WO2023074881A1 - 水素製造方法、及び、水素製造装置 - Google Patents

水素製造方法、及び、水素製造装置 Download PDF

Info

Publication number
WO2023074881A1
WO2023074881A1 PCT/JP2022/040546 JP2022040546W WO2023074881A1 WO 2023074881 A1 WO2023074881 A1 WO 2023074881A1 JP 2022040546 W JP2022040546 W JP 2022040546W WO 2023074881 A1 WO2023074881 A1 WO 2023074881A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
gas
solid carbon
reaction
hydrogen production
Prior art date
Application number
PCT/JP2022/040546
Other languages
English (en)
French (fr)
Inventor
英樹 阿部
睦 西村
有希子 野原
尚子 大倉
長寿 福原
綾 渡部
衛 赤石
賢太 豊柴
Original Assignee
国立研究開発法人物質・材料研究機構
国立大学法人静岡大学
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構, 国立大学法人静岡大学, 株式会社荏原製作所 filed Critical 国立研究開発法人物質・材料研究機構
Priority to CN202280070320.7A priority Critical patent/CN118139811A/zh
Priority to CA3236282A priority patent/CA3236282A1/en
Priority to AU2022378041A priority patent/AU2022378041A1/en
Publication of WO2023074881A1 publication Critical patent/WO2023074881A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material

