WO2023077258A1 - 显示面板的驱动方法及显示装置 - Google Patents

显示面板的驱动方法及显示装置 Download PDF

Info

Publication number
WO2023077258A1
WO2023077258A1 PCT/CN2021/128106 CN2021128106W WO2023077258A1 WO 2023077258 A1 WO2023077258 A1 WO 2023077258A1 CN 2021128106 W CN2021128106 W CN 2021128106W WO 2023077258 A1 WO2023077258 A1 WO 2023077258A1
Authority
WO
WIPO (PCT)
Prior art keywords
gray
scale
voltage
default
target
Prior art date
Application number
PCT/CN2021/128106
Other languages
English (en)
French (fr)
Inventor
黄艳庭
周留刚
郭磊
孙建伟
陈凯
Original Assignee
京东方科技集团股份有限公司
合肥京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/128106 priority Critical patent/WO2023077258A1/zh
Priority to CN202180003213.8A priority patent/CN116391217A/zh
Publication of WO2023077258A1 publication Critical patent/WO2023077258A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a driving method of a display panel and a display device.
  • a display such as a liquid crystal display (Liquid Crystal Display, LCD), generally includes a plurality of pixels.
  • Each pixel may include: a red sub-pixel, a green sub-pixel and a blue sub-pixel.
  • the display brightness of each sub-pixel is controlled, so as to display the color image by mixing the required displayed colors.
  • Embodiments of the present disclosure provide a method for driving a display panel, including:
  • the target gray-scale voltage difference there is a target gray-scale voltage difference between the target gray-scale voltage corresponding to the maximum positive gray-scale value of the target gray-scale digit number and the target gray-scale voltage corresponding to the maximum negative gray-scale value, and the default gray-scale digit number
  • the target gray-scale voltage difference is greater than the default gray-scale voltage difference.
  • the target number of grayscale bits is greater than the default number of grayscale bits.
  • the default grayscale voltage corresponding to the maximum negative grayscale value is used as the target grayscale voltage corresponding to the maximum negative grayscale value, and the default grayscale voltage corresponding to the maximum positive grayscale value is added to The set compensation voltage is then used as the target gray-scale voltage corresponding to the maximum positive gray-scale value.
  • the target gray-scale voltage corresponding to the maximum positive gray-scale value is 17.5V-20V.
  • the method for determining the compensation voltage includes:
  • the default gray-scale voltage corresponding to at least one sub-pixel of the default gray-scale voltage carried by the default gray-scale digits carried by the display data of the current frame is converted into a target grayscale with a target gray-scale digit After voltage, drive the display panel to display, including:
  • For each subpixel determine the grayscale difference between the grayscale value corresponding to the default grayscale voltage of the subpixel in the current frame and the grayscale value corresponding to the default grayscale voltage in the previous frame;
  • the display panel is driven to display after converting the default gray-scale voltage of the sub-pixel into a target gray-scale voltage.
  • the converting the default gray-scale voltage of the sub-pixel into a target gray-scale voltage includes:
  • the target gray-scale digits determines each gray of the default gray-scale digits carried by the display data of the current frame The gray scale value corresponding to the scale value in the target gray scale digit; wherein, the relationship table includes: the corresponding relationship of each gray scale value in different gray scale digits;
  • the target grayscale value is greater than the grayscale value in the target grayscale digit corresponding to the default grayscale voltage of the sub-pixel ;
  • the gray-scale voltage corresponding to the target gray-scale value in the target gray-scale bit number is used as the target gray-scale voltage of the sub-pixel.
  • the timing controller is configured to acquire the display data of the current frame and the display data of the previous frame; determine whether the display data of the current frame is the same as the display data of the previous frame; Among the default gray-scale voltages of the default gray-scale digits carried by the display data, the default gray-scale voltage corresponding to at least one sub-pixel is converted into a target gray-scale voltage of the target gray-scale digits;
  • a source driving circuit configured to receive the target grayscale voltage output by the timing controller, and drive the display panel to display according to the received target grayscale voltage
  • the target gray-scale voltage difference there is a target gray-scale voltage difference between the target gray-scale voltage corresponding to the maximum positive gray-scale value of the target gray-scale digit number and the target gray-scale voltage corresponding to the maximum negative gray-scale value, and the default gray-scale digit number
  • the target gray-scale voltage difference is greater than the default gray-scale voltage difference.
  • the timing controller is further configured to, for each subpixel, determine that the grayscale value corresponding to the default grayscale voltage of the subpixel in the current frame is different from the default grayscale value in the previous frame The gray-scale difference between the gray-scale values corresponding to the voltage; when the gray-scale difference corresponding to at least one sub-pixel is not less than the gray-scale difference threshold, convert the default gray-scale voltage of the sub-pixel to the target gray-scale voltage Afterwards, the display panel is driven to display.
  • the timing controller stores a plurality of relationship tables of different gray scale bits.
  • FIG. 1 is a schematic structural diagram of a display device in an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a picture displayed by a display panel in an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a driving method in an embodiment of the present disclosure
  • FIG. 4a is a schematic diagram of gray scales corresponding to different display frames in an embodiment of the present disclosure
  • FIG. 4b is a schematic diagram of voltages input by sub-pixels in different display frames in an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a relationship curve between voltage and transmittance in an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a method for determining a compensation voltage in an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a timing controller and a source driving circuit in an embodiment of the disclosure.
  • the display device may include a display panel 100 , a level shift (Level Shift) circuit 200 and a timing controller 300 .
  • the display panel 100 may include a plurality of pixel units arranged in an array, a plurality of gate lines (for example, GA1, GA2, GA3, GA4), a plurality of data lines (for example, DA1, DA2, DA3), a gate driving circuit 110 and source drive circuit 120.
  • the gate driving circuit 110 is coupled to the gate lines GA1 , GA2 , GA3 , GA4 respectively
  • the source driving circuit 120 is coupled to the data lines DA1 , DA2 , DA3 respectively.
  • the timing controller 300 inputs a control signal to the level shift (Level Shift) circuit 200, so that the level shift (Level Shift) circuit 200 inputs a control signal to the gate drive circuit 110, thereby driving the gate lines GA1, GA2, GA3 , GA4.
  • the timing controller 300 inputs signals to the source driving circuit 120 , so that the source driving circuit 120 inputs grayscale voltages to the data lines, so as to charge the sub-pixels and realize the display function.
  • each pixel unit includes a plurality of sub-pixels SPX.
  • a pixel unit may include red sub-pixels, green sub-pixels and blue sub-pixels, so that red, green and blue colors can be mixed to achieve color display.
  • the pixel unit may also include red sub-pixels, green sub-pixels, blue sub-pixels and white sub-pixels, so that color mixing can be performed through red, green, blue and white to achieve color display.
  • the luminous color of the sub-pixels in the pixel unit can be designed and determined according to the practical application environment, which is not limited here.
  • each sub-pixel includes a transistor 01 and a pixel electrode 02 .
  • one row of sub-pixels corresponds to one gate line
  • one column of sub-pixels corresponds to one data line.
  • the gate of the transistor 01 is electrically connected to the corresponding gate line
  • the source of the transistor 01 is electrically connected to the corresponding data line
  • the drain of the transistor 01 is electrically connected to the pixel electrode 02.
  • the pixel array structure of the present disclosure can also be It is a double-gate structure, that is, two gate lines are set between two adjacent rows of pixels. This arrangement can reduce half of the data lines, that is, there are data lines between two adjacent columns of pixels, and some adjacent two rows of pixels.
  • the data lines are not included between the pixels in the columns, and the specific arrangement structure of the pixels and the data lines, and the arrangement manner of the scanning lines are not limited.
  • Grayscale generally divides the brightness change between the darkest and the brightest into several parts for easy screen brightness control.
  • the displayed image consists of three colors of red, green, and blue, each of which can show different brightness levels, and the combination of red, green, and blue at different brightness levels can form different colors.
  • the number of gray scale bits of the liquid crystal display panel is 6 bits
  • the three colors of red, green, and blue have 64 (ie, 2 6 ) gray scales respectively, and the 64 gray scale values are 0-63 respectively.
  • the number of gray scale digits of the liquid crystal display panel is 8 bits, and the three colors of red, green, and blue have 256 (ie, 2 8 ) gray scales respectively, and the 256 gray scale values are 0-255 respectively.
  • the number of gray scale digits of the liquid crystal display panel is 10 bits, so the three colors of red, green, and blue have 1024 (ie, 2 10 ) gray scales respectively, and the 1024 gray scale values are 0-1023 respectively.
  • the number of grayscale digits of the liquid crystal display panel is 12 bits, and the three colors of red, green, and blue have 4096 (ie, 2 12 ) grayscales respectively, and the 4096 grayscale values are 0-4093 respectively.
  • a liquid crystal display panel may be a liquid crystal display panel.
  • a liquid crystal display panel generally includes an upper substrate and a lower substrate that are opposed to each other, and liquid crystal molecules filled between the upper substrate and the lower substrate.
  • the voltage difference can form an electric field, so that the liquid crystal molecules are deflected under the action of the electric field .
  • the liquid crystal molecules have different deflection degrees due to electric fields of different intensities, resulting in different transmittances of the sub-pixels, so that the sub-pixels can achieve brightness of different gray scales, thereby realizing screen display.
  • the display panel in the embodiment of the present disclosure is a liquid crystal display panel
  • the pixel unit includes red sub-pixels, green sub-pixels, and blue sub-pixels as an example for illustration, but readers should know that the sub-pixels included in the liquid crystal display panel
  • the colors are not limited to this.
  • the liquid crystal molecules have a viscous effect, there will be a time course for the liquid crystal molecules to deflect to the expected state, that is, the response time. Wherein, the faster the deflection of the liquid crystal molecules, the shorter the response time. The slower the deflection of the liquid crystal molecules, the longer the response time. As the resolution of the display panel becomes higher and higher, the charging time of the sub-pixels becomes shorter and shorter, resulting in an insufficient charging rate of the sub-pixels, which makes the deflection of the liquid crystal molecules relatively slow, resulting in a relatively slow response time of the liquid crystal molecules. Longer, resulting in the problem of residual image when displaying the image.
  • the problem of residual image occurs, especially when the voltage input to the sub-pixel is converted from low gray scale to high gray scale.
  • Figure 2 taking a display panel with a gray scale of 6 bits as an example, when the display panel displays a test picture with a gray scale of 255 as the background and a gray scale of 0 as the number 8, the number 8 corresponding to W1 is the first frame The position of the number 8 in the test picture of W2, the number 8 corresponding to W2 is the position of the number 8 in the test picture of the second frame, and the number 8 corresponding to W3 is the position of the number 8 in the test picture of the third frame. It can be seen from Figure 2 that in the second frame, the number 8 corresponding to W1 does not immediately turn white, and a residual image appears. In the third frame, the number 8 corresponding to W2 will not turn white immediately, and a residual image also appears.
  • the embodiment of the present disclosure provides a driving method for a display panel, as shown in FIG. 3 , which may include the following steps:
  • images may be displayed through consecutive frames.
  • the n-1th frame to the n+2th frame F(n-1) ⁇ F(n+2) of the video as an example, when the picture of the nth frame F(n) is to be displayed, the The nth frame F(n) is used as the current frame, and the n-1th frame F(n-1) is used as the previous frame, so that the display data of the nth frame F(n) and the n-1th frame F(n) can be obtained -1) Display data.
  • the n+1th frame F(n+1) can be used as the current frame, and the nth frame F(n) can be used as the previous frame, so that The display data of the nth frame F(n) and the display data of the n+1th frame F(n+1) are acquired. The rest are deduced in turn, and will not be repeated here.
  • the obtained display data of the current frame and the display data of the previous frame are the initial display data carrying the default grayscale digits, and the carried default grayscale digits have not been converted into the target grayscale digits.
  • the display data of the nth frame F(n) and the display data of the n-1th frame F(n-1) may correspond to the same sub
  • the display data of each sub-pixel is compared to complete the comparison of the display data corresponding to each sub-pixel.
  • step S40 can be executed to drive the display panel to display directly according to the default gray scale voltage of the display data of the current frame.
