泥处理新方法
CN106746475B (zh) 复合高分子污泥脱水絮凝剂及其制备方法
CN103693758A (zh) 一种处理亚甲基蓝染料废水的方法
Jahagirdar et al. Reuse of incinerated textile mill sludge as adsorbent for dye removal
CN112624559A (zh) 一种改性污泥基多孔生物炭的制备方法
CN102060429A (zh) 一种用于污泥脱水的调理剂及其脱水方法
CN114835356B (zh) 一种污泥基铁碳微电解生物填料的制备方法
Samanta et al. Recycle of water treatment plant sludge and its utilization for wastewater treatment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17998434

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888917

Country of ref document: EP

Kind code of ref document: A1