Definitions

  • the present invention relates to a hydrogen production method and a hydrogen production device.
  • DRM Dry reforming
  • Non-Patent Document 1 uses Ni/Al 2 O 3 as a dry reforming catalyst and a stainless steel tube as a solid carbon trapping catalyst, which are connected in order. system is described.
  • Non-Patent Document 1 In order to apply the system described in Non-Patent Document 1 to hydrogen production, the present inventors have devised a device in which a hydrogen separator is added to the above system, and methane and carbon dioxide are used as raw materials. , has been developing a method that can continuously extract hydrogen.
  • the above method can continuously produce hydrogen (hydrogen gas), it simply combines the three steps of dry reforming reaction, solid carbon capture reaction, and hydrogen separation. Then, it was found for the first time that more carbon dioxide is discharged out of the reaction system than contained in the raw material gas introduced into the reaction system.
  • [1] performing a dry reforming reaction to obtain a synthesis gas containing carbon monoxide and hydrogen from a raw material gas containing methane and carbon dioxide in the presence of a dry reforming catalyst; a solid carbon scavenging reaction wherein the syngas is reacted in the presence of a solid carbon scavenging catalyst to produce solid carbon from the carbon monoxide in the syngas to obtain the solid carbon and a treated gas; and separating the treated gas into an exhaust gas and hydrogen to obtain hydrogen; CO/CO 2 , which is the content molar ratio of the carbon monoxide content to the carbon dioxide content in the synthesis gas, the reaction temperature T 1 (° C.) of the dry reforming reaction, and the solid carbon capture
  • the reaction temperature T 2 (°C) of the aggregation reaction is the following condition (1):
  • a hydrogen production method that satisfies [2] The method for producing hydrogen according to [1], wherein the reaction temperature T2 is a temperature equal to or higher than the activation temperature of the solid carbon trapping catalyst
  • [3] The method for producing hydrogen according to [1] or [2], wherein CH 4 /CO 2 , which is the content molar ratio of the content of methane to the content of carbon dioxide in the source gas, is 0.5 or less.
  • [6] recovering heat from the exhaust gas, and using the heat for at least one reaction selected from the group consisting of the dry reforming reaction and the solid carbon capture reaction, 5], the hydrogen production method according to any one of the above.
  • a dry reforming reactor for performing a dry reforming reaction to obtain a synthesis gas containing carbon monoxide and hydrogen from a feed gas containing methane and carbon dioxide in the presence of a dry reforming catalyst; a solid carbon scavenging reaction wherein the syngas is reacted in the presence of a solid carbon scavenging catalyst to produce solid carbon from the carbon monoxide in the syngas to obtain the solid carbon and a treated gas; a solid carbon collector that performs a hydrogen separator for separating the treated gas into an exhaust gas and hydrogen; a first temperature controller for adjusting the reaction temperature T 1 (° C.) of the dry reforming reaction; a second temperature controller for adjusting the reaction temperature T 2 (° C.) of the solid carbon trapping reaction; a source gas regulator that adjusts the composition of the source gas; a controller; The controller controls CO/ CO2 , which is the content molar ratio of the carbon monoxide content to the carbon dioxide content in the synthesis gas, the reaction temperature T1 , the reaction temperature T1
  • the hydrogen production device according to [10].
  • the control device controls the first temperature controller and the second temperature controller to control the reaction temperature T1 to a temperature equal to or higher than the activity expression temperature of the dry reforming catalyst, and the reaction temperature
  • the hydrogen production device according to any one of [10] to [14], wherein the hydrogen separator includes a hydrogen separation membrane.
  • the heat recovery device includes a fuel cell.
  • a dry reforming reactor for obtaining a synthesis gas containing carbon monoxide and hydrogen from a feed gas containing methane and carbon dioxide in the presence of a dry reforming catalyst; introducing the syngas from the dry reforming reactor to produce solid carbon from carbon monoxide in the syngas in the presence of a solid carbon trapping catalyst to obtain a treated gas; a collector; a hydrogen separator for extracting hydrogen from the treated gas from the solid carbon collector to obtain an exhaust gas containing carbon dioxide; a first flow path for supplying syngas from the dry reforming reactor to the solid carbon collector and a second flow path for supplying treated gas from the solid carbon collector to the hydrogen separator; and a third flow path for supplying the exhaust gas from the hydrogen separator to the dry reforming reactor, wherein carbon
  • the hydrogen production apparatus according to [21], further comprising a methane combustion furnace and a heat supply channel for supplying heat from the methane combustion furnace to the dry reforming reactor.
  • a hydrogen extraction channel for extracting a portion of the hydrogen from the hydrogen separator, a hydrogen combustion furnace for burning the extracted hydrogen, and a heat supply channel for supplying heat from the hydrogen combustion furnace to the dry reforming reaction channel.
  • the hydrogen production device according to [21] or [22], further comprising: [24] A heat recovery device for recovering heat from the exhaust gas is connected in the middle of the third flow path, and the heat recovered by the heat recovery device is supplied to the dry reforming reactor.
  • the hydrogen production device according to any one of [23].
  • the hydrogen production device according to any one of [21] to [24], further comprising a compressor in the first flow path.
  • a pressure regulating valve is provided at the inlet of the hydrogen separator, and a gas holder and a pressure regulating valve are provided at the outlet of the hydrogen separator.
  • a hydrogen production method that reduces carbon dioxide emissions to the outside of the system.
  • a hydrogen production method can be provided in which the amount of carbon dioxide discharged to the outside of the system is less than the amount of carbon dioxide introduced into the system.
  • a hydrogen production apparatus can also be provided.
  • FIG. 1 is a block diagram of one embodiment of a hydrogen production device that can be used for carrying out the production method of the present invention
  • FIG. It is a thermal equilibrium calculation result of the Boudouard reaction (2CO ⁇ CO 2 +C). It is a figure showing the relationship between reaction temperature T1 , reaction temperature T2 , and CO/ CO2 in synthesis gas.
  • FIG. 4 is a diagram showing the relationship between Inflection and Gradient with reaction temperature T1 .
  • FIG. 4 is a diagram showing reaction temperature T1 dependency of the relationship between CH 4 /CO 2 in raw material gas and CO/CO 2 in syngas.
  • 1 is a flow diagram of a method for producing hydrogen according to the present invention
  • FIG. 1 is a block diagram of a first embodiment of a hydrogen production device of the present invention
  • FIG. 2 is a flowchart of hydrogen production by the hydrogen production device 200.
  • FIG. 4 is a flowchart of control processing executed by the control device 201.
  • FIG. 1 is a block diagram showing one embodiment of a hydrogen production apparatus (heat supply from a methane combustion furnace to dry reforming reaction) that can be used for carrying out the hydrogen production method of the present invention
  • FIG. 2 is a block diagram of another embodiment of a hydrogen production apparatus (heat supply from a hydrogen combustion furnace to a dry reforming reaction) that can be used for carrying out the hydrogen production method of the present invention.
  • FIG. 2 is a block diagram of still another embodiment of a hydrogen production apparatus (heat recovery from exhaust gas and heat supply to dry reforming reaction) that can be used for carrying out the hydrogen production method of the present invention.
  • FIG. 1 is a block diagram showing one embodiment of a hydrogen production apparatus (heat supply from a methane combustion furnace to dry reforming reaction) that can be used for carrying out the hydrogen production method of the present invention
  • FIG. 2 is a block diagram of another embodiment of a hydrogen production apparatus (heat supply from a hydrogen combustion furnace to a dry reforming reaction) that can be used for carrying out the hydrogen production
  • FIG. 4 is a block diagram of still another embodiment (heat recovery from exhaust gas and heat control) of a hydrogen production apparatus that can be used for carrying out the hydrogen production method of the present invention.
  • FIG. 4 is a block diagram of still another embodiment (compressor provided) of a hydrogen production apparatus that can be used to carry out the hydrogen production method of the present invention.
  • FIG. 4 is a block diagram of still another embodiment of a hydrogen production device (in which a plurality of solid carbon collectors are arranged in parallel) that can be used for carrying out the hydrogen production method of the present invention;
  • FIG. 2 is a block diagram of still another embodiment of a hydrogen production device (a form in which a plurality of solid carbon collectors are arranged in series) that can be used for carrying out the hydrogen production method of the present invention.
  • FIG. 4 is a graph showing gas composition at different temperatures in a solid carbon collector.
  • FIG. 3 is a block diagram of still another embodiment (temperature control of DRM reaction and solid carbon trapping reaction) of a hydrogen production apparatus that can be used for carrying out the hydrogen production method of the present invention. It is a photograph of the hydrogen production apparatus used for the demonstration experiment. This is the result of the demonstration test.
  • FIG. 3 is a schematic explanatory diagram showing a simulation of material balance and energy balance of the hydrogen production method of Example 2;
  • FIG. 10 is a schematic explanatory diagram showing a simulation of material balance and energy balance of the hydrogen production method of Example 3;
  • FIG. 10 is a schematic explanatory diagram showing a simulation of material balance and energy balance of the hydrogen production method of Example 4;
  • FIG. 10 is a schematic explanatory diagram showing a simulation of material balance and energy balance of the hydrogen production method of Example 5;
  • the present invention will be described in detail below. Although the description of the constituent elements described below may be made based on representative embodiments of the present invention, the present invention is not limited to such embodiments.
  • the numerical range represented by "X to Y" means a range including the numerical values represented by X and Y as lower and upper limits, respectively.
  • portions having the same function and/or structure may be denoted by the same reference numerals and description thereof may be omitted.
  • the hydrogen production method of the present invention obtains a synthesis gas containing carbon monoxide and hydrogen from a raw material gas containing methane and carbon dioxide in the presence of a dry reforming catalyst. , a step of performing a dry reforming reaction (dry reforming step), and reacting the synthesis gas in the presence of a solid carbon trapping catalyst to generate solid carbon from carbon monoxide in the synthesis gas, solid carbon and a step of performing a solid carbon trapping reaction (carbon trapping step) to obtain a treated gas, and a step of separating the treated gas into an exhaust gas and hydrogen to obtain hydrogen (hydrogen gas) ( hydrogen separation step).
  • this production method obtains a synthesis gas containing carbon monoxide and hydrogen from a raw material gas containing methane and carbon dioxide in the presence of a dry reforming catalyst.
  • One of the features of the present invention is that in order to obtain the desired effect, the content molar ratio (CO/CO 2 ) of the content of carbon monoxide to the content of carbon dioxide in the synthesis gas and the dry reforming
  • the reaction temperature T 1 (° C.) of the reaction and the reaction temperature T 2 (° C.) of the solid carbon trapping reaction are controlled so as to satisfy the following condition (1).
  • FIG. 1 is a block diagram of one embodiment of a hydrogen production device that can be used to implement this production method.
  • the hydrogen production device 100 has a dry reforming reactor 103 (hereinafter also referred to as a “DRM reactor”), a solid carbon collector 106, and a hydrogen separator 107, which allow gas to flow. are connected in order via a channel 115 for
  • the DRM reactor 103 includes a dry reforming catalyst 101 (hereinafter also referred to as “DRM catalyst”) and a first temperature controller 102 for controlling the temperature of gas flowing through the DRM reactor 103 (reaction temperature T 1 ). and have Further, the solid carbon collector 106 includes a solid carbon collector catalyst 104, a second temperature controller 105 for controlling the temperature (reaction temperature T 2 ) of the gas flowing through the solid carbon collector 106, have.
  • DRM catalyst dry reforming catalyst 101
  • T 1 reaction temperature
  • the solid carbon collector 106 includes a solid carbon collector catalyst 104, a second temperature controller 105 for controlling the temperature (reaction temperature T 2 ) of the gas flowing through the solid carbon collector 106, have.
  • a raw material gas 110 containing methane (CH 4 ) and carbon dioxide (CO 2 ) is introduced into the hydrogen production apparatus 100 from the upstream side of the DRM reactor 103 through a flow path 115 .
  • the raw material gas 110 flows through the DRM reactor 103 and becomes a synthesis gas 111 through a DRM reaction (DRM reaction: CH 4 +CO 2 ⁇ 2CO+2H 2 ).
  • DRM reaction CH 4 +CO 2 ⁇ 2CO+2H 2
  • the resulting synthesis gas 111 contains carbon monoxide (CO) produced by the DRM reaction and hydrogen.
  • T 1 the DRM reaction temperature
  • the structure of the dry reforming reactor 103 is not particularly limited as long as the source gas 110 (source gas flow) and the dry reforming catalyst 101 can be brought into contact at the reaction temperature T1 .
  • it may include a container through which the source gas 110 can flow, a dry reforming catalyst 101 fixed in the container, and a first temperature controller 102 that is a heater.
  • the dry reforming catalyst 101 may be a composite containing a porous carrier containing alumina and an active component supported on the porous carrier.
  • Active ingredients may be, for example, nickel, cobalt, molybdenum, rhodium, ruthenium, aluminum, zirconium, magnesium, palladium, zinc, potassium, calcium, oxides thereof, and the like.
  • dry reforming catalyst 101 for example, catalysts described in JP-A-2006-055820 and JP-A-2019-37905 can also be used.
  • the dry reforming catalyst is Chemical. Science. , 2019, volume 10, p3701-3705 .
  • Ni#Y 2 O 3 is a structure in which fibrous metallic nickel with a thickness of several tens of nanometers and oxygen-deficient Y 2 O 3 are entangled with each other to form a rooted structure. .
  • Ni#Y 2 O 3 can be produced, for example, by the following method. First, metallic nickel and metallic yttrium are dissolved in an argon atmosphere to synthesize a Ni--Y alloy. “Ni#Y 2 O 3 ” can be synthesized by heating this Ni—Y alloy powder (average particle size 50 to 60 ⁇ m) with a gas stream composed of CO, O 2 and Ar.
  • Syngas 111 is then introduced from the upstream side of solid carbon collector 106 .
  • Syngas 111 becomes treated gas 112 by a solid carbon trapping reaction while flowing through solid carbon trap 106 (solid carbon trapping (Boudoard reaction: 2CO ⁇ C+CO 2 )).
  • FIG. 11 is a cross-sectional view of a main part of one form of the solid carbon trapping catalyst 104.
  • the solid carbon trapping catalyst 104 has a tubular substrate 11 and a coating layer 12 formed on the inner wall surface of the substrate 11 .
  • the synthesis gas 111 can be easily circulated inside the solid carbon trapping catalyst 104 . There is also an advantage that clogging due to precipitated solid carbon is less likely to occur as the number of structures that impede flow inside the tubular body is less.
  • the base material 11 is not particularly limited as long as it can be coated with a metal-containing component, but it may be a stainless steel pipe, an aluminum pipe, or the like.
  • the base material 11 is a tubular body having an inner wall surface with a circular cross section, the inner diameter is not particularly limited, but may be, for example, 10 to 300 mm or 10 to 1000 mm.
  • the base material 11 is a tubular body, its length is not particularly limited, but may be, for example, 20-5000 mm.
  • the base material 11 may be a straight tubular body or a twisted tubular body.
  • the coating layer 12 is at least selected from the group consisting of iron oxide, cobalt oxide, magnesium oxide, molybdenum oxide, nickel oxide, manganese oxide, metallic iron, metallic cobalt, metallic magnesium, metallic molybdenum, metallic nickel, and metallic manganese. It contains one metal-containing component as a main component.
  • the coating layer 12 may contain iron oxide, in particular Fe 3 O 4 , Fe 2 O 3 , FeO, or a combination thereof as iron oxide.
  • the content of these metal-containing components in the coating layer 12 is preferably 40% by mass or more, more preferably 50% by mass or more, and even more preferably 60% by mass or more when the total mass of the coating layer 12 is 100% by mass. , 70% by mass or more is particularly preferable, and 100% by mass or less is preferable.
  • the coating layer 12 may contain a carrier containing aluminum oxide (Al 2 O 3 ) and metallic iron carried thereon.
  • the proportion of metallic iron may be 40 to 50 mass % when the mass of the coating layer 12 is 100 mass %.
  • the coating layer 12 is formed so as to cover all or part of the surface (inner wall surface) of the base material 11 .
  • the thickness of the coating layer 12 is not particularly limited, but may be, for example, 5-2000 ⁇ m or 10-2000 ⁇ m.
  • the coating layer 12 may be porous.
  • the specific surface area of the porous coating layer may be 5-1000 m 2 /g.
  • the coating layer 12 is, for example, selected from the group consisting of iron oxide, cobalt oxide, magnesium oxide, molybdenum oxide, nickel oxide, manganese oxide, metallic iron, metallic cobalt, metallic magnesium, metallic molybdenum, metallic nickel, and metallic manganese.
  • At least one metal-containing component, or its precursor, and a coating liquid containing a solvent are attached to the surface of the substrate 11 (for example, the inner wall surface), and the coating liquid attached to the surface of the substrate 11 and removing the solvent.
  • the coating liquid solvent may be, for example, water, alcohol, acetone, or a combination thereof.
  • the solid carbon collector 106 includes a solid carbon collector catalyst 104 and a second temperature controller 105 for adjusting the reaction temperature T2 .
  • it includes a reaction tube, a solid carbon trapping catalyst 104 housed in the reaction tube, and a second temperature controller 105 which is a heater arranged around the reaction tube, and is upstream of the reaction tube.
  • a channel for introducing the synthesis gas 111 is connected to the (primary) side, and a channel for discharging the treated gas 112 is connected to the downstream (secondary) side of the reaction tube.
  • solid carbon is deposited on the coating layer 12 of the solid carbon trapping catalyst 104 .
  • the deposited solid carbon can be easily peeled off.
  • the treated gas 112 is introduced from the upstream side of the hydrogen separator 107 and separated into hydrogen 113 and exhaust gas 114 .
  • the hydrogen separator 107 has the function of separating the treated gas 112 into hydrogen 113 and exhaust gas 114, and may have a hydrogen separation membrane, a pressure fluctuation adsorption mechanism, and the like.
  • a palladium alloy thin film can be used as the hydrogen separation membrane.
  • the palladium alloy-based hydrogen separation membrane palladium to which rare earth elements such as yttrium and gadolinium are added, and palladium to which silver is added can be used.
  • a thin film containing niobium, vanadium, titanium, tantalum, zirconium, or the like as a main component can be used.
  • Such hydrogen separation membranes include those described in JP-A-2000-159503, JP-A-2005-232533, and JP-A-2006-43677.
  • vanadium contains at least one metal selected from the group consisting of chromium, iron, nickel, and cobalt.
  • a material added with at least one metal component selected from the group consisting of ytterbium and ruthenium may also be used.
  • Such a hydrogen separation membrane is described, for example, in JP-A-2008-55295.
  • the hydrogen separator 107 including a hydrogen separation membrane typically includes a hydrogen separation membrane, a flow path that supplies the treated gas 112 from the upstream (primary) side of the hydrogen separation membrane to the hydrogen separation membrane, and a hydrogen separation membrane. It has a channel for discharging the hydrogen 113 that has permeated the membrane to the downstream (secondary) side, and a channel for recovering the exhaust gas 114 that has not permeated the hydrogen separation membrane after coming into contact with the hydrogen separation membrane. .
  • the hydrogen separator 107 including such a hydrogen separation membrane for example, the one described in JP-A-2019-5684 can be used.
  • the hydrogen separator 107 the one using the pressure swing adsorption (PSA) method other than the above can also be used.
  • PSA-type hydrogen separator typically has an adsorption tower filled with an adsorbent, a pump, and a flow path connecting these.
  • the adsorbent one that adsorbs carbon dioxide, carbon monoxide, moisture, etc. in the treated gas 112 can be used.
  • Activated carbon, zeolite, alumina, and the like can be used as the adsorbent.
  • Adsorption is a process of causing carbon dioxide, carbon monoxide, etc. in the treated gas 112 to be adsorbed by an adsorbent and deriving hydrogen.
  • Desorption is a step of depressurizing the inside of the adsorption tower to desorb carbon dioxide, carbon monoxide, etc. from the adsorbent and leading it out as exhaust gas 114 . Washing is the process of washing the adsorption tower with hydrogen.
  • a channel for introducing the treated gas 112 is on the primary side
  • a channel for leading out the hydrogen 113 is on the secondary side. connected to the side.
  • the exhaust gas 114 discharged from the hydrogen separator 107 contains carbon dioxide, carbon monoxide, and unseparated hydrogen.
  • the balance between the amount of CO 2 introduced as part of the raw material gas 110 and the amount of CO 2 discharged from the exhaust gas 114 in hydrogen production using this hydrogen production apparatus 100 will be described. It should be noted that the amount of CO 2 derived is calculated in consideration of the influence of CO, which may be contained in the exhaust gas 114 and may generate CO 2 by combustion.
  • the raw material gas 110 (135 L/h) in which 100 mmol/min of 1 atm CH 4 and CO 2 are mixed is introduced into the DRM reactor 103, and is directed from upstream to downstream of the flow path 115 of the hydrogen generator 100.
  • the DRM reactor 103 is kept at 600°C, that is, the reaction temperature T1 is 600°C.
  • the composition of the syngas 111 can be estimated by thermal equilibrium calculations.
  • the emission amount is 105 L/hour. If CO/CO 2 is 1.24, the inflow is 90 L/h and the discharge is 103 L/h . / time.
  • the amount of CO 2 is 116 L/h when CO/CO 2 in the synthesis gas is 0.396. In this case, compared with the inflow of 121 L/h, the discharge is smaller.
  • FIG. 2 shows the thermal equilibrium calculation results of the Boudouard reaction (2CO ⁇ CO 2 +C).
  • the white (open) circular symbols and the black (closed) circular symbols are respectively the processed gas 112 (derived gas, in the figure " Outgas”) and the respective molar fractions of CO 2 and CO (vertical axis: left).
  • open square symbols represent CO/CO 2 (vertical axis: right) in the treated gas 112 with respect to the reaction temperature T 2 (° C.).
  • the light-off temperature (activity expression temperature) can be theoretically estimated at 450°C.
  • the light-off temperature (activation temperature) refers to the temperature when the reaction temperature T2 of the solid carbon trapping reaction is gradually raised from 350°C while passing a mixed gas of CO and CO2 . It means the lowest temperature at which the amount of CO contained in the finished gas 112 goes from zero to a significant value.
  • the reaction temperature T2 when the reaction temperature T2 is gradually increased, the equilibrium of the Boudouard reaction inclines from right to left, so the amount of CO contained in the treated gas 112 also increases.
  • the content of CO in the treated gas 112 affects the final output of CO2 out of the unit. By reducing this CO emission, the final CO 2 emission can be reduced.
  • the amount of CO 2 emitted out of the hydrogen generator is also affected by the amount of CH 4 contained in the treated gas 112 . If the syngas 111 contains CH4 , it is vented to the treated gas 112 as it does not contribute to the solid carbon scavenging reaction. Combustion of this will generate CO2 . The amount of CH 4 in the syngas 111 can be said to be residual CH 4 not used in the DRM reaction, and this adjustment is also necessary.
  • the present inventors searched for conditions under which the amount of CO 2 derived is less than or equal to the amount introduced by controlling the reaction temperature T 2 and the CO/CO 2 ratio in the synthesis gas 111 within a predetermined range. As a result, focusing on the fact that the "range" forms a certain continuous region, the relationship between the reaction temperature T 1 , the reaction temperature T 2 , and CO/CO 2 in the synthesis gas 111 is further described. investigated.
  • FIG. 3 shows the resulting relationship between reaction temperature T 1 , reaction temperature T 2 , and CO/CO 2 in synthesis gas 111 .
  • CO/CO 2 Ratio in DRM Outgas on the horizontal axis means CO/CO 2 in the synthesis gas 111 .
  • CO Disprop. Temperature (°C) on the vertical axis means the reaction temperature T2 .
  • DRM Temperature ie the point at which the amount of CO2 released is calculated equal to the amount introduced at the reaction temperature T1 .
  • reaction temperature T1 is 600° C.
  • less CO 2 is released, typically less than introduced. From the results of FIG. 4, it can be seen that as the reaction temperature T1 increases, the area demarcated by each plot where the amount of CO 2 derived becomes equal to the amount introduced increases.
  • Inflection means the inflection point (horizontal axis) of the sigmoid curve
  • Gradient means the inclination of the slope
  • Table 1 shows the Inflection and Gradient at each reaction temperature T1 , and the values at 600°C, 700°C and 900°C were obtained by fitting, respectively.
  • FIG. 4 is a diagram showing that relationship.
  • the horizontal axis indicates the reaction temperature T 1 (° C.).
  • Triangular plots represent Inflection, and square plots represent Gradient.
  • the relational expressions obtained from the fitting of each plot were obtained as follows.
  • the reaction temperature T 1 (°C) is preferably 600°C or higher.
  • the region where the amount of CO 2 derived is significantly reduced is the region that satisfies the following condition (1): It turns out there is.
  • reaction temperature T 1 the CO/ CO2 in the DRM outgas (i.e., synthesis gas 111) can be adjusted by adjusting the CH4 / CO2 in feed gas 110 to This is because it can be easily adjusted.
  • FIG. 5 is a diagram showing the reaction temperature T1 dependency of the relationship between CH 4 /CO 2 in the raw material gas and CO/CO 2 in the synthesis gas 111 .
  • the horizontal axis of FIG. 5 represents “CH 4 /CO 2 in DRM InGas”, i.e., CH 4 /CO 2 in the source gas 110, and the vertical axis represents “CO/CO 2 in DRM OutGas”, i.e., in the synthesis gas 111. It represents CO/ CO2 .
  • the CH4 / CO2 in the source gas can be adjusted.
  • the value can be easily obtained by calculation.
  • CO/CO 2 is greater than 0 and 124 or less, and the lower limit is preferably 0.20 or more. When CO/CO 2 is equal to or higher than the above lower limit, more excellent effects of the present invention can be obtained. Also, the upper limit is preferably 0.50 or less. When CO/CO 2 is equal to or less than the above upper limit value, more excellent effects of the present invention can be obtained.
  • FIG. 6 is a flow chart of this hydrogen production method.
  • a dry reforming reaction is performed at the reaction temperature T1 (dry reforming reaction step).
  • the dry reforming reaction can be performed by passing the source gas 110 through the dry reforming reactor 103 at the reaction temperature T1 .
  • the reaction temperature T1 is not particularly limited, it is preferably equal to or higher than the activity manifestation temperature of the dry reforming catalyst. As one specific form, the temperature is preferably 600° C. or higher, preferably 1100° C. or lower, and more preferably 900° C. or lower. Note that the reaction temperature T1 may be adjusted by controlling the first temperature controller 102 of the dry reforming reactor 103 .
  • the method of adjusting the mixing ratio of methane and carbon dioxide in the raw material gas 110 is not particularly limited, but for example, methane supplied through a flow path by a raw material gas regulator having a gas mixer and a mass flow controller, and a method of adjusting the mixing ratio of carbon dioxide.
  • reaction temperature T 1 (° C.) and the CH 4 /CO 2 in the source gas 110 are determined, the CO/CO 2 in the synthesis gas 111 can be calculated.
  • step S11 a solid carbon trapping reaction is performed so as to satisfy the above condition (1) (solid carbon trapping reaction step).
  • the solid carbon capture reaction can be carried out by passing synthesis gas 111 through solid carbon capturer 106 at reaction temperature T2 .
  • the synthesis gas 111 calculated from the CH 4 /CO 2 of the raw material gas 110 supplied to the dry reforming reaction step and the reaction temperature T 1 , the reaction temperature T 2 (° C.) corresponding to the composition (CO/CO 2 ) is determined, and the second temperature controller 105 is controlled.
  • step S12 the treated gas 112 produced by the solid carbon trapping reaction is separated into an exhaust gas 114 and hydrogen 113 to obtain hydrogen 113 (hydrogen separation step).
  • Hydrogen 113 can be separated by introducing treated gas 112 into hydrogen separator 107 and operating at known conditions.
  • step S13 heat is recovered from the exhaust gas 114 (heat recovery step). Since the exhaust gas 114 contains carbon monoxide, hydrogen, etc., it can be removed by burning it, for example.
  • the recovered heat is preferably used for the dry reforming reaction and/or the solid carbon capture reaction.
  • the hydrogen production method of the present invention may not have this step.
  • FIG. 7 is a block diagram of the first embodiment of the hydrogen production device of the present invention.
  • the hydrogen production device 200 has a DRM reactor 103, a solid carbon collector 106, a hydrogen separator 107, a heat recovery device 204, and a raw gas regulator 205, which are capable of circulating gas. They are connected via a channel 115 .
  • the source gas regulator 205, the DRM reactor 103, the solid carbon collector 106, and the hydrogen separator 107 are connected in order (in series), and the primary side of the heat recovery device 204 is It is connected to a flow path 115 for an exhaust gas 114 branched from the hydrogen separator 107 . Further, the channel 115 connected to the secondary side joins between the source gas regulator 205 and the DRM reactor 103 .
  • each part (component) is connected by the flow path 115 as described above, but the connection form (connection path) of each part in the hydrogen production apparatus of the present invention is not limited to the above.
  • the hydrogen separator 107 may be placed between the DRM reactor 103 and the solid carbon collector 106.
  • a plurality of components of one or more types may be arranged, in which case the flow path 115 may branch and the same type of components may be arranged side by side, or the same type of components may be continuous.
  • the hydrogen production device 200 may include one or more valves, steam removers, pressure regulators (reducing valves, compressors), heat exchangers, etc. within the scope of the present invention. You may have more. Note that the DRM reactor 103, the solid carbon collector 106, and the hydrogen separator 107 that the hydrogen production device 200 has are the same as those already described, and description thereof will be omitted.
  • the heat recovery device 204 has a function of recovering heat from methane, carbon monoxide, hydrogen, etc., which may be contained in the exhaust gas 114 generated by the separation of the hydrogen 113 from the treated gas 112 by the hydrogen separator 107. . Specifically, it may be a burner that burns the exhaust gas 114, a fuel cell that uses the exhaust gas 114 as fuel, or the like.
  • the heat recovered by heat recovery device 204 is preferably used for temperature control of DRM reactor 103 and/or solid carbon collector 106 (in the figure, heat transfer is labeled “Q”). It is shown).
  • the circulation gas 120 discharged from the heat recovery device 204 contains carbon dioxide, which is mixed with the source gas 110 and used.
  • the hydrogen production apparatus 200 significantly reduces CO 2 generated during hydrogen production . Since the amount is equal to or less than the amount, it is possible to operate the hydrogen production apparatus 200 while supplying CO 2 from the outside without discharging CO 2 to the outside of the hydrogen production apparatus 200 .
  • the source gas regulator 205 has a function of mixing methane 121 and carbon dioxide 122 to adjust the composition of the source gas 110 .
  • the source gas regulator 205 may be composed of a gas mixer that mixes the methane 121 and carbon dioxide 122 supplied through the flow path at arbitrary fractions, a mass flow controller, and the like.
  • the hydrogen production device 200 has a control device 201 .
  • the control device 201 is a computer with a processor 202 and a memory 203 .
  • the controller 201 controls the DRM reactor 103, the solid carbon collector 106, and the source gas regulator 205.
  • the hydrogen separator 107 and the heat recovery device 204 may also be controlled.
  • Control device 201 has a plurality of sensors for detecting the operating state of hydrogen production device 200 . Detection signals from a plurality of sensors are input to the control device 201 .
  • the controller 201 includes a temperature sensor (TEMP1) 130 that detects the reaction temperature T1 of the DRM reaction in the DRM reactor 103, and a temperature sensor (TEMP2) that detects the reaction temperature T2 of the solid carbon capture reaction in the solid carbon collector 106. ) 131 and a flow rate sensor (FLOW) 132 for detecting the mixing ratio of methane 121 and carbon dioxide 122 in the source gas regulator 205 .
  • TEMP1 and TEMP2 may directly detect the temperature of the gas in the DRM reactor 103 and the solid carbon collector 106, or the first temperature controller 102 and the second temperature controller Each temperature may be estimated from the output of 105 and the physical quantity such as the operation time.
  • the control device 201 acquires, for example, the detection signal of the temperature sensor (TEMP1) 130 for the reaction temperature T1 of the DRM reaction in the DRM reactor 103, and adjusts the first temperature regulator 102 of the DRM reactor 103 based on the acquired information. adjust the output of the
  • the control device 201 has a processor 202, which is a hardware device, and the processor 202 may be a processor core that executes programs stored in memory.
  • processor cores include CPU: Central Processing Unit and GPU: Graphics Processing Unit.
  • the processor 202 may be a hardware logic circuit including programmed logic units.
  • Digital circuits are logic circuit arrays such as ASIC: Application-Specific Integrated Circuit, FPGA: Field Programmable Gate Array, SoC: SystemaChip, PGA: Programmable Gate Array, and CPLD: Complex Programmable Log. icDevice and the like.
  • the control device 201 has a memory 203 .
  • a memory is a non-transitional and tangible storage medium that non-temporarily stores programs and/or data readable by a processor.
  • a storage medium is provided by a semiconductor memory, a magnetic disk, an optical disk, or the like.
  • the program may be distributed alone or as a storage medium storing the program.
  • Processor 202 may also be a combination of a processor core and hardware logic.
  • FIG. 8 is a flowchart of hydrogen production by the hydrogen production device 200.
  • the controller 201 controls the first temperature controller 102 and the source gas controller 205 to perform the DRM reaction at the reaction temperature T1 (°C).
  • the state during the DRM reaction is obtained by a flow rate sensor (FLOW) 132 for CH 4 /CO 2
  • the reaction temperature T 1 (° C.) is obtained by a temperature sensor (TEMP1) 130.
  • the gas mixing ratio CH 4 /CO 2 is adjusted by the source gas regulator 205 and the reaction temperature T 1 is adjusted by the first temperature regulator 102 .
  • the CH 4 /CO 2 ratio in the raw material gas regulator 205 may be adjusted based on the CO 2 content in the circulating gas 120.
  • the content of CO 2 in the circulating gas 120 can be calculated from the composition of the raw material gas 110 used for its production, etc., but a sensor for measuring the composition of the circulating gas 120 is provided in the middle of the flow path 115, The measurements may be taken by controller 201 and used to control feed gas regulator 205 .
  • step S20 synthesis gas 111 containing hydrogen and carbon monoxide is obtained from raw material gas 110 containing methane and carbon dioxide.
  • step S21 the second temperature regulator 105 is controlled by the controller 201, and the solid carbon trapping reaction is performed so as to satisfy the condition (1).
  • the CO/CO 2 of the synthesis gas 111 calculated from the CH 4 /CO 2 of the source gas 110, the reaction temperature T 1 (° C.) obtained by the temperature sensor (TEMP1) 130, and the temperature sensor (TEMP2 ) based on the reaction temperature T 2 (° C.) obtained by 131
  • the control device 201 determines whether the reaction conditions for the solid carbon trapping reaction satisfy the condition (1).
  • the outputs of the first temperature controller 102 and the second temperature controller 105 are controlled to adjust the CO/CO 2 , the reaction temperature T 1 and the reaction temperature T 2 .
  • step S21 solid carbon is separated from the synthesis gas 111 containing carbon monoxide to obtain a treated gas 112 containing carbon dioxide and the like.
  • the treated gas 112 may contain methane, carbon monoxide, water vapor, hydrogen, etc., in addition to carbon dioxide.
  • step S22 hydrogen 113 is separated from the treated gas 112 by the hydrogen separator 107, and exhaust gas 114 is also obtained.
  • step S23 the heat recovery device 204 recovers heat from the exhaust gas 114, and the circulating gas 120 is generated.
  • the heat Q generated in step S23 is supplied to the DRM reactor 103 and/or the solid carbon collector 106 and used to adjust each reaction temperature.
  • the circulating gas 120 generated in step S23 joins between the source gas regulator 205 and the DRM reactor 103 through the flow path and is used as part of the source gas 110.
  • FIG. 9 is a flowchart of control processing executed by the control device 201 in step S21 described above.
  • the control device 201 controls the reaction conditions of the DRM reaction and the reaction conditions of the solid carbon trapping reaction by executing the control process described above. Due to the above, the emission of CO2 out of the device is significantly reduced.
  • step S ⁇ b>30 the control device 201 acquires information regarding the operating state of the hydrogen production device 200 .
  • the temperature of the gas inside the DRM reactor 103 (reaction temperature T 1 ) is acquired by the temperature sensor (TEMP1) 130 .
  • the flow rate sensor (FLOW) 132 acquires each flow rate (mixing ratio) of methane and carbon dioxide in the source gas regulator 205 .
  • step S31 the controller 201 calculates CO/ CO2 in the synthesis gas from the CH4 / CO2 ratio in the source gas of the DRM reactor 103 and the reaction temperature T1 (°C). Calculation of CO/CO 2 is performed by thermal equilibrium calculation based on CH 4 /CO 2 in the source gas 110 and the reaction temperature T 1 . A software program such as "COCO" can be used for this calculation.
  • step S32 the controller 201 acquires the temperature of the gas in the solid carbon collector 106 (reaction temperature T 2 ) using the temperature sensor (TEMP2) 131 .
  • step S33 the control device 201 controls the CO/CO 2 in the synthesis gas 111 introduced into the solid carbon collector 106, the reaction temperature T 1 (°C), and the reaction temperature T 2 (°C). relationship satisfies condition (1).
  • step S33 determination is performed through the following stages. First, based on the acquired reaction temperature T 1 (° C.), Inflection and Gradient are calculated from equations (2) and (3). Next, the sigmoid curve on the right side of the inequality sign on the right side of condition (1) is obtained from the calculated Inflection and the Gradient, and based on the calculated CO / CO 2 and the obtained reaction temperature T 2 , the above Determine whether it is within the range of the sigmoid curve.
  • step S34 to S36 reaction is performed using the first temperature controller 102 based on the detection signal of the temperature sensor (TEMP1) 130.
  • the temperature T1 is controlled (step S34), and based on the detection signal of the flow rate sensor (FLOW) 132, the raw material gas regulator 205 is used to adjust the respective flow rates (mixing ratio ) is controlled (step S35), and the second temperature controller 105 is used to control the reaction temperature T2 based on the detection signal of the temperature sensor (TEMP2) 131 (step S36).
  • steps S30 to S32 are passed through again, and step S33 is determined, and steps S34 to S36 and steps S30 to S33 are repeated until condition (1) is satisfied.
  • step S33 if the condition (1) is satisfied (step S33: YES), the control process by the control device 201 ends, returning to FIG. ) is executed.
  • the hydrogen production apparatus 200 has a control device 201, and the control device 201 controls each part so as to satisfy the condition (1) with respect to CO/CO 2 in the synthesis gas 111 and the reaction temperature T 2 , The amount of carbon dioxide emitted to the outside of the apparatus when hydrogen is produced from the raw material gas is significantly reduced.
  • the hydrogen production device 200 since the hydrogen production device 200 has the heat recovery device 204, heat is recovered from the hydrogen and carbon monoxide contained in the exhaust gas 114, and can be used for the DRM reaction and/or the solid carbon capture reaction. Therefore, carbon dioxide emitted by heating (or generation of electric power for that purpose) can also be reduced.
  • the hydrogen production device 200 has a flow path for joining the circulating gas 120 to the raw material gas 110 .
  • the content of carbon dioxide contained in the circulating gas 120 is less than the content of carbon dioxide contained (required) in the raw material gas, so the carbon dioxide used in the process is removed from the apparatus.
  • hydrogen can be produced while constantly supplying carbon dioxide from the outside of the apparatus.
  • FIG. 10 is a block diagram of a modified example of the hydrogen production apparatus of the present invention.
  • the hydrogen production device 200 already described has the DRM reactor 103 for performing the DRM reaction and the solid carbon collector 106 for the solid carbon collection reaction. Instead, it has a reactor 301 that doubles as a DRM reactor and a solid carbon collector.
  • a DRM catalyst 101 and a solid carbon trapping catalyst 104 are arranged inside the reactor 301, and the raw material gas 110 introduced from the primary side first comes into contact with the DRM catalyst 101 to generate a synthesis gas 111. . Syngas 111 is then contacted with solid carbon capture catalyst 104 to produce treated gas 112 . The above reactions are sequentially performed in the reactor 301 .
  • the temperature in the reactor 301 is adjusted by the third temperature controller 302 controlled by the control device 201, and the reaction temperature T 1 and the reaction temperature T 2 are detected by the temperature sensor (TEMP1) 130 and the temperature sensor ( TEMP2) 131.
  • the reactor 301 for example, one reaction tube, the DRM catalyst 101 and the solid carbon trapping catalyst 104, which are sequentially packed in the reaction tube, and the temperature of the reaction tube is adjusted. and a heater for heating.
  • the reactor 301 of the hydrogen production device 300 has a third temperature controller 302 that adjusts the overall temperature. It has a controller 102 and a second temperature controller 105 that independently controls the temperature of the solid carbon trapping reaction (reaction temperature T 2 ), and these are configured to be controlled by the controller 201. good too.
  • the hydrogen production device 300 has a reactor 301 that serves as both a DRM reactor and a solid carbon collector, and furthermore, the reaction temperature is configured to be controlled by the third temperature controller 302, so the structure is simpler and controllable. has the advantage of being easy to In particular, when the reaction temperature T 1 and the reaction temperature T 2 are controlled to 600-620°C, the above tendency is more pronounced.
  • FIG. 12 is a block diagram of the main parts of a hydrogen production apparatus that can be used for carrying out the hydrogen production method of the present invention.
  • the hydrogen production device 100 has a dry reforming reactor 103 (hereinafter also referred to as a “DRM reactor”), a solid carbon collector 106, and a hydrogen separator 107, which allow gas to flow. are connected in order via a channel 115 for
  • a raw material gas 110 containing methane (CH 4 ) and carbon dioxide (CO 2 ) is introduced into the hydrogen production apparatus 100 from the upstream side of the DRM reactor 103 through a flow path 115 .
  • the raw material gas 110 flows through the DRM reactor 103 and becomes a synthesis gas 111 through a DRM reaction (DRM reaction: CH 4 +CO 2 ⁇ 2CO+2H 2 ).
  • DRM reaction CH 4 +CO 2 ⁇ 2CO+2H 2
  • the resulting synthesis gas 111 contains carbon monoxide (CO) produced by the DRM reaction and hydrogen.
  • T 1 the DRM reaction temperature
  • the DRM reactor 103 is not particularly limited as long as the raw material gas 110 (raw material gas flow) and the dry reforming catalyst 101 can be brought into contact with each other.
  • a dry reforming catalyst 101 (hereinafter also referred to as “DRM catalyst”) fixed in the container, and a first temperature control for controlling the temperature of the gas flowing through the DRM reactor 103 (reaction temperature T 1 ) and a device 102 .
  • the dry reforming catalyst 101 may be a composite containing a porous carrier containing alumina and an active component supported on the porous carrier.
  • Active ingredients may be, for example, nickel, cobalt, molybdenum, rhodium, ruthenium, aluminum, zirconium, magnesium, palladium, zinc, potassium, calcium, oxides thereof, and the like.
  • dry reforming catalyst 101 for example, catalysts described in JP-A-2006-055820 and JP-A-2019-37905 can also be used.
  • the dry reforming catalyst is Chemical. Science. , 2019, volume 10, p3701-3705 .
  • Ni#Y 2 O 3 is a structure in which fibrous metallic nickel with a thickness of several tens of nanometers and oxygen-deficient Y 2 O 3 are entangled with each other to form a rooted structure. .
  • Ni#Y 2 O 3 can be produced, for example, by the following method. First, metallic nickel and metallic yttrium are dissolved in an argon atmosphere to synthesize a Ni--Y alloy. “Ni#Y 2 O 3 ” can be synthesized by heating this Ni—Y alloy powder (average particle size 50 to 60 ⁇ m) with a gas stream composed of CO, O 2 and Ar.
  • Syngas 111 is then introduced from the upstream side of solid carbon collector 106 .
  • Syngas 111 becomes treated gas 112 by a solid carbon trapping reaction while flowing through solid carbon trap 106 (solid carbon trapping (Boudoard reaction: 2CO ⁇ C+CO 2 )).
  • the solid carbon trap 106 is not particularly limited as long as it can bring the synthesis gas 111 from the DRM reactor 103 and the solid carbon trap catalyst 104 into contact, but the solid carbon trap catalyst 104 and the reaction temperature and a second temperature controller 105 for adjusting T2 .
  • it includes a reaction tube, a solid carbon trapping catalyst 104 housed in the reaction tube, and a second temperature controller 105 which is a heater arranged around the reaction tube, and is upstream of the reaction tube.
  • a first flow path 115a for introducing the synthesis gas 111 from the DRM reactor 103 is connected to the (primary) side, and the treated gas 112 is discharged to the downstream (secondary) side of the reaction tube.
  • a second flow path 115b is connected for the flow.
  • the solid carbon trapping catalyst 104 can be configured to have a base material 11 that is a tubular body and a coating layer 12 formed on the inner wall surface of the base material 11 .
  • solid carbon is deposited on the coating layer 12 of the solid carbon trapping catalyst 104 .
  • the deposited solid carbon can be easily peeled off.
  • the synthesis gas 111 can be easily circulated inside the solid carbon trapping catalyst 104 . There is also an advantage that clogging due to precipitated solid carbon is less likely to occur as the number of structures that impede flow inside the tubular body is less.
  • the base material 11 is not particularly limited as long as it can be coated with a metal-containing component, but it may be a stainless steel pipe, an aluminum pipe, or the like.
  • the base material 11 is a tubular body having an inner wall surface with a circular cross section, the inner diameter is not particularly limited, but may be, for example, 10 to 300 mm or 10 to 1000 mm.
  • the base material 11 is a tubular body, its length is not particularly limited, but may be, for example, 20-5000 mm.
  • the base material 11 may be a straight tubular body or a twisted tubular body.
  • the coating layer 12 is at least selected from the group consisting of iron oxide, cobalt oxide, magnesium oxide, molybdenum oxide, nickel oxide, manganese oxide, metallic iron, metallic cobalt, metallic magnesium, metallic molybdenum, metallic nickel, and metallic manganese. It contains one metal-containing component as a main component.
  • the coating layer 12 may contain iron oxide, in particular Fe 3 O 4 , Fe 2 O 3 , FeO, or a combination thereof as iron oxide.
  • the content of these metal-containing components in the coating layer 12 is preferably 40% by mass or more, more preferably 50% by mass or more, and even more preferably 60% by mass or more when the total mass of the coating layer 12 is 100% by mass. , 70% by mass or more is particularly preferable, and 100% by mass or less is preferable.
  • the coating layer 12 may contain a carrier containing aluminum oxide (Al 2 O 3 ) and metallic iron carried thereon.
  • the proportion of metallic iron may be 40 to 50 mass % when the mass of the coating layer 12 is 100 mass %.
  • the coating layer 12 is formed so as to cover all or part of the surface (inner wall surface) of the base material 11 .
  • the thickness of the coating layer 12 is not particularly limited, but may be, for example, 5-2000 ⁇ m or 10-2000 ⁇ m.
  • the coating layer 12 may be porous.
  • the specific surface area of the porous coating layer may be 5-1000 m 2 /g.
  • the coating layer 12 is, for example, selected from the group consisting of iron oxide, cobalt oxide, magnesium oxide, molybdenum oxide, nickel oxide, manganese oxide, metallic iron, metallic cobalt, metallic magnesium, metallic molybdenum, metallic nickel, and metallic manganese.
  • At least one metal-containing component, or its precursor, and a coating liquid containing a solvent are attached to the surface of the substrate 11 (for example, the inner wall surface), and the coating liquid attached to the surface of the substrate 11 and removing the solvent.
  • the coating liquid solvent may be, for example, water, alcohol, acetone, or a combination thereof.
  • Treated gas 112 from solid carbon collector 106 is introduced from the upstream side of hydrogen separator 107 via second flow path 115 b and separated into hydrogen 113 and exhaust gas 114 .
  • the exhaust gas 114 discharged from the hydrogen separator 107 contains carbon dioxide, carbon monoxide, and a small amount of unseparated hydrogen.
  • the hydrogen separator 107 is not particularly limited as long as it has a function of separating the hydrogen 113 and the exhaust gas 114 while allowing the treated gas 112 from the solid carbon collector 106 to flow. , and a pressure fluctuation adsorption mechanism.
  • a palladium alloy thin film can be used as the hydrogen separation membrane.
  • the palladium alloy-based hydrogen separation membrane palladium to which rare earth elements such as yttrium and gadolinium are added, and palladium to which silver is added can be used.
  • a thin film containing niobium, vanadium, titanium, tantalum, zirconium, or the like as a main component can be used.
  • Such hydrogen separation membranes include those described in JP-A-2000-159503, JP-A-2005-232533, and JP-A-2006-43677.
  • vanadium contains at least one metal selected from the group consisting of chromium, iron, nickel, and cobalt.
  • a material added with at least one metal component selected from the group consisting of ytterbium and ruthenium may also be used.
  • Such a hydrogen separation membrane is described, for example, in JP-A-2008-55295.
  • the hydrogen separator 107 including a hydrogen separation membrane typically includes a hydrogen separation membrane, a flow path that supplies the treated gas 112 from the upstream (primary) side of the hydrogen separation membrane to the hydrogen separation membrane, and a hydrogen separation membrane. It has a channel for discharging the hydrogen 113 that has permeated the membrane to the downstream (secondary) side, and a channel for recovering the exhaust gas 114 that has not permeated the hydrogen separation membrane after coming into contact with the hydrogen separation membrane. .
  • the hydrogen separator 107 including such a hydrogen separation membrane for example, the one described in JP-A-2019-5684 can be used.
  • the hydrogen separator 107 the one using the pressure swing adsorption (PSA) method other than the above can also be used.
  • PSA-type hydrogen separator typically has an adsorption tower filled with an adsorbent, a pump, and a flow path connecting these.
  • the adsorbent one that adsorbs carbon dioxide, carbon monoxide, moisture, etc. in the treated gas 112 can be used.
  • Activated carbon, zeolite, alumina, and the like can be used as the adsorbent.
  • Adsorption is a process of causing carbon dioxide, carbon monoxide, etc. in the treated gas 112 to be adsorbed by an adsorbent and deriving hydrogen.
  • Desorption is a step of depressurizing the inside of the adsorption tower to desorb carbon dioxide, carbon monoxide, etc. from the adsorbent and leading it out as exhaust gas 114 . Washing is the process of washing the adsorption tower with hydrogen.
  • the PSA type hydrogen separator has two passages for introducing the treated gas 112 on the primary side, two passages for leading out the hydrogen 113, and two passages for leading out the exhaust gas 114. connected to the next side.
  • a dry reforming reaction is performed at the reaction temperature T1 (dry reforming reaction step).
  • the dry reforming reaction can be performed by passing the source gas 110 through the dry reforming reactor 103 at the reaction temperature T1 .
  • the reaction temperature T1 is not particularly limited, it is preferably equal to or higher than the activity manifestation temperature of the dry reforming catalyst. As one specific form, the temperature is preferably 600° C. or higher, preferably 1100° C. or lower, and more preferably 900° C. or lower. Note that the reaction temperature T1 may be adjusted by controlling the first temperature controller 102 of the dry reforming reactor 103 .
  • the method of adjusting the mixing ratio of methane and carbon dioxide in the raw material gas 110 is not particularly limited, but for example, methane supplied through a flow path by a raw material gas regulator having a gas mixer and a mass flow controller, and a method of adjusting the mixing ratio of carbon dioxide.
  • reaction temperature T 1 (° C.) and the CH 4 /CO 2 in the source gas 110 are determined, the CO/CO 2 in the synthesis gas 111 can be calculated.
  • step S11 solid carbon trapping reaction is performed (solid carbon trapping reaction step).
  • the solid carbon capture reaction can be carried out by passing synthesis gas 111 through solid carbon capturer 106 at reaction temperature T2 .
  • the solid carbon trapping reaction preferably satisfies the following condition (1).
  • the synthesis gas 111 calculated from the CH 4 /CO 2 of the raw material gas 110 supplied to the dry reforming reaction step and the reaction temperature T 1 , the reaction temperature T 2 (° C.) corresponding to the composition (CO/CO 2 ) is determined, and the second temperature controller 105 is controlled.
  • step S12 the treated gas 112 produced by the solid carbon trapping reaction is separated into an exhaust gas 114 and hydrogen 113 to obtain hydrogen 113 (hydrogen separation step).
  • Hydrogen 113 can be separated by introducing treated gas 112 into hydrogen separator 107 and operating at known conditions.
  • step S13 it is preferable to recover heat from the exhaust gas 114 (heat recovery step). Since the exhaust gas 114 contains carbon monoxide, hydrogen, and the like, heat can be recovered by, for example, burning this. The recovered heat is preferably used for the dry reforming reaction and/or the solid carbon capture reaction.
  • control of the reaction temperature T1 in step S10, the condition (1) in step S11, and the heat recovery in step S13 are optional and need not be performed.
  • FIG. 13 shows the basic configuration of a hydrogen production apparatus for carrying out the hydrogen production method of the second embodiment.
  • the hydrogen production method of the present invention is a dry reforming reaction step 103 in which a synthesis gas 111 containing carbon monoxide and hydrogen is obtained from a raw material gas 110 containing methane and carbon dioxide in the presence of a dry reforming catalyst; introducing the syngas 111 from the dry reforming reaction step 103 to produce solid carbon from carbon monoxide in the syngas in the presence of a solid carbon trapping catalyst to obtain a treated gas 112; a solid carbon collection step 106; a hydrogen separation step 107 for extracting hydrogen 113 from the treated gas 112 from the solid carbon capture step 106 to obtain an exhaust gas 114 comprising carbon dioxide; It is characterized in that the exhaust gas 114 from the hydrogen separation process 107 is introduced into the dry reforming reaction process 103, and carbon dioxide is circulated without being discharged to the outside.
  • the hydrogen production device of the second embodiment is a dry reforming reactor 103 for obtaining a synthesis gas containing carbon monoxide and hydrogen from a feed gas 110 containing methane and carbon dioxide in the presence of a dry reforming catalyst; introducing the syngas 110 from the dry reforming reactor 103 to produce solid carbon from carbon monoxide in the syngas in the presence of a solid carbon trapping catalyst to obtain a treated gas 112; a solid carbon collector 106; a hydrogen separator 107 for extracting hydrogen 113 from the treated gas 112 from the solid carbon collector 106 to obtain an exhaust gas 114 containing carbon dioxide; A first flow path 115 a that feeds the synthesis gas 111 from the dry reforming reactor 103 to the solid carbon collector 106 and the treated gas 112 from the solid carbon collector 106 to the hydrogen separator 107 . and a third flow path 115c for supplying the exhaust gas 114 from the hydrogen separator 107 to the dry reforming reactor 103, without discharging carbon dioxide to the outside. It is characterized by
  • the exhaust gas 114 containing carbon dioxide is circulated to the DRM reactor 103 via the third flow path 115c connecting the hydrogen separator 107 and the DRM reactor 103, the carbon dioxide contained in the exhaust gas 114 is not discharged outside the hydrogen generator. Thereby, the amount of carbon dioxide emitted to the outside of the system can be reduced.
  • the hydrogen production method and apparatus of the second embodiment circulates carbon dioxide inside without discharging it to the outside. It is possible to produce hydrogen equal to or greater than that of the conventional method.
  • FIG. 14 shows a block diagram of a hydrogen production apparatus for carrying out the hydrogen production method of the third embodiment.
  • the hydrogen production method shown in FIG. 14 is the hydrogen production method shown in FIG. 13 in which heat and carbon dioxide are generated by burning methane, the generated heat is introduced into the dry reforming reaction step, and The raw material gas containing carbon dioxide in an amount equivalent to the carbon dioxide is introduced into the dry reforming reaction step, and in the solid carbon capturing step, the total amount of carbon contained in carbon dioxide and methane in the raw material gas and An equal amount of carbon is collected as solid carbon.
  • the hydrogen production apparatus shown in FIG. 14 is the same as the hydrogen production apparatus shown in FIG. Prepare more.
  • the amount of carbon dioxide contained in the raw material gas and the carbon dioxide emitted outside the system due to methane combustion are equal, so hydrogen can be produced without emitting carbon dioxide associated with methane combustion. becomes possible.
  • FIG. 15 shows a block diagram of a hydrogen production apparatus for carrying out the hydrogen production method of the fourth embodiment shown in FIG.
  • the hydrogen production method shown in FIG. 15 is similar to the hydrogen production method shown in FIG. further comprising:
  • the hydrogen production apparatus shown in FIG. 15 is the hydrogen production apparatus shown in FIG.
  • a heat supply channel 109 a for supplying heat from the hydrogen combustion furnace 109 to the dry reforming reaction channel 103 is further provided.
  • the hydrogen production method and apparatus of the present embodiment eliminates the need for at least part of carbon dioxide as a source gas, and enables hydrogen production by methane reforming without emitting carbon dioxide.
  • 15 shows a configuration in which a hydrogen combustion furnace 109 and a heat supply path 109a are provided in the hydrogen production apparatus of the second embodiment (basic configuration) shown in FIG. 13, but these are added to the hydrogen production apparatus shown in FIG. can be set with
  • the method for producing hydrogen shown in FIG. 16 is the method for producing hydrogen shown in FIG. is recovered and supplied to the dry reforming reaction step 103 .
  • the hydrogen production apparatus shown in FIG. 16 is the hydrogen production apparatus shown in FIG.
  • the heat recovered in the vessel 204 is supplied to the dry reforming reactor 103 .
  • the heat recovery device 204 can be a combustion furnace that introduces oxygen to burn the exhaust gas 114, or a fuel cell.
  • the hydrogen production method and apparatus of this embodiment can reduce the energy introduced from outside the system by utilizing the heat recovered by the heat recovery device for the dry reforming reaction.
  • 16 shows a configuration in which a heat recovery device 204 is provided in the hydrogen production apparatus of the second embodiment (basic configuration) shown in FIG. It may be provided additionally.
  • the hydrogen production apparatus 200 shown in FIG. 17 is the hydrogen production apparatus shown in FIG. It has a control device 201 that
  • the source gas regulator 205, the DRM reactor 103, the solid carbon collector 106, and the hydrogen separator 107 are connected in order (in series), and the primary side of the heat recovery device 204 is It is connected to the third flow path 115 c for the exhaust gas 114 branched from the hydrogen separator 107 .
  • a third flow path 115 c connected to the secondary side joins between the source gas regulator 205 and the DRM reactor 103 .
  • the heat recovery device 204 has a function of recovering heat from methane, carbon monoxide, hydrogen, etc., which may be contained in the exhaust gas 114 generated by the separation of the hydrogen 113 from the treated gas 112 by the hydrogen separator 107. . Specifically, it may be a burner that burns the exhaust gas 114, a fuel cell that uses the exhaust gas 114 as fuel, or the like.
  • the heat recovered by heat recovery device 204 is preferably used for temperature control of DRM reactor 103 and/or solid carbon collector 106 (in the figure, heat transfer is labeled “Q”). It is shown).
  • the circulation gas 120 discharged from the heat recovery device 204 contains carbon dioxide, which is mixed with the source gas 110 and used.
  • the hydrogen production apparatus 200 significantly reduces CO 2 generated during hydrogen production . Since the amount is equal to or less than the amount, it is possible to operate the hydrogen production apparatus 200 while supplying CO 2 from the outside without discharging CO 2 to the outside of the hydrogen production apparatus 200 .
  • the source gas regulator 205 has a function of mixing methane 121 and carbon dioxide 122 to adjust the composition of the source gas 110 .
  • the source gas regulator 205 may be composed of a gas mixer that mixes the methane 121 and carbon dioxide 122 supplied through the flow path at arbitrary fractions, a mass flow controller, and the like.
  • the hydrogen production device 200 has a control device 201 .
  • the control device 201 is a computer with a processor 202 and a memory 203 .
  • the controller 201 controls the DRM reactor 103, the solid carbon collector 106, and the source gas regulator 205.
  • FIG. In addition to the above, the hydrogen separator 107 and the heat recovery device 204 may also be controlled.
  • Control device 201 has a plurality of sensors for detecting the operating state of hydrogen production device 200 . Detection signals from a plurality of sensors are input to the control device 201 .
  • the controller 201 includes a temperature sensor (TEMP1) 130 that detects the reaction temperature T1 of the DRM reaction in the DRM reactor 103, and a temperature sensor (TEMP2) that detects the reaction temperature T2 of the solid carbon capture reaction in the solid carbon collector 106. ) 131 and a flow rate sensor (FLOW) 132 for detecting the mixing ratio of methane 121 and carbon dioxide 122 in the source gas regulator 205 .
  • TEMP1 and TEMP2 may directly detect the temperature of the gas in the DRM reactor 103 and the solid carbon collector 106, or the first temperature controller 102 and the second temperature controller Each temperature may be estimated from the output of 105 and the physical quantity such as the operation time.
  • the control device 201 acquires, for example, the detection signal of the temperature sensor (TEMP1) 130 for the reaction temperature T1 of the DRM reaction in the DRM reactor 103, and adjusts the first temperature regulator 102 of the DRM reactor 103 based on the acquired information. adjust the output of the
  • the control device 201 has a processor 202, which is a hardware device, and the processor 202 may be a processor core that executes programs stored in memory.
  • processor cores include CPU: Central Processing Unit and GPU: Graphics Processing Unit.
  • the processor 202 may be a hardware logic circuit including programmed logic units.
  • Digital circuits are logic circuit arrays such as ASIC: Application-Specific Integrated Circuit, FPGA: Field Programmable Gate Array, SoC: SystemaChip, PGA: Programmable Gate Array, and CPLD: Complex Programmable Log. icDevice and the like.
  • the control device 201 has a memory 203 .
  • a memory is a non-transitory and tangible storage medium that non-temporarily stores programs and/or data readable by a processor.
  • a storage medium is provided by a semiconductor memory, a magnetic disk, an optical disk, or the like.
  • the program may be distributed alone or as a storage medium storing the program.
  • Processor 202 may also be a combination of a processor core and hardware logic.
  • the hydrogen production device 200 can carry out the hydrogen production flow shown in FIG.
  • the controller 201 controls the first temperature controller 102 and the source gas controller 205 to perform the DRM reaction at the reaction temperature T1 (°C).
  • the state during the DRM reaction is obtained by a flow rate sensor (FLOW) 132 for CH 4 /CO 2
  • the reaction temperature T 1 (° C.) is obtained by a temperature sensor (TEMP1) 130.
  • the gas mixing ratio CH 4 /CO 2 is adjusted by the source gas regulator 205 and the reaction temperature T 1 is adjusted by the first temperature regulator 102 .
  • the CH 4 /CO 2 ratio in the raw material gas regulator 205 may be adjusted based on the CO 2 content in the circulating gas 120.
  • the content of CO 2 in the circulating gas 120 can be calculated from the composition of the raw material gas 110 used for its production, etc., but a sensor for measuring the composition of the circulating gas 120 is provided in the middle of the flow path 115, The measurements may be taken by controller 201 and used to control feed gas regulator 205 .
  • step S20 synthesis gas 111 containing hydrogen and carbon monoxide is obtained from raw material gas 110 containing methane and carbon dioxide.
  • step S21 the second temperature regulator 105 is controlled by the controller 201, and the solid carbon trapping reaction is performed so as to satisfy the condition (1).
  • the CO/CO 2 of the synthesis gas 111 calculated from the CH 4 /CO 2 of the source gas 110, the reaction temperature T 1 (° C.) obtained by the temperature sensor (TEMP1) 130, and the temperature sensor (TEMP2 ) based on the reaction temperature T 2 (° C.) obtained by 131
  • the control device 201 determines whether the reaction conditions for the solid carbon trapping reaction satisfy the condition (1).
  • the outputs of the first temperature controller 102 and the second temperature controller 105 are controlled to adjust the CO/CO 2 , the reaction temperature T 1 and the reaction temperature T 2 .
  • step S21 solid carbon is separated from the synthesis gas 111 containing carbon monoxide to obtain a treated gas 112 containing carbon dioxide and the like.
  • the treated gas 112 may contain methane, carbon monoxide, water vapor, hydrogen, etc., in addition to carbon dioxide.
  • step S22 hydrogen 113 is separated from the treated gas 112 by the hydrogen separator 107, and exhaust gas 114 is also obtained.
  • step S23 the heat recovery device 204 recovers heat from the exhaust gas 114, and the circulating gas 120 is generated.
  • the heat Q generated in step S23 is supplied to the DRM reactor 103 and/or the solid carbon collector 106 and used to adjust each reaction temperature.
  • the circulating gas 120 generated in step S23 joins between the source gas regulator 205 and the DRM reactor 103 through the flow path and is used as part of the source gas 110.
  • the flow of control processing executed by the control device 201 in step S21 described above may be the flow chart shown in FIG.
  • the control device 201 controls the reaction conditions of the DRM reaction and the reaction conditions of the solid carbon trapping reaction by executing the control process described above. Due to the above, the emission of CO2 out of the device is significantly reduced.
  • step S ⁇ b>30 the control device 201 acquires information regarding the operating state of the hydrogen production device 200 .
  • the temperature of the gas inside the DRM reactor 103 (reaction temperature T 1 ) is acquired by the temperature sensor (TEMP1) 130 .
  • the flow rate sensor (FLOW) 132 acquires each flow rate (mixing ratio) of methane and carbon dioxide in the source gas regulator 205 .
  • step S31 the controller 201 calculates CO/ CO2 in the synthesis gas from the CH4 / CO2 ratio in the source gas of the DRM reactor 103 and the reaction temperature T1 (°C). Calculation of CO/CO 2 is performed by thermal equilibrium calculation based on CH 4 /CO 2 in the source gas 110 and the reaction temperature T 1 . A software program such as "COCO" can be used for this calculation.
  • step S32 the controller 201 acquires the temperature of the gas in the solid carbon collector 106 (reaction temperature T 2 ) using the temperature sensor (TEMP2) 131 .
  • step S33 the control device 201 controls the CO/CO 2 in the synthesis gas 111 introduced into the solid carbon collector 106, the reaction temperature T 1 (°C), and the reaction temperature T 2 (°C). relationship satisfies condition (1).
  • step S33 determination is performed through the following steps. First, based on the acquired reaction temperature T 1 (° C.), Inflection and Gradient are calculated from equations (2) and (3). Next, the sigmoid curve on the right side of the inequality sign on the right side of condition (1) is obtained from the calculated Inflection and the Gradient, and based on the calculated CO / CO 2 and the obtained reaction temperature T 2 , the above Determine whether it is within the range of the sigmoid curve.
  • step S34 to S36 reaction is performed using the first temperature controller 102 based on the detection signal of the temperature sensor (TEMP1) 130.
  • the temperature T1 is controlled (step S34), and based on the detection signal of the flow rate sensor (FLOW) 132, the raw material gas regulator 205 is used to adjust the respective flow rates (mixing ratio ) is controlled (step S35), and the second temperature controller 105 is used to control the reaction temperature T2 based on the detection signal of the temperature sensor (TEMP2) 131 (step S36).
  • steps S30 to S32 are passed through again, and step S33 is determined, and steps S34 to S36 and steps S30 to S33 are repeated until condition (1) is satisfied.
  • step S33 if the condition (1) is satisfied (step S33: YES), the control process by the control device 201 ends, returning to FIG. ) is executed.
  • the hydrogen production apparatus 200 has a control device 201, and the control device 201 controls each part so as to satisfy the condition (1) with respect to CO/CO 2 in the synthesis gas 111 and the reaction temperature T 2 , The amount of carbon dioxide emitted to the outside of the apparatus when hydrogen is produced from the raw material gas is significantly reduced.
  • the hydrogen production device 200 since the hydrogen production device 200 has the heat recovery device 204, heat is recovered from the hydrogen and carbon monoxide contained in the exhaust gas 114, and can be used for the DRM reaction and/or the solid carbon capture reaction. Therefore, carbon dioxide emitted by heating (or generation of electric power for that purpose) can also be reduced.
  • the hydrogen production device 200 has a flow path for joining the circulating gas 120 to the raw material gas 110 .
  • the content of carbon dioxide contained in the circulating gas 120 is less than the content of carbon dioxide contained (required) in the raw material gas, so the carbon dioxide used in the process is removed from the apparatus.
  • hydrogen can be produced while constantly supplying carbon dioxide from the outside of the apparatus.
  • each part (component) is connected by the flow path 115 as described above, but the connection form (connection path) of each part in the hydrogen production apparatus 200 is not limited to the above.
  • the hydrogen separator 107 may be placed between the DRM reactor 103 and the solid carbon collector 106.
  • a plurality of components of one or more types may be arranged, in which case the flow path 115 may branch and the same type of components may be arranged side by side, or the same type of components may be continuous.
  • the hydrogen production device 200 may include one or more valves, steam removers, pressure regulators (reducing valves, compressors), heat exchangers, etc. within the scope of the present invention. You may have more.
  • the hydrogen production method or hydrogen production apparatus shown in FIG. 18 further includes a compressor 401 in the first flow path 115a in the hydrogen production method or hydrogen production apparatus shown in FIG.
  • the amount of extracted hydrogen decreases if the hydrogen partial pressure is low. Also, when the PSA type hydrogen separator described above is used as the hydrogen separator 107, if the inlet pressure of the adsorbent in the hydrogen separator 107 is low, the amount of extracted hydrogen decreases. Regarding these points, in the hydrogen production method or the hydrogen production apparatus of the present embodiment, the amount of hydrogen extracted by the hydrogen separator 107 can be increased by further providing the compressor 401 in the first flow path 115a.
  • the compressor 401 is not particularly limited, but may include or consist of a positive displacement compressor, a turbo compressor, or a combination of two or more thereof. Among these, positive displacement compressors are preferred. By using a positive displacement compressor, it is possible to achieve a high compression ratio with a small number of stages.
  • the hydrogen production method or hydrogen production apparatus shown in FIG. 18 preferably further includes a heat exchanger HE that converts heat generated by the solid carbon collector 106 into steam and supplies the steam to the compressor 401 .
  • the heat generated by the solid carbon collector 106 can be converted into steam V by the heat exchanger HE and the steam V can be supplied to the compressor 401 .
  • the solid carbon trapping reaction is an exothermic reaction, and by using the heat generated by the reaction to drive the compressor 401, it is possible to reduce power consumption for driving.
  • a pressure regulating valve 402 is provided at the inlet of the hydrogen separator 107 in the second flow path 115b, and a gas holder 403 and a pressure regulating valve are provided in the third flow path 115c.
  • a valve 404 is preferably provided.
  • the compressor 401 When the compressor 401 is included in the first flow path 115a, by providing a pressure regulating valve 402 at the inlet of the hydrogen separator 107, hydrogen separation and extraction conditions in the hydrogen separator 107 can be controlled. Further, when the exhaust gas 114 from the hydrogen separator 107 is combined with the inlet of the dry reforming reactor 103, it may be difficult to combine the exhaust gas 114 while it is pressurized. By providing a pressure regulating valve 404 for reducing the pressure of the exhaust gas 114 and a gas holder 404 for holding the gas in the third flow path 115c, the exhaust gas 114 joins the inlet portion of the dry reforming reactor 103. can be made easier.
  • the pressure regulating valves 402 and 404 are not particularly limited, and can be operated by appropriately using the primary and secondary valves.
  • the gas holder 403 is not particularly limited. Pressure fluctuations can be reduced by using a gas holder.
  • a compressor 401 is provided in the first flow path 115a, and steam V generated in the solid carbon collector 106 is supplied to the compressor 401. It is preferred to further provide a path.
  • the steam generated by the solid carbon trapping reaction can be used to drive the compressor 401 provided in the first flow path 115a, and power consumption for driving the compressor 401 can be suppressed.
  • FIG. 18 shows a configuration including all of the compressor 401, the pressure regulating valve 402, the gas holder 403, the pressure regulating valve and 404, the heat exchanger HE, the water supply channel W, and the steam supply channel. , and other components are preferably included in the apparatus including the compressor 401, and not necessarily all of them. Further, FIG. 18 shows the basic configuration of the hydrogen production apparatus shown in FIG. , but the hydrogen production apparatus shown in FIGS. 14 to 16 can also have these.
  • FIG. 19 shows Modification 1 of the solid carbon collector.
  • the compressor 401 is provided in the first flow path 115a, the first flow path 115a on the downstream side of the compressor 401 is branched to arrange a plurality of the solid carbon collectors 106 in parallel, and each solid There may also be valves 405A, 405B, 405C at the inlets and valves 406A, 406B, 406C at the outlets of the carbon traps 106A, 106B, 106C, respectively.
  • FIG. 19 shows a combination of three sets of solid carbon collectors and valves, the number of sets is not limited to this.
  • the inlet valve of at least one of the plurality of solid carbon collectors is closed to discharge solid carbon, while another solid carbon collector is You can continue driving. As a result, carbon can be collected while the hydrogen production apparatus is continuously operated.
  • FIG. 19 it is preferable to further provide a buffer tank 407 in the first flow path 115a downstream of the compressor 401 and upstream of the branch.
  • pressure fluctuations may occur in other solid carbon collectors.
  • a buffer tank 407 in the first flow path 115a downstream of the compressor 401 and upstream of the branch, the above pressure fluctuations can be buffered.
  • the buffer tank 407 provided upstream of the multiple solid carbon collectors is not particularly limited.
  • FIG. 20 shows Modification 2 of the solid carbon collector.
  • the first flow path 115a is further provided with a compressor 401, a plurality of the solid carbon collectors 106D and 106E are arranged in series, and the gas composition is adjusted between the solid carbon collectors.
  • An adjuster 408 may also be provided.
  • the amount of carbon collected in the entire hydrogen production apparatus can be increased.
  • a plurality of solid carbon collectors 106D and 106E are arranged in series in this way, when carbon is collected in the upstream solid carbon collector 106D, in the downstream solid carbon collector 106E Since the concentration of carbon monoxide decreases and the concentration of carbon dioxide increases, the reaction is less likely to occur in the solid carbon collector 106E on the downstream side.
  • a gas composition adjustment unit 408 at the outlet of each solid carbon collector and adjusting the gas composition to a gas composition that facilitates reaction even in the downstream solid carbon collector, It is possible to improve the collection rate.
  • the reaction (1) in the solid carbon collector 106E is reduced by the amount corresponding to the decrease in the CO concentration and the increase in the CO 2 concentration. becomes less likely to occur than reaction (1) in
  • at least part of the CO 2 contained in the outlet gas of the solid carbon collector 106D is recovered in the gas composition adjustment section 408.
  • the concentration of CO 2 contained in the outlet gas is reduced, and the concentration of CO is relatively increased, so that the reaction (1) in the solid carbon collector 106E is facilitated, and as a result, the solid carbon collector The carbon capture rate in 106E can be improved.
  • the CO 2 recovered in the gas composition adjusting section 408 can be reused as a component of the source gas 110 introduced into the DRM reactor 103 .
  • the gas composition adjustment unit 408 is not particularly limited, but can include or consist of a gas separation membrane, a gas adsorption/desorption system, or a combination of two or more of these. Among these, gas separation membranes are preferred. The use of gas separation membranes has the advantage of reducing footprint and/or optimizing energy costs.
  • FIG. 21 is a graph showing the carbon deposition equilibrium composition of synthesis gas at different temperatures in the solid carbon collector.
  • the horizontal axis represents the ratio of oxygen moles to carbon moles (O/C), and the vertical axis represents the hydrogen mole ratio to carbon moles (H/C).
  • temperature 400, 500, 600, or 700° C. indicates the temperature within the solid carbon collector.
  • the area on the lower left side of each temperature curve in FIG. 21 is the area where the carbon trapping reaction occurs, and the area on the upper right side of the curve is the area where the carbon trapping reaction does not occur. For example, in the 400° C. curve of FIG.
  • both the O/C and H/C ratios increase as the moles of C decrease as the solid carbon collector collects, resulting in As indicated by the arrow, it moves from the region where the carbon trapping reaction occurs to the region where the carbon trapping reaction does not occur. If such a change occurs in the upstream solid carbon collector 106D, it becomes difficult for the solid carbon collection reaction to occur in the downstream solid carbon collector 106E. , the gas composition is adjusted according to the temperature in the downstream solid carbon collector 406E to allow reactions to occur in the downstream solid carbon collector 106E.
  • FIG. 22 is a block diagram of a modified example of the hydrogen production device of the present invention.
  • the hydrogen production device 200 already described has the DRM reactor 103 for performing the DRM reaction and the solid carbon collector 106 for the solid carbon collection reaction. Instead, it has a reactor 301 that doubles as a DRM reactor and a solid carbon collector.
  • a DRM catalyst 101 and a solid carbon trapping catalyst 104 are arranged inside the reactor 301, and the raw material gas 110 introduced from the primary side first comes into contact with the DRM catalyst 101 to generate a synthesis gas 111. . Syngas 111 is then contacted with solid carbon capture catalyst 104 to produce treated gas 112 . The above reactions are sequentially performed in the reactor 301 .
  • the temperature in the reactor 301 is adjusted by the third temperature controller 302 controlled by the control device 201, and the reaction temperature T 1 and the reaction temperature T 2 are detected by the temperature sensor (TEMP1) 130 and the temperature sensor ( TEMP2) 131.
  • the reactor 301 for example, one reaction tube, the DRM catalyst 101 and the solid carbon trapping catalyst 104, which are sequentially packed in the reaction tube, and the temperature of the reaction tube is adjusted. and a heater for heating.
  • the reactor 301 of the hydrogen production device 300 has a third temperature controller 302 that adjusts the overall temperature. It has a controller 102 and a second temperature controller 105 that independently controls the temperature of the solid carbon trapping reaction (reaction temperature T 2 ), and these are configured to be controlled by the controller 201. good too.
  • the hydrogen production device 300 has a reactor 301 that serves as both a DRM reactor and a solid carbon collector, and furthermore, the reaction temperature is configured to be controlled by the third temperature controller 302, so the structure is simpler and controllable. has the advantage of being easy to In particular, when the reaction temperature T 1 and the reaction temperature T 2 are controlled to 600-620°C, the above tendency is more pronounced.
  • the molar ratio of the carbon monoxide content to the carbon dioxide content in the synthesis gas (CO/CO 2 ) and the reaction temperature T 1 ( ° C.) and the reaction temperature T 2 (° C.) of the solid carbon trapping reaction are preferably controlled so as to satisfy the following condition (1).
  • the DRM reactor 103 includes a dry reforming catalyst 101 (hereinafter also referred to as “DRM catalyst”) and a first catalyst for controlling the temperature of gas flowing through the DRM reactor 103 (reaction temperature T 1 ). and a temperature controller 102 .
  • the solid carbon collector 106 includes a solid carbon collector catalyst 104, a second temperature controller 105 for controlling the temperature (reaction temperature T 2 ) of the gas flowing through the solid carbon collector 106, have.
  • the structure of the dry reforming reactor 103 is not particularly limited as long as the source gas 110 (source gas flow) and the dry reforming catalyst 101 can be brought into contact at the reaction temperature T1 .
  • it may include a container through which the source gas 110 can flow, a dry reforming catalyst 101 fixed in the container, and a first temperature controller 102 that is a heater.
  • the solid carbon collector 106 includes a solid carbon collector catalyst 104 and a second temperature controller 105 for adjusting the reaction temperature T2 . Specifically, it includes a reaction tube, a solid carbon trapping catalyst 104 housed in the reaction tube, and a second temperature controller 105 which is a heater arranged around the reaction tube, and is upstream of the reaction tube.
  • a first flow path 115a for introducing the synthesis gas 111 is connected to the (primary) side, and a second flow path 115a for discharging the treated gas 112 is connected to the downstream (secondary) side of the reaction tube.
  • the channel 115b is connected.
  • the balance between the amount of CO 2 introduced as part of the raw material gas 110 and the amount of CO 2 discharged from the exhaust gas 114 in hydrogen production using this hydrogen production apparatus 100 will be described. It should be noted that the amount of CO 2 derived is calculated in consideration of the influence of CO, which may be contained in the exhaust gas 114 and may generate CO 2 by combustion.
  • the raw material gas 110 (135 L/h) in which 100 mmol/min of 1 atm CH 4 and CO 2 are mixed is introduced into the DRM reactor 103, and is directed from upstream to downstream of the flow path 115 of the hydrogen generator 100.
  • the DRM reactor 103 is kept at 600°C, that is, the reaction temperature T1 is 600°C.
  • the composition of the syngas 111 can be estimated by thermal equilibrium calculations.
  • the emission amount is 105 L/hour. If CO/CO 2 is 1.24, the inflow is 90 L/h and the discharge is 103 L/h . / time.
  • the amount of CO 2 is 116 L/h when CO/CO 2 in the synthesis gas is 0.396. In this case, compared with the inflow of 121 L/h, the discharge is smaller.
  • FIG. 2 shows the thermal equilibrium calculation results of the Boudouard reaction (2CO ⁇ CO 2 +C).
  • the white (open) circular symbols and the black (closed) circular symbols are respectively the processed gas 112 (derived gas, in the figure " Outgas”) and the respective molar fractions of CO 2 and CO (vertical axis: left).
  • open square symbols represent CO/CO 2 (vertical axis: right) in the treated gas 112 with respect to the reaction temperature T 2 (° C.).
  • the light-off temperature (activity expression temperature) can be theoretically estimated at 450°C.
  • the light-off temperature (activation temperature) refers to the temperature when the reaction temperature T2 of the solid carbon trapping reaction is gradually raised from 350°C while passing a mixed gas of CO and CO2 . It means the lowest temperature at which the amount of CO contained in the finished gas 112 goes from zero to a significant value.
  • the reaction temperature T2 when the reaction temperature T2 is gradually increased, the equilibrium of the Boudouard reaction inclines from right to left, so the amount of CO contained in the treated gas 112 also increases.
  • the content of CO in the treated gas 112 affects the final output of CO2 out of the unit. By reducing this CO emission, the final CO 2 emission can be reduced.
  • the amount of CO 2 emitted out of the hydrogen generator is also affected by the amount of CH 4 contained in the treated gas 112 . If the syngas 111 contains CH4 , it is vented to the treated gas 112 as it does not contribute to the solid carbon scavenging reaction. Combustion of this will generate CO2 . The amount of CH 4 in the syngas 111 can be said to be residual CH 4 not used in the DRM reaction, and this adjustment is also necessary.
  • the present inventors searched for conditions under which the amount of CO 2 derived is less than or equal to the amount introduced by controlling the reaction temperature T 2 and the CO/CO 2 ratio in the synthesis gas 111 within a predetermined range. As a result, focusing on the fact that the "range" forms a certain continuous region, the relationship between the reaction temperature T 1 , the reaction temperature T 2 , and CO/CO 2 in the synthesis gas 111 is further described. investigated.
  • FIG. 3 shows the resulting relationship between reaction temperature T 1 , reaction temperature T 2 , and CO/CO 2 in synthesis gas 111 .
  • CO/CO 2 Ratio in DRM Outgas on the horizontal axis means CO/CO 2 in the synthesis gas 111 .
  • CO Disprop. Temperature (°C) on the vertical axis means the reaction temperature T2 .
  • DRM Temperature ie the point at which the amount of CO2 released is calculated equal to the amount introduced at the reaction temperature T1 .
  • reaction temperature T1 is 600° C.
  • less CO 2 is released, typically less than introduced. From the results of FIG. 4, it can be seen that as the reaction temperature T1 increases, the area demarcated by each plot where the amount of CO 2 derived becomes equal to the amount introduced increases.
  • Inflection means the inflection point (horizontal axis) of the sigmoid curve
  • Gradient means the inclination of the slope
  • Table 2 shows the Inflection and Gradient at each reaction temperature T1 , and the values at 600°C, 700°C and 900°C were determined by fitting.
  • FIG. 4 is a diagram showing that relationship.
  • the horizontal axis indicates the reaction temperature T 1 (° C.).
  • Triangular plots represent Inflection, and square plots represent Gradient.
  • the relational expressions obtained from the fitting of each plot were obtained as follows.
  • the reaction temperature T 1 (°C) is preferably 600°C or higher.
  • the region where the amount of CO 2 derived is significantly reduced is the region that satisfies the following condition (1): It turns out there is.
  • reaction temperature T 1 the CO/ CO2 in the DRM outgas (i.e., synthesis gas 111) can be adjusted by adjusting the CH4 / CO2 in feed gas 110 to This is because it can be easily adjusted.
  • FIG. 5 is a diagram showing the reaction temperature T1 dependency of the relationship between CH 4 /CO 2 in the raw material gas and CO/CO 2 in the synthesis gas 111 .
  • the horizontal axis of FIG. 5 represents “CH 4 /CO 2 in DRM InGas”, i.e., CH 4 /CO 2 in the source gas 110, and the vertical axis represents “CO/CO 2 in DRM OutGas”, i.e., in the synthesis gas 111. It represents CO/ CO2 .
  • the CH4 / CO2 in the source gas can be adjusted.
  • the value can be easily obtained by calculation.
  • CO/CO 2 is greater than 0 and 124 or less, and the lower limit is preferably 0.20 or more. When CO/CO 2 is equal to or higher than the above lower limit, more excellent effects of the present invention can be obtained. Also, the upper limit is preferably 0.50 or less. When CO/CO 2 is equal to or less than the above upper limit value, more excellent effects of the present invention can be obtained.
  • temperature control in the DRM reactor 103 and the solid carbon collector 106 is not essential. can get.
  • Fig. 23 is a photograph of the hydrogen production equipment used in this demonstration experiment.
  • the hydrogen production apparatus of FIG. 23 includes a pair of holders 501 for mounting a quartz reaction tube, a heater 502, a sensor 503 for measuring the temperature inside the heater, and a PdAg alloy film 504 arranged downstream. , and the raw material gas introduced from FL1 flows in the order of FL2 (in the drawing, the quartz reaction tube is not attached), FL3, FL4, FL5, and FL6.
  • the temperature was raised from room temperature to 400° C. while passing N 2 gas through the quartz reaction tube at 5 ml/min. 10 ml/min of each of CH 4 gas and CO 2 gas was added to this, and the total inflow into the quartz reaction tube was 25 ml/min.
  • Hydrogen was detected on the secondary side of the PdAg alloy film as the DRM reaction started when the temperature of each powder in the quartz reaction tube was around 470°C.
  • the flow rate of hydrogen on the secondary side of the PdAg alloy film increased as the temperature increased, and the value indicated by the mass flow meter reached 3.1 ml/min at a temperature of 700°C. After that, this value gradually decreased and reached a steady state at around 2.5 ml/min after 15 hours.
  • FIG. 24 shows the results of the above demonstration test, in which the horizontal axis represents elapsed time, the vertical axis (left) represents the amount of hydrogen produced (ml/min), and the vertical axis (right) represents the total amount of hydrogen produced (L). ing. From the above results, it was found that hydrogen can be stably produced over a long period of time by the method for producing hydrogen of the present invention.
  • Example 2 In the configuration of the hydrogen production apparatus shown in FIG. Methane: 15 Nm 3 /h is burned in air in the methane combustion furnace 108 outside the hydrogen production apparatus as part of the heat amount to be given to, and carbon dioxide: 15 Nm 3 /h is generated. Obtained by simulation.
  • the hydrogen extraction rate (%) can be calculated by calculating the ratio of the flow rate of hydrogen 113 from the hydrogen separator 107 to the flow rate of hydrogen in the process gas 112 from the solid carbon collector 106. can.
  • the hydrogen extraction rate was 75%, confirming that hydrogen can be extracted at a high rate.
  • Example 3 In the configuration of the hydrogen production apparatus shown in FIG. Methane: 15 Nm 3 /h is burned in air in the methane combustion furnace 108 outside the hydrogen production apparatus as part of the heat amount to be given to, and carbon dioxide: 15 Nm 3 /h is generated. Obtained by simulation.
  • the hydrogen extraction rate (%) can be calculated by calculating the ratio of the flow rate of hydrogen 113 from the hydrogen separator 107 to the flow rate of hydrogen in the process gas 112 from the solid carbon collector 106. can.
  • the hydrogen extraction rate was 66%, confirming that hydrogen can be extracted at a high rate.
  • Example 4 In the configuration of the hydrogen production apparatus shown in FIG. The mass balance and energy balance when combusting hydrogen separated and collected by the hydrogen separator 107 as part of the amount of heat given to the gas were obtained by simulation.
  • Example 5 In the configuration of the hydrogen production apparatus shown in FIG. heat is recovered from the exhaust gas 114 before it is introduced into the DRM reactor 103 as part of the amount of heat imparted to the mass balance and energy The income and expenditure were calculated by simulation.
  • Substrate 12 Coating layers 100, 200, 300: Hydrogen production device 101: Dry reforming catalyst (DRM catalyst) 102: first temperature controller 103: dry reforming (DRM reactor) reactor 104: solid carbon trapping catalyst 105: second temperature controller 106: solid carbon traps 106A, 106B, 106C, 106D, 106E : Solid carbon collector 107: Hydrogen separator 108: Methane combustion furnaces 108a, 109a: Heat supply channel 109: Hydrogen combustion furnace 110: Raw material gas 111: Syngas 112: Treated gas 113: Hydrogen 114: Exhaust gas 115 : Flow path 115a: First flow path 115b: Second flow path 115c: Third flow path 116: Hydrogen extraction flow path 120: Circulating gas 121: Methane 122: Carbon dioxide 201: Controller 202: Processor 203: Memory 204: Heat recovery device 205: Source gas regulator 301: Reactor 302: Third temperature regulator 401: Compressors 40

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

系外への二酸化炭素排出量が削減された、水素製造方法の提供。 ドライ改質触媒の存在下で、メタンと二酸化炭素と含む原料ガスから、一酸化炭素と水素とを含む合成ガスを得る、ドライ改質反応を行うことと、前記合成ガスを固体炭素捕集用触媒の存在下で反応させ、前記合成ガス中の前記一酸化炭素から固体炭素を生成し、前記固体炭素と、処理済みガスとを得る、固体炭素捕集反応を行うことと、前記処理済みガスを、排出ガスと水素とに分離し、水素を得ることと、を含み、前記合成ガス中における前記二酸化炭素の含有量に対する前記一酸化炭素の含有量の含有モル比であるCO/COと、前記ドライ改質反応の反応温度T(℃)と、前記固体炭素捕集反応の反応温度T(℃)と、が以下の(1)の条件を満たす、水素製造方法。 

Description

水素製造方法、及び、水素製造装置
 本発明は、水素製造方法、及び、水素製造装置に関する。
 メタンと二酸化炭素とを反応させて一酸化炭素と水素とを含む合成ガスに転換するドライ改質(ドライリフォーミング、DRM)法が知られている。
 DRM反応(CH+CO→2CO+2H)は、反応条件によって固体炭素析出反応(CH→C+2H、2CO→C+CO)と競合することがあり、この析出した炭素によって触媒の触媒活性が下がってしまう(コーキング)等の問題があった。
 上記解決方法の1つとして、ドライ改質反応、及び、固体炭素捕集反応を、それぞれ別の触媒を用いて連続的に行うことにより、触媒劣化を抑えて長時間稼働させることができる方法の開発が進められている。
 上記のような方法を実施可能な装置として、非特許文献1には、ドライ改質触媒としてNi/Alを用い、固体炭素捕集用触媒としてステンレスチューブを用い、これらを順に接続したシステムが記載されている。
Journal of CO2 Utilization,2017,vol.22,p.91-96
 本発明者らは、非特許文献1に記載されているようなシステムを水素製造に適用すべく、上記システムに、更に水素分離器を加えた装置を考案し、メタンと二酸化炭素とを原料として、連続的に水素を抽出できる方法の開発を進めてきた。
 その結果、上記の方法によれば、連続的に水素(水素ガス)を製造することはできるものの、ドライ改質反応、固体炭素捕集反応、及び、水素分離という3つの工程を単に組み合わせただけでは、反応系に導入される原料ガス中に含まれる二酸化炭素よりも、反応系外へと排出される二酸化炭素の方が多くなってしまう場合があることを初めて知見した。
 水素の利用において、その製造過程での二酸化炭素の排出量低減は重要な課題の一つと考えられている。そこで、本発明は系外への二酸化炭素排出量が削減された、水素製造方法の提供を課題とする。また、本発明は、水素製造装置の提供も課題とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、以下の構成により上記課題を達成することができることを見出した。
 [1]
 ドライ改質触媒の存在下で、メタンと二酸化炭素とを含む原料ガスから、一酸化炭素と水素とを含む合成ガスを得る、ドライ改質反応を行うことと、
 前記合成ガスを固体炭素捕集用触媒の存在下で反応させ、前記合成ガス中の前記一酸化炭素から固体炭素を生成し、前記固体炭素と、処理済みガスとを得る、固体炭素捕集反応を行うことと、
 前記処理済みガスを、排出ガスと水素とに分離し、水素を得ることと、を含み、
 前記合成ガス中における前記二酸化炭素の含有量に対する前記一酸化炭素の含有量の含有モル比であるCO/COと、前記ドライ改質反応の反応温度T(℃)と、前記固体炭素捕集反応の反応温度T(℃)と、が以下の(1)の条件:
Figure JPOXMLDOC01-appb-M000003
を満たす、水素製造方法。
 [2]
 前記反応温度Tが、前記固体炭素捕集用触媒の活性発現温度以上の温度である、[1]に記載の水素製造方法。
 [3]
 前記原料ガス中における前記二酸化炭素の含有量に対する前記メタンの含有量の含有モル比であるCH/COが0.5以下である、[1]又は[2]に記載の水素製造方法。
 [4]
 前記反応温度Tが前記ドライ改質触媒の活性発現温度以上の温度である、[1]~[3]のいずれか1つに記載の水素製造方法。
 [5]
 前記反応温度Tが600℃以上である、[1]~[4]のいずれか1つに記載の水素製造方法。
 [6]
 前記排出ガスから熱を回収し、前記熱を、前記ドライ改質反応、及び、前記固体炭素捕集反応からなる群より選択される少なくとも1つの反応に用いることを更に含む、[1]~[5]のいずれか1つに記載の水素製造方法。
 [7]
 前記回収が、前記排出ガスを燃料電池に導入することにより行われる、[6]に記載の水素製造方法。
 [8]
 前記回収が、前記排出ガスを燃焼することにより行われる、[6]に記載の水素製造方法。
 [9]
 前記処理済みガスの分離が水素分離膜により行われる、[1]~[8]のいずれか1つに記載の水素製造方法。
 [10]
 ドライ改質触媒の存在下で、メタンと二酸化炭素と含む原料ガスから、一酸化炭素と水素とを含む合成ガスを得る、ドライ改質反応を行うドライ改質反応器と、
 前記合成ガスを固体炭素捕集用触媒の存在下で反応させ、前記合成ガス中の前記一酸化炭素から固体炭素を生成し、前記固体炭素と、処理済みガスとを得る、固体炭素捕集反応を行う固体炭素捕集器と、
 前記処理済みガスを、排出ガスと水素とに分離する、水素分離器と、
 前記ドライ改質反応の反応温度T(℃)を調整する、第1温調器と、
 前記固体炭素捕集反応の反応温度T(℃)を調整する、第2温調器と、
 前記原料ガスの組成を調整する、原料ガス調整器と、
 制御装置と、を含み、
 前記制御装置は、前記合成ガス中における前記二酸化炭素の含有量に対する前記一酸化炭素の含有量の含有モル比であるCO/COと、前記反応温度Tと、前記反応温度Tと、が以下の(1)の条件:
Figure JPOXMLDOC01-appb-M000004
を満たすように、前記第1温調器、前記第2温調器、及び、前記原料ガス調整器を制御する、水素製造装置。
 [11]
 前記制御装置は、前記原料ガス中における前記二酸化炭素の含有量に対する前記メタンの含有量の含有モル比であるCH/COが0.5以下となるように前記原料ガス調整器を制御する、[10]に記載の水素製造装置。
 [12]
 前記制御装置は、前記第1温調器、及び、前記第2温調器を制御して、前記反応温度Tを前記ドライ改質触媒の活性発現温度以上の温度に制御し、前記反応温度Tを前記固体炭素捕集用触媒の活性発現温度以上の温度に制御する、[10]又は[11]に記載の水素製造装置。
 [13]
 前記排出ガスから熱を回収するための、熱回収器を更に有する、[10]~[12]のいずれか1つに記載の水素製造装置。
 [14]
 前記熱が、前記ドライ改質反応器、及び、前記固体炭素捕集器からなる群より選択される少なくとも一方の加熱に用いられる、[13]に記載の水素製造装置。
 [15]
 前記水素分離器が水素分離膜を含む、[10]~[14]のいずれか1つに記載の水素製造装置。
 [16]
 前記熱回収器が燃料電池を含む、[13]に記載の水素製造装置。
 [17]
 ドライ改質触媒の存在下で、メタンと二酸化炭素を含む原料ガスから、一酸化炭素と水素とを含む合成ガスを得るドライ改質反応工程と、
 前記ドライ改質反応工程からの前記合成ガスを導入して、固体炭素捕集用触媒の存在下で、前記合成ガス中の一酸化炭素から固体炭素を生成し、処理済みガスを得る固体炭素捕集工程と、
 前記固体炭素捕集工程からの前記処理済みガスから水素を抽出して、二酸化炭素を含む排出ガスを得る水素分離工程と、を含み、
 前記水素分離工程からの前記排出ガスを前記ドライ改質反応工程に導入して、二酸化炭素を外部に排出させずに循環させることを特徴とする水素製造方法。
 [18]
 メタンを燃焼させることにより熱と二酸化炭素とを発生させ、発生した前記熱を前記ドライ改質反応工程に導入し、発生した前記二酸化炭素と等量の二酸化炭素を含む前記原料ガスを前記ドライ改質反応工程に導入して、前記固体炭素捕集工程において前記原料ガス中の二酸化炭素及びメタンに含まれる炭素と等量の炭素を固体炭素として捕集する、[17]に記載の水素製造方法。
 [19]
 前記水素分離工程において分離した水素の一部を取り出して燃焼させ、発生する熱を前記ドライ改質反応工程に供給することをさらに含む、[17]又は[18]に記載の水素製造方法。
 [20]
 前記水素分離工程からの前記排出ガスを前記ドライ改質反応工程に導入する前に、前記排出ガスからの熱を回収して前記ドライ改質反応工程に供給する、[17]~[19]のいずれか1つに記載の水素製造方法。
 [21]
 ドライ改質触媒の存在下で、メタンと二酸化炭素を含む原料ガスから、一酸化炭素と水素とを含む合成ガスを得るドライ改質反応器と、
 前記ドライ改質反応器からの前記合成ガスを導入して、固体炭素捕集用触媒の存在下で、前記合成ガス中の一酸化炭素から固体炭素を生成し、処理済みガスを得る固体炭素捕集器と、
 前記固体炭素捕集器からの前記処理済みガスから水素を抽出して、二酸化炭素を含む排出ガスを得る水素分離器と、
 前記ドライ改質反応器からの合成ガスを前記固体炭素捕集器に供給する第1の流路と、前記固体炭素捕集器からの処理済みガスを前記水素分離器に供給する第2の流路と、前記水素分離器からの排出ガスを前記ドライ改質反応器に供給する第3の流路とを備え、二酸化炭素を外部に排出せずに内部にて循環させることを特徴とする水素製造装置。
 [22]
 メタン燃焼炉と、前記メタン燃焼炉からの熱を前記ドライ改質反応器に供給する熱供給流路とをさらに備えることを特徴とする[21]に記載の水素製造装置。
 [23]
 前記水素分離器からの水素の一部を取り出す水素抽出流路と、取り出した水素を燃焼させる水素燃焼炉と、前記水素燃焼炉からの熱を前記ドライ改質反応路に供給する熱供給流路とをさらに備えることを特徴とする[21]又は[22]に記載の水素製造装置。
 [24]
 前記第3の流路の途中に、前記排出ガスからの熱を回収する熱回収器が接続され、前記熱回収器にて回収した熱を前記ドライ改質反応器に供給することを特徴とする[21]~[23]のいずれか1つに記載の水素製造装置。
 [25]
 前記第1の流路に圧縮機をさらに備える[21]~[24]のいずれか1つに記載の水素製造装置。
 [26]
 前記固体炭素捕集器にて発生する熱を蒸気に変換して前記圧縮機に供給する熱交換器をさらに備える[25]に記載の水素製造装置。
 [27]
 前記水素分離器の入口部に圧力調整弁を設け、前記水素分離器の出口部にガスホルダー及び圧力調整弁を設ける[25]に記載の水素製造装置。
 [28]
 前記ドライ改質反応器にて発生する水を前記固体炭素捕集器に供給するための水供給路をさらに備える[21]~[27]のいずれか1つに記載の水素製造装置。
 [29]
 前記第1の流路に圧縮機をさらに備え、前記固体炭素捕集器にて発生する蒸気を前記圧縮機に供給する蒸気供給路をさらに備える[28]に記載の水素製造装置。
 [30]
 前記第1の流路に圧縮機をさらに備え、前記圧縮機の下流側の前記第1の流路を分岐して前記固体炭素捕集器を複数個並列に配置し、各固体炭素捕集器の入口部及び出口部に弁を設ける[21]~[29]のいずれか1つに記載の水素製造装置。
 [31]
 前記第1の流路に、前記圧縮機の下流側で分岐より上流側にバッファタンクをさらに設ける[30]に記載の水素製造装置。
 [32]
 前記第1の流路に圧縮機をさらに備え、前記固体炭素捕集器を複数個直列に配置し、各固体炭素捕集器の間にガス組成調整部を設ける[21]~[31]のいずれか1つに記載の水素製造装置。
 本発明によれば、系外への二酸化炭素排出量が削減された、水素製造方法が提供できる。典型的には、系中への二酸化炭素導入量よりも、系外への二酸化炭素導出量が少ない、水素製造方法が提供できる。また、本発明によれば、水素製造装置も提供できる。
本発明の製造方法の実施のために使用できる水素製造装置の一実施形態のブロック図である。 Boudouard反応(2CO→CO+C)の熱平衡計算結果である。 反応温度T、反応温度T、及び、合成ガス中におけるCO/COとの関係を表す図である。 Inflection、及び、Gradientの反応温度Tとの関係を表す図である。 原料ガス中におけるCH/COと、合成ガス中におけるCO/COとの関係の反応温度T依存性を表す図である。 本発明の水素製造方法のフロー図である。 本発明の水素製造装置の第1実施形態のブロック図である。 水素製造装置200による水素製造のフロー図である。 制御装置201が実行する制御処理のフロー図である。 本発明の水素製造装置の変形例のブロック図である。 固体炭素捕集用触媒の一形態の要部断面図である。 本発明の水素製造方法の主要部を示すブロック図である。 本発明の水素製造方法の実施のために使用できる水素製造装置の基本構成を示すブロック図である。 本発明の水素製造方法の実施のために使用できる水素製造装置の一実施形態(メタン燃焼炉からドライ改質反応への熱供給)を示すブロック図である。 本発明の水素製造方法の実施のために使用できる水素製造装置の別の実施形態(水素燃焼炉からのドライ改質反応への熱供給)のブロック図である。 本発明の水素製造方法の実施のために使用できる水素製造装置のまた別の実施形態(排ガスからの熱回収とドライ改質反応への熱供給)のブロック図である。 本発明の水素製造方法の実施のために使用できる水素製造装置のまた別の実施形態(排ガスからの熱回収と熱制御)のブロック図である。 本発明の水素製造方法の実施のために使用できる水素製造装置のまた別の実施形態(圧縮機を備える形態)のブロック図である。 本発明の水素製造方法の実施のために使用できる水素製造装置のまた別の実施形態(複数の固体炭素捕集器を並列に配置する形態)のブロック図である。 本発明の水素製造方法の実施のために使用できる水素製造装置のまた別の実施形態(複数の固体炭素捕集器を直列に配置する形態)のブロック図である。 固体炭素捕集器内における、温度別のガス組成を示すグラフである。 本発明の水素製造方法の実施のために使用できる水素製造装置のまた別の実施形態(DRM反応と固体炭素捕集反応の温度制御)のブロック図である。 実証実験に使用した水素製造装置の写真である。 実証試験の結果である。 実施例2の水素製造方法の物質収支及びエネルギー収支のシミュレーションを示す概略説明図である。 実施例3の水素製造方法の物質収支及びエネルギー収支のシミュレーションを示す概略説明図である。 実施例4の水素製造方法の物質収支及びエネルギー収支のシミュレーションを示す概略説明図である。 実施例5の水素製造方法の物質収支及びエネルギー収支のシミュレーションを示す概略説明図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施形態に制限されるものではない。
 なお、本明細書において、「X~Y」を用いて表される数値範囲は、X及びYで表される数値をそれぞれ下限値及び上限値として含む範囲を意味する。
 また、以下の説明では同一の機能、及び/又は、構造を有する部分には同一の符号を付して説明を省略する場合がある。
[水素製造方法]
 本発明の水素製造方法(以下「本製造方法」ともいう。)は、ドライ改質触媒の存在下で、メタンと二酸化炭素と含む原料ガスから、一酸化炭素と水素とを含む合成ガスを得る、ドライ改質反応を行う工程(ドライ改質工程)と、合成ガスを固体炭素捕集用触媒の存在下で反応させ、上記合成ガス中の一酸化炭素から固体炭素を生成させて、固体炭素と、処理済みガスとを得る、固体炭素捕集反応を行う工程(炭素捕集工程)、及び、上記処理済みガスを、排出ガスと水素とに分離し、水素(水素ガス)を得る工程(水素分離工程)を含む。
 本発明の特徴点の一つは、所期の効果を得るために、合成ガス中における二酸化炭素の含有量に対する一酸化炭素の含有量の含有モル比(CO/CO)と、ドライ改質反応の反応温度T(℃)、固体炭素捕集反応の反応温度T(℃)と、を以下の(1)の条件を満たすように制御する点にある。
Figure JPOXMLDOC01-appb-M000005
 以下では、まず、本製造方法の実施のために使用できる水素製造装置の一形態について説明した後、上記の条件(1)の意義と、合成ガス中におけるCO/COと反応温度T、Tとの関係を上記のとおり制御することによって、本発明の効果が得られる推定メカニズムについて説明する。
 図1は、本製造方法の実施のために使用できる水素製造装置の一実施形態のブロック図である。
 水素製造装置100は、ドライ改質反応器103(以下、「DRM反応器」ともいう)、固体炭素捕集器106、及び、水素分離器107を有しており、これらが、ガスを流通させるための流路115を介して順に接続されている。
 DRM反応器103は、ドライ改質触媒101(以下「DRM触媒」ともいう)と、DRM反応器103内を流通するガスの温度(反応温度T)を制御するための第1温調器102と、を有している。また、固体炭素捕集器106は、固体炭素捕集用触媒104と、固体炭素捕集器106を流通するガスの温度(反応温度T)を制御するための第2温調器105と、を有している。
 水素製造装置100には、メタン(CH)と二酸化炭素(CO)とを含む原料ガス110がDRM反応器103の上流側から流路115を介して導入される。原料ガス110は、DRM反応器103内を流通し、DRM反応によって合成ガス111となる(DRM反応:CH+CO→2CO+2H)。得られる合成ガス111中には、DRM反応によって生ずる一酸化炭素(CO)と、水素とが含まれる。また、DRM反応温度T(℃)によっては、燃焼により二酸化炭素となり得るメタンが残留していることもある。
 ドライ改質反応器103の構造は、反応温度Tで原料ガス110(原料ガス流)とドライ改質触媒101とを接触させることができれば特に制限されない。例えば、原料ガス110を流通可能な容器と、容器内に固定されたドライ改質触媒101と、ヒータである第1温調器102とを含んで構成されていてもよい。
 ドライ改質触媒101は、アルミナを含む多孔質担体と、多孔質担体に担持された活性成分とを含む複合体であってよい。活性成分は、例えば、ニッケル、コバルト、モリブデン、ロジウム、ルテニウム、アルミニウム、ジルコニウム、マグネシウム、パラジウム、亜鉛、カリウム、カルシウム、及び、これらの酸化物等であってもよい。
 上記以外にも、ドライ改質触媒101としては、例えば、特開2006-055820号公報、及び、特開2019-37905号公報等に記載の触媒も使用できる。
 更に、より優れた本発明の効果が得られる観点では、ドライ改質触媒は、Chemical. Science., 2019,volume 10,p3701-3705に記載されている「Ni#Y」触媒が好ましい。
 「Ni#Y」は、数十ナノメートルの厚さの繊維状の金属ニッケルと酸素不足のYとが互いに絡み合い,根状構造(a rooted structure)を形成したものである。
 「Ni#Y」は、例えば、以下の方法により作製することができる。
 まず、金属ニッケルと金属イットリウムを、アルゴン雰囲気の中で溶解させ、Ni-Y合金を合成する。このNi-Y合金の粉末(平均粒径50~60μm)を、CO、O、及び、Arからなるガス流で加熱することで、「Ni#Y」を合成することができる。
 次に、合成ガス111が固体炭素捕集器106の上流側から導入される。合成ガス111は、固体炭素捕集器106内を流通する間に固体炭素捕集反応によって処理済みガス112となる(固体炭素捕集(Boudoard)反応:2CO→C+CO)。
 図11は、固体炭素捕集用触媒104の一形態の要部断面図である。固体炭素捕集用触媒104は、管状体である基材11と、基材11の内壁面上に形成されたコーティング層12とを有する。
 固体炭素捕集用触媒104が有する基材11は管状体であるため、合成ガス111を固体炭素捕集用触媒104内に容易に流通させることができる。また、管状体の内側に流通を妨げる構造が少ないほど、析出した固体炭素による目詰まりがより生じ難いという利点もある。
 基材11は、金属含有成分のコーティングが行えるものであれば特に限定されないが、ステンレス鋼管、及び、アルミニウム管等であってよい。基材11が断面円形の内壁面を有する管状体であるとき、その内径は、特に制限されないが、例えば10~300mm、又は、10~1000mmであってよい。
 基材11が管状体であるとき、その長さは特に制限されないが、例えば20~5000mmであってよい。基材11は、直線状に延びる管状体であってもよく、捻じれた管状体であってもよい。
 コーティング層12は、酸化鉄、酸化コバルト、酸化マグネシウム、酸化モリブデン、酸化ニッケル、酸化マンガン、金属鉄、金属コバルト、金属マグネシウム、金属モリブデン、金属ニッケル、及び、金属マンガンからなる群より選択される少なくとも1種の金属含有成分を主成分として含む。
 コーティング層12は、酸化鉄を含んでもよく、特に酸化鉄としてFe、Fe、FeO、又は、これらの組み合わせを含んでいてもよい。コーティング層12におけるこれらの金属含有成分の含有量は、コーティング層12の全質量を100質量%としたとき、40質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、100質量%以下が好ましい。
 また、コーティング層12は、酸化アルミニウム(Al)を含む担体と、これに担持された金属鉄とを含んでいてもよい。その場合、金属鉄の割合が、コーティング層12の質量を100質量%としたとき、40~50質量%であってもよい。
 コーティング層12は、基材11の表面(内壁面)の全体、又は、一部を覆うように形成されている。コーティング層12の厚さは、特に制限されないが、例えば5~2000μm、又は、10~2000μmであってもよい。
 固体炭素の効率的な析出の観点から、コーティング層12が多孔質であってもよい。多孔質のコーティング層の比表面積は、5~1000m/gであってもよい。
 コーティング層12は、例えば、酸化鉄、酸化コバルト、酸化マグネシウム、酸化モリブデン、酸化ニッケル、酸化マンガン、金属鉄、金属コバルト、金属マグネシウム、金属モリブデン、金属ニッケル、及び、金属マンガンからなる群より選択される少なくとも1種の金属含有成分、又は、その前駆体と、溶媒とを含むコーティング液を基材11の表面(例えば内壁面)に付着させることと、基材11の表面に付着したコーティング液から溶媒を除去することとを含む方法により、形成することができる。コーティング液の溶媒は、例えば水、アルコール、アセトン、又は、これらの組み合わせであってもよい。
 固体炭素捕集器106は、固体炭素捕集用触媒104と、反応温度Tを調整するための第2温調器105とを含んで構成される。
 具体的には、反応管と、反応管内に収容された固体炭素捕集用触媒104と、反応管の周囲に配置されたヒータである第2温調器105とを含み、上記反応管の上流(一次)側には、合成ガス111を導入するための流路が接続され、上記反応管の下流(二次)側には、処理済みガス112を排出するための流路が接続される。
 なお、固体炭素捕集器106に合成ガス111が導入されると、固体炭素捕集用触媒104のコーティング層12上に固体炭素が析出する。析出した固体炭素は、容易に剥離することができる。
 処理済みガス112は、水素分離器107の上流側から導入され、水素113と、排出ガス114とに分離される。
 水素分離器107は、処理済みガス112を水素113と、排出ガス114とに分離する機能を有し、水素分離膜、及び、圧力変動吸着機構等を有するものであってよい。
 水素分離膜としては、例えば、パラジウム合金系の薄膜が使用できる。パラジウム合金系の水素分離膜は、パラジウムに、イットリウム、及び、ガドリニウム等の希土類元素が添加されたもの、及び、パラジウムに銀が添加されたもの等が使用できる。
 また、パラジウムに代えて、ニオブ、バナジウム、チタン、タンタル、及び、ジルコニウム等を主成分とする薄膜も使用できる。
 このような水素分離膜としては、特開2000-159503号公報、特開2005-232533号公報、及び、特開2006-43677号公報等に記載のものが挙げられる。
 また、優れた水素透過性と、耐水素脆化性とを両立する水素分離膜としては、バナジウムに対して、クロム、鉄、ニッケル、及び、コバルトからなる群より選択される少なくとも1種の金属成分を添加したもの、更に、アルミニウム、スカンジウム、チタン、イットリウム、ジルコニウム、ニオブ、モリブデン、タンタル、ランタン、セリウム、プラセオジウム、ネオジム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及び、ルテニウムからなる群より選択される少なくとも1種の金属成分を添加したものを使用してもよい。
 このような水素分離膜は、例えば、特開2008-55295号公報に記載されている。
 水素分離膜を含む水素分離器107は、典型的には、水素分離膜と、水素分離膜の上流(一次)側から、水素分離膜へと処理済みガス112を供給する流路と、水素分離膜を透過した水素113を下流(二次)側へと排出する流路と、水素分離膜と接触した後、水素分離膜を透過しなかった排出ガス114を回収するための流路とを有する。
 このような水素分離膜を含む水素分離器107は、例えば、特開2019-5684号公報に記載のものが使用できる。
 水素分離器107は、上記以外にも圧力変動吸着(Pressure Swing Adsorption;PSA)法を用いたものも使用できる。PSA式の水素分離器は、典型的には、吸着材が充填された吸着塔、ポンプ、及び、これらを接続する流路を有する。吸着材としては、処理済みガス112中における二酸化炭素、一酸化炭素、及び、水分等を吸着するものが使用できる。
 吸着材としては、活性炭、ゼオライト、及び、アルミナ等が使用できる。
 PSA式の水素分離器では、吸着塔の1つに対して、吸着、脱着、及び、洗浄をそれぞれ1サイクルとして、これが繰り返し実施される。
 吸着は、処理済みガス112中の二酸化炭素、及び、一酸化炭素等を吸着材に吸着させ、水素を導出する工程である。
 脱着は、吸着塔内を減圧して、吸着材から二酸化炭素、及び、一酸化炭素等を脱着させ、排出ガス114として導出する工程である。
 洗浄は、水素によって吸着塔を洗浄する工程である。
 PSA式の水素分離器には、処理済みガス112を導入するための流路が一次側に、水素113を導出ための管路、及び、排出ガス114を導出するための流路がそれぞれ二次側に接続される。
 なお、水素分離器107から導出される排出ガス114には、二酸化炭素、一酸化炭素、及び、分離されなかった水素等が含まれている。
 次に、この水素製造装置100を用いた水素の製造における、原料ガス110の一部としてのCOの導入量と、排出ガス114中のCO導出量のバランスについて説明する。なお、COの導出量は、排出ガス114に含まれる可能性があり、かつ、燃焼によりCOを生じ得るCOの影響も考慮して算出する。
 まず、DRM反応器103に、毎分100mmolの1気圧CHとCOとが混合された原料ガス110(135L/時)を導入し、水素製造装置100の流路115の上流から下流に向けて流す場合を考える。ここで、DRM反応器103は600℃に保たれている、すなわち、反応温度Tは600℃とする。
 DRM反応器103において、DRM触媒101とガス流の間に熱力学平衡が成立しているものと仮定すると、熱平衡計算によって、合成ガス111の組成を見積もることができる。
一例として、水素製造装置100に流入する原料ガス110の組成を体積比CH:CO=1:9(14:121(L/時))とした場合、合成ガス111の組成はCH:H:CO:CO:HO=1:13:96:38:12(L/時)となる。すなわち、CO/COは0.396となる。
 この合成ガスについて、固体炭素捕集をT=600℃で行い、水素分離を行った後の排出ガスに含まれるCO、及び、CHを燃焼し、COとしたときに、装置外へと放出するガスに含まれるCOの量は121(L/時)となる。
 すなわち、水素製造装置へ流入させたCOの量と、排出するCOの量が、計算上等しくなる。
 反応温度T及びTをそれぞれ上述と同様の600℃とし、合成ガス中におけるCO/COを0.953とすると、水素製造装置へ流入させたCOの101L/時に対して、排出量は105L/時となる。また、CO/COを1.24とすると、流入量90L/時に対して、排出量103L/時となり、CO/COを1.53とすると、流入量81L/時に対して、排出量102L/時となる。
 一方で、反応温度Tを600℃、反応温度Tを451℃とすると、合成ガス中のCO/COを0.396としたときのCOの量は116L/時となる。この場合、流入量121L/時と比較すると、排出量の方が少なくなっている。
 上記のような熱力学的応答が得られる推定的なメカニズムについて説明する。
 図2は、Boudouard反応(2CO→CO+C)の熱平衡計算結果である。図2中、白抜き(オープン)の円形のシンボル、及び、黒く塗られた(クローズド)の円形のシンボルは、それぞれ、反応温度Tに対する処理済みガス112(導出されるガス、図中は「Outgas」と記載されている)中のCO、及び、COのそれぞれのモル分率(縦軸:左)を表している。また、白抜き(オープン)の四角形のシンボルは、反応温度T(℃)に対する処理済みガス112中におけるCO/CO(縦軸:右)を表している。
 図2によれば、ライトオフ温度(活性発現温度)は、理論的には、450℃と見積もることができる。
 なお、本明細書において、ライトオフ温度(活性発現温度)は、COとCOとの混合ガスを通じながら、固体炭素捕集反応の反応温度Tを350℃から徐々にあげてゆく際、処理済みガス112に含まれるCOの量がゼロから有意の値となる最も低い温度を意味する。
 また、図2によれば、350℃から1200℃までの反応温度Tの変化に従って、平衡は式:2CO→CO+Cの右から左へ傾き、処理済みガス112におけるCOとCOとのモル分率は、CO:COの約0.5:0.0から、約0.0:1.0へと変化していくことがわかる。
 すなわち、反応温度Tを徐々に上げてゆくと、Boudouard反応の平衡が右から左に傾いていくため、処理済みガス112に含まれるCOの量も上昇していく。
 処理済みガス112中のCOの含有量は、最終的な装置外へのCOの排出量に影響する。このCOの排出量をより少なくすることで、最終的なCOの排出量を低減することができる。
 水素製造装置外へのCOの排出量は、処理済みガス112に含まれるCHの量にも影響を受ける。合成ガス111にCHが含まれる場合、CHは固体炭素捕集反応に寄与しないため、処理済みガス112に排出される。これを燃焼すると、COが発生することになる。
 合成ガス111中におけるCHの量は、いわば、DRM反応において使用されなかった残余のCHということもでき、この調整も必要となる。
 本発明者らは、反応温度T、及び、合成ガス111中におけるCO/COを所定の範囲に制御することで、CO導出量が導入量以下となる条件を探索した。その結果、その「範囲」が、ある連続した領域を形成していることに着目し、反応温度T、反応温度T、及び、合成ガス111中におけるCO/COとの関係について、更に検討した。
 具体的には、反応温度T、Tを変化させながら上記と同様の計算を行い、その関係について調べた。図3は、その結果として得られた、反応温度T、反応温度T、及び、合成ガス111中におけるCO/COとの関係を表す図である。
 図3において、横軸の「CO/CORatio in DRM Outgas」は、合成ガス111中におけるCO/COを意味している。縦軸の「CO Disprop. Temperture(℃)」は、反応温度Tを意味している。各プロットは、「DRM Temperature」すなわち、反応温度Tにおける、CO導出量が導入量と計算上等しくなる点である。
 例えば、反応温度Tが600℃である場合、各プロットの内側の領域(原点方向)では、CO導出量はより少なくなり、典型的には導入量よりも少なくなる。
 図4の結果から、反応温度Tが高くなるにつれて、「CO導出量が導入量と等しくなる」各プロットにより区画される領域が大きくなることがわかる。
 本発明は、図3から、各反応温度Tにおける、CO導出量が導入量と等しくなる点の集合が、シグモイド曲線に従うとの仮説を立てた。更に、このシグモイド曲線は、反応温度Tが大きくなるにつれて、傾き(絶対値)が小さくなり、変曲点が横軸の正方向に移動していることに着目して、検討を進めた。
 具体的には、反応温度Tが900℃、700℃、及び、600℃における「CO導出量が導入量と等しくなる」領域を「COCO」ソフトウェアで算出し、以下の条件(1)が成り立つ領域:
Figure JPOXMLDOC01-appb-M000006
であることを突き止めた。なお、Inflectionは、シグモイド曲線の変曲点(横軸)を、Gradientはスロープの傾きを意味する。
Figure JPOXMLDOC01-appb-T000007
 表1は、各反応温度TにおけるInflection、及び、Gradientを表しており、600℃、700℃、及び、900℃の値はそれぞれフィッティングにより求められたものである。
 表1、図3の結果から、Inflection、及び、Gradientは、反応温度Tの増加に応じて増加する関係を有しており、図4は、その関係を表す図である。
 図4中、横軸は反応温度T(℃)を示している。三角形のプロットは、Inflectionを表しており、四角形のプロットはGradientを表している。各プロットのフィッティングから求められた関係式はそれぞれ以下のとおり求められた。なお、反応温度T(℃)は、600℃以上が好ましい。
Figure JPOXMLDOC01-appb-M000008
 すなわち、図4で示された各反応温度Tにおける、CO導出量が著しく少なくなる領域、典型的には、導入量の方が少なくなる領域は、以下の条件(1)を満たす領域であることがわかった。
Figure JPOXMLDOC01-appb-M000009
 なお、上記関係式(2)及び(3)から、反応温度Tが800℃のときのInflectionとGradientを求め(結果は表1に記載されている)、その結果得られた(1)の右側の不等号の右辺のシグモイド曲線が、図3の「sim800℃」で表される曲線である。この曲線は、別途の計算によってそれぞれ求められたプロットと一致しており、上記の条件設定が正しいことがわかった。
 上記から、条件(1)を満たす製造方法であれば、装置外に排出するCOの量が著しく削減される、典型的には、CO導入量と導出量が等しいか、導出量の方が少ない状態となることがわかった。
 なお、このような条件において、水素製造装置100を運転することは当業者にとっては容易である。なぜなら、ドライ改質反応の温度(反応温度T)を決めると、DRMアウトガス(すなわち、合成ガス111)中におけるCO/COは、原料ガス110中におけるCH/COを調整することによって容易に調整できるからである。
 図5は、原料ガス中におけるCH/COと、合成ガス111中におけるCO/COとの関係の反応温度T依存性を表す図である。
 図5の横軸は、「CH/CO in DRM InGas」すなわち、原料ガス110におけるCH/COを表し、縦軸は「CO/CO in DRM OutGas」すなわち、合成ガス111中におけるCO/COを表している。
 図5に示されるとおり、反応温度Tを決めると、合成ガス中におけるCO/COを所望の値に調整するためには、原料ガス中のCH/COを調整すればよく、その値は計算によって簡単に求めることができる。
 条件(1)について、CO/COは、0より大きく、124以下であり、下限値は、0.20以上が好ましい。CO/COが上記下限値以上であると、より優れた本発明の効果が得られる。
 また、上限値は、0.50以下が好ましい。CO/COが上記上限値以下であると、より優れた本発明の効果が得られる。
 図6は、本水素製造方法のフロー図である。
 まず、ステップS10として、反応温度Tでドライ改質反応を行う(ドライ改質反応工程)。
 ドライ改質反応は、ドライ改質反応器103に、反応温度Tで原料ガス110を流通させることによって行うことができる。
 反応温度Tとしては特に制限されないが、ドライ改質触媒の活性発現温度以上が好ましい。具体的な一形態としては、600℃以上が好ましく、1100℃以下が好ましく、900℃以下がより好ましい。
 なお、反応温度Tは、ドライ改質反応器103の第1温調器102を制御して調整すればよい。
 原料ガス110中におけるメタン、及び、二酸化炭素の混合比の調整方法は特に制限されないが、例えば、ガスミキサーとマスフローコントローラとを有する原料ガス調整器によって、流路を介してそれぞれ供給されたメタン、及び、二酸化炭素の混合比を調整する方法が挙げられる。
 また、反応温度T(℃)、及び、原料ガス110中のCH/COが決まると、合成ガス111中におけるCO/COを計算することができる。
 次に、ステップS11として、上述の条件(1)を満たすように固体炭素捕集反応を行う(固体炭素捕集反応工程)。
 固体炭素捕集反応は、固体炭素捕集器106に、反応温度Tで合成ガス111を流通させることによって行うことができる。
 条件(1)を満たすように固体炭素捕集反応を行うには、ドライ改質反応工程に供給された原料ガス110のCH/CO、及び、反応温度Tから算出される合成ガス111の組成(CO/CO)をもとに、それに対応する反応温度T(℃)を決め、第2温調器105を制御すればよい。
 次に、ステップS12として、固体炭素捕集反応により生じた処理済みガス112を排出ガス114と、水素113とに分離し、水素113を得る(水素分離工程)。処理済みガス112を水素分離器107に導入し、公知の条件で運転することによって、水素113を分離できる。
 次に、ステップS13として、排出ガス114から熱回収する(熱回収工程)。排出ガス114中には、一酸化炭素、及び、水素等が含まれているため、例えば、これを燃焼等させることによって行うことができる。回収した熱は、ドライ改質反応、及び/又は、固体炭素捕集反応に用いることが好ましい。なお、本発明の水素製造方法は、本工程を有していなくてもよい。
 本製造方法によれば、上述のように、合成ガス111中におけるCO/COと反応温度Tとを適切な範囲に調整することによって、メタンと二酸化炭素とを含む原料ガスから水素を製造するに際して、装置外へのCOの排出量を著しく削減できる。
[水素製造装置(第1実施形態)]
 図7は、本発明の水素製造装置の第1実施形態のブロック図である。
 水素製造装置200は、DRM反応器103と、固体炭素捕集器106と、水素分離器107と、熱回収器204と、原料ガス調整器205とを有し、これらが、ガスを流通可能な流路115を介して接続されている。
 このうち、原料ガス調整器205と、DRM反応器103と、固体炭素捕集器106と、水素分離器107とは順に(直列に)接続されており、熱回収器204は、その一次側が、水素分離器107から分岐した排出ガス114用の流路115と接続されている。また、その二次側に接続された流路115は、原料ガス調整器205とDRM反応器103との間に合流している。
 なお、水素製造装置200では、各部(コンポーネント)が流路115によって上記のとおり接続されているが、本発明の水素製造装置における各部の接続形態(接続経路)は上記に制限されない。
 例えば、水素分離器107は、DRM反応器103と、固体炭素捕集器106との間に配置されていてもよい。また、1種類以上のコンポーネントが複数配置されていてもよく、その場合、流路115が分岐して同一種類のコンポーネントが並列されていたり、同一種類のコンポーネントが連続していたりしてもよい。
 また、水素製造装置200は、上記以外にも本発明の効果を奏する範囲内において、弁、水蒸気除去器、圧力調整器(減圧弁、コンプレッサー)、及び、熱交換器等を1つ又は複数、更に有していてもよい。
 なお、水素製造装置200が有するDRM反応器103、固体炭素捕集器106、及び、水素分離器107は、すでに説明したものと同様であり、説明を省略する。
 熱回収器204は、水素分離器107によって処理済みガス112から水素113が分離されて生じた排出ガス114に含まれてよいメタン、一酸化炭素、及び、水素等から熱を回収する機能を有する。具体的には、排出ガス114を燃焼させるバーナ、及び、排出ガス114を燃料とする燃料電池等であってよい。
 熱回収器204によって回収された熱は、DRM反応器103、及び/又は、固体炭素捕集器106の温度制御のために用いられることが好ましい(図中、熱の移動が符号「Q」で示されている)。
 熱回収器204から排出される循環ガス120には、二酸化炭素が含まれており、これが原料ガス110に混合されて利用される。
 後述するように、水素製造装置200によれば水素製造に際して生ずるCOが著しく削減されるため、一形態としては、循環ガス120中に含まれるCOは、原料ガス110中におけるCOの必要量以下であるため、装置外からCOを供給しながら、水素製造装置200の外へはCOを排出せずに循環運転することもできる。
 原料ガス調整器205は、メタン121と、二酸化炭素122とを混合し原料ガス110の組成を調整する機能を有する。原料ガス調整器205は、流路を通じて供給されるメタン121、及び、二酸化炭素122を任意の分率で混合するガスミキサー、及び、マスフローコントローラ等によって構成されていてよい。
 水素製造装置200は、制御装置201を有する。制御装置201は、プロセッサ202と、メモリ203とを備えるコンピュータである。制御装置201は、DRM反応器103、固体炭素捕集器106、及び、原料ガス調整器205を制御対象としている。
 上記以外にも、水素分離器107、及び、熱回収器204も併せて制御対象としてもよい。
 制御装置201は、水素製造装置200の運転状態を検出するための複数のセンサを有する。複数のセンサからの検出信号は、制御装置201に入力される。制御装置201は、DRM反応器103におけるDRM反応の反応温度Tを検出する温度センサ(TEMP1)130、固体炭素捕集器106における固体炭素捕捉反応の反応温度Tを検出する温度センサ(TEMP2)131、及び、原料ガス調整器205におけるメタン121と二酸化炭素122との混合比を検出する流量センサ(FLOW)132を有する。
 なお、TEMP1、及び、TEMP2は、DRM反応器103、及び、固体炭素捕集器106内のガスの温度を直接的に検出してもよいし、第1温調器102、第2温調器105の出力、及び、運転時間等の物理量から、各温度を推測する形態であってもよい。
 制御装置201は、例えば、DRM反応器103におけるDRM反応の反応温度Tを温度センサ(TEMP1)130の検出信号を取得し、取得情報に基づいて、DRM反応器103の第1温調器102の出力を調整する。
 制御装置201は、ハードウェア装置であるプロセッサ202を有し、プロセッサ202はメモリに格納されたプログラムを実行するプロセッサコアであってよい。このようなプロセッサコアは、CPU:CentralProcessingUnit、及び、GPU:GraphicsProcessingUnit等である。
 プロセッサ202は、プログラムされた論理ユニットを含むハードウェア論理回路であってもよい。デジタル回路は、ロジック回路アレイ、例えば、ASIC:Application-SpecificIntegratedCircuit、FPGA:FieldProgrammableGateArray、SoC:SystemonaChip、PGA:ProgrammableGateArray、及び、CPLD:ComplexProgrammableLogicDevice等である。
 制御装置201は、メモリ203を有する。メモリは、プロセッサによって読み取り可能なプログラム及び/又はデータを非一時的に格納する非遷移的かつ実体的な記憶媒体である。記憶媒体は、半導体メモリ、磁気ディスク、及び、光学ディスク等によって提供される。プログラムは、それ単体で、またはプログラムが格納された記憶媒体として流通する場合がある。
 また、プロセッサ202はプロセッサコアとハードウェア論理回路の組み合わせであってもよい。
 図8は、水素製造装置200による水素製造のフロー図である。
 ステップS20において、制御装置201によって、第1温調器102、及び、原料ガス調整器205が制御され、反応温度T(℃)でDRM反応が行われる。
 具体的には、DRM反応時の状態が、CH/COについては流量センサ(FLOW)132により取得され、及び、反応温度T(℃)は、温度センサ(TEMP1)130によって取得される。なお、ガス混合比CH/COは原料ガス調整器205によって調整され、反応温度Tは、第1温調器102によって調整される。
 なお、循環ガス120を合流させて原料ガス110が調製される場合、循環ガス120中におけるCOの含有量をもとに、原料ガス調整器205におけるCH/COを調整してもよい。
 循環ガス120中におけるCOの含有量は、その製造に使用された原料ガス110の組成等から計算可能であるが、流路115の中途に循環ガス120の組成を測定するセンサを設け、その測定値を制御装置201が取得し、それにより原料ガス調整器205を制御してもよい。
 このステップS20において、メタンと二酸化炭素とを含む原料ガス110から、水素と一酸化炭素とを含む合成ガス111が得られる。
 次に、ステップS21において、制御装置201によって、第2温調器105が制御され、条件(1)を満たすように固体炭素捕集反応が行われる。
 具体的には、原料ガス110のCH/COから計算される合成ガス111のCO/CO、温度センサ(TEMP1)130によって取得した反応温度T(℃)、及び、温度センサ(TEMP2)131によって取得した反応温度T(℃)に基づき、固体炭素捕集反応の反応条件が条件(1)を満たすかを制御装置201が判定し、これを満たすように、原料ガス調整器205、第1温調器102、及び、第2温調器105の出力を制御し、CO/CO、反応温度T、及び、反応温度Tを調整する。
 このステップS21において、一酸化炭素を含む合成ガス111から、固体炭素が分離され、二酸化炭素等を含む処理済みガス112が得られる。なお、処理済みガス112には、二酸化炭素以外にも、メタン、一酸化炭素、水蒸気、及び、水素等が含まれていてもよい。
 次に、ステップS22において、水素分離器107によって処理済みガス112から水素113が分離取得され、併せて、排出ガス114が得られる。
 次に、ステップS23において、熱回収器204によって、排出ガス114からの熱回収が行われ、循環ガス120が発生する。ステップS23において発生した熱Qは、DRM反応器103、及び/又は、固体炭素捕集器106に供給され、各反応温度の調整に使用される。
 ステップS23において発生した循環ガス120は、流路を通じて原料ガス調整器205と、DRM反応器103の間に合流し、原料ガス110の一部として使用される。
 図9は、上述のステップS21において制御装置201が実行する制御処理のフロー図である。制御装置201は、上記制御処理を実行することによってDRM反応の反応条件、及び、固体炭素捕集反応の反応条件を制御する。上記によって、装置外へのCOの排出が著しく削減される。
 ステップS30において、制御装置201は、水素製造装置200の運転状態に関する情報を取得する。具体的には、温度センサ(TEMP1)130によってDRM反応器103の内部のガスの温度(反応温度T)を取得する。また、流量センサ(FLOW)132によって原料ガス調整器205におけるメタン、及び、二酸化炭素の各流量(混合比)を取得する。
 ステップS31において、制御装置201は、DRM反応器103の原料ガス中におけるCH/CO比と反応温度T(℃)とから、合成ガス中のCO/COを計算する。
 CO/COの算出は、原料ガス110中のCH/CO、及び、反応温度Tを基にした熱平衡計算により行われる。この計算には、「COCO」等のソフトウェアプログラム等が利用できる。
 次に、ステップS32において、制御装置201は、温度センサ(TEMP2)131によって、固体炭素捕集器106内のガスの温度(反応温度T)を取得する。
 次に、ステップS33において、制御装置201は、固体炭素捕集器106に導入される合成ガス111中におけるCO/COと、反応温度T(℃)と、反応温度T(℃)との関係が、条件(1)を満たすか否かを判定する。
 具体的には、ステップS33において、以下の段階を経て判定が行われる。
 まず、取得された反応温度T(℃)を基に、式(2)及び(3)から、Inflection、及び、Gradientが算出される。次に、算出したInflection、及び、Gradientから条件(1)の右側の不等号の右辺のシグモイド曲線を求め、計算されたCO/COと、所得された反応温度Tと、を基に、上記シグモイド曲線の範囲内かについて判定する。
 上記判定の結果、条件(1)が満たされない場合(ステップS33:NO)、ステップS34~S36において、温度センサ(TEMP1)130の検出信号をもとに、第1温調器102を用いて反応温度Tを制御し(ステップS34)、流量センサ(FLOW)132の検出信号をもとに、原料ガス調整器205を用いて原料ガス110中のメタン、及び、二酸化炭素の各流量(混合比)を制御し(ステップS35)、温度センサ(TEMP2)131の検出信号をもとに、第2温調器105を用いて、反応温度Tを制御する(ステップS36)。
 その後、再度ステップS30~S32を経て、ステップS33の判定が行われ、条件(1)を満たすまで、ステップS34~S36、ステップS30~S33が繰り返される。
 一方、ステップS33における判定の結果、条件(1)が満たされる場合(ステップS33:YES)、制御装置201による制御処理は終了し、図8に戻り、以降のステップ(ステップS22、及び、ステップS23)が実行される。
 水素製造装置200は、制御装置201を有し、制御装置201が、合成ガス111中におけるCO/CO、及び、反応温度Tについて、条件(1)を満たすように各部を制御するため、原料ガスから水素を製造する際に装置外に排出する二酸化炭素が著しく削減される。
 また、水素製造装置200は、熱回収器204を有するため、排出ガス114に含まれる水素、及び、一酸化炭素から熱を回収し、DRM反応、及び/又は、固体炭素捕集反応に利用できるため、加熱等(又はそのための電力の発生)により排出される二酸化炭素も併せて削減できる。
 更に、水素製造装置200は、循環ガス120を原料ガス110に合流させる流路を有している。一形態として、循環ガス120中に含まれる二酸化炭素の含有量は、原料ガス中に含まれる(必要とする)二酸化炭素の含有量よりも少ないため、プロセスに利用される二酸化炭素を装置外へと排出せずに、言い換えれば、装置外から常に二酸化炭素を供給しながら、水素製造を行うことができる。
[水素製造装置(変形例)]
 図10は、本発明の水素製造装置の変形例のブロック図である。
 すでに説明した水素製造装置200は、DRM反応を行うDRM反応器103と、固体炭素捕集反応を行う固体炭素捕集器106とを有しているが、図10の水素製造装置300は上記に代えて、DRM反応器と固体炭素捕集器と兼ねる反応器301を有している。
 反応器301の内部には、DRM触媒101、及び、固体炭素捕集用触媒104が配置され、一次側から導入される原料ガス110は、まずDRM触媒101と接触し、合成ガス111を生成する。そして合成ガス111は、固体炭素捕集用触媒104と接触し、処理済みガス112を生成する。上記反応が順次、反応器301内で行われる。
 反応器301内の温度は、制御装置201によって制御された第3温調器302によって調整され、反応温度T、及び、反応温度Tは、温度センサ(TEMP1)130、及び、温度センサ(TEMP2)131によって取得される。
 反応器301の具体的な形態としては、例えば、1本の反応管と、上記反応管に順番に充填されたDRM触媒101、及び、固体炭素捕集用触媒104と、反応管の温度を調節するヒータと、を有する形態が挙げられる。
 なお、水素製造装置300の反応器301は、全体の温度を調整する、第3温調器302を有しているが、DRM反応の温度(反応温度T)を独立に制御する第1温調器102と、固体炭素捕集反応の温度(反応温度T)を独立に制御する第2温調器105とを有していて、これらが制御装置201によって制御されるように構成してもよい。
 水素製造装置300は、DRM反応器と固体炭素捕集器とを兼ねる反応器301を有しており、更に、反応温度も第3温調器302により行うよう構成したため、構造がより単純で制御も容易であるという利点を有する。特に、反応温度T、及び、反応温度Tを、600~620℃に制御する場合、上記傾向はより顕著である。
[水素製造方法及び装置の主要部]
 図12は、本発明の水素製造方法の実施のために使用できる水素製造装置の主要部のブロック図である。
 水素製造装置100は、ドライ改質反応器103(以下、「DRM反応器」ともいう)、固体炭素捕集器106、及び、水素分離器107を有しており、これらが、ガスを流通させるための流路115を介して順に接続されている。
 水素製造装置100には、メタン(CH)と二酸化炭素(CO)とを含む原料ガス110がDRM反応器103の上流側から流路115を介して導入される。原料ガス110は、DRM反応器103内を流通し、DRM反応によって合成ガス111となる(DRM反応:CH+CO→2CO+2H)。得られる合成ガス111中には、DRM反応によって生ずる一酸化炭素(CO)と、水素とが含まれる。また、DRM反応温度T(℃)によっては、燃焼により二酸化炭素となり得るメタンが残留していることもある。
[ドライ改質反応器]
 DRM反応器103は、原料ガス110(原料ガス流)とドライ改質触媒101とを接触させることができればよく、特に限定されないが、たとえば図12に示すように、原料ガス110を流通可能な容器と、容器内に固定されたドライ改質触媒101(以下「DRM触媒」ともいう)と、DRM反応器103内を流通するガスの温度(反応温度T)を制御するための第1温調器102と、を有することができる。
 ドライ改質触媒101は、アルミナを含む多孔質担体と、多孔質担体に担持された活性成分とを含む複合体であってよい。活性成分は、例えば、ニッケル、コバルト、モリブデン、ロジウム、ルテニウム、アルミニウム、ジルコニウム、マグネシウム、パラジウム、亜鉛、カリウム、カルシウム、及び、これらの酸化物等であってもよい。
 上記以外にも、ドライ改質触媒101としては、例えば、特開2006-055820号公報、及び、特開2019-37905号公報等に記載の触媒も使用できる。
 更に、より優れた本発明の効果が得られる観点では、ドライ改質触媒は、Chemical. Science., 2019,volume 10,p3701-3705に記載されている「Ni#Y」触媒が好ましい。
 「Ni#Y」は、数十ナノメートルの厚さの繊維状の金属ニッケルと酸素不足のYとが互いに絡み合い,根状構造(a rooted structure)を形成したものである。
 「Ni#Y」は、例えば、以下の方法により作製することができる。
 まず、金属ニッケルと金属イットリウムを、アルゴン雰囲気の中で溶解させ、Ni-Y合金を合成する。このNi-Y合金の粉末(平均粒径50~60μm)を、CO、O、及び、Arからなるガス流で加熱することで、「Ni#Y」を合成することができる。
 次に、合成ガス111が固体炭素捕集器106の上流側から導入される。合成ガス111は、固体炭素捕集器106内を流通する間に固体炭素捕集反応によって処理済みガス112となる(固体炭素捕集(Boudoard)反応:2CO→C+CO)。
[固体炭素捕集器]
 固体炭素捕集器106は、DRM反応器103からの合成ガス111と固体炭素捕集用触媒104とを接触させることができればよく、特に限定されないが、固体炭素捕集用触媒104と、反応温度Tを調整するための第2温調器105とを含んで構成されることができる。
 具体的には、反応管と、反応管内に収容された固体炭素捕集用触媒104と、反応管の周囲に配置されたヒータである第2温調器105とを含み、上記反応管の上流(一次)側には、DRM反応器103からの合成ガス111を導入するための第1の流路115aが接続され、上記反応管の下流(二次)側には、処理済みガス112を排出するための第2の流路115bが接続される。
 図11に示すように、固体炭素捕集用触媒104は、管状体である基材11と、基材11の内壁面上に形成されたコーティング層12とを有する構成とすることができる。
 固体炭素捕集器106に合成ガス111が導入されると、固体炭素捕集用触媒104のコーティング層12上に固体炭素が析出する。析出した固体炭素は、容易に剥離することができる。
 固体炭素捕集用触媒104が有する基材11は管状体であるため、合成ガス111を固体炭素捕集用触媒104内に容易に流通させることができる。また、管状体の内側に流通を妨げる構造が少ないほど、析出した固体炭素による目詰まりがより生じ難いという利点もある。
 基材11は、金属含有成分のコーティングが行えるものであれば特に限定されないが、ステンレス鋼管、及び、アルミニウム管等であってよい。基材11が断面円形の内壁面を有する管状体であるとき、その内径は、特に制限されないが、例えば10~300mm、又は、10~1000mmであってよい。
 基材11が管状体であるとき、その長さは特に制限されないが、例えば20~5000mmであってよい。基材11は、直線状に延びる管状体であってもよく、捻じれた管状体であってもよい。
 コーティング層12は、酸化鉄、酸化コバルト、酸化マグネシウム、酸化モリブデン、酸化ニッケル、酸化マンガン、金属鉄、金属コバルト、金属マグネシウム、金属モリブデン、金属ニッケル、及び、金属マンガンからなる群より選択される少なくとも1種の金属含有成分を主成分として含む。
 コーティング層12は、酸化鉄を含んでもよく、特に酸化鉄としてFe、Fe、FeO、又は、これらの組み合わせを含んでいてもよい。コーティング層12におけるこれらの金属含有成分の含有量は、コーティング層12の全質量を100質量%としたとき、40質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上が更に好ましく、70質量%以上が特に好ましく、100質量%以下が好ましい。
 また、コーティング層12は、酸化アルミニウム(Al)を含む担体と、これに担持された金属鉄とを含んでいてもよい。その場合、金属鉄の割合が、コーティング層12の質量を100質量%としたとき、40~50質量%であってもよい。
 コーティング層12は、基材11の表面(内壁面)の全体、又は、一部を覆うように形成されている。コーティング層12の厚さは、特に制限されないが、例えば5~2000μm、又は、10~2000μmであってもよい。
 固体炭素の効率的な析出の観点から、コーティング層12が多孔質であってもよい。多孔質のコーティング層の比表面積は、5~1000m/gであってもよい。
 コーティング層12は、例えば、酸化鉄、酸化コバルト、酸化マグネシウム、酸化モリブデン、酸化ニッケル、酸化マンガン、金属鉄、金属コバルト、金属マグネシウム、金属モリブデン、金属ニッケル、及び、金属マンガンからなる群より選択される少なくとも1種の金属含有成分、又は、その前駆体と、溶媒とを含むコーティング液を基材11の表面(例えば内壁面)に付着させることと、基材11の表面に付着したコーティング液から溶媒を除去することとを含む方法により、形成することができる。コーティング液の溶媒は、例えば水、アルコール、アセトン、又は、これらの組み合わせであってもよい。
[水素分離器]
 固体炭素捕集器106からの処理済みガス112は、第2の流路115bを介して水素分離器107の上流側から導入され、水素113と、排出ガス114とに分離される。
 水素分離器107から導出される排出ガス114には、二酸化炭素、一酸化炭素、及び、分離されなかった微量の水素等が含まれている。
 水素分離器107は、固体炭素捕集器106からの処理済みガス112を流通させながら、水素113と排出ガス114とに分離する機能を有するものであればよく、特に限定されないが、水素分離膜、及び、圧力変動吸着機構等を有するものとすることができる。
 水素分離膜としては、例えば、パラジウム合金系の薄膜が使用できる。パラジウム合金系の水素分離膜は、パラジウムに、イットリウム、及び、ガドリニウム等の希土類元素が添加されたもの、及び、パラジウムに銀が添加されたもの等が使用できる。
 また、パラジウムに代えて、ニオブ、バナジウム、チタン、タンタル、及び、ジルコニウム等を主成分とする薄膜も使用できる。
 このような水素分離膜としては、特開2000-159503号公報、特開2005-232533号公報、及び、特開2006-43677号公報等に記載のものが挙げられる。
 また、優れた水素透過性と、耐水素脆化性とを両立する水素分離膜としては、バナジウムに対して、クロム、鉄、ニッケル、及び、コバルトからなる群より選択される少なくとも1種の金属成分を添加したもの、更に、アルミニウム、スカンジウム、チタン、イットリウム、ジルコニウム、ニオブ、モリブデン、タンタル、ランタン、セリウム、プラセオジウム、ネオジム、プロメチウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及び、ルテニウムからなる群より選択される少なくとも1種の金属成分を添加したものを使用してもよい。
 このような水素分離膜は、例えば、特開2008-55295号公報に記載されている。
 水素分離膜を含む水素分離器107は、典型的には、水素分離膜と、水素分離膜の上流(一次)側から、水素分離膜へと処理済みガス112を供給する流路と、水素分離膜を透過した水素113を下流(二次)側へと排出する流路と、水素分離膜と接触した後、水素分離膜を透過しなかった排出ガス114を回収するための流路とを有する。
 このような水素分離膜を含む水素分離器107は、例えば、特開2019-5684号公報に記載のものが使用できる。
 水素分離器107は、上記以外にも圧力変動吸着(Pressure Swing Adsorption;PSA)法を用いたものも使用できる。PSA式の水素分離器は、典型的には、吸着材が充填された吸着塔、ポンプ、及び、これらを接続する流路を有する。吸着材としては、処理済みガス112中における二酸化炭素、一酸化炭素、及び、水分等を吸着するものが使用できる。
 吸着材としては、活性炭、ゼオライト、及び、アルミナ等が使用できる。
 PSA式の水素分離器では、吸着塔の1つに対して、吸着、脱着、及び、洗浄をそれぞれ1サイクルとして、これが繰り返し実施される。
 吸着は、処理済みガス112中の二酸化炭素、及び、一酸化炭素等を吸着材に吸着させ、水素を導出する工程である。
 脱着は、吸着塔内を減圧して、吸着材から二酸化炭素、及び、一酸化炭素等を脱着させ、排出ガス114として導出する工程である。
 洗浄は、水素によって吸着塔を洗浄する工程である。
 PSA式の水素分離器には、処理済みガス112を導入するための流路が一次側に、水素113を導出するための管路、及び、排出ガス114を導出するための流路がそれぞれ二次側に接続される。
 図12に示す水素製造方法においては図6に示す好適フローを実施することができる。
 まず、ステップS10として、反応温度Tでドライ改質反応を行う(ドライ改質反応工程)。
 ドライ改質反応は、ドライ改質反応器103に、反応温度Tで原料ガス110を流通させることによって行うことができる。
 反応温度Tとしては特に制限されないが、ドライ改質触媒の活性発現温度以上が好ましい。具体的な一形態としては、600℃以上が好ましく、1100℃以下が好ましく、900℃以下がより好ましい。
 なお、反応温度Tは、ドライ改質反応器103の第1温調器102を制御して調整すればよい。
 原料ガス110中におけるメタン、及び、二酸化炭素の混合比の調整方法は特に制限されないが、例えば、ガスミキサーとマスフローコントローラとを有する原料ガス調整器によって、流路を介してそれぞれ供給されたメタン、及び、二酸化炭素の混合比を調整する方法が挙げられる。
 また、反応温度T(℃)、及び、原料ガス110中のCH/COが決まると、合成ガス111中におけるCO/COを計算することができる。
 次に、ステップS11として、固体炭素捕集反応を行う(固体炭素捕集反応工程)。固体炭素捕集反応は、固体炭素捕集器106に、反応温度Tで合成ガス111を流通させることによって行うことができる。固体炭素捕集反応は、下記条件(1)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000010
 条件(1)を満たすように固体炭素捕集反応を行うには、ドライ改質反応工程に供給された原料ガス110のCH/CO、及び、反応温度Tから算出される合成ガス111の組成(CO/CO)をもとに、それに対応する反応温度T(℃)を決め、第2温調器105を制御すればよい。
 次に、ステップS12として、固体炭素捕集反応により生じた処理済みガス112を排出ガス114と、水素113とに分離し、水素113を得る(水素分離工程)。処理済みガス112を水素分離器107に導入し、公知の条件で運転することによって、水素113を分離できる。
 次に、ステップS13として、排出ガス114から熱回収する(熱回収工程)ことが好ましい。排出ガス114中には、一酸化炭素、及び、水素等が含まれているため、例えば、これを燃焼等させることによって熱回収を行うことができる。回収した熱は、ドライ改質反応、及び/又は、固体炭素捕集反応に用いることが好ましい。
 ただし、ステップS10における反応温度Tの制御、ステップS11における条件(1)、ステップS13における熱回収は任意であり、実施しなくてもよい。
 図6に示すフローによれば、合成ガス111中におけるCO/COと反応温度Tとを適切な範囲に調整することによって、メタンと二酸化炭素とを含む原料ガスから水素を製造するに際して、装置外へのCOの排出量を著しく削減できるため好ましい。
[第2実施形態(基本構成)]
 図13に第2実施形態の水素製造方法を実施するための水素製造装置の基本構成を示す。
 本発明の水素製造方法は、
 ドライ改質触媒の存在下で、メタンと二酸化炭素を含む原料ガス110から、一酸化炭素と水素とを含む合成ガス111を得るドライ改質反応工程103と、
 前記ドライ改質反応工程103からの前記合成ガス111を導入して、固体炭素捕集用触媒の存在下で、前記合成ガス中の一酸化炭素から固体炭素を生成し、処理済みガス112を得る固体炭素捕集工程106と、
 前記固体炭素捕集工程106からの前記処理済みガス112から水素113を抽出して、二酸化炭素を含む排出ガス114を得る水素分離工程107と、を含み、
 前記水素分離工程107からの前記排出ガス114を前記ドライ改質反応工程103に導入して、二酸化炭素を外部に排出させずに循環させることを特徴とする。
 第2実施形態の水素製造装置は、
 ドライ改質触媒の存在下で、メタンと二酸化炭素を含む原料ガス110から、一酸化炭素と水素とを含む合成ガスを得るドライ改質反応器103と、
 前記ドライ改質反応器103からの前記合成ガス110を導入して、固体炭素捕集用触媒の存在下で、前記合成ガス中の一酸化炭素から固体炭素を生成し、処理済みガス112を得る固体炭素捕集器106と、
 前記固体炭素捕集器106からの前記処理済みガス112から水素113を抽出して、二酸化炭素を含む排出ガス114を得る水素分離器107と、
 前記ドライ改質反応器103からの合成ガス111を前記固体炭素捕集器106に供給する第1の流路115aと、前記固体炭素捕集器106からの処理済みガス112を前記水素分離器107に供給する第2の流路115bと、前記水素分離器107からの排出ガス114を前記ドライ改質反応器103に供給する第3の流路115cとを備え、二酸化炭素を外部に排出せずに内部にて循環させることを特徴とする。
 二酸化炭素を含む排出ガス114は、水素分離器107とDRM反応器103とを接続する第3の流路115cを介してDRM反応器103へと循環されるため、排出ガス114に含まれる二酸化炭素は水素製造装置の外部に排出されない。これにより、系外への二酸化炭素排出量を削減することができる。
 第2実施形態の水素製造方法及び装置は、二酸化炭素を外部に排出せずに内部にて循環させるため、従来の水素製造方法及び装置よりも系外への二酸化炭素排出量を削減させて、従来と同等以上の水素を製造することができる。
[第3実施形態]
 図14に、第3実施形態の水素製造方法を実施するための水素製造装置のブロック図を示す。図14に示す水素製造方法は、図13に示す水素製造方法において、メタンを燃焼させることにより熱と二酸化炭素とを発生させ、発生した前記熱を前記ドライ改質反応工程に導入し、発生した前記二酸化炭素と等量の二酸化炭素を含む前記原料ガスを前記ドライ改質反応工程に導入し、前記固体炭素捕集工程において、前記原料ガス中の二酸化炭素及びメタンに含まれる炭素の合計量と等量の炭素が固体炭素として捕集される。
 図14に示す水素製造装置は、図13に示す水素製造装置において、メタン燃焼炉108と、前記メタン燃焼炉108からの熱を前記ドライ改質反応器103に供給する熱供給流路108aとをさらに備える。
 図14に示す水素製造方法及び装置は原料ガスに含まれる二酸化炭素とメタン燃焼に伴い系外に排出される二酸化炭素が等量となるため、メタン燃焼に伴う二酸化炭素を排出することなく水素製造が可能になる。
[第4実施形態]
 図15に示す第4実施形態の水素製造方法を実施するための水素製造装置のブロック図を示す。図15に示す水素製造方法は、図13に示す水素製造方法において、前記水素分離工程107において分離した水素113の一部を取り出して燃焼させ、発生する熱を前記ドライ改質反応工程103に供給することをさらに含む。
 図15に示す水素製造装置は、図13に示す水素製造装置において、前記水素分離器107からの水素の一部113aを取り出す水素抽出流路116と、水素を燃焼させる水素燃焼炉109と、前記水素燃焼炉109からの熱を前記ドライ改質反応路103に供給する熱供給流路109aとをさらに備えることを特徴とする。
 本実施形態の水素製造方法及び装置は、原料ガスとしての二酸化炭素の少なくとも一部が不要になり、かつ二酸化炭素を排出することなくメタン改質での水素製造が可能になる。
 なお、図15は図13に示す第2実施形態(基本構成)の水素製造装置に水素燃焼炉109及び熱供給路109aを設けた構成を示すが、図14に示す水素製造装置にこれらを追加で設けてもよい。
[第5実施形態]
 図16に示す水素製造方法は、図13に示す水素製造方法において、前記水素分離工程107からの前記排出ガス114を前記ドライ改質反応工程103に導入する前に、前記排出ガス114からの熱を回収して前記ドライ改質反応工程103に供給する。
 図16に示す水素製造装置は、図13に示す水素製造装置において、前記第3の流路115cの途中に、前記排出ガス114からの熱を回収する熱回収器204が接続され、前記熱回収器204にて回収した熱を前記ドライ改質反応器103に供給する。熱回収器204は、酸素を導入して排ガス114を燃焼させる燃焼炉、又は燃料電池とすることができる。
 本実施形態の水素製造方法及び装置は、熱回収器で回収した熱をドライ改質反応に利用することにより、系外から導入するエネルギーを低減できる。
 なお、図16は図13に示す第2実施形態(基本構成)の水素製造装置に熱回収器204を設けた構成を示すが、図14又は図15に示す水素製造装置に熱回収器204を追加で設けてもよい。
[第6実施形態]
 図17に示す水素製造装置200は、図16に示す水素製造装置において、原料ガス調整器205と、原料ガス調整器205のガス流量、DRM反応器103及び固体炭素捕集器106の温度を制御する制御装置201を有する。
 このうち、原料ガス調整器205と、DRM反応器103と、固体炭素捕集器106と、水素分離器107とは順に(直列に)接続されており、熱回収器204は、その一次側が、水素分離器107から分岐した排出ガス114用の第3の流路115cと接続されている。また、その二次側に接続された第3の流路115cは、原料ガス調整器205とDRM反応器103との間に合流している。
 熱回収器204は、水素分離器107によって処理済みガス112から水素113が分離されて生じた排出ガス114に含まれてよいメタン、一酸化炭素、及び、水素等から熱を回収する機能を有する。具体的には、排出ガス114を燃焼させるバーナ、及び、排出ガス114を燃料とする燃料電池等であってよい。
 熱回収器204によって回収された熱は、DRM反応器103、及び/又は、固体炭素捕集器106の温度制御のために用いられることが好ましい(図中、熱の移動が符号「Q」で示されている)。
 熱回収器204から排出される循環ガス120には、二酸化炭素が含まれており、これが原料ガス110に混合されて利用される。
 後述するように、水素製造装置200によれば水素製造に際して生ずるCOが著しく削減されるため、一形態としては、循環ガス120中に含まれるCOは、原料ガス110中におけるCOの必要量以下であるため、装置外からCOを供給しながら、水素製造装置200の外へはCOを排出せずに循環運転することもできる。
 原料ガス調整器205は、メタン121と、二酸化炭素122とを混合し原料ガス110の組成を調整する機能を有する。原料ガス調整器205は、流路を通じて供給されるメタン121、及び、二酸化炭素122を任意の分率で混合するガスミキサー、及び、マスフローコントローラ等によって構成されていてよい。
 水素製造装置200は、制御装置201を有する。制御装置201は、プロセッサ202と、メモリ203とを備えるコンピュータである。制御装置201は、DRM反応器103、固体炭素捕集器106、及び、原料ガス調整器205を制御対象としている。
 上記以外にも、水素分離器107、及び、熱回収器204も併せて制御対象としてもよい。
 制御装置201は、水素製造装置200の運転状態を検出するための複数のセンサを有する。複数のセンサからの検出信号は、制御装置201に入力される。制御装置201は、DRM反応器103におけるDRM反応の反応温度Tを検出する温度センサ(TEMP1)130、固体炭素捕集器106における固体炭素捕捉反応の反応温度Tを検出する温度センサ(TEMP2)131、及び、原料ガス調整器205におけるメタン121と二酸化炭素122との混合比を検出する流量センサ(FLOW)132を有する。
 なお、TEMP1、及び、TEMP2は、DRM反応器103、及び、固体炭素捕集器106内のガスの温度を直接的に検出してもよいし、第1温調器102、第2温調器105の出力、及び、運転時間等の物理量から、各温度を推測する形態であってもよい。
 制御装置201は、例えば、DRM反応器103におけるDRM反応の反応温度Tを温度センサ(TEMP1)130の検出信号を取得し、取得情報に基づいて、DRM反応器103の第1温調器102の出力を調整する。
 制御装置201は、ハードウェア装置であるプロセッサ202を有し、プロセッサ202はメモリに格納されたプログラムを実行するプロセッサコアであってよい。このようなプロセッサコアは、CPU:CentralProcessingUnit、及び、GPU:GraphicsProcessingUnit等である。
 プロセッサ202は、プログラムされた論理ユニットを含むハードウェア論理回路であってもよい。デジタル回路は、ロジック回路アレイ、例えば、ASIC:Application-SpecificIntegratedCircuit、FPGA:FieldProgrammableGateArray、SoC:SystemonaChip、PGA:ProgrammableGateArray、及び、CPLD:ComplexProgrammableLogicDevice等である。
 制御装置201は、メモリ203を有する。メモリは、プロセッサによって読み取り可能なプログラム及び/又はデータを非一時的に格納する非遷移的かつ実体的な記憶媒体である。記憶媒体は、半導体メモリ、磁気ディスク、及び、光学ディスク等によって提供される。プログラムは、それ単体で、またはプログラムが格納された記憶媒体として流通する場合がある。
 また、プロセッサ202はプロセッサコアとハードウェア論理回路の組み合わせであってもよい。
 水素製造装置200は図8に示す水素製造のフローを実施することができる。
 ステップS20において、制御装置201によって、第1温調器102、及び、原料ガス調整器205が制御され、反応温度T(℃)でDRM反応が行われる。
 具体的には、DRM反応時の状態が、CH/COについては流量センサ(FLOW)132により取得され、及び、反応温度T(℃)は、温度センサ(TEMP1)130によって取得される。なお、ガス混合比CH/COは原料ガス調整器205によって調整され、反応温度Tは、第1温調器102によって調整される。
 なお、循環ガス120を合流させて原料ガス110が調製される場合、循環ガス120中におけるCOの含有量をもとに、原料ガス調整器205におけるCH/COを調整してもよい。
 循環ガス120中におけるCOの含有量は、その製造に使用された原料ガス110の組成等から計算可能であるが、流路115の中途に循環ガス120の組成を測定するセンサを設け、その測定値を制御装置201が取得し、それにより原料ガス調整器205を制御してもよい。
 このステップS20において、メタンと二酸化炭素とを含む原料ガス110から、水素と一酸化炭素とを含む合成ガス111が得られる。
 次に、ステップS21において、制御装置201によって、第2温調器105が制御され、条件(1)を満たすように固体炭素捕集反応が行われる。
 具体的には、原料ガス110のCH/COから計算される合成ガス111のCO/CO、温度センサ(TEMP1)130によって取得した反応温度T(℃)、及び、温度センサ(TEMP2)131によって取得した反応温度T(℃)に基づき、固体炭素捕集反応の反応条件が条件(1)を満たすかを制御装置201が判定し、これを満たすように、原料ガス調整器205、第1温調器102、及び、第2温調器105の出力を制御し、CO/CO、反応温度T、及び、反応温度Tを調整する。
 このステップS21において、一酸化炭素を含む合成ガス111から、固体炭素が分離され、二酸化炭素等を含む処理済みガス112が得られる。なお、処理済みガス112には、二酸化炭素以外にも、メタン、一酸化炭素、水蒸気、及び、水素等が含まれていてもよい。
 次に、ステップS22において、水素分離器107によって処理済みガス112から水素113が分離取得され、併せて、排出ガス114が得られる。
 次に、ステップS23において、熱回収器204によって、排出ガス114からの熱回収が行われ、循環ガス120が発生する。ステップS23において発生した熱Qは、DRM反応器103、及び/又は、固体炭素捕集器106に供給され、各反応温度の調整に使用される。
 ステップS23において発生した循環ガス120は、流路を通じて原料ガス調整器205と、DRM反応器103の間に合流し、原料ガス110の一部として使用される。
 上述のステップS21において制御装置201が実行する制御処理のフローは図9に示すフロー図であってよい。制御装置201は、上記制御処理を実行することによってDRM反応の反応条件、及び、固体炭素捕集反応の反応条件を制御する。上記によって、装置外へのCOの排出が著しく削減される。
 ステップS30において、制御装置201は、水素製造装置200の運転状態に関する情報を取得する。具体的には、温度センサ(TEMP1)130によってDRM反応器103の内部のガスの温度(反応温度T)を取得する。また、流量センサ(FLOW)132によって原料ガス調整器205におけるメタン、及び、二酸化炭素の各流量(混合比)を取得する。
 ステップS31において、制御装置201は、DRM反応器103の原料ガス中におけるCH/CO比と反応温度T(℃)とから、合成ガス中のCO/COを計算する。
 CO/COの算出は、原料ガス110中のCH/CO、及び、反応温度Tを基にした熱平衡計算により行われる。この計算には、「COCO」等のソフトウェアプログラム等が利用できる。
 次に、ステップS32において、制御装置201は、温度センサ(TEMP2)131によって、固体炭素捕集器106内のガスの温度(反応温度T)を取得する。
 次に、ステップS33において、制御装置201は、固体炭素捕集器106に導入される合成ガス111中におけるCO/COと、反応温度T(℃)と、反応温度T(℃)との関係が、条件(1)を満たすか否かを判定する。
 具体的には、ステップS33において、以下の段階を経て判定が行われる。
 まず、取得された反応温度T(℃)を基に、式(2)及び(3)から、Inflection、及び、Gradientが算出される。次に、算出したInflection、及び、Gradientから条件(1)の右側の不等号の右辺のシグモイド曲線を求め、計算されたCO/COと、所得された反応温度Tと、を基に、上記シグモイド曲線の範囲内かについて判定する。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 上記判定の結果、条件(1)が満たされない場合(ステップS33:NO)、ステップS34~S36において、温度センサ(TEMP1)130の検出信号をもとに、第1温調器102を用いて反応温度Tを制御し(ステップS34)、流量センサ(FLOW)132の検出信号をもとに、原料ガス調整器205を用いて原料ガス110中のメタン、及び、二酸化炭素の各流量(混合比)を制御し(ステップS35)、温度センサ(TEMP2)131の検出信号をもとに、第2温調器105を用いて、反応温度Tを制御する(ステップS36)。
 その後、再度ステップS30~S32を経て、ステップS33の判定が行われ、条件(1)を満たすまで、ステップS34~S36、ステップS30~S33が繰り返される。
 一方、ステップS33における判定の結果、条件(1)が満たされる場合(ステップS33:YES)、制御装置201による制御処理は終了し、図8に戻り、以降のステップ(ステップS22、及び、ステップS23)が実行される。
 水素製造装置200は、制御装置201を有し、制御装置201が、合成ガス111中におけるCO/CO、及び、反応温度Tについて、条件(1)を満たすように各部を制御するため、原料ガスから水素を製造する際に装置外に排出する二酸化炭素が著しく削減される。
 また、水素製造装置200は、熱回収器204を有するため、排出ガス114に含まれる水素、及び、一酸化炭素から熱を回収し、DRM反応、及び/又は、固体炭素捕集反応に利用できるため、加熱等(又はそのための電力の発生)により排出される二酸化炭素も併せて削減できる。
 更に、水素製造装置200は、循環ガス120を原料ガス110に合流させる流路を有している。一形態として、循環ガス120中に含まれる二酸化炭素の含有量は、原料ガス中に含まれる(必要とする)二酸化炭素の含有量よりも少ないため、プロセスに利用される二酸化炭素を装置外へと排出せずに、言い換えれば、装置外から常に二酸化炭素を供給しながら、水素製造を行うことができる。
 なお、水素製造装置200では、各部(コンポーネント)が流路115によって上記のとおり接続されているが、本水素製造装置200における各部の接続形態(接続経路)は上記に制限されない。
 例えば、水素分離器107は、DRM反応器103と、固体炭素捕集器106との間に配置されていてもよい。また、1種類以上のコンポーネントが複数配置されていてもよく、その場合、流路115が分岐して同一種類のコンポーネントが並列されていたり、同一種類のコンポーネントが連続していたりしてもよい。
 また、水素製造装置200は、上記以外にも本発明の効果を奏する範囲内において、弁、水蒸気除去器、圧力調整器(減圧弁、コンプレッサー)、及び、熱交換器等を1つ又は複数、更に有していてもよい。
[第7実施形態]
 図18に示す水素製造方法又は水素製造装置は、図13に示す水素製造方法又は水素製造装置において、前記第1の流路115aに圧縮機401をさらに備える。
 水素分離器107として上述の水素分離膜を使用する場合は、水素分圧が低いと水素の抽出量が少なくなる。また、水素分離器107として上述のPSA式の水素分離器を使用する場合にも、当該水素分離器107内の吸着剤の入口圧が低いと水素の抽出量が少なくなる。これらの点について、本実施形態の水素製造方法又は水素製造装置では、第1の流路115aに圧縮機401をさらに備えることにより、水素分離器107における水素の抽出量を大きくすることができる。
 圧縮機401としては、特に限定されないが、容積形コンプレッサー、ターボ形コンプレッサー、又はこれらのうちの2種以上の組み合わせを含む又はからなることができる。これらのうちでも容積形コンプレッサーが好ましい。容積形コンプレッサーを使用することにより、高い圧縮比を小さい段数で達成することが可能となる。
 図18に示す水素製造方法又は水素製造装置において、前記固体炭素捕集器106にて発生する熱を蒸気に変換して前記圧縮機401に供給する熱交換器HEをさらに備えることが好ましい。固体炭素捕集器106にて発生した熱を熱交換器HEにより蒸気Vに変換して、当該蒸気Vを圧縮機401に供給することができる。
 固体炭素捕集反応は発熱反応であり、当該反応により発生した熱を、圧縮機401の駆動に用いることにより、駆動用電力の消費を抑えることができる。
 図18に示す水素製造方法又は水素製造装置において、第2の流路115bの前記水素分離器107の入口部に圧力調整弁402を設け、前記第3の流路115cにガスホルダー403及び圧力調整弁404を設けることが好ましい。
 第1の流路115aに圧縮機401を含む場合、水素分離器107の入口部に圧力調整弁402を設けることで、水素分離器107における水素の分離及び抽出条件の制御を行うことができる。
 また、水素分離器107からの排出ガス114を、ドライ改質反応器103の入口部に合流させる際、当該排出ガス114が加圧されたままだと合流させることが難しい場合がある。第3の流路115cに当該排出ガス114を減圧するための圧力調整弁404とガスを保持するためのガスホルダー404を設けることで、排出ガス114をドライ改質反応器103の入口部に合流させやすくすることができる。
 圧力調整弁402及び404は、特に限定されず、一次弁、二次弁を適切に使用することで運用を行うことができる。
 ガスホルダー403は、特に限定されない。ガスホルダーを使用することにより、圧力変動を小さくすることができる。
 図18に示す水素製造方法又は水素製造装置において、前記ドライ改質反応器103にて発生する水を前記固体炭素捕集器106に供給するための水供給路Wをさらに備えることが好ましい。
 ドライ改質反応では水が発生するため、水を取り出す必要がある。このドライ改質反応器103から取り出し凝結した水を、固体炭素捕集反応の温度制御用の冷却水として利用することで、冷却水の消費を抑えることができる。
 図18に示す水素製造方法又は水素製造装置において、前記第1の流路115aに圧縮機401を備え、前記固体炭素捕集器106にて発生する蒸気Vを前記圧縮機401に供給する蒸気供給路をさらに備えることが好ましい。
 固体炭素捕集反応によって発生した蒸気を、第1の流路115aに設けた圧縮機401の駆動に用いることができ、圧縮機401の駆動用電力の消費を抑えることができる。
 図18には、圧縮機401、圧力調整弁402、ガスホルダー403及び圧力調整弁及び404、熱交換器HE、水供給路W、蒸気供給路のすべてを備える構成を示すが、圧縮機401のみを備える構成であってもよく、他の構成部材は圧縮機401を備える装置において具備することが好ましいものであり、すべてを具備することが必要なわけではない。
 また、図18は、図13に示す水素製造装置を基本構成として、圧縮機401、圧力調整弁402、ガスホルダー403及び圧力調整弁及び404、熱交換器HE、水供給路W、蒸気供給路を備える構成を示すが、図14~16に示す水素製造装置においてもこれらを備えることができる。
 [固体炭素捕集器の変形例1]
 図19に、固体炭素捕集器の変形例1を示す。第1の流路115aに圧縮機401を備える場合、前記圧縮機401の下流側の前記第1の流路115aを分岐して前記固体炭素捕集器106を複数個並列に配置し、各固体炭素捕集器106A、106B、106Cの入口部に弁405A、405B、405C及び出口部に弁406A、406B、406Cをそれぞれ設けることもできる。なお、図19には、固体炭素捕集器と弁の3セットの組みあわせを示しているが、セット数はこれに限定されない。
 複数の固体炭素捕集器を並列に配置することにより、複数の固体炭素捕集器のうちの少なくとも1つの入口部の弁を閉鎖して固体炭素を排出しながら、別の固体炭素捕集器では運転を続けることができる。これにより、水素製造装置を連続運転させつつ、炭素捕集が可能となる。
 図19においては、固体炭素捕集器106Cにおいて、入口部の弁405Cが閉鎖され、出口部の弁406Cが開放されており、固体炭素捕集器106Cから固体炭素が排出されている。それと同時に、固体炭素捕集器106A、106Bにおいては運転が継続されており、固体炭素が捕集されている。
 図19において、前記第1の流路115aに、前記圧縮機401の下流側で分岐より上流側にバッファタンク407をさらに設けることが好ましい。
 複数の固体炭素捕集器106A、106B、106Cのうちの少なくとも1つにおいて固体炭素を排出する際、他の固体炭素捕集器において圧力変動が起こってしまうことがある。第1の流路115aに、圧縮機401の下流側で分岐より上流側にバッファタンク407を設けることにより、上記のような圧力変動を緩衝することができる。
 複数の固体炭素捕集器の前段に設けるバッファタンク407は、特に限定されない。
 [固体炭素捕集器の変形例2]
 図20に、固体炭素捕集器の変形例2を示す。図20に示すように、前記第1の流路115aに圧縮機401をさらに備え、前記固体炭素捕集器106D、106Eを複数個直列に配置し、各固体炭素捕集器の間にガス組成調整部408を設けることもできる。
 複数の固体炭素捕集器106D、106Eを直列に配置することにより、水素製造装置全体での捕集炭素量を増やすことができる。このように複数の固体炭素捕集器106D、106Eが直列に配置されている場合、上流側の固体炭素捕集器106Dにおいて炭素が捕集されると、下流側の固体炭素捕集器106Eにおける一酸化炭素の濃度が下がり、二酸化炭素の濃度が上がるため、下流側の固体炭素捕集器106Eにおいて反応が起きにくくなる。各固体炭素捕集器の出口部のガス組成調整部408を設けて、下流側の固体炭素捕集器でも反応が起きやすいガス組成へと調整することにより、下流側の固体炭素捕集器における捕集率を向上させることができる。
 例えば、入口ガス(CH:CO:H:CO:HO=10:30:25:25:5(モル比))を固体炭素捕集器106Dに導入すると、固体炭素捕集器106Dにおいて、2CO→C+CO(反応(1))が起こる。その結果、固体炭素捕集器106Dから出口ガス(CH:CO:H:CO:HO=10:35:25:15:5(モル比))が放出され、当該出口ガスにおいては、当該入口ガスに比べて、CO濃度が減少し、CO濃度が増加する。上記出口ガスがそのまま固体炭素捕集器106Eに導入されると、CO濃度が減少しCO濃度が増加する分だけ、固体炭素捕集器106Eにおける反応(1)は、固体炭素捕集器106Dにおける反応(1)より起きにくくなる。この点を考慮し、固体炭素捕集器106Dの出口ガスに含まれるCOの少なくとも一部をガス組成調整部408において回収する。これにより、当該出口ガスに含まれるCO濃度を減少し、相対的にCO濃度が増加するので、固体炭素捕集器106Eにおける反応(1)が起きやすくなり、その結果、固体炭素捕集器106Eにおける炭素の捕集率を向上させることができる。ガス組成調整部408において回収したCOは、DRM反応器103へ導入する原料ガス110の成分として再利用することができる。
 ガス組成調整部408は、特に限定されないが、ガス分離膜、ガス吸脱着システム、又はこれらのうちの2種以上の組み合わせを含む又はからなることができる。これらのうちでもガス分離膜が好ましい。ガス分離膜を使用することにより、フットプリントの削減及び/又はエネルギーコストの最適化という効果が得られる。
 図21は、固体炭素捕集器内における、温度別の合成ガスの炭素析出平衡組成を表すグラフである。図21において、横軸が炭素のモルに対する酸素のモルの比(O/C)、縦軸が炭素のモルに対する水素のモルの比(H/C)を表す。図21において、温度(400、500、600、又は700℃)は固体炭素捕集器内の温度を示す。図21の各温度の曲線の左下側の領域が炭素捕集反応が起きる領域であり、曲線の右上側の領域が炭素捕集反応が起きない領域である。例えば、図21の400℃の曲線において、固体炭素捕集器が捕集されるとCのモルが減少するため、O/Cの比及びH/Cの比のいずれも増加し、図21の矢印のように、炭素捕集反応が起きる領域から炭素捕集反応が起きない領域に移動する。上流側の固体炭素捕集器106D内でこのような変化が起きると、下流側の固体炭素捕集器106E内で固体炭素捕集反応が起きにくくなるため、ガス組成調整器408を使用して、下流側の固体炭素捕集器406E内の温度に応じてガス組成を調整し、下流側の固体炭素捕集器106E内で反応が起きるようにする。
[水素製造装置(変形例)]
 図22は、本発明の水素製造装置の変形例のブロック図である。
 すでに説明した水素製造装置200は、DRM反応を行うDRM反応器103と、固体炭素捕集反応を行う固体炭素捕集器106とを有しているが、図22の水素製造装置300は上記に代えて、DRM反応器と固体炭素捕集器と兼ねる反応器301を有している。
 反応器301の内部には、DRM触媒101、及び、固体炭素捕集用触媒104が配置され、一次側から導入される原料ガス110は、まずDRM触媒101と接触し、合成ガス111を生成する。そして合成ガス111は、固体炭素捕集用触媒104と接触し、処理済みガス112を生成する。上記反応が順次、反応器301内で行われる。
 反応器301内の温度は、制御装置201によって制御された第3温調器302によって調整され、反応温度T、及び、反応温度Tは、温度センサ(TEMP1)130、及び、温度センサ(TEMP2)131によって取得される。
 反応器301の具体的な形態としては、例えば、1本の反応管と、上記反応管に順番に充填されたDRM触媒101、及び、固体炭素捕集用触媒104と、反応管の温度を調節するヒータと、を有する形態が挙げられる。
 なお、水素製造装置300の反応器301は、全体の温度を調整する、第3温調器302を有しているが、DRM反応の温度(反応温度T)を独立に制御する第1温調器102と、固体炭素捕集反応の温度(反応温度T)を独立に制御する第2温調器105とを有していて、これらが制御装置201によって制御されるように構成してもよい。
 水素製造装置300は、DRM反応器と固体炭素捕集器とを兼ねる反応器301を有しており、更に、反応温度も第3温調器302により行うよう構成したため、構造がより単純で制御も容易であるという利点を有する。特に、反応温度T、及び、反応温度Tを、600~620℃に制御する場合、上記傾向はより顕著である。
[ドライ改質反応と固体炭素捕集反応の温度制御]
 図12に示す本発明の水素製造方法において、合成ガス中における二酸化炭素の含有量に対する一酸化炭素の含有量の含有モル比(CO/CO)と、ドライ改質反応の反応温度T(℃)、固体炭素捕集反応の反応温度T(℃)と、を以下の(1)の条件を満たすように制御することが好ましい。
Figure JPOXMLDOC01-appb-M000013
 以下、上記の条件(1)の意義と、合成ガス中におけるCO/COと反応温度T、Tとの関係を上記のとおり制御することによって、本発明の効果が得られる推定メカニズムについて説明する。
 図12において、DRM反応器103は、ドライ改質触媒101(以下「DRM触媒」ともいう)と、DRM反応器103内を流通するガスの温度(反応温度T)を制御するための第1温調器102と、を有している。また、固体炭素捕集器106は、固体炭素捕集用触媒104と、固体炭素捕集器106を流通するガスの温度(反応温度T)を制御するための第2温調器105と、を有している。
 ドライ改質反応器103の構造は、反応温度Tで原料ガス110(原料ガス流)とドライ改質触媒101とを接触させることができれば特に制限されない。例えば、原料ガス110を流通可能な容器と、容器内に固定されたドライ改質触媒101と、ヒータである第1温調器102とを含んで構成されていてもよい。
 固体炭素捕集器106は、固体炭素捕集用触媒104と、反応温度Tを調整するための第2温調器105とを含んで構成される。
 具体的には、反応管と、反応管内に収容された固体炭素捕集用触媒104と、反応管の周囲に配置されたヒータである第2温調器105とを含み、上記反応管の上流(一次)側には、合成ガス111を導入するための第1の流路115aが接続され、上記反応管の下流(二次)側には、処理済みガス112を排出するための第2の流路115bが接続される。
 次に、この水素製造装置100を用いた水素の製造における、原料ガス110の一部としてのCOの導入量と、排出ガス114中のCO導出量のバランスについて説明する。なお、COの導出量は、排出ガス114に含まれる可能性があり、かつ、燃焼によりCOを生じ得るCOの影響も考慮して算出する。
 まず、DRM反応器103に、毎分100mmolの1気圧CHとCOとが混合された原料ガス110(135L/時)を導入し、水素製造装置100の流路115の上流から下流に向けて流す場合を考える。ここで、DRM反応器103は600℃に保たれている、すなわち、反応温度Tは600℃とする。
 DRM反応器103において、DRM触媒101とガス流の間に熱力学平衡が成立しているものと仮定すると、熱平衡計算によって、合成ガス111の組成を見積もることができる。
 一例として、水素製造装置100に流入する原料ガス110の組成を体積比CH:CO=1:9(14:121(L/時))とした場合、合成ガス111の組成はCH:H:CO:CO:HO=1:13:96:38:12(L/時)となる。すなわち、CO/COは0.396となる。
 この合成ガスについて、固体炭素捕集をT=600℃で行い、水素分離を行った後の排出ガスに含まれるCO、及び、CHを燃焼し、COとしたときに、装置外へと放出するガスに含まれるCOの量は121(L/時)となる。
 すなわち、水素製造装置へ流入させたCOの量と、排出するCOの量が、計算上等しくなる。
 反応温度T及びTをそれぞれ上述と同様の600℃とし、合成ガス中におけるCO/COを0.953とすると、水素製造装置へ流入させたCOの101L/時に対して、排出量は105L/時となる。また、CO/COを1.24とすると、流入量90L/時に対して、排出量103L/時となり、CO/COを1.53とすると、流入量81L/時に対して、排出量102L/時となる。
 一方で、反応温度Tを600℃、反応温度Tを451℃とすると、合成ガス中のCO/COを0.396としたときのCOの量は116L/時となる。この場合、流入量121L/時と比較すると、排出量の方が少なくなっている。
 上記のような熱力学的応答が得られる推定的なメカニズムについて説明する。
 図2は、Boudouard反応(2CO→CO+C)の熱平衡計算結果である。図2中、白抜き(オープン)の円形のシンボル、及び、黒く塗られた(クローズド)の円形のシンボルは、それぞれ、反応温度Tに対する処理済みガス112(導出されるガス、図中は「Outgas」と記載されている)中のCO、及び、COのそれぞれのモル分率(縦軸:左)を表している。また、白抜き(オープン)の四角形のシンボルは、反応温度T(℃)に対する処理済みガス112中におけるCO/CO(縦軸:右)を表している。
 図2によれば、ライトオフ温度(活性発現温度)は、理論的には、450℃と見積もることができる。
 なお、本明細書において、ライトオフ温度(活性発現温度)は、COとCOとの混合ガスを通じながら、固体炭素捕集反応の反応温度Tを350℃から徐々にあげてゆく際、処理済みガス112に含まれるCOの量がゼロから有意の値となる最も低い温度を意味する。
 また、図2によれば、350℃から1200℃までの反応温度Tの変化に従って、平衡は式:2CO→CO+Cの右から左へ傾き、処理済みガス112におけるCOとCOとのモル分率は、CO:COの約0.5:0.0から、約0.0:1.0へと変化していくことがわかる。
 すなわち、反応温度Tを徐々に上げてゆくと、Boudouard反応の平衡が右から左に傾いていくため、処理済みガス112に含まれるCOの量も上昇していく。
 処理済みガス112中のCOの含有量は、最終的な装置外へのCOの排出量に影響する。このCOの排出量をより少なくすることで、最終的なCOの排出量を低減することができる。
 水素製造装置外へのCOの排出量は、処理済みガス112に含まれるCHの量にも影響を受ける。合成ガス111にCHが含まれる場合、CHは固体炭素捕集反応に寄与しないため、処理済みガス112に排出される。これを燃焼すると、COが発生することになる。
 合成ガス111中におけるCHの量は、いわば、DRM反応において使用されなかった残余のCHということもでき、この調整も必要となる。
 本発明者らは、反応温度T、及び、合成ガス111中におけるCO/COを所定の範囲に制御することで、CO導出量が導入量以下となる条件を探索した。その結果、その「範囲」が、ある連続した領域を形成していることに着目し、反応温度T、反応温度T、及び、合成ガス111中におけるCO/COとの関係について、更に検討した。
 具体的には、反応温度T、Tを変化させながら上記と同様の計算を行い、その関係について調べた。図3は、その結果として得られた、反応温度T、反応温度T、及び、合成ガス111中におけるCO/COとの関係を表す図である。
 図3において、横軸の「CO/CORatio in DRM Outgas」は、合成ガス111中におけるCO/COを意味している。縦軸の「CO Disprop. Temperture(℃)」は、反応温度Tを意味している。各プロットは、「DRM Temperature」すなわち、反応温度Tにおける、CO導出量が導入量と計算上等しくなる点である。
 例えば、反応温度Tが600℃である場合、各プロットの内側の領域(原点方向)では、CO導出量はより少なくなり、典型的には導入量よりも少なくなる。
 図4の結果から、反応温度Tが高くなるにつれて、「CO導出量が導入量と等しくなる」各プロットにより区画される領域が大きくなることがわかる。
 図3から、各反応温度Tにおける、CO導出量が導入量と等しくなる点の集合が、シグモイド曲線に従うとの仮説を立てた。更に、このシグモイド曲線は、反応温度Tが大きくなるにつれて、傾き(絶対値)が小さくなり、変曲点が横軸の正方向に移動していることに着目して、検討を進めた。
 具体的には、反応温度Tが900℃、700℃、及び、600℃における「CO導出量が導入量と等しくなる」領域を「COCO」ソフトウェアで算出し、以下の条件(1)が成り立つ領域:
Figure JPOXMLDOC01-appb-M000014
であることを突き止めた。なお、Inflectionは、シグモイド曲線の変曲点(横軸)を、Gradientはスロープの傾きを意味する。
Figure JPOXMLDOC01-appb-T000015
 表2は、各反応温度TにおけるInflection、及び、Gradientを表しており、600℃、700℃、及び、900℃の値はそれぞれフィッティングにより求められたものである。
 表2、図3の結果から、Inflection、及び、Gradientは、反応温度Tの増加に応じて増加する関係を有しており、図4は、その関係を表す図である。
 図4中、横軸は反応温度T(℃)を示している。三角形のプロットは、Inflectionを表しており、四角形のプロットはGradientを表している。各プロットのフィッティングから求められた関係式はそれぞれ以下のとおり求められた。なお、反応温度T(℃)は、600℃以上が好ましい。
Figure JPOXMLDOC01-appb-M000016
 すなわち、図4で示された各反応温度Tにおける、CO導出量が著しく少なくなる領域、典型的には、導入量の方が少なくなる領域は、以下の条件(1)を満たす領域であることがわかった。
Figure JPOXMLDOC01-appb-M000017
 なお、上記関係式(2)及び(3)から、反応温度Tが800℃のときのInflectionとGradientを求め(結果は表2に記載されている)、その結果得られた(1)の右側の不等号の右辺のシグモイド曲線が、図3の「sim800℃」で表される曲線である。この曲線は、別途の計算によってそれぞれ求められたプロットと一致しており、上記の条件設定が正しいことがわかった。
 上記から、条件(1)を満たす製造方法であれば、装置外に排出するCOの量が著しく削減される、典型的には、CO導入量と導出量が等しいか、導出量の方が少ない状態となることがわかった。
 なお、このような条件において、水素製造装置100を運転することは当業者にとっては容易である。なぜなら、ドライ改質反応の温度(反応温度T)を決めると、DRMアウトガス(すなわち、合成ガス111)中におけるCO/COは、原料ガス110中におけるCH/COを調整することによって容易に調整できるからである。
 図5は、原料ガス中におけるCH/COと、合成ガス111中におけるCO/COとの関係の反応温度T依存性を表す図である。
 図5の横軸は、「CH/CO in DRM InGas」すなわち、原料ガス110におけるCH/COを表し、縦軸は「CO/CO in DRM OutGas」すなわち、合成ガス111中におけるCO/COを表している。
 図5に示されるとおり、反応温度Tを決めると、合成ガス中におけるCO/COを所望の値に調整するためには、原料ガス中のCH/COを調整すればよく、その値は計算によって簡単に求めることができる。
 条件(1)について、CO/COは、0より大きく、124以下であり、下限値は、0.20以上が好ましい。CO/COが上記下限値以上であると、より優れた本発明の効果が得られる。
 また、上限値は、0.50以下が好ましい。CO/COが上記上限値以下であると、より優れた本発明の効果が得られる。
 図13~16において説明した本発明の実施形態においては、DRM反応器103及び固体炭素捕集器106における温度制御は必須ではないが、温度制御を行なうことにより、より優れた本発明の効果が得られる。
 以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
 [実施例1]
[水素製造方法の実証試験]
 まず、Chemical Science, 2019,10, 3701-3705(Topologically immobilized catalysis centre for long-term stable carbon dioxide reforming of methane)を参照して、DRM触媒である「Ni#Y」を合成した。
 次に、「Ni#Y」粉末の0.1gを外径φ3/8インチ(約9.53mm)の石英反応管に充填した。この粉末を石英ウールにて挟み込み固定した。
 次に、その下流側の直下に、同様の方法でFe粉末を充填、固定した。次に、「Ni#Y」粉末、Fe粉末が順に充填された石英反応管の下流側に、PdAg合金膜(φ20mm;厚み100μm)を直列接続した。
 この膜の1次側はブリードガスとしてGC(ガスクロマトグラフ)を介し排気した。この膜の2次側はマスフローメータを介してポンプで連続吸引した。このポンプ直上からQ-Mass(四重極型質量分析計)に分枝させ、質量(m/z)が2の信号を連続モニターした。Q-Massの信号強度は、マスフローメータの指示値によって校正した。
 なお、図23は、本実証実験に使用した水素製造装置の写真である。図23の水素製造装置は、石英反応管を装着するための1対のホルダ501と、ヒータ502と、ヒータ内の温度を測定するためのセンサ503と、下流側に配置されたPdAg合金膜504とを有し、FL1から流入させた原料ガスをFL2(図面上、石英反応管が装着されていない状態である)、FL3、FL4、FL5、及び、FL6の順でガスが流通する。
 まず、石英反応管に、Nガスの5ml/minを通じながら常温から400℃まで昇温した。ここへCHガス、COガスのそれぞれ10ml/minを追加し、石英反応管への総流入量25ml/minとした。
 石英反応管内の各粉末の温度が470℃近傍からDRM反応の開始に伴いPdAg合金膜の2次側に水素を検知した。
 PdAg合金膜の2次側の水素流量は昇温とともに増大し、温度700℃の時点でマスフローメータの指示値は3.1ml/minに到達した。その後この値はなだらかに減少し、15時間経過時点で2.5ml/min近傍で定常状態となった。
 図24は、上記実証試験の結果であり、横軸が経過時間、縦軸(左側)が水素の生成量(ml/分)、縦軸(右側)が水素の合計生成量(L)を表している。
 上記の結果から、本発明の水素製造方法により、長時間にわたって水素が安定的に製造できることがわかった。
 [実施例2]
 図25に示す水素製造装置の構成において、DRM反応器103の温度を700℃、固体炭素捕集器106の温度を450℃、水素分離器107の温度を350℃に制御し、DRM反応器103に付与する熱量の一部として水素製造装置の外部のメタン燃焼炉108においてメタン:15Nm/hを空気中で燃焼させ、二酸化炭素:15Nm/hが発生した場合の物質収支及びエネルギー収支をシミュレーションにより求めた。
 (1)水素製造装置の外部からDRM反応器103へ導入する原料ガス
  メタン:43Nm/h、二酸化炭素:15Nm/h
 (2)DRM反応器103へ導入する原料ガス110
  メタン:45Nm/h、二酸化炭素:130Nm/h、水素:20Nm/h、一酸化炭素:1Nm/h、水:0Nm/h
 (3)DRM反応器103から排出される合成ガス111
  メタン:2Nm/h、二酸化炭素:59Nm/h、水素:82Nm/h、一酸化炭素:115Nm/h、水:27Nm/h
 (4)固体炭素捕集器106において固定される炭素:31kg/h
 (5)固体炭素捕集器106から排出され、水素分離器107へ導入される処理ガス112
  メタン:2Nm/h、二酸化炭素:115Nm/h、水素:82Nm/h、一酸化炭素:1Nm/h、水:27Nm/h
 (6)水素分離器107で分離及び収集される水素:62Nm/h
 (7)水素分離器107から排出される排出ガス114
  メタン:2Nm/h、二酸化炭素:115Nm/h、水素:20Nm/h、一酸化炭素:1Nm/h、水:0Nm/h
 実施例2では、固体炭素捕集器106からの処理ガス112における水素の流量に対する水素分離器107からの水素113の流量の割合を算出することにより、水素抽出率(%)を算出することができる。実施例1では水素抽出率は75%となり、水素を高い割合で抽出できることが確認できた。
 [実施例3]
 図26に示す水素製造装置の構成において、DRM反応器103の温度を700℃、固体炭素捕集器106の温度を450℃、水素分離器107の温度を350℃に制御し、DRM反応器103に付与する熱量の一部として水素製造装置の外部のメタン燃焼炉108においてメタン:15Nm/hを空気中で燃焼させ、二酸化炭素:15Nm/hが発生した場合の物質収支及びエネルギー収支をシミュレーションにより求めた。
 (1)水素製造装置の外部からDRM反応器103へ導入する原料ガス
  メタン:43Nm/h、二酸化炭素:15Nm/h
 (2)DRM反応器103へ導入する原料ガス110
  メタン:45Nm/h、二酸化炭素:130Nm/h、水素:30Nm/h、一酸化炭素:1Nm/h、水:0Nm/h
 (3)DRM反応器103から排出される合成ガス111
  メタン:2Nm/h、二酸化炭素:59Nm/h、水素:89Nm/h、一酸化炭素:114Nm/h、水:27Nm/h
 (4)固体炭素捕集器106において固定される炭素:30kg/h
 (5)固体炭素捕集器106から排出され、水素分離器107へ導入される処理ガス112
  メタン:2Nm/h、二酸化炭素:115Nm/h、水素:89Nm/h、一酸化炭素:1Nm/h、水:27Nm/h
 (6)水素分離器107で分離及び収集される水素:59Nm/h
 (7)水素分離器107から排出される排出ガス114
  メタン:2Nm/h、二酸化炭素:115Nm/h、水素:30Nm/h、一酸化炭素:1Nm/h、水:0Nm/h
 実施例3では、固体炭素捕集器106からの処理ガス112における水素の流量に対する水素分離器107からの水素113の流量の割合を算出することにより、水素抽出率(%)を算出することができる。実施例1では水素抽出率は66%となり、水素を高い割合で抽出できることが確認できた。
 [実施例4]
 図27に示す水素製造装置の構成において、DRM反応器103の温度を700℃、固体炭素捕集器106の温度を450℃、水素分離器107の温度を350℃に制御し、DRM反応器103に付与する熱量の一部として水素分離器107で分離及び収集される水素を燃焼させた場合の物質収支及びエネルギー収支をシミュレーションにより求めた。
 (1)水素製造装置の外部からDRM反応器103へ導入する原料ガス
  メタン:42Nm/h、二酸化炭素:10Nm/h
 (2)DRM反応器103へ導入する原料ガス110
  メタン:45Nm/h、二酸化炭素:95Nm/h、水素:0Nm/h、一酸化炭素:1Nm/h、水:0Nm/h
 (3)DRM反応器103から排出される合成ガス111
  メタン:3Nm/h、二酸化炭素:37Nm/h、水素:68Nm/h、一酸化炭素:101Nm/h、水:15Nm/h
 (4)固体炭素捕集器106において固定される炭素:27kg/h
 (5)固体炭素捕集器106から排出され、水素分離器107へ導入される処理ガス112
  メタン:3Nm/h、二酸化炭素:85Nm/h、水素:68Nm/h、一酸化炭素:1Nm/h、水:0Nm/h
 (6)水素分離器107で分離及び収集される水素:68Nm/h
 (7)水素分離器107で分離及び収集される水素のうち、燃焼させてDRM反応器103への熱供給に利用される水素:44Nm/h
 (8)水素分離器107から排出される排出ガス114
  メタン:3Nm/h、二酸化炭素:85Nm/h、水素:0Nm/h、一酸化炭素:1Nm/h、水:0Nm/h
 [実施例5]
 図28に示す水素製造装置の構成において、DRM反応器103の温度を700℃、固体炭素捕集器106の温度を550℃、水素分離器107の温度を350℃に制御し、DRM反応器103に付与する熱量の一部として、排出ガス114をDRM反応器103に導入する前に、排出ガス114からの熱を回収して、二酸化炭素:90Nm/hが発生した場合の物質収支及びエネルギー収支をシミュレーションにより求めた。
 (1)水素製造装置の外部からDRM反応器103へ導入する原料ガス
  メタン:45Nm/h
 (2)DRM反応器103へ導入する原料ガス110
  メタン:45Nm/h、二酸化炭素:90Nm/h、水素:0Nm/h、一酸化炭素:0Nm/h、水:0Nm/h
 (3)DRM反応器103から排出される合成ガス111
  メタン:3Nm/h、二酸化炭素:34Nm/h、水素:68Nm/h、一酸化炭素:97Nm/h、水:15Nm/h
 (4)固体炭素捕集器106において固定される炭素:24kg/h
 (5)固体炭素捕集器106から排出され、水素分離器107へ導入される処理ガス112
  メタン:3Nm/h、二酸化炭素:79Nm/h、水素:68Nm/h、一酸化炭素:8Nm/h、水:0Nm/h
 (6)水素分離器107で分離及び収集される水素:43Nm/h
 (7)水素分離器107から排出される排出ガス114
  メタン:3Nm/h、二酸化炭素:79Nm/h、水素:25Nm/h、一酸化炭素:8Nm/h、水:0Nm/h
 (8)熱を回収後に第3の流路115cを通ってDRM反応器103へ循環させる循環ガス120
  メタン:0Nm/h、二酸化炭素:90Nm/h、水素:0Nm/h、一酸化炭素:0Nm/h、水:0Nm/h
11:基材
12:コーティング層
100、200、300:水素製造装置
101:ドライ改質触媒(DRM触媒)
102:第1温調器
103:ドライ改質(DRM反応器)反応器
104:固体炭素捕集用触媒
105:第2温調器
106:固体炭素捕集器
106A、106B、106C、106D、106E:固体炭素捕集器
107:水素分離器
108:メタン燃焼炉
108a、109a:熱供給流路
109:水素燃焼炉
110:原料ガス
111:合成ガス
112:処理済みガス
113:水素
114:排出ガス
115:流路
115a:第1の流路
115b:第2の流路
115c:第3の流路
116:水素抽出流路
120:循環ガス
121:メタン
122:二酸化炭素
201:制御装置
202:プロセッサ
203:メモリ
204:熱回収器
205:原料ガス調整器
301:反応器
302:第3温調器
401:圧縮機
402、404:圧力調整弁
403:ガスホルダー
405A、405B、405C、406A、406B、406C:弁
407:バッファタンク
408:ガス組成調整部
HE:熱交換器
W:水供給流路
V:蒸気

Claims (32)

  1.  ドライ改質触媒の存在下で、メタンと二酸化炭素とを含む原料ガスから、一酸化炭素と水素とを含む合成ガスを得る、ドライ改質反応を行うことと、
     前記合成ガスを固体炭素捕集用触媒の存在下で反応させ、前記合成ガス中の前記一酸化炭素から固体炭素を生成し、前記固体炭素と、処理済みガスとを得る、固体炭素捕集反応を行うことと、
     前記処理済みガスを、排出ガスと水素とに分離し、水素を得ることと、を含み、
     前記合成ガス中における前記二酸化炭素の含有量に対する前記一酸化炭素の含有量の含有モル比であるCO/COと、前記ドライ改質反応の反応温度T(℃)と、前記固体炭素捕集反応の反応温度T(℃)と、が以下の(1)の条件:
    Figure JPOXMLDOC01-appb-M000001
    を満たす、水素製造方法。
  2.  前記反応温度Tが、前記固体炭素捕集用触媒の活性発現温度以上の温度である、請求項1に記載の水素製造方法。
  3.  前記原料ガス中における前記二酸化炭素の含有量に対する前記メタンの含有量の含有モル比であるCH/COが0.5以下である、請求項1又は2に記載の水素製造方法。
  4.  前記反応温度Tが前記ドライ改質触媒の活性発現温度以上の温度である、請求項1又は2に記載の水素製造方法。
  5.  前記反応温度Tが600℃以上である、請求項1又は2に記載の水素製造方法。
  6.  前記排出ガスから熱を回収し、前記熱を、前記ドライ改質反応、及び、前記固体炭素捕集反応からなる群より選択される少なくとも1つの反応に用いることを更に含む、請求項1又は2に記載の水素製造方法。
  7.  前記回収が、前記排出ガスを燃料電池に導入することにより行われる、請求項6に記載の水素製造方法。
  8.  前記回収が、前記排出ガスを燃焼することにより行われる、請求項6に記載の水素製造方法。
  9.  前記処理済みガスの分離が水素分離膜により行われる、請求項1又は2に記載の水素製造方法。
  10.  ドライ改質触媒の存在下で、メタンと二酸化炭素と含む原料ガスから、一酸化炭素と水素とを含む合成ガスを得る、ドライ改質反応を行うドライ改質反応器と、
     前記合成ガスを固体炭素捕集用触媒の存在下で反応させ、前記合成ガス中の前記一酸化炭素から固体炭素を生成し、前記固体炭素と、処理済みガスとを得る、固体炭素捕集反応を行う固体炭素捕集器と、
     前記処理済みガスを、排出ガスと水素とに分離する、水素分離器と、
     前記ドライ改質反応の反応温度T(℃)を調整する、第1温調器と、
     前記固体炭素捕集反応の反応温度T(℃)を調整する、第2温調器と、
     前記原料ガスの組成を調整する、原料ガス調整器と、
     制御装置と、を含み、
     前記制御装置は、前記合成ガス中における前記二酸化炭素の含有量に対する前記一酸化炭素の含有量の含有モル比であるCO/COと、前記反応温度Tと、前記反応温度Tと、が以下の(1)の条件:
    Figure JPOXMLDOC01-appb-M000002
    を満たすように、前記第1温調器、前記第2温調器、及び、前記原料ガス調整器を制御する、水素製造装置。
  11.  前記制御装置は、前記原料ガス中における前記二酸化炭素の含有量に対する前記メタンの含有量の含有モル比であるCH/COが0.5以下となるように前記原料ガス調整器を制御する、請求項10に記載の水素製造装置。
  12.  前記制御装置は、前記第1温調器、及び、前記第2温調器を制御して、前記反応温度Tを前記ドライ改質触媒の活性発現温度以上の温度に制御し、前記反応温度Tを前記固体炭素捕集用触媒の活性発現温度以上の温度に制御する、請求項10又は11に記載の水素製造装置。
  13.  前記排出ガスから熱を回収するための、熱回収器を更に有する、請求項10又は11に記載の水素製造装置。
  14.  前記熱が、前記ドライ改質反応器、及び、前記固体炭素捕集器からなる群より選択される少なくとも一方の加熱に用いられる、請求項13に記載の水素製造装置。
  15.  前記水素分離器が水素分離膜を含む、請求項10又は11に記載の水素製造装置。
  16.  前記熱回収器が燃料電池を含む、請求項13に記載の水素製造装置。
  17.  ドライ改質触媒の存在下で、メタンと二酸化炭素を含む原料ガスから、一酸化炭素と水素とを含む合成ガスを得るドライ改質反応工程と、
     前記ドライ改質反応工程からの前記合成ガスを導入して、固体炭素捕集用触媒の存在下で、前記合成ガス中の一酸化炭素から固体炭素を生成し、処理済みガスを得る固体炭素捕集工程と、
     前記固体炭素捕集工程からの前記処理済みガスから水素を抽出して、二酸化炭素を含む排出ガスを得る水素分離工程と、を含み、
     前記水素分離工程からの前記排出ガスを前記ドライ改質反応工程に導入して、二酸化炭素を外部に排出させずに循環させることを特徴とする水素製造方法。
  18.  メタンを燃焼させることにより熱と二酸化炭素とを発生させ、発生した前記熱を前記ドライ改質反応工程に導入し、発生した前記二酸化炭素と等量の二酸化炭素を含む前記原料ガスを前記ドライ改質反応工程に導入して、前記固体炭素捕集工程において前記原料ガス中の二酸化炭素及びメタンに含まれる炭素と等量の炭素を固体炭素として捕集する、請求項17に記載の水素製造方法。
  19.  前記水素分離工程において分離した水素の一部を取り出して燃焼させ、発生する熱を前記ドライ改質反応工程に供給することをさらに含む、請求項17に記載の水素製造方法。
  20.  前記水素分離工程からの前記排出ガスを前記ドライ改質反応工程に導入する前に、前記排出ガスからの熱を回収して前記ドライ改質反応工程に供給する、請求項17に記載の水素製造方法。
  21.  ドライ改質触媒の存在下で、メタンと二酸化炭素を含む原料ガスから、一酸化炭素と水素とを含む合成ガスを得るドライ改質反応器と、
     前記ドライ改質反応器からの前記合成ガスを導入して、固体炭素捕集用触媒の存在下で、前記合成ガス中の一酸化炭素から固体炭素を生成し、処理済みガスを得る固体炭素捕集器と、
     前記固体炭素捕集器からの前記処理済みガスから水素を抽出して、二酸化炭素を含む排出ガスを得る水素分離器と、
     前記ドライ改質反応器からの合成ガスを前記固体炭素捕集器に供給する第1の流路と、前記固体炭素捕集器からの処理済みガスを前記水素分離器に供給する第2の流路と、前記水素分離器からの排出ガスを前記ドライ改質反応器に供給する第3の流路とを備え、二酸化炭素を外部に排出せずに内部にて循環させることを特徴とする水素製造装置。
  22.  メタン燃焼炉と、前記メタン燃焼炉からの熱を前記ドライ改質反応器に供給する熱供給流路とをさらに備えることを特徴とする請求項21に記載の水素製造装置。
  23.  前記水素分離器からの水素の一部を取り出す水素抽出流路と、取り出した水素を燃焼させる水素燃焼炉と、前記水素燃焼炉からの熱を前記ドライ改質反応路に供給する熱供給流路とをさらに備えることを特徴とする請求項21に記載の水素製造装置。
  24.  前記第3の流路の途中に、前記排出ガスからの熱を回収する熱回収器が接続され、前記熱回収器にて回収した熱を前記ドライ改質反応器に供給することを特徴とする請求項21に記載の水素製造装置。
  25.  前記第1の流路に圧縮機をさらに備える請求項21に記載の水素製造装置。
  26.  前記固体炭素捕集器にて発生する熱を蒸気に変換して前記圧縮機に供給する熱交換器をさらに備える請求項25に記載の水素製造装置。
  27.  前記水素分離器の入口部に圧力調整弁を設け、前記水素分離器の出口部にガスホルダー及び圧力調整弁を設ける請求項25に記載の水素製造装置。
  28.  前記ドライ改質反応器にて発生する水を前記固体炭素捕集器に供給するための水供給路をさらに備える請求項21に記載の水素製造装置。
  29.  前記第1の流路に圧縮機をさらに備え、前記固体炭素捕集器にて発生する蒸気を前記圧縮機に供給する蒸気供給路をさらに備える請求項28に記載の水素製造装置。
  30.  前記第1の流路に圧縮機をさらに備え、前記圧縮機の下流側の前記第1の流路を分岐して前記固体炭素捕集器を複数個並列に配置し、各固体炭素捕集器の入口部及び出口部に弁を設ける請求項21に記載の水素製造装置。
  31.  前記第1の流路に、前記圧縮機の下流側で分岐より上流側にバッファタンクをさらに設ける請求項30に記載の水素製造装置。
  32.  前記第1の流路に圧縮機をさらに備え、前記固体炭素捕集器を複数個直列に配置し、各固体炭素捕集器の間にガス組成調整部を設ける請求項21に記載の水素製造装置。
PCT/JP2022/040546 2021-10-28 2022-10-28 水素製造方法、及び、水素製造装置 WO2023074881A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280070320.7A CN118139811A (zh) 2021-10-28 2022-10-28 氢制造方法及氢制造装置
CA3236282A CA3236282A1 (en) 2021-10-28 2022-10-28 Hydrogen production method and hydrogen production system
AU2022378041A AU2022378041A1 (en) 2021-10-28 2022-10-28 Hydrogen production method and hydrogen production system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021176567 2021-10-28
JP2021-176567 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023074881A1 true WO2023074881A1 (ja) 2023-05-04

Family

ID=86159490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040546 WO2023074881A1 (ja) 2021-10-28 2022-10-28 水素製造方法、及び、水素製造装置

Country Status (4)

Country Link
CN (1) CN118139811A (ja)
AU (1) AU2022378041A1 (ja)
CA (1) CA3236282A1 (ja)
WO (1) WO2023074881A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159503A (ja) 1998-11-20 2000-06-13 Mitsubishi Heavy Ind Ltd Nb合金水素分離膜
JP2005232533A (ja) 2004-02-19 2005-09-02 Mitsubishi Heavy Ind Ltd Pd合金水素分離膜材料
JP2006043677A (ja) 2004-08-06 2006-02-16 Juichi Kashimoto 水素分離装置
JP2006055820A (ja) 2004-08-24 2006-03-02 Chiyoda Corp 合成ガス製造用触媒、合成ガス製造用触媒の調製方法、および合成ガスの製造方法
JP2008055295A (ja) 2006-08-30 2008-03-13 Ihi Corp 水素分離膜
JP2016175818A (ja) * 2015-03-23 2016-10-06 住友精化株式会社 水素の製造方法、および水素製造システム
JP2017501958A (ja) * 2013-12-20 2017-01-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 炭化水素及び二酸化炭素を含有する混合物を改質する方法
JP2018104282A (ja) * 2012-04-16 2018-07-05 シーアストーン リミテッド ライアビリティ カンパニー 二酸化炭素を還元することによって固体炭素を生成するための方法
JP2019005684A (ja) 2017-06-22 2019-01-17 国立大学法人名古屋大学 水素分離装置及び水素分離システム
JP2019037905A (ja) 2017-08-22 2019-03-14 国立研究開発法人物質・材料研究機構 低温メタン改質触媒活物質
WO2021235443A1 (ja) * 2020-05-19 2021-11-25 国立大学法人静岡大学 反応システム、固体炭素を捕集する方法、水素を含むガスを製造する方法、触媒セット、及び固体炭素捕集用触媒
JP2022021242A (ja) * 2020-07-21 2022-02-02 東京瓦斯株式会社 固体炭素回収型エネルギー供給システム、および、固体炭素回収型エネルギー供給方法。

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159503A (ja) 1998-11-20 2000-06-13 Mitsubishi Heavy Ind Ltd Nb合金水素分離膜
JP2005232533A (ja) 2004-02-19 2005-09-02 Mitsubishi Heavy Ind Ltd Pd合金水素分離膜材料
JP2006043677A (ja) 2004-08-06 2006-02-16 Juichi Kashimoto 水素分離装置
JP2006055820A (ja) 2004-08-24 2006-03-02 Chiyoda Corp 合成ガス製造用触媒、合成ガス製造用触媒の調製方法、および合成ガスの製造方法
JP2008055295A (ja) 2006-08-30 2008-03-13 Ihi Corp 水素分離膜
JP2018104282A (ja) * 2012-04-16 2018-07-05 シーアストーン リミテッド ライアビリティ カンパニー 二酸化炭素を還元することによって固体炭素を生成するための方法
JP2017501958A (ja) * 2013-12-20 2017-01-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 炭化水素及び二酸化炭素を含有する混合物を改質する方法
JP2016175818A (ja) * 2015-03-23 2016-10-06 住友精化株式会社 水素の製造方法、および水素製造システム
JP2019005684A (ja) 2017-06-22 2019-01-17 国立大学法人名古屋大学 水素分離装置及び水素分離システム
JP2019037905A (ja) 2017-08-22 2019-03-14 国立研究開発法人物質・材料研究機構 低温メタン改質触媒活物質
WO2021235443A1 (ja) * 2020-05-19 2021-11-25 国立大学法人静岡大学 反応システム、固体炭素を捕集する方法、水素を含むガスを製造する方法、触媒セット、及び固体炭素捕集用触媒
JP2022021242A (ja) * 2020-07-21 2022-02-02 東京瓦斯株式会社 固体炭素回収型エネルギー供給システム、および、固体炭素回収型エネルギー供給方法。

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL SCIENCE, vol. 10, 2019, pages 3701 - 3705
FUKUHARA, CHOJI: "Recycling of CO2 gas and conversion to solid carbon through methanation technology that operates at room temperature", PETRO TECH, vol. 44, no. 5, 1 May 2021 (2021-05-01), Tokyo, JP , pages 322 - 326, XP009546504, ISSN: 0386-2763 *
JOURNAL OF CO UTILIZATION, vol. 22, 2017, pages 91 - 96
SCIENCE, vol. 10, 2019, pages 3701 - 3705

Also Published As

Publication number Publication date
CA3236282A1 (en) 2023-05-04
CN118139811A (zh) 2024-06-04
AU2022378041A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
TWI292334B (en) Systems and methods for regulating heating assembly operation through pressure swing adsorption purge control
WO2019073867A1 (ja) メタン製造システム
CN109539284B (zh) 一种用于惰性气体纯化的载氧体及其制备和应用
JPH11312527A (ja) 製鉄副生ガスを利用した溶融炭酸塩型燃料電池発電−排ガス回収複合システム
Medrano et al. Upgrading biogas with novel composite carbon molecular sieve (CCMS) membranes: Experimental and techno-economic assessment
JP2002227730A (ja) ガスエンジン
WO2005094988A1 (ja) 一酸化炭素除去触媒及びその製造方法並びに一酸化炭素除去装置
Cao et al. Development of a cordierite monolith reactor coated with CeO2-supported BaSrCo-based perovskite for chemical looping steam methane reforming
De Falco et al. Reformer and membrane modules for methane conversion: Experimental assessment and perspectives of an innovative architecture
JP5101615B2 (ja) メタンガス処理システム及びメタンガス処理方法
JP2017522171A (ja) 水素を含有する気体中におけるアンモニアの選択的酸化のための触媒
JP2019518304A (ja) 二酸化炭素回収のための溶融炭酸塩型燃料電池アノード排気の後処理
WO2023074881A1 (ja) 水素製造方法、及び、水素製造装置
JP2008221082A (ja) 吸収材の再生方法
Rydén et al. Two novel approaches for hydrogen production; chemical-looping reforming and steam reforming with carbon dioxide capture by chemical-looping combustion
KR20240090573A (ko) 수소 제조 방법 및 수소 제조 장치
JPH04325402A (ja) 燃料電池用水素製造方法及び装置並びに供給方法
JPH04321502A (ja) 燃料電池用水素製造方法及び装置並びに供給方法
Salladini et al. Membrane reforming pilot testing: KT experiences
JP2021172631A (ja) 混合ガス生成装置およびメタン製造システム
JP2009263199A (ja) 一酸化炭素ガス発生装置および方法
JP2005293949A (ja) 燃料ガス製造システム及びその運転方法
JPH06168733A (ja) 燃料電池用水素の製造方法及び装置並びに供給方法
US20170066649A1 (en) Co shift conversion device and shift conversion method
JP7494140B2 (ja) 浸炭用ガス供給システム及び浸炭システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887206

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3236282

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2023556693

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: AU2022378041

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2401002682

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2022378041

Country of ref document: AU

Date of ref document: 20221028

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022887206

Country of ref document: EP

Effective date: 20240528