WO2023074017A1 - Method for manufacturing motor device - Google Patents

Method for manufacturing motor device Download PDF

Info

Publication number
WO2023074017A1
WO2023074017A1 PCT/JP2022/014856 JP2022014856W WO2023074017A1 WO 2023074017 A1 WO2023074017 A1 WO 2023074017A1 JP 2022014856 W JP2022014856 W JP 2022014856W WO 2023074017 A1 WO2023074017 A1 WO 2023074017A1
Authority
WO
WIPO (PCT)
Prior art keywords
windings
winding
phase
motor device
manufacturing
Prior art date
Application number
PCT/JP2022/014856
Other languages
French (fr)
Japanese (ja)
Inventor
効 梶田
昇 新口
寛典 鈴木
保久 児玉
望 竹村
Original Assignee
株式会社林工業所
国立大学法人大阪大学
株式会社A.H.MotorLab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社林工業所, 国立大学法人大阪大学, 株式会社A.H.MotorLab filed Critical 株式会社林工業所
Publication of WO2023074017A1 publication Critical patent/WO2023074017A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in machines

Definitions

  • the present invention relates to a method for manufacturing a motor device, and more particularly to a method for manufacturing a motor device for a switched reluctance motor using a ferromagnetic material for the rotor.
  • three-phase motors have been used as power sources because they can control the number of revolutions by changing the frequency of the alternating current and obtain a stable number of revolutions.
  • a switched reluctance motor using a ferromagnetic material for the rotor has also been proposed (see Patent Document 1, for example). Also proposed is a motor device having a plurality of systems of polyphase windings each having a plurality of phases.
  • FIG. 10 is a circuit diagram showing a simplified drive circuit of a conventional motor device having two systems of six-phase windings.
  • the conventional motor device has an A1-phase coil, a B1-phase coil, a C1-phase coil, a D1-phase coil, an E1-phase coil and an F1-phase coil as six-phase windings of the first system. It has an A2-phase coil, a B2-phase coil, a C2-phase coil, a D2-phase coil, an E2-phase coil, and an F2-phase coil as two systems of six-phase windings.
  • A1 phase coil and A2 phase coil, B1 phase coil and B2 phase coil, C1 phase coil and C2 phase coil, D1 phase coil and D2 phase coil, E1 phase coil and E2 phase coil, and F1 phase coil and F2 phase coil are connected in parallel, and the AF phases are connected in series.
  • the F-phase coil and the A-phase coil between the F-phase coil and the A-phase coil, between the A-phase coil and the B-phase coil, between the B-phase coil and the C-phase coil, between the C-phase coil and the D-phase coil, between the D-phase coil and the E-phase coil and between the E-phase coil and the F-phase coil are connected to the A-phase switch to the F-phase switch of the switch inverter unit, respectively, and the potentials Va to Vf are supplied when each switch is on.
  • the A-phase switch to the F-phase switch of the switch inverter section are sequentially turned on/off, so that a current flows due to the potential difference applied across each coil, and the rotor rotates.
  • each corresponding phase of two systems (for example, A1 phase and A2 phase) is wound around the opposing teeth (salient poles) of the stator, and both ends of the coil are connected in parallel. Therefore, in two systems of six-phase windings, a total of 12 wires are routed around the outer periphery of the stator and connected in series and parallel, which complicates the connection work. If the number of teeth of the stator is increased and two or more six-phase windings are wound, the number of wires increases and the connection work becomes even more complicated.
  • the present invention has been devised in view of the above-described conventional problems, and is a motor apparatus capable of easily performing a connection work when winding a plurality of systems of polyphase windings around teeth of a stator. It aims at providing the manufacturing method of.
  • a method for manufacturing a motor device provides a motor device having a rotor arranged to be rotatable about a rotation axis and a stator having a plurality of teeth formed on the inner circumference.
  • a manufacturing method of comprising: a continuous winding step of continuously winding a plurality of windings with a single conductor wire; and a connecting step of electrically connecting a relay point between the windings of the conducting wire to an electrical contact portion.
  • the continuous windings 14 are inserted in the order of the slots and the relay points are electrically connected to the electrical contact portions, the windings can be easily connected. This eliminates the need for a lead wire, which facilitates routing and connection of wires between windings.
  • the relay point in the connecting step, is resistance-welded to the electrical contact portion.
  • a reinforcing step of providing a reinforcing member made of an insulating material between the winding and the relay point of the conducting wire is provided.
  • the relay point of the conducting wire is folded back at a folding portion, and the next winding is wound. winding.
  • the temporary winding portion includes a first-entry portion and a last-entry portion, the winding is alternately wound around the first-entry portion and the last-entry portion, and in the inserting step, the first-entry portion After inserting the winding wound in the back-entry portion into the slot, the winding wound in the rear entry portion is inserted into the slot.
  • the folded portion is used as the electrical contact portion.
  • FIG.1 (a) is a circuit diagram
  • FIG.1(b) is a schematic diagram which shows the structural example of the motor part 10.
  • FIG. 3 is an equivalent circuit diagram showing connection between a motor section 10 and a switch inverter section of the motor device according to the first embodiment
  • FIG. 3A is a timing chart showing control of the switch inverter section in the motor device according to the first embodiment
  • FIG. 3A shows signals applied to each phase switch of the switch inverter section
  • FIG. shows the current flowing in each phase coil.
  • FIG. 4 is a flow chart showing steps of a method for manufacturing a motor device according to the first embodiment; It is a schematic diagram which shows the manufacturing method of the motor apparatus which concerns on 2nd Embodiment. It is a schematic diagram which shows the manufacturing method of the motor apparatus which concerns on 3rd Embodiment. It is a model perspective view which shows the manufacturing method of the motor apparatus which concerns on 3rd Embodiment. It is a schematic diagram which shows the manufacturing method of the motor apparatus which concerns on 4th Embodiment. 1 is a circuit diagram showing a simplified drive circuit of a conventional motor device having two systems of six-phase windings; FIG.
  • FIGS. 1A and 1B are diagrams showing the configuration of a motor unit 10 in a motor device according to the present embodiment, FIG. 1A being a circuit diagram, and FIG. 1B being a schematic diagram showing a structural example of the motor unit 10. is.
  • the motor device constitutes a 10-pole, 12-slot switched reluctance motor.
  • the motor section 10 of this embodiment includes a rotor 11 and a stator 12 arranged around the rotor 11.
  • Rotor teeth (salient poles) made of a ferromagnetic material are arranged along the outer circumference of the rotor 11 .
  • the stator 12 also has a core back portion and a plurality of tooth portions 13 protruding from the inner periphery thereof. Windings (coils) 14 are wound around each tooth portion 13 as A1-phase winding to F1-phase winding and A2-phase winding to F2-phase winding.
  • the A1-phase winding to the F1-phase winding are arranged with a difference of 1/6 period, respectively, and constitute a first system of six-phase windings (two three-phase windings).
  • the A2-phase to F2-phase windings are arranged with a difference of 1/6 period, and form a second system of 6-phase windings (two 3-phase windings).
  • FIG. 1(b) shows an example of a 10-pole, 12-slot switched reluctance motor in which the rotor 11 has 10 rotor teeth and the stator 12 has 12 teeth portions 13 .
  • the method of winding each phase around the tooth portion 13 is not limited to concentrated winding, and may be distributed winding.
  • the core back portion is a portion that is arranged on the outer side of the rotor 11 so as to circumferentially surround the outer periphery of the rotor 11, and a plurality of tooth portions 13 are formed on the inner periphery so as to protrude at regular intervals.
  • a known material can be used for the core-back portion, and the material and structure of the core-back portion are not limited. Further, a member such as a motor housing is separately provided on the outer circumference of the core back portion.
  • the teeth 13 are projecting portions formed to protrude from the inner peripheral surface of the core-back portion toward the rotor 11.
  • Each of the teeth 13 has the same length and shape and is arranged at regular intervals. Intervals are provided between the teeth 13 to form slots.
  • a winding 14 is wound around each tooth portion 13 and the slot, and a magnetic field is generated in the tooth portion 13 when a current flows through the winding 14 .
  • the phases A1 to F1 and A2 to F2 corresponding to the first system and the second system are wound around teeth 13 of the stator 12 that are 180 degrees apart.
  • FIG. 2 is an equivalent circuit diagram showing the connection between the motor section 10 and the switch inverter section of the motor device according to this embodiment.
  • the switch inverter section of this embodiment six switches A-phase to F-phase are connected in parallel between the power supply voltage (+V) and the ground voltage (0V).
  • Reverse-connected diodes are connected in series on the downstream side of the switches A-phase, C-phase, and E-phase, and reverse-connected diodes are connected in series on the upstream side of the switches B-phase, D-phase, and F-phase.
  • switches A-phase to switch F-phase and six reverse-connected diodes constitute a three-phase asymmetric switch inverter section.
  • Each switch has a drain connected to the power supply voltage side (upstream side) and a source connected to the ground voltage side (downstream side). Also, when a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) is used as each switch, an equivalent circuit is obtained in which a parasitic diode is reversely connected in parallel between the source and the drain. The operation of each switch is controlled by a switch control section (not shown).
  • MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
  • the windings A1 and B1 and between the windings A2 and B2 of the motor section 10 are connected between the switch B phase and the reverse-connected diode.
  • the windings B1 and C1 of the motor section 10 and the windings B2 and C2 are connected between the switch C phase and the reverse connection diode.
  • the windings C1 and D1 of the motor section 10 and the windings C2 and D2 are connected between the D-phase switch and the reverse-connected diode.
  • the windings D1 and E1 of the motor section 10 and the windings D2 and E2 are connected between the E-phase switch and the reverse-connected diode.
  • windings E1 and F1 of the motor section 10 and the windings E2 and F2 are connected between the F-phase switch and the reverse-connected diode. Further, the windings F1 and A1 of the motor section 10 and the windings F2 and A2 are connected between the switch A phase and the reverse-connected diode. That is, the phases of the windings A1 to F1 and the windings A2 to F2 corresponding to each other in each system of the first system and the second system are electrically connected to the same phase in the switch inverter section. .
  • the source side potential Va of the switch A phase and the drain side potential Vb of the switch B phase are applied to both ends of the windings A1 and A2.
  • the drain side potential Vb of the switch B phase and the source side potential Vc of the switch C phase are applied to both ends of the windings B1 and B2.
  • the source side potential Vc of the switch C phase and the drain side potential Vd of the switch D phase are applied across the windings C1 and C2.
  • the drain side potential Vd of the switch D phase and the source side potential Ve of the switch E phase are applied to both ends of the windings D1 and D2.
  • the E-phase source potential Ve of the switch E and the drain-side potential Vf of the F-phase switch are applied across the windings E1 and E2.
  • the drain side potential Vf of the switch F phase and the source side potential Va of the switch A phase are applied to both ends of the windings F1 and F2.
  • FIG. 3A and 3B are timing charts showing the control of the switch inverter section in the motor device according to the present embodiment.
  • FIG. 3A shows signals applied to each phase switch of the switch inverter section, and FIG. indicates the current flowing in each phase coil of each system.
  • the horizontal axis of FIG. 3(a) indicates the electrical angle (degrees), and the vertical axis indicates the ON signal and OFF signal applied to each switch.
  • the horizontal axis of FIG. 3B indicates the electrical angle (degrees), and the vertical axis indicates the current flowing through each winding.
  • corresponding windings A1 to F1 and windings A2 to F2 of each system are represented by A to F, respectively.
  • on-signals and off-signals are applied alternately by 180 degrees ( ⁇ ) to each of the A-phase to F-phase switches.
  • the phases of the on-signals and off-signals of the A-phase to F-phase are shifted by 60 degrees ( ⁇ /3) from each other.
  • the A phase and the D phase, the B phase and the E phase, and the C phase and the F phase are applied with mutually inverted signals with a phase difference of 180 degrees ( ⁇ ).
  • two three-phase AC signals of A-phase, C-phase, E-phase and B-phase, D-phase and F-phase are applied to each of the A-phase to F-phase switches. Therefore, the windings A1 to F1 and the windings A2 to F2 are controlled by the switches A to F to function as a motor having two three-phase motors and a total of six phases. .
  • the currents flowing through the windings A1 to F1 and the windings A2 to F2 are 30 degrees ( ⁇ / 6) is advanced in phase.
  • the phases A and D, the B phase and the E phase, and the C phase and the F phase are different in phase by 180 degrees ( ⁇ ), and mutually opposite currents flow.
  • the windings A1 to F1 and the windings A2 to F2, which are coils are connected in series in a ring, and the spaces between the windings are connected to the switches of the switch inverter section.
  • a current flows from the power supply potential +V of the inverter section to the ground potential through each of the ON-state switches and windings, and then through the other ON-state switches.
  • currents with different phases of 60 degrees flow sequentially through the windings A1 to F1 and the windings A2 to F2, and magnetic fields are generated in the tooth portions 13, and the rotor 11 can be rotated.
  • FIG. 4 is a schematic diagram showing the method of manufacturing the motor device according to this embodiment.
  • the plurality of windings 14 are continuously wound by one conductor wire, and after winding one winding 14, the conductor wire is not cut, and the next winding 14 is connected directly through the relay point. winding.
  • 12 teeth 13 are provided, and 12 slots are provided between the teeth 13.
  • Each slot corresponding to A1 to F2 of the teeth 13 has , 12 continuous windings 14 are inserted side by side.
  • the relay points of the conductors extending from the windings 14 are in contact with the electrical contact portions 20a 1 to 20f 2 , and the electrical contact portions 20a 1 to 20f 2 and the respective relay points are electrically connected by resistance welding, soldering, or the like. properly connected.
  • the conducting wire is a coated wire in which a conductive material is covered with an insulating material.
  • FIG. 5 is a flow chart showing steps of a method for manufacturing a motor device according to this embodiment.
  • a plurality of windings 14 are continuously wound with one conductor.
  • the number of windings 14 is not limited, and the number of windings corresponding to the number n of teeth is wound continuously.
  • a conductor is extended from one winding to the next winding 14, and a relay point is provided between the two windings 14. As shown in FIG.
  • a temporary winding jig temporary winding portion
  • the process may proceed to step S2.
  • the process may proceed to step S2 each time one winding 14 is wound on the temporary winding portion.
  • step S2 the windings 14 are inserted into the slots so that the continuous windings 14 are arranged in the order of slots A1 to F2.
  • step S1 all the windings 14 are inserted in a plurality of slots collectively or sequentially.
  • step S1 and S2 are repeated until 14 is inserted. After completing the winding and insertion of all the windings 14, the process proceeds to step S3.
  • the relay points between the windings 14 of the conductive wire are electrically connected to the electrical contact portions 20a 1 to 20f 2 .
  • the electric contact portions 20a 1 to 20f 2 may be part of the temporary winding portion used in the winding operation of the winding 14 in the continuous winding process.
  • bus bars or electrode terminals separately provided outside the core back portion may be used as the electrical contact portions 20a 1 to 20f 2 .
  • the specific electrical connection method is not limited, but the electrical connection is ensured by using resistance welding or soldering while the relay point corresponding to each winding 14 and the electrical contact portions 20a 1 to 20f 2 are in contact. can do.
  • a reinforcing member made of an insulating material is provided between the winding 14 and the relay point of the conducting wire.
  • the material constituting the reinforcing member is not limited, and conventionally known materials such as insulating resins and insulating adhesives can be used.
  • the shape and form of the reinforcing member are not limited, and the conductor wire routed around the outer periphery of the motor unit 10 may be partially fixed with an insulating tape, or the conductor wire may be partially coated with an insulating resin and hardened. good too.
  • the reinforcing member is provided in the reinforcing process is shown, but the reinforcing process may be omitted if the mechanical strength of the conducting wire and the relay point can be ensured.
  • the relay point of the conductor extending from the winding 14 is folded back at the folded portion, and the next winding 14 is wound.
  • the relay points can be held at positions extending from the windings 14 while the plurality of windings 14 are collectively wound around the temporary winding portion.
  • a member that becomes a bus bar or a terminal portion may be used as the folded portion, and the folded portion may be used as the electrical contact portions 20a 1 to 20f 2 as they are.
  • the continuous windings 14 are inserted so as to be arranged in the order of the slots, and the relay points are electrically connected to the electrical contact portions 20a 1 to 20f 2 . Therefore, there is no need to connect the windings 14 separately, and the wiring and connection work between the windings 14 are facilitated.
  • FIG. 6 is a schematic diagram showing the method of manufacturing the motor device according to this embodiment.
  • the conductive wire is extended so that the distance between successive windings 14 is the shortest, and a plurality of windings 14 are wound.
  • 12 consecutive windings 14 are inserted into the respective slots corresponding to A1 to F2 of the teeth 13 so as to be adjacent to each other.
  • the relay point is positioned between the adjacent tooth portions 13 .
  • the separately prepared electrical contact portions 20a 1 to 20f 2 are brought into contact with the relay points, and resistance welding or soldering is performed on the contact positions of the two to electrically connect the electrical contact portions 20a 1 to 20f 2 and the relay points. connected to each other.
  • a crocodile grip or the like may be used in which the relay point is held between the electrical terminals by an elastic body.
  • FIG. 7 The description of the content that overlaps with the first embodiment is omitted.
  • This embodiment differs from the first embodiment in that the plurality of windings 14 are divided into two groups, a first-in group and a last-in group, and the insertion process is performed in two stages.
  • FIG. 7 is a schematic diagram showing the manufacturing method of the motor device according to this embodiment.
  • the plurality of windings 14 are formed by continuously winding one conductor wire, and the windings 14 are alternately grouped into a first-come-in group 30a and a last-come-in group 30b. ing.
  • the windings 14 inserted into the slots corresponding to A1, C1, E1, A2, C2, E2 of the tooth portion 13 are the first-in group 30a, and B1, D1, F1, B2, D2,
  • the windings 14 inserted into the slots corresponding to F2 are the last group 30b.
  • FIG. 8 is a schematic perspective view showing the manufacturing method of the motor device according to this embodiment.
  • a first-entry section 31a and a last-entry section 31b are prepared as temporary winding sections.
  • the winding 14 of the last group 30b is wound.
  • the plurality of windings 14 are alternately and continuously wound in the first group 30a and the last group 30b, and the windings 14 must pass through relay points of conducting wires. Therefore, in the continuous winding process of the present embodiment, the folded portion 30c is prepared, and after winding one winding 14 around the arm 32a or the arm 32b, the conducting wire is extended to the arm 32c and folded back at a relay point. Continue winding of winding 14 on arm 32b or arm 32a. As a result, while the windings 14 are grouped into the first group 30a and the last group 30b, all the windings 14 can be continuously wound with a single wire via relay points.
  • the windings 14 wound around the first entry portion 31a are first inserted into the corresponding slots, and then the windings 14 wound around the last entry portion 31b are inserted into the corresponding slots.
  • FIG. 1B since A1 to F2 of the tooth portions 13 are arranged in order, when inserting the windings 14 of the first-in group 30a and the last-in group 30b into the corresponding slots, each winding 14 is inserted at intervals of one tooth portion 13 . This makes it possible to easily insert the windings 14 even when manufacturing the motor section 10 having a large number of slots such as 10 poles and 12 slots and narrow intervals between the slots.
  • the plurality of windings 14 are divided into two groups and the insertion process is divided into two. good too.
  • the number of groups to be divided and the number of divisions of the insertion process are increased, the number of windings 14 that can be inserted into the slots in one insertion operation is reduced, and the work time for the entire insertion process is increased. Therefore, it is preferable that at least two windings 14 are included in one group.
  • the windings 14 are alternately wound around the first-entry portion 31a and the last-entry portion 31b, which are temporary winding portions, and the relay points of the conductor wires extended from the respective windings 14 are folded back by the arm 32c of the folding portion 30c. ing.
  • the relay points are extended from the windings 14 to positions extending from the windings 14 while the plurality of windings 14 are collectively wound around the first-entry portion 31a and the last-entry portion 31b.
  • the winding 14 to be inserted can be moved to a position separated from the other group by the length of the extended conductor wire, thereby improving work efficiency. improves.
  • a bus bar or a member serving as a terminal portion as the arm 32c of the folded portion and using it as the electrical contact portions 20a 1 to 20f 2 , the work of bringing the electrical contact portions 20a 1 to 20f 2 into contact with the relay points can be performed continuously. Since it can be performed simultaneously with the turning process, the process can be simplified.
  • FIG. 9 is a schematic diagram showing a method of manufacturing the motor device according to this embodiment.
  • a reinforcing member 40 made of an insulating material is provided between the winding 14 and the relay point of the conductor.
  • the reinforcing member 40 is provided after all the windings 14 are inserted into the slots between the tooth portions 13 .
  • the reinforcing member 40 is provided between the windings 14 and the relay points, so that the It is possible to suppress disconnection and damage by reinforcing the conductors.
  • the reinforcing step may be performed before or after the connecting step.
  • the reinforcing process may be performed before the inserting process in a state in which the winding 14 is wound around the temporary winding portion shown in FIG. In this case, when the winding 14 is inserted into the slot in the insertion step, it is possible to prevent the wire including the relay points from being entangled or broken due to contact with other members.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

Provided is a method for manufacturing a motor device with which wire connection work can be easily performed when winding multi-phase windings of a plurality of systems onto teeth of a stator. The present invention provides a method for manufacturing a motor device having a rotor rotatably disposed around a rotation axis and a stator having a plurality of teeth formed on the inner periphery. The method comprises: a continuous winding step (S1) for continuously winding, with one conductive wire, a plurality of windings; an insertion step (S2) for inserting the windings into the slots so that the continuous windings are in the order of the slots; and, a connection step (S3) for electrically connecting a relay point in the conductive wire between the windings to an electrical contact point.

Description

モータ装置の製造方法Motor device manufacturing method
 本発明は、モータ装置の製造方法に関し、特に、回転子に強磁性体を用いるスイッチトリラクタンスモータのモータ装置の製造方法に関する。 The present invention relates to a method for manufacturing a motor device, and more particularly to a method for manufacturing a motor device for a switched reluctance motor using a ferromagnetic material for the rotor.
 従来から様々な技術分野において、交流の周波数を変化させることで回転数を制御でき、安定した回転数を得られる三相モータが動力源として用いられている。また、回転子に強磁性体を用いるスイッチトリラクタンスモータも提案されている(例えば特許文献1を参照)。また、複数の相を備えた多相巻線を複数系統備えたモータ装置も提案されている。 Conventionally, in various technical fields, three-phase motors have been used as power sources because they can control the number of revolutions by changing the frequency of the alternating current and obtain a stable number of revolutions. A switched reluctance motor using a ferromagnetic material for the rotor has also been proposed (see Patent Document 1, for example). Also proposed is a motor device having a plurality of systems of polyphase windings each having a plurality of phases.
 図10は、従来の6相巻線を2系統備えたモータ装置の駆動回路を簡略化して示す回路図である。図10に示すように、従来のモータ装置は、第1系統の6相巻線としてA1相コイル、B1相コイル、C1相コイル、D1相コイル、E1相コイルおよびF1相コイルを有し、第2系統の6相巻線としてA2相コイル、B2相コイル、C2相コイル、D2相コイル、E2相コイルおよびF2相コイルを有している。また、A1相コイルとA2相コイル、B1相コイルとB2相コイル、C1相コイルとC2相コイル、D1相コイルとD2相コイル、E1相コイルとE2相コイル、およびF1相コイルとF2相コイルは、それぞれ並列接続されると共に、A-F相が直列接続されている。 FIG. 10 is a circuit diagram showing a simplified drive circuit of a conventional motor device having two systems of six-phase windings. As shown in FIG. 10, the conventional motor device has an A1-phase coil, a B1-phase coil, a C1-phase coil, a D1-phase coil, an E1-phase coil and an F1-phase coil as six-phase windings of the first system. It has an A2-phase coil, a B2-phase coil, a C2-phase coil, a D2-phase coil, an E2-phase coil, and an F2-phase coil as two systems of six-phase windings. Also, A1 phase coil and A2 phase coil, B1 phase coil and B2 phase coil, C1 phase coil and C2 phase coil, D1 phase coil and D2 phase coil, E1 phase coil and E2 phase coil, and F1 phase coil and F2 phase coil are connected in parallel, and the AF phases are connected in series.
 また、F相コイルとA相コイルの間、A相コイルとB相コイルの間、B相コイルとC相コイルの間、C相コイルとD相コイルの間、D相コイルとE相コイルの間、およびE相コイルとF相コイルの間は、それぞれスイッチインバータ部のA相スイッチからF相スイッチに接続され、各スイッチがオンの場合には電位Va~Vfが供給される。このようなモータ装置では、スイッチインバータ部のA相スイッチからF相スイッチが順次オン/オフ切り替えされることで、各コイルの両端に印加される電位差によって電流が流れ、回転子が回転される。 Also, between the F-phase coil and the A-phase coil, between the A-phase coil and the B-phase coil, between the B-phase coil and the C-phase coil, between the C-phase coil and the D-phase coil, between the D-phase coil and the E-phase coil and between the E-phase coil and the F-phase coil are connected to the A-phase switch to the F-phase switch of the switch inverter unit, respectively, and the potentials Va to Vf are supplied when each switch is on. In such a motor device, the A-phase switch to the F-phase switch of the switch inverter section are sequentially turned on/off, so that a current flows due to the potential difference applied across each coil, and the rotor rotates.
特開2016-103957号公報JP 2016-103957 A
 しかし従来のモータ装置では、2系統の対応する各相(例えばA1相とA2相)は固定子の対向するティース(突極)に巻回され、コイルの両端が並列接続される。そのため2系統の6相巻線では、合計12本の配線が固定子の外周で引き回されて直並列に接続されることになり、結線作業が煩雑化するという問題があった。固定子のティース数を増加させて、2系統以上の6相巻線を巻回する場合にはさらに配線数が増加し、結線作業がさらに煩雑化してしまう。 However, in a conventional motor device, each corresponding phase of two systems (for example, A1 phase and A2 phase) is wound around the opposing teeth (salient poles) of the stator, and both ends of the coil are connected in parallel. Therefore, in two systems of six-phase windings, a total of 12 wires are routed around the outer periphery of the stator and connected in series and parallel, which complicates the connection work. If the number of teeth of the stator is increased and two or more six-phase windings are wound, the number of wires increases and the connection work becomes even more complicated.
 そこで本発明は、上記従来の問題点に鑑みなされたものであり、複数系統の多相巻線を固定子のティース部に巻回する際に、結線作業を容易に行うことが可能なモータ装置の製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, the present invention has been devised in view of the above-described conventional problems, and is a motor apparatus capable of easily performing a connection work when winding a plurality of systems of polyphase windings around teeth of a stator. It aims at providing the manufacturing method of.
 上記課題を解決するために、本発明のモータ装置の製造方法は、回転軸を中心に回転可能に配置された回転子と、内周に複数のティース部が形成された固定子を有するモータ装置の製造方法であって、1本の導線で複数の巻線を連続して巻回する連続巻回工程と、連続した前記巻線が前記スロットの並び順となるように前記巻線を前記スロットに挿入する挿入工程と、前記導線における前記巻線の間の中継点を電気接点部に電気的に接続する接続工程とを備えることを特徴とする。 In order to solve the above-described problems, a method for manufacturing a motor device according to the present invention provides a motor device having a rotor arranged to be rotatable about a rotation axis and a stator having a plurality of teeth formed on the inner circumference. A manufacturing method of , comprising: a continuous winding step of continuously winding a plurality of windings with a single conductor wire; and a connecting step of electrically connecting a relay point between the windings of the conducting wire to an electrical contact portion.
 このような本発明のモータ装置の製造方法では、連続した巻線14がスロットの並び順となるように挿入し、中継点を電気接点部に電気的に接続するため、巻線間の接続が不要となり、巻線間における導線の取り回しと結線作業が容易となる。 In the manufacturing method of the motor device of the present invention, since the continuous windings 14 are inserted in the order of the slots and the relay points are electrically connected to the electrical contact portions, the windings can be easily connected. This eliminates the need for a lead wire, which facilitates routing and connection of wires between windings.
 また、本発明の一態様では、前記接続工程では、前記中継点を前記電気接点部に抵抗溶接する。 Further, in one aspect of the present invention, in the connecting step, the relay point is resistance-welded to the electrical contact portion.
 また、本発明の一態様では、前記導線における前記巻線と前記中継点の間に、絶縁性材料で構成された補強部材を設ける補強工程を備える。 Further, in one aspect of the present invention, a reinforcing step of providing a reinforcing member made of an insulating material between the winding and the relay point of the conducting wire is provided.
 また、本発明の一態様では、前記連続巻回工程では、一つの前記巻線を仮巻部に巻回した後に、前記導線の前記中継点を折返部で折り返して、次の前記巻線を巻回する。 In one aspect of the present invention, in the continuous winding step, after one winding is wound around a temporary winding portion, the relay point of the conducting wire is folded back at a folding portion, and the next winding is wound. winding.
 また、本発明の一態様では、前記仮巻部は、先入部と後入部を備えており、前記巻線は前記先入部と前記後入部に交互に巻回し、前記挿入工程では、前記先入部に巻回された前記巻線を前記スロットに挿入した後に、前記後入部に巻回された前記巻線を前記スロットに挿入する。 Further, in one aspect of the present invention, the temporary winding portion includes a first-entry portion and a last-entry portion, the winding is alternately wound around the first-entry portion and the last-entry portion, and in the inserting step, the first-entry portion After inserting the winding wound in the back-entry portion into the slot, the winding wound in the rear entry portion is inserted into the slot.
 また、本発明の一態様では、前記折返部を前記電気接点部として用いる。 Further, in one aspect of the present invention, the folded portion is used as the electrical contact portion.
 本発明では、複数系統の多相巻線を固定子のティース部に巻回する際に、結線作業を容易に行うことが可能なモータ装置の製造方法を提供することができる。 According to the present invention, it is possible to provide a method of manufacturing a motor device that facilitates the connection work when winding multiple systems of multiphase windings around the teeth of the stator.
第1実施形態に係るモータ装置におけるモータ部10の構成を示す図であり、図1(a)は回路図であり、図1(b)はモータ部10の構造例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structure of the motor part 10 in the motor apparatus which concerns on 1st Embodiment, Fig.1 (a) is a circuit diagram, FIG.1(b) is a schematic diagram which shows the structural example of the motor part 10. FIG. 第1実施形態に係るモータ装置のモータ部10とスイッチインバータ部の接続を示す等価回路図である。3 is an equivalent circuit diagram showing connection between a motor section 10 and a switch inverter section of the motor device according to the first embodiment; FIG. 第1実施形態に係るモータ装置におけるスイッチインバータ部の制御を示すタイミングチャートであり、図3(a)はスイッチインバータ部の各相スイッチに印加される信号を示し、図3(b)は各系統の各相コイルに流れる電流を示している。3A is a timing chart showing control of the switch inverter section in the motor device according to the first embodiment, FIG. 3A shows signals applied to each phase switch of the switch inverter section, and FIG. shows the current flowing in each phase coil. 第1実施形態に係るモータ装置の製造方法を示す模式図である。It is a mimetic diagram showing a manufacturing method of a motor device concerning a 1st embodiment. 第1実施形態に係るモータ装置の製造方法の工程を示すフローチャートである。4 is a flow chart showing steps of a method for manufacturing a motor device according to the first embodiment; 第2実施形態に係るモータ装置の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the motor apparatus which concerns on 2nd Embodiment. 第3実施形態に係るモータ装置の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the motor apparatus which concerns on 3rd Embodiment. 第3実施形態に係るモータ装置の製造方法を示す模式斜視図である。It is a model perspective view which shows the manufacturing method of the motor apparatus which concerns on 3rd Embodiment. 第4実施形態に係るモータ装置の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the motor apparatus which concerns on 4th Embodiment. 従来の6相巻線を2系統備えたモータ装置の駆動回路を簡略化して示す回路図である。1 is a circuit diagram showing a simplified drive circuit of a conventional motor device having two systems of six-phase windings; FIG.
 (第1実施形態)
 以下、本発明の実施形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1は、本実施形態に係るモータ装置におけるモータ部10の構成を示す図であり、図1(a)は回路図であり、図1(b)はモータ部10の構造例を示す模式図である。図1に示した例では、モータ装置は10極12スロットのスイッチトリラクタンスモータを構成している。
(First embodiment)
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or equivalent constituent elements, members, and processes shown in each drawing are denoted by the same reference numerals, and duplication of description will be omitted as appropriate. 1A and 1B are diagrams showing the configuration of a motor unit 10 in a motor device according to the present embodiment, FIG. 1A being a circuit diagram, and FIG. 1B being a schematic diagram showing a structural example of the motor unit 10. is. In the example shown in FIG. 1, the motor device constitutes a 10-pole, 12-slot switched reluctance motor.
 図1(a)(b)に示すように本実施形態のモータ部10は、回転子(ロータ)11と、回転子11の周囲に配置された固定子(ステータ)12を備えている。また、回転子11には、外周に沿って強磁性体からなるロータティース(突極)が配置されている。また固定子12は、コアバック部とその内周に突出して形成された複数のティース部13を備えている。また、各ティース部13に巻線(コイル)14が、A1相巻線~F1相巻線、A2相巻線~F2相巻線として巻回されている。A1相巻線~F1相巻線は、それぞれ1/6周期の差で配置されており第1系統の6相巻線(2つの3相巻線)を構成している。同様に、A2相巻線~F2相巻線は、それぞれ1/6周期の差で配置されており第2系統の6相巻線(2つの3相巻線)を構成している。 As shown in FIGS. 1(a) and 1(b), the motor section 10 of this embodiment includes a rotor 11 and a stator 12 arranged around the rotor 11. FIG. Rotor teeth (salient poles) made of a ferromagnetic material are arranged along the outer circumference of the rotor 11 . The stator 12 also has a core back portion and a plurality of tooth portions 13 protruding from the inner periphery thereof. Windings (coils) 14 are wound around each tooth portion 13 as A1-phase winding to F1-phase winding and A2-phase winding to F2-phase winding. The A1-phase winding to the F1-phase winding are arranged with a difference of 1/6 period, respectively, and constitute a first system of six-phase windings (two three-phase windings). Similarly, the A2-phase to F2-phase windings are arranged with a difference of 1/6 period, and form a second system of 6-phase windings (two 3-phase windings).
 図1(b)では、回転子11が10個のロータティースを備え、固定子12が12個のティース部13を備えた10極12スロットのスイッチトリラクタンスモータの例を示している。モータ部10の極数Pとスロット数Sは、10極12スロットには限定されないが、P:S=5:6の比率となっている。また、ティース部13への各相の巻回方法も集中巻きに限定されず分布巻きであってもよい。 FIG. 1(b) shows an example of a 10-pole, 12-slot switched reluctance motor in which the rotor 11 has 10 rotor teeth and the stator 12 has 12 teeth portions 13 . The number of poles P and the number of slots S of the motor unit 10 are not limited to 10 poles and 12 slots, but the ratio is P:S=5:6. Further, the method of winding each phase around the tooth portion 13 is not limited to concentrated winding, and may be distributed winding.
 コアバック部は、回転子11の外側に回転子11の外周を円周状に取り囲むように配置された部分であり、内周に複数のティース部13が等間隔に突出して形成されている。コアバック部には公知のものを用いることができ、構成する材料や構造は限定されない。また、コアバック部よりも外周には別途モータハウジング等の部材が設けられている。 The core back portion is a portion that is arranged on the outer side of the rotor 11 so as to circumferentially surround the outer periphery of the rotor 11, and a plurality of tooth portions 13 are formed on the inner periphery so as to protrude at regular intervals. A known material can be used for the core-back portion, and the material and structure of the core-back portion are not limited. Further, a member such as a motor housing is separately provided on the outer circumference of the core back portion.
 ティース部13は、コアバック部の内周面から回転子11に向かって突出して形成された突起状部分であり、各ティース部13は同じ長さと形状で形成されると共に等間隔に配置されており、各ティース部13の間には間隔が設けられてスロットを構成している。各ティース部13およびスロットには、巻線14が巻回されており、巻線14に電流が流れることでティース部13に磁界が発生する。 The teeth 13 are projecting portions formed to protrude from the inner peripheral surface of the core-back portion toward the rotor 11. Each of the teeth 13 has the same length and shape and is arranged at regular intervals. Intervals are provided between the teeth 13 to form slots. A winding 14 is wound around each tooth portion 13 and the slot, and a magnetic field is generated in the tooth portion 13 when a current flows through the winding 14 .
 第1系統の6相巻線A1~F1と第2系統の6相巻線A2~F2は、それぞれ隣接したティース部13に順に巻回されて環状に直列接続されている。つまり、固定子12のティース部13には、6個の相(n=6)が隣接して直列接続された6相巻線が、2系統(m=2)環状に直列接続されている。また、第1系統と第2系統の対応するA1~F1とA2~F2の各相は、固定子12において180度異なるティース部13に巻回されている。 The 6-phase windings A1 to F1 of the first system and the 6-phase windings A2 to F2 of the second system are wound in order on adjacent tooth portions 13 and connected in series in a ring. That is, on the tooth portion 13 of the stator 12, 6-phase windings in which 6 phases (n=6) are adjacently connected in series are annularly connected in series in two systems (m=2). The phases A1 to F1 and A2 to F2 corresponding to the first system and the second system are wound around teeth 13 of the stator 12 that are 180 degrees apart.
 図2は、本実施形態に係るモータ装置のモータ部10とスイッチインバータ部の接続を示す等価回路図である。図2に示すように、本実施形態のスイッチインバータ部は、電源電圧(+V)と接地電圧(0V)の間に6つのスイッチA相~F相が並列に接続されている。スイッチA相,C相,E相は、下流側に逆接続ダイオードが直列接続され、スイッチB相,D相,F相は、上流側に逆接続ダイオードが直列接続されている。これにより、合計6個のスイッチ(スイッチA相~スイッチF相)と6個の逆接続ダイオードで三相非対称型のスイッチインバータ部が構成されている。各スイッチは、それぞれドレインが電源電圧側(上流側)に接続され、ソースが接地電圧側(下流側)に接続されている。また、各スイッチとしてMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)を用いる場合には、ソースとドレインの間に寄生ダイオードが並列に逆接続された等価回路となる。また、各スイッチはスイッチ制御部(図示省略)によって動作が制御される。 FIG. 2 is an equivalent circuit diagram showing the connection between the motor section 10 and the switch inverter section of the motor device according to this embodiment. As shown in FIG. 2, in the switch inverter section of this embodiment, six switches A-phase to F-phase are connected in parallel between the power supply voltage (+V) and the ground voltage (0V). Reverse-connected diodes are connected in series on the downstream side of the switches A-phase, C-phase, and E-phase, and reverse-connected diodes are connected in series on the upstream side of the switches B-phase, D-phase, and F-phase. Thus, a total of six switches (switch A-phase to switch F-phase) and six reverse-connected diodes constitute a three-phase asymmetric switch inverter section. Each switch has a drain connected to the power supply voltage side (upstream side) and a source connected to the ground voltage side (downstream side). Also, when a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) is used as each switch, an equivalent circuit is obtained in which a parasitic diode is reversely connected in parallel between the source and the drain. The operation of each switch is controlled by a switch control section (not shown).
 図1および図2に示したように、モータ部10の巻線A1と巻線B1の間、および巻線A2と巻線B2の間はスイッチB相と逆接続ダイオードの間に接続されている。また、モータ部10の巻線B1と巻線C1の間、および巻線B2と巻線C2間はスイッチC相と逆接続ダイオードの間に接続されている。また、モータ部10の巻線C1と巻線D1の間、および巻線C2と巻線D2間はスイッチD相と逆接続ダイオードの間に接続されている。また、モータ部10の巻線D1と巻線E1の間、および巻線D2と巻線E2間はスイッチE相と逆接続ダイオードの間に接続されている。また、モータ部10の巻線E1と巻線F1の間、および巻線E2と巻線F2間はスイッチF相と逆接続ダイオードの間に接続されている。また、モータ部10の巻線F1と巻線A1の間、および巻線F2と巻線A2の間はスイッチA相と逆接続ダイオードの間に接続されている。つまり、第1系統および第2系統の各系統において互いに対応する巻線A1~巻線F1と巻線A2~巻線F2の各相は、それぞれスイッチインバータ部における同じ相に電気的に接続される。 As shown in FIGS. 1 and 2, the windings A1 and B1 and between the windings A2 and B2 of the motor section 10 are connected between the switch B phase and the reverse-connected diode. . Further, the windings B1 and C1 of the motor section 10 and the windings B2 and C2 are connected between the switch C phase and the reverse connection diode. The windings C1 and D1 of the motor section 10 and the windings C2 and D2 are connected between the D-phase switch and the reverse-connected diode. Further, the windings D1 and E1 of the motor section 10 and the windings D2 and E2 are connected between the E-phase switch and the reverse-connected diode. Further, the windings E1 and F1 of the motor section 10 and the windings E2 and F2 are connected between the F-phase switch and the reverse-connected diode. Further, the windings F1 and A1 of the motor section 10 and the windings F2 and A2 are connected between the switch A phase and the reverse-connected diode. That is, the phases of the windings A1 to F1 and the windings A2 to F2 corresponding to each other in each system of the first system and the second system are electrically connected to the same phase in the switch inverter section. .
 したがって、巻線A1,A2の両端には、スイッチA相のソース側電位Vaと、スイッチB相のドレイン側電位Vbが印加される。同様に、巻線B1,B2の両端には、スイッチB相のドレイン側電位Vbと、スイッチC相のソース側電位Vcとが印加される。同様に、巻線C1,C2の両端には、スイッチC相のソース側電位Vcと、スイッチD相のドレイン側電位Vdが印加される。同様に、巻線D1,D2の両端には、スイッチD相のドレイン側電位Vdと、スイッチE相のソース側電位Veが印加される。同様に、巻線E1,E2の両端には、スイッチE相のソース側電位Veと、スイッチF相のドレイン側電位Vfが印加される。同様に、巻線F1,F2の両端には、スイッチF相のドレイン側電位Vfと、スイッチA相のソース側電位Vaが印加される。 Therefore, the source side potential Va of the switch A phase and the drain side potential Vb of the switch B phase are applied to both ends of the windings A1 and A2. Similarly, the drain side potential Vb of the switch B phase and the source side potential Vc of the switch C phase are applied to both ends of the windings B1 and B2. Similarly, the source side potential Vc of the switch C phase and the drain side potential Vd of the switch D phase are applied across the windings C1 and C2. Similarly, the drain side potential Vd of the switch D phase and the source side potential Ve of the switch E phase are applied to both ends of the windings D1 and D2. Similarly, the E-phase source potential Ve of the switch E and the drain-side potential Vf of the F-phase switch are applied across the windings E1 and E2. Similarly, the drain side potential Vf of the switch F phase and the source side potential Va of the switch A phase are applied to both ends of the windings F1 and F2.
 図1および図2に示したように、本実施形態のモータ装置では、環状に直列接続された各相の巻線A1~F1,A2~F2の中間(中継点)をスイッチインバータ部に接続する。これにより、各相の巻線A1~F1,A2~F2に電流を供給するための配線を固定子12の外部に引き回す必要がなくなり、結線作業を容易に行うことが可能となる。 As shown in FIGS. 1 and 2, in the motor device of the present embodiment, intermediates (relay points) of windings A1 to F1 and A2 to F2 of each phase connected in series in a ring are connected to a switch inverter unit. . As a result, there is no need to run wires for supplying currents to the windings A1 to F1 and A2 to F2 of each phase outside the stator 12, making it possible to easily perform the wiring work.
 図3は、本実施形態に係るモータ装置におけるスイッチインバータ部の制御を示すタイミングチャートであり、図3(a)はスイッチインバータ部の各相スイッチに印加される信号を示し、図3(b)は各系統の各相コイルに流れる電流を示している。図3(a)の横軸は電気角(度)を示し、縦軸は各スイッチに印加されるオン信号とオフ信号を示している。図3(b)の横軸は電気角(度)を示し、縦軸は各巻線を流れる電流を示している。図3(b)においては、各系統の対応する巻線A1~巻線F1と巻線A2~巻線F2とをそれぞれA~Fとして代表して示している。 3A and 3B are timing charts showing the control of the switch inverter section in the motor device according to the present embodiment. FIG. 3A shows signals applied to each phase switch of the switch inverter section, and FIG. indicates the current flowing in each phase coil of each system. The horizontal axis of FIG. 3(a) indicates the electrical angle (degrees), and the vertical axis indicates the ON signal and OFF signal applied to each switch. The horizontal axis of FIG. 3B indicates the electrical angle (degrees), and the vertical axis indicates the current flowing through each winding. In FIG. 3B, corresponding windings A1 to F1 and windings A2 to F2 of each system are represented by A to F, respectively.
 図3(a)に示したように、A相~F相の各スイッチには、オン信号とオフ信号が180度(π)ずつ交互に印加される。また、A相~F相のオン信号とオフ信号は、それぞれ60度(π/3)ずつ位相がずれている。また、A相とD相、B相とE相、C相とF相は位相が180度(π)異なって互いに反転した信号が印加されている。換言すると、A相~F相の各スイッチには、A相、C相、E相と、B相、D相、F相の2つの三相交流信号が印加されている。したがって、巻線A1~巻線F1と巻線A2~巻線F2は、スイッチA相~F相で制御されることで、それぞれ2つの三相モータを備えた合計6相を有するモータとして機能する。 As shown in FIG. 3(a), on-signals and off-signals are applied alternately by 180 degrees (π) to each of the A-phase to F-phase switches. Also, the phases of the on-signals and off-signals of the A-phase to F-phase are shifted by 60 degrees (π/3) from each other. In addition, the A phase and the D phase, the B phase and the E phase, and the C phase and the F phase are applied with mutually inverted signals with a phase difference of 180 degrees (π). In other words, two three-phase AC signals of A-phase, C-phase, E-phase and B-phase, D-phase and F-phase are applied to each of the A-phase to F-phase switches. Therefore, the windings A1 to F1 and the windings A2 to F2 are controlled by the switches A to F to function as a motor having two three-phase motors and a total of six phases. .
 図3(b)に示したように、巻線A1~巻線F1と巻線A2~巻線F2を流れる電流は、スイッチインバータ部のA相~F相のオン信号よりも30度(π/6)だけ位相が進んだものとなる。また、A相とD相、B相とE相、C相とF相は位相が180度(π)異なって互いに反転した電流が流れる。このとき、コイルである巻線A1~巻線F1と巻線A2~巻線F2は環状に直列に接続されており、各巻線の間がスイッチインバータ部の各スイッチに接続されているため、スイッチインバータ部の電源電位+Vからオン状態の各スイッチと巻線を経て、他のオン状態のスイッチを経て接地電位に電流が流れる。これにより、巻線A1~巻線F1と巻線A2~巻線F2には60度ずつ位相が異なる電流が順に流れてティース部13に磁界が発生し、回転子11を回転させることができる。 As shown in FIG. 3(b), the currents flowing through the windings A1 to F1 and the windings A2 to F2 are 30 degrees (π/ 6) is advanced in phase. In addition, the phases A and D, the B phase and the E phase, and the C phase and the F phase are different in phase by 180 degrees (π), and mutually opposite currents flow. At this time, the windings A1 to F1 and the windings A2 to F2, which are coils, are connected in series in a ring, and the spaces between the windings are connected to the switches of the switch inverter section. A current flows from the power supply potential +V of the inverter section to the ground potential through each of the ON-state switches and windings, and then through the other ON-state switches. As a result, currents with different phases of 60 degrees flow sequentially through the windings A1 to F1 and the windings A2 to F2, and magnetic fields are generated in the tooth portions 13, and the rotor 11 can be rotated.
 次に、モータ装置の製造方法について詳細に説明する。図4は、本実施形態に係るモータ装置の製造方法を示す模式図である。本実施形態では、複数の巻線14は一本の導線によって連続して巻回していき、一つの巻線14を巻回した後に導線を切断せず、そのまま中継点を経て次の巻線14を巻回していく。図1および図4に示した例では12本のティース部13を備えて、各ティース部13の間のスロットも12箇所に設けられており、ティース部13のA1~F2に対応する各スロットに、連続した12個の巻線14が隣り合うように挿入される。また、各巻線14から延長された導線の中継点は、電気接点部20a~20fと接触しており、抵抗溶接や半田付け等によって電気接点部20a~20fと各中継点が電気的に接続されている。ここで導線とは、導電性材料の周囲を絶縁材料で被覆した被覆電線である。 Next, a method for manufacturing the motor device will be described in detail. FIG. 4 is a schematic diagram showing the method of manufacturing the motor device according to this embodiment. In this embodiment, the plurality of windings 14 are continuously wound by one conductor wire, and after winding one winding 14, the conductor wire is not cut, and the next winding 14 is connected directly through the relay point. winding. In the example shown in FIGS. 1 and 4, 12 teeth 13 are provided, and 12 slots are provided between the teeth 13. Each slot corresponding to A1 to F2 of the teeth 13 has , 12 continuous windings 14 are inserted side by side. Further, the relay points of the conductors extending from the windings 14 are in contact with the electrical contact portions 20a 1 to 20f 2 , and the electrical contact portions 20a 1 to 20f 2 and the respective relay points are electrically connected by resistance welding, soldering, or the like. properly connected. Here, the conducting wire is a coated wire in which a conductive material is covered with an insulating material.
 図5は、本実施形態に係るモータ装置の製造方法の工程を示すフローチャートである。ステップS1の連続巻回工程では、1本の導線で複数の巻線14を連続して巻回する。ここで巻線14の数は限定されず、ティース部の個数nに対応した数の巻線を連続して巻回する。図1,図4に示した例では、ティース部13とスロットの数が12であるため、巻線14の個数n=12である。各巻線14を巻回するため、一つの巻線から次の巻線14に至るまで導線が延長されており、二つの巻線14の間には中継点が設けられる。巻線14の巻回方法としては、仮巻き用の治具(仮巻部)を別途用意して、仮巻部上で全ての巻線14を巻回した後にステップS2に移行するとしてもよく、仮巻部上で一つの巻線14を巻回した度にステップS2に移行するとしてもよい。 FIG. 5 is a flow chart showing steps of a method for manufacturing a motor device according to this embodiment. In the continuous winding process of step S1, a plurality of windings 14 are continuously wound with one conductor. Here, the number of windings 14 is not limited, and the number of windings corresponding to the number n of teeth is wound continuously. In the example shown in FIGS. 1 and 4, the number of teeth 13 and slots is 12, so the number of windings 14 is n=12. In order to wind each winding 14, a conductor is extended from one winding to the next winding 14, and a relay point is provided between the two windings 14. As shown in FIG. As a method of winding the winding 14, a temporary winding jig (temporary winding portion) may be prepared separately, and after all the windings 14 are wound on the temporary winding portion, the process may proceed to step S2. Alternatively, the process may proceed to step S2 each time one winding 14 is wound on the temporary winding portion.
 ステップS2の挿入工程では、連続した巻線14がスロットの並び順A1~F2となるように巻線14をスロットに挿入する。このとき、ステップS1において仮巻部上で全ての巻線14を巻回した場合には、複数のスロットに全ての巻線14を一括または順次に挿入する。また、ステップS1において巻線14を一つずつ巻回する場合には、ティース部13のA1~F2に対応する各スロットに巻線14を巻回する度に挿入し、全てのスロットに巻線14が挿入されるまでステップS1とステップS2を繰り返す。全ての個数の巻線14の巻回と挿入が完了した後に、ステップS3に移行する。 In the insertion step of step S2, the windings 14 are inserted into the slots so that the continuous windings 14 are arranged in the order of slots A1 to F2. At this time, when all the windings 14 are wound on the provisional winding portion in step S1, all the windings 14 are inserted in a plurality of slots collectively or sequentially. Further, when the windings 14 are wound one by one in step S1, each time the windings 14 are wound, they are inserted into the slots corresponding to A1 to F2 of the tooth portion 13, and the windings are inserted into all the slots. Steps S1 and S2 are repeated until 14 is inserted. After completing the winding and insertion of all the windings 14, the process proceeds to step S3.
 ステップS3の接続工程では、導線における巻線14の間の中継点を電気接点部20a~20fに電気的に接続する。ここで、電気接点部20a~20fは、連続巻回工程で巻線14の巻回作業で用いた仮巻部の一部を用いるとしてもよい。また、コアバック部の外部に別途設けられたバスバーや電極端子を電気接点部20a~20fとして用いるとしてもよい。具体的な電気的接続方法は限定されないが、各巻線14に対応した中継点と電気接点部20a~20fを接触させた状態で、抵抗溶接や半田付けを用いることで電気的接続を確保することができる。中継点と電気接点部20a~20fを電気的に接続した後にステップS4に移行する。 In the connecting step of step S3, the relay points between the windings 14 of the conductive wire are electrically connected to the electrical contact portions 20a 1 to 20f 2 . Here, the electric contact portions 20a 1 to 20f 2 may be part of the temporary winding portion used in the winding operation of the winding 14 in the continuous winding process. Alternatively, bus bars or electrode terminals separately provided outside the core back portion may be used as the electrical contact portions 20a 1 to 20f 2 . The specific electrical connection method is not limited, but the electrical connection is ensured by using resistance welding or soldering while the relay point corresponding to each winding 14 and the electrical contact portions 20a 1 to 20f 2 are in contact. can do. After electrically connecting the relay point and the electrical contact portions 20a 1 to 20f 2 , the process proceeds to step S4.
 ステップS4の補強工程では、導線における巻線14と中継点の間に、絶縁性材料で構成された補強部材を設ける。補強部材を構成する材質は限定されず、絶縁性樹脂や絶縁性接着剤等の従来公知のものを用いることができる。また、補強部材の形状や形態も限定されず、モータ部10の外周に取り回しされた導線を部分的に絶縁テープで固定するとしてもよく、導線に部分的に絶縁性樹脂を塗布して固めるとしてもよい。本実施形態では補強工程で補強部材を設ける例を示したが、導線と中継点の機械的強度が確保できる場合には、補強工程を省略するとしてもよい。 In the reinforcing step of step S4, a reinforcing member made of an insulating material is provided between the winding 14 and the relay point of the conducting wire. The material constituting the reinforcing member is not limited, and conventionally known materials such as insulating resins and insulating adhesives can be used. Further, the shape and form of the reinforcing member are not limited, and the conductor wire routed around the outer periphery of the motor unit 10 may be partially fixed with an insulating tape, or the conductor wire may be partially coated with an insulating resin and hardened. good too. In this embodiment, an example in which the reinforcing member is provided in the reinforcing process is shown, but the reinforcing process may be omitted if the mechanical strength of the conducting wire and the relay point can be ensured.
 図4に示した例では、一つの巻線14を仮巻部に巻回した後に、巻線14から延長された導線の中継点を折返部で折り返して、次の巻線14を巻回している。これにより複数の巻線14を一括して仮巻部に巻回しながら、中継点を巻線14から延長した位置で保持することができる。また、折返部としてバスバーや端子部となる部材を用い、折返部をそのまま電気接点部20a~20fとして使用するとしてもよい。折返部を電気接点部20a~20fとして用いることで、中継点に電気接点部20a~20fを接触させる作業を連続巻回工程と同時に実施できるため工程の簡略化を図ることができる。 In the example shown in FIG. 4, after one winding 14 is wound around the temporary winding portion, the relay point of the conductor extending from the winding 14 is folded back at the folded portion, and the next winding 14 is wound. there is As a result, the relay points can be held at positions extending from the windings 14 while the plurality of windings 14 are collectively wound around the temporary winding portion. Also, a member that becomes a bus bar or a terminal portion may be used as the folded portion, and the folded portion may be used as the electrical contact portions 20a 1 to 20f 2 as they are. By using the folded portions as the electrical contact portions 20a 1 to 20f 2 , the operation of bringing the electrical contact portions 20a 1 to 20f 2 into contact with the relay points can be performed simultaneously with the continuous winding process, thereby simplifying the process. .
 上述したように、本実施形態のモータ装置の製造方法では、連続した巻線14がスロットの並び順となるように挿入し、中継点を電気接点部20a~20fに電気的に接続するため、巻線14間の接続を別途行う必要が無く、巻線14間における導線の取り回しと結線作業が容易となる。 As described above, in the method of manufacturing the motor device of the present embodiment, the continuous windings 14 are inserted so as to be arranged in the order of the slots, and the relay points are electrically connected to the electrical contact portions 20a 1 to 20f 2 . Therefore, there is no need to connect the windings 14 separately, and the wiring and connection work between the windings 14 are facilitated.
 (第2実施形態)
 次に、本発明の第2実施形態について図6を用いて説明する。第1実施形態と重複する内容は説明を省略する。本実施形態では、中継点を折返部で折り返さず、巻線14の間で導線が最短となるようにして、中継点が巻線14に近い位置に設けられている点が第1実施形態と異なっている。図6は、本実施形態に係るモータ装置の製造方法を示す模式図である。
(Second embodiment)
Next, a second embodiment of the invention will be described with reference to FIG. The description of the content that overlaps with the first embodiment is omitted. This embodiment is different from the first embodiment in that the relay point is not folded at the folded portion and the conductor wire between the windings 14 is made the shortest so that the relay point is provided at a position close to the winding 14 . different. FIG. 6 is a schematic diagram showing the method of manufacturing the motor device according to this embodiment.
 本実施形態の連続巻回工程では、図6に示すように、連続する巻線14の間隔が最短となるように導線を延長し、複数の巻線14を巻回する。また挿入工程では、ティース部13のA1~F2に対応する各スロットに、連続した12個の巻線14が隣り合うように挿入される。このとき、巻線14の間隔はスロットの間隔と略同程度とされているため、中継点は隣接するティース部13の中間に位置している。接続工程では、別途用意した電気接点部20a~20fを中継点に接触させ、両者が接触した位置を抵抗溶接や半田付けすることで、電気接点部20a~20fと中継点を電気的に接続する。接続工程での他の電気的接続例としては、弾性体により電気端子で中継点を挟持するワニグリップなどを用いるとしてもよい。 In the continuous winding process of the present embodiment, as shown in FIG. 6, the conductive wire is extended so that the distance between successive windings 14 is the shortest, and a plurality of windings 14 are wound. In the inserting step, 12 consecutive windings 14 are inserted into the respective slots corresponding to A1 to F2 of the teeth 13 so as to be adjacent to each other. At this time, since the interval between the windings 14 is approximately the same as the interval between the slots, the relay point is positioned between the adjacent tooth portions 13 . In the connection process, the separately prepared electrical contact portions 20a 1 to 20f 2 are brought into contact with the relay points, and resistance welding or soldering is performed on the contact positions of the two to electrically connect the electrical contact portions 20a 1 to 20f 2 and the relay points. connected to each other. As another example of electrical connection in the connection step, a crocodile grip or the like may be used in which the relay point is held between the electrical terminals by an elastic body.
 本実形態のモータ装置の製造方法でも、巻線14間の導線を短くすることで、電気接点部20a~20fと中継点の電気的な接続を容易に実施することができるため、巻線14間における導線の取り回しと結線作業が容易となる。 In the manufacturing method of the motor device according to the present embodiment as well, by shortening the conductor wire between the windings 14, electrical connection between the electrical contact portions 20a 1 to 20f 2 and the relay points can be easily performed. This facilitates routing and connection of the conductors between the wires 14 .
 (第3実施形態)
 次に、本発明の第3実施形態について図7および図8を用いて説明する。第1実施形態と重複する内容は説明を省略する。本実施形態では、複数の巻線14を先入群と後入群の二つのグループに区分して、挿入工程を2段階で実施する点が第1実施形態とは異なっている。
(Third Embodiment)
Next, a third embodiment of the invention will be described with reference to FIGS. 7 and 8. FIG. The description of the content that overlaps with the first embodiment is omitted. This embodiment differs from the first embodiment in that the plurality of windings 14 are divided into two groups, a first-in group and a last-in group, and the insertion process is performed in two stages.
 図7は、本実施形態に係るモータ装置の製造方法を示す模式図である。図7に示すように、複数の巻線14は1本の導線を連続して巻回して構成されているが、各巻線14はそれぞれ交互に先入群30aと後入群30bとにグループ分けされている。図7に示した例ではティース部13のA1,C1,E1,A2,C2,E2に対応するスロットに挿入される巻線14が先入群30aとされ、B1,D1,F1,B2,D2,F2に対応するスロットに挿入される巻線14が後入群30bとされている。 FIG. 7 is a schematic diagram showing the manufacturing method of the motor device according to this embodiment. As shown in FIG. 7, the plurality of windings 14 are formed by continuously winding one conductor wire, and the windings 14 are alternately grouped into a first-come-in group 30a and a last-come-in group 30b. ing. In the example shown in FIG. 7, the windings 14 inserted into the slots corresponding to A1, C1, E1, A2, C2, E2 of the tooth portion 13 are the first-in group 30a, and B1, D1, F1, B2, D2, The windings 14 inserted into the slots corresponding to F2 are the last group 30b.
 図8は、本実施形態に係るモータ装置の製造方法を示す模式斜視図である。図8に示すように、仮巻部として先入部31aと後入部31bを二つ用意しておき、先入部31aのアーム32aに先入群30aの巻線14を巻回し、後入部31bのアーム32bに後入群30bの巻線14を巻回する。ここで複数の巻線14は、先入群30aと後入群30bに交互に連続して巻回され、各巻線14の間は導線の中継点を経由する必要がある。そこで本実施形態の連続巻回工程では折返部30cを用意しておき、一つの巻線14をアーム32aまたはアーム32bに巻回した後に、アーム32cまで導線を延長して中継点で折返し、次のアーム32bまたはアーム32aで巻線14の巻回を継続する。これにより、先入群30aと後入群30bに巻線14をグループ分けしながら、中継点を経由して全ての巻線14を一本の導線で連続して巻回することができる。 FIG. 8 is a schematic perspective view showing the manufacturing method of the motor device according to this embodiment. As shown in FIG. 8, a first-entry section 31a and a last-entry section 31b are prepared as temporary winding sections. , the winding 14 of the last group 30b is wound. Here, the plurality of windings 14 are alternately and continuously wound in the first group 30a and the last group 30b, and the windings 14 must pass through relay points of conducting wires. Therefore, in the continuous winding process of the present embodiment, the folded portion 30c is prepared, and after winding one winding 14 around the arm 32a or the arm 32b, the conducting wire is extended to the arm 32c and folded back at a relay point. Continue winding of winding 14 on arm 32b or arm 32a. As a result, while the windings 14 are grouped into the first group 30a and the last group 30b, all the windings 14 can be continuously wound with a single wire via relay points.
 挿入工程では、最初に先入部31aに巻回された巻線14を対応するスロットに挿入し、その後に後入部31bに巻回された巻線14を対応するスロットに挿入する。図1(b)に示したように、ティース部13はA1~F2までが順に並んで配置されているため、先入群30aと後入群30bの巻線14を対応するスロットに挿入する際には、ティース部13を一つ空けた間隔でそれぞれの巻線14を挿入することとなる。これにより、10極12スロットのような多数のスロットを備えて、スロット同士の間隔が狭いモータ部10を製造する際にも、巻線14の挿入作業を容易に行うことが可能となる。 In the inserting step, the windings 14 wound around the first entry portion 31a are first inserted into the corresponding slots, and then the windings 14 wound around the last entry portion 31b are inserted into the corresponding slots. As shown in FIG. 1B, since A1 to F2 of the tooth portions 13 are arranged in order, when inserting the windings 14 of the first-in group 30a and the last-in group 30b into the corresponding slots, , each winding 14 is inserted at intervals of one tooth portion 13 . This makes it possible to easily insert the windings 14 even when manufacturing the motor section 10 having a large number of slots such as 10 poles and 12 slots and narrow intervals between the slots.
 本実施形態では、複数の巻線14を二つのグループに区分して、挿入工程を2回に分割した例を示したが、グループの区分をさらに細分化して挿入工程の分割数を増加させてもよい。ただし、区分するグループ数と挿入工程の分割数を増加させると、一度の挿入動作でスロットに挿入できる巻線14の数が減少するため、挿入工程全体での作業時間が増加する。したがって、一つのグループには最低でも二つの巻線14が含まれていることが好ましい。 In the present embodiment, an example is shown in which the plurality of windings 14 are divided into two groups and the insertion process is divided into two. good too. However, if the number of groups to be divided and the number of divisions of the insertion process are increased, the number of windings 14 that can be inserted into the slots in one insertion operation is reduced, and the work time for the entire insertion process is increased. Therefore, it is preferable that at least two windings 14 are included in one group.
 図8に示した例では、仮巻部である先入部31aと後入部31bに交互に巻線14を巻回し、各巻線14から延長された導線の中継点を折返部30cのアーム32cで折り返している。これにより複数の巻線14を一括して先入部31aと後入部31bに巻回しながら、中継点は巻線14から延長した位置まで延長される。したがって、先入群30aと後入群30bをそれぞれスロットに挿入する際には、延長された導線の長さだけ別グループから離れた位置まで挿入対象の巻線14を移動することができ、作業効率が向上する。また、折返部のアーム32cとしてバスバーや端子部となる部材を用い、電気接点部20a~20fとして使用することで、中継点に電気接点部20a~20fを接触させる作業を連続巻回工程と同時に実施できるため工程の簡略化を図ることができる。 In the example shown in FIG. 8, the windings 14 are alternately wound around the first-entry portion 31a and the last-entry portion 31b, which are temporary winding portions, and the relay points of the conductor wires extended from the respective windings 14 are folded back by the arm 32c of the folding portion 30c. ing. As a result, the relay points are extended from the windings 14 to positions extending from the windings 14 while the plurality of windings 14 are collectively wound around the first-entry portion 31a and the last-entry portion 31b. Therefore, when inserting the first group 30a and the last group 30b into the respective slots, the winding 14 to be inserted can be moved to a position separated from the other group by the length of the extended conductor wire, thereby improving work efficiency. improves. In addition, by using a bus bar or a member serving as a terminal portion as the arm 32c of the folded portion and using it as the electrical contact portions 20a 1 to 20f 2 , the work of bringing the electrical contact portions 20a 1 to 20f 2 into contact with the relay points can be performed continuously. Since it can be performed simultaneously with the turning process, the process can be simplified.
 (第4実施形態)
 次に、本発明の第4実施形態について図9を用いて説明する。第1実施形態と重複する内容は説明を省略する。図9は、本実施形態に係るモータ装置の製造方法を示す模式図である。本実施形態では補強工程において、導線における巻線14と中継点の間に、絶縁性材料で構成された補強部材40を設ける。
(Fourth embodiment)
Next, a fourth embodiment of the invention will be described with reference to FIG. The description of the content that overlaps with the first embodiment is omitted. FIG. 9 is a schematic diagram showing a method of manufacturing the motor device according to this embodiment. In this embodiment, in the reinforcing step, a reinforcing member 40 made of an insulating material is provided between the winding 14 and the relay point of the conductor.
 図9に示した例では、ティース部13間のスロットに全ての巻線14を挿入した後に補強部材40を設けている。この場合には、巻線14、ティース部13、電気接点部20a~20fおよび中継点の位置関係が定まった後に、巻線14と中継点の間に補強部材40を設けるため、より確実に導線の補強をして断線や破損を抑制することができる。補強工程は、接続工程よりも前に実施するとしてもよく、後に実施するとしてもよい。 In the example shown in FIG. 9, the reinforcing member 40 is provided after all the windings 14 are inserted into the slots between the tooth portions 13 . In this case, after the positional relationship between the windings 14, the teeth 13, the electrical contacts 20a 1 to 20f 2 and the relay points is determined, the reinforcing member 40 is provided between the windings 14 and the relay points, so that the It is possible to suppress disconnection and damage by reinforcing the conductors. The reinforcing step may be performed before or after the connecting step.
 また補強工程は、図8に示した仮巻部に巻線14を巻回した状態で、挿入工程の前に実施するとしてもよい。この場合には、挿入工程で巻線14をスロットに挿入する作業時に、中継点を含む導線の絡まりや他部材との接触による断線を抑制することができる。 Also, the reinforcing process may be performed before the inserting process in a state in which the winding 14 is wound around the temporary winding portion shown in FIG. In this case, when the winding 14 is inserted into the slot in the insertion step, it is possible to prevent the wire including the relay points from being entangled or broken due to contact with other members.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.
10…モータ部
11…回転子
12…固定子
13…ティース部
14…巻線
20a~20f…電気接点部
30a…先入群
30b…後入群
30c…折返部
31a…先入部
31b…後入部
32a~32c…アーム
40…補強部材

 
DESCRIPTION OF SYMBOLS 10... Motor part 11... Rotor 12... Stator 13... Teeth part 14... Winding 20a1-20f2 ... Electric contact part 30a... First-in group 30b... Last-in group 30c ... Folding part 31a... First-in part 31b... Last-in part 32a to 32c Arm 40 Reinforcing member

Claims (6)

  1.  回転軸を中心に回転可能に配置された回転子と、内周に複数のティース部とスロットが形成された固定子を有するモータ装置の製造方法であって、
     1本の導線で連続した複数の巻線を巻回する連続巻回工程と、
     連続した前記巻線が前記スロットの並び順となるように前記巻線を前記スロットに挿入する挿入工程と、
     前記導線における前記巻線の間の中継点を電気接点部に電気的に接続する接続工程とを備えることを特徴とするモータ装置の製造方法。
    A method of manufacturing a motor device having a rotor arranged to be rotatable around a rotation axis and a stator having a plurality of teeth and slots formed on the inner circumference thereof, the method comprising:
    A continuous winding step of winding a plurality of continuous windings with a single conductor;
    an inserting step of inserting the windings into the slots so that the continuous windings are arranged in the order of the slots;
    A method of manufacturing a motor device, comprising: a connecting step of electrically connecting a relay point between the windings of the conducting wire to an electrical contact portion.
  2.  請求項1に記載のモータ装置の製造方法であって、
     前記接続工程では、前記中継点を前記電気接点部に抵抗溶接することを特徴とするモータ装置の製造方法。
    A method for manufacturing a motor device according to claim 1,
    A method of manufacturing a motor device, wherein in the connecting step, the relay point is resistance-welded to the electrical contact portion.
  3.  請求項1または2に記載のモータ装置の製造方法であって、
     前記導線における前記巻線と前記中継点の間に、絶縁性材料で構成された補強部材を設ける補強工程を備えることを特徴とするモータ装置の製造方法。
    A method for manufacturing a motor device according to claim 1 or 2,
    A method of manufacturing a motor device, comprising: a reinforcing step of providing a reinforcing member made of an insulating material between the winding and the relay point of the conducting wire.
  4.  請求項1から3の何れか一つに記載のモータ装置の製造方法であって、
     前記連続巻回工程では、一つの前記巻線を仮巻部に巻回した後に、前記導線の前記中継点を折返部で折り返して、次の前記巻線を巻回することを特徴とするモータ装置の製造方法。
    A method for manufacturing a motor device according to any one of claims 1 to 3,
    In the continuous winding step, after one winding is wound around a temporary winding portion, the relay point of the conductor wire is folded back at a folding portion, and the next winding is wound. Method of manufacturing the device.
  5.  請求項4に記載のモータ装置の製造方法であって、
     前記仮巻部は、先入部と後入部を備えており、前記巻線は前記先入部と前記後入部に交互に巻回し、
     前記挿入工程では、前記先入部に巻回された前記巻線を前記スロットに挿入した後に、前記後入部に巻回された前記巻線を前記スロットに挿入することを特徴とするモータ装置の製造方法。
    A method for manufacturing a motor device according to claim 4,
    The temporary winding portion includes a first-entry portion and a last-entry portion, and the winding is alternately wound around the first-entry portion and the last-entry portion,
    Manufacture of a motor device, wherein in the inserting step, after the winding wound around the first entry portion is inserted into the slot, the winding wound around the last entry portion is inserted into the slot. Method.
  6.  請求項4または5に記載のモータ装置の製造方法であって、
     前記折返部を前記電気接点部として用いることを特徴とするモータ装置の製造方法。

     
    A method for manufacturing a motor device according to claim 4 or 5,
    A method of manufacturing a motor device, wherein the folded portion is used as the electrical contact portion.

PCT/JP2022/014856 2021-10-28 2022-03-28 Method for manufacturing motor device WO2023074017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021177008A JP7088516B1 (en) 2021-10-28 2021-10-28 How to manufacture motor equipment
JP2021-177008 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023074017A1 true WO2023074017A1 (en) 2023-05-04

Family

ID=82100034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014856 WO2023074017A1 (en) 2021-10-28 2022-03-28 Method for manufacturing motor device

Country Status (2)

Country Link
JP (1) JP7088516B1 (en)
WO (1) WO2023074017A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005312214A (en) * 2004-04-22 2005-11-04 Daikin Ind Ltd Permanent magnet electric motor, driving method and manufacturing method for same, compressor, blower and air conditioner
JP2011234531A (en) * 2010-04-28 2011-11-17 Toyota Motor Corp Distributed winding stator structure using rectangular conductor
CN111864954A (en) * 2019-04-25 2020-10-30 广东威灵电机制造有限公司 Stator assembly, winding device and stator winding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005312214A (en) * 2004-04-22 2005-11-04 Daikin Ind Ltd Permanent magnet electric motor, driving method and manufacturing method for same, compressor, blower and air conditioner
JP2011234531A (en) * 2010-04-28 2011-11-17 Toyota Motor Corp Distributed winding stator structure using rectangular conductor
CN111864954A (en) * 2019-04-25 2020-10-30 广东威灵电机制造有限公司 Stator assembly, winding device and stator winding method

Also Published As

Publication number Publication date
JP7088516B1 (en) 2022-06-21
JP2023066323A (en) 2023-05-15

Similar Documents

Publication Publication Date Title
JP6107990B2 (en) Winding material for coil manufacturing
JP6623961B2 (en) Rotating machine stator
JP2005328661A (en) Sequentially-joined segment stator coil of rotating electric machine and manufacturing method of coil
JP5920258B2 (en) Coil manufacturing member, coil, rotating electric machine, and method of manufacturing coil
JP6941256B2 (en) Drive device
JP4567133B2 (en) Rotating electric machine and manufacturing method thereof
JP2022136858A (en) motor
CN111478478A (en) Motor stator and motor
JP2003189525A (en) Dynamo-electric machine
CN115149673A (en) Motor
WO2023032332A1 (en) Motor device
CN116195172A (en) Stator and motor
WO2023074017A1 (en) Method for manufacturing motor device
JP7176394B2 (en) Rotating electric machine
US20050017592A1 (en) Rotary electric machine having armature winding connected in delta-star connection
JP2001275291A (en) Stator of motor
CN107689700B (en) Stator and motor using same
JPH0759283A (en) Armature winding connection of three-phase ac motor
CN112953069B (en) Rotary electric machine
JP5897487B2 (en) Coil manufacturing member, coil, rotating electric machine, and method of manufacturing coil
KR100793807B1 (en) Winding method for 3 phases and multiple poles motor and the motor using the same
WO2020246408A1 (en) Busbar unit, stator, and busbar unit manufacturing method
WO2018003424A1 (en) Electric motor stator and method for manufacturing same
JP7339617B2 (en) motor device
WO2017126381A1 (en) Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE