WO2023077331A1 - 小径轴刚度比的液体橡胶复合节点 - Google Patents

小径轴刚度比的液体橡胶复合节点 Download PDF

Info

Publication number
WO2023077331A1
WO2023077331A1 PCT/CN2021/128535 CN2021128535W WO2023077331A1 WO 2023077331 A1 WO2023077331 A1 WO 2023077331A1 CN 2021128535 W CN2021128535 W CN 2021128535W WO 2023077331 A1 WO2023077331 A1 WO 2023077331A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
rubber layer
axial
stiffness
vulcanized
Prior art date
Application number
PCT/CN2021/128535
Other languages
English (en)
French (fr)
Inventor
罗俊
刘文松
林胜
陈俊辉
张玉祥
曾先会
蒋仲三
周娟
Original Assignee
株洲时代瑞唯减振装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲时代瑞唯减振装备有限公司 filed Critical 株洲时代瑞唯减振装备有限公司
Priority to PCT/CN2021/128535 priority Critical patent/WO2023077331A1/zh
Publication of WO2023077331A1 publication Critical patent/WO2023077331A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/393Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type with spherical or conical sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • F16F13/28Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions specially adapted for units of the bushing type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/16Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material
    • F16F15/167Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material having an inertia member, e.g. ring
    • F16F15/173Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material having an inertia member, e.g. ring provided within a closed housing