  • the display data of the n-th frame F(n) corresponding to some sub-pixels is the same as the display data of the n-1-th frame F(n-1), the n-th frame corresponding to the rest of the sub-pixels
  • the display data of the frame F(n) is different from the display data of the n-1th frame F(n-1).
  • the display data of the nth frame F(n) corresponding to all the sub-pixels is different from the display data of the n ⁇ 1th frame F(n ⁇ 1). It means that the picture to be displayed in the nth frame F(n) is different from the picture already displayed in the n-1th frame F(n-1).
  • step S30 can be executed.
  • the display data of the n+1th frame F(n+1) and the display data of the nth frame F(n) can be corresponding to the same sub
  • the display data of each sub-pixel is compared to complete the comparison of the display data corresponding to each sub-pixel. If in each sub-pixel, the display data of the nth frame F(n) corresponding to the same subpixel is the same as the display data of the n+1th frame F(n+1), then the nth frame F(n) The picture to be displayed is the same as the picture already displayed in the n+1th frame F(n+1).
  • step S40 can be executed to drive the display panel to display directly according to the default gray scale voltage of the display data of the current frame.
  • the display data of the n-th frame F(n) corresponding to some sub-pixels is the same as the display data of the n+1-th frame F(n+1), and the n-th frame corresponding to the rest of the sub-pixels
  • the display data of the frame F(n) is different from the display data of the n+1th frame F(n+1).
  • the display data of the nth frame F(n) corresponding to all the sub-pixels is different from the display data of the n+1th frame F(n+1). It means that the picture to be displayed in the nth frame F(n) is different from the picture already displayed in the n+1th frame F(n+1).
  • step S30 can be executed.
  • the display data of the n+1th frame F(n+1) can be combined with the display data of the n+2th frame F(n+2) , to compare the display data corresponding to the same sub-pixel, so as to complete the comparison of the display data corresponding to each sub-pixel. If in each sub-pixel, the display data of the n+2th frame F(n+2) corresponding to the same sub-pixel is the same as the display data of the n+1th frame F(n+1), then the n+th The picture to be displayed in the 2nd frame F(n+2) is the same as the picture already displayed in the n+1th frame F(n+1).
  • step S40 can be executed to drive the display panel to display directly according to the default gray scale voltage of the display data of the current frame.
  • the display data of the n+2th frame F(n+2) corresponding to some sub-pixels is the same as the display data of the n+1-th frame F(n+1), the rest of the sub-pixels
  • the corresponding display data of the n+2th frame F(n+2) is different from the display data of the n+1th frame F(n+1).
  • the display data of the n+2th frame F(n+2) corresponding to all the sub-pixels is different from the display data of the n+1th frame F(n+1). It means that the picture to be displayed in the n+2th frame F(n+2) is different from the picture already displayed in the n+1th frame F(n+1).
  • step S30 can be executed.
  • the rest of the frames can be judged according to the above method to determine whether to drive the display panel to display according to step S30 or step S40.
  • the above driving method provided by the embodiments of the present disclosure can judge and analyze the display data of the current frame and the display data of the previous frame by acquiring the display data of the current frame and the display data of the previous frame, so as to judge the display data of the current frame Whether it is the same as the display data of the previous frame.
  • the default gray-scale voltage of at least one sub-pixel may be converted into a target gray-scale voltage of a target gray-scale number of digits.
  • the intensity of the electric field generated by the target voltage difference may be greater than the intensity of the electric field generated by the default voltage difference.
  • a stronger electric field can drive the liquid crystal molecules to deflect faster, so that the liquid crystal molecules can quickly reach the target deflection angle, thereby improving the response rate of the liquid crystal molecules.
  • the timing controller 300 can obtain the display data of the current frame and the display data of the previous frame; determine whether the display data of the current frame and the display data of the previous frame are the same; When the display data of the previous frame is the same, among the default gray-scale voltages of the default gray-scale digits carried by the display data of the current frame, the default gray-scale voltage corresponding to at least one sub-pixel can be converted into the target gray-scale voltage of the target gray-scale digits. Step voltage and output.
  • the source driving circuit can receive the target gray-scale voltage output by the timing controller, and drive the display panel to display in the current frame according to the received target gray-scale voltage.
  • the default grayscale voltage of the display data of the current frame may be directly output.
  • the source driving circuit can receive the default gray-scale voltage output by the timing controller, and drive the display panel to display in the current frame according to the received default gray-scale voltage.
  • the default number of grayscale bits can be selected from 6bit, 8bit, 10bit, 12bit and so on. It is also possible to select the number of target grayscale bits from 6bit, 8bit, 10bit, 12bit, etc. For example, since the higher the number of grayscale bits, the more levels of different brightness levels from the darkest to the brightest, and the more delicate the picture effect that can be presented. Based on this, the target grayscale digits can be made larger than the default grayscale digits, so that the panel can be displayed more delicately. For example, the default number of gray scale bits is 6 bits, and the target number of gray scale bits is 8 bits, 10 bits, or 12 bits.
  • the default grayscale bit is 8bit, and the target grayscale bit is 10bit or 12bit. Or, the default grayscale bit is 10bit, and the target grayscale bit is 12bit. It should be noted that, in the embodiment of the present disclosure, the display data of the current frame itself carries its resolution, and the resolution corresponds to a gray-scale digit, which is the default gray-scale digit in the embodiment of the present disclosure. number.
  • the polarity of the sub-pixel when the gray-scale voltage input to the pixel electrode of the sub-pixel is greater than the voltage on the common electrode, the polarity of the sub-pixel can be made positive, and the gray-scale value corresponding to the gray-scale voltage can be regarded as a positive gray-scale value .
  • the polarity of the sub-pixel when the gray-scale voltage input to the pixel electrode of the sub-pixel is lower than the voltage on the common electrode, the polarity of the sub-pixel can be set to be negative, and the gray-scale value corresponding to the gray-scale voltage can be used as a negative gray-scale value.
  • the voltage on the common electrode can be 8.3V.
  • the gray-scale voltage of 8.3V-16V is the gray-scale voltage corresponding to the positive gray-scale value.
  • a gray-scale voltage of 0.6V-8.3V is input into the pixel electrode of the sub-pixel, the liquid crystal molecules at the sub-pixel can be negatively polarized, and the gray-scale voltage of 0.6V-8.3V is the corresponding negative gray-scale value. gray scale voltage.
  • 0-+255 represents a positive gray-scale value
  • 0-255 represents a negative gray-scale value
  • the sub-pixel can correspond to the brightness of the maximum positive grayscale value of +255.
  • a gray scale voltage of 0.6V is input to the pixel electrode of the sub-pixel
  • the sub-pixel can correspond to the brightness of the maximum negative gray scale value of -255. That is, +255 is the maximum value among positive grayscale values, and -255 is the maximum value among negative grayscale values.
  • 0 ⁇ +1023 represents a positive gray scale value
  • 0 ⁇ -1023 represents a negative gray scale value
  • 0 ⁇ +4095 represents a positive gray scale value
  • 0 ⁇ -4095 represents a negative gray scale value
  • a default gray-scale voltage difference between the default gray-scale voltage V +mrmax corresponding to the maximum positive gray-scale value of the default gray-scale digits and the default gray-scale voltage V -mrmax corresponding to the maximum negative gray-scale value V +mrmax -V -mrmax .
  • a target grayscale voltage difference V +mbmax -V -mbmax between the target grayscale voltage V +mbmax corresponding to the maximum positive grayscale value of the target grayscale digits and the target grayscale voltage V -mbmax corresponding to the maximum negative grayscale value .
  • the target grayscale voltage difference V +mbmax -V -mbmax is greater than the default grayscale voltage difference V +mrmax -V -mrmax , that is, V +mbmax -V -mbmax >V +mrmax -V -mrmax .
  • the default gray scale voltage corresponding to the maximum positive gray scale value is the default gray scale voltage V +255 corresponding to the gray scale value of +255
  • the default gray-scale voltage corresponding to the maximum negative gray-scale value is -255
  • the default gray-scale voltage V -255 corresponding to the gray-scale value V +255 >V -255
  • the default gray-scale voltage difference is V +255 -V -255 .
  • the target gray-scale voltage corresponding to the maximum positive gray-scale value is the target gray-scale voltage V +1023 corresponding to the maximum positive gray-scale value
  • the target gray-scale voltage corresponding to the maximum negative gray-scale value is the target gray-scale voltage corresponding to -1023 gray-scale value
  • the default gray-scale voltage corresponding to the maximum negative gray-scale value may be used as the target gray-scale voltage corresponding to the maximum negative gray-scale value.
  • the default gray-scale voltage corresponding to the maximum positive gray-scale value plus the set compensation voltage is used as the target gray-scale voltage corresponding to the maximum positive gray-scale value.
  • the target gray-scale voltage corresponding to the maximum negative gray-scale value may also be 0.6V.
  • the target gray-scale voltage corresponding to the maximum positive gray-scale value may be 17.5V-20V.
  • the target gray-scale voltage corresponding to the maximum positive gray-scale value may be 17.5V.
  • the set compensation voltage is 1.5V
  • the target gray-scale voltage corresponding to the maximum positive gray-scale value may be 17.5V.
  • the set compensation voltage is 2.6V
  • the target grayscale voltage corresponding to the maximum positive grayscale value may be 18.6V.
  • the set compensation voltage is 4V
  • the target grayscale voltage corresponding to the maximum positive grayscale value may be 20V.
  • the default gray-scale voltage corresponding to the maximum negative gray-scale value is based on performance considerations of components in the source driving circuit. If so, the default gray-scale voltage corresponding to the maximum negative gray-scale value minus the set negative compensation voltage can be used as the target gray-scale voltage corresponding to the maximum negative gray-scale value, if the performance of the components in the source driving circuit is allowed.
  • FIG. 5 schematically shows a relationship curve between the transmittance and the gray-scale voltage corresponding to the gray-scale value.
  • the abscissa represents the voltage
  • the ordinate represents the transmittance.
  • the voltage on the curve smaller than the voltage Vcom on the common electrode is the gray scale voltage corresponding to the negative gray scale value
  • the voltage on the curve greater than the voltage Vcom on the common electrode is the gray scale voltage corresponding to the positive gray scale value.
  • V -mrmax represents the default grayscale voltage corresponding to the maximum negative grayscale value
  • V +mrmax represents the default grayscale voltage corresponding to the maximum positive grayscale value
  • the voltage is increased sequentially on the basis of V +mrmax to obtain the voltage of the Vod interval, Input this voltage into the sub-pixel, and the obtained transmittance and the transmittance when V + mrmax are applied meet the display requirements (for example, meet the allowable range of error), then the voltage in the Vod interval can be used as the maximum positive gray
  • the transmittance will also decrease somewhat.
  • 18.6V corresponding to V0 may be used as the gray scale voltage corresponding to the maximum positive gray scale value.
  • 18.6V is used as the gray scale voltage corresponding to the maximum positive gray scale value, so that the power consumption of the source drive circuit will not increase too much, Therefore, the gray-scale voltage of the maximum positive gray-scale value can be realized within the range that the source driving circuit can bear.
  • the voltage on the common electrode may be an intermediate value between the gray-scale voltage corresponding to the maximum positive gray-scale value and the gray-scale voltage corresponding to the maximum negative gray-scale value.
  • the target gray-scale voltage difference is greater than the default gray-scale voltage difference, the voltage on the common electrode corresponding to the default gray-scale voltage is different from the voltage on the common electrode corresponding to the target gray-scale voltage.
  • the target voltage difference is greater than the default voltage difference.
  • V + mr ⁇ Vcom mr there is a default voltage difference V + mr ⁇ Vcom mr between the default gray-scale voltage V +mr corresponding to the positive gray scale of the sub-pixel and the voltage Vcom mr on the common electrode, and the sub-pixel corresponds to the positive gray scale
  • V +mb -Vcom mb there is a target voltage difference V +mb -Vcom mb between the target grayscale voltage V + mb of the common electrode and the voltage Vcom mb on the common electrode, V +mb -Vcom mb >V +mr -Vcom mr .
  • Vcom mr -V -mr there is a default voltage difference Vcom mr -V -mr between the default grayscale voltage V -mr corresponding to the negative grayscale of the subpixel and the voltage Vcom mr on the common electrode, and the subpixel corresponds to the negative grayscale
  • Vcom mb -V -mb there is a target voltage difference Vcom mb -V -mb between the target gray scale voltage V -mb of the common electrode and the voltage Vcom mb on the common electrode, Vcom mb -V -mb >Vcom mr -V -mr .
  • the compensation voltage may be obtained by testing the display panel before leaving the factory. After the compensation voltage is obtained, the compensation voltage can be stored in the timing controller, so that the display panel can be directly used according to the method in the present disclosure after the display panel leaves the factory.
  • the method for determining the compensation voltage may include the following steps:
  • the set step voltage value can be 0.1V, 0.2V, 0.5V, etc., which can be determined according to the needs in practical applications, and is not limited here.
  • the corresponding The grayscale voltage of the maximum positive grayscale value is 16.4V, so in this adjustment, 0.1V can be added to 16.4V to obtain 16.5V, and 16.5V is used as the maximum positive grayscale value after this adjustment gray scale voltage.
  • S02. Determine and set a common voltage corresponding to the display panel according to the initial gray-scale voltage corresponding to the maximum negative gray-scale value and the increased gray-scale voltage corresponding to the maximum positive gray-scale value.
  • the voltage on the common electrode may be an intermediate value between the gray-scale voltage corresponding to the maximum positive gray-scale value and the gray-scale voltage corresponding to the maximum negative gray-scale value.
  • 8.55V is input to the common electrode
  • 16.5V is input to the pixel electrodes of the sub-pixels in the set display panel, so as to drive the set display panel to display.
  • the common voltage difference between the pixel electrode and the common electrode can be collected by the voltage collecting device.
  • the range of the common voltage value may be set within an error tolerance range.
  • the setting range of the common voltage value can be determined according to the needs of practical applications, and is not limited here.
  • the collected common voltage difference between the pixel electrode and the common electrode is compared with the set common voltage value range through the voltage collecting device to determine whether the voltage difference is within the set common voltage value range. If yes, it means that the voltage difference is within the range of the set common voltage value, and step S06 can be executed. If not, it means that the voltage difference is not within the range of the set common voltage value, and step S07 can be executed.
  • the initial gray-scale voltage corresponding to the maximum positive gray-scale value is 16V
  • the increased gray-scale voltage corresponding to the maximum positive gray-scale value is 16.4V
  • 0.5V may be stored as the compensation voltage.
  • 0.1V may be added to 16.5V to obtain 16.6V, and 16.6V is used as the grayscale voltage of the maximum positive grayscale value after the next adjustment.
  • 16.6V is used as the grayscale voltage of the maximum positive grayscale value after the next adjustment.
  • step 30 convert the default gray-scale voltage corresponding to at least one sub-pixel among the default gray-scale voltages of the default gray-scale bits carried by the display data of the current frame into the target gray-scale voltage of the target gray-scale bits
  • step voltage drive the display panel to display, which may specifically include the following steps: for each sub-pixel, determine the gray-scale value corresponding to the default gray-scale voltage of the sub-pixel in the current frame and the gray-scale value corresponding to the default gray-scale voltage in the previous frame The grayscale difference between the values.
  • the display panel is driven to display after converting the default gray-scale voltage of the sub-pixel into a target gray-scale voltage.
  • the default grayscale corresponding to each sub-pixel in the nth frame F(n) can be obtained according to the display data of the nth frame F(n) voltage, and the grayscale value corresponding to the default grayscale voltage.
  • the default grayscale voltage corresponding to each sub-pixel in the n-1th frame F(n-1) can be obtained according to the display data of the n-1th frame F(n-1), the default grayscale voltage corresponding to each sub-pixel in the n-1th frame F(n-1), and the default grayscale voltage corresponding to the grayscale value.
  • the gray-scale difference between the gray-scale value corresponding to the nth frame F(n) of the sub-pixel and the gray-scale value corresponding to the (n+1)th frame F(n+1) is.
  • the gray scale differences corresponding to the remaining sub-pixels can be obtained, which will not be repeated here.
  • these gray-scale differences can be compared with the gray-scale difference threshold, and if there is a gray-scale difference corresponding to a sub-pixel that is not less than the gray-scale difference threshold, It means that the grayscale jump is large, and there may be afterimage problems.
  • the default grayscale voltage of each sub-pixel can be converted into a target grayscale voltage, and then the display panel can be driven to display. If the gray scale difference corresponding to no sub-pixel is not less than the gray scale difference threshold, that is, the gray scale difference corresponding to all sub-pixels is smaller than the gray scale difference threshold, it means that the gray scale jump is small, causing residual Shadow problems are less likely. Based on this, instead of converting the default gray-scale voltage of each sub-pixel into the target gray-scale voltage in the nth frame F(n), step S40 can be directly performed.
  • the timing controller may store a plurality of relationship tables of different gray scale bits.
  • converting the default grayscale voltage of the sub-pixel to the target grayscale voltage may specifically include: determining the default grayscale carried by the display data of the current frame according to a pre-stored relationship table of a plurality of different grayscale digits Each grayscale value of the digit corresponds to the grayscale value in the target grayscale digit. Afterwards, the target gray scale value is determined from the gray scale values corresponding to the target gray scale digits. Afterwards, the gray-scale voltage corresponding to the target gray-scale value in the target gray-scale bit number is used as the target gray-scale voltage of the sub-pixel.
  • the target gray scale value is greater than the gray scale value in the target gray scale bit number corresponding to the default gray scale voltage of the sub-pixel.
  • the timing controller stores a plurality of relational tables, and the relational tables include: correspondences between grayscale values in different grayscale digits.
  • the timing controller stores: the relationship table shown in Table 1 (correspondence between 8bit and 12bit grayscale values), the relationship table shown in Table 2 (correspondence between 10bit and 12bit grayscale values), and Table 3 (8bit Correspondence with 10bit gray scale value) shows the relationship table.
  • Tables 1 to 3 are just examples, and the timing controller may also store relationship tables corresponding to gray scale values of other gray scale digits, which are not limited here.
  • grayscale 2 in 8bit corresponds to grayscale 8 in 12bit. That is, the voltage difference between the grayscale voltage of 2 grayscales in 8bit and the voltage on the common electrode is the same as the voltage difference between the grayscale voltage of 8 grayscale in 12bit and the voltage on the common electrode.
  • 255 gray levels in 8bit correspond to 4066 gray levels in 12bit. That is, the voltage difference between the grayscale voltage of 255 grayscale in 8bit and the voltage on the common electrode is the same as the voltage difference between the grayscale voltage of 4066 grayscale in 12bit and the voltage on the common electrode. The rest are the same and will not be repeated here.
  • Table 4 shows the corresponding relationship between 10bit and 12bit grayscale values in the prior art.
  • the 1023 gray scale in 8bit corresponds to the 4096 gray scale in 12bit. That is, the voltage difference between the grayscale voltage of 1023 grayscale in 8bit and the voltage on the common electrode is the same as the voltage difference between the grayscale voltage of 4096 grayscale in 12bit and the voltage on the common electrode. The rest are the same and will not be repeated here.
  • the timing controller 300 may include an accurate color processing (Accurate Color Capture, ACC) unit and a frame (Fram) driving unit.
  • the ACC unit can acquire the display data of the current frame and the display data of the previous frame. And judge whether the display data of the current frame is the same as the display data of the previous frame.
  • the ACC unit can acquire the display data of the current frame and the display data of the previous frame. And judge whether the display data of the current frame is the same as the display data of the previous frame.
  • the ACC unit can acquire the display data of the current frame and the display data of the previous frame. And judge whether the display data of the current frame is the same as the display data of the previous frame.
  • the ACC unit can acquire the display data of the current frame and the display data of the previous frame. And judge whether the display data of the current frame is the same as the display data of the previous frame.
  • the gray-scale value corresponding to the default gray-scale voltage of the sub-pixel in the current frame corresponds to the default gray-scale voltage in the previous
  • the frame (Fram) drive unit can store a plurality of relationship tables with different gray-scale digits, and according to the default gray-scale digits and target gray-scale digits, and according to the default gray-scale digits and The relationship table corresponding to the target gray-scale digits determines the gray-scale value corresponding to each gray-scale value of the default gray-scale digits carried by the display data of the current frame in the target gray-scale digits.
  • the source driving circuit 120 may include a data decoding unit, a digital-to-analog converter, and a data output unit.
  • the data decoding unit can receive the target gray-scale voltage output by the frame (Fram) driving unit, decode the received target gray-scale voltage, and output it to the digital-to-analog converter. Since the decoded target grayscale voltage is a digital signal, the digital-to-analog converter converts the target grayscale voltage of the digital signal into a gamma voltage of an analog signal and outputs it to the data output unit.
  • the data output unit receives the converted gamma voltage, and transmits the gamma voltage to the data lines in the display panel according to the interface protocol, so as to charge the sub-pixels.
  • the data decoding unit can receive the default gray-scale voltage, decode the received default gray-scale voltage, and output it to the digital-to-analog converter. Since the decoded default grayscale voltage is a digital signal, the digital-to-analog converter converts the default grayscale voltage of the digital signal into a gamma voltage of an analog signal and outputs it to the data output unit. The data output unit receives the converted gamma voltage, and transmits the gamma voltage to the data lines in the display panel according to the interface protocol, so as to charge the sub-pixels.
  • L0 represents a grayscale value of 0
  • L1023 represents a positive grayscale value of 1023
  • L4018 represents a positive grayscale value of 4018.
  • S20 represents the jump curve of the gray scale in the embodiment of the present disclosure.
  • S11 represents the actual voltage curve charged by the sub-pixel when the gray-scale voltage corresponding to the L1023 gray-scale is input to the sub-pixel in the display panel in the prior art.
  • S12 (solid line) represents the actual voltage curve charged by the sub-pixel when the gray-scale voltage corresponding to the L4018 gray scale is input to the sub-pixel in the display panel in the embodiment of the present disclosure.
  • S13 represents the trend curve of the voltage charged by the sub-pixel when the gray-scale voltage corresponding to the L4018 gray scale is input to the sub-pixel in the display panel in the embodiment of the present disclosure.
  • the positive gray scale value is taken as an example below, and the negative gray scale value is the same, and details are not described here.
  • the nth frame F(n) When the picture of the nth frame F(n) is to be displayed, the nth frame F(n) can be used as the current frame, and the n-1th frame F(n-1) can be used as the previous frame, so that the nth frame can be obtained Display data of frame F(n) and display data of n-1th frame F(n-1).
  • the display data of the nth frame F(n) corresponding to all the sub-pixels is different from the display data of the n ⁇ 1th frame F(n ⁇ 1). It means that the picture to be displayed in the nth frame F(n) is different from the picture already displayed in the n-1th frame F(n-1). That is to say, the pictures displayed in the nth frame F(n) and the n-1th frame F(n-1) are switched, that is, the displayed pictures are dynamic pictures. At this time, the rest of the sub-pixels jump corresponding to the gray scale.
  • the default grayscale voltage corresponding to each sub-pixel in the nth frame F(n) and the grayscale value corresponding to the default grayscale voltage are obtained.
  • the default grayscale voltage corresponding to each sub-pixel in the n-1th frame F(n-1) and the default grayscale voltage corresponding to the grayscale value.
  • the gray-scale difference between the gray-scale value corresponding to the nth frame F(n) of the sub-pixel and the gray-scale value corresponding to the (n+1)th frame F(n+1) is.
  • gray scale differences corresponding to the remaining sub-pixels can be obtained, which will not be repeated here.
  • gray-scale difference corresponding to each sub-pixel After determining the gray-scale difference corresponding to each sub-pixel, these gray-scale differences can be compared with the gray-scale difference threshold, and if there is a gray-scale difference corresponding to a sub-pixel that is not less than the gray-scale difference threshold, It means that the grayscale jump is large, and there may be afterimage problems.
  • the default grayscale digits of the nth frame F(n) is 10 bits
  • the target grayscale digits to be converted to is 12 bits.
  • the 12-bit gray-scale value corresponding to each gray-scale value in the 10-bit can be determined according to the stored relationship table 2.
  • gray scale 2 in 10bit corresponds to gray scale 4 in 12bit. That is, the voltage difference between the grayscale voltage of 2 grayscales in 10bit and the voltage on the common electrode is the same as the voltage difference between the grayscale voltage of 4 grayscales in 12bit and the voltage on the common electrode.
  • the 1023 grayscale in 10bit corresponds to the 4016 grayscale in 12bit. That is, the voltage difference between the grayscale voltage of 1023 grayscale in 10bit and the voltage on the common electrode is the same as the voltage difference between the grayscale voltage of 4016 grayscale in 12bit and the voltage on the common electrode.
  • the grayscale voltage corresponding to the 4016 grayscale in Table 2 is input to the sub-pixels in the display panel at this time, the brightness realized by the display panel can be compared with that of the display panel in the prior art.
  • the brightness displayed by the gray scale voltage corresponding to the sub-pixel input 4096 gray scales is the same.
  • the target gray scale value can be determined from the gray scale values corresponding to the target gray scale digits.
  • the grayscale value can be set to 2. Taking the grayscale of 1023 in 10bit as an example, the grayscale of 1023 in 10bit corresponds to the grayscale of 4016 in 12bit. Other grayscale values greater than 4016 grayscales in 12 bits may be used as alternative target grayscale values.
  • the 4018 gray scale value in 12 bits can be used as the target gray scale value.
  • the grayscale value can be set to 1. Taking the grayscale of 1023 in 10bit as an example, the grayscale of 1023 in 10bit corresponds to the grayscale of 4016 in 12bit. Other grayscale values greater than 4016 grayscales in 12 bits may be used as alternative target grayscale values. Also, since the difference between the target gray scale value and the 4016 gray scale value is required to be 1, the 4017 gray scale value in 12 bits can be used as the target gray scale value.
  • the set grayscale value can be determined according to the requirements of practical applications, and is not limited here.
  • the gray-scale voltage corresponding to the target gray-scale value in the target gray-scale bit number is used as the target gray-scale voltage of the sub-pixel. Therefore, the target grayscale voltage to be input into each sub-pixel in the nth frame F(n) can be obtained.
  • the target grayscale voltage to be input into each sub-pixel in the nth frame F(n) is sequentially decoded and digital-to-analog converted to obtain the gamma voltage, and the gamma voltage is transmitted to the data line in the display panel according to the interface protocol, so as to Charge the subpixel.
  • the display data of the n+1th frame F(n+1) and the display data of the nth frame F(n) can be corresponding to the same sub
  • the display data of each sub-pixel is compared to complete the comparison of the display data corresponding to each sub-pixel. If in each sub-pixel, the display data of the nth frame F(n) corresponding to the same subpixel is the same as the display data of the n+1th frame F(n+1), then the nth frame F(n) The picture to be displayed is the same as the picture already displayed in the n+1th frame F(n+1).
  • the pictures displayed in the nth frame F(n) and the n+1th frame F(n+1) are not switched, that is, a static picture is displayed.
  • the gray scales corresponding to the sub-pixels do not change, so there is no need to convert the gray scale voltages corresponding to the gray scale digits.
  • the display panel can be driven to display directly according to the default gray scale voltage of the display data of the current frame. For example, input the grayscale voltage corresponding to 1023 grayscales in 10bit.
  • the display data of the n+2th frame F(n+2) and the display data of the nth frame F(n) can be corresponding to the same sub
  • the display data of each sub-pixel is compared to complete the comparison of the display data corresponding to each sub-pixel. If in each sub-pixel, the display data of the nth frame F(n) corresponding to the same subpixel is the same as the display data of the n+2th frame F(n+2), then the nth frame F(n) The picture to be displayed is the same as the picture already displayed in the n+2th frame F(n+2).
  • the pictures displayed in the nth frame F(n) and the n+2th frame F(n+2) are not switched, that is, a static picture is displayed.
  • the gray scales corresponding to the sub-pixels do not change, so there is no need to convert the gray scale voltages corresponding to the gray scale digits.
  • the display panel can be driven to display directly according to the default grayscale voltage of the display data of the current frame. For example, input the grayscale voltage corresponding to 1023 grayscales in 10bit.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种显示面板(100)的驱动方法及显示装置,获取当前帧的显示数据和上一帧的显示数据(S10);判断当前帧的显示数据和上一帧的显示数据是否相同(S20);若否,则将当前帧的显示数据携带的默认灰阶位数的默认灰阶电压中,对应至少一个子像素的默认灰阶电压转换为目标灰阶位数的目标灰阶电压后,驱动显示面板(100)显示(S30);其中,目标灰阶位数的最大正灰阶值对应的目标灰阶电压和最大负灰阶值对应的目标灰阶电压之间具有目标灰阶电压差,默认灰阶位数的最大正灰阶值对应的默认灰阶电压和最大负灰阶值对应的默认灰阶电压之间具有默认灰阶电压差;目标灰阶电压差大于默认灰阶电压差。

Description

显示面板的驱动方法及显示装置 技术领域
本公开涉及显示技术领域,特别涉及显示面板的驱动方法及显示装置。
背景技术
在诸如液晶显示器(Liquid Crystal Display,LCD)等显示器中,一般包括多个像素。每个像素可以包括:红色子像素、绿色子像素以及蓝色子像素。通过控制每个子像素对应的显示数据,以控制每个子像素的显示亮度,从而混合出所需显示的色彩来显示彩色图像。
发明内容
本公开实施例中提供了显示面板的驱动方法,包括:
获取当前帧的显示数据和上一帧的显示数据;
判断所述当前帧的显示数据和所述上一帧的显示数据是否相同;
若否,则将所述当前帧的显示数据携带的默认灰阶位数的默认灰阶电压中,对应至少一个子像素的默认灰阶电压转换为目标灰阶位数的目标灰阶电压后,驱动所述显示面板显示;
其中,针对同一子像素,所述子像素对应的默认灰阶电压与公共电极上的电压之间具有默认电压差,所述子像素对应的目标灰阶电压与公共电极上的电压之间具有目标电压差,所述目标电压差大于所述默认电压差;
以及,所述目标灰阶位数的最大正灰阶值对应的目标灰阶电压和最大负灰阶值对应的目标灰阶电压之间具有目标灰阶电压差,所述默认灰阶位数的最大正灰阶值对应的默认灰阶电压和最大负灰阶值对应的默认灰阶电压之间具有默认灰阶电压差;所述目标灰阶电压差大于所述默认灰阶电压差。
在一些示例中,所述目标灰阶位数大于所述默认灰阶位数。
在一些示例中,将所述最大负灰阶值对应的默认灰阶电压作为所述最大 负灰阶值对应的目标灰阶电压,将所述最大正灰阶值对应的默认灰阶电压加上设定的补偿电压后作为所述最大正灰阶值对应的目标灰阶电压。
在一些示例中,所述最大正灰阶值对应的目标灰阶电压为17.5V~20V。
在一些示例中,确定所述补偿电压的方法,包括:
以最大正灰阶值对应的初始灰阶电压以及最大负灰阶值对应的初始灰阶电压为基准,基于设定步进电压值,在本次调节中,提高设定显示面板对应最大正灰阶值的灰阶电压;
根据最大负灰阶值对应的初始灰阶电压和提高后的最大正灰阶值对应的灰阶电压,确定所述设定显示面板对应的公共电压;
根据确定出的公共电压和提高后的最大正灰阶值对应的灰阶电压,驱动所述设定显示面板显示;
采集所述设定显示面板的子像素中,像素电极和公共电极之间的公共电压差;
判断所述公共电压差是否满足设定公共电压值范围;
若是,则将本次提高后的对应最大正灰阶值的灰阶电压与对应最大正灰阶值的初始灰阶电压之间的差值作为所述补偿电压;
若否,则进入下一次调节。
在一些示例中,所述将所述当前帧的显示数据携带的默认灰阶位数的默认灰阶电压中,对应至少一个子像素的默认灰阶电压转换为目标灰阶位数的目标灰阶电压后,驱动所述显示面板显示,包括:
针对每一个子像素,确定所述子像素在所述当前帧中默认灰阶电压对应的灰阶值与所述上一帧中默认灰阶电压对应的灰阶值之间的灰阶差值;
在至少一个子像素对应的灰阶差值不小于灰阶差值阈值时,将所述子像素的默认灰阶电压转换为目标灰阶电压后,驱动所述显示面板显示。
在一些示例中,所述将所述子像素的默认灰阶电压转换为目标灰阶电压,包括:
根据所述默认灰阶位数和所述目标灰阶位数,以及预先存储的多个不同 灰阶位数的关系表,确定所述当前帧的显示数据携带的默认灰阶位数的各灰阶值在所述目标灰阶位数中对应的灰阶值;其中,所述关系表包括:不同灰阶位数中各灰阶值的对应关系;
从所述目标灰阶位数对应的灰阶值中确定目标灰阶值;其中,所述目标灰阶值大于所述子像素的默认灰阶电压对应的目标灰阶位数中的灰阶值;
将所述目标灰阶值在所述目标灰阶位数中对应的灰阶电压,作为所述子像素的目标灰阶电压。
在一些示例中,所述目标灰阶值与所述子像素的默认灰阶电压对应的目标灰阶位数中的灰阶值之间相差设定灰阶数值。
本公开实施例提供的显示装置,包括:
时序控制器,被配置为获取当前帧的显示数据和上一帧的显示数据;判断所述当前帧的显示数据和所述上一帧的显示数据是否相同;若是,则将所述当前帧的显示数据携带的默认灰阶位数的默认灰阶电压中,对应至少一个子像素的默认灰阶电压转换为目标灰阶位数的目标灰阶电压;
源极驱动电路,被配置为接收所述时序控制器输出的目标灰阶电压,并根据接收的目标灰阶电压,驱动所述显示面板显示;
其中,针对同一子像素,所述子像素对应的默认灰阶电压与公共电极上的电压之间具有默认电压差,所述子像素对应的目标灰阶电压与公共电极上的电压之间具有目标电压差,所述目标电压差大于所述默认电压差;
以及,所述目标灰阶位数的最大正灰阶值对应的目标灰阶电压和最大负灰阶值对应的目标灰阶电压之间具有目标灰阶电压差,所述默认灰阶位数的最大正灰阶值对应的默认灰阶电压和最大负灰阶值对应的默认灰阶电压之间具有默认灰阶电压差;所述目标灰阶电压差大于所述默认灰阶电压差。
在一些示例中,所述时序控制器进一步被配置为针对每一个子像素,确定所述子像素在所述当前帧中默认灰阶电压对应的灰阶值与所述上一帧中默认灰阶电压对应的灰阶值之间的灰阶差值;在至少一个子像素对应的灰阶差值不小于灰阶差值阈值时,将所述子像素的默认灰阶电压转换为目标灰阶电 压后,驱动所述显示面板显示。
在一些示例中,所述时序控制器存储有多个不同灰阶位数的关系表。
附图说明
图1为本公开实施例中的显示装置的结构示意图;
图2为本公开实施例中的显示面板显示的画面示意图;
图3为本公开实施例中的驱动方法的流程图;
图4a为本公开实施例中的不同显示帧对应的灰阶的示意图;
图4b为本公开实施例中的不同显示帧中子像素输入的电压的示意图;
图5为本公开实施例中的电压与透过率的关系曲线示意图;
图6为本公开实施例中的补偿电压的确定方法的流程图;
图7为本公开实施例中的时序控制器与源极驱动电路的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
参见图1,显示装置可以包括显示面板100、电平转换(Level Shift)电路200以及时序控制器300。其中,显示面板100可以包括多个阵列排布的像素单元,多条栅线(例如,GA1、GA2、GA3、GA4)、多条数据线(例如,DA1、DA2、DA3)、栅极驱动电路110以及源极驱动电路120。栅极驱动电路110分别与栅线GA1、GA2、GA3、GA4耦接,源极驱动电路120分别与数据线DA1、DA2、DA3耦接。其中,时序控制器300向电平转换(Level Shift)电路200输入控制信号,以使电平转换(Level Shift)电路200向栅极驱动电路110输入控制信号,从而驱动栅线GA1、GA2、GA3、GA4。时序控制器300向源极驱动电路120输入信号,以使源极驱动电路120向数据线输入灰阶电压,从而对子像素充电,实现显示功能。
示例性地,每个像素单元包括多个子像素SPX。例如,像素单元可以包括红色子像素,绿色子像素以及蓝色子像素,这样可以通过红绿蓝进行混色,以实现彩色显示。或者,像素单元也可以包括红色子像素,绿色子像素、蓝色子像素以及白色子像素,这样可以通过红绿蓝白进行混色,以实现彩色显示。当然,在实际应用中,像素单元中的子像素的发光颜色可以根据实际应用环境来设计确定,在此不作限定。
参见图1所示,每个子像素中包括晶体管01和像素电极02。其中,一行子像素对应一条栅线,一列子像素对应一条数据线。晶体管01的栅极与对应的栅线电连接,晶体管01的源极与对应的数据线电连接,晶体管01的漏极与像素电极02电连接,需要说明的是,本公开像素阵列结构还可以是双栅结构,即相邻两行像素之间设置两条栅极线,此排布方式可以减少一半的数据线,即包含相邻两列像素之间有的数据线,有的相邻两列像素之间不包括数据线,具体像素排布结构和数据线,扫描线的排布方式不限定。
灰阶,一般是将最暗与最亮之间的亮度变化区分为若干份,以便于进行 屏幕亮度管控。例如,以显示的图像由红、绿、蓝三种颜色组成,其中每一个颜色都可以显现出不同的亮度级别,并且不同亮度层次的红、绿、蓝组合起来,可以形成不同的色彩。例如,液晶显示面板的灰阶位数为6bit,则红、绿、蓝这三种颜色分别具有64(即2 6)个灰阶,这64个灰阶值分别为0~63。液晶显示面板的灰阶位数为8bit,则红、绿、蓝这三种颜色分别具有256(即2 8)个灰阶,这256个灰阶值分别为0~255。液晶显示面板的灰阶位数为10bit,则红、绿、蓝这三种颜色分别具有1024(即2 10)个灰阶,这1024个灰阶值分别为0~1023。液晶显示面板的灰阶位数为12bit,则红、绿、蓝这三种颜色分别具有4096(即2 12)个灰阶,这4096个灰阶值分别为0~4093。
需要说明的是,本公开实施例中的显示面板可以为液晶显示面板。示例性地,液晶显示面板一般包括对盒的上基板和下基板,以及填充在上基板和下基板之间的液晶分子。在显示画面时,由于加载在各子像素的像素电极上的灰阶电压和公共电极上的电压之间具有电压差,该电压差可以形成电场,从而使液晶分子在该电场的作用下进行偏转。由于不同强度的电场使液晶分子的偏转程度不同,从而导致子像素的透过率不同,以使子像素实现不同灰阶的亮度,进而实现画面显示。
下面均以本公开实施例中的显示面板为液晶显示面板,且像素单元包括红色子像素、绿色子像素、蓝色子像素为例进行说明,但是读者应知,液晶显示面板中包括的子像素的颜色并不局限于此。
由于液晶分子具有粘滞效应,因此液晶分子偏转至预期状态会有一个时间过程,即响应时间。其中,液晶分子偏转的越快,其响应时间越短。液晶分子偏转的越慢,其响应时间越长。随着显示面板的分辨率越来越高,导致子像素的充电时间越来越短,造成子像素的充电率不足的情况,从而使得液晶分子偏转的相对较慢,导致液晶分子的响应时间相对较长,从而在显示图像时会出现残留图像的问题。
出现残留图像的问题,尤其是在输入子像素的电压,由低灰阶转换为高灰阶时较为明显。结合图2所示,以灰阶位数为6bit的显示面板为例,在显 示面板显示以255灰阶作为背景且0灰阶作为数字8的测试画面时,W1对应的数字8为第一帧的测试画面中数字8所在的位置,W2对应的数字8为第二帧的测试画面中数字8所在的位置,W3对应的数字8为第三帧的测试画面中数字8所在的位置。通过图2可知,在第二帧时,W1对应的数字8并不会立刻变成白色,出现了残留图像。在第三帧时,W2对应的数字8也不会立刻变成白色,也出现了残留图像。
为了提高液晶分子的响应速度,降低响应时间,本公开实施例提供了显示面板的驱动方法,如图3所示,可以包括如下步骤:
S10、获取当前帧的显示数据和上一帧的显示数据。
示例性地,结合图4a所示,在一个视频中,可以通过连续的帧显示画面。其中,以在该视频的第n-1帧至第n+2帧F(n-1)~F(n+2)为例,在将要显示第n帧F(n)的画面时,可以将第n帧F(n)作为当前帧,将第n-1帧F(n-1)作为上一帧,这样可以获取第n帧F(n)的显示数据和第n-1帧F(n-1)的显示数据。在将要显示第n+1帧F(n+1)的画面时,可以将第n+1帧F(n+1)作为当前帧,将第n帧F(n)作为上一帧,这样可以获取第n帧F(n)的显示数据和第n+1帧F(n+1)的显示数据。其余依次类推,在此不作赘述。
需要说明的是,获取到的当前帧的显示数据和上一帧的显示数据,是携带有的默认灰阶位数的初始显示数据,并未将携带的默认灰阶位数转换为目标灰阶位数。
S20、判断当前帧的显示数据和上一帧的显示数据是否相同。
示例性地,在将要显示第n帧F(n)的画面时,可以将第n帧F(n)的显示数据与第n-1帧F(n-1)的显示数据中,对应同一子像素的显示数据进行比较,以将每一个子像素对应的显示数据均比较完。
若每一个子像素中,同一子像素对应的第n帧F(n)的显示数据与第n-1帧F(n-1)的显示数据是相同的,则说明第n帧F(n)将要显示的画面和第n-1帧F(n-1)已经显示的画面是相同的。也就是说,第n帧F(n)和第n-1帧F(n-1)显示的画面未进行切换,即显示的是静态画面。此时,子像素对应灰阶不跳 变,从而不用进行灰阶位数对应的灰阶电压的转换。则可以执行步骤S40、直接根据当前帧的显示数据的默认灰阶电压,以驱动显示面板显示。
若每一个子像素中,有部分子像素对应的第n帧F(n)的显示数据与第n-1帧F(n-1)的显示数据是相同的,其余部分子像素对应的第n帧F(n)的显示数据与第n-1帧F(n-1)的显示数据是不相同的。或者,全部子像素对应的第n帧F(n)的显示数据与第n-1帧F(n-1)的显示数据是不相同的。则说明第n帧F(n)将要显示的画面和第n-1帧F(n-1)已经显示的画面是不相同的。也就是说,第n帧F(n)和第n-1帧F(n-1)显示的画面进行了切换,即显示的是动态画面。此时,其余部分子像素对应灰阶进行了跳变,这样可以进行灰阶位数对应的灰阶电压的转换。则可以执行步骤S30。
在将要显示第n+1帧F(n+1)的画面时,可以将第n+1帧F(n+1)的显示数据与第n帧F(n)的显示数据中,对应同一子像素的显示数据进行比较,以将每一个子像素对应的显示数据均比较完。若每一个子像素中,同一子像素对应的第n帧F(n)的显示数据与第n+1帧F(n+1)的显示数据是相同的,则说明第n帧F(n)将要显示的画面和第n+1帧F(n+1)已经显示的画面是相同的。也就是说,第n帧F(n)和第n+1帧F(n+1)显示的画面未进行切换,即显示的是静态画面。此时,子像素对应灰阶不跳变,从而不用进行灰阶位数对应的灰阶电压的转换。则可以执行步骤S40、直接根据当前帧的显示数据的默认灰阶电压,以驱动显示面板显示。
若每一个子像素中,有部分子像素对应的第n帧F(n)的显示数据与第n+1帧F(n+1)的显示数据是相同的,其余部分子像素对应的第n帧F(n)的显示数据与第n+1帧F(n+1)的显示数据是不相同的。或者,全部子像素对应的第n帧F(n)的显示数据与第n+1帧F(n+1)的显示数据是不相同的。则说明第n帧F(n)将要显示的画面和第n+1帧F(n+1)已经显示的画面是不相同的。也就是说,第n帧F(n)和第n+1帧F(n+1)显示的画面进行了切换,即显示的是动态画面。此时,其余部分子像素对应灰阶进行了跳变,这样可以进行灰阶位数对应的灰阶电压的转换。则可以执行步骤S30。
在将要显示第n+2帧F(n+2)的画面时,可以将第n+1帧F(n+1)的显示数据与第n+2帧F(n+2)的显示数据中,对应同一子像素的显示数据进行比较,以将每一个子像素对应的显示数据均比较完。若每一个子像素中,同一子像素对应的第n+2帧F(n+2)的显示数据与第n+1帧F(n+1)的显示数据是相同的,则说明第n+2帧F(n+2)将要显示的画面和第n+1帧F(n+1)已经显示的画面是相同的。也就是说,第n+2帧F(n+2)和第n+1帧F(n+1)显示的画面未进行切换,即显示的是静态画面。此时,子像素对应灰阶不跳变,从而不用进行灰阶位数对应的灰阶电压的转换。则可以执行步骤S40、直接根据当前帧的显示数据的默认灰阶电压,以驱动显示面板显示。
若每一个子像素中,有部分子像素对应的第n+2帧F(n+2)的显示数据与第n+1帧F(n+1)的显示数据是相同的,其余部分子像素对应的第n+2帧F(n+2)的显示数据与第n+1帧F(n+1)的显示数据是不相同的。或者,全部子像素对应的第n+2帧F(n+2)的显示数据与第n+1帧F(n+1)的显示数据是不相同的。则说明第n+2帧F(n+2)将要显示的画面和第n+1帧F(n+1)已经显示的画面是不相同的。也就是说,第n+2帧F(n+2)和第n+1帧F(n+1)显示的画面进行了切换,即显示的是动态画面。此时,其余部分子像素对应灰阶进行了跳变,这样可以进行灰阶位数对应的灰阶电压的转换。则可以执行步骤S30。
其余帧,可以根据上述方式进行判断,以确定需要根据步骤S30还是步骤S40驱动显示面板进行显示。
S30、将当前帧的显示数据携带的默认灰阶位数的默认灰阶电压中,对应至少一个子像素的默认灰阶电压转换为目标灰阶位数的目标灰阶电压后,驱动显示面板显示。
S40、直接根据当前帧的显示数据的默认灰阶电压,驱动显示面板显示。
本公开实施例提供的上述驱动方法,通过获取当前帧的显示数据和上一帧的显示数据,可以对当前帧的显示数据和上一帧的显示数据进行判分析,以判断当前帧的显示数据和上一帧的显示数据是否相同。在判断不相同时,可以将至少一个子像素的默认灰阶电压转换为目标灰阶位数的目标灰阶电压。 针对同一子像素,由于该子像素对应的目标电压差大于默认电压差,这样使得目标电压差产生的电场的强度可以大于默认电压差产生的电场的强度。在相同的充电时间内,强度较大的电场可以驱动液晶分子偏转的更快,以使液晶分子可以快速达到目标偏转角度,从而提高了液晶分子的响应速率。
在本公开实施例中,时序控制器300可以获取当前帧的显示数据和上一帧的显示数据;判断当前帧的显示数据和上一帧的显示数据是否相同;在判断当前帧的显示数据和上一帧的显示数据相同时,可以将当前帧的显示数据携带的默认灰阶位数的默认灰阶电压中,对应至少一个子像素的默认灰阶电压转换为目标灰阶位数的目标灰阶电压并输出。源极驱动电路可以接收时序控制器输出的目标灰阶电压,并根据接收的目标灰阶电压,驱动显示面板在当前帧中进行显示。在判断当前帧的显示数据和上一帧的显示数据不相同时,可以直接将当前帧的显示数据的默认灰阶电压输出。源极驱动电路可以接收时序控制器输出的默认灰阶电压,并根据接收的默认灰阶电压,驱动显示面板在当前帧中进行显示。
在本公开实施例中,可以使默认灰阶位数从6bit、8bit、10bit、12bit等进行选取。也可以使目标灰阶位数从6bit、8bit、10bit、12bit等进行选取。示例性地,由于灰阶位数越高,由最暗到最亮之间的不同亮度的层次级别会越多,所能够呈现的画面效果也就越细腻。基于此,可以使目标灰阶位数大于默认灰阶位数,从而可以使面板显示的更细腻。例如,默认灰阶位数为6bit,目标灰阶位数为8bit或10bit或12bit。或者,默认灰阶位数为8bit,目标灰阶位数为10bit或12bit。或者,默认灰阶位数为10bit,目标灰阶位数为12bit。需要说明的是,本公开实施例中,当前帧的显示数据自身携带有其分辨率,该分辨率对应一个灰阶位数,该灰阶位数即是本公开实施例中的默认灰阶位数。
示例性地,在子像素的像素电极中输入的灰阶电压大于公共电极上的电压时,可以使子像素的极性为正极性,该灰阶电压对应的灰阶值可以作为正灰阶值。在子像素的像素电极中输入的灰阶电压小于公共电极上的电压时,可以使子像素的极性为负极性,该灰阶电压对应的灰阶值可以作为负灰阶值。 例如,公共电极上的电压可以为8.3V,以一个子像素为例,若在该子像素的像素电极中输入了8.3V~16V的灰阶电压,可以使该子像素处的液晶分子为正极性,则8.3V~16V的灰阶电压为对应正灰阶值的灰阶电压。若在该子像素的像素电极中输入了0.6V~8.3V的灰阶电压,可以使该子像素处的液晶分子为负极性,则0.6V~8.3V的灰阶电压为对应负灰阶值的灰阶电压。示例性地,以8bit的0~255灰阶为例,以0~+255代表正灰阶值,0~-255代表负灰阶值,若在子像素的像素电极中输入16V的灰阶电压时,该子像素可以对应+255的最大正灰阶值的亮度。若在子像素的像素电极中输入0.6V的灰阶电压时,该子像素可以对应-255的最大负灰阶值的亮度。也就是说,+255是正灰阶值中的最大值,-255是负灰阶值中的最大值。同理,在10bit中,0~+1023代表正灰阶值,0~-1023代表负灰阶值。在12bit中,0~+4095代表正灰阶值,0~-4095代表负灰阶值。
在本公开实施例中,默认灰阶位数的最大正灰阶值对应的默认灰阶电压V +mrmax和最大负灰阶值对应的默认灰阶电压V -mrmax之间具有默认灰阶电压差V +mrmax-V -mrmax。目标灰阶位数的最大正灰阶值对应的目标灰阶电压V +mbmax和最大负灰阶值对应的目标灰阶电压V -mbmax之间具有目标灰阶电压差V +mbmax-V -mbmax。其中,目标灰阶电压差V +mbmax-V -mbmax大于默认灰阶电压差V +mrmax-V -mrmax,即V +mbmax-V -mbmax>V +mrmax-V -mrmax。例如,以默认灰阶位数为8bit,目标灰阶位数为10bit为例,8bit中,最大正灰阶值对应的默认灰阶电压为+255灰阶值对应的默认灰阶电压V +255,最大负灰阶值对应的默认灰阶电压为-255灰阶值对应的默认灰阶电压V -255,V +255>V -255,则默认灰阶电压差为V +255-V -255。10bit中,最大正灰阶值对应的目标灰阶电压为+1023灰阶值对应的目标灰阶电压V +1023,最大负灰阶值对应的目标灰阶电压为-1023灰阶值对应的目标灰阶电压V -1023,V +1023>V -1023,则目标灰阶电压差为V +1023-V -1023。则可以有V +1023-V -1023>V +255-V -255
在本公开实施例中,可以将最大负灰阶值对应的默认灰阶电压作为最大负灰阶值对应的目标灰阶电压。以及,将最大正灰阶值对应的默认灰阶电压 加上设定的补偿电压后作为最大正灰阶值对应的目标灰阶电压。示例性地,若最大负灰阶值对应的默认灰阶电压为0.6V,则最大负灰阶值对应的目标灰阶电压也可以为0.6V。若最大正灰阶值对应的默认灰阶电压为16V,设定的补偿电压为1.5V~4V,则最大正灰阶值对应的目标灰阶电压可以为17.5V~20V。例如,以最大正灰阶值对应的默认灰阶电压为16V为例,若设定的补偿电压为1.5V时,最大正灰阶值对应的目标灰阶电压可以为17.5V。若设定的补偿电压为2.6V时,最大正灰阶值对应的目标灰阶电压可以为18.6V。若设定的补偿电压为4V时,最大正灰阶值对应的目标灰阶电压可以为20V。
需要说明的是,将最大负灰阶值对应的默认灰阶电压作为最大负灰阶值对应的目标灰阶电压,是基于源极驱动电路中元器件的性能考虑的。若是,源极驱动电路中元器件的性能允许,也可以将最大负灰阶值对应的默认灰阶电压减去设定的负补偿电压后作为最大负灰阶值对应的目标灰阶电压。
基于显示面板的透过率的考虑,结合图5,图5示意出了透过率与灰阶值对应的灰阶电压之间的关系曲线。横坐标代表电压,纵坐标代表透过率。其中,曲线上小于公共电极上的电压Vcom的电压为负灰阶值对应的灰阶电压,曲线上大于公共电极上的电压Vcom的电压为正灰阶值对应的灰阶电压。V -mrmax代表最大负灰阶值对应的默认灰阶电压,V +mrmax代表最大正灰阶值对应的默认灰阶电压,在V +mrmax的基础上依次增加电压,得到Vod区间段的电压,将此电压输入到子像素中,得到的透过率与加载V +mrmax时的透过率之间满足显示需要(例如,满足误差允许范围),则可以将Vod区间段的电压作为最大正灰阶值对应的灰阶电压。然而,从图5中可知,在Vod区间段中,透过率也会有一些下降,为了保持透过率下降的较少,以及保持最大正灰阶值对应的灰阶电压尽可能的选取的较合适,可以将V0对应的18.6V作为最大正灰阶值对应的灰阶电压。并且,基于源极驱动电路中的元器件的额定电压和额定电流的考虑,将18.6V作为最大正灰阶值对应的灰阶电压,可以使源极驱动电路的功耗不会增加过多,从而可以在源极驱动电路所能承受的范围内,实现最大正灰阶值的灰阶电压。
通常,公共电极上的电压可以是最大正灰阶值对应的灰阶电压和最大负灰阶值对应的灰阶电压之间的中间值。例如,最大正灰阶值对应的灰阶电压为16V,最大负灰阶值对应的灰阶电压为0.6V时,公共电极上的电压可以为(16V+0.6V)/2=8.3V。在本公开实施例中,由于目标灰阶电压差大于默认灰阶电压差,则默认灰阶电压对应的公共电极上的电压与目标灰阶电压对应的公共电极上的电压是不同的。示例性地,默认灰阶电压对应的公共电极上的电压Vcom mrmax可以如下:Vcom mr=(V +mrmax+V -mrmax)/2。目标灰阶电压对应的公共电极上的电压Vcom mb可以如下:Vcom mbmax=(V +mbmax+V -mbmax)/2。
在本公开实施例中,针对同一子像素,子像素对应的默认灰阶电压与公共电极上的电压Vcom1之间具有默认电压差,子像素对应的目标灰阶电压与公共电极上的电压之间具有目标电压差,目标电压差大于默认电压差。示例性地,针对同一子像素,子像素对应正灰阶的默认灰阶电压V +mr与公共电极上的电压Vcom mr之间具有默认电压差V +mr-Vcom mr,子像素对应正灰阶的目标灰阶电压V +mb与公共电极上的电压Vcom mb之间具有目标电压差V +mb-Vcom mb,V +mb-Vcom mb>V +mr-Vcom mr。示例性地,针对同一子像素,子像素对应负灰阶的默认灰阶电压V -mr与公共电极上的电压Vcom mr之间具有默认电压差Vcom mr-V -mr,子像素对应负灰阶的目标灰阶电压V -mb与公共电极上的电压Vcom mb之间具有目标电压差Vcom mb-V -mb,Vcom mb-V -mb>Vcom mr-V -mr
示例性地,补偿电压可以是在显示面板出厂前进行测试得到的。在得到该补偿电压后,可以将补偿电压存储在时序控制器中,以便在显示面板出厂后可以根据本公开中的方法直接使用。
在本公开实施例中,确定补偿电压的方法,如图6所示,可以包括如下步骤:
S01、以最大正灰阶值对应的初始灰阶电压以及最大负灰阶值对应的初始灰阶电压为基准,基于设定步进电压值,在本次调节中,提高设定显示面板对应最大正灰阶值的灰阶电压。
示例性地,设定步进电压值可以为0.1V,0.2V、0.5V等,其可以根据实 际应用中的需要进行确定,在此不作限定。
以最大负灰阶值对应的初始灰阶电压为0.6V,最大正灰阶值对应的初始灰阶电压为16V,设置的设定步进电压值为0.1V为例,上一次调节中,对应最大正灰阶值的灰阶电压为16.4V,则本次调节中,可以在16.4V的基础上加上0.1V,得到16.5V,将16.5V作为本次调节提高后的最大正灰阶值的灰阶电压。
S02、根据最大负灰阶值对应的初始灰阶电压和提高后的最大正灰阶值对应的灰阶电压,确定设定显示面板对应的公共电压。
示例性地,公共电极上的电压可以是最大正灰阶值对应的灰阶电压和最大负灰阶值对应的灰阶电压之间的中间值。例如,最大正灰阶值对应的灰阶电压为16.5V,最大负灰阶值对应的灰阶电压为0.6V时,公共电极上的电压可以为(16.5V+0.6V)/2=8.55V。
S03、根据确定出的公共电压和提高后的最大正灰阶值对应的灰阶电压,驱动设定显示面板显示。
需要说明的是,由于不同型号的显示面板的规格不同,在某一型号的显示面板制备完成后,在出厂前,可以从该型号的显示面板中,抽取出1个、2个、3个或更多个显示面板,作为设定显示面板。
示例性地,在公共电极上输入8.55V,在设定显示面板中的各子像素的像素电极上输入16.5V,以驱动该设定显示面板进行显示。
S04、采集设定显示面板的子像素中,像素电极和公共电极之间的公共电压差。
示例性地,在公共电极上输入8.55V,在设定显示面板中的各子像素的像素电极上输入16.5V后,可以通过电压采集装置,采集像素电极和公共电极之间的公共电压差。
S05、判断公共电压差是否满足设定公共电压值范围。
需要说明的是,设定公共电压值范围可以为误差允许范围。当然,在实际应用中,由于不同规格的显示面板的要求不同,因此,设定公共电压值范 围可以根据实际应用的需要进行确定,在此不作限定。
示例性地,通过电压采集装置,采集到的像素电极和公共电极之间的公共电压差与设定公共电压值范围进行对比,以判断该电压差是否处于设定公共电压值范围内。若是,则说明该电压差是处于设定公共电压值范围内的,则可以执行步骤S06。若否,则说明该电压差并未处于设定公共电压值范围内,则可以执行步骤S07。
S06、将本次提高后的对应最大正灰阶值的灰阶电压与对应最大正灰阶值的初始灰阶电压之间的差值作为补偿电压。
示例性地,由于对应最大正灰阶值的初始灰阶电压为16V,本次提高后的对应最大正灰阶值的灰阶电压为16.4V,则可以将0.5V作为补偿电压存储起来。
S07、若否,则进入下一次调节。
示例性地,在下一次调节中,可以在16.5V的基础上加上0.1V,得到16.6V,将16.6V作为下一次调节提高后的最大正灰阶值的灰阶电压。并,执行上述步骤S01之后的步骤,具体在此不作赘述。
在本公开实施例中,步骤30:将当前帧的显示数据携带的默认灰阶位数的默认灰阶电压中,对应至少一个子像素的默认灰阶电压转换为目标灰阶位数的目标灰阶电压后,驱动显示面板显示,具体可以包括如下步骤:针对每一个子像素,确定子像素在当前帧中默认灰阶电压对应的灰阶值与上一帧中默认灰阶电压对应的灰阶值之间的灰阶差值。在至少一个子像素对应的灰阶差值不小于灰阶差值阈值时,将子像素的默认灰阶电压转换为目标灰阶电压后,驱动显示面板显示。示例性地,以将要显示第n帧F(n)的画面为例,可以根据第n帧F(n)的显示数据,得到第n帧F(n)中对应每一个子像素的默认灰阶电压,以及该默认灰阶电压对应的灰阶值。以及,根据第n-1帧F(n-1)的显示数据,得到第n-1帧F(n-1)中对应每一个子像素的默认灰阶电压,以及该默认灰阶电压对应的灰阶值。以一个子像素为例,该子像素在第n帧F(n)对应的灰阶值与在第n+1帧F(n+1)对应的灰阶值之间的灰阶差值。同理可得 其余子像素对应的灰阶差值,在此不作赘述。在确定每一个子像素对应的灰阶差值后,可以将这些灰阶差值与灰阶差值阈值进行比较,若存在一个子像素对应的灰阶差值不小于该灰阶差值阈值,则说明灰阶跳变的较大,可能会存在残影的问题。基于此,可以将第n帧F(n)中,每一个子像素的默认灰阶电压转换为目标灰阶电压后,驱动显示面板显示。若不存在子像素对应的灰阶差值不小于该灰阶差值阈值,即所有子像素对应的灰阶差值小于该灰阶差值阈值,则说明灰阶跳变的较小,引起残影问题的几率较小。基于此,不用将第n帧F(n)中,每一个子像素的默认灰阶电压转换为目标灰阶电压,而是可以直接执行步骤S40。
在本公开实施例中,时序控制器可以存储有多个不同灰阶位数的关系表。在具体实施时,将子像素的默认灰阶电压转换为目标灰阶电压,具体可以包括:根据预先存储的多个不同灰阶位数的关系表,确定当前帧的显示数据携带的默认灰阶位数的各灰阶值在目标灰阶位数中对应的灰阶值。之后,从目标灰阶位数对应的灰阶值中确定目标灰阶值。之后,将目标灰阶值在目标灰阶位数中对应的灰阶电压,作为子像素的目标灰阶电压。其中,目标灰阶值大于子像素的默认灰阶电压对应的目标灰阶位数中的灰阶值。示例性地,目标灰阶值与子像素的默认灰阶电压对应的目标灰阶位数中的灰阶值之间相差设定灰阶数值。
在本公开实施例中,时序控制器存储了多个关系表,关系表包括:不同灰阶位数中各灰阶值的对应关系。例如,时序控制器存储了:表一(8bit与12bit的灰阶值对应关系)所示的关系表,表二(10bit与12bit的灰阶值对应关系)所示的关系表,表三(8bit与10bit的灰阶值对应关系)所示的关系表。当然,表一至表三仅是示例,时序控制器还可以存储其他灰阶位数的灰阶值对应的关系表,在此不作限定。
结合表一所示,例如,以8bit中的2灰阶为例,8bit中2灰阶对应12bit中8灰阶。即8bit中2灰阶的灰阶电压与公共电极上的电压之间的电压差与12bit中8灰阶的灰阶电压与公共电极上的电压之间的电压差相同。例如,以 8bit中的255灰阶为例,8bit中255灰阶对应12bit中4066灰阶。即8bit中255灰阶的灰阶电压与公共电极上的电压之间的电压差与12bit中4066灰阶的灰阶电压与公共电极上的电压之间的电压差相同。其余同理,在此不作赘述。
8bit 12bit
0 0
1 2
2 8
3 15
4 20
5 27
…… ……
252 4002
253 4017
254 4032
255 4066
表一
10bit 12bit
0 0
1 2
2 4
3 8
4 11
5 15
…… ……
1020 4002
1021 4007
1022 4012
1023 4016
表二
8bit 10bit
0 0
1 2
2 4
3 8
4 11
5 15
…… ……
252 1002
253 1007
254 1012
255 1016
表三
表四示意出了现有技术中10bit与12bit的灰阶值对应关系。结合表四所示,以8bit中的1023灰阶为例,8bit中1023灰阶对应12bit中4096灰阶。即8bit中1023灰阶的灰阶电压与公共电极上的电压之间的电压差与12bit中4096灰阶的灰阶电压与公共电极上的电压之间的电压差相同。其余同理,在此不作赘述。
10bit 12bit
0 0
1 2
2 5
3 8
4 11
5 14
…… ……
1020 4089
1021 4090
1022 4091
1023 4096
表四
在本公开实施例中,如图7所示,时序控制器300可以包括精确色彩处理(Accurate Color Capture,ACC)单元以及帧(Fram)驱动单元。其中,ACC单元可以获取当前帧的显示数据和上一帧的显示数据。并判断当前帧的显示数据和上一帧的显示数据是否相同。在判断当前帧的显示数据和上一帧的显示数据不相同时,针对每一个子像素,确定子像素在当前帧中默认灰阶电压对应的灰阶值与上一帧中默认灰阶电压对应的灰阶值之间的灰阶差值。在至少一个子像素对应的灰阶差值不小于灰阶差值阈值时,确定要转换为的目标灰阶位数。帧(Fram)驱动单元可以存储有多个不同灰阶位数的关系表,并根据默认灰阶位数和目标灰阶位数,以及根据存储的多个关系表中的默认灰阶位数和目标灰阶位数对应的关系表,确定当前帧的显示数据携带的默认灰阶位数的各灰阶值在目标灰阶位数中对应的灰阶值。之后,将目标灰阶值在目标灰阶位数中对应的灰阶电压,作为子像素的目标灰阶电压进行输出。源极驱动电路120可以包括数据解码单元、数模转换器、数据输出单元。其中,数据解码单元可以接收帧(Fram)驱动单元输出的目标灰阶电压,并将 接收到的目标灰阶电压进行解码后,输出给数模转换器。由于解码后的目标灰阶电压是数字信号,数模转换器将数字信号的目标灰阶电压转换为模拟信号的伽马电压并输出给数据输出单元。数据输出单元接收转换后的伽马电压,根据接口协议将该伽马电压传输给显示面板中的数据线,以对子像素充电。
以及,在判断当前帧的显示数据和上一帧的显示数据相同时,直接将当前帧的显示数据的默认灰阶电压输出给源极驱动电路。数据解码单元可以接收默认灰阶电压,并将接收到的默认灰阶电压进行解码后,输出给数模转换器。由于解码后的默认灰阶电压是数字信号,数模转换器将数字信号的默认灰阶电压转换为模拟信号的伽马电压并输出给数据输出单元。数据输出单元接收转换后的伽马电压,根据接口协议将该伽马电压传输给显示面板中的数据线,以对子像素充电。
下面结合图4a与图4b,以第n-1帧至第n+2帧F(n-1)~F(n+2)为例,对本公开实施例中的驱动方法进行说明。需要说明的是,本实施例中是为了更好的解释本公开,但不限制本公开。图4a与图4b中,L0代表灰阶值0,L1023代表正灰阶值1023,L4018代表正灰阶值4018。S20代表本公开实施例中灰阶的跳变曲线。S11代表现有技术中对显示面板中的子像素输入L1023灰阶对应的灰阶电压时,子像素充入的实际电压曲线。S12(实线)代表本公开实施例中对显示面板中的子像素输入L4018灰阶对应的灰阶电压时,子像素充入的实际电压曲线。S13代表本公开实施例中对显示面板中的子像素输入L4018灰阶对应的灰阶电压时,子像素充入的电压的趋势曲线。
下面以正灰阶值为例,负灰阶值同理,在此不作赘述。
以默认灰阶位数为10bit,目标灰阶位数为12bit为例。
在将要显示第n帧F(n)的画面时,可以将第n帧F(n)作为当前帧,将第n-1帧F(n-1)作为上一帧,这样可以获取到第n帧F(n)的显示数据和第n-1帧F(n-1)的显示数据。
将第n帧F(n)的显示数据与第n-1帧F(n-1)的显示数据中,对应同一子像素的显示数据进行比较,以将每一个子像素对应的显示数据均比较完。若 每一个子像素中,有部分子像素对应的第n帧F(n)的显示数据与第n-1帧F(n-1)的显示数据是相同的,其余部分子像素对应的第n帧F(n)的显示数据与第n-1帧F(n-1)的显示数据是不相同的。或者,全部子像素对应的第n帧F(n)的显示数据与第n-1帧F(n-1)的显示数据是不相同的。则说明第n帧F(n)将要显示的画面和第n-1帧F(n-1)已经显示的画面是不相同的。也就是说,第n帧F(n)和第n-1帧F(n-1)显示的画面进行了切换,即显示的是动态画面。此时,其余部分子像素对应灰阶进行了跳变。
根据第n帧F(n)的显示数据,得到第n帧F(n)中对应每一个子像素的默认灰阶电压,以及该默认灰阶电压对应的灰阶值。以及,根据第n-1帧F(n-1)的显示数据,得到第n-1帧F(n-1)中对应每一个子像素的默认灰阶电压,以及该默认灰阶电压对应的灰阶值。以一个子像素为例,该子像素在第n帧F(n)对应的灰阶值与在第n+1帧F(n+1)对应的灰阶值之间的灰阶差值。同理可得其余子像素对应的灰阶差值,在此不作赘述。
在确定每一个子像素对应的灰阶差值后,可以将这些灰阶差值与灰阶差值阈值进行比较,若存在一个子像素对应的灰阶差值不小于该灰阶差值阈值,则说明灰阶跳变的较大,可能会存在残影的问题。基于此,可以根据第n帧F(n)的显示数据,确定出第n帧F(n)的默认灰阶位数为10bit,以及要转换为的目标灰阶位数为12bit。这样可以根据存储的关系表二,确定出10bit中各灰阶值对应的12bit的灰阶值。需要说明的是,以10bit中的2灰阶为例,10bit中2灰阶对应12bit中4灰阶。即10bit中2灰阶的灰阶电压与公共电极上的电压之间的电压差与12bit中4灰阶的灰阶电压与公共电极上的电压之间的电压差相同。以10bit中的1023灰阶为例,10bit中1023灰阶对应12bit中4016灰阶。即10bit中1023灰阶的灰阶电压与公共电极上的电压之间的电压差与12bit中4016灰阶的灰阶电压与公共电极上的电压之间的电压差相同。也就是说,本公开中,若此时对显示面板中的子像素输入表二中4016灰阶对应的灰阶电压时,该显示面板实现的亮度,可以与现有技术中对显示面板中的子像素输入4096灰阶对应的灰阶电压所显示的亮度是相同的。
基于目标灰阶值大于子像素的默认灰阶电压对应的目标灰阶位数中的灰阶值,以及目标灰阶值与子像素的默认灰阶电压对应的目标灰阶位数中的灰阶值之间相差设定灰阶数值的考虑,可以从目标灰阶位数对应的灰阶值中确定目标灰阶值。例如,设定灰阶数值可以为2,以10bit中的1023灰阶为例,10bit中1023灰阶对应12bit中4016灰阶。可以将12bit中大于4016灰阶的其余灰阶值作为备选的目标灰阶值。又由于需要目标灰阶值与4016灰阶之间相差2,则可以将12bit中的4018灰阶值作为目标灰阶值。或者,设定灰阶数值可以为1,以10bit中的1023灰阶为例,10bit中1023灰阶对应12bit中4016灰阶。可以将12bit中大于4016灰阶的其余灰阶值作为备选的目标灰阶值。又由于需要目标灰阶值与4016灰阶之间相差1,则可以将12bit中的4017灰阶值作为目标灰阶值。当然,在实际应用中,设定灰阶数值可以根据实际应用的需求进行确定,在此不作限定。
将目标灰阶值在目标灰阶位数中对应的灰阶电压,作为子像素的目标灰阶电压。从而可以得到第n帧F(n)将要输入各个子像素中的目标灰阶电压。将第n帧F(n)将要输入各个子像素中的目标灰阶电压依次进行解码、数模转换后得到伽马电压,根据接口协议将该伽马电压传输给显示面板中的数据线,以对子像素充电。
在将要显示第n+1帧F(n+1)的画面时,可以将第n+1帧F(n+1)的显示数据与第n帧F(n)的显示数据中,对应同一子像素的显示数据进行比较,以将每一个子像素对应的显示数据均比较完。若每一个子像素中,同一子像素对应的第n帧F(n)的显示数据与第n+1帧F(n+1)的显示数据是相同的,则说明第n帧F(n)将要显示的画面和第n+1帧F(n+1)已经显示的画面是相同的。也就是说,第n帧F(n)和第n+1帧F(n+1)显示的画面未进行切换,即显示的是静态画面。此时,子像素对应灰阶不跳变,从而不用进行灰阶位数对应的灰阶电压的转换。则可以直接根据当前帧的显示数据的默认灰阶电压,以驱动显示面板显示。例如,输入10bit中1023灰阶对应的灰阶电压。
在将要显示第n+2帧F(n+2)的画面时,可以将第n+2帧F(n+2)的显示数 据与第n帧F(n)的显示数据中,对应同一子像素的显示数据进行比较,以将每一个子像素对应的显示数据均比较完。若每一个子像素中,同一子像素对应的第n帧F(n)的显示数据与第n+2帧F(n+2)的显示数据是相同的,则说明第n帧F(n)将要显示的画面和第n+2帧F(n+2)已经显示的画面是相同的。也就是说,第n帧F(n)和第n+2帧F(n+2)显示的画面未进行切换,即显示的是静态画面。此时,子像素对应灰阶不跳变,从而不用进行灰阶位数对应的灰阶电压的转换。则可以直接根据当前帧的显示数据的默认灰阶电压,以驱动显示面板显示。例如,输入10bit中1023灰阶对应的灰阶电压。
本领域内的技术人员应明白,本公开的实施例可提供为方法、***、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (11)

  1. 一种显示面板的驱动方法,包括:
    获取当前帧的显示数据和上一帧的显示数据;
    判断所述当前帧的显示数据和所述上一帧的显示数据是否相同;
    若否,则将所述当前帧的显示数据携带的默认灰阶位数的默认灰阶电压中,对应至少一个子像素的默认灰阶电压转换为目标灰阶位数的目标灰阶电压后,驱动所述显示面板显示;
    其中,针对同一子像素,所述子像素对应的默认灰阶电压与公共电极上的电压之间具有默认电压差,所述子像素对应的目标灰阶电压与公共电极上的电压之间具有目标电压差,所述目标电压差大于所述默认电压差;
    以及,所述目标灰阶位数的最大正灰阶值对应的目标灰阶电压和最大负灰阶值对应的目标灰阶电压之间具有目标灰阶电压差,所述默认灰阶位数的最大正灰阶值对应的默认灰阶电压和最大负灰阶值对应的默认灰阶电压之间具有默认灰阶电压差;所述目标灰阶电压差大于所述默认灰阶电压差。
  2. 如权利要求1所述的显示面板的驱动方法,其中,所述目标灰阶位数大于所述默认灰阶位数。
  3. 如权利要求2所述的显示面板的驱动方法,其中,将所述最大负灰阶值对应的默认灰阶电压作为所述最大负灰阶值对应的目标灰阶电压,将所述最大正灰阶值对应的默认灰阶电压加上设定的补偿电压后作为所述最大正灰阶值对应的目标灰阶电压。
  4. 如权利要求3所述的显示面板的驱动方法,其中,所述最大正灰阶值对应的目标灰阶电压为17.5V~20V。
  5. 如权利要求3所述的显示面板的驱动方法,其中,确定所述补偿电压的方法,包括:
    以最大正灰阶值对应的初始灰阶电压以及最大负灰阶值对应的初始灰阶电压为基准,基于设定步进电压值,在本次调节中,提高设定显示面板对应 最大正灰阶值的灰阶电压;
    根据最大负灰阶值对应的初始灰阶电压和提高后的最大正灰阶值对应的灰阶电压,确定所述设定显示面板对应的公共电压;
    根据确定出的公共电压和提高后的最大正灰阶值对应的灰阶电压,驱动所述设定显示面板显示;
    采集所述设定显示面板的子像素中,像素电极和公共电极之间的公共电压差;
    判断所述公共电压差是否满足设定公共电压值范围;
    若是,则将本次提高后的对应最大正灰阶值的灰阶电压与对应最大正灰阶值的初始灰阶电压之间的差值作为所述补偿电压;
    若否,则进入下一次调节。
  6. 如权利要求1-5任一项所述的显示面板的驱动方法,其中,所述将所述当前帧的显示数据携带的默认灰阶位数的默认灰阶电压中,对应至少一个子像素的默认灰阶电压转换为目标灰阶位数的目标灰阶电压后,驱动所述显示面板显示,包括:
    针对每一个子像素,确定所述子像素在所述当前帧中默认灰阶电压对应的灰阶值与所述上一帧中默认灰阶电压对应的灰阶值之间的灰阶差值;
    在至少一个子像素对应的灰阶差值不小于灰阶差值阈值时,将所述子像素的默认灰阶电压转换为目标灰阶电压后,驱动所述显示面板显示。
  7. 如权利要求6所述的显示面板的驱动方法,其中,所述将所述子像素的默认灰阶电压转换为目标灰阶电压,包括:
    根据所述默认灰阶位数和所述目标灰阶位数,以及预先存储的多个不同灰阶位数的关系表,确定所述当前帧的显示数据携带的默认灰阶位数的各灰阶值在所述目标灰阶位数中对应的灰阶值;其中,所述关系表包括:不同灰阶位数中各灰阶值的对应关系;
    从所述目标灰阶位数对应的灰阶值中确定目标灰阶值;其中,所述目标灰阶值大于所述子像素的默认灰阶电压对应的目标灰阶位数中的灰阶值;
    将所述目标灰阶值在所述目标灰阶位数中对应的灰阶电压,作为所述子像素的目标灰阶电压。
  8. 如权利要求7所述的显示面板的驱动方法,其中,所述目标灰阶值与所述子像素的默认灰阶电压对应的目标灰阶位数中的灰阶值之间相差设定灰阶数值。
  9. 一种显示装置,包括:
    时序控制器,被配置为获取当前帧的显示数据和上一帧的显示数据;判断所述当前帧的显示数据和所述上一帧的显示数据是否相同;若是,则将所述当前帧的显示数据携带的默认灰阶位数的默认灰阶电压中,对应至少一个子像素的默认灰阶电压转换为目标灰阶位数的目标灰阶电压;
    源极驱动电路,被配置为接收所述时序控制器输出的目标灰阶电压,并根据接收的目标灰阶电压,驱动所述显示面板显示;
    其中,针对同一子像素,所述子像素对应的默认灰阶电压与公共电极上的电压之间具有默认电压差,所述子像素对应的目标灰阶电压与公共电极上的电压之间具有目标电压差,所述目标电压差大于所述默认电压差;
    以及,所述目标灰阶位数的最大正灰阶值对应的目标灰阶电压和最大负灰阶值对应的目标灰阶电压之间具有目标灰阶电压差,所述默认灰阶位数的最大正灰阶值对应的默认灰阶电压和最大负灰阶值对应的默认灰阶电压之间具有默认灰阶电压差;所述目标灰阶电压差大于所述默认灰阶电压差。
  10. 如权利要求9所述的显示装置,其中,所述时序控制器进一步被配置为针对每一个子像素,确定所述子像素在所述当前帧中默认灰阶电压对应的灰阶值与所述上一帧中默认灰阶电压对应的灰阶值之间的灰阶差值;在至少一个子像素对应的灰阶差值不小于灰阶差值阈值时,将所述子像素的默认灰阶电压转换为目标灰阶电压后,驱动所述显示面板显示。
  11. 如权利要求10所述的显示装置,其中,所述时序控制器存储有多个不同灰阶位数的关系表。
PCT/CN2021/128106 2021-11-02 2021-11-02 显示面板的驱动方法及显示装置 WO2023077258A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/128106 WO2023077258A1 (zh) 2021-11-02 2021-11-02 显示面板的驱动方法及显示装置
CN202180003213.8A CN116391217A (zh) 2021-11-02 2021-11-02 显示面板的驱动方法及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128106 WO2023077258A1 (zh) 2021-11-02 2021-11-02 显示面板的驱动方法及显示装置

Publications (1)

Publication Number Publication Date
WO2023077258A1 true WO2023077258A1 (zh) 2023-05-11

Family

ID=86240426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128106 WO2023077258A1 (zh) 2021-11-02 2021-11-02 显示面板的驱动方法及显示装置

Country Status (2)

Country Link
CN (1) CN116391217A (zh)
WO (1) WO2023077258A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100214309A1 (en) * 2009-02-26 2010-08-26 Samsung Electronics Co., Ltd. Method of generating a common voltage for driving a display panel, display panel driving apparatus for performing the method and display apparatus having the display panel driving apparatus
CN103474042A (zh) * 2013-09-12 2013-12-25 青岛海信电器股份有限公司 一种过压驱动的方法、装置及显示设备
CN104078016A (zh) * 2014-06-19 2014-10-01 京东方科技集团股份有限公司 时序控制方法、时序控制器及显示装置
CN105161047A (zh) * 2015-10-26 2015-12-16 京东方科技集团股份有限公司 一种显示面板的显示驱动方法、显示驱动电路及显示装置
CN112581896A (zh) * 2020-12-10 2021-03-30 昆山国显光电有限公司 显示面板及其补偿方法和补偿装置
CN113327535A (zh) * 2021-05-31 2021-08-31 Tcl华星光电技术有限公司 显示面板的显示画面的调节方法及调节***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100214309A1 (en) * 2009-02-26 2010-08-26 Samsung Electronics Co., Ltd. Method of generating a common voltage for driving a display panel, display panel driving apparatus for performing the method and display apparatus having the display panel driving apparatus
CN103474042A (zh) * 2013-09-12 2013-12-25 青岛海信电器股份有限公司 一种过压驱动的方法、装置及显示设备
CN104078016A (zh) * 2014-06-19 2014-10-01 京东方科技集团股份有限公司 时序控制方法、时序控制器及显示装置
CN105161047A (zh) * 2015-10-26 2015-12-16 京东方科技集团股份有限公司 一种显示面板的显示驱动方法、显示驱动电路及显示装置
CN112581896A (zh) * 2020-12-10 2021-03-30 昆山国显光电有限公司 显示面板及其补偿方法和补偿装置
CN113327535A (zh) * 2021-05-31 2021-08-31 Tcl华星光电技术有限公司 显示面板的显示画面的调节方法及调节***

Also Published As

Publication number Publication date
CN116391217A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
KR101287209B1 (ko) 액정 표시장치의 구동장치와 그의 구동방법
US9799281B2 (en) Liquid crystal panel and driving method for the same
CN101436392B (zh) 驱动液晶显示设备的装置和方法
EP2709097B1 (en) Driving method and apparatus of liquid crystal display apparatus, and liquid crystal display apparatus
JP4683837B2 (ja) 複数の階調電圧を有する液晶表示装置、その駆動装置及び方法
US9691337B2 (en) Digital gamma correction part, display apparatus having the same and method of driving display panel using the same
KR102279278B1 (ko) 표시 장치 및 이의 구동 방법
US9058785B2 (en) Image displaying method for display device
US8970637B2 (en) Unit and method of controlling frame rate and liquid crystal display device using the same
CN109785803B (zh) 一种显示方法、显示单元及显示器
US20210217373A1 (en) Method for driving pixel matrix and display device
KR20040009817A (ko) 액정 표시 장치
US10726767B2 (en) Display apparatus and method of driving the same
CN109949760B (zh) 一种像素矩阵驱动方法及显示装置
CN109949764B (zh) 一种像素矩阵驱动方法及显示装置
CN109949766B (zh) 一种像素矩阵驱动方法及显示装置
KR20080002568A (ko) 액정 표시장치의 구동장치와 그의 구동방법
US20080088615A1 (en) Driving method for liquid crystal display using block cycle inversion
CN111862897B (zh) 用于源极驱动装置的驱动方法及其显示***
CN109949762B (zh) 一种像素矩阵驱动方法及显示装置
CN109658893B (zh) 显示面板的驱动方法、驱动装置及显示设备
WO2023103520A1 (zh) 显示面板的驱动方法及显示装置
WO2023077258A1 (zh) 显示面板的驱动方法及显示装置
CN109949763B (zh) 一种像素矩阵驱动方法及显示装置
CN109949761B (zh) 一种像素矩阵驱动方法及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE