WO2023075045A1 - Paper chip for controlling fluid flow by using wax barriers - Google Patents

Paper chip for controlling fluid flow by using wax barriers Download PDF

Info

Publication number
WO2023075045A1
WO2023075045A1 PCT/KR2022/004691 KR2022004691W WO2023075045A1 WO 2023075045 A1 WO2023075045 A1 WO 2023075045A1 KR 2022004691 W KR2022004691 W KR 2022004691W WO 2023075045 A1 WO2023075045 A1 WO 2023075045A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
sample
reaction
buffer
detection
Prior art date
Application number
PCT/KR2022/004691
Other languages
French (fr)
Korean (ko)
Inventor
김종철
Original Assignee
주식회사 에이아이더뉴트리진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이아이더뉴트리진 filed Critical 주식회사 에이아이더뉴트리진
Publication of WO2023075045A1 publication Critical patent/WO2023075045A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5023Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures with a sample being transported to, and subsequently stored in an absorbent for analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0663Stretching or orienting elongated molecules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/126Paper
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/101Temperature

Definitions

  • the present invention relates to a paper chip that controls fluid flow using a wax barrier, and more particularly, to a paper chip that includes a plurality of wax barriers and can control fluid flow in a pad.
  • the current universal molecular diagnosis method uses real-time PCR, which is the most common because of its speed, but it is difficult to use easily because it requires large and expensive equipment for on-site diagnosis or primary and secondary medical institutions.
  • three steps are largely required: sample preparation, nucleic acid amplification reaction, and detection.
  • nucleic acid amplification reaction and detection can be reproduced simultaneously by real-time PCR equipment, The preprocessing problem still remains.
  • lab-on-paper technology refers to a technology based on an integrated system that performs sample pretreatment, isothermal amplification, detection, and analysis steps on a single chip. Since all reactions can be automated and quickly performed with small paper and a chip structure embedded in the paper, it has the advantage of being independent of the location such as the detection site.
  • the paper chip manufactured by the conventional wrap-on-paper technology includes a single wax barrier, and when both sides of the pad are wet, the single wax barrier cannot block the flow of fluid.
  • Patent Document 1 KR 10-1662802 B1
  • a sample pad accommodating a biological sample
  • a buffer pad disposed separately from the sample pad and accommodating a rehydration buffer
  • a first connection pad disposed above the sample pad and connecting the sample pad and the reaction pad;
  • an initiator pad disposed above the buffer pad and connecting the buffer pad and the reaction pad;
  • reaction pad disposed below the first connection pad and the initiator pad, including a primer capable of specifically binding to a target nucleic acid and a reagent for an isothermal amplification reaction (LAMP), wherein an isothermal amplification reaction occurs;
  • LAMP isothermal amplification reaction
  • a blocking pad disposed above the reaction pad to maintain the reaction temperature and block evaporation of the sample
  • a detection pad disposed under the second connection pad and obtaining target nucleic acid amplified from an isothermal amplification reaction coupled with the gold nanoparticles;
  • An absorption pad disposed on a side of the detection pad and absorbing the remaining sample
  • a heating pad disposed below the sample pad, the initiator pad, the reaction pad, and the second connection pad,
  • the initiator pad and the second connection pad provide a structure for detecting multiple nucleic acids including a plurality of wax barriers.
  • sample pad and the first connection pad and the buffer pad and the initiator pad; reaction pad; a second connection pad; detection pad; and the absorbent pads are sequentially disposed at least partially in contact with each other, and a structure for detecting multiple nucleic acids is provided.
  • Another aspect provides a kit for diagnosing a disease or fungal infection, including the structure for detecting multiple nucleic acids.
  • Another aspect provides a method for providing information for diagnosing a disease or fungal infection using the structure for detecting multiple nucleic acids.
  • the disease or fungal infection diagnosis system of the present invention is based on lab-on-paper chip technology, and when the disease or fungal infection diagnosis system of the present invention is used, it moves to the reaction pad without separate nucleic acid purification.
  • a nucleic acid material can be purified and immediately applied to an amplification reaction, and a plurality of target nucleic acids can be simultaneously detected and related diseases can be diagnosed by applying one sample.
  • the structure for detecting nucleic acids of the present invention includes a sample pad 120, a first connection pad 131, a buffer pad 121, an initiator pad 132, a reaction pad 140, and a heating pad 141 ), a blocking pad 142, a second connection pad 150, a detection pad 160, an absorption pad 170, and a housing 110 as components.
  • the sample pad 120 accommodates a sample containing a nucleic acid material.
  • the sample is separated from the human body and includes blood, serum, plasma, saliva, sweat, urine, cell culture fluid, tissue suspension, etc., but is not limited thereto.
  • the sample may be mixed with a cell lysis buffer, and, if necessary, after mixing with the cell lysis buffer, it may be further purified by a commonly known method such as centrifugation, filtration, or precipitation.
  • the sample does not include a step of purifying the sample to be applied to the sample pad other than the structure for detecting nucleic acid after being mixed with the cell lysis buffer.
  • the cell lysis buffer may contain Tris (tris (hydroxymethyl) aminomethane) at 5 mM to 80 mM, 5 mM to 50 mM, or 10 mM to 50 mM. . Tris may specifically be Tris-HCl, and can reduce rapid pH fluctuations as a buffering agent in a cell lysis buffer.
  • the cell lysis buffer may have a pH of 8.0 to 9.0. When the pH is less than 8.0, the stability of the nucleic acid material may be reduced or the rate of migration may be reduced.
  • the cell lysis buffer may contain potassium chloride (KCl) at 5 mM to 50 mM, 5 mM to 40 mM, or 10 mM to 20 mM.
  • KCL potassium chloride
  • a high concentration of potassium chloride exceeding 50 mM is helpful for cell lysis, but reduces the aqueous solubility of the eluted nucleic acid material, which may require the addition of a large amount of additional buffer or increase the time taken to move to the reaction pad.
  • potassium chloride is less than 5 mM, cells may not be properly lysed.
  • the cell lysis buffer may contain magnesium sulfate (MgSO 4 ) at 1 mM to 30 mM, 1 mM to 20 mM, or 2 mM to 16 mM. It has been confirmed that the stability and migration speed of nucleic acid substances are increased when an appropriate amount of magnesium sulfate is included, and since it does not affect the viscosity, it does not disturb the flow of the fluid, which is advantageous in pre-processing the sample for paper chip analysis.
  • MgSO 4 magnesium sulfate
  • the cell lysis buffer may contain ammonium sulfate ((NH 4 ) 2 SO 4 ) at 5 mM to 50 mM, 5 mM to 40 mM, or 10 mM to 20 mM. High concentrations of ammonium sulfate, greater than 50 mM, may precipitate cell lysates, and pH may become unstable when ammonium sulfate is less than 5 mM.
  • ammonium sulfate (NH 4 ) 2 SO 4 ) at 5 mM to 50 mM, 5 mM to 40 mM, or 10 mM to 20 mM.
  • High concentrations of ammonium sulfate, greater than 50 mM may precipitate cell lysates, and pH may become unstable when ammonium sulfate is less than 5 mM.
  • the cell lysis buffer may contain 0.01 mg/ml to 0.1 mg/ml or 0.03 mg/ml to 0.07 mg/ml of proteolytic enzyme.
  • the proteolytic enzyme degrades the polymer protein so that the polymer protein does not block the pores of the substrate or paper, which is the path for nucleic acid to move, and increases the stability of the nucleic acid material by inhibiting the activities of RNase and DNase.
  • the proteolytic enzyme may be proteinase K.
  • the surfactant may be TritonX-100 or Tween20 (polysorbate 20), 0.01 w/w% to 0.2 w/w%, preferably 0.05 w/w% to 0.1 w based on the weight of the cell lysis buffer. Can be included as /w%.
  • the cell lysis buffer may be used in a ratio of 1:1 to the volume of the sample.
  • the cell lysis buffer may not contain glycerol. Glycerol is sometimes added to prevent protein precipitation, but glycerol increases the viscosity, reduces the fluidity of the cell lysate, and may interfere with the movement of nucleic acid materials.
  • the cell lysis buffer may not contain a reducing agent.
  • Reducing agents such as dithiothreitol (DTT) and mercaptoethanol, help to denature proteins and increase the solubility of cell lysates, but interfere with fluorescence or detection reactions when present in the solution flowing into the paper chip. It can be.
  • the heating pad is heated at a temperature of 60 to 80 ° C for 1 to 5 minutes, preferably for 5 minutes, so that the sample pad contains viruses and epithelial cells. Promote dissolution of the sample.
  • the cell lysis composition promotes cell lysis in the sample pad 120 made of a polysulfone membrane (eg, Vivid GF) or a nitrocellulose membrane, and makes it easier to detect nucleic acids.
  • the polysulfone membrane and the nitrocellulose membrane may form a structure in which two or more are laminated.
  • the polysulfone membrane may be asymmetric, and the polysulfone membrane and the nitrocellulose membrane may be porous materials having pores of 0.5 ⁇ m to 1 ⁇ m. It is advantageous that the pores are rather large.
  • Many biological samples have viscosity, and in particular, when the sample is treated with a composition for cell dissolution, the viscosity may increase significantly as nucleic acid materials and proteins are eluted out of the cells. Therefore, it is preferable that the pore size of the sample pad has an appropriate size to rapidly absorb the sample.
  • lateral flow method refers to a method in which a sample is flowed from an application point to a target point by a capillary phenomenon or a diffusion phenomenon in a horizontal direction without using gravity. Since the cell lysate contains a large amount of hydrolytic enzymes capable of degrading nucleic acid material, the yield of nucleic acid material may be reduced if the cell lysate remains in the migration path for a long time. Therefore, in order to be applied to a structure for detecting nucleic acid in a lateral flow type, the flow rate should be excellent and the cell lysate should not precipitate and block the movement path while the sample is moving.
  • composition of the cell lysis buffer of the present invention does not precipitate cell lysates or nucleic acid materials even if it does not contain glycerol or a reducing agent, and can transfer nucleic acid materials laterally to the reaction pad in high yield.
  • the first connection pad 131 partially contacts the sample pad, is disposed above the sample pad, and connects the sample pad and the reaction pad with a structure having a relatively narrow width compared to the sample pad.
  • the first connection pad may be made of a cellulose membrane and have pores of 0.005 ⁇ m to 0.015 ⁇ m.
  • the buffer pad 121 is a pad to which the rehydration buffer is applied dropwise, and serves to apply water pressure to the structure.
  • the buffer pad may be disposed separately from the sample pad in order to minimize the movement of cell lysis debris such as proteins to the reaction pad and induce the movement of only the isothermal amplification reactants to the detection pad by applying water pressure after the reaction is completed.
  • the rehydration buffer applied to the buffer pad is an additional buffer, for example, 5 mM to 80 mM Tris-HCl, 20 mM to 70 mM potassium chloride, 0.5 mM to 5 mM magnesium sulfate, 1 mM to 30 mM ammonium sulfate, and 0.01 mM It may be an isothermal buffer containing w/w% to 0.2 w/w% Tween® 20 to TritonX-100 and having an acidity of pH 8.0 to 9.0 or a phosphate buffer (50 mM Na 2 HPO 4 , pH 7.2).
  • the isothermal buffer may more specifically include 20 mM Tris-HCl, 10 mM (NH 4 ) 2 SO 4 , 50 mM KCl, 2 mM MgSO 4 , and 0.1% Tween® 20, and may have a pH of 8.8.
  • the addition buffer may not contain a protease, glycerol, or a reducing agent.
  • the buffer pad is a porous material having pores of 0.5 ⁇ m to 1 ⁇ m to sufficiently receive the rehydration buffer, and is made of cotton, flax, paper, nitrocellulose, cellulose acetate, glass fiber, polysulfone, polyacrylic, polynitrile, polypiperazine, polyamide, polyethersulfone, polyvinylidene fluoride, polyethyleneimine, polydimethylsiloxane or mixtures thereof.
  • the initiator pad 132 is disposed above the buffer pad and has a relatively narrow width compared to the buffer pad, and connects the buffer pad and the reaction pad.
  • the initiator pad may be made of a cellulose membrane and have pores of 0.005 ⁇ m to 0.015 ⁇ m.
  • An initiator pad at a portion in contact with the reaction pad may be coated with low melting point agarose or wax.
  • the initiator pad may include a wax barrier, and the wax barrier may include a first wax barrier and a second wax barrier.
  • the wax barrier is formed to a certain thickness on one side of the pad. More specifically, a first wax barrier may be formed to have a certain thickness in a direction perpendicular to a direction in which the rehydration buffer solution of the initiator pad is absorbed, and a second wax barrier may be formed at opposite positions spaced apart from each other at regular intervals. .
  • the present invention is characterized in that a plurality of wax barriers are formed on the initiator pad, and the wax barriers are spaced apart and disposed at regular intervals.
  • the first wax barrier has a width of 1.5 to 1.75 mm
  • the second wax barrier has a width of 0.1 to 0.3 mm.
  • the initiator pad of the present invention blocks the rehydration buffer solution of the buffer pad by the first wax barrier and the second wax barrier, and then heats the initiator pad at the end of the reaction in the reaction pad to rehydrate.
  • the buffer solution By flowing the buffer solution sideways, the nucleic acid amplified in the reaction pad can flow to the detection pad.
  • a heating pad 141 for heating may be disposed under the initiator pad. When heated at the end of the isothermal amplification, the isothermally amplified product from the reaction pad is easily moved to the detection pad. The heating may be performed at 60 to 80° C. for 1 minute to 5 minutes, preferably for 2 minutes.
  • the reaction pad is a component corresponding to the paper chip in lab-on-paper, and isothermal amplification reagents including dNTP, DNA polymerase, reverse transcriptase, fluorescent marker, isothermal amplification reaction buffer, etc. for amplification reaction are fixed thereto. Therefore, the solution containing the nucleic acid material penetrates into the reaction pad by the additional buffer applied to the sample pad and is wetted, and the contact material between the isothermal amplification reagent and the sample moves to the reaction pad and is heated by the heating pad at the bottom of the reaction pad. When heated to 60 to 70 ° C., an isothermal amplification reaction or a reverse transcription isothermal amplification reaction occurs.
  • the isothermal amplification reagent is specifically dNTP (1.4mM, dATP, dCTP, dGTP and dTTP), isothermal amplification buffer (1X, 20mM Tris-HCl, 10mM (NH 4 ) 2 SO 4 , 50mM KCl, 2mM MgSO 4 , and 0.1% Tween-20, pH7.5), and Bst 3.0 DNA polymerase (320 U/ml), which are mixed in the reaction pad and then dried or applied to the surface of the reaction pad in powder form, for example, It may be fixed by heating in an oven at about 35 to 40 ° C. for about 30 minutes.
  • the reaction pad 140 may partially come into contact with the first connection pad and the initiator pad, and may be disposed under and sideways of the first connection pad and the initiator pad.
  • a heating pad 141 may be disposed below the reaction pad 140 to heat to a temperature at which an isothermal amplification reaction may occur.
  • the heating pad may include a hot wire or a hot plate for heating. The heating may be performed at 60 to 70°C, preferably 60 to 65°C for 20 minutes to 1 hour, preferably 20 minutes to 30 minutes.
  • the reaction pad may have a blocking pad 142 disposed above the reaction pad to serve as a blocking function.
  • the isothermal amplification reaction temperature is maintained by a blocking pad laminated to a series of arranged pads, and evaporation of reagents is blocked to increase reaction efficiency.
  • the blocking pad may be a non-porous membrane or a structure capable of blocking the reaction pad from outside air.
  • ⁇ M) and outer primers (F3 and B3, 0.2 ⁇ M) can be immobilized.
  • the concentration of the primers is based on the volume of the well, and the concentration of the primer set in the well can be changed while maintaining the concentration ratio between the respective primers.
  • An isothermal amplification reaction can occur more intensively by the presence of wells in the reaction pad.
  • the well may have a hydrogel layer formed at the bottom and the primer set fixed to the hydrogel layer.
  • primer sets that specifically bind to different target nucleic acids may be immobilized in each well.
  • the hydrogel layer containing the primer may be formed, for example, by the following method.
  • UV-light crosslinkable poly(ethylene glycol) diacrylate PEGDA, Sigma-Aldrich, MW700
  • PEG poly(ethylene glycol)
  • PEG poly(ethylene glycol)
  • MW600 poly(ethylene glycol)
  • PBS buffer pH7.5
  • the poly(ethylene glycol) is preferably included to increase the porosity of the hydrogel microparticles.
  • the hydrogel solution is applied to the inner surface of each well of the reaction pad and exposed to UV (360 nm wavelength, 35 mJ/cm 2 ) for 1 minute to form a hydrogel coating layer. Since the hydrogel layer has pores, an amplification reaction may occur intensively in the pores by binding to primers in the hydrogel layer.
  • any one of the forward and reverse primers in the primer set is Cy3, Cy5, TAMRA, TEX, TYE, HEX, FAM, TET, JOE, MAX, ROX, VIC, Cy3.5, Texas Red, Cy5.5, TYE, BHQ , Iowa Black RQ, and may be labeled with one or more fluorescent markers selected from the group consisting of IRDye.
  • the fluorescent marker may be labeled differently for each target nucleic acid in order to independently detect the target nucleic acid.
  • the other one of the forward and reverse primers may be biotin-linked. Since biotin can bind to streptavidin, it exists in a form bound to the amplified target nucleic acid and passes through the second connection pad, binds to streptavidin on the surface of the gold particle and is detected when captured by the detection pad Make the results visible. Biotin may be designed to be present at opposite positions of a detector and a detector in the amplified target nucleic acid. For example, when a detector is bound to the 5' end of a forward primer, biotin may be bound to the 5' end of a reverse primer. there is.
  • the reaction pad is made of a cellulose acetate membrane material, and has a pore size of 0.001 ⁇ m to 0.005 ⁇ m, preferably 0.005 ⁇ m, so that the nucleic acid can remain and sufficiently isothermally amplified while allowing the sample and the additional buffer to flow freely.
  • the reaction pad may include 40 mM to 50 mM sucrose, 0.001 to 0.01% Triton X-100, and 0.1 w/w% to 0.3 w/w% glycerol. This can increase their storage stability when the isothermal amplification reagent and primer set are exposed to moisture or oxygen.
  • the storage stability may mean that it can be stored for 3 weeks or more without degradation products or by-products at 25 ° C to 30 ° C.
  • the second connection pad 150 may partially come into contact with the reaction pad and may be disposed above and sideways of the reaction pad.
  • the second connection pad 150 includes gold nanoparticles, and the gold nanoparticles combine with the nucleic acid amplified in the reaction pad and move to the detection pad.
  • the gold nanoparticles may preferably have streptavidin immobilized on the surface.
  • the second connection pad is cotton, wool, paper, nitrocellulose, glass fiber, polysulfone, polyacrylic, polynitrile, polypiperazine, polyamide, polyethersulfone, polyethersulfone, As a porous material of vinylidene fluoride, polyethyleneimine, polydimethylsiloxane, or a mixture thereof, it may have a pore size of 0.01 ⁇ m to 0.05 ⁇ m, preferably, 0.05 ⁇ m.
  • the second connection pad may have a cellulose material, and the second connection pad at a portion in contact with the reaction pad may be coated with low melting point agarose or wax.
  • a wax barrier may be formed on the second connection pad in the same manner as the previous initiator pad. More specifically, the wax barrier may be formed of a first wax barrier and a second wax barrier. The wax barrier is formed to a certain thickness on one side of the pad. More specifically, a first wax barrier may be formed to have a certain thickness in a direction perpendicular to a direction in which the isothermal amplification reactant of the second connection pad is absorbed, and a second wax barrier may be formed at opposite positions spaced apart from each other at regular intervals. .
  • the second connection pad blocks the flow of the isothermal amplification reactant through a single wax barrier, but if both sides of the second connection pad become wet, a single wax barrier may not block the fluid flow. This is a phenomenon caused by the merging of the meniscus of the fluid by capillary action.
  • the present invention is characterized in that a plurality of wax barriers are formed on the second connection pad, and the wax barriers are spaced apart and disposed at regular intervals.
  • the first wax barrier has a width of 1.5 to 1.75 mm
  • the second wax barrier has a width of 0.1 to 0.3 mm.
  • the flow of the isothermal amplification reactant may be blocked by the first wax barrier and the second wax barrier.
  • the movement of the isothermal amplification reactant in the reaction pad is blocked by the first wax barrier and the second wax barrier, and then the coating melts at the time of heating the second connection pad, so that the isothermal amplification reactant moves to the side. It is possible to prevent the loss of unreacted genetic material in the sample by moving back to .
  • a heating pad 141 for heating may be disposed under the second connection pad.
  • the heating may be performed at 60 to 80° C. for 1 minute to 5 minutes, preferably for 2 minutes.
  • the detection pad 160 may partially come into contact with the second connection pad and may be disposed below and on the side of the second connection pad.
  • a receptor that can bind to the detector is fixed to the detection pad 160 .
  • the receptor may be an antibody, protein, or fragment thereof capable of specifically binding to a detector.
  • the detection pad includes a plurality of detection regions, and the detection regions may be divided into lines or wells.
  • each receptor is independently immobilized.
  • a solution containing a receptor and EDC (1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide) or NHS (N-hydroxysulfosuccinimide) may be applied.
  • EDC 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide
  • NHS N-hydroxysulfosuccinimide
  • the detection pad is nitrocellulose and may have a pore size of 0.001 ⁇ m to 0.005 ⁇ m, preferably 0.005 ⁇ m, so that the sample can move laterally to the absorption pad.
  • a heating pad 141 may be disposed below the sample pad, the initiator pad, the reaction pad, and the second connection pad.
  • the heating pad is a metal plate having thermal conductivity, and may be made of a material such as iron, stainless steel, aluminum, silver, or copper.
  • the heating pad may be connected with a heating wire, and each heating wire may be independently connected to the sample pad, the reaction pad, and the heating pad under the second connection pad to control the heating pad.
  • the sample pad, the first connection pad, the initiator pad, the reaction pad, the second connection pad, the detection pad, and the absorption pad may have housings 110 at upper and lower ends so that the sample or buffer is not lost, and the entire structure is a housing. It may be surrounded by a case of a support or non-porous material that can be defined as.
  • the absorbent pad 170 absorbs a sample and a buffer to block reverse flow and contribute to induce lateral fluidity.
  • the absorbent pad is a porous material, such as cotton, flax, paper, nitrocellulose, cellulose acetate, glass fiber, polysulfone, polyacrylic, polynitrile, polypiperazine, polyamide, polyethersulfone, polyvinylidene fluoride, and polyethyleneimine. , polydimethylsiloxane or mixtures thereof.
  • the absorbent pad is preferably a glass fiber and may have a pore size of 0.1 to 0.5 ⁇ m.
  • the sample pad, the first connection pad, the buffer pad, and the initiator pad; reaction pad; a second connection pad; detection pad; and the absorbent pads are sequentially disposed laterally in partial contact with each other. Specifically, the sample pad, the first connection pad, the buffer pad, and the initiator pad are separated based on the reaction pad and disposed on one side of the reaction pad, followed by the second connection pad, detection pad, and The absorbent pads are sequentially disposed.
  • nucleic acid materials can be purified by filtering cell lysate in addition to nucleic acid materials while the sample reaches the absorption pad due to the arrangement and characteristics of each component of the structure, and the moving direction of the sample is different from the ground. Lateral fluidity, which is a parallel direction, can be realized.
  • nucleic acids exist in the form of proteins such as histones, polymerases, nucleases, and transcription factors.
  • proteins lose their binding to nucleic acids by surfactants such as the cell lysis composition, but by the time the cell lysate reaches the reaction pad by the addition of distilled water or added buffer so that the cell lysate can move to the reaction pad, the surfactant is diluted, allowing the external environment to regain the protein's charge.
  • the protein may bind to the nucleic acid material again to reduce the contact area with the polymerase or interfere with the amplification reaction. Therefore, it is preferable that most cellular components capable of binding to nucleic acids are purified and removed from the reaction pad.
  • a sample for which nucleic acid is to be detected may include mixing with a cell lysis buffer prior to application to the sample pad.
  • the nucleic acid material present in the cells can be eluted, and thus the amount of the nucleic acid material detectable in the sample can be increased.
  • Tris-HCl Tris-HCl, potassium chloride 5 mM to 50 mM, magnesium sulfate 1 mM to 30 mM, ammonium sulfate 5 mM to 50 mM, protease 0.01 mg/ml to 0.1 mg/ml, TritonX- 100 or Tween20 0.01 w/w% to 0.2 w/w%, by adding a cell lysate mixed with a cell lysis buffer having a pH of 8.0 to 9.0 dropwise and operating a heating pad below the sample pad to heat the sample pad Increase the efficiency of sample dissolution. By heating the heating pad at a temperature of 60 to 80° C. for 2 minutes, dissolution of the sample including viruses and epithelial cells in the sample pad is promoted.
  • a buffer solution may be applied to the buffer pad.
  • the buffer serves to purify the nucleic acid material while allowing the nucleic acid material to move to the reaction pad.
  • the buffer serves to purify the nucleic acid material while allowing the nucleic acid material to move to the detection pad. Since the buffer solution contains an appropriate amount of a buffering component, it is possible to prevent precipitation of proteins or nucleic acids due to rapid changes in salinity or pH that may occur when distilled water is added.
  • Each pad of the structure for detecting nucleic acids of the present invention is made of a porous material having small pores so that nucleic acids can be purified while moving laterally. Therefore, if the protein or nucleic acid material is complexed or aggregated to block the pores, the movement speed of the sample may decrease and the yield of the nucleic acid material may decrease.
  • the addition buffer is, for example, 5 mM to 80 mM Tris-HCl, 20 mM to 70 mM potassium chloride, 0.5 mM to 5 mM magnesium sulfate, 1 mM to 30 mM ammonium sulfate, and 0.01 w/w% to 0.2 w/w % Tween® 20 to TritonX-100 and an acidity pH of 8.0 to 9.0 or a phosphate buffer (50 mM Na 2 HPO 4 , pH 7.2).
  • the isothermal buffer may more specifically include 20 mM Tris-HCl, 10 mM (NH 4 ) 2 SO 4 , 50 mM KCl, 2 mM MgSO 4 , and 0.1% Tween® 20, and may have a pH of 8.8.
  • the addition buffer may not contain a protease, glycerol, or a reducing agent.
  • the heating pad under the reaction pad may be heated to 60 to 65° C., and allowed to stand for 20 minutes to 1 hour, preferably 20 to 30 minutes, while maintaining the temperature.
  • Diseases that can be diagnosed using the multi-nucleic acid detection structure are those in which a specific gene can be used as a cause or indicator of a disease, for example, metabolic diseases such as obesity, hypertension, diabetes, genetic diseases, cancer, etc.
  • metabolic diseases such as obesity, hypertension, diabetes, genetic diseases, cancer, etc.
  • viruses or bacteria are related to infectious diseases, and bacteria that can cause fungal infections include bacteria, protozoa, parasites, fungi, etc., but are not limited thereto.
  • the present invention is characterized by controlling the flow of fluid using a pad including a plurality of wax barriers, enabling highly accurate detection by application of a sample.
  • the sample is applied once and the detection is performed at once without separately performing sample preparation, nucleic acid amplification reaction, and detection. can be done Since each step is not performed separately, the entire process is simplified, and various samples or devices are not required, and it can be easily performed even without a related technician.
  • 1 is an example of the overall structure of the construct for detecting multiple nucleic acids of the present invention.
  • 3 is an experimental result of fluid flow control by a wax barrier according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating the principle of obtaining target nucleic acids from the detection pad 160.
  • 5 is a side structural view of a part of the structure for detecting multiple nucleic acids of the present invention.
  • FIG. 6 is a perspective view of a part of the structure for detecting multiple nucleic acids of the present invention.
  • FIG. 7 is an enlarged structural diagram of the structure of the detection pad 160.
  • FIG. 8 is an example showing the appearance of the structure for detecting multiple nucleic acids of the present invention surrounded by a case.
  • FIG. 7 is an example showing the result of detecting SARS-CoV-2 from a blood sample.
  • the present invention relates to a sample pad accommodating a biological sample; a buffer pad disposed separately from the sample pad and accommodating a rehydration buffer; a first connection pad disposed above the sample pad and connecting the sample pad and the reaction pad; an initiator pad disposed above the buffer pad and connecting the buffer pad and the reaction pad; a reaction pad disposed under the first connection pad and the initiator pad, including a primer capable of specifically binding to a target nucleic acid and a reagent for an isothermal amplification reaction (LAMP), wherein an isothermal amplification reaction occurs; a blocking pad disposed above the reaction pad to maintain the reaction temperature and block evaporation of the sample; a second connection pad disposed above the reaction pad and to which gold nanoparticles are fixed; a detection pad disposed under the second connection pad and obtaining a target nucleic acid amplified from an isothermal amplification reaction coupled with the gold nanoparticles; and an absorption pad disposed on a side of the detection pad to absorb the remaining sample, and
  • the magnetic pad and the second connection pad include a first wax barrier and a second wax barrier, the first wax barrier has a width of 1.5 to 1.75 mm, and the second wax barrier has a width of 0.1 to 0.3 mm.
  • the first wax barrier and the second wax barrier block a stable fluid flow, and form a smooth fluid flow when the temperature is raised by the heating pad.
  • the sample pad 120 and buffer pad 121 0.01 ⁇ m cellulose was used as the first connection pad 131 or initiator pad 132
  • the reaction pad 140 was made of 0.005 ⁇ m cellulose acetate
  • the second connection pad 150 was made of 0.05 ⁇ m cellulose
  • the detection pad 160 was made of 0.005 ⁇ m nitrocellulose
  • the absorption pad 170 was made of 0.5 ⁇ m glass fiber.
  • the reaction pad 140 was prepared by making a pad by overlapping cellulose acetate films, immersing the pad in a solution containing 45 mM sucrose, 0.005 w/w% TritonX-100, and 0.2 w/w% glycerol, and drying. Then, a well was formed using a micro-drill, and a hydrogel layer including a primer set was formed on the bottom of the well.
  • hydrogel layer To form the hydrogel layer, first, based on the total volume of the hydrogel solution, UV-light crosslinkable poly (ethylene glycol) diacrylate (PEGDA, Sigma-Aldrich, MW700) 20% v / v, poly (ethylene glycol) ( Mix PEG, Sigma-Aldrich, MW600) 40% v/v and photoinitiator 2-hydroxy-2-methylpropiophenone (Sigma-Aldrich) 5% v/v and buffer (PBS buffer, pH7.5) 35% Then, a hydrogel solution was prepared by mixing each primer set therein. The poly(ethylene glycol) is preferably included to increase the porosity of the hydrogel microparticles. Then, the hydrogel solution was applied to the inner surface of each well of the reaction pad and exposed to UV (360 nm wavelength, 35 mJ/cm 2 ) for 1 minute to form a hydrogel coating layer.
  • PEGDA poly (ethylene glycol) diacrylate
  • PEG Poly (ethylene glycol)
  • dNTP 1.4mM, dATP, dCTP, dGTP and dTTP
  • isothermal amplification buffer (1X, 20mM Tris-HCl, 10mM (NH 4 ) 2 SO 4 , 50mM KCl, 2mM MgSO 4 were added to the surface of the reaction pad 140.
  • 0.1% Tween-20, pH 7.5) and Bst 3.0 DNA polymerase (320 U/ml) were applied, and fixed by heating in an oven at about 38° C. for about 30 minutes.
  • the gold nanoparticles fixed on the second connection pad 150 were prepared as colloidal particles as follows. When the 0.1% HAuCl 4 solution starts to boil while stirring and heating, 0.5% sodium citrate solution is added to reduce the solution to form gold particles, and 1 mg of streptavidin per 100 ml of the gold particle solution is added to condense made it The condensate was precipitated by centrifugation at 10,000 g, dissolved in physiological saline (PBS) containing 0.1% BSA, and stored at an OD450 value of 10.
  • PBS physiological saline
  • the second connection pad 150 was manufactured as follows. Specifically, several layers of cellulose membranes were prepared and cut, 0.4 M Tris (pH 6.5), 0.2% Tween-20, 1% sodium caseinate, 0.1% sodium azide, and 0.05% Proclin. It was immersed in a solution prepared by 300 and kept wet. The prepared gold condensate was prepared by dialysis against a solution having the same composition as the above solution. Then, the cellulose membrane was treated with the dialyzed gold condensate and dried to complete the second connection pad 150.
  • the detection pad 160 is designated by stamping the detection area with polyethylene phthalate ink, and then stamped again with a solution containing an antibody capable of binding to a fluorescent marker such as FAM, HEX, and Cy5 thereon, and NHS (N- hydroxysulfosuccinimide) solution was applied and reacted to fix the antibody.
  • a fluorescent marker such as FAM, HEX, and Cy5
  • NHS N- hydroxysulfosuccinimide
  • a portion of the second connection pad 150 in contact with the reaction pad was coated with a 5% low melting point agarose (Lonza, NuSieve GTG Agarose) solution.
  • each structure is arranged as shown in FIG. 3, and the sample pad 120, the initiator pad 132, the reaction pad 140, and the second connection pad 150 are provided with heating pads at the lower ends.
  • a copper plate connected to a hot wire at 141 was disposed, and a polyacrylic film was disposed as a blocking pad 142 on top of the reaction pad.
  • Wax barriers of 1.5 mm/0.2 mm (first wax barrier/second wax barrier) and 1.75 mm/0.2 mm (first wax barrier/second wax barrier) were formed on 0.01 ⁇ m cellulose.
  • the method of forming the wax barrier was produced by printing to have the width as described above using a wax front, and drying in an oven at 130 degrees for 45 seconds so that the wax could sufficiently permeate.
  • a cellulose pad containing a dye solution was connected to the surface where the first wax barrier was located, and the fluid flow was checked.
  • Test Example 2 Virus detection using blood samples
  • Virus infection such as SARS-CoV-2 can be easily measured by extracting nucleic acid from a blood sample using the lab-on-paper nucleic acid detection structure of the present invention, amplifying the nucleic acid, and measuring fluorescence.
  • a set of primers capable of selectively binding to the N protein gene characteristic of SARS-CoV-2 or the Rdrp gene can be used.
  • one of the forward or reverse primers of each set is, for example, FAM, HEX, or Cy5 bound, and the other primer is biotin bound.
  • the amplified nucleic acid bound to the gold nanoparticle moves to the detection pad 160 by lateral flow, and the detector bound to the other side of the amplified nucleic acid is specific for FAM, HEX, or Cy5 immobilized on the detection pad 160.
  • the color of the detection area of the detection pad is changed to pink while binding to the receptor that can be bound to it.
  • the principle of binding of the target nucleic acid to the detection pad is illustrated in FIG. 4 .
  • a primer set that selectively binds to a gene characteristic of a virus with a high possibility of cross-detection with SARS-CoV-2 can be introduced and detected together as a negative control.
  • Test Example 3 Nucleic acid extraction and amplification using blood samples
  • Nucleic acids were extracted from blood samples using the construct for detecting nucleic acids in lab-on-paper of the present invention, and nucleic acids were amplified to confirm whether they could exhibit fluorescence.
  • human blood was purchased and prepared as whole blood from Innovative Research (IWB1K2E10ML, USA), and 18S rRNA primers as a positive control were purchased from Tocris (# 7325, USA). It was confirmed through the data sheet that the whole blood used was not infected with any virus or bacteria.
  • One test sample was prepared by mixing 1 ⁇ l of 0.1 pg/ ⁇ l of SARS-CoV-2 positive control from siTOOLs Biotech with 100 ⁇ l of the human blood.
  • F3 primer bound a detector to the 5' end
  • B3 primer bound biotin to the 5' end.
  • human 18s RNA (A) was introduced with FAM, and N gene (B) with Cy5 as a detector.
  • Lysis buffer (20 mM Tris HCl (pH 8.8), 15 mM MgSO 4 , 15 mM KCl, 15 mM (NH 4 ) 2 SO 4 , 0.1 50 ⁇ l of w/w% Tween20, 0.05 mg/ml proteinase K) was added and lightly tapped, followed by incubation at room temperature for about 5 minutes.
  • the heating pad 141 under the sample pad 120 operated at 60° C., it was slowly added dropwise to the sample pad 120 of the structure for detecting nucleic acid prepared in Preparation Example 1 within 5 minutes within 5 minutes, and the addition buffer ( 250 ⁇ l of 20 mM Tris-HCl, 10 mM (NH 4 ) 2 SO 4 , 50 mM KCl, 2 mM MgSO 4 , 0.1% Tween® 20, pH 8.8) was slowly added dropwise to the sample pad for about 2 minutes, followed by reaction. The heating pad under the pad was heated to 60 °C and reacted for 30 minutes.
  • the addition buffer 250 ⁇ l of 20 mM Tris-HCl, 10 mM (NH 4 ) 2 SO 4 , 50 mM KCl, 2 mM MgSO 4 , 0.1% Tween® 20, pH 8.8
  • the heating pad under the second connection pad 150 and the heating pad under the initiator pad 132 were heated to 80° C., and 250 ⁇ l of the addition buffer was slowly added dropwise to the buffer pad for 2 minutes and displayed on the detection pad. The color change of the detection zone was observed.
  • the present invention relates to a paper chip that controls fluid flow using a wax barrier, and more particularly, to a paper chip that includes a plurality of wax barriers and can control fluid flow in a pad.

Abstract

The present invention relates to a structure comprising a pad having a plurality of wax barriers, wherein the wax barriers can control fluid flow, and thus highly accurate detection efficiency can be exhibited. In addition, the present invention relates to a structure capable of simultaneously purifying and detecting nucleic acids by directly applying a sample, and is characterized by a structure to which a lab-on-paper technology is applied such that sample pretreatment, isothermal amplification, detection and analysis steps can be carried out on a single chip, and the sample is moved in a lateral flow manner so as to be ultimately connected to big genomic data related to a disease and strain infection, and thus whether the disease or strain infection is present can be directly determined.

Description

왁스 배리어를 이용하여 유체 흐름을 조절하는 페이퍼 칩Paper chips using a wax barrier to control fluid flow
본 발명은 왁스 배리어를 이용하여 유체 흐름을 조절하는 페이퍼 칩에 관한 것으로, 구체적으로 복수의 왁스 배리어를 포함하여, 패드의 유체 흐름을 조절할 수 있는 페이퍼 칩에 관한 것이다.The present invention relates to a paper chip that controls fluid flow using a wax barrier, and more particularly, to a paper chip that includes a plurality of wax barriers and can control fluid flow in a pad.
의료서비스 수준이 증가하고 진단기기가 발전함에 따라 신종 바이러스, 슈퍼박테리아, 결핵, 식중독균 등 인체 건강을 위협하는 감염 미생물을 효과적으로 대처하기 위해 생활현장에서 빠른 시간에 간편하게 측정할 수 있는 기술이 개발되고 있다. 이들을 측정할 수 있는 분자진단은 민감도와 특이도가 우수한 진단 방법이나 특수한 장비나 시약을 요구하거나 복잡한 과정을 포함하는 경우가 많다. 면역진단 방법은 키트로 재현하기 쉽고 빠르고 간편하나 측정감도가 떨어지는 문제점이 있다.As the level of medical service increases and diagnostic equipment develops, technology is being developed that can quickly and easily measure infectious microorganisms that threaten human health, such as new viruses, super bacteria, tuberculosis, and food poisoning bacteria. . Molecular diagnosis that can measure them often requires a diagnostic method with excellent sensitivity and specificity, special equipment or reagents, or involves a complicated process. Immunodiagnostic methods are quick and easy to reproduce with a kit, but have a problem in that the measurement sensitivity is low.
현재 Real-time PCR을 이용한 진단법이 가장 빠르고 민감한 진단법으로 알려져 있으며, 일반적으로 8시간 이내에 진단이 가능하다. 현재 분자진단 방법은 PCR기술과 마이크로 채널 기술의 발전과 더불어 급속히 발전하고 있으며 Alere사의 AlereTM I 나 Roche의 Cobas Influenza 와 같이 60분 내에 검출이 가능한 제품도 상용화 되어 있다. 하지만 급속분자진단이 가능한 방법론의 경우에는 고가의 분석 장비 혹은 고가의 검사비용이 요구되며 분자진단의 전 과정을 구현하기 위해서는 여러 단계를 요구하고 있으므로 아직 현장 진단에는 한계점을 가지고 있다.Currently, the diagnostic method using real-time PCR is known as the fastest and most sensitive diagnostic method, and it is generally possible to diagnose within 8 hours. Currently, molecular diagnostic methods are developing rapidly with the development of PCR technology and microchannel technology, and products that can be detected within 60 minutes, such as Alere's AlereTM I or Roche's Cobas Influenza, are commercialized. However, in the case of a methodology capable of rapid molecular diagnosis, expensive analysis equipment or expensive test costs are required, and several steps are required to implement the entire process of molecular diagnosis, so on-site diagnosis still has limitations.
현재 보편화된 분자진단 법은 real-time PCR을 이용하는 것으로, 신속성 때문에 가장 보편화되어 있지만 현장진단 또는 1,2차 의료기관에서 사용하기에는 크고 고가의 장비를 요하기 때문에 쉽게 사용하는 것이 어려운 실정이다. 분자 진단을 위해서는 크게 시료의 전처리 (preparation), 핵산 증폭 반응 (reaction)과 검출 (detection)의 3단계가 요구되는데, 핵산 증폭 반응과 검출은 real-time PCR 장비에 의해 동시에 재현하는 것이 가능하지만 시료의 전처리 문제는 여전히 남아 있다.The current universal molecular diagnosis method uses real-time PCR, which is the most common because of its speed, but it is difficult to use easily because it requires large and expensive equipment for on-site diagnosis or primary and secondary medical institutions. For molecular diagnosis, three steps are largely required: sample preparation, nucleic acid amplification reaction, and detection. Although nucleic acid amplification reaction and detection can be reproduced simultaneously by real-time PCR equipment, The preprocessing problem still remains.
한편, 랩온페이퍼(Lab-on-paper) 기술은 시료의 전처리, 등온증폭, 검출, 및 분석 단계를 하나의 칩 위에서 수행하도록 하는 일체형 시스템에 기반한 기술을 의미한다. 작은 페이퍼와 페이퍼에 심은 칩 구조물로 모든 반응을 자동화하여 빠르게 수행할 수 있으므로 검출 현장 등의 장소에 구애받지 않는 장점을 갖는다. On the other hand, lab-on-paper technology refers to a technology based on an integrated system that performs sample pretreatment, isothermal amplification, detection, and analysis steps on a single chip. Since all reactions can be automated and quickly performed with small paper and a chip structure embedded in the paper, it has the advantage of being independent of the location such as the detection site.
다만, 종래 랩온페이퍼 기술로 제조된 페이퍼 칩은 단일 왁스 배리어를 포함하여, 패드의 양 측면이 젖어 있는 경우, 단일 왁스 배리어로 인해 유체의 흐름을 차단할 수 없는 문제가 있다.However, the paper chip manufactured by the conventional wrap-on-paper technology includes a single wax barrier, and when both sides of the pad are wet, the single wax barrier cannot block the flow of fluid.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) KR 10-1662802 B1(Patent Document 1) KR 10-1662802 B1
일 양상은, 생물학적 시료를 수용하는 시료패드;In one aspect, a sample pad accommodating a biological sample;
상기 시료패드와 분리되어 배치되고, 재수화(rehydration) 완충액을 수용하는 버퍼패드;a buffer pad disposed separately from the sample pad and accommodating a rehydration buffer;
상기 시료패드의 상부에 배치되고, 시료패드와 반응패드를 연결하는 제1연결패드;a first connection pad disposed above the sample pad and connecting the sample pad and the reaction pad;
상기 버퍼패드의 상부에 배치되고, 버퍼패드와 반응패드를 연결하는 개시자 (opener)패드;an initiator pad disposed above the buffer pad and connecting the buffer pad and the reaction pad;
상기 제1연결패드와 개시자패드의 하부에 배치되고, 표적 핵산과 특이적으로 결합할 수 있는 프라이머와 등온증폭반응 (LAMP)을 위한 시약을 포함하고, 등온증폭반응이 일어나는 반응패드; a reaction pad disposed below the first connection pad and the initiator pad, including a primer capable of specifically binding to a target nucleic acid and a reagent for an isothermal amplification reaction (LAMP), wherein an isothermal amplification reaction occurs;
상기 반응패드 상부에 배치되고, 반응온도 유지 및 시료의 증발을 차단하는 차단패드;a blocking pad disposed above the reaction pad to maintain the reaction temperature and block evaporation of the sample;
상기 반응패드의 상부에 배치되고, 금 나노입자가 고정되어 있는 제2연결패드; a second connection pad disposed above the reaction pad and to which gold nanoparticles are fixed;
상기 제2연결패드의 하부에 배치되고, 상기 금 나노입자와 결합된 등온증폭반응물로부터 증폭된 표적 핵산을 획득하는 검출패드; 및a detection pad disposed under the second connection pad and obtaining target nucleic acid amplified from an isothermal amplification reaction coupled with the gold nanoparticles; and
상기 검출패드의 측방에 배치되고, 잔류하는 시료를 흡수하는 흡수패드를 포함하고,An absorption pad disposed on a side of the detection pad and absorbing the remaining sample;
상기 시료패드, 개시자패드, 반응패드 및 제2연결패드 하부에 배치된 가열패드를 포함하며, A heating pad disposed below the sample pad, the initiator pad, the reaction pad, and the second connection pad,
상기 개시자패드 및 제2연결패드는 복수의 왁스 배리어를 포함하는 다중 핵산 검출용 구조물을 제공한다.The initiator pad and the second connection pad provide a structure for detecting multiple nucleic acids including a plurality of wax barriers.
다른 양상은, 상기 시료패드 및 제1연결패드와 버퍼패드 및 개시자패드; 반응패드; 제2연결패드; 검출패드; 및 흡수패드는 순차적으로 적어도 일부분 접촉되어 측방으로 배치된 것인, 다중 핵산 검출용 구조물을 제공한다.In another aspect, the sample pad and the first connection pad and the buffer pad and the initiator pad; reaction pad; a second connection pad; detection pad; and the absorbent pads are sequentially disposed at least partially in contact with each other, and a structure for detecting multiple nucleic acids is provided.
또 다른 양상은, 상기 다중 핵산 검출용 구조물을 포함하는, 질병 또는 균 감염 진단 키트를 제공한다.Another aspect provides a kit for diagnosing a disease or fungal infection, including the structure for detecting multiple nucleic acids.
또 다른 양상은, 상기 다중 핵산 검출용 구조물을 이용하여, 질병 또는 균 감염 진단을 위한 정보를 제공하는 방법을 제공한다.Another aspect provides a method for providing information for diagnosing a disease or fungal infection using the structure for detecting multiple nucleic acids.
여기서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.The terminology used herein is intended only to refer to specific embodiments and is not intended to limit the present invention. As used herein, the singular forms also include the plural forms unless the phrases clearly indicate the opposite. As used herein, the meaning of "comprising" specifies specific characteristics, regions, integers, steps, operations, elements, and/or components, and other specific characteristics, regions, integers, steps, operations, elements, elements, and/or groups. does not exclude the presence or addition of
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다. 이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 의한 다중 핵산 검출용 구조물에 대하여 설명하기로 한다. 여기서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.Although not defined differently, all terms including technical terms and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art to which the present invention belongs. Terms defined in commonly used dictionaries are additionally interpreted as having meanings consistent with related technical literature and currently disclosed content, and are not interpreted in ideal or very formal meanings unless defined. Hereinafter, a structure for detecting multiple nucleic acids according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings. The terminology used herein is intended only to refer to specific embodiments and is not intended to limit the present invention. As used herein, the singular forms also include the plural forms unless the phrases clearly indicate the opposite. As used herein, the meaning of "comprising" specifies specific characteristics, regions, integers, steps, operations, elements, and/or components, and other specific characteristics, regions, integers, steps, operations, elements, elements, and/or groups. does not exclude the presence or addition of
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 의한 다중 핵산 검출용 구조물에 대하여 설명하기로 한다.Hereinafter, a structure for detecting multiple nucleic acids according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
본 발명의 질병 또는 균 감염 진단 시스템은 랩온페이퍼 칩(lab-on-paper chip) 기술에 기반한 것으로서, 본 발명의 질병 또는 균 감염 진단 시스템을 이용하면 별도의 핵산을 정제하지 않아도 반응패드까지 이동하면서 핵산 물질이 정제되어 곧바로 증폭 반응에 적용될 수 있고, 1회의 시료를 적용하여 다수의 표적 핵산을 동시에 검출하고 관련 질병을 진단할 수 있다. 이를 실현하기 위해, 본 발명의 핵산 검출용 구조물은 시료패드(120), 제1연결패드(131), 버퍼패드(121), 개시자패드(132), 반응패드(140), 가열패드(141), 차단패드(142), 제2연결패드(150), 검출패드(160), 흡수패드(170) 및 하우징(110)을 구성요소로 포함한다.The disease or fungal infection diagnosis system of the present invention is based on lab-on-paper chip technology, and when the disease or fungal infection diagnosis system of the present invention is used, it moves to the reaction pad without separate nucleic acid purification. A nucleic acid material can be purified and immediately applied to an amplification reaction, and a plurality of target nucleic acids can be simultaneously detected and related diseases can be diagnosed by applying one sample. To realize this, the structure for detecting nucleic acids of the present invention includes a sample pad 120, a first connection pad 131, a buffer pad 121, an initiator pad 132, a reaction pad 140, and a heating pad 141 ), a blocking pad 142, a second connection pad 150, a detection pad 160, an absorption pad 170, and a housing 110 as components.
이하 각 구성요소에 대해 상세히 설명한다.Hereinafter, each component will be described in detail.
시료패드sample pad
시료패드(120)는 핵산 물질이 함유된 시료를 수용한다. 상기 시료는 인체로부터 분리된 것으로서 혈액, 혈청, 혈장, 침, 땀, 소변, 세포배양액, 조직현탁액 등이 있으나 이에 제한되지 않는다. 상기 시료는 세포 용해 완충액(lysis buffer)과 혼합된 것일 수 있고, 필요에 따라 상기 세포 용해 완충액과 혼합 후, 원심분리, 여과, 침전 등 통상적으로 알려진 방법으로 추가 정제될 수 있다. 바람직하게는 상기 시료는 세포 용해 완충액과 혼합된 후 핵산 검출용 구조물 외에서 상기 시료패드에 적용하기 위해 정제하는 단계를 포함하지 않는다. The sample pad 120 accommodates a sample containing a nucleic acid material. The sample is separated from the human body and includes blood, serum, plasma, saliva, sweat, urine, cell culture fluid, tissue suspension, etc., but is not limited thereto. The sample may be mixed with a cell lysis buffer, and, if necessary, after mixing with the cell lysis buffer, it may be further purified by a commonly known method such as centrifugation, filtration, or precipitation. Preferably, the sample does not include a step of purifying the sample to be applied to the sample pad other than the structure for detecting nucleic acid after being mixed with the cell lysis buffer.
상기 세포 용해용 완충액(Lysis buffer)은 Tris(트리스(히드록시메틸)아미노메탄(tris(hydroxymethyl)aminomethane))를 5 mM 내지 80 mM, 5mM 내지 50mM, 또는 10mM 내지 50 mM로 포함하는 것일 수 있다. Tris는 구체적으로 Tris-HCl일 수 있고, 세포 용해용 완충액에서 완충제로서 급격한 pH 변동을 줄일 수 있다. The cell lysis buffer (Lysis buffer) may contain Tris (tris (hydroxymethyl) aminomethane) at 5 mM to 80 mM, 5 mM to 50 mM, or 10 mM to 50 mM. . Tris may specifically be Tris-HCl, and can reduce rapid pH fluctuations as a buffering agent in a cell lysis buffer.
상기 세포 용해용 완충액은 pH 8.0 내지 9.0일 수 있다. pH가 8.0 미만인 경우, 핵산 물질의 안정성이 감소되거나 이동 속도가 감소될 수 있다.The cell lysis buffer may have a pH of 8.0 to 9.0. When the pH is less than 8.0, the stability of the nucleic acid material may be reduced or the rate of migration may be reduced.
상기 세포 용해용 완충액은 염화칼륨(KCl)을 5 mM 내지 50 mM, 5mM 내지 40mM, 또는 10mM 내지 20 mM로 포함하는 것일 수 있다. 50 mM을 초과하는 고농도의 염화칼륨은 세포 용해에 도움이 되지만, 용출된 핵산 물질의 수용해도를 감소시켜 부가 완충액을 다량 가해야 하거나 반응패드까지 이동하는데 걸리는 시간을 증가시킬 수 있다. 반면 염화칼륨이 5 mM 미만인 경우 세포가 제대로 용해되지 않을 수 있다. The cell lysis buffer may contain potassium chloride (KCl) at 5 mM to 50 mM, 5 mM to 40 mM, or 10 mM to 20 mM. A high concentration of potassium chloride exceeding 50 mM is helpful for cell lysis, but reduces the aqueous solubility of the eluted nucleic acid material, which may require the addition of a large amount of additional buffer or increase the time taken to move to the reaction pad. On the other hand, if potassium chloride is less than 5 mM, cells may not be properly lysed.
상기 세포 용해용 완충액은 황산마그네슘(MgSO4)을 1 mM 내지 30 mM, 1mM 내지 20mM, 또는 2mM 내지 16 mM 로 포함하는 것일 수 있다. 황산마그네슘 을 적정량 포함하는 경우 핵산 물질의 안정성과 이동 속도가 증가하는 것으로 확인되었고, 점도에 영향을 미치지 않기 때문에 유체의 흐름을 방해하지 않아 페이퍼 칩 분석용으로 시료를 전처리하는데 유리하다. The cell lysis buffer may contain magnesium sulfate (MgSO 4 ) at 1 mM to 30 mM, 1 mM to 20 mM, or 2 mM to 16 mM. It has been confirmed that the stability and migration speed of nucleic acid substances are increased when an appropriate amount of magnesium sulfate is included, and since it does not affect the viscosity, it does not disturb the flow of the fluid, which is advantageous in pre-processing the sample for paper chip analysis.
상기 세포 용해용 완충액은 황산암모늄((NH4)2SO4)을 5 mM 내지 50 mM, 5mM 내지 40mM, 또는 10mM 내지 20 mM로 포함하는 것일 수 있다. 50 mM을 초과하는 고농도의 황산암모늄은 세포 용해물을 침전시킬 수 있고, 황산암모늄이 5mM 미만인 경우 pH가 불안정해질 수 있다.The cell lysis buffer may contain ammonium sulfate ((NH 4 ) 2 SO 4 ) at 5 mM to 50 mM, 5 mM to 40 mM, or 10 mM to 20 mM. High concentrations of ammonium sulfate, greater than 50 mM, may precipitate cell lysates, and pH may become unstable when ammonium sulfate is less than 5 mM.
상기 세포 용해용 완충액은 단백질분해효소를 0.01 mg/ml 내지 0.1 mg/ml, 또는 0.03 mg/ml 내지 0.07 mg/ml을 포함하는 것일 수 있다. 단백질분해효소는 고분자 단백질을 분해하여 핵산이 이동 경로인 기판이나 페이퍼의 기공을 고분자 단백질이 차단하지 않도록 하고, RNase 및 DNase 활성을 억제하여 핵산 물질의 안정성을 증가시킨다. 상기 단백질분해효소는 프로테이나아제 K(proteinase K)일 수 있다. The cell lysis buffer may contain 0.01 mg/ml to 0.1 mg/ml or 0.03 mg/ml to 0.07 mg/ml of proteolytic enzyme. The proteolytic enzyme degrades the polymer protein so that the polymer protein does not block the pores of the substrate or paper, which is the path for nucleic acid to move, and increases the stability of the nucleic acid material by inhibiting the activities of RNase and DNase. The proteolytic enzyme may be proteinase K.
상기 계면활성제는 TritonX-100 또는 Tween20 (폴리소르베이트20)일 수 있고, 세포 용해용 완충액 중량을 기준으로 0.01w/w% 내지 0.2w/w%, 바람직하게는 0.05w/w% 내지 0.1w/w%로 포함될 수 있다.The surfactant may be TritonX-100 or Tween20 (polysorbate 20), 0.01 w/w% to 0.2 w/w%, preferably 0.05 w/w% to 0.1 w based on the weight of the cell lysis buffer. Can be included as /w%.
상기 세포 용해용 완충액은 시료의 부피 대비 1:1로 사용되는 것일 수 있다.The cell lysis buffer may be used in a ratio of 1:1 to the volume of the sample.
상기 세포 용해용 완충액은 글리세롤을 포함하지 않는 것일 수 있다. 글리세롤은 단백질의 침전을 막기 위해 첨가되기도 하나, 글리세롤은 점도를 증가시켜 세포 용해물의 유동성을 감소시키고, 핵산 물질의 이동에 방해가 될 수 있다.The cell lysis buffer may not contain glycerol. Glycerol is sometimes added to prevent protein precipitation, but glycerol increases the viscosity, reduces the fluidity of the cell lysate, and may interfere with the movement of nucleic acid materials.
상기 세포 용해용 완충액은 환원제를 포함하지 않는 것일 수 있다. 환원제는 디티오트레이톨(DTT), 머캅토에탄올 등으로서 단백질을 변성시키고 세포 용해물의 수용해도를 높이는데 도움이 되지만, 페이퍼 칩에 흘러 들어가는 용액 내 존재하는 경우 형광 발광 또는 검출 반응에 방해가 될 수 있다. The cell lysis buffer may not contain a reducing agent. Reducing agents, such as dithiothreitol (DTT) and mercaptoethanol, help to denature proteins and increase the solubility of cell lysates, but interfere with fluorescence or detection reactions when present in the solution flowing into the paper chip. It can be.
상기 시료패드의 하부에 배치되고 상기 시료패드를 가열하기 위한 가열패드(141)를 포함한다. 세포 용해용 완충액에 의한 시료의 용해를 효율적으로 하기 위해 가열패드를 60 내지 80℃의 온도에서 1 분 내지 5분 간, 바람직하게는 5 분 간 가열 처리해줌으로써 시료패드에서 바이러스와 상피세포를 포함하는 시료의 용해를 촉진한다.It is disposed under the sample pad and includes a heating pad 141 for heating the sample pad. In order to efficiently dissolve the sample by the cell lysis buffer, the heating pad is heated at a temperature of 60 to 80 ° C for 1 to 5 minutes, preferably for 5 minutes, so that the sample pad contains viruses and epithelial cells. Promote dissolution of the sample.
상기 세포 용해용 조성물을 적용하면 폴리설폰 막 (예를 들어, Vivid GF) 또는 니트로셀룰로오스 막으로 이루어진 시료패드(120)에서 세포의 용해를 촉진하고, 핵산을 보다 쉽게 검출할 수 있도록 한다. 상기 폴리설폰 막 및 니트로셀룰로오스 막은 2개 이상이 적층된 구조를 이루는 것일 수 있다. 상기 폴리설폰 막은 비 대칭적인 것일 수 있고, 폴리설폰 막 및 니트로셀룰로오스 막은 0.5 ㎛ 내지 1 ㎛의 기공을 갖는 다공성 재질인 것일 수 있다. 상기 기공은 다소 큰 편인 것이 유리한데, 생물학적 시료는 점도를 갖는 것이 많고, 특히 시료에 세포 용해용 조성물을 처리하게 되면 핵산 물질과 단백질이 세포 밖으로 용출되면서 점도가 현저히 올라갈 수 있다. 따라서 시료패드의 기공 사이즈는 시료를 신속하게 흡수하기에 적절한 크기를 갖는 것이 바람직하다.Application of the cell lysis composition promotes cell lysis in the sample pad 120 made of a polysulfone membrane (eg, Vivid GF) or a nitrocellulose membrane, and makes it easier to detect nucleic acids. The polysulfone membrane and the nitrocellulose membrane may form a structure in which two or more are laminated. The polysulfone membrane may be asymmetric, and the polysulfone membrane and the nitrocellulose membrane may be porous materials having pores of 0.5 μm to 1 μm. It is advantageous that the pores are rather large. Many biological samples have viscosity, and in particular, when the sample is treated with a composition for cell dissolution, the viscosity may increase significantly as nucleic acid materials and proteins are eluted out of the cells. Therefore, it is preferable that the pore size of the sample pad has an appropriate size to rapidly absorb the sample.
상기 세포 용해용 완충액을 이용함으로써 측방 유동식 (lateral flow)으로 핵산을 보다 쉽게 검출할 수 있다. 용어 “측방 유동식”이란 중력을 이용하지 않고, 수평 방향으로 모세관 현상이나 확산 현상에 의해 시료를 적용한 지점으로부터 목표 지점까지 흐르도록 하는 방식을 의미한다. 세포 용해물에는 핵산 물질을 분해할 수 있는 가수분해 효소들이 다량 함유되어 있으므로, 이동 경로에 오래 머무는 경우 핵산 물질의 수득량이 감소할 수 있다. 따라서 측방 유동식 핵산 검출용 구조물에 적용하려면, 흐름도가 우수해야 하고, 시료가 이동하는 동안 세포 용해물이 침전되어 이동 경로를 차단하지 않아야 한다. 또한, 핵산 물질과 염을 형성하여 침전이나 이동속도를 저하시키지 않아야 한다. 본 발명의 세포 용해용 완충액의 조성은 글리세롤 또는 환원제를 포함하지 않아도 세포 용해물이나 핵산 물질이 침전되지 않고, 높은 수율로 핵산 물질을 반응패드까지 측방으로 이동시킬 수 있다.By using the cell lysis buffer, nucleic acids can be more easily detected by lateral flow. The term “lateral flow method” refers to a method in which a sample is flowed from an application point to a target point by a capillary phenomenon or a diffusion phenomenon in a horizontal direction without using gravity. Since the cell lysate contains a large amount of hydrolytic enzymes capable of degrading nucleic acid material, the yield of nucleic acid material may be reduced if the cell lysate remains in the migration path for a long time. Therefore, in order to be applied to a structure for detecting nucleic acid in a lateral flow type, the flow rate should be excellent and the cell lysate should not precipitate and block the movement path while the sample is moving. In addition, it should not form a salt with a nucleic acid material to reduce precipitation or migration speed. The composition of the cell lysis buffer of the present invention does not precipitate cell lysates or nucleic acid materials even if it does not contain glycerol or a reducing agent, and can transfer nucleic acid materials laterally to the reaction pad in high yield.
제1연결패드1st connection pad
제1연결패드(131)는 시료패드와 일부분 접촉하여 시료패드의 상부에 배치되고, 시료패드에 비해 상대적으로 폭이 좁은 구조물로 시료패드와 반응패드를 연결한다.The first connection pad 131 partially contacts the sample pad, is disposed above the sample pad, and connects the sample pad and the reaction pad with a structure having a relatively narrow width compared to the sample pad.
제1연결패드는 셀룰로오스 막으로 이루어진 재질로서, 0.005 ㎛ 내지 0.015 ㎛의 기공을 갖는 것일 수 있다.The first connection pad may be made of a cellulose membrane and have pores of 0.005 μm to 0.015 μm.
버퍼패드buffer pad
버퍼패드(121)는 재수화 완충액을 적가하는 패드로서, 구조물에 수압을 가하는 역할을 한다. 버퍼패드는 단백질과 같은 세포 용해 잔해물의 반응패드로의 이동을 최소화하고 반응 완료 후 수압을 가하여 등온증폭반응물 만의 검출패드로의 이동을 유도하기 위해 시료패드와 분리되어 배치될 수 있다.The buffer pad 121 is a pad to which the rehydration buffer is applied dropwise, and serves to apply water pressure to the structure. The buffer pad may be disposed separately from the sample pad in order to minimize the movement of cell lysis debris such as proteins to the reaction pad and induce the movement of only the isothermal amplification reactants to the detection pad by applying water pressure after the reaction is completed.
버퍼패드에 적용되는 재수화 완충액은 부가 완충액으로서, 예를 들어 5 mM 내지 80 mM Tris-HCl, 20 mM 내지 70 mM 염화칼륨, 0.5 mM 내지 5 mM 황산마그네슘, 1 mM 내지 30 mM 황산암모늄, 및 0.01w/w% 내지 0.2 w/w% Tween® 20 내지 TritonX-100을 포함하고 산도가 pH 8.0 내지 9.0인 등온완충액 또는 인산 완충액 (50mM Na2HPO4, pH 7.2)일 수 있다. 상기 등온완충액은 보다 구체적으로 20 mM Tris-HCl, 10 mM (NH4)2SO4, 50 mM KCl, 2 mM MgSO4, 및 0.1% Tween® 20을 포함하고, 산도는 pH 8.8일 수 있다. 상기 부가 완충액은 단백질분해효소, 글리세롤, 또는 환원제를 포함하지 않는 것일 수 있다.The rehydration buffer applied to the buffer pad is an additional buffer, for example, 5 mM to 80 mM Tris-HCl, 20 mM to 70 mM potassium chloride, 0.5 mM to 5 mM magnesium sulfate, 1 mM to 30 mM ammonium sulfate, and 0.01 mM It may be an isothermal buffer containing w/w% to 0.2 w/w% Tween® 20 to TritonX-100 and having an acidity of pH 8.0 to 9.0 or a phosphate buffer (50 mM Na 2 HPO 4 , pH 7.2). The isothermal buffer may more specifically include 20 mM Tris-HCl, 10 mM (NH 4 ) 2 SO 4 , 50 mM KCl, 2 mM MgSO 4 , and 0.1% Tween® 20, and may have a pH of 8.8. The addition buffer may not contain a protease, glycerol, or a reducing agent.
상기 버퍼패드는 재수화 완충액을 충분히 수령할 수 있도록 0.5 ㎛ 내지 1 ㎛의 기공을 갖는 다공성 재질로서, 면, 융, 종이, 니트로셀룰로오스, 셀룰로오스아세테이트, 유리섬유, 폴리설폰, 폴리아크릴, 폴리니트릴, 폴리피페라진, 폴리아미드, 폴리에테르설폰, 폴리비닐리덴플로리드, 폴리에틸렌이민, 폴리디메틸실록산 또는 이들의 혼합물일 수 있다.The buffer pad is a porous material having pores of 0.5 μm to 1 μm to sufficiently receive the rehydration buffer, and is made of cotton, flax, paper, nitrocellulose, cellulose acetate, glass fiber, polysulfone, polyacrylic, polynitrile, polypiperazine, polyamide, polyethersulfone, polyvinylidene fluoride, polyethyleneimine, polydimethylsiloxane or mixtures thereof.
개시자 (opener) 패드initiator pad
개시자 패드(132)는 버퍼패드의 상부에 배치되고, 버퍼패드에 비해 상대적으로 폭이 좁은 구조물로 버퍼패드와 반응패드를 연결한다.The initiator pad 132 is disposed above the buffer pad and has a relatively narrow width compared to the buffer pad, and connects the buffer pad and the reaction pad.
개시자 패드는 셀룰로오스 막으로 이루어진 재질로서, 0.005 ㎛ 내지 0.015 ㎛의 기공을 갖는 것일 수 있다. 반응패드와 접촉하는 부분의 개시자패드는 저융점 아가로오스 또는 왁스로 코팅된 것일 수 있다. 보다 구체적으로 상기 개시자패드는 왁스 배리어가 형성되고, 상기 왁스 배리어는 제1 왁스 배리어 및 제2 왁스 배리어로 형성될 수 있다. 상기 왁스 배리어는 패드의 일면에 일정 두께로 형성되는 것이다. 보다 구체적으로 상기 개시자패드의 재수화 완충용액이 흡수되는 방향의 수직 방향으로 일정 두께를 갖도록 제1 왁스 배리어가 형성되고, 일정한 간격으로 이격되어 대향되는 위치에 제2 왁스 배리어가 형성될 수 있다. The initiator pad may be made of a cellulose membrane and have pores of 0.005 μm to 0.015 μm. An initiator pad at a portion in contact with the reaction pad may be coated with low melting point agarose or wax. More specifically, the initiator pad may include a wax barrier, and the wax barrier may include a first wax barrier and a second wax barrier. The wax barrier is formed to a certain thickness on one side of the pad. More specifically, a first wax barrier may be formed to have a certain thickness in a direction perpendicular to a direction in which the rehydration buffer solution of the initiator pad is absorbed, and a second wax barrier may be formed at opposite positions spaced apart from each other at regular intervals. .
종래 개시자패드는 단일 왁스 배리어를 통해 재수화 완충욕액의 흐름을 차단하였으나, 반응패드에서 증폭된 핵산을 포함하는 용액이 흘러와 개시자패드를 젖게 하면, 개시자패드의 양 측면이 모두 젖게 되면, 단일 왁스 배리어는 유체 흐름을 차단하지 못하는 문제가 발생할 수 있다. 이는 모세관 현상(capillart action)에 의해 유체의 메니스커스가 합쳐지는 것에 의한 현상이다. 이러한 문제를 방지하기 위해, 본 발명에서는 개시자패드에 복수의 왁스 배리어를 형성하며, 상기 왁스 배리어들은 일정 간격으로 이격되고, 배치되는 것을 특징으로 한다. 또한, 상기 제1 왁스 배리어는 폭이 1.5 내지 1.75mm이며, 제2 왁스 배리어는 0.1 내지 0.3mm인 것을 특징으로 한다. 상기 범위에서와 같이 제1 왁스 배리어 및 제2 왁스 배리어의 두께를 상이하게 함에 따라, 안정적인 유체 흐름 차단 및 온도 승온을 통한 원활한 유체 흐름을 형성할 수 있다. Conventional initiator pads block the flow of rehydration buffer bath through a single wax barrier, but when a solution containing nucleic acids amplified in the reaction pad flows and wets the initiator pad, both sides of the initiator pad become wet. , a single wax barrier may not block fluid flow. This is a phenomenon caused by the merging of the meniscus of the fluid by capillary action. In order to prevent this problem, the present invention is characterized in that a plurality of wax barriers are formed on the initiator pad, and the wax barriers are spaced apart and disposed at regular intervals. In addition, the first wax barrier has a width of 1.5 to 1.75 mm, and the second wax barrier has a width of 0.1 to 0.3 mm. As the thicknesses of the first wax barrier and the second wax barrier are varied as in the above range, smooth fluid flow may be formed through stable fluid flow blocking and temperature increase.
이에 상기 본 발명의 개시자 패드는 제1 왁스 배리어 및 제2 왁스 배리어에 의해, 버퍼패드의 재수화 완충용액을 차단하고 있다가, 반응패드에서 반응이 끝나는 시점에 개시자 패드를 가열하여 재수화 완충용액을 측방으로 흘려보냄으로써 반응패드에서 증폭된 핵산이 검출패드로 흘러갈 수 있게 한다.Accordingly, the initiator pad of the present invention blocks the rehydration buffer solution of the buffer pad by the first wax barrier and the second wax barrier, and then heats the initiator pad at the end of the reaction in the reaction pad to rehydrate. By flowing the buffer solution sideways, the nucleic acid amplified in the reaction pad can flow to the detection pad.
상기 개시자패드 하부에는 가열을 위한 가열패드(141)가 배치될 수 있다. 등온증폭이 끝나는 시점에 가열되면, 반응패드로부터 등온증폭된 결과물이 검출 패드로 쉽게 이동하도록 한다. 상기 가열은 60 내지 80℃로 1 분 내지 5 분간, 바람직하게는 2 분 간 수행되는 것일 수 있다.A heating pad 141 for heating may be disposed under the initiator pad. When heated at the end of the isothermal amplification, the isothermally amplified product from the reaction pad is easily moved to the detection pad. The heating may be performed at 60 to 80° C. for 1 minute to 5 minutes, preferably for 2 minutes.
반응패드reaction pad
반응패드는 랩온페이퍼에서 페이퍼 칩에 해당하는 구성요소로서, 증폭반응을 위한 dNTP, DNA 중합효소, 역전사 효소, 형광 표지자, 등온증폭반응 버퍼 등을 포함한 등온증폭반응 시약이 고정되어 있다. 따라서 시료패드에 적용되는 부가 완충액에 의해 반응패드에 핵산 물질을 포함하는 용액이 스며들어 적셔지고, 상기 등온증폭반응 시약과 시료의 접촉물이 반응패드로 이동하여 반응패드 하부에서 가열패드에 의해 온도를 60 내지 70℃로 가열하면 등온증폭반응 또는 역전사 등온증폭반응이 일어난다.The reaction pad is a component corresponding to the paper chip in lab-on-paper, and isothermal amplification reagents including dNTP, DNA polymerase, reverse transcriptase, fluorescent marker, isothermal amplification reaction buffer, etc. for amplification reaction are fixed thereto. Therefore, the solution containing the nucleic acid material penetrates into the reaction pad by the additional buffer applied to the sample pad and is wetted, and the contact material between the isothermal amplification reagent and the sample moves to the reaction pad and is heated by the heating pad at the bottom of the reaction pad. When heated to 60 to 70 ° C., an isothermal amplification reaction or a reverse transcription isothermal amplification reaction occurs.
상기 등온증폭반응 시약은 구체적으로 dNTP(1.4mM, dATP, dCTP, dGTP 및 dTTP), 등온증폭버퍼(1X, 20mM Tris-HCl, 10mM (NH4)2SO4, 50mM KCl, 2mM MgSO4, 및 0.1% Tween-20, pH7.5), 및 Bst 3.0 DNA 중합효소(320U/㎖)를 포함할 수 있고, 이들은 반응패드 내에 혼합 후 건조하거나, 파우더 타입으로 반응패드 표면에 도포하여 예를 들어, 약 35 내지 40℃ 오븐에서 약 30분 간 가열하여 고정시킨 것일 수 있다.The isothermal amplification reagent is specifically dNTP (1.4mM, dATP, dCTP, dGTP and dTTP), isothermal amplification buffer (1X, 20mM Tris-HCl, 10mM (NH 4 ) 2 SO 4 , 50mM KCl, 2mM MgSO 4 , and 0.1% Tween-20, pH7.5), and Bst 3.0 DNA polymerase (320 U/ml), which are mixed in the reaction pad and then dried or applied to the surface of the reaction pad in powder form, for example, It may be fixed by heating in an oven at about 35 to 40 ° C. for about 30 minutes.
반응패드(140)는 제1연결패드 및 개시자 패드와 일부분 접촉하여, 제1연결패드와 개시자 패드의 하부 및 측방으로 배치될 수 있다. 등온증폭반응이 일어날 수 있는 온도로 가열하기 위해 상기 반응패드(140) 하부에는 가열패드(141)가 배치될 수 있다. 상기 가열패드는 가열을 위한 열선 또는 열판을 포함할 수 있다. 상기 가열은 60 내지 70℃, 바람직하게는 60 내지 65℃에서 20분 내지 1 시간, 바람직하게는 20분 내지 30분 간 수행되는 것일 수 있다.The reaction pad 140 may partially come into contact with the first connection pad and the initiator pad, and may be disposed under and sideways of the first connection pad and the initiator pad. A heating pad 141 may be disposed below the reaction pad 140 to heat to a temperature at which an isothermal amplification reaction may occur. The heating pad may include a hot wire or a hot plate for heating. The heating may be performed at 60 to 70°C, preferably 60 to 65°C for 20 minutes to 1 hour, preferably 20 minutes to 30 minutes.
상기 반응패드는 등온증폭반응의 효율을 증가시키기 위해 반응패드 상부에 차단패드(142)가 배치되어 차단 역할을 할 수 있다. 일련의 배치된 패드를 라미네이트 처리된 차단패드에 의해 등온증폭반응 온도를 유지하고, 시약의 증발을 차단하여 반응의 효율을 증가시킬 수 있다. 상기 차단 패드는 비공성의 막 또는 외부 공기로부터 반응패드를 차단할 수 있는 구조물일 수 있다.In order to increase the efficiency of the isothermal amplification reaction, the reaction pad may have a blocking pad 142 disposed above the reaction pad to serve as a blocking function. The isothermal amplification reaction temperature is maintained by a blocking pad laminated to a series of arranged pads, and evaporation of reagents is blocked to increase reaction efficiency. The blocking pad may be a non-porous membrane or a structure capable of blocking the reaction pad from outside air.
상기 반응패드에는 복수 개의 웰이 존재하고, 각 웰에는 등온증폭반응을 위한 프라이머 세트로서 정방향 및 역방향내부 프라이머(inner primer: FIP 및 BIP, 1.6μM), 루프 프라이머(loop primer: FL 및 BL, 0.4 μM) 및 외부 프라이머(outer primer: F3 및 B3, 0.2μM)가 고정될 수 있다. 상기 프라이머의 농도는 웰 부피에 대한 농도이고, 웰에서 프라이머 세트의 농도는 각 프라이머 간의 농도 비율을 유지하면서 변경될 수 있다. 반응패드에 웰이 존재함으로써 등온증폭반응이 보다 집중적으로 일어날 수 있다. 상기 웰은 구체적으로 바닥에 히드로겔 층이 형성되어 있고, 상기 프라이머 세트가 히드로겔 층에 고정된 형태일 수 있다. 특정 표적 핵산의 집중적인 증폭을 위해, 각 웰에는 서로 다른 표적 핵산에 특이적으로 결합하는 프라이머 세트가 고정될 수 있다.A plurality of wells exist in the reaction pad, and in each well, forward and reverse inner primers (inner primer: FIP and BIP, 1.6 μM), loop primers (loop primer: FL and BL, 0.4 μM) are primer sets for isothermal amplification reaction. μM) and outer primers (F3 and B3, 0.2 μM) can be immobilized. The concentration of the primers is based on the volume of the well, and the concentration of the primer set in the well can be changed while maintaining the concentration ratio between the respective primers. An isothermal amplification reaction can occur more intensively by the presence of wells in the reaction pad. Specifically, the well may have a hydrogel layer formed at the bottom and the primer set fixed to the hydrogel layer. For intensive amplification of a specific target nucleic acid, primer sets that specifically bind to different target nucleic acids may be immobilized in each well.
상기 프라이머를 함유하는 히드로겔 층은 예를 들어 하기와 같은 방법으로 형성될 수 있다. 히드로겔 용액 총 부피를 기준으로 UV-광가교성 폴리(에틸렌 글리콜) 디아크릴레이트 (PEGDA, Sigma-Aldrich, MW700) 20% v/v, 폴리(에틸렌 글리콜)(PEG, Sigma-Aldrich, MW600) 40% v/v 및 광개시제 2-하이드록시-2-메틸프로피오페논 (Sigma-Aldrich) 5% v/v 및 버퍼(PBS 완충액, pH7.5) 35%를 혼합하고, 여기에 프라이머 세트를 혼합하여 하이드로겔 용액을 제조한다. 상기 폴리(에틸렌 글리콜)은 히드로겔 미세입자의 공극율을 증가시키기 위하여 포함되는 것이 바람직하다. 그런 다음, 상기 히드로겔 용액을 반응패드의 각 웰 내부 표면에 도포하고, 1분간 UV 노출(360 nm wavelength, 35 mJ/cm2)하여 히드로겔 코팅층을 형성한다. 히드로겔 층은 공극을 가지므로 히드로겔 층 내 프라이머에 결합하여 공극 내에서 집중적으로 증폭반응이 일어날 수 있다.The hydrogel layer containing the primer may be formed, for example, by the following method. UV-light crosslinkable poly(ethylene glycol) diacrylate (PEGDA, Sigma-Aldrich, MW700) 20% v/v, based on total volume of hydrogel solution, poly(ethylene glycol) (PEG, Sigma-Aldrich, MW600) 40 % v/v and photoinitiator 2-hydroxy-2-methylpropiophenone (Sigma-Aldrich) 5% v/v and buffer (PBS buffer, pH7.5) 35% were mixed, and the primer set was mixed thereto. Prepare a hydrogel solution. The poly(ethylene glycol) is preferably included to increase the porosity of the hydrogel microparticles. Then, the hydrogel solution is applied to the inner surface of each well of the reaction pad and exposed to UV (360 nm wavelength, 35 mJ/cm 2 ) for 1 minute to form a hydrogel coating layer. Since the hydrogel layer has pores, an amplification reaction may occur intensively in the pores by binding to primers in the hydrogel layer.
상기 프라이머 세트에서 정방향 및 역방향 프라이머 중 어느 하나는 Cy3, Cy5, TAMRA, TEX, TYE, HEX, FAM, TET, JOE, MAX, ROX, VIC, Cy3.5, Texas Red, Cy5.5, TYE, BHQ, Iowa Black RQ, 및 IRDye로 이루어지는 군에서 선택되는 하나 이상의 형광 표지자로 표지된 것일 수 있다. 상기 형광 표지자는 표적 핵산을 독립적으로 검출하기 위해, 표적 핵산 마다 다르게 표지 될 수 있다. Any one of the forward and reverse primers in the primer set is Cy3, Cy5, TAMRA, TEX, TYE, HEX, FAM, TET, JOE, MAX, ROX, VIC, Cy3.5, Texas Red, Cy5.5, TYE, BHQ , Iowa Black RQ, and may be labeled with one or more fluorescent markers selected from the group consisting of IRDye. The fluorescent marker may be labeled differently for each target nucleic acid in order to independently detect the target nucleic acid.
상기 프라이머 세트에서 정방향 및 역방향 프라이머 중 나머지 어느 하나는 비오틴이 결합된 것일 수 있다. 비오틴은 스트렙타비딘(streptavidin)에 결합할 수 있으므로, 증폭된 표적 핵산에 결합된 형태로 존재하여 제2연결패드를 통과하면서, 금 입자의 표면에 스트렙타비딘과 결합하고 검출패드에서 포획되면 검출 결과가 가시화되도록 한다. 비오틴은 증폭된 표적 핵산에서 검출자와 서로 반대 위치에 존재하도록 설계될 수 있고, 예를 들어, 정방향 프라이머의 5' 말단에 검출자를 결합시킨 경우, 역방향 프라이머의 5' 말단에 비오틴을 결합시킬 수 있다.In the primer set, the other one of the forward and reverse primers may be biotin-linked. Since biotin can bind to streptavidin, it exists in a form bound to the amplified target nucleic acid and passes through the second connection pad, binds to streptavidin on the surface of the gold particle and is detected when captured by the detection pad Make the results visible. Biotin may be designed to be present at opposite positions of a detector and a detector in the amplified target nucleic acid. For example, when a detector is bound to the 5' end of a forward primer, biotin may be bound to the 5' end of a reverse primer. there is.
상기 반응패드는 셀룰로오스아세테이트 막의 재질로 이루어진 것으로서, 시료 및 부가완충액의 흐름은 자유롭도록 하면서 핵산이 머물면서 충분히 등온증폭반응할 수 있도록, 0.001㎛ 내지 0.005㎛, 바람직하게는, 0.005㎛의 기공 사이즈를 갖는 것일 수 있다.The reaction pad is made of a cellulose acetate membrane material, and has a pore size of 0.001 μm to 0.005 μm, preferably 0.005 μm, so that the nucleic acid can remain and sufficiently isothermally amplified while allowing the sample and the additional buffer to flow freely. may have
상기 반응패드는 40 mM 내지 50 mM 수크로오스, 0.001 내지 0.01% Triton X-100, 및 0.1w/w% 내지 0.3w/w%의 글리세롤을 포함할 수 있다. 이는 수분 또는 산소에 등온증폭반응 시약 및 프라이머세트 등이 노출되었을 때, 이들의 보관 안정성을 증가시킬 수 있다. 상기 보관 안정성이란 25℃ 내지 30℃에서 분해물이나 부산물 없이 3 주 이상 보관할 수 있는 것을 의미할 수 있다.The reaction pad may include 40 mM to 50 mM sucrose, 0.001 to 0.01% Triton X-100, and 0.1 w/w% to 0.3 w/w% glycerol. This can increase their storage stability when the isothermal amplification reagent and primer set are exposed to moisture or oxygen. The storage stability may mean that it can be stored for 3 weeks or more without degradation products or by-products at 25 ° C to 30 ° C.
제2연결패드2nd connection pad
제2연결패드(150)는 반응패드와 일부분 접촉하여 반응패드의 상부 및 측방으로 배치될 수 있다. 제2연결패드(150)는 금 나노입자를 포함하고, 상기 금 나노입자는 반응패드에서 증폭된 핵산과 결합하여 검출패드로 이동된다. 금 나노입자는 바람직하게는 표면에 스트렙타비딘이 고정된 것일 수 있다. 제2연결패드는 증폭된 핵산이 쉽게 검출패드로 이동할 수 있도록, 면, 융, 종이, 니트로셀룰로오스, 유리섬유, 폴리설폰, 폴리아크릴, 폴리니트릴, 폴리피페라진, 폴리아미드, 폴리에테르설폰, 폴리비닐리덴플로리드, 폴리에틸렌이민, 폴리디메틸실록산 또는 이들의 혼합물인 다공성 재질로서, 0.01㎛ 내지 0.05㎛, 바람직하게는, 0.05㎛의 기공 사이즈를 갖는 것일 수 있다.The second connection pad 150 may partially come into contact with the reaction pad and may be disposed above and sideways of the reaction pad. The second connection pad 150 includes gold nanoparticles, and the gold nanoparticles combine with the nucleic acid amplified in the reaction pad and move to the detection pad. The gold nanoparticles may preferably have streptavidin immobilized on the surface. The second connection pad is cotton, wool, paper, nitrocellulose, glass fiber, polysulfone, polyacrylic, polynitrile, polypiperazine, polyamide, polyethersulfone, polyethersulfone, As a porous material of vinylidene fluoride, polyethyleneimine, polydimethylsiloxane, or a mixture thereof, it may have a pore size of 0.01 μm to 0.05 μm, preferably, 0.05 μm.
제2연결패드는 셀룰로오스 재질을 갖는 것을 수 있고, 반응패드와 접촉하는 부분의 제2연결패드는 저융점 아가로오스 또는 왁스로 코팅된 것일 수 있다. The second connection pad may have a cellulose material, and the second connection pad at a portion in contact with the reaction pad may be coated with low melting point agarose or wax.
구체적으로 상기 제2연결패드는 앞선 개시자패드와 동일한 방식으로, 왁스 배리어가 형성될 수 있다. 보다 구체적으로, 상기 왁스 배리어는 제1 왁스 배리어 및 제2 왁스 배리어로 형성될 수 있다. 상기 왁스 배리어는 패드의 일면에 일정 두께로 형성되는 것이다. 보다 구체적으로 상기 제2연결패드의 등온증폭반응물이 흡수되는 방향의 수직 방향으로 일정 두께를 갖도록 제1 왁스 배리어가 형성되고, 일정한 간격으로 이격되어 대향되는 위치에 제2 왁스 배리어가 형성될 수 있다. Specifically, a wax barrier may be formed on the second connection pad in the same manner as the previous initiator pad. More specifically, the wax barrier may be formed of a first wax barrier and a second wax barrier. The wax barrier is formed to a certain thickness on one side of the pad. More specifically, a first wax barrier may be formed to have a certain thickness in a direction perpendicular to a direction in which the isothermal amplification reactant of the second connection pad is absorbed, and a second wax barrier may be formed at opposite positions spaced apart from each other at regular intervals. .
종래 제2연결패드는 단일 왁스 배리어를 통해 등온증폭반응물의 흐름을 차단하였으나, 상기 제2연결패드의 양 측면이 모두 젖게 되면, 단일 왁스 배리어는 유체 흐름을 차단하지 못하는 문제가 발생할 수 있다. 이는 모세관 현상(capillart action)에 의해 유체의 메니스커스가 합쳐지는 것에 의한 현상이다. 이러한 문제를 방지하기 위해, 본 발명에서는 제2연결패드에 복수의 왁스 배리어를 형성하며, 상기 왁스 배리어들은 일정 간격으로 이격되고, 배치되는 것을 특징으로 한다. 또한, 상기 제1 왁스 배리어는 폭이 1.5 내지 1.75mm이며, 제2 왁스 배리어는 0.1 내지 0.3mm인 것을 특징으로 한다. 상기 범위에서와 같이 제1 왁스 배리어 및 제2 왁스 배리어의 두께를 상이하게 함에 따라, 안정적인 유체 흐름 차단 및 온도 승온을 통한 원활한 유체 흐름을 형성할 수 있다. Conventionally, the second connection pad blocks the flow of the isothermal amplification reactant through a single wax barrier, but if both sides of the second connection pad become wet, a single wax barrier may not block the fluid flow. This is a phenomenon caused by the merging of the meniscus of the fluid by capillary action. In order to prevent this problem, the present invention is characterized in that a plurality of wax barriers are formed on the second connection pad, and the wax barriers are spaced apart and disposed at regular intervals. In addition, the first wax barrier has a width of 1.5 to 1.75 mm, and the second wax barrier has a width of 0.1 to 0.3 mm. As the thicknesses of the first wax barrier and the second wax barrier are varied as in the above range, smooth fluid flow may be formed through stable fluid flow blocking and temperature increase.
이에 상기 본 발명의 제2연결패드는 제1 왁스 배리어 및 제2 왁스 배리어에 의해, 등온증폭반응물의 흐름을 차단할 수 있다. 구체적으로 상기 제2연결패드는 제1 왁스 배리어 및 제2 왁스 배리어에 의해, 반응패드의 등온증폭반응물의 이동이 차단되었다가, 제2연결패드를 가열하는 시점에서 코팅이 녹아 등온증폭반응물이 측방으로 다시 이동하여 시료 내 미반응 유전물질의 소실을 막을 수 있다.Accordingly, in the second connection pad of the present invention, the flow of the isothermal amplification reactant may be blocked by the first wax barrier and the second wax barrier. Specifically, in the second connection pad, the movement of the isothermal amplification reactant in the reaction pad is blocked by the first wax barrier and the second wax barrier, and then the coating melts at the time of heating the second connection pad, so that the isothermal amplification reactant moves to the side. It is possible to prevent the loss of unreacted genetic material in the sample by moving back to .
상기 제2연결패드 하부에는 가열을 위한 가열패드(141)가 배치될 수 있다. 등온증폭이 끝나는 시점에 부가 완충액을 가하면, 반응패드로부터 등온증폭된 결과물이 검출 패드로 쉽게 이동하도록 한다. 상기 가열은 60 내지 80℃로 1 분 내지 5 분간, 바람직하게는 2 분 간 수행되는 것일 수 있다.A heating pad 141 for heating may be disposed under the second connection pad. When an additional buffer is added at the end of the isothermal amplification, the isothermally amplified product is easily transferred from the reaction pad to the detection pad. The heating may be performed at 60 to 80° C. for 1 minute to 5 minutes, preferably for 2 minutes.
검출패드detection pad
검출패드(160)는 제2연결패드와 일부분 접촉하여, 제2연결패드의 하부 및 측방에 배치될 수 있다. 검출패드(160)에는 검출자와 결합할 수 있는 수용체가 고정되어 있다. 상기 수용체는 검출자에 특이적으로 결합할 수 있는 항체, 단백질, 또는 이의 절편일 수 있다.The detection pad 160 may partially come into contact with the second connection pad and may be disposed below and on the side of the second connection pad. A receptor that can bind to the detector is fixed to the detection pad 160 . The receptor may be an antibody, protein, or fragment thereof capable of specifically binding to a detector.
상기 검출패드는 복수 개의 검출 구역을 포함하고, 상기 검출 구역은 선 또는 웰의 형태로 구분될 수 있다. 각 검출 구역 마다 각 수용체가 독립적으로 고정되고, 예를 들어, 폴리에틸렌프탈레이트 성분의 잉크로 스탬핑하여 검출 구역을 만든 후, 여기에 수용체를 포함하는 잉크로 다시 스탬핑 하거나 웰의 경우 수용체를 포함하는 용액을 적용하고, EDC(1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide) 또는 NHS(N-hydroxysulfosuccinimide)를 적용할 수 있다. 하나의 반응패드에는 수십개 내지 수백개 이상의 검출 구역이 형성되어, 1회의 시료를 적용하여 형성된 검출 구역의 수만큼의 표적 핵산을 검출할 수 있다. 도 5는 반응패드에 형성된 검출 구역의 구조를 상세히 설명하기 위한 것이고, 개수를 한정하는 의미는 아니다.The detection pad includes a plurality of detection regions, and the detection regions may be divided into lines or wells. For each detection zone, each receptor is independently immobilized. For example, after making a detection zone by stamping with polyethylene phthalate-based ink, stamping again with ink containing a receptor here, or in the case of a well, a solution containing a receptor and EDC (1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide) or NHS (N-hydroxysulfosuccinimide) may be applied. Several tens to hundreds of detection zones are formed on one reaction pad, and as many target nucleic acids as the number of detection zones formed by applying a sample once can be detected. 5 is for explaining in detail the structure of the detection zone formed on the reaction pad, and is not meant to limit the number.
상기 검출패드는 니트로셀룰로오스로서, 시료가 흡수패드까지 측방으로 이동할 수 있도록, 0.001㎛ 내지 0.005㎛, 바람직하게는, 0.005㎛의 기공 사이즈를 갖는 것일 수 있다. The detection pad is nitrocellulose and may have a pore size of 0.001 μm to 0.005 μm, preferably 0.005 μm, so that the sample can move laterally to the absorption pad.
가열패드heating pad
상기 시료패드, 개시자패드, 반응패드, 및 제2연결패드 하부에는 가열패드(141)가 배치될 수 있다. 상기 가열패드는 열전도성을 갖는 금속판으로서, 철, 스테인리스, 알루미늄, 은, 구리 등의 재질로 이루어진 것일 수 있다. 상기 가열패드는 열선으로 연결될 수 있고, 각 열선은 상기 시료패드, 반응패드, 및 제2연결패드 하부의 가열패드에 독립적으로 연결되어 가열이 되는 패드를 제어할 수 있다.A heating pad 141 may be disposed below the sample pad, the initiator pad, the reaction pad, and the second connection pad. The heating pad is a metal plate having thermal conductivity, and may be made of a material such as iron, stainless steel, aluminum, silver, or copper. The heating pad may be connected with a heating wire, and each heating wire may be independently connected to the sample pad, the reaction pad, and the heating pad under the second connection pad to control the heating pad.
상기 시료패드, 제1연결패드, 개시자패드, 반응패드, 제2연결패드, 검출패드, 및 흡수패드는 시료나 완충액이 소실되지 않도록 상하단에 하우징(110)이 존재할 수 있고, 전체 구조물은 하우징으로 정의될 수 있는 지지체 또는 비공성 재질의 케이스로 둘러싸인 것일 수 있다.The sample pad, the first connection pad, the initiator pad, the reaction pad, the second connection pad, the detection pad, and the absorption pad may have housings 110 at upper and lower ends so that the sample or buffer is not lost, and the entire structure is a housing. It may be surrounded by a case of a support or non-porous material that can be defined as.
상기 흡수패드(170)는 시료와 완충액 등을 흡수하여 역흐름을 차단하고 측방 유동성이 유발될 수 있도록 기여한다. 흡수패드는 다공성 재질로서, 면, 융, 종이, 니트로셀룰로오스, 셀룰로오스아세테이트, 유리섬유, 폴리설폰, 폴리아크릴, 폴리니트릴, 폴리피페라진, 폴리아미드, 폴리에테르설폰, 폴리비닐리덴플로리드, 폴리에틸렌이민, 폴리디메틸실록산 또는 이들의 혼합물일 수 있다. 상기 흡수패드는 바람직하게는 유리섬유로서 0.1 내지 0.5㎛의 기공 사이즈를 갖는 것일 수 있다.The absorbent pad 170 absorbs a sample and a buffer to block reverse flow and contribute to induce lateral fluidity. The absorbent pad is a porous material, such as cotton, flax, paper, nitrocellulose, cellulose acetate, glass fiber, polysulfone, polyacrylic, polynitrile, polypiperazine, polyamide, polyethersulfone, polyvinylidene fluoride, and polyethyleneimine. , polydimethylsiloxane or mixtures thereof. The absorbent pad is preferably a glass fiber and may have a pore size of 0.1 to 0.5 μm.
상기 시료패드 및 제1연결패드와 버퍼패드 및 개시자패드; 반응패드; 제2연결패드; 검출패드; 및 흡수패드는 순차적으로 서로 일부분 접촉되어 측방으로 배치된다. 구체적으로, 시료패드 및 제1연결패드와 버퍼패드 및 개시자패드는 반응패드를 기준으로 분리되어 반응패드의 일 측면에 배치되고, 반응패드의 다른 측면에 이어서 제2연결패드, 검출패드, 및 흡수패드가 순차적으로 배치된다. the sample pad, the first connection pad, the buffer pad, and the initiator pad; reaction pad; a second connection pad; detection pad; and the absorbent pads are sequentially disposed laterally in partial contact with each other. Specifically, the sample pad, the first connection pad, the buffer pad, and the initiator pad are separated based on the reaction pad and disposed on one side of the reaction pad, followed by the second connection pad, detection pad, and The absorbent pads are sequentially disposed.
본 발명에 따른 구조물은, 구조물의 각 구성요소의 배치와 특성에 의해 시료가 흡수패드까지 도달하는 동안 핵산 물질 외에 세포 용해물을 여과하여 핵산 물질을 정제할 수 있고, 시료의 이동 방향이 지면과 평행한 방향인 측방 유동성을 실현할 수 있다. 세포 내에서 핵산은 히스톤, 중합효소, 핵산분해효소, 전사인자 등의 단백질이 결합된 형태로 존재한다. 세포 용해 조성물과 같은 계면활성제에 의해 많은 단백질이 핵산과의 결합을 소실하게 되나, 세포 용해물이 반응패드까지 이동할 수 있도록 추가로 가해지는 증류수 또는 부가 완충액에 의해 반응패드에 도달할 쯤에는 계면활성제가 희석되어 외부 환경이 단백질의 전하를 다시 회복할 있게 된다. 이 경우 단백질은 다시 핵산 물질과 결합하여 중합효소와의 접촉 면적을 축소시키거나 증폭 반응을 방해할 수 있다. 따라서 반응패드에는 핵산과 결합할 수 있는 대부분의 세포 구성 요소가 정제되어 제거되는 것이 바람직하다.According to the structure according to the present invention, nucleic acid materials can be purified by filtering cell lysate in addition to nucleic acid materials while the sample reaches the absorption pad due to the arrangement and characteristics of each component of the structure, and the moving direction of the sample is different from the ground. Lateral fluidity, which is a parallel direction, can be realized. In cells, nucleic acids exist in the form of proteins such as histones, polymerases, nucleases, and transcription factors. Many proteins lose their binding to nucleic acids by surfactants such as the cell lysis composition, but by the time the cell lysate reaches the reaction pad by the addition of distilled water or added buffer so that the cell lysate can move to the reaction pad, the surfactant is diluted, allowing the external environment to regain the protein's charge. In this case, the protein may bind to the nucleic acid material again to reduce the contact area with the polymerase or interfere with the amplification reaction. Therefore, it is preferable that most cellular components capable of binding to nucleic acids are purified and removed from the reaction pad.
이하, 상기 핵산 검출용 구조물을 이용하여 핵산을 검출하는 방법을 서술한다.Hereinafter, a method of detecting a nucleic acid using the structure for detecting a nucleic acid will be described.
핵산을 검출하고자 하는 시료는 시료패드에 적용하기 전에 세포 용해 완충액과 혼합하는 단계를 포함할 수 있다. 세포 용해 완충액과 혼합되면 세포 내에 존재하는 핵산 물질이 용출될 수 있으므로 시료 내에 검출 가능한 핵산 물질의 양을 증가시킬 수 있다.A sample for which nucleic acid is to be detected may include mixing with a cell lysis buffer prior to application to the sample pad. When mixed with the cell lysis buffer, the nucleic acid material present in the cells can be eluted, and thus the amount of the nucleic acid material detectable in the sample can be increased.
시료패드에 5 mM 내지 80 mM Tris-HCl, 염화칼륨 5 mM 내지 50 mM, 황산마그네슘 1 mM 내지 30 mM, 황산암모늄 5 mM 내지 50 mM, 단백질분해효소 0.01 mg/ml 내지 0.1 mg/ml, TritonX-100 또는 Tween20 0.01w/w% 내지 0.2w/w%, pH 8.0 내지 9.0인 세포 용해용 완충액과 혼합된 세포 용해물을 적가하고, 상기 시료패드를 가열하기 위한 시료패드 하방의 가열패드를 작동시킴으로서 시료의 용해를 효율성을 높인다. 가열패드를 60 내지 80℃의 온도에서 2분간 가열 처리해줌으로써 시료패드에서 바이러스와 상피세포를 포함하는 시료의 용해를 촉진한다.5 mM to 80 mM Tris-HCl, potassium chloride 5 mM to 50 mM, magnesium sulfate 1 mM to 30 mM, ammonium sulfate 5 mM to 50 mM, protease 0.01 mg/ml to 0.1 mg/ml, TritonX- 100 or Tween20 0.01 w/w% to 0.2 w/w%, by adding a cell lysate mixed with a cell lysis buffer having a pH of 8.0 to 9.0 dropwise and operating a heating pad below the sample pad to heat the sample pad Increase the efficiency of sample dissolution. By heating the heating pad at a temperature of 60 to 80° C. for 2 minutes, dissolution of the sample including viruses and epithelial cells in the sample pad is promoted.
또한 버퍼패드에 완충액을 가할 수 있다. 상기 완충액은 핵산 물질이 반응패드까지 이동할 수 있도록 하면서, 핵산 물질을 정제하는 역할을 한다. 상기 완충액은 핵산 물질이 검출패드까지 이동할 수 있도록 하면서, 핵산 물질을 정제하는 역할을 한다. 상기 완충액은 적절한 양의 완충 성분을 함유하므로, 증류수를 첨가하는 경우 발생할 수 있는 급격한 염도나 pH 변화로 인한 단백질이나 핵산 물질의 침전 현상을 예방할 수 있다. 본 발명의 핵산 검출용 구조물의 각 패드는 핵산이 측방으로 이동하면서 정제될 수 있도록 작은 기공을 갖는 다공성 재질로 이루어진다. 따라서 단백질이나 핵산 물질이 착염이나 응집되어 기공을 막게 되면 시료의 이동속도가 감소하고 핵산 물질의 수득률이 저하될 수 있다.In addition, a buffer solution may be applied to the buffer pad. The buffer serves to purify the nucleic acid material while allowing the nucleic acid material to move to the reaction pad. The buffer serves to purify the nucleic acid material while allowing the nucleic acid material to move to the detection pad. Since the buffer solution contains an appropriate amount of a buffering component, it is possible to prevent precipitation of proteins or nucleic acids due to rapid changes in salinity or pH that may occur when distilled water is added. Each pad of the structure for detecting nucleic acids of the present invention is made of a porous material having small pores so that nucleic acids can be purified while moving laterally. Therefore, if the protein or nucleic acid material is complexed or aggregated to block the pores, the movement speed of the sample may decrease and the yield of the nucleic acid material may decrease.
상기 부가 완충액은 예를 들어 5 mM 내지 80 mM Tris-HCl, 20 mM 내지 70 mM 염화칼륨, 0.5 mM 내지 5 mM 황산마그네슘, 1 mM 내지 30 mM 황산암모늄, 및 0.01w/w% 내지 0.2 w/w% Tween® 20 내지 TritonX-100을 포함하고 산도가 pH 8.0 내지 9.0인 등온완충액 또는 인산 완충액 (50mM Na2HPO4, pH 7.2)일 수 있다. 상기 등온완충액은 보다 구체적으로 20 mM Tris-HCl, 10 mM (NH4)2SO4, 50 mM KCl, 2 mM MgSO4, 및 0.1% Tween® 20을 포함하고, 산도는 pH 8.8일 수 있다. 상기 부가 완충액은 단백질분해효소, 글리세롤, 또는 환원제를 포함하지 않는 것일 수 있다.The addition buffer is, for example, 5 mM to 80 mM Tris-HCl, 20 mM to 70 mM potassium chloride, 0.5 mM to 5 mM magnesium sulfate, 1 mM to 30 mM ammonium sulfate, and 0.01 w/w% to 0.2 w/w % Tween® 20 to TritonX-100 and an acidity pH of 8.0 to 9.0 or a phosphate buffer (50 mM Na 2 HPO 4 , pH 7.2). The isothermal buffer may more specifically include 20 mM Tris-HCl, 10 mM (NH 4 ) 2 SO 4 , 50 mM KCl, 2 mM MgSO 4 , and 0.1% Tween® 20, and may have a pH of 8.8. The addition buffer may not contain a protease, glycerol, or a reducing agent.
상기 핵산 증폭반응이 원활히 일어날 수 있도록, 반응패드 하부의 가열패드를 60 내지 65 ℃로 가열하고, 온도를 유지하면서 20 분 내지 1 시간 바람직하게는 20 분 내지 30 분 동안 방치할 수 있다.To facilitate the nucleic acid amplification reaction, the heating pad under the reaction pad may be heated to 60 to 65° C., and allowed to stand for 20 minutes to 1 hour, preferably 20 to 30 minutes, while maintaining the temperature.
상기 다중 핵산 검출용 구조물을 이용해서 진단할 수 있는 질병은 특정 유전자가 원인이나 질병의 지표로서 이용될 수 있는 것으로, 예를 들어, 비만, 고혈압, 당뇨병 등과 같은 대사성 질환, 유전질환, 암 등이 있고, 바이러스 또는 균은 감염성 질환과 관련 있는 것으로, 균 감염증을 유발할 수 있는 균으로는 세균, 원충, 기생충, 진균 등을 포함하나 이에 제한되지 않는다.Diseases that can be diagnosed using the multi-nucleic acid detection structure are those in which a specific gene can be used as a cause or indicator of a disease, for example, metabolic diseases such as obesity, hypertension, diabetes, genetic diseases, cancer, etc. In addition, viruses or bacteria are related to infectious diseases, and bacteria that can cause fungal infections include bacteria, protozoa, parasites, fungi, etc., but are not limited thereto.
본 발명은 복수의 왁스 배리어를 포함하는 패드를 이용하여 유체의 흐름을 조절하는 것을 특징으로 하여, 시료의 적용에 의해 정확도가 높은 검출이 가능하게 한다. The present invention is characterized by controlling the flow of fluid using a pad including a plurality of wax barriers, enabling highly accurate detection by application of a sample.
또한, 본 발명의 핵산 추출 및 증폭 방법을 이용하면, 시료의 전처리 (preparation), 핵산 증폭 반응 (reaction)과 검출 (detection)을 각각 별도로 수행하지 않고, 시료의 1회 적용으로 검출까지 한 번에 수행할 수 있다. 각 단계를 별도로 수행하지 않으므로, 전 과정이 단순화되어 다양한 시료나 장치를 요하지 않고, 관련 기술자가 아니어도 쉽게 수행할 수 있다.In addition, if the nucleic acid extraction and amplification method of the present invention is used, the sample is applied once and the detection is performed at once without separately performing sample preparation, nucleic acid amplification reaction, and detection. can be done Since each step is not performed separately, the entire process is simplified, and various samples or devices are not required, and it can be easily performed even without a related technician.
또한, 각 단계를 수행하기 위한 복잡한 장치를 요구하지 않으므로, 장소에 제약을 받지 않고, 배포가 용이한 장점을 갖고, 1회의 시료를 적용하여 다수의 핵산 검출이 가능하므로 경제적이다.In addition, since it does not require a complicated device for performing each step, it is not restricted by location, has the advantage of easy distribution, and is economical because it is possible to detect a large number of nucleic acids by applying one sample.
도 1은 본 발명의 다중 핵산 검출용 구조물의 전체 구조의 예시이다.1 is an example of the overall structure of the construct for detecting multiple nucleic acids of the present invention.
도 2는 본 발명의 일 실시예에 따른 왁스 배리어에 의한 유체 흐름 조절에 대한 실험 결과이다.2 is an experimental result of fluid flow control by a wax barrier according to an embodiment of the present invention.
도 3은본 발명의 일 실시예에 따른 왁스 배리어에 의한 유체 흐름 조절에 대한 실험 결과이다.3 is an experimental result of fluid flow control by a wax barrier according to an embodiment of the present invention.
도 4는 검출패드(160)에 표적 핵산이 획득되는 원리를 도식화한 것이다.FIG. 4 is a diagram illustrating the principle of obtaining target nucleic acids from the detection pad 160.
도 5은 본 발명의 다중 핵산 검출용 구조물 일부분의 측면 구조도이다.5 is a side structural view of a part of the structure for detecting multiple nucleic acids of the present invention.
도 6은 본 발명의 다중 핵산 검출용 구조물 일부분의 사시도이다.6 is a perspective view of a part of the structure for detecting multiple nucleic acids of the present invention.
도 7은검출패드(160)의 구조를 확대한 구조도이다.7 is an enlarged structural diagram of the structure of the detection pad 160.
도 8 케이스로 둘러싸인 본 발명의 다중 핵산 검출용 구조물의 외관을 보여주는 예시이다.8 is an example showing the appearance of the structure for detecting multiple nucleic acids of the present invention surrounded by a case.
도 7은 혈액 시료로부터 SARS-CoV-2를 검출한 결과를 보여주는 예시이다.7 is an example showing the result of detecting SARS-CoV-2 from a blood sample.
본 발명은 생물학적 시료를 수용하는 시료패드; 상기 시료패드와 분리되어 배치되고, 재수화(rehydration) 완충액을 수용하는 버퍼패드; 상기 시료패드의 상부에 배치되고, 시료패드와 반응패드를 연결하는 제1연결 패드; 상기 버퍼패드의 상부에 배치되고, 버퍼패드와 반응패드를 연결하는 개시자(opener) 패드; 상기 제1연결패드 및 개시자 패드의 하부에 배치되고, 표적 핵산과 특이적으로 결합할 수 있는 프라이머와 등온증폭반응 (LAMP)을 위한 시약을 포함하고, 등온 증폭반응이 일어나는 반응패드; 상기 반응패드 상부에 배치되고, 반응온도 유지 및 시료의 증발을 차단하는 차단패드; 상기 반응패드의 상부에 배치되고, 금 나노입자가 고정되어 있는 제2연결패드; 상기 제2연결패드의 하부에 배치되고, 상기 금 나노입자와 결합된 등온증폭 반응물로부터 증폭된 표적 핵산을 획득하는 검출패드; 및 상기 검출패드의 측방에 배치되고, 잔류하는 시료를 흡수하는 흡수패드를 포함하고, 상기 시료패드, 개시자패드, 반응패드, 및 제2연결패드 하부에 배치된 가열 패드를 포함하며, 상기 개시자패드 및 제2연결패드는 제1 왁스 배리어 및 제2 왁스 배리어를 포함하며, 상기 제1 왁스 배리어의 폭은 1.5 내지 1.75mm이며, 상기 제2 왁스 배리어의 폭은 0.1 내지 0.3mm이며, 상기 제1 왁스 배리어 및 제2 왁스 배리어는 안정적인 유체 흐름을 차단하고, 상기 가열 패드에 의해 온도가 승온되면, 원활한 유체의 흐름을 형성하는 것인 다중 핵산 검출용 구조물에 관한 것이다.The present invention relates to a sample pad accommodating a biological sample; a buffer pad disposed separately from the sample pad and accommodating a rehydration buffer; a first connection pad disposed above the sample pad and connecting the sample pad and the reaction pad; an initiator pad disposed above the buffer pad and connecting the buffer pad and the reaction pad; a reaction pad disposed under the first connection pad and the initiator pad, including a primer capable of specifically binding to a target nucleic acid and a reagent for an isothermal amplification reaction (LAMP), wherein an isothermal amplification reaction occurs; a blocking pad disposed above the reaction pad to maintain the reaction temperature and block evaporation of the sample; a second connection pad disposed above the reaction pad and to which gold nanoparticles are fixed; a detection pad disposed under the second connection pad and obtaining a target nucleic acid amplified from an isothermal amplification reaction coupled with the gold nanoparticles; and an absorption pad disposed on a side of the detection pad to absorb the remaining sample, and a heating pad disposed under the sample pad, the initiator pad, the reaction pad, and the second connection pad. The magnetic pad and the second connection pad include a first wax barrier and a second wax barrier, the first wax barrier has a width of 1.5 to 1.75 mm, and the second wax barrier has a width of 0.1 to 0.3 mm. The first wax barrier and the second wax barrier block a stable fluid flow, and form a smooth fluid flow when the temperature is raised by the heating pad.
이하, 본 발명을 하기 실시예에 의거하여 보다 자세하게 설명하나, 이들은 본 발명을 설명하기 위한 것일 뿐 이들에 의하여 본 발명의 범위가 어떤 식으로든 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples, but these are only for explaining the present invention, and the scope of the present invention is not limited in any way by these.
제조예 1. 랩온페이퍼 핵산 검출용 구조물의 제조Preparation Example 1. Preparation of Lab-on-Paper Structure for Detecting Nucleic Acids
본 발명의 랩온페이퍼 핵산 검출용 구조물을 제조하기 위해, 시료패드(120) 및 버퍼패드(121)로는 0.5 ㎛ 폴리설폰, 제1연결패드(131) 또는 개시자패드(132)로는 0.01㎛ 셀룰로오스, 반응패드(140)로는 0.005㎛ 셀룰로스아세테이트, 제2연결패드(150)로는 0.05㎛ 셀룰로오스, 검출패드(160)로는 0.005㎛ 니트로셀룰로오스, 및 흡수패드(170)로는 0.5 ㎛ 유리섬유 재질로 준비하였다.To prepare the lab-on-paper nucleic acid detection structure of the present invention, 0.5 μm polysulfone was used as the sample pad 120 and buffer pad 121, 0.01 μm cellulose was used as the first connection pad 131 or initiator pad 132, The reaction pad 140 was made of 0.005 μm cellulose acetate, the second connection pad 150 was made of 0.05 μm cellulose, the detection pad 160 was made of 0.005 μm nitrocellulose, and the absorption pad 170 was made of 0.5 μm glass fiber.
반응패드(140)는 셀룰로오스아세테이트 막을 겹쳐서 패드로 만들고 이를 45 mM 수크로오스, 0.005 w/w% TritonX-100, 및 0.2 w/w% 글리세롤을 포함하는 용액에 담근 후 건조시켜 준비하였다. 그리고 여기에 미세 드릴로 웰을 형성하고, 상기 웰의 바닥에 프라이머 세트를 포함하는 히드로겔 층을 형성하였다. 상기 히드로겔 층을 형성하기 위해 우선 히드로겔 용액 총 부피를 기준으로 UV-광가교성 폴리(에틸렌 글리콜) 디아크릴레이트 (PEGDA, Sigma-Aldrich, MW700) 20% v/v, 폴리(에틸렌 글리콜)(PEG, Sigma-Aldrich, MW600) 40% v/v 및 광개시제 2-하이드록시-2-메틸프로피오페논 (Sigma-Aldrich) 5% v/v 및 버퍼(PBS 완충액, pH7.5) 35%를 혼합하고, 여기에 각 프라이머 세트를 혼합하여 하이드로겔 용액을 제조하였다. 상기 폴리(에틸렌 글리콜)은 히드로겔 미세입자의 공극율을 증가시키기 위하여 포함되는 것이 바람직하다. 그런 다음, 상기 히드로겔 용액을 반응패드의 각 웰 내부 표면에 도포하고, 1분간 UV 노출(360 nm wavelength, 35 mJ/cm2)하여 히드로겔 코팅층을 형성하였다.The reaction pad 140 was prepared by making a pad by overlapping cellulose acetate films, immersing the pad in a solution containing 45 mM sucrose, 0.005 w/w% TritonX-100, and 0.2 w/w% glycerol, and drying. Then, a well was formed using a micro-drill, and a hydrogel layer including a primer set was formed on the bottom of the well. To form the hydrogel layer, first, based on the total volume of the hydrogel solution, UV-light crosslinkable poly (ethylene glycol) diacrylate (PEGDA, Sigma-Aldrich, MW700) 20% v / v, poly (ethylene glycol) ( Mix PEG, Sigma-Aldrich, MW600) 40% v/v and photoinitiator 2-hydroxy-2-methylpropiophenone (Sigma-Aldrich) 5% v/v and buffer (PBS buffer, pH7.5) 35% Then, a hydrogel solution was prepared by mixing each primer set therein. The poly(ethylene glycol) is preferably included to increase the porosity of the hydrogel microparticles. Then, the hydrogel solution was applied to the inner surface of each well of the reaction pad and exposed to UV (360 nm wavelength, 35 mJ/cm 2 ) for 1 minute to form a hydrogel coating layer.
그런 다음 반응패드(140)의 표면에 dNTP(1.4mM, dATP, dCTP, dGTP 및 dTTP), 등온증폭버퍼(1X, 20mM Tris-HCl, 10mM (NH4)2SO4, 50mM KCl, 2mM MgSO4, 및 0.1% Tween-20, pH7.5)를 함유하는 파우더와 Bst 3.0 DNA 중합효소(320U/㎖)를 도포하고, 약 38℃ 오븐에서 약 30분 간 가열하여 고정하였다.Then, dNTP (1.4mM, dATP, dCTP, dGTP and dTTP), isothermal amplification buffer (1X, 20mM Tris-HCl, 10mM (NH 4 ) 2 SO 4 , 50mM KCl, 2mM MgSO 4 were added to the surface of the reaction pad 140. , and 0.1% Tween-20, pH 7.5) and Bst 3.0 DNA polymerase (320 U/ml) were applied, and fixed by heating in an oven at about 38° C. for about 30 minutes.
제2연결패드 (150)에 고정된 금 나노입자는 콜로이드 입자로서 하기와 같이 제조하였다. 0.1% HAuCl4용액을 교반 가열하면서 끓기 시작하면 0.5% 소듐시트르산 용액을 첨가하여 용액을 환원시켜 금 입자를 만들고, 여기에 스트렙타비딘(streptavidin)을 금 입자용액 100㎖당 각각 1mg을 첨가하여 축합시켰다. 축합체를 10,000g에서 원심분리하여 침전시키고 0.1% BSA를 함유하는 생리식염수(PBS)로 용해하여 OD450값이 10이 되도록 만들어 보관하였다. The gold nanoparticles fixed on the second connection pad 150 were prepared as colloidal particles as follows. When the 0.1% HAuCl 4 solution starts to boil while stirring and heating, 0.5% sodium citrate solution is added to reduce the solution to form gold particles, and 1 mg of streptavidin per 100 ml of the gold particle solution is added to condense made it The condensate was precipitated by centrifugation at 10,000 g, dissolved in physiological saline (PBS) containing 0.1% BSA, and stored at an OD450 value of 10.
제2연결패드(150)는 하기와 같이 제조하였다. 구체적으로, 셀룰로오스 막을 여러 겹쳐 준비하여 절단하고, 0.4 M의 Tris (pH 6.5), 0.2%의 Tween-20, 1%의 카제인나트륨, 0.1%의 소듐아지드(sodium azide), 및 0.05%의 Proclin 300으로 제조된 용액에 담궈 적셔 두었다. 상기 제조된 금 축합체는 상기 용액과 동일한 조성의 용액에 투석하여 준비하였다. 그런 다음, 상기 셀룰로오스 막에 상기 투석한 금 축합체를 처리하고 건조하여 제2연결패드(150)를 완성하였다.The second connection pad 150 was manufactured as follows. Specifically, several layers of cellulose membranes were prepared and cut, 0.4 M Tris (pH 6.5), 0.2% Tween-20, 1% sodium caseinate, 0.1% sodium azide, and 0.05% Proclin. It was immersed in a solution prepared by 300 and kept wet. The prepared gold condensate was prepared by dialysis against a solution having the same composition as the above solution. Then, the cellulose membrane was treated with the dialyzed gold condensate and dried to complete the second connection pad 150.
검출패드(160)는 폴리에틸렌프탈레이트 잉크로 검출 구역을 스탬핑하여 지정하고, 그 위에 FAM, HEX, 및 Cy5 등의 형광 표지자에 결합할 수 있는 항체를 함유하는 용액으로 다시 스탬핑 한 후, NHS(N-hydroxysulfosuccinimide) 용액을 적용하고 반응시켜 항체를 고정하였다.The detection pad 160 is designated by stamping the detection area with polyethylene phthalate ink, and then stamped again with a solution containing an antibody capable of binding to a fluorescent marker such as FAM, HEX, and Cy5 thereon, and NHS (N- hydroxysulfosuccinimide) solution was applied and reacted to fix the antibody.
상기 제2연결패드(150)의 반응패드와 접촉하는 부분에는 5%의 저융점 아가로오스(Lonza, NuSieve GTG Agarose) 용액으로 코팅하였다.A portion of the second connection pad 150 in contact with the reaction pad was coated with a 5% low melting point agarose (Lonza, NuSieve GTG Agarose) solution.
그런 다음, 각 구조물의 구성요소를 도 3과 같이 배치하고, 상기 시료패드(120), 개시자패드(132), 반응패드(140), 및 제2연결패드(150)의 하단에는 가열패드로(141)로 열선이 연결된 구리판을 배치하고, 반응패드의 상부에는 차단패드(142)로 폴리아크릴 막을 배치하였다.Then, the components of each structure are arranged as shown in FIG. 3, and the sample pad 120, the initiator pad 132, the reaction pad 140, and the second connection pad 150 are provided with heating pads at the lower ends. A copper plate connected to a hot wire at 141 was disposed, and a polyacrylic film was disposed as a blocking pad 142 on top of the reaction pad.
시험예 1. 왁스 배리어를 이용한 유체 흐름 조절Test Example 1. Fluid flow control using wax barrier
본 발명의 랩온페이퍼 핵산 검출용 구조물 중 개시자 패드 또는 제2 연결패드에 복수의 왁스 배리어가 형성되는 것에 의해 유체 흐름의 조절 여부를 확인하기 위해 하기와 같이 실험을 진행하였다. In order to check whether fluid flow was controlled by forming a plurality of wax barriers on the initiator pad or the second connection pad of the structure for detecting nucleic acid in lab-on-paper according to the present invention, an experiment was conducted as follows.
0.01㎛ 셀룰로오스에 1.5mm/0.2mm(제1왁스배리어/제2왁스배리어) 및 1.75mm/0.2mm(제1왁스배리어/제2왁스배리어)의 왁스 배리어를 형성하였다. 상기 왁스 배리어 형성 방법은 왁스 프런트를 이용하여 상기와 같은 폭을 갖도록 출력하고, 왁스가 충분히 스며들 수 있도록 130도 오븐에 45초 동안 건조시켜서 제작하였다. Wax barriers of 1.5 mm/0.2 mm (first wax barrier/second wax barrier) and 1.75 mm/0.2 mm (first wax barrier/second wax barrier) were formed on 0.01 μm cellulose. The method of forming the wax barrier was produced by printing to have the width as described above using a wax front, and drying in an oven at 130 degrees for 45 seconds so that the wax could sufficiently permeate.
온도에 따른 왁스 흐름을 확인하기 위해, 제1 왁스 배리어가 위치한 면에 색소 용액을 포함하는 셀룰로오스 패드를 연결하고, 유체 흐름을 확인하였다. In order to check the wax flow according to the temperature, a cellulose pad containing a dye solution was connected to the surface where the first wax barrier was located, and the fluid flow was checked.
실험 결과는 도 2 및 도 3과 같다. 70℃ 이하인 65℃로 가열했을 때는 왁스 배리어에 의한 유체 흐름 차단 효과가 나타나는 것을 확인할 수 있다. 반면 80℃로 가열 시에는 왁스 배리어에 의한 유체 흐름이 나타나는 것을 실험을 통해 확인할 수 있다. Experimental results are shown in FIGS. 2 and 3 . It can be seen that when heated to 65 ℃, which is 70 ℃ or less, the fluid flow blocking effect by the wax barrier appears. On the other hand, when heated to 80 ° C., it can be confirmed through experiments that fluid flow due to the wax barrier appears.
시험예 2. 혈액 시료를 이용한 바이러스 검출Test Example 2. Virus detection using blood samples
본 발명의 랩온페이퍼 핵산 검출용 구조물을 이용하여 혈액 시료로부터 핵산을 추출하고 이를 증폭하여 형광을 측정함으로써 SARS-CoV-2와 같은 바이러스 감염 여부를 쉽게 측정할 수 있다.Virus infection such as SARS-CoV-2 can be easily measured by extracting nucleic acid from a blood sample using the lab-on-paper nucleic acid detection structure of the present invention, amplifying the nucleic acid, and measuring fluorescence.
SARS-CoV-2를 검출하기 위해 SARS-CoV-2에 특징적인 N 단백질 유전자, 또는 Rdrp 유전자에 선택적으로 결합할 수 있는 프라이머 세트를 이용할 수 있다. 이러한 프라이머 세트를 사용하는 경우, 각 세트의 정방향 프라이머 또는 역방향 프라이머 중 어느 하나는 예를 들어, FAM, HEX, 또는 Cy5가 결합한 형태이고, 다른 프라이머는 비오틴으로 결합된 것이다. 시료 내에 상기 프라이머 세트가 특이적으로 결합할 수 있는 표적 핵산이 존재하는 경우, 반응패드 (140)에서 증폭되고, 제2연결패드 (150)를 통과하면서 증폭된 핵산에 결합된 비오틴이 금 나노입자의 스트렙타비딘과 특이적으로 결합한다. 측방 흐름에 의해 금 나노입자와 결합한 증폭된 핵산은 검출패드(160)로 이동하고, 증폭된 핵산의 다른 측에 결합된 검출자가 상기 검출패드(160)에 고정된 FAM, HEX, 또는 Cy5에 특이적으로 결합할 수 있는 수용체에 결합하면서 검출 패드의 검출 구역을 분홍색으로 색변화 시킨다.To detect SARS-CoV-2, a set of primers capable of selectively binding to the N protein gene characteristic of SARS-CoV-2 or the Rdrp gene can be used. In the case of using such a primer set, one of the forward or reverse primers of each set is, for example, FAM, HEX, or Cy5 bound, and the other primer is biotin bound. When a target nucleic acid to which the primer set can specifically bind exists in the sample, it is amplified in the reaction pad 140, and biotin bound to the amplified nucleic acid while passing through the second connection pad 150 is gold nanoparticles. It binds specifically to streptavidin. The amplified nucleic acid bound to the gold nanoparticle moves to the detection pad 160 by lateral flow, and the detector bound to the other side of the amplified nucleic acid is specific for FAM, HEX, or Cy5 immobilized on the detection pad 160. The color of the detection area of the detection pad is changed to pink while binding to the receptor that can be bound to it.
검출패드에 표적 핵산이 결합하는 원리를 도식화하면 도 4와 같다.The principle of binding of the target nucleic acid to the detection pad is illustrated in FIG. 4 .
신뢰도를 높이기 위해 검출패드에 추가의 검출 구역을 형성한 후, SARS-CoV-2와 교차검출 가능성이 높은 바이러스에 특징적인 유전자에 선택적으로 결합하는 프라이머 세트를 도입하여 이를 음성대조군으로서 함께 검출할 수 있다.In order to increase reliability, after forming an additional detection zone on the detection pad, a primer set that selectively binds to a gene characteristic of a virus with a high possibility of cross-detection with SARS-CoV-2 can be introduced and detected together as a negative control. there is.
시험예 3. 혈액 시료를 이용한 핵산 추출 및 증폭Test Example 3. Nucleic acid extraction and amplification using blood samples
(1)(One) 시험 시료 및 페이퍼 칩의 준비Preparation of test samples and paper chips
본 발명의 랩온페이퍼 핵산 검출용 구조물을 이용하여 혈액 시료로부터 핵산을 추출하고 이를 증폭하여 형광을 나타낼 수 있는지 확인하였다.Nucleic acids were extracted from blood samples using the construct for detecting nucleic acids in lab-on-paper of the present invention, and nucleic acids were amplified to confirm whether they could exhibit fluorescence.
먼저 인간 혈액을 전혈로서 Innovative research (IWB1K2E10ML, USA)에서 구입하여 준비하고, 양성 대조군인 18S rRNA의 프라이머는 Tocris(# 7325, USA)에서 구입하였다. 사용된 전혈은 일체의 바이러스나 박테리아에 감염된 것이 아님을 data sheet를 통해 확인하였다. 상기 인간 혈액 100㎕에 siTOOLs Biotech 사의 SARS-CoV-2 positive control 0.1pg/㎕를 1㎕를 혼합하여 1 개의 시험 시료를 준비하였다. First, human blood was purchased and prepared as whole blood from Innovative Research (IWB1K2E10ML, USA), and 18S rRNA primers as a positive control were purchased from Tocris (# 7325, USA). It was confirmed through the data sheet that the whole blood used was not infected with any virus or bacteria. One test sample was prepared by mixing 1 μl of 0.1 pg/μl of SARS-CoV-2 positive control from siTOOLs Biotech with 100 μl of the human blood.
혈액에 혼합된 SARS-CoV-2의 검출을 위한 프라이머 세트는 하기의 표 1과 같다. Primer sets for detecting SARS-CoV-2 mixed in blood are shown in Table 1 below.
유전자gene 프라이머
유형
primer
category
서열order
SARS-CoV-2의
N 유전자
of SARS-CoV-2
N gene
F3F3 5'-ACCGAAGAGCTACCAGACGA-3'5′-ACCGAAGAGCTACCAGACGA-3′
B3B3 5'-CTGCGTAGAAGCCTTTTGGC-3'5′-CTGCGTAGAAGCCTTTTGGC-3′
FIPFIP 5'-TCCAGCTTCTGGCCCAGTTCCTTTTTATTCGTGGTGGTGACGGTAA-3'5′-TCCAGCTTCTGGCCCAGTTCCTTTTTATTCGTGGTGGTGACGGTAA-3′
BIPBIP 5'-TATGGGTTGCAACTGAGGGAGCCTTTTTTCATTGTTAGCAGGATTGCGGG-3'5'-TATGGGTTGCAACTGAGGGAGCCTTTTTTCATTGTTAGCAGGATTGCGGG-3'
FLFL 5'-ACCATCTTGGACTGAGATCTTTC-3' 5′-ACCATCTTGGACTGAGATCTTTC-3′
BLBL 5'-TACACCAAAAGATCACATTGGCA-3')5'-TACACCAAAAGATCACATTGGCA-3')
※ F3, forward primer; B3, backward primer; FIP, forward inner primer; BIP, backward inner primer; FL, forward loop primer; BL, backward loop primer상기 각 프라이머 세트에서 F3 프라이머는 5' 말단에 검출자를 결합하였고, B3 프라이머 5' 말단에는 비오틴을 결합하였다. 양성대조군인 인간 18s RNA (A)는 FAM, 및 N 유전자(B)는 Cy5를 검출자로서 도입하였다.※ F3, forward primer; B3, backward primer; FIP, forward inner primer; BIP, backward inner primer; FL, forward loop primer; BL, backward loop primer In each of the above primer sets, the F3 primer bound a detector to the 5' end, and the B3 primer bound biotin to the 5' end. As a positive control, human 18s RNA (A) was introduced with FAM, and N gene (B) with Cy5 as a detector.
(2)(2) 시료로부터 핵산 검출Nucleic acid detection from samples
상기 시험 시료와 SARS-CoV-2를 혼합하지 않은 음성대조군 시료를 각각 50㎕ 취하여 Lysis buffer (20mM Tris·HCl (pH 8.8), 15mM MgSO4, 15mM KCl, 15mM (NH4)2SO4, 0.1 w/w% Tween20, 0.05 mg/ml 단백질분해효소 (Protenase K)) 50㎕를 첨가하고 가볍게 탭핑(tapping)한 후, 5분 정도 상온에서 인큐베이션 하였다. 그런 다음, 시료패드(120) 하부의 가열패드(141)를 60℃로 작동시킨 상태에서 제조예 1에서 제조된 핵산 검출용 구조물의 시료패드(120)에 5 분 내로 천천히 적가하고, 부가 완충액 (20 mM Tris-HCl, 10 mM (NH4)2SO4, 50 mM KCl, 2 mM MgSO4, 0.1% Tween® 20, pH 8.8) 250㎕를 시료패드에 약 2 분 동안 천천히 적가한 후, 반응패드 하부의 가열패드를 60℃로 가열하여 30분 간 반응시켰다. 그런 다음, 제2연결패드(150) 하부의 가열패드와 개시자패드(132) 하부의 가열패드를 80℃로 가열하여 상기 부가 완충액 250㎕을 버퍼패드에 2 분 동안 천천히 적가하고 검출 패드에 표시되는 검출 구역의 색변화를 관찰하였다. 50 μl of each of the test sample and the negative control sample in which SARS-CoV-2 was not mixed was added to Lysis buffer (20 mM Tris HCl (pH 8.8), 15 mM MgSO 4 , 15 mM KCl, 15 mM (NH 4 ) 2 SO 4 , 0.1 50 μl of w/w% Tween20, 0.05 mg/ml proteinase K) was added and lightly tapped, followed by incubation at room temperature for about 5 minutes. Then, with the heating pad 141 under the sample pad 120 operated at 60° C., it was slowly added dropwise to the sample pad 120 of the structure for detecting nucleic acid prepared in Preparation Example 1 within 5 minutes within 5 minutes, and the addition buffer ( 250 μl of 20 mM Tris-HCl, 10 mM (NH 4 ) 2 SO 4 , 50 mM KCl, 2 mM MgSO 4 , 0.1% Tween® 20, pH 8.8) was slowly added dropwise to the sample pad for about 2 minutes, followed by reaction. The heating pad under the pad was heated to 60 °C and reacted for 30 minutes. Then, the heating pad under the second connection pad 150 and the heating pad under the initiator pad 132 were heated to 80° C., and 250 μl of the addition buffer was slowly added dropwise to the buffer pad for 2 minutes and displayed on the detection pad. The color change of the detection zone was observed.
그 결과, 도 9과 같이 시험 시료 및 음성대조군에서 모두 양성대조군(A) 밴드를 확인함으로써 구조물이 정상적으로 작동함을 확인하였고, 시험 시료에서는 SARS-CoV-2 (B)가 검출된 반면, 음성대조군 시료에서는 양성대조군(A) 만 관찰되어 본 발명의 시스템을 이용하여 다수의 질병, 바이러스 또는 균 감염 여부를 진단할 수 있음을 확인하였다.As a result, as shown in FIG. 9, it was confirmed that the structure worked normally by confirming the band of the positive control group (A) in both the test sample and the negative control group, and SARS-CoV-2 (B) was detected in the test sample, while the negative control group In the sample, only the positive control group (A) was observed, confirming that multiple diseases, viral or fungal infections can be diagnosed using the system of the present invention.
[부호의 설명][Description of code]
110: 하우징 구조물110: housing structure
120: 시료패드120: sample pad
121: 버퍼패드121: buffer pad
131: 제1연결패드131: first connection pad
132: 개시자패드132: initiator pad
140: 반응패드140: reaction pad
141: 가열패드141: heating pad
142: 차단패드142: blocking pad
150: 제2연결패드150: second connection pad
160: 검출패드160: detection pad
170: 흡수패드170: absorbent pad
161: 검출구역161: detection area
본 발명은 왁스 배리어를 이용하여 유체 흐름을 조절하는 페이퍼 칩에 관한 것으로, 구체적으로 복수의 왁스 배리어를 포함하여, 패드의 유체 흐름을 조절할 수 있는 페이퍼 칩에 관한 것이다.The present invention relates to a paper chip that controls fluid flow using a wax barrier, and more particularly, to a paper chip that includes a plurality of wax barriers and can control fluid flow in a pad.

Claims (7)

  1. 생물학적 시료를 수용하는 시료패드;a sample pad accommodating a biological sample;
    상기 시료패드와 분리되어 배치되고, 재수화(rehydration) 완충액을 수용하는 버퍼패드;a buffer pad disposed separately from the sample pad and accommodating a rehydration buffer;
    상기 시료패드의 상부에 배치되고, 시료패드와 반응패드를 연결하는 제1연결패드;a first connection pad disposed above the sample pad and connecting the sample pad and the reaction pad;
    상기 버퍼패드의 상부에 배치되고, 버퍼패드와 반응패드를 연결하는 개시자 (opener) 패드;an initiator pad disposed above the buffer pad and connecting the buffer pad and the reaction pad;
    상기 제1연결패드 및 개시자 패드의 하부에 배치되고, 표적 핵산과 특이적으로 결합할 수 있는 프라이머와 등온증폭반응 (LAMP)을 위한 시약을 포함하고, 등온증폭반응이 일어나는 반응패드; a reaction pad disposed below the first connection pad and the initiator pad, including a primer capable of specifically binding to a target nucleic acid and a reagent for an isothermal amplification reaction (LAMP), wherein an isothermal amplification reaction occurs;
    상기 반응패드 상부에 배치되고, 반응온도 유지 및 시료의 증발을 차단하는 차단패드;a blocking pad disposed above the reaction pad to maintain the reaction temperature and block evaporation of the sample;
    상기 반응패드의 상부에 배치되고, 금 나노입자가 고정되어 있는 제2연결패드; a second connection pad disposed above the reaction pad and to which gold nanoparticles are fixed;
    상기 제2연결패드의 하부에 배치되고, 상기 금 나노입자와 결합된 등온증폭반응물로부터 증폭된 표적 핵산을 획득하는 검출패드; 및a detection pad disposed under the second connection pad and obtaining target nucleic acid amplified from an isothermal amplification reaction coupled with the gold nanoparticles; and
    상기 검출패드의 측방에 배치되고, 잔류하는 시료를 흡수하는 흡수패드를 포함하고,An absorption pad disposed on a side of the detection pad and absorbing the remaining sample;
    상기 시료패드, 개시자패드, 반응패드, 및 제2연결패드 하부에 배치된 가열패드를 포함하며, 상기 개시자패드 및 제2연결패드는 복수의 왁스 배리어 층을 포함하는 다중 핵산 검출용 구조물.A structure for detecting multiple nucleic acids comprising a heating pad disposed under the sample pad, an initiator pad, a reaction pad, and a second connection pad, wherein the initiator pad and the second connection pad include a plurality of wax barrier layers.
  2. 청구항 1에 있어서, 상기 시료패드 및 제1연결패드와 버퍼패드 및 개시자패드; 반응패드; 제2연결패드; 검출패드; 및 흡수패드는 순차적으로 적어도 일부분 접촉되어 측방으로 배치된 것인, 다중 핵산 검출용 구조물.The method according to claim 1, wherein the sample pad, the first connection pad, the buffer pad and the initiator pad; reaction pad; a second connection pad; detection pad; and the absorbent pads sequentially arranged at least partially in contact with each other laterally.
  3. 청구항 1에 있어서, 상기 검출패드는 복수 개의 구분된 검출 구역을 포함하는 것인, 다중 핵산 검출용 구조물.The structure for detecting multiple nucleic acids according to claim 1, wherein the detection pad includes a plurality of distinct detection zones.
  4. 청구항 1에 있어서, 상기 시료패드에 적용된 시료는 흡수 패드까지 측방으로 이동하는 것인, 다중 핵산 검출용 구조물.The structure for detecting multiple nucleic acids according to claim 1, wherein the sample applied to the sample pad moves laterally to the absorption pad.
  5. 청구항 1에 있어서, 상기 왁스 배리어는 패드의 일면에 제1 왁스 배리어 및 제2 왁스 배리어로 형성되는 다중 핵산 검출용 구조물.The structure for detecting multiple nucleic acids according to claim 1, wherein the wax barrier is formed of a first wax barrier and a second wax barrier on one surface of the pad.
  6. 청구항 1의 다중 핵산 검출용 구조물을 포함하는, 질병, 바이러스 또는 균 감염 진단 키트.A kit for diagnosing a disease, virus or fungus infection comprising the structure for detecting multiple nucleic acids of claim 1.
  7. 청구항 1의 다중 핵산 검출용 구조물의 시료패드에 생물학적 시료를 적용하고, 표적 핵산을 증폭하는 단계; 및Applying a biological sample to the sample pad of the structure for detecting multiple nucleic acids of claim 1 and amplifying a target nucleic acid; and
    상기 핵산 증폭물을 검출패드에서 검출하는 단계를 포함하는, 질병, 바이러스 또는 균 감염 진단을 위한 정보 제공 방법.A method for providing information for diagnosing a disease, virus or fungal infection, comprising detecting the nucleic acid amplification product on a detection pad.
PCT/KR2022/004691 2021-10-29 2022-04-01 Paper chip for controlling fluid flow by using wax barriers WO2023075045A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0147300 2021-10-29
KR1020210147300A KR102392564B1 (en) 2021-10-29 2021-10-29 Paper chips that use a wax barrier to control fluid flow

Publications (1)

Publication Number Publication Date
WO2023075045A1 true WO2023075045A1 (en) 2023-05-04

Family

ID=81429097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004691 WO2023075045A1 (en) 2021-10-29 2022-04-01 Paper chip for controlling fluid flow by using wax barriers

Country Status (2)

Country Link
KR (2) KR102392564B1 (en)
WO (1) WO2023075045A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110124116A1 (en) * 1995-03-10 2011-05-26 Meso Scale Technology Llp Multi-array, multi-specific electrochemiluminescence testing
KR101662802B1 (en) * 2015-09-22 2016-10-05 충남대학교산학협력단 Paper Chip Enabling Control of Flow-Rate and Fabrication Method thereof
KR20170078057A (en) * 2015-12-29 2017-07-07 광주과학기술원 Chip structure for multiple molecular diagonosis
JP2021100863A (en) * 2019-12-24 2021-07-08 北越コーポレーション株式会社 Carrier tape mount for chip-shaped electronic component and method for manufacturing the same
KR102310223B1 (en) * 2021-07-21 2021-10-08 주식회사 에이아이더뉴트리진 Composition for Cell-lysis to apply to a structure with a lab-on-paper chip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110124116A1 (en) * 1995-03-10 2011-05-26 Meso Scale Technology Llp Multi-array, multi-specific electrochemiluminescence testing
KR101662802B1 (en) * 2015-09-22 2016-10-05 충남대학교산학협력단 Paper Chip Enabling Control of Flow-Rate and Fabrication Method thereof
KR20170078057A (en) * 2015-12-29 2017-07-07 광주과학기술원 Chip structure for multiple molecular diagonosis
JP2021100863A (en) * 2019-12-24 2021-07-08 北越コーポレーション株式会社 Carrier tape mount for chip-shaped electronic component and method for manufacturing the same
KR102310223B1 (en) * 2021-07-21 2021-10-08 주식회사 에이아이더뉴트리진 Composition for Cell-lysis to apply to a structure with a lab-on-paper chip

Also Published As

Publication number Publication date
KR102598031B1 (en) 2023-11-06
KR20230062345A (en) 2023-05-09
KR102598031B9 (en) 2024-03-15
KR102392564B9 (en) 2024-03-15
KR102392564B1 (en) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2023003137A1 (en) Composition for cell lysis to be applied to structure including lab-on-paper chip
WO2021025455A1 (en) Integrally-formed molecular diagnostic device
KR100240546B1 (en) Quantification of nucleic acid
JP2719225B2 (en) Chlamydia trachomatis detection method and kit therefor
WO2017034207A1 (en) Primers for detecting influenza by using lamp, and use thereof
Gwaltney et al. Detection of Eperythrozoon suis using the polymerase chain reaction
WO2020256378A1 (en) Nucleic acid detection method
WO2023075045A1 (en) Paper chip for controlling fluid flow by using wax barriers
US20230235312A1 (en) Detection method using lateral-flow paper chip capable of multi-nucleic acid colorimetric detection with one-step
US20230046974A1 (en) Detection method using paper chip capable of multi-nucleic acid colorimetric detection with one-step
WO2023163275A1 (en) Lab-on-paper platform for detecting nucleic acids in which purification and detection are simultaneously performed on basis of lateral flow integrated system
WO2020027479A1 (en) Paper-based, nucleic acid-detecting kit and method for analysis of pcr amplicon
WO2023003070A1 (en) Paper chip capable of one-step diagnosis of multiple nucleic acids
WO2022145658A1 (en) Composition for diagnosing tsutsugamushi disease and kit comprising same
KR102370572B1 (en) Colorimetric diagnostic method using strutcture with opener-based paper chip for controlling lateral flow that can diagnose multiple nucleic acids in one step
CN114807435A (en) Kit for detecting respiratory syncytial virus and application thereof
KR102468964B1 (en) A primer set for diagnosing multiple mosquito-borne infectious diseases including dengue, zika and chikungunya, a simultaneous multi-molecular diagnosis method using the same, and a lab-on-paper-based diagnostic kit
KR102370580B1 (en) Strutcture with opener-based paper chip for controlling lateral flow that can diagnose multiple nucleic acids in one step
WO2021015452A1 (en) Kit for detecting target materials and method for detecting target materials by using same
KR102370566B1 (en) Diagnostic method for detecting multiple nucleic acid with one-step
KR102392573B1 (en) A primer set for diagnosing multiple sexually transmitted diseases including chlamydia and gonorrhea, a simultaneous multi-molecular diagnosis method using the same, and a lab-on-paper-based diagnostic kit
WO2023163276A1 (en) Lab-on-paper platform comprising heating system
WO2020153673A1 (en) General-purpose primer sets for detecting flaviviruses and use thereof
KR102392567B1 (en) A composition for chlamydia diagnosis and a multi-isothermal amplification primer set, and a kit with improved speed, accuracy and portability using the same and a visual diagnosis method using the diagnostic kit
KR20230081572A (en) Household lab-on-paper diagnostic chip containing composition for diagnosing syphilis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887252

Country of ref document: EP

Kind code of ref document: A1