Definitions

  • the invention relates to the field of rail transit, in particular to a method and structure for adjusting the small-diameter-axis ratio of a liquid rubber composite node.
  • the rotating arm node when it runs in a straight line at high speed (high frequency vibration), it provides a large radial stiffness to ensure the operation stability and increase the critical speed; when it passes through the curve (low frequency and large amplitude), it provides a small radial stiffness Stiffness performance ensures over-curve performance and reduces wear; ordinary nodes are difficult to achieve the above characteristics, especially for old lines, wheel rails and lines wear a lot, and maintenance costs are high, so it is necessary to use a new product that has the above characteristics at the same time - liquid rubber compound node.
  • the working principle of the liquid rubber composite joint mainly through the design of two hollow cavity structures inside the rubber part, the two cavities are connected through the flow channel design, and the sealed incompressible (viscous) liquid is pre-filled in one cavity. Under the load, the volume of the two cavities changes, and the liquid flows between the two cavities to generate damping, consume vibration energy, and achieve the purpose of damping vibration.
  • the liquid flows up and down through the channel, and the small stiffness has a large damping effect, and the liquid in the high frequency section has no time to flow, realizing the characteristic of large stiffness.
  • the technical problem to be solved by the present invention is: when the vehicle crosses the curve, provide a smaller radial stiffness performance to ensure the curve performance, reduce the wear of the wheel and rail, and provide a larger axial stiffness to ensure the stability of the vehicle running .
  • the technical solution proposed by the present invention is: a liquid rubber composite joint with a small-diameter shaft stiffness ratio, the liquid rubber composite joint includes a mandrel, a rubber body, a vulcanized body jacket, a stop block and an integral jacket; the rubber body Vulcanization forms a whole between the vulcanized body jacket and the mandrel, and an integral jacket is placed on the outside of the stop block and the vulcanized body jacket; when the rubber body is subjected to radial pressure, the rubber body produces a compound deformation of shearing and extrusion , so as to reduce the radial stiffness of the liquid rubber composite node; on the mandrel, a pit opening to the inner side of the mandrel is provided with a boss on both sides of the pit, and a stopper is set at the pit, and the The maximum outer diameter of the boss of the mandrel is set to be greater than the minimum inner diameter of the stop block, so that
  • An outer inclined surface is set on the outside of the boss, and a spacer inclined surface is arranged on the inner side of the vulcanized body jacket, and the rubber body vulcanized between the outer inclined surface of the boss and the spacer inclined surface of the vulcanized body jacket is an oblique rubber layer;
  • the inclination angle of the outer slope of the platform and the slope of the spacer sleeve of the vulcanized body jacket are used to increase the shear deformation of the oblique rubber layer when the oblique rubber layer is subjected to radial pressure, thereby reducing the radial stiffness of the liquid rubber composite node.
  • the inner side of the oblique rubber layer is provided with an inner groove of the inner side of the oblique rubber layer, and the outer side of the oblique rubber layer is provided with an outer groove of the inner side of the oblique rubber layer, so that the oblique rubber layer can withstand radial pressure. Reduced radial stiffness of liquid rubber composite nodes.
  • the extrusion deformation of the oblique rubber layer is increased when the oblique rubber layer bears axial load, thereby increasing the axial stiffness of the liquid rubber composite node .
  • the rubber body vulcanized on the inner side of the boss is an axial rubber layer.
  • the axial The rubber layer can provide axial stiffness for the liquid rubber composite joint; by reducing the thickness of the axial rubber layer, the axial stiffness of the liquid rubber composite joint can be increased.
  • the liquid rubber composite joint includes a mandrel, a rubber body, a vulcanized body casing, a stop block and an overall casing; the vulcanized body casing is a split type casing, and the two adjacent A gap is set between the vulcanized body jackets, the rubber body is vulcanized between the vulcanized body jackets and the mandrel, and the gap between the vulcanized body jackets extends into the rubber body, and the stopper and the outer side of the vulcanized body jacket are covered
  • the overall jacket; the deformation generated when the rubber body is subjected to radial pressure is a composite deformation of shearing and extrusion, thereby reducing the radial stiffness of the liquid rubber composite node; the pit on the mandrel opens to the inner side of the mandrel, Bosses are set on both sides of the pit, stop blocks are set at the pits, and the maximum outer diameter of the boss
  • the whole body formed by the vulcanized body casing, rubber body and mandrel is pre-compressed to completely close the gap between the vulcanized body casing and the rubber body, and the pre-compressed whole is assembled into the overall casing; Squeeze the rubber body in the direction to reduce the distance between the stop block and the bottom of the pit, thereby increasing the contact area between the stop block and the boss, and improving the axial stiffness of the liquid rubber composite node.
  • an outer inclined surface is provided on the outside of the boss, and a spacer inclined surface is arranged on the inner side of the vulcanized body jacket, and the rubber body vulcanized between the outer inclined surface of the boss and the spacer inclined surface of the vulcanized body jacket is an inclined rubber layer; Increase the inclination angle of the outer slope of the boss and the slope of the spacer sleeve of the vulcanized body jacket to increase the shear deformation of the oblique rubber layer when the oblique rubber layer is subjected to radial pressure, thereby reducing the radial stiffness of the liquid rubber composite node .
  • the inner side of the oblique rubber layer is provided with an inner groove sunken toward the inner side of the oblique rubber layer
  • the outer side of the oblique rubber layer is provided with an outer groove sunken toward the inner side of the oblique rubber layer, so that the oblique rubber layer is under radial pressure , the radial stiffness of the liquid rubber composite joint can be reduced.
  • the extrusion deformation of the slope rubber layer is increased when the slope rubber layer bears axial load, thereby increasing the liquid rubber composite node.
  • Axial rigidity; the rubber body vulcanized on the inner side of the boss is an axial rubber layer, and the stopper and the mandrel move relative to each other in the axial direction, and the stopper and the axial rubber layer touch each other in the axial direction
  • the axial rubber layer can provide axial stiffness for the liquid rubber composite joint; by reducing the thickness of the axial rubber layer, the axial stiffness of the liquid rubber composite joint can be increased.
  • the existing liquid rubber compound node structure is changed, and the rubber body is set to form a certain inclination angle with the axial direction of the mandrel, that is, the oblique rubber layer adopts an oblique angle design, so that when the oblique rubber layer is subjected to radial pressure, the oblique
  • the rubber layer produces composite deformation of shearing and extrusion, thereby reducing the radial stiffness of the liquid rubber composite joint, and at the same time, it is beneficial to the anti-fatigue performance of the rubber body and improves the reliability of the liquid rubber composite joint.
  • the rubber body is vulcanized between the vulcanized body jacket and the mandrel to form a whole without splitting.
  • the overall jacket is formed to form an integral liquid rubber composite node structure. Compared with the existing split-type liquid rubber composite joints, the integral liquid rubber composite joints are superior in terms of overall performance stability, reliability, fatigue resistance and sealing performance.
  • the rubber profile of the product is designed as a concave structure, that is, the outer groove and the inner groove of the oblique rubber layer are concave structures in which the inner side of the oblique rubber layer is depressed, and the concave structure of the oblique rubber layer effectively reduces the diameter of the product.
  • the concave surface design of the hydraulic chamber can also increase the volume of the hydraulic chamber, improve the dynamic stiffness characteristics of the product, and ensure the stability and reliability of the vehicle when running at high speed.
  • the middle section of the mandrel adopts a combination of bosses and dimples.
  • the bosses are used to increase the axial stiffness, and the dimples are designed to reduce the radial stiffness, so as to achieve a small diameter-to-axis ratio.
  • the three-dimensional structure of the oblique rubber layer is similar to a part of a hollow sphere, which can reduce the deflection stiffness and improve the deflection deformation capacity, and at the same time improve the fatigue reliability.
  • Fig. 1 is a schematic cross-sectional view of the overall structure of Embodiment 1;
  • Fig. 2 is a schematic structural view of removing the stop block and the overall overcoat in Fig. 1;
  • Fig. 3 is the schematic sectional view of the structure of the vulcanized body casing, the stop block and the overall casing of Embodiment 1;
  • Fig. 5 is A-A sectional view among Fig. 1;
  • Fig. 6 is the cross-sectional schematic diagram of embodiment two;
  • mandrel 1 pit 11, boss 12, inner surface 121, outer slope 122, rubber body 2, oblique rubber layer 21, inner groove 211, outer groove 212, axial rubber layer 22, radial Rubber layer 23, vulcanized body jacket 3, spacer slope 31, stop block 4, overall jacket 5, hydraulic cavity 6, gap 7.
  • this embodiment is an integral liquid rubber composite joint, and the integral liquid rubber composite joint is to vulcanize the rubber body 2 between the vulcanized body jacket 3 and the mandrel 1, so that the mandrel 1.
  • the rubber body 2 and the vulcanized body jacket 3 form a whole.
  • the mandrel 1, the rubber body 2 and the vulcanized body jacket 3 together form a hydraulic cavity 6 with an outer opening.
  • the hydraulic cavity 6 is provided with a stop block 4, and the longitudinal section of the stop block 4 is T-shaped.
  • the upper end of the stop block 4 is closed on the vulcanized body jacket 3, sealing the hydraulic chamber 6 into a closed cavity, and liquid can be injected into the closed hydraulic chamber 6, thereby forming a joint between liquid and rubber.
  • the overall casing 5 is a hollow circular tube, and the stop block 4 and the vulcanized body casing 3 are installed in the overall casing 5 in a pre-compressed manner, so that the overall casing 5 constrains and compresses the stop block 4 and the vulcanized body casing 3 .
  • the shaft is provided with a pit 11 sunken to the inner side of the mandrel 1.
  • the pit 11 is the lower end of the hydraulic chamber 6, and a part of the rubber body 2 is vulcanized in the pit 11.
  • Bosses 12 are provided on both sides of the pit 11 , and the inner side of the stop block 4 is embedded in the pit 11 of the mandrel 1 .
  • the inside of the boss 12 of the mandrel 1 is provided with an inner retaining surface
  • the outside of the boss 12 is provided with an outer slope 122
  • the inside of the vulcanized body jacket 3 is provided with a spacer slope 31.
  • the rubber body 2 vulcanized on the inner surface 121 of the boss 12 is an axial rubber layer 22
  • the rubber body 2 vulcanized between the outer slope 122 of the boss 12 and the spacer slope 31 of the vulcanized body jacket 3 is an oblique rubber layer 21.
  • the thickness of the oblique rubber layer 21 is greater than the thickness of the axial rubber layer 22 .
  • the vulcanized rubber body 2 at the bottom of the pit 11 of the mandrel 1 is a radial rubber layer 23, and the oblique rubber layer 21, the axial rubber layer 22 and the radial rubber layer 23 are seamlessly connected together to form a rubber body 2, and the rubber body 2 There is a distance between the stop block 4.
  • the included angle between the spacer inclined surface 31 of the vulcanized body casing 3 and the axial direction of the mandrel 1, that is, the inclination angle of the spacer inclined surface 31 is angle B, and the preferred angle of angle B is 30-60 degrees;
  • the included angle between the outer inclined surface 122 of the boss 12 and the axial direction of the mandrel 1 , that is, the inclination angle of the outer inclined surface 122 is angle C, and the angle C is preferably 30-60 degrees.
  • the inclined rubber layer 21 is vulcanized between the spacer inclined surface 31 and the outer inclined surface 122, the inclination angle between the spacer inclined surface 31 and the outer inclined surface 122 makes the inclined rubber layer 21 also form a certain inclination angle with the axial direction of the mandrel 1, That is, the oblique rubber layer 21 is designed with an oblique angle relative to the mandrel 1 .
  • the rubber body 2 of the existing liquid rubber composite node adopts a parallel design with respect to the mandrel 1.
  • the rubber body 2 When the rubber body 2 arranged in parallel is subjected to radial pressure, the rubber body 2 produces extrusion. deformation.
  • it is necessary to increase the thickness of the rubber body 2 in the radial direction, but it is difficult to greatly increase the thickness of the rubber body 2 in the radial direction due to the restriction of the volume of the liquid rubber composite node. This makes it very difficult to further reduce the radial stiffness of the existing liquid rubber composite joint structure.
  • the oblique rubber layer 21 forms a certain inclination angle with the axial direction of the mandrel 1 , so that when the oblique rubber layer 21 bears radial pressure, the oblique rubber layer 21 will produce combined deformation of shearing and extrusion.
  • the inclined rubber layer 21 can reduce the radial stiffness of the liquid rubber composite node.
  • the inclination angles of the angles B and C increase, the oblique rubber layer 21 bears radial pressure, and the shear deformation of the oblique rubber layer 21 will be more significant.
  • the radial stiffness of the liquid rubber composite node can be reduced, and at the same time, it is beneficial to the fatigue resistance of the rubber body 2 and improves the liquid rubber Composite node reliability.
  • the inner and outer grooves provided on the oblique rubber layer 21 reduce the width of the oblique rubber layer 21 in the axial direction, and can further reduce the radial stiffness of the liquid rubber composite node.
  • both the inner groove and the outer groove are concave on the inner side of the oblique rubber layer 21 , rather than protruding from the outer side of the oblique rubber layer 21 . Therefore, when the oblique rubber layer 21 undergoes compressive deformation in the radial direction, the oblique rubber layer 21 will not wrinkle, the fatigue resistance of the oblique rubber layer 21 can be improved, and it is not easy to crack.
  • the stop block 4 is embedded in the hydraulic cavity 6 , and the inner side of the stop block 4 is embedded in the recess 11 , and the minimum outer diameter of the stop block 4 is smaller than the maximum outer diameter of the boss 12 of the mandrel 1 . So that when the stop block 4 and the mandrel 1 move relative to each other in the axial direction, the inside of the stop block 4 will touch the outside of the boss 12, so the boss 12 of the mandrel 1 can block the stop block 4 axial movement.
  • the stop block 4 is pushed axially, and the stop block 4 will be displaced in the axial direction.
  • the axial stiffness of the liquid rubber composite node is mainly provided by the oblique rubber layer 21 .
  • the inclination angle B of the spacer slope 31 and the slope C of the outer slope 122 increase, the oblique rubber layer 21 bears axial thrust, and the extrusion deformation of the oblique rubber layer 21 will be more significant.
  • the rubber is deformed by extrusion, its stiffness is greater than that of the rubber when it is deformed by shearing. Therefore, increasing the inclination angle of the oblique rubber layer 21 can increase the axial stiffness of the liquid rubber composite node.
  • the axial stiffness of the liquid rubber composite node is provided by the oblique rubber layer 21 and the axial rubber layer 22 together. Because the axial thickness of the axial rubber layer 22 is smaller than the axial thickness of the oblique rubber layer 21 , and the axial rubber layer 22 is mainly deformed by extrusion to generate axial stiffness. Therefore, the maximum axial stiffness that can be provided by the axial rubber layer 22 is greater than the maximum axial stiffness that can be provided by the oblique rubber layer 21, so that the axial stiffness of the liquid rubber composite node can be greatly improved.
  • the hydraulic chamber 6 is a closed cavity, and liquid is injected into the hydraulic chamber 6, a pit 11 is provided on the mandrel 1 and an inner groove 211 sunken inward is provided on the inclined rubber layer 21. , have increased the volume of the hydraulic chamber 6.
  • the large-volume hydraulic chamber 6 can more effectively provide greater radial stiffness to ensure running stability and increase the critical speed.
  • the large-volume hydraulic chamber 6 can more effectively provide less rigidity performance to ensure the performance of the curve and reduce wear.
  • the dimple 11 provided on the mandrel 1 and the inner groove 211 provided on the inclined rubber layer 21 increase the volume of the hydraulic chamber 6, allowing the hydraulic chamber 6 to accommodate more liquid and improving the dynamic stiffness of the product.
  • the characteristics ensure the stability and reliability of the vehicle when turning with a small curvature radius and running at high speed.
  • the radial stiffness of the liquid rubber composite node is reduced by changing the structure of the liquid rubber composite node, and the axial stiffness of the liquid rubber composite node is increased by changing the structure of the liquid rubber composite node, thereby realizing the liquid rubber Adjustment of stiffness-minor-diameter-axis ratio of composite joints.
  • the difference from Embodiment 1 is that the liquid rubber composite node is split.
  • a gap 7 is provided between the body casings 3 , and the rubber body 2 is vulcanized between the vulcanization body casing 3 and the mandrel 1 , and the gap 7 between the vulcanization body casings 3 extends into the rubber body 2 .
  • the mutual interference between the components will be relatively small during the assembly process, so compared with the integral liquid rubber composite node of the split type liquid rubber composite node, the diameter of the oblique rubber layer 21 of the split type liquid rubber composite node
  • the thickness in the direction can be larger, and the inclination angle can also be larger, and there is a gap 7 in the oblique rubber layer 21, and the outer end of the oblique rubber layer 21 is split, which can further reduce the radial stiffness of the liquid rubber composite node
  • the distance between the stop block 4 and the bottom of the pit 11 is reduced, thereby increasing the contact area between the stop block 4 and the boss 12, and improving the axial stiffness of the liquid rubber composite node. Therefore, the diameter-to-axis ratio of the split liquid rubber composite joint is lower than that of the integral liquid rubber composite joint.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

一种小径轴刚度比的液体橡胶复合节点,包括芯轴(1)、橡胶体(2)、硫化体外套(3)、止挡块(4)和整体外套(5);将橡胶体硫化在硫化体外套与芯轴之间形成一个整体,在止挡块和硫化体外套的外侧套有整体外套,使得橡胶体在承受径向压力时,橡胶体产生剪切与挤压的复合形变,从而减小液体橡胶复合节点的径向刚度;在芯轴上开设向芯轴内侧凹陷的凹坑(11),在凹坑的两侧都设置凸台(12),在凹坑处设置止挡块,将芯轴的凸台的最大外径设置为大于止挡块的最小内径,当止挡块与芯轴发生轴向方向的相对移动时,芯轴的凸台能阻挡止挡块的轴向移动,从而增加液体橡胶复合节点的轴向刚度,实现液体橡胶复合节点的刚度的小径轴比,从而确保车辆运行的稳定性。

Description

小径轴刚度比的液体橡胶复合节点 技术领域
本发明涉及轨道交通领域,具体涉及一种液体橡胶复合节点的小径轴比调节方法及结构。
背景技术
根据动力学要求转臂节点在直线高速运行(高频振动)时,提供较大的径向刚度保证运行稳定性,提高临界速度;在过曲线(低频大振幅)时,提供较小的径向刚度性能保证过曲线性能,减小磨耗;普通节点难以实现上述特性,特别对于老线路,轮轨及线路磨损较大,维护成本高,因此需要使用一种新产品同时具备上述特性—液体橡胶复合节点。
液体橡胶复合节点工作原理:主要通过在橡胶部件内部设计两中空型腔结构,通过流道设计将两空腔连通,预先在一型腔内灌注密封不可压缩的(粘性)液体。在载荷作用下两空腔内的容积发生变化,液体在两腔之间流动产生阻尼,消耗振动能量,达到衰减振动的目的。低频振动时,液体经通道上下流动,小刚度起到大阻尼效果,高频率区段液体来不及流动,实现大刚度特性。
现有的液体橡胶复合节点的橡胶体在承受径向压力时,橡胶体产生的是挤压形变。而受到液体橡胶复合节点体积的限制,难以通过增加橡胶体的厚度来减小液体橡胶复合节点的径向刚度。因此,难以实现液体橡胶复合节点刚度的小径轴比,即:径向刚度与轴向刚度的比值小。
发明内容
本发明要解决的技术问题是:在车辆过曲线时,提供较小的径向刚度性能保证过曲线性能,减小轮轨的磨耗,同时提供较大的轴向刚度,确保车辆运行的稳定性。
针以上述问题,本发明提出的技术方案是:一种小径轴刚度比的液体橡胶复合节点,液体橡胶复合节点包括芯轴、橡胶体、硫化体外套、止挡块和整体外套;将橡胶体硫化在硫化体外套与芯轴之间形成一个整体,在止挡块和硫化体外套的外侧套有整体外套;使得橡胶体在承受径向压力时,橡胶体产生剪切与挤压的复合形变,从而减小液体橡胶复合节点的径向刚度;在芯轴上开向芯轴内侧凹陷的凹坑,在凹坑的两侧都设置凸台,在所述凹坑处设置止挡块,将芯轴的凸台的最大外径设置为大于止挡块的最小内径,让 止挡块与芯轴发生轴向方向的相对移动时,芯轴的凸台能阻挡止挡块的轴向移动,从而增加液体橡胶复合节点的轴向刚度,实现液体橡胶复合节点的刚度的小径轴比。
在凸台外侧设置外斜面,在硫化体外套的内侧设置有隔套斜面,在硫化在凸台的外斜面与硫化体外套的隔套斜面之间的橡胶体为斜橡胶层;通过增大凸台的外斜面的倾角和硫化体外套的隔套斜面的倾角,来增加斜橡胶层承受径向压力时,斜橡胶层的剪切形变,从而减小液体橡胶复合节点的径向刚度。
斜橡胶层的内侧开有向斜橡胶层的内侧凹陷的内凹槽,斜橡胶层的外侧开有向斜橡胶层的内侧凹陷的外凹槽,使得斜橡胶层在承受径向压力时,能减小液体橡胶复合节点的径向刚度。
通过增大凸台的外斜面的倾角和硫化体外套的隔套斜面的倾角,来增加斜橡胶层承受轴向载荷时,斜橡胶层的挤压形变,从而增加液体橡胶复合节点的轴向刚度。
硫化在凸台的内侧面上的橡胶体为轴向橡胶层,止挡块与芯轴发生轴向方向的相对移动且止挡块与轴向橡胶层在轴向方向上相顶时,轴向橡胶层能为液体橡胶复合节点提供轴向刚度;通过减小轴向橡胶层的厚度,从而增加液体橡胶复合节点的轴向刚度。
一种小径轴刚度比的液体橡胶复合节点,液体橡胶复合节点包括芯轴、橡胶体、硫化体外套、止挡块和整体外套;硫化体外套为分瓣式的外套,在相邻的两个硫化体外套之间设置间隙,将橡胶体硫化在硫化体外套与芯轴之间,且所述硫化体外套之间的间隙延伸到橡胶体中,在止挡块和硫化体外套的外侧套上整体外套;让橡胶体承受径向压力时产生的形变为剪切与挤压的复合形变,从而减小液体橡胶复合节点的径向刚度;在芯轴上开向芯轴内侧凹陷的凹坑,在凹坑的两侧都设置凸台,在所述凹坑处设置止挡块,将芯轴的凸台的最大外径设置为大于止挡块的最小内径,让止挡块与芯轴发生轴向方向的相对移动时,芯轴的凸台能阻挡止挡块的轴向移动,从而增加液体橡胶复合节点的轴向刚度,实现液体橡胶复合节点的刚度的低径轴比。
优选的,将硫化体外套、橡胶体和芯轴形成的整体进行预压缩,让硫化体外套和橡胶体中的间隙完全闭合,并将所述预压缩的整体组装到整体外套;通过在径向方向挤压橡胶体,来缩小止挡块与凹坑底部的间距,从而增加止挡块与凸台的接触面积,提高液体橡胶复合节点的轴向刚度。
优选的,在凸台外侧设置外斜面,在硫化体外套的内侧设置有隔套斜面,在硫化在凸台的外斜面与硫化体外套的隔套斜面之间的橡胶体为斜橡胶层;通过增大凸台的外斜 面的倾角和硫化体外套的隔套斜面的倾角,来增加斜橡胶层承受径向压力时,斜橡胶层的剪切形变,从而减小液体橡胶复合节点的径向刚度。
优选的,斜橡胶层的内侧开有向斜橡胶层的内侧凹陷的内凹槽,斜橡胶层的外侧开有向斜橡胶层的内侧凹陷的外凹槽,使得斜橡胶层在承受径向压力时,能减小液体橡胶复合节点的径向刚度。
优选的,通过增大凸台的外斜面的倾角和硫化体外套的隔套斜面的倾角,来增加斜橡胶层承受轴向载荷时,斜橡胶层的挤压形变,从而增加液体橡胶复合节点的轴向刚度;硫化在凸台的内侧面上的橡胶体为轴向橡胶层,止挡块与芯轴发生轴向方向的相对移动且止挡块与轴向橡胶层在轴向方向上相顶时,轴向橡胶层能为液体橡胶复合节点提供轴向刚度;通过减小轴向橡胶层的厚度,能增加液体橡胶复合节点的轴向刚度。
本发明的有益技术效果是:
1.改变了现有的液体橡胶复合节点结构,将橡胶体设置为与芯轴的轴向方向成一定倾角,即斜橡胶层采用斜角设计,使得斜橡胶层在承受径向压力时,斜橡胶层产生剪切与挤压的复合形变,从而减小了液体橡胶复合节点的径向刚度,同时有利于橡胶体抗疲劳性能,提高液体橡胶复合节点可靠性。
2.采用将橡胶体硫化在硫化体外套与芯轴之间,形成一个不进行分瓣的整体,再将止挡块盖合在硫化体外套上,在止挡块和硫化体外套的外侧套上整体外套,从而形成整体式的液体橡胶复合节点结构。相比于现有的分瓣式液体橡胶复合节点,整体式的液体橡胶复合节点在整体性能稳定性、可靠性、抗疲劳性能和密封性能等方面更优越。
3.产品橡胶型面设计为内凹结构,即斜橡胶层的外凹槽和内凹槽都是向斜橡胶层的内侧凹陷的内凹结构,斜橡胶层的内凹结构有效降低产品的径向刚度,减小橡胶应力应变,提高产品疲劳性能。液压腔内凹型面设计还能增大液压腔体积,提高产品动态刚度特性,确保车辆在高速运行时的稳定性和可靠性。
4.芯轴中间段采用凸台和凹坑结合的结构设置,凸台用来提升轴向刚度,凹坑设计用来降低径向刚度,从而实现小径轴比。
5.斜橡胶层的立体结构类似于空心球体的一部分,可降低偏转刚度提高偏转变形能力,同时可提高疲劳可靠性。
附图说明
图1为实施例一的整体结构剖视示意图;
图2为图1中去除止挡块和整体外套的结构示意图;
图3为实施例一的硫化体外套、止挡块和整体外套的结构剖视示意图;
图4为实施例一的芯轴的结构剖视示意图;
图5为图1中A-A剖视图;
图6为实施例二的剖视示意图;
图中:芯轴1、凹坑11、凸台12、内侧面121、外斜面122、橡胶体2、斜橡胶层21、内侧凹槽211、外侧凹槽212、轴向橡胶层22、径向橡胶层23、硫化体外套3、隔套斜面31、止挡块4、整体外套5、液压腔6、间隙7。
具体实施方式
下面结合实施例和附图对本发明做进一步的描述:
实施例一
如图1、图4和图5所示,本实施例为整体式液体橡胶复合节点,整体式液体橡胶复合节点是将橡胶体2硫化在硫化体外套3与芯轴1之间,使芯轴1、橡胶体2和硫化体外套3形成一个整体。且芯轴1、橡胶体2和硫化体外套3一起围成有一个外侧开口的液压腔6,液压腔6中设置有止挡块4,止挡块4的纵向截面为T字形。止挡块4的上端盖合在硫化体外套3上,将液压腔6密封为一个封闭的空腔,能向封闭的液压腔6中注入液体,从而形成液体与橡胶复合的节点。整体外套5为空心的圆管状,止挡块4和硫化体外套3以预压缩的方式安装在整体外套5中,让整体外套5约束、并压紧止挡块4和硫化体外套3。轴上开有向芯轴1内侧凹陷的凹坑11,所述的凹坑11是液压腔6的下端,橡胶体2的一部分硫化在所述的凹坑11内。凹坑11的两侧都设置有凸台12,止挡块4内侧嵌在芯轴1的凹坑11中。
如图1、图2、图3和图4所示,芯轴1的凸台12内侧设置有内挡面,凸台12外侧设置有外斜面122,硫化体外套3的内侧设置有隔套斜面31。硫化在凸台12的内侧面121上的橡胶体2为轴向橡胶层22,硫化在凸台12的外斜面122与硫化体外套3的隔套斜面31之间的橡胶体2为斜橡胶层21,斜橡胶层21的厚度大于轴向橡胶层22的厚度。芯轴1的凹坑11的底部硫化的橡胶体2为径向橡胶层23,斜橡胶层21、轴向橡 胶层22和径向橡胶层23无缝连接在一起形成橡胶体2,橡胶体2与止挡块4之间留有间距。
本实施例中,硫化体外套3的隔套斜面31与芯轴1的轴向方向之间的夹角,即隔套斜面31的倾角为角B,角B优选的角度为30-60度;凸台12的外斜面122与芯轴1的轴向方向之间的夹角,即外斜面122的倾角为角C,角C优选的角度也为30-60度。由于斜橡胶层21是硫化在隔套斜面31与外斜面122之间,因此,隔套斜面31与外斜面122的倾角,使得斜橡胶层21也与芯轴1的轴向方向成一定倾角,即斜橡胶层21相对于芯轴1而言是采用斜角设计。
而现有的液体橡胶复合节点的橡胶体2,相对于芯轴1而言是采用的是平行设计,这种平行设置的橡胶体2在承受径向压力时,橡胶体2产生的是挤压形变。这种挤压形变要降低径向刚度,需要增加橡胶体2径向方向的厚度,而受到液体橡胶复合节点体积的制约,橡胶体2径向方向的厚度难以大幅度的增加。这就使得现有的液体橡胶复合节点的结构要进一步减小径向刚度非常困难。
本实施例中,斜橡胶层21与芯轴1的轴向方向成一定倾角,能使得斜橡胶层21在承受径向压力时,斜橡胶层21会产生剪切与挤压的复合形变。而橡胶在产生剪切形变时,其刚度小于橡胶产生挤压形变的刚度。因此,斜橡胶层21能减小了液体橡胶复合节点的径向刚度。且上述角B和角C的倾角增大时,斜橡胶层21承受径向压力,斜橡胶层21的剪切形变会更显著。因此,随着上述角B和角C倾角的增大,即:增加斜橡胶层21的倾角,能减小液体橡胶复合节点的径向刚度,同时有利于橡胶体2抗疲劳性能,提高液体橡胶复合节点可靠性。
在斜橡胶层21的内侧开有内凹槽,在斜橡胶层21的外侧开有外凹槽,且内凹槽和外凹槽的形状都是向斜橡胶层21的内侧凹陷的弧形槽。斜橡胶层21上开设的内凹槽和外凹槽,减小了斜橡胶层21在轴向方向上的宽度,能进一步减小液体橡胶复合节点的径向刚度。且内凹槽和外凹槽都是向斜橡胶层21的内侧凹陷,而不是向斜橡胶层21的外侧凸起。因此,当斜橡胶层21产生径向方向的压缩形变时,斜橡胶层21不会产生折皱,能提高斜橡胶层21的抗疲劳性能,不易开裂。
止挡块4嵌在液压腔6中,且止挡块4内侧嵌在凹坑11中,止挡块4的最小外径小于芯轴1的凸台12的最大外径。使得当止挡块4与芯轴1发生轴向方向的相对移动 时,止挡块4的内侧会与凸台12的外侧相顶,因此,芯轴1的凸台12能阻挡止挡块4的轴向移动。
止挡块4受到轴向的推力,止挡块4会沿轴向方向产生位移。当止挡块4还与轴向橡胶层22之间存在间隙7时,液体橡胶复合节点的轴向刚度主要由斜橡胶层21提供。且上述隔套斜面31的倾角B和外斜面122的倾角C增大时,斜橡胶层21承受轴向的推力,斜橡胶层21的挤压形变会更显著。而橡胶在产生挤压形变时,其刚度大于橡胶产生剪切形变的刚度。因此,增加斜橡胶层21的倾角,能增大液体橡胶复合节点的轴向刚度。
止挡块4沿轴向方向产生位移,且止挡块4与轴向橡胶层22相顶时,液体橡胶复合节点的轴向刚度由斜橡胶层21和轴向橡胶层22一起提供。由于,轴向橡胶层22的轴向厚度小于斜橡胶层21的轴向厚度,且轴向橡胶层22主要是挤压形变来产生轴向刚度。因此,轴向橡胶层22能提供的最大轴向刚度要大于斜橡胶层21能提供的最大轴向刚度,从而使得液体橡胶复合节点的轴向刚度能大幅度提升。
如图1至图5所示,液压腔6是个封闭的空腔,液压腔6中注入有液体,芯轴1上设置凹坑11以及在斜橡胶层21上设置向内侧凹陷的内侧凹槽211,都增大了液压腔6的容积。而车辆在直线高速运行(高频振动)时,大容积的液压腔6能更有效的提供较大的径向刚度保证运行稳定性,提高临界速度。在过曲线(低频大振幅)时,大容积的液压腔6能更有效的提供较小的刚度性能保证过曲线性能,减小磨耗。因此,芯轴1上设置的凹坑11和斜橡胶层21上设置的内侧凹槽211,增大了液压腔6的容积,让液压腔6中能容纳更多的液体,提高了产品动态刚度特性,确保了车辆在小曲率半径转弯和高速运行时的稳定性和可靠性。
本实施例中,通过改变液体橡胶复合节点的结构来减小液体橡胶复合节点的径向刚度,且通过改变液体橡胶复合节点的结构来增大液体橡胶复合节点的轴向刚度,从而实现液体橡胶复合节点的刚度小径轴比的调节。
实施例二
如图6所示,与实施例一的不同之处在于,液体橡胶复合节点为分瓣式的,本实施例是将硫化体外套3设置为分瓣式的外套,在相邻的两个硫化体外套3之间设置间隙7,将橡胶体2硫化在硫化体外套3与芯轴1之间,且所述硫化体外套3之间的间隙7延伸 到橡胶体2中。将止挡块4和硫化体外套3压紧,使橡胶体2产生预压缩,让硫化体外套3和橡胶体2中的间隙7完全闭合,并将所述预压缩的整体组装到整体外套5,从而组装成分瓣式液体橡胶复合节点。
本实施例在组装过程中部件之间的相互干涉会相对小些,所以分瓣式液体橡胶复合节点与整体式液体橡胶复合节点相比,分瓣式液体橡胶复合节点的斜橡胶层21的径向方向的厚度能更大,倾角也能更大,且斜橡胶层21中设置有间隙7,斜橡胶层21靠外侧的一端是裂开的,能进一步减小液体橡胶复合节点的径向刚度;同时,缩小了止挡块4与凹坑11底部的间距,从而增加了止挡块4与凸台12的接触面积,提高液体橡胶复合节点的轴向刚度。因此,分瓣式液体橡胶复合节点相比于整体式的液体橡胶复合节点的径轴比更低。
显然,在不脱离本发明所述原理的前提下,作出的若干改进或修饰都应视为本发明的保护范围。

Claims (10)

  1. 一种小径轴刚度比的液体橡胶复合节点,其特征在于,液体橡胶复合节点包括芯轴、橡胶体、硫化体外套、止挡块和整体外套;将橡胶体硫化在硫化体外套与芯轴之间形成一个整体,在止挡块和硫化体外套的外侧套有整体外套;使得橡胶体在承受径向压力时,橡胶体产生剪切与挤压的复合形变,从而减小液体橡胶复合节点的径向刚度;在芯轴上开向芯轴内侧凹陷的凹坑,在凹坑的两侧都设置凸台,在所述凹坑处设置止挡块,将芯轴的凸台的最大外径设置为大于止挡块的最小内径,让止挡块与芯轴发生轴向方向的相对移动时,芯轴的凸台能阻挡止挡块的轴向移动,从而增加液体橡胶复合节点的轴向刚度,实现液体橡胶复合节点的刚度的小径轴比。
  2. 根据权利要求1所述的一种小径轴刚度比的液体橡胶复合节点,其特征在于,在凸台外侧设置外斜面,在硫化体外套的内侧设置有隔套斜面,在硫化在凸台的外斜面与硫化体外套的隔套斜面之间的橡胶体为斜橡胶层;通过增大凸台的外斜面的倾角和硫化体外套的隔套斜面的倾角,来增加斜橡胶层承受径向压力时,斜橡胶层的剪切形变,从而减小液体橡胶复合节点的径向刚度。
  3. 根据权利要求2所述的一种小径轴刚度比的液体橡胶复合节点,其特征在于,斜橡胶层的内侧开有向斜橡胶层的内侧凹陷的内凹槽,斜橡胶层的外侧开有向斜橡胶层的内侧凹陷的外凹槽,使得斜橡胶层在承受径向压力时,能减小液体橡胶复合节点的径向刚度。
  4. 根据权利要求2所述的一种小径轴刚度比的液体橡胶复合节点,其特征在于,通过增大凸台的外斜面的倾角和硫化体外套的隔套斜面的倾角,来增加斜橡胶层承受轴向载荷时,斜橡胶层的挤压形变,从而增加液体橡胶复合节点的轴向刚度。
  5. 根据权利要求2所述的一种小径轴刚度比的液体橡胶复合节点,其特征在于,硫化在凸台的内侧面上的橡胶体为轴向橡胶层,止挡块与芯轴发生轴向方向的相对移动且止挡块与轴向橡胶层在轴向方向上相顶时,轴向橡胶层能为液体橡胶复合节点提供轴向刚度;通过减小轴向橡胶层的厚度,从而增加液体橡胶复合节点的轴向刚度。
  6. 一种小径轴刚度比的液体橡胶复合节点,其特征在于,液体橡胶复合节点包括芯轴、橡胶体、硫化体外套、止挡块和整体外套;硫化体外套为分瓣式的外套,在相邻的两个硫化体外套之间设置间隙,将橡胶体硫化在硫化体外套与芯轴之间,且所述硫化体外套之间的间隙延伸到橡胶体中,在止挡块和硫化体外套的外侧套上整体外套;让橡胶体承受径向压力时产生的形变为剪切与挤压的复合形变,从而减小液体橡胶复合节点的径向刚度;在芯轴上开向芯轴内侧凹陷的凹坑,在凹坑的两侧都设置凸台,在所述凹 坑处设置止挡块,将芯轴的凸台的最大外径设置为大于止挡块的最小内径,让止挡块与芯轴发生轴向方向的相对移动时,芯轴的凸台能阻挡止挡块的轴向移动,从而增加液体橡胶复合节点的轴向刚度,实现液体橡胶复合节点的刚度的低径轴比。
  7. 根据权利要求6所述的一种小径轴刚度比的液体橡胶复合节点,其特征在于,将硫化体外套、橡胶体和芯轴形成的整体进行预压缩,让硫化体外套和橡胶体中的间隙完全闭合,并将所述预压缩的整体组装到整体外套;通过在径向方向挤压橡胶体,来缩小止挡块与凹坑底部的间距,从而增加止挡块与凸台的接触面积,提高液体橡胶复合节点的轴向刚度。
  8. 根据权利要求7所述的一种小径轴刚度比的液体橡胶复合节点,其特征在于,在凸台外侧设置外斜面,在硫化体外套的内侧设置有隔套斜面,在硫化在凸台的外斜面与硫化体外套的隔套斜面之间的橡胶体为斜橡胶层;通过增大凸台的外斜面的倾角和硫化体外套的隔套斜面的倾角,来增加斜橡胶层承受径向压力时,斜橡胶层的剪切形变,从而减小液体橡胶复合节点的径向刚度。
  9. 根据权利要求8所述的一种小径轴刚度比的液体橡胶复合节点,其特征在于,斜橡胶层的内侧开有向斜橡胶层的内侧凹陷的内凹槽,斜橡胶层的外侧开有向斜橡胶层的内侧凹陷的外凹槽,使得斜橡胶层在承受径向压力时,能减小液体橡胶复合节点的径向刚度。
  10. 根据权利要求8所述的一种小径轴刚度比的液体橡胶复合节点,其特征在于,通过增大凸台的外斜面的倾角和硫化体外套的隔套斜面的倾角,来增加斜橡胶层承受轴向载荷时,斜橡胶层的挤压形变,从而增加液体橡胶复合节点的轴向刚度;硫化在凸台的内侧面上的橡胶体为轴向橡胶层,止挡块与芯轴发生轴向方向的相对移动且止挡块与轴向橡胶层在轴向方向上相顶时,轴向橡胶层能为液体橡胶复合节点提供轴向刚度;通过减小轴向橡胶层的厚度,能增加液体橡胶复合节点的轴向刚度。
PCT/CN2021/128535 2021-11-04 2021-11-04 小径轴刚度比的液体橡胶复合节点 WO2023077331A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128535 WO2023077331A1 (zh) 2021-11-04 2021-11-04 小径轴刚度比的液体橡胶复合节点

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128535 WO2023077331A1 (zh) 2021-11-04 2021-11-04 小径轴刚度比的液体橡胶复合节点

Publications (1)

Publication Number Publication Date
WO2023077331A1 true WO2023077331A1 (zh) 2023-05-11

Family

ID=86240516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128535 WO2023077331A1 (zh) 2021-11-04 2021-11-04 小径轴刚度比的液体橡胶复合节点

Country Status (1)

Country Link
WO (1) WO2023077331A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201747837U (zh) * 2010-07-22 2011-02-16 株洲时代新材料科技股份有限公司 一种带硬止挡的剪切与压缩结合的横向橡胶垫
WO2015139857A1 (de) * 2014-03-19 2015-09-24 Contitech Luftfedersysteme Gmbh Hydraulische buchse
CN107776602A (zh) * 2017-11-06 2018-03-09 株洲时代新材料科技股份有限公司 通过调整橡胶层参数改变轴箱定位节点刚度的方法及结构
CN108266473A (zh) * 2018-02-08 2018-07-10 株洲时代新材料科技股份有限公司 一种牵引球铰非线性变刚度方法及工字型衬套
EP3369640A1 (en) * 2015-10-28 2018-09-05 Zhuzhou Times New Material Technology Co., Ltd. Method for improving overall performance of rail vehicle bogie and suspension damping system
CN110454537A (zh) * 2019-08-30 2019-11-15 株洲时代新材料科技股份有限公司 一种分瓣式液体橡胶复合节点刚度调节结构及方法
CN110469623A (zh) * 2019-08-30 2019-11-19 株洲时代新材料科技股份有限公司 一种带阻尼通孔的液体橡胶复合节点的形成方法及节点
CN112065909A (zh) * 2020-08-18 2020-12-11 株洲时代瑞唯减振装备有限公司 动态刚度特性调整方法及带辅助空腔的液体橡胶复合节点
CN112096776A (zh) * 2020-08-18 2020-12-18 株洲时代瑞唯减振装备有限公司 一种整体式液体橡胶复合节点及刚度调节方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201747837U (zh) * 2010-07-22 2011-02-16 株洲时代新材料科技股份有限公司 一种带硬止挡的剪切与压缩结合的横向橡胶垫
WO2015139857A1 (de) * 2014-03-19 2015-09-24 Contitech Luftfedersysteme Gmbh Hydraulische buchse
EP3369640A1 (en) * 2015-10-28 2018-09-05 Zhuzhou Times New Material Technology Co., Ltd. Method for improving overall performance of rail vehicle bogie and suspension damping system
CN107776602A (zh) * 2017-11-06 2018-03-09 株洲时代新材料科技股份有限公司 通过调整橡胶层参数改变轴箱定位节点刚度的方法及结构
CN108266473A (zh) * 2018-02-08 2018-07-10 株洲时代新材料科技股份有限公司 一种牵引球铰非线性变刚度方法及工字型衬套
CN110454537A (zh) * 2019-08-30 2019-11-15 株洲时代新材料科技股份有限公司 一种分瓣式液体橡胶复合节点刚度调节结构及方法
CN110469623A (zh) * 2019-08-30 2019-11-19 株洲时代新材料科技股份有限公司 一种带阻尼通孔的液体橡胶复合节点的形成方法及节点
CN112065909A (zh) * 2020-08-18 2020-12-11 株洲时代瑞唯减振装备有限公司 动态刚度特性调整方法及带辅助空腔的液体橡胶复合节点
CN112096776A (zh) * 2020-08-18 2020-12-18 株洲时代瑞唯减振装备有限公司 一种整体式液体橡胶复合节点及刚度调节方法

Similar Documents

Publication Publication Date Title
CN110454537B (zh) 一种分瓣式液体橡胶复合节点刚度调节结构及方法
CN108999884B (zh) 变刚度球铰及其变刚度设计方法
CN108266473B (zh) 一种牵引球铰非线性变刚度方法及工字型衬套
US5163692A (en) One-piece composite lip seal
CN108036000B (zh) 一种具有轴向非线性变刚度的橡胶金属复合类球铰
CN112065909B (zh) 动态刚度特性调整方法及带辅助空腔的液体橡胶复合节点
WO2023077331A1 (zh) 小径轴刚度比的液体橡胶复合节点
CN109236939A (zh) 液压衬套
CN113928361A (zh) 一种低径轴比的分瓣式液体橡胶复合节点
CN108035999B (zh) 一种牵引球铰非线性变刚度调整方法及球铰
CN114060450A (zh) 一种小径轴比的整体式液体橡胶复合节点及刚度调节方法
CN109538625A (zh) 一种推力杆球铰及其组装方法
CN210770010U (zh) 一种汽车空气悬挂装置的缓冲密封衬套
CN110450808B (zh) 一种锥型橡胶截面牵引球铰及防止橡胶型面开裂的方法
CN113958658A (zh) 分瓣式液体橡胶复合节点的径向和轴向变刚度调节
CN107269749B (zh) 牵引橡胶球铰及其多次变刚度方法
WO2021238008A1 (zh) 一种液压复合衬套及其密封方法
CN206972657U (zh) 缓冲密封件
CN110185735B (zh) 一种液体复合衬套
WO2021238009A1 (zh) 一种液压复合衬套、用于其的流道及流道的形成方法
CN104089032A (zh) 耐磨、耐高压金属硬密封蝶阀
CN206942723U (zh) 压缩式封隔器对称密封胶筒
CN113958660A (zh) 整体式液体橡胶复合节点的径向变刚度调节结构及方法
CN106015429A (zh) 一种液压复原缓冲结构
CN207278859U (zh) 一种组合式活塞

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE