WO2023073811A1 - Natural gas processing facility - Google Patents

Natural gas processing facility Download PDF

Info

Publication number
WO2023073811A1
WO2023073811A1 PCT/JP2021/039515 JP2021039515W WO2023073811A1 WO 2023073811 A1 WO2023073811 A1 WO 2023073811A1 JP 2021039515 W JP2021039515 W JP 2021039515W WO 2023073811 A1 WO2023073811 A1 WO 2023073811A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pipe
flare
natural gas
low
Prior art date
Application number
PCT/JP2021/039515
Other languages
French (fr)
Japanese (ja)
Inventor
徹 中山
Original Assignee
日揮グローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮グローバル株式会社 filed Critical 日揮グローバル株式会社
Priority to JP2023555933A priority Critical patent/JPWO2023073811A1/ja
Priority to PCT/JP2021/039515 priority patent/WO2023073811A1/en
Priority to CN202180101243.2A priority patent/CN117751267A/en
Priority to KR1020247004390A priority patent/KR20240088673A/en
Publication of WO2023073811A1 publication Critical patent/WO2023073811A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/01Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0259Modularity and arrangement of parts of the liquefaction unit and in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • F25J1/0278Unit being stationary, e.g. on floating barge or fixed platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/448Floating hydrocarbon production vessels, e.g. Floating Production Storage and Offloading vessels [FPSO]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/60Details about pipelines, i.e. network, for feed or product distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/90Details about safety operation of the installation

Definitions

  • the present invention relates to a natural gas processing facility that liquefies natural gas or separates and recovers components in natural gas.
  • the natural gas is pretreated to remove various impurities from the natural gas at the natural gas processing facility, and the natural gas after pretreatment is liquefied to produce LNG (Liquidized Natural Gas).
  • LNG Liquidized Natural Gas
  • a liquefaction process to obtain is performed.
  • a natural gas processing facility that separates and recovers heavy components from natural gas and ships it in the form of light hydrocarbon gas.
  • Natural gas processing facilities are equipped with a large number of equipment such as various processing towers and heat exchangers used for pretreatment, liquefaction, and separation of heavy components.
  • excess fluids may be generated in these devices, consisting mainly of combustible gases (such as light hydrocarbons and hydrogen sulfide).
  • the excess fluid is discharged from the flare stack section, which combusts combustible gas and discharges it to the outside in order to prevent the pressure inside the equipment from rising. Excess fluid discharged from the flare stack is also called flare gas.
  • a natural gas processing facility is provided with flare piping through which excess fluid discharged from equipment flows toward a flare stack.
  • a plurality of flare pipes are provided according to the pressure and properties of the device that discharges excess fluid.
  • Flare piping is piping equipment with a large diameter and a long arrangement distance among many piping systems provided in natural gas processing equipment. Therefore, from the viewpoint of suppressing construction costs and maintenance costs, there is a demand for further simplification of the facility configuration related to flare piping.
  • Patent Document 1 describes a technique for reducing the size of flare pipes by distributing fluid discharged from a device provided in a natural gas liquefying apparatus to two types of flare pipes.
  • Patent Literature 1 does not describe a technique for simplifying the system configuration of flare piping provided in a plurality of systems.
  • the present invention was made against this background, and provides a technique for simplifying the system configuration of flare piping provided in natural gas processing facilities.
  • the natural gas processing facility of the present invention is a natural gas processing facility that liquefies natural gas or separates and recovers components in natural gas, a high-pressure operating device operated at a pressure higher than normal pressure; a low-pressure operating device operated at a pressure lower than that of the high-pressure operating device; a flare stack section provided with a burner for burning combustible gas and releasing it to the atmosphere; a flare pipe connected to the flare stack portion and through which a wet first surplus fluid containing the combustible gas discharged from the high-pressure operating device flows; an external discharge pipe through which the wet second surplus fluid containing the combustible gas discharged from the low-pressure operating device flows and discharges the second surplus fluid to the outside without passing through the flare stack; a discharge pipe having one end connected to the low-pressure operating equipment and provided with a control valve for adjusting the discharge amount of the second excess fluid; a depressurization pipe having one end connected to the low-pressure operating device and provided with a safety valve that opens when the pressure in the
  • the natural gas processing facility may also include the following features.
  • the design pressure of the low-pressure operation equipment is set higher than the design pressure of the external discharge pipe.
  • the design pressure of the low-pressure operation equipment is set to a pressure corresponding to the flare piping.
  • the low-pressure operation device includes a device that discharges an acid gas as the combustible gas, and the device that discharges the acid gas includes the second An incineration pipe must be connected to drain excess fluid from the tank.
  • the external discharge pipe is higher than the installation surface where the natural gas processing equipment is installed, and is directed to the atmosphere, which is the outside.
  • a plurality of devices constituting the natural gas processing facility are installed on a floating facility installed on the water.
  • a discharge pipe provided with a control valve for adjusting the discharge amount of the surplus fluid and a safety valve are provided for the discharge destination of the surplus fluid (second surplus fluid) discharged from the common low-pressure operation equipment. It is connected to a discharge destination different from the provided depressurization pipe.
  • FIG. 10 is a system diagram for discharging surplus fluid from low-pressure operation equipment according to the conventional configuration.
  • FIG. 4 is a system diagram for discharging surplus fluid from the low-pressure operation equipment according to the embodiment;
  • 1 is a schematic diagram of an FLNG with a conventional natural gas processing facility;
  • FIG. 1 is a schematic diagram of an FLNG with a natural gas processing facility according to an embodiment;
  • FIGS. 1 and 2 are schematic configuration diagrams of a conventional configuration and a natural gas processing facility according to an embodiment, respectively. These figures show an example in which natural gas processing equipment is configured by an LNG plant that produces LNG from gaseous natural gas (NG).
  • NG gaseous natural gas
  • the NG supplied to the LNG plant undergoes pretreatment to remove impurities in each of the gas-liquid separation unit 21, the acid gas removal unit 22, the water removal unit 23, and the mercury removal unit 24. Further, the NG passes through the heavy component separation unit 25 that separates the heavy components, and is liquefied and supercooled in each processing unit of the liquefaction unit 26 and the end flash unit 27. Then, the LNG tank 28 for shipping stored in Further, the heavy fraction separated by the heavy fraction separation section 25 is distilled into hydrocarbons in the distillation section 33 .
  • the light components (C1, C2) are sent to the liquefying section 26, the C3, C4 are stored in the LPG tank 34, and the condensate is stored in the condensate tank 32, respectively.
  • the liquid component separated from the natural gas by the gas-liquid separation unit 21 is stored in the condensate tank 32 after the vapor pressure is adjusted to remove light hydrocarbons by the vapor pressure adjustment unit 31 .
  • surplus fluid containing combustible gases may be discharged during operational fluctuations.
  • Such surplus fluid is discharged toward a flare stack section provided with a burner for burning combustible gas and releasing it to the atmosphere.
  • Excess fluid flows toward the flare stack section via the flare piping.
  • the conventionally configured LNG plant shown in FIG. 1 has four flare piping systems (HP-WET flare piping 110, HP-DRY flare piping 120, An LP-WET flare pipe 130 and an LP-DRY flare pipe 140) are provided.
  • the HP-WET flare pipe 110 and the HP-DRY flare pipe 120 are equipped with high-pressure operating equipment that operates at a pressure higher than normal pressure, such as a pressure of about 3.1 to 6.1 MPag (30 to 60 Barg). High-pressure equipment is connected.
  • high-pressure operating equipment connected to the HP-WET flare pipe 110 equipment provided in the gas-liquid separation section 21 and the water removal section 23 can be exemplified.
  • high-pressure operating equipment connected to the HP-DRY flare pipe 120 equipment provided in the mercury removal section 24, the heavy component separation section 25, and the like can be exemplified.
  • the HP-WET flare pipe 110 is configured to allow wet surplus fluid containing water to flow, and is provided with a knockout drum 111 at its end.
  • the knockout drum 111 has the function of separating liquids such as water and oil from surplus fluid using gravity. Excess fluid after the liquid is separated by the knockout drum 111 is burned by the burner of the flare stack section 112 .
  • the wet surplus fluid discharged from the high pressure operation equipment to the HP-WET flare pipe 110 corresponds to the "first surplus fluid".
  • the HP-DRY flare pipe 120 is configured so that surplus fluid containing almost no water circulates, and the surplus fluid that circulates through the HP-DRY flare pipe 120 is directly burned by the burner of the flare stack section 121. be done.
  • a low-pressure operating device that operates at a pressure lower than the above-described high-pressure operating device, for example, 0.01 to 0.1 MPag (0.1 to 1.0 barg ) is connected to a low-pressure operating device operated at a pressure of about
  • Examples of the low-pressure operating equipment connected to the LP-WET flare pipe 130 include equipment provided in the acid gas removing section 22 and the vapor pressure adjusting section 31 .
  • the low-pressure operation equipment connected to the LP-DRY flare pipe 140 can be exemplified by the LNG tank 28, the LPG tank 34, and the like.
  • the LP-WET flare pipe 130 is configured to allow a wet surplus fluid containing water to flow, and is similar to the HP-WET flare pipe 110 in that a knockout drum 131 is provided at the end.
  • the wet surplus fluid discharged from the low pressure operation equipment corresponds to the "second surplus fluid”.
  • the LP-DRY flare pipe 140 is configured so that surplus fluid containing almost no water flows through, and the surplus fluid is burned directly by the burner of the flare stack section 141 without going through the knockout drum. , HP-DRY flare line 120 .
  • the flare pipes 110, 120, 130, and 140 are one of the pipes with the largest diameter among the pipes arranged in the LNG plant, and the arrangement distance is long.
  • the HP-WET flare pipe 110 and the HP-DRY flare pipe 120 have a diameter of, for example, about 1.5 m (60 inches), and the arrangement distance ranges from tens of meters to 100 meters or more.
  • the LP-WET flare pipe 130 and the LP-DRY flare pipe 140 have a diameter of, for example, about 0.5 m (20 inches), and the arrangement distance is several tens to hundreds of meters or more. Therefore, the flare piping system configuration is a component that greatly affects the construction cost and maintenance cost of the entire LNG plant.
  • FIG. 3 shows an example of piping connection for discharging surplus fluid from low-pressure operating equipment in a conventional configuration.
  • the acidic gas removal unit 22 of this example absorbs acidic gases (for example, carbon dioxide and hydrogen sulfide) in the absorption tower using an absorbent such as amine, and the absorbent after absorbing the acidic gas is transferred to the regeneration tower 222. and is configured to heat and release acid gases.
  • the vapor pressure adjusting unit 31 also includes a stabilizer 312 that adjusts the vapor pressure by distilling and separating light hydrocarbons contained in the condensate after gas-liquid separation from NG.
  • the acidic gas removing unit 22 will be described first. From the top of the regeneration tower 222, the acidic gas released with the thermal regeneration of the absorbent is discharged. The acid gas is supplied to the incinerator 151 through the incineration pipe 225, and the combustible acid gas such as hydrogen sulfide is burned in the incinerator 151 and then released to the atmosphere.
  • the combustible acid gas such as hydrogen sulfide
  • an extraction pipe 221a having a control valve 223 for adjusting the discharge amount of acid gas is provided.
  • the discharge pipe 221a plays a role of circulating acid gas, which is a surplus fluid, toward the LP-WET flare pipe 130, for example, while the operation of the incinerator 151 is stopped for maintenance or the like.
  • a safety valve 224 for depressurization that opens and depressurizes when the internal pressure of the regeneration tower 222 rises to an operating pressure (for example, the design pressure of the regeneration tower 222) or more.
  • a pipe 221b is provided.
  • the surplus fluid discharged from the regeneration tower 222 which is a low-pressure operating device, is in a wet state. From this point of view, the excess fluid discharged from the regeneration tower 222 corresponds to the second excess fluid.
  • the extraction pipe 221a and the depressurization pipe 221b are comprehensively described as the surplus fluid pipe 221. As shown in FIG.
  • the light hydrocarbons separated by distillation from the condensate are discharged as offgas from the stabilizer 312.
  • the off-gas is utilized within the LNG plant as fuel for furnaces and the like.
  • an extraction pipe 311a having a control valve 313 for adjusting the discharge amount of off-gas is provided.
  • the extraction pipe 311a serves to distribute offgas, which is a surplus fluid, toward the LP-WET flare pipe 130 when the demand for offgas in the LNG plant decreases.
  • a depressurization pipe 311b equipped with a safety valve 314 that opens and depressurizes when the internal pressure of the stabilizer 312 rises and becomes equal to or higher than the operating pressure (for example, the design pressure of the stabilizer 312). is provided.
  • the surplus fluid discharged from the stabilizer 312 which is a low-pressure operating device, is in a wet state. From this point of view, the excess fluid discharged from the stabilizer 312 corresponds to the second excess fluid.
  • the extraction pipe 311a and the depressurization pipe 311b are also comprehensively described as the surplus fluid pipe 311. As shown in FIG.
  • one end of the discharge pipe 221a provided with the control valve 223 is connected to the top of the regeneration tower 222, and the other end is connected to the external discharge pipe 160.
  • One end of an extraction pipe 311 a provided with a control valve 313 is connected to the top of the stabilizer 312 , and the other end is connected to the external discharge pipe 160 .
  • an LNG plant is provided with an external discharge pipe 160 for discharging the gas to the outside without going through the flare stack portions 112, 121, and 141 for the purpose of discharging non-flammable gas discharged from operating equipment.
  • the external discharge pipe 160 may be configured to directly discharge the fluid flowing therein to the atmosphere.
  • the external discharge pipe 160 may be configured such that the end portion is connected to a packed tower filled with an adsorbent, and the remaining gas is discharged to the atmosphere after a predetermined component is removed by adsorption with the adsorbent. good.
  • the second surplus fluid When the second surplus fluid is discharged to the atmosphere from the end of the external discharge pipe 160, the second surplus fluid may contain components that affect the human body and the environment.
  • the end of the external discharge pipe 160 is placed at a higher place than the installation surface where the LNG plant is installed, and is exposed to the outside atmosphere. It is preferably configured to discharge the second excess fluid towards.
  • the installation height of equipment is the height dimension from a predetermined reference height (for example, the height of zero meters above sea level) to the position where each equipment is installed.
  • a predetermined reference height for example, the height of zero meters above sea level
  • the height dimension from the reference height to the bottom end of the equipment installed on the mounting table is Corresponds to the installation height. Since a large number of devices are installed in an LNG plant, a case can be exemplified in which the end portion of the external discharge pipe 160 is arranged at a position higher than the device having the maximum installation height among these devices.
  • the second surplus fluid may contain a component subject to management whose allowable concentration in the air is sampled at a position a preset distance away from the discharge position from the external discharge pipe 160 .
  • the end of the external discharge pipe 160 is provided at a height position where the concentration of the controlled component in the sample is less than the allowable concentration. This height position can be grasped in advance by atmospheric diffusion simulation using fluid analysis software.
  • the end of the external discharge pipe 160 is often provided at a high place.
  • the end of the external discharge pipe 160 may be arranged in a common tower with the other flare stack portions 112, 121, 141, as in the example of the FLNG 4 described later with reference to FIG.
  • the height position of the distal end of the external discharge pipe 160 is arranged at the same height position as the proximal end of the flames of the flare stacks 112, 121, 141 or lower than it.
  • the end portion of the external discharge pipe 160 and the flare stack portions 112, 121, 141 are installed at different positions within the premises of the LNG plant, the height at which the end portion of the external discharge pipe 160 is arranged Positions are not constrained by burner flame considerations.
  • the external discharge pipe 160 is a pipe with a diameter of about 1.2 m (48 inches), for example, and has lower pressure resistance performance (LP-WET flare The thickness of the pipe is also thinner than that of the pipe 130). In this case, by omitting the installation of the LP-WET flare pipe 130 and the knockout drum 131 and flare stack section 132 which are incidental equipment, construction costs and maintenance costs can be greatly reduced.
  • the second surplus fluid flowing through the extraction pipes 221a and 311a is discharged as exhaust gas during normal operation.
  • the incinerator 151 When the incinerator 151 is installed, the second surplus fluid is incinerated in the incinerator 151, so there is little opportunity for the second surplus fluid to be released to the atmosphere as it is. Further, even if the installation of the incinerator 151 is omitted as a result of connecting the extraction pipe 221a of the acid gas removal unit 22 to the external discharge pipe 160, the content in the crude oil is The amount of hydrogen sulfide contained in NG is very small. Also, as described above, the atmosphere may be released after removing components such as hydrogen sulfide in a packed tower filled with an adsorbent.
  • the extraction pipes 221a, 311a for adjusting the discharge amount using the control valves 223, 313 are connected to the external discharge pipe 160, and direct the second surplus fluid to the external discharge pipe 160. It is configured to be ejectable.
  • the design pressure of the regeneration tower 222 and the stabilizer 312 which are low-pressure operation equipment is set higher than the design pressure of the external discharge pipe 160 . That is, since the design pressure of the external discharge pipe 160 is low, it cannot be connected to the depressurization pipes 221b and 311b provided with the safety valves 224 and 314 .
  • one end of the depressurization pipe 221b provided with the safety valve 224 is connected to the top of the regeneration tower 222, and the other end is connected to the HP-WET flare pipe 110. It is connected to the.
  • One end of a depressurization pipe 311 b provided with a safety valve 314 is connected to the top of the stabilizer 312 , and the other end is connected to the HP-WET flare pipe 110 . That is, in the HP-WET flare pipe 110, the first surplus fluid, which is the wet surplus fluid discharged from the high-pressure operation equipment such as the gas-liquid separation unit 21 and the water removal unit 23, flows.
  • the second surplus fluid discharged from the depressurization pipes 221b and 311b of the equipment (acid gas removing unit 22, vapor pressure adjusting unit 31) flows.
  • the HP-WET flare pipe 110 has a higher design pressure. Therefore, the operating pressure of the safety valves 224 and 314 provided in the depressurization pipes 221b and 311b is about 0.5 MPa (3.5 Barg) when connected to the LP-WET flare pipe 130 (for example, about 0.5 MPa (3.5 Barg)). than when connected to the HP-WET flare pipe 110 (for example, 0.8 to 1.1 MPa (7 to 10 Barg)).
  • the design pressure of the regeneration tower 222 and the stabilizer 312, which are low-pressure operating devices, must have pressure resistance performance corresponding to the safety valves 224 and 314 that can be connected to the HP-WET flare pipe 110.
  • the thickness of the constituent members is set so that the safety valves 224 and 314 are connected to the LP-WET flare pipe 130.
  • the LNG plant according to the embodiment has the following effects.
  • the destination of the surplus fluid (second surplus fluid) discharged from the low-pressure operation equipment (regeneration tower 222, stabilizer 312) extraction pipes 221a, 311a provided with control valves 223, 313 and safety valves 224, 314 are connected to different discharge destinations from the depressurization pipes 221b and 311b.
  • the installation of the LP-WET flare pipe 130 for low-pressure operation equipment which was provided as a common discharge destination for these extraction pipes 221a, 311a and the depressurization pipes 221b, 311b, is omitted, and the flare pipe system Configuration can be simplified.
  • FLNG 4 a and 4 in which a plurality of equipment constituting the LNG plant are provided on the floating facility installed on the water are shown in FIGS. will be described with reference to.
  • the FLNGs 4a and 4 are floating facilities placed on the water, and the above-mentioned LNG plant is provided on the upper surface of the hull 40 in which the LNG tank 28, the LPG tank 34, etc. are formed. ing.
  • a turret 45 as mooring equipment is provided on the bow side of the hull 40 .
  • the turret 45 is connected to a mooring line to moor the hull 40, and is connected to a riser for underwater transportation of mined NG (mooring line and riser are not shown).
  • the direction in which the turret 45 is provided is assumed to be the front of the hull 40 .
  • a flare stack 44 is provided on the frame of the hull 40, for example, at a position closer to the port side on the bow side for burning surplus gas generated in LNG plants and LNG tanks. Further, as shown in FIGS. 5(b) and 6(b), the hull 40 has a planar shape that is longer in the longitudinal direction than in the transverse direction.
  • a pipe rack 41 is provided in the center region of the hull 40 in the width direction so as to extend along the length of the hull 40 .
  • the pipe rack 41 is a frame that holds a plurality of plant pipes through which various fluids handled in the FLNG 4a, 4 flow.
  • the areas adjacent to the left and right sides of the pipe rack 41 are plant placement areas 42 in which the equipment that constitutes the LNG plant is placed.
  • a plurality of LNG plant equipment 421 constituting an LNG plant are arranged side by side in the front-rear direction in each of these plant layout areas 42 .
  • These LNG plant equipment 421 include the low-pressure operation equipment and the high-pressure operation equipment described above.
  • FIG. 5 and 6 show an example of an LNG plant constructed by a so-called stick-built system in which a plant arrangement area 42 is individually arranged on the deck of a hull 40.
  • a large number of LNG plant equipment 421 of the LNG plant are divided into a plurality of frames to form modules, and these modules are installed after the frame of the hull 40 is completed to form the LNG plant. good too.
  • the hull 40 and the modules are built at separate locations.
  • the pipe rack 41 includes HP-WET flare piping 110, HP-DRY flare piping 120, and LP-WET flare piping. 130 and LP-DRY flare piping 140 are retained. Also in the conventional LNG plant, the pipe rack 41 holds a large number of pipes including the external discharge pipe 160, but the illustration of these pipes is omitted for convenience of illustration.
  • the end portions of these flare pipes 110, 120, 130, 140 are connected to flare stacks 44 (flare stack portions 112, 121, 132, 141) provided on a common tower.
  • the pipe rack 41 includes the HP-WET flare piping 110 and the HP-DRY flare piping. Only 120 and LP-DRY flare lines 140 are retained. Terminal ends of these flare pipes 110, 120, 140 are connected to a flare stack 44 (flare stack portions 112, 121, 141) provided on a common tower.
  • the LP-WET flare pipe 130, the knockout drum 131 and the flare stack portion 132 are not provided in the FLNG 4 according to the embodiment.
  • FLNG 4 when an LNG plant is installed in a floating facility, there is a restriction on the area of the installation surface where a large number of equipment constituting the LNG plant can be arranged.
  • a space merit can be obtained in which the area that can be allocated to the installation of other equipment is increased.
  • the merit of weight reduction by omitting the installation of the LP-WET flare pipe 130 can also be obtained.
  • FIG. 6(b) also schematically shows how the pipe rack 41 holds the external discharge pipe 160 through which the second surplus fluid discharged from the low-pressure operating equipment (the regeneration tower 222 and the stabilizer 312) flows. It is described.
  • the external discharge pipe 160 is provided so as to extend to a mid-height position of the scaffold holding the flare stack 44 , and its terminal end is below the burner of the flare stack 44 . It is configured to release the second excess fluid or the like to the atmosphere at the location. This arrangement avoids impingement of the burner flames on the external discharge line 160, as previously described.
  • the direction of release to the atmosphere from the external discharge pipe 160 is the direction opposite to the direction in which the living portion 43 is provided when viewed from the flare stack 44 .
  • the floating facility in which the LNG plant according to the embodiment is installed is not limited to this example.
  • the LNG plant according to the embodiments may be provided on a bottom-bottomed structure (GBS) or on a platform fixed to the bottom of the water.
  • GGS bottom-bottomed structure
  • “on the water” is not limited to the sea, and may be on the water such as a lake.
  • the LNG plant may be provided above ground.
  • the natural gas processing equipment to which the present invention is applied is not limited to LNG plants.
  • the present invention can be applied to an NGL (Natural Gas Liquids) plant, which is a natural gas processing facility that separates and recovers heavy components in NG and ships light hydrocarbons in the form of gas. .
  • NGL Natural Gas Liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

[Problem] To provide a natural gas processing facility wherein the system configuration of a flare pipe is simplified. [Solution] This natural gas processing facility comprises: a high-pressure operating device; a low-pressure operating device 222, 312; a flare pipe 110 that is connected to a flare stack portion 112 and circulates first excess fluid discharged from the high-pressure operating device; and an external discharge pipe 160 that bypasses the flare stack portion 112 and discharges second excess fluid containing flammable gas to the outside. Extraction pipes 221a, 311a are provided with adjustment valves 223, 313 for adjusting the discharge amount of the second excess fluid, and each have one end connected to the low-pressure operating device 222, 312 and the other end connected to the external discharge pipe 160. Furthermore, depressurization pipes 221b, 311b are provided with safety valves 224, 314, and each have one end connected to the low-pressure operating device 222, 312 and the other end connected to the flare pipe 110.

Description

天然ガス処理設備Natural gas processing facility
 本発明は、天然ガスの液化または天然ガス中の成分の分離・回収を行う天然ガス処理設備に関する。 The present invention relates to a natural gas processing facility that liquefies natural gas or separates and recovers components in natural gas.
 井戸元より産出された天然ガスに対しては、天然ガス処理設備にて、天然ガスから各種の不純物を除去する前処理と、前処理後の天然ガスを液化してLNG(Liquidized Natural Gas)を得る液化処理と、が行われる。また、天然ガス中の重質分の分離・回収を行い、軽質炭化水素ガスの状態で出荷する天然ガス処理設備も知られている。 For the natural gas produced from the wellhead, the natural gas is pretreated to remove various impurities from the natural gas at the natural gas processing facility, and the natural gas after pretreatment is liquefied to produce LNG (Liquidized Natural Gas). A liquefaction process to obtain is performed. There is also known a natural gas processing facility that separates and recovers heavy components from natural gas and ships it in the form of light hydrocarbon gas.
 天然ガス処理設備には、前処理や液化処理、重質分の分離処理に用いられる各種の処理塔や熱交換器などの多数の機器が設けられている。天然ガスの処理の過程で、これらの機器において、主に可燃性のガス(軽質炭化水素や硫化水素など)により構成される余剰流体が発生することがある。余剰流体が多量に発生した際には、機器内の圧力が上昇することを避けるため、余剰流体は、可燃性のガスを燃焼させた上で外部へ排出するフレアスタック部から放出される。フレアスタック部から放出される余剰流体は、フレアガスなどとも呼ばれる。 Natural gas processing facilities are equipped with a large number of equipment such as various processing towers and heat exchangers used for pretreatment, liquefaction, and separation of heavy components. During the processing of natural gas, excess fluids may be generated in these devices, consisting mainly of combustible gases (such as light hydrocarbons and hydrogen sulfide). When a large amount of excess fluid is generated, the excess fluid is discharged from the flare stack section, which combusts combustible gas and discharges it to the outside in order to prevent the pressure inside the equipment from rising. Excess fluid discharged from the flare stack is also called flare gas.
 天然ガス処理設備には、機器から排出された余剰流体がフレアスタック部へ向けて流れるフレア配管が設けられている。フレア配管は、余剰流体を排出する機器の圧力や、性状に応じて複数系統設けられている。 
 一方、フレア配管は、天然ガス処理設備に多数設けられる配管系統の中でも大口径、且つ配置距離の長い配管設備である。このため、建設コストやメンテナンスコストの抑制の観点から、フレア配管に係る設備構成のより一層の簡素化が求められている。
A natural gas processing facility is provided with flare piping through which excess fluid discharged from equipment flows toward a flare stack. A plurality of flare pipes are provided according to the pressure and properties of the device that discharges excess fluid.
Flare piping, on the other hand, is piping equipment with a large diameter and a long arrangement distance among many piping systems provided in natural gas processing equipment. Therefore, from the viewpoint of suppressing construction costs and maintenance costs, there is a demand for further simplification of the facility configuration related to flare piping.
 ここで特許文献1には、天然ガスの液化装置に設けられた機器から排出される流体を2種類のフレア配管に分散させて送り出すことにより、フレア配管などのサイズを小さくする技術が記載されている。しかしながら、当該特許文献1には、複数系統設けられたフレア配管の系統構成の簡素化を図る技術の記載はない。 Here, Patent Document 1 describes a technique for reducing the size of flare pipes by distributing fluid discharged from a device provided in a natural gas liquefying apparatus to two types of flare pipes. there is However, Patent Literature 1 does not describe a technique for simplifying the system configuration of flare piping provided in a plurality of systems.
国際公開第2016/088159号WO2016/088159
 本発明は、このような背景の下になされたものであり、天然ガス処理設備に設けられたフレア配管の系統構成を簡素化する技術を提供する。 The present invention was made against this background, and provides a technique for simplifying the system configuration of flare piping provided in natural gas processing facilities.
 本発明の天然ガス処理設備は、天然ガスの液化または天然ガス中の成分の分離・回収を行う天然ガス処理設備であって、
 常圧よりも高い圧力で運転される高圧運転機器と、
 当該高圧運転機器よりも低い圧力で運転される低圧運転機器と、
 可燃性のガスを燃焼した上で大気放出するためのバーナーが設けられたフレアスタック部と、
 前記フレアスタック部に接続され、前記高圧運転機器から排出される前記可燃性のガスを含む湿潤な第1の余剰流体が流通するフレア配管と、 
 前記低圧運転機器から排出される前記可燃性のガスを含む湿潤な第2の余剰流体が流通し、前記フレアスタック部を介さずに前記第2の余剰流体を外部へ排出する外部排出配管と、
 一端が前記低圧運転機器に接続され、前記第2の余剰流体の排出量を調節するための調節弁が設けられた抜出配管と、
 一端が前記低圧運転機器に接続され、前記低圧運転機器内の圧力が予め設定された作動圧力以上となった場合に開く安全弁が設けられた脱圧用配管と、
を備え、
 前記抜出配管の他端は、前記外部排出配管に接続され、
 前記脱圧用配管の他端は、前記フレア配管に接続されていることを特徴とする。
The natural gas processing facility of the present invention is a natural gas processing facility that liquefies natural gas or separates and recovers components in natural gas,
a high-pressure operating device operated at a pressure higher than normal pressure;
a low-pressure operating device operated at a pressure lower than that of the high-pressure operating device;
a flare stack section provided with a burner for burning combustible gas and releasing it to the atmosphere;
a flare pipe connected to the flare stack portion and through which a wet first surplus fluid containing the combustible gas discharged from the high-pressure operating device flows;
an external discharge pipe through which the wet second surplus fluid containing the combustible gas discharged from the low-pressure operating device flows and discharges the second surplus fluid to the outside without passing through the flare stack;
a discharge pipe having one end connected to the low-pressure operating equipment and provided with a control valve for adjusting the discharge amount of the second excess fluid;
a depressurization pipe having one end connected to the low-pressure operating device and provided with a safety valve that opens when the pressure in the low-pressure operating device exceeds a preset operating pressure;
with
The other end of the withdrawal pipe is connected to the external discharge pipe,
The other end of the depressurization pipe is connected to the flare pipe.
 また天然ガス処理設備は、以下の特徴を備えていてもよい。
(a)前記低圧運転機器の設計圧力は、前記外部排出配管の設計圧力よりも高く設定されていること。 
(b)前記低圧運転機器の設計圧力は、前記フレア配管に対応する圧力に設定されていること。 
(c)前記低圧運転機器は、前記可燃性のガスとして酸性ガスを排出する機器を含み、前記酸性ガスを排出する機器には、前記可燃性のガスを燃焼させる焼却炉に向けて前記第2の余剰流体を排出するための焼却用配管が接続されていること。
(d)前記外部排出配管は、前記天然ガス処理設備が設置されている設置面よりも高所にて、外部である大気へ向けて、許容濃度が設けられている管理対象成分を含む前記第2の余剰流体を排出するように構成されることと、前記第2の余剰流体の排出位置は、当該排出位置から予め設定された距離だけ離れた位置における前記管理対象成分の濃度が、前記許容濃度未満となる高さ位置に設けられていること。
(e)前記天然ガス処理設備を構成する複数の機器は、水上に設置された水上設備上に設けられていること。
The natural gas processing facility may also include the following features.
(a) The design pressure of the low-pressure operation equipment is set higher than the design pressure of the external discharge pipe.
(b) The design pressure of the low-pressure operation equipment is set to a pressure corresponding to the flare piping.
(c) The low-pressure operation device includes a device that discharges an acid gas as the combustible gas, and the device that discharges the acid gas includes the second An incineration pipe must be connected to drain excess fluid from the tank.
(d) The external discharge pipe is higher than the installation surface where the natural gas processing equipment is installed, and is directed to the atmosphere, which is the outside. and the discharge position of the second excess fluid is such that the concentration of the component to be managed at a position a predetermined distance away from the discharge position exceeds the allowable level. It must be installed at a height position that is less than the density.
(e) A plurality of devices constituting the natural gas processing facility are installed on a floating facility installed on the water.
 本発明は、共通の低圧運転機器から排出される余剰流体(第2の余剰流体)の排出先について、余剰流体の排出量を調節するための調節弁が設けられた抜出配管と、安全弁が設けられた脱圧用配管とが異なる排出先に接続されている。この結果、従来、これら抜出配管及び脱圧用配管の共通の排出先として設けられていた低圧運転機器用のフレア配管の設置を省略し、フレア配管の系統構成を簡素化することができる。 In the present invention, a discharge pipe provided with a control valve for adjusting the discharge amount of the surplus fluid and a safety valve are provided for the discharge destination of the surplus fluid (second surplus fluid) discharged from the common low-pressure operation equipment. It is connected to a discharge destination different from the provided depressurization pipe. As a result, it is possible to omit the installation of flare piping for low-pressure operation equipment, which has conventionally been provided as a common discharge destination for these extraction piping and depressurization piping, and to simplify the system configuration of flare piping.
従来構成に係る天然ガス処理設備の概略構成図である。It is a schematic block diagram of the natural gas processing equipment which concerns on a conventional structure. 実施形態に係る天然ガス処理設備の概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the natural gas processing equipment which concerns on embodiment. 従来構成に係る低圧運転機器からの余剰流体の排出系統図である。FIG. 10 is a system diagram for discharging surplus fluid from low-pressure operation equipment according to the conventional configuration. 実施形態に係る低圧運転機器からの余剰流体の排出系統図である。FIG. 4 is a system diagram for discharging surplus fluid from the low-pressure operation equipment according to the embodiment; 従来構成に係る天然ガス処理設備を備えたFLNGの模式図である。1 is a schematic diagram of an FLNG with a conventional natural gas processing facility; FIG. 実施形態に係る天然ガス処理設備を備えたFLNGの模式図である。1 is a schematic diagram of an FLNG with a natural gas processing facility according to an embodiment; FIG.
 以下、図1、3、5に示す従来構成の天然ガス処理設備と対比しながら、本発明の実施形態に係る天然ガス処理設備について説明する(図2、4、6)。
 図1、2は、各々、従来構成及び実施形態に係る天然ガス処理設備の概略構成図である。これらの図には、気体の状態の天然ガス(NG:Natural Gas)から、LNGを製造するLNGプラントにより天然ガス処理設備を構成した例を示している。
A natural gas processing facility according to an embodiment of the present invention will be described below in comparison with the conventional natural gas processing facility shown in FIGS.
1 and 2 are schematic configuration diagrams of a conventional configuration and a natural gas processing facility according to an embodiment, respectively. These figures show an example in which natural gas processing equipment is configured by an LNG plant that produces LNG from gaseous natural gas (NG).
 初めに、従来構成及び実施形態に係るLNGプラントに共通の構成について説明する。LNGプラントに供給されたNGに対しては、気液分離部21、酸性ガス除去部22、水分除去部23、水銀除去部24の各処理部にて不純物を除去する前処理が行われる。さらに、NGは、重質分の分離を行う重質分分離部25を経て、液化部26、エンドフラッシュ部27の各処理部にて、液化・過冷却された後、出荷用のLNGタンク28に貯留される。また重質分分離部25にて分離された重質分は、蒸留部33にて炭化水素が蒸留される。蒸留により互いに分離された炭化水素のうち、軽質成分(C1、C2)は、液化部26に送られ、C3、C4は、LPGタンク34、コンデンセートは、コンデンセートタンク32にそれぞれ貯留される。また気液分離部21にて天然ガスから気液分離された液体成分は、蒸気圧調整部31にて軽質炭化水素を除去する蒸気圧調整を行った後、コンデンセートタンク32に貯留される。 First, the configuration common to the conventional configuration and the LNG plant according to the embodiment will be described. The NG supplied to the LNG plant undergoes pretreatment to remove impurities in each of the gas-liquid separation unit 21, the acid gas removal unit 22, the water removal unit 23, and the mercury removal unit 24. Further, the NG passes through the heavy component separation unit 25 that separates the heavy components, and is liquefied and supercooled in each processing unit of the liquefaction unit 26 and the end flash unit 27. Then, the LNG tank 28 for shipping stored in Further, the heavy fraction separated by the heavy fraction separation section 25 is distilled into hydrocarbons in the distillation section 33 . Among the hydrocarbons separated from each other by distillation, the light components (C1, C2) are sent to the liquefying section 26, the C3, C4 are stored in the LPG tank 34, and the condensate is stored in the condensate tank 32, respectively. The liquid component separated from the natural gas by the gas-liquid separation unit 21 is stored in the condensate tank 32 after the vapor pressure is adjusted to remove light hydrocarbons by the vapor pressure adjustment unit 31 .
 LNGプラントを構成する各機器においては、運転変動の際などに可燃性のガス(軽質炭化水素や酸性ガス)を含む余剰流体が排出されることがある。このような余剰流体は、可燃性のガスを燃焼した上で大気放出するためのバーナーが設けられたフレアスタック部へ向けて排出される。余剰流体は、フレア配管を介してフレアスタック部へ向けて流れる。  In the equipment that makes up the LNG plant, surplus fluid containing combustible gases (light hydrocarbons and acid gases) may be discharged during operational fluctuations. Such surplus fluid is discharged toward a flare stack section provided with a burner for burning combustible gas and releasing it to the atmosphere. Excess fluid flows toward the flare stack section via the flare piping.
 LNGプラントにおいては、余剰流体の性状、余剰流体の排出元となる機器の運転圧力などに応じて複数系統のフレア配管が設けられている。図1に示す従来構成のLNGプラントは、余剰流体の水分含有量の多寡、機器の運転圧力の高低に応じて、4系統のフレア配管(HP-WETフレア配管110、HP-DRYフレア配管120、LP-WETフレア配管130、LP-DRYフレア配管140)が設けられている。  In LNG plants, multiple systems of flare piping are installed according to the properties of the surplus fluid and the operating pressure of the equipment that discharges the surplus fluid. The conventionally configured LNG plant shown in FIG. 1 has four flare piping systems (HP-WET flare piping 110, HP-DRY flare piping 120, An LP-WET flare pipe 130 and an LP-DRY flare pipe 140) are provided.
 HP-WETフレア配管110、HP-DRYフレア配管120には、常圧よりも高い圧力で運転される高圧運転機器、例えば3.1~6.1MPag(30~60Barg)程度の圧力で運転される高圧運転機器が接続されている。HP-WETフレア配管110に接続される高圧運転機器としては、気液分離部21や水分除去部23に設けられた機器を例示できる。またHP-DRYフレア配管120に接続される高圧運転機器としては、水銀除去部24や重質分分離部25などに設けられた機器を例示できる。 The HP-WET flare pipe 110 and the HP-DRY flare pipe 120 are equipped with high-pressure operating equipment that operates at a pressure higher than normal pressure, such as a pressure of about 3.1 to 6.1 MPag (30 to 60 Barg). High-pressure equipment is connected. As high-pressure operating equipment connected to the HP-WET flare pipe 110, equipment provided in the gas-liquid separation section 21 and the water removal section 23 can be exemplified. As high-pressure operating equipment connected to the HP-DRY flare pipe 120, equipment provided in the mercury removal section 24, the heavy component separation section 25, and the like can be exemplified.
 HP-WETフレア配管110は、水分を含む湿潤な余剰流体が流通するように構成され、末端部にはノックアウトドラム111が設けられている。ノックアウトドラム111は、重力を利用して、余剰流体から水分や油分などの液体を分離する機能を備える。ノックアウトドラム111にて液体分が分離された後の余剰流体がフレアスタック部112のバーナーにて燃焼される。高圧運転機器からHP-WETフレア配管110へ排出される湿潤な余剰流体は、「第1の余剰流体」に相当する。
 一方、HP-DRYフレア配管120は、水分を殆ど含まない余剰流体が流通するように構成され、当該HP-DRYフレア配管120を流通した余剰流体は、直接、フレアスタック部121のバーナーにて燃焼される。
The HP-WET flare pipe 110 is configured to allow wet surplus fluid containing water to flow, and is provided with a knockout drum 111 at its end. The knockout drum 111 has the function of separating liquids such as water and oil from surplus fluid using gravity. Excess fluid after the liquid is separated by the knockout drum 111 is burned by the burner of the flare stack section 112 . The wet surplus fluid discharged from the high pressure operation equipment to the HP-WET flare pipe 110 corresponds to the "first surplus fluid".
On the other hand, the HP-DRY flare pipe 120 is configured so that surplus fluid containing almost no water circulates, and the surplus fluid that circulates through the HP-DRY flare pipe 120 is directly burned by the burner of the flare stack section 121. be done.
 LP-WETフレア配管130、LP-DRYフレア配管140には、既述の高圧運転機器よりも低い圧力で運転される低圧運転機器、例えば0.01~0.1MPag(0.1~1.0barg)程度の圧力で運転される低圧運転機器が接続されている。LP-WETフレア配管130に接続される低圧運転機器としては、酸性ガス除去部22や蒸気圧調整部31に設けられた機器を例示できる。またLP-DRYフレア配管140に接続される低圧運転機器としては、LNGタンク28やLPGタンク34などを例示できる。 In the LP-WET flare pipe 130 and the LP-DRY flare pipe 140, a low-pressure operating device that operates at a pressure lower than the above-described high-pressure operating device, for example, 0.01 to 0.1 MPag (0.1 to 1.0 barg ) is connected to a low-pressure operating device operated at a pressure of about Examples of the low-pressure operating equipment connected to the LP-WET flare pipe 130 include equipment provided in the acid gas removing section 22 and the vapor pressure adjusting section 31 . The low-pressure operation equipment connected to the LP-DRY flare pipe 140 can be exemplified by the LNG tank 28, the LPG tank 34, and the like.
 LP-WETフレア配管130は、水分を含む湿潤な余剰流体が流通するように構成され、末端部にはノックアウトドラム131が設けられている点は、HP-WETフレア配管110と同様である。低圧運転機器から排出される湿潤な余剰流体は、「第2の余剰流体」に相当する。 
 一方、LP-DRYフレア配管140は、水分を殆ど含まない余剰流体が流通するように構成され、余剰流体は、ノックアウトドラムを介さず、直接、フレアスタック部141のバーナーにて燃焼される点は、HP-DRYフレア配管120をと同様である。
The LP-WET flare pipe 130 is configured to allow a wet surplus fluid containing water to flow, and is similar to the HP-WET flare pipe 110 in that a knockout drum 131 is provided at the end. The wet surplus fluid discharged from the low pressure operation equipment corresponds to the "second surplus fluid".
On the other hand, the LP-DRY flare pipe 140 is configured so that surplus fluid containing almost no water flows through, and the surplus fluid is burned directly by the burner of the flare stack section 141 without going through the knockout drum. , HP-DRY flare line 120 .
 ここでフレア配管110、120、130、140は、LNGプラントに配置される配管の中でも、最も口径が大きな配管のひとつであり、また配置距離も長い。例えばHP-WETフレア配管110、HP-DRYフレア配管120は、直径が例えば1.5m(60inch)程度にもなり、配置距離は数十メートル~百メートル以上にもなる。また、LP-WETフレア配管130、LP-DRYフレア配管140は、直径が例えば0.5m(20inch)程度、配置距離は数十メートル~百メートル以上になる。 
 このため、フレア配管の系統構成は、LNGプラント全体の建設コストやメンテナンスコストへ与える影響が大きな構成要素となる。
Here, the flare pipes 110, 120, 130, and 140 are one of the pipes with the largest diameter among the pipes arranged in the LNG plant, and the arrangement distance is long. For example, the HP-WET flare pipe 110 and the HP-DRY flare pipe 120 have a diameter of, for example, about 1.5 m (60 inches), and the arrangement distance ranges from tens of meters to 100 meters or more. Also, the LP-WET flare pipe 130 and the LP-DRY flare pipe 140 have a diameter of, for example, about 0.5 m (20 inches), and the arrangement distance is several tens to hundreds of meters or more.
Therefore, the flare piping system configuration is a component that greatly affects the construction cost and maintenance cost of the entire LNG plant.
 そこで図2に示すように、実施形態に係るLNGプラントは、低圧運転機器である酸性ガス除去部22及び蒸気圧調整部31から排出される第2の余剰流体の排出先を工夫することにより、従来構成のLNGプラントに設けられていた、LP-WETフレア配管130及びこれに付帯するノックアウトドラム131、フレアスタック部132の設置を省略している。 
 以下、図3、図4も参照しながら、従来構成及び実施形態における低圧運転機器(酸性ガス除去部22、蒸気圧調整部31)からの余剰流体の排出に係る配管接続について説明する。
Therefore, as shown in FIG. 2, in the LNG plant according to the embodiment, by devising the discharge destination of the second surplus fluid discharged from the acid gas removal unit 22 and the vapor pressure adjustment unit 31, which are low-pressure operation equipment, The installation of the LP-WET flare pipe 130 and the accompanying knockout drum 131 and flare stack section 132, which are provided in the LNG plant of the conventional configuration, are omitted.
3 and 4, the pipe connections for discharging surplus fluid from the low-pressure operation equipment (acid gas removal unit 22, vapor pressure adjustment unit 31) in the conventional configuration and the embodiment will be described below.
 図3は、従来構成における低圧運転機器からの余剰流体の排出に係る配管接続の例を示している。 
 本例の酸性ガス除去部22は、アミンなどの吸収液を用いて吸収塔にて酸性ガス(例えば二酸化炭素や硫化水素)を吸収し、酸性ガスを吸収した後の吸収液を再生塔222にて加熱して酸性ガスを放出させるように構成されている。また、蒸気圧調整部31は、NGから気液分離された後のコンデンセートに含まれる軽質炭化水素を蒸留分離して蒸気圧を調節するスタビライザー312を備える。
FIG. 3 shows an example of piping connection for discharging surplus fluid from low-pressure operating equipment in a conventional configuration.
The acidic gas removal unit 22 of this example absorbs acidic gases (for example, carbon dioxide and hydrogen sulfide) in the absorption tower using an absorbent such as amine, and the absorbent after absorbing the acidic gas is transferred to the regeneration tower 222. and is configured to heat and release acid gases. The vapor pressure adjusting unit 31 also includes a stabilizer 312 that adjusts the vapor pressure by distilling and separating light hydrocarbons contained in the condensate after gas-liquid separation from NG.
 まず酸性ガス除去部22について説明する。再生塔222の塔頂からは、吸収液の加熱再生に伴って放出された酸性ガスが排出される。酸性ガスは、焼却用配管225を介して焼却炉151へ供給され、焼却炉151にて硫化水素などの可燃性の酸性ガスを燃焼させた上で大気放出される。 The acidic gas removing unit 22 will be described first. From the top of the regeneration tower 222, the acidic gas released with the thermal regeneration of the absorbent is discharged. The acid gas is supplied to the incinerator 151 through the incineration pipe 225, and the combustible acid gas such as hydrogen sulfide is burned in the incinerator 151 and then released to the atmosphere.
 また再生塔222の塔頂には、酸性ガスの排出量を調節する調節弁223を備えた抜出配管221aが設けられている。抜出配管221aは、例えば、メンテナンスなどのため焼却炉151の稼働を停止している期間に、余剰流体である酸性ガスをLP-WETフレア配管130へ向けて流通させる役割を果たす。 
 さらに再生塔222の塔頂には、再生塔222の内圧が上昇して作動圧力(例えば、再生塔222の設計圧力)以上となった場合に開いて脱圧を行う安全弁224を備えた脱圧用配管221bが設けられている。
At the top of the regeneration tower 222, an extraction pipe 221a having a control valve 223 for adjusting the discharge amount of acid gas is provided. The discharge pipe 221a plays a role of circulating acid gas, which is a surplus fluid, toward the LP-WET flare pipe 130, for example, while the operation of the incinerator 151 is stopped for maintenance or the like.
Furthermore, at the top of the regeneration tower 222, a safety valve 224 for depressurization that opens and depressurizes when the internal pressure of the regeneration tower 222 rises to an operating pressure (for example, the design pressure of the regeneration tower 222) or more. A pipe 221b is provided.
 吸収液から放出された酸性ガスは、水分を含むので、低圧運転機器である再生塔222から排出される余剰流体は湿潤な状態となっている。この観点で、再生塔222から排出される余剰流体は、第2の余剰流体に相当する。なお図1において、抜出配管221a、脱圧用配管221bは、余剰流体配管221として包括的に記載してある。 Since the acidic gas released from the absorbing liquid contains moisture, the surplus fluid discharged from the regeneration tower 222, which is a low-pressure operating device, is in a wet state. From this point of view, the excess fluid discharged from the regeneration tower 222 corresponds to the second excess fluid. In addition, in FIG. 1, the extraction pipe 221a and the depressurization pipe 221b are comprehensively described as the surplus fluid pipe 221. As shown in FIG.
 次いで蒸気圧調整部31について、スタビライザー312からは、コンデンセートから蒸留分離された軽質炭化水素がオフガスとして排出される。オフガスは、加熱炉などの燃料としてLNGプラント内で利用される。 Next, in the vapor pressure adjusting section 31, the light hydrocarbons separated by distillation from the condensate are discharged as offgas from the stabilizer 312. The off-gas is utilized within the LNG plant as fuel for furnaces and the like.
 またスタビライザー312の塔頂には、オフガスの排出量を調節する調節弁313を備えた抜出配管311aが設けられている。抜出配管311aは、LNGプラント内におけるオフガスの需要が低下した場合に、余剰流体であるオフガスをLP-WETフレア配管130へ向けて流通させる役割を果たす。 
 さらにスタビライザー312の塔頂には、スタビライザー312の内圧が上昇して作動圧力(例えば、スタビライザー312の設計圧力)以上となった場合に開いて脱圧を行う安全弁314を備えた脱圧用配管311bが設けられている。
At the top of the stabilizer 312, an extraction pipe 311a having a control valve 313 for adjusting the discharge amount of off-gas is provided. The extraction pipe 311a serves to distribute offgas, which is a surplus fluid, toward the LP-WET flare pipe 130 when the demand for offgas in the LNG plant decreases.
Furthermore, at the top of the stabilizer 312, a depressurization pipe 311b equipped with a safety valve 314 that opens and depressurizes when the internal pressure of the stabilizer 312 rises and becomes equal to or higher than the operating pressure (for example, the design pressure of the stabilizer 312). is provided.
 気液分離部21にて気液分離されたコンデンセートは水分を含むので、低圧運転機器であるスタビライザー312から排出される余剰流体は湿潤な状態となっている。この観点で、スタビライザー312から排出される余剰流体は、第2の余剰流体に相当する。なお図1において、抜出配管311a、脱圧用配管311bについても、余剰流体配管311として包括的に記載してある。 Since the condensate separated by the gas-liquid separation unit 21 contains moisture, the surplus fluid discharged from the stabilizer 312, which is a low-pressure operating device, is in a wet state. From this point of view, the excess fluid discharged from the stabilizer 312 corresponds to the second excess fluid. In FIG. 1, the extraction pipe 311a and the depressurization pipe 311b are also comprehensively described as the surplus fluid pipe 311. As shown in FIG.
 このように、従来構成のLNGプラントには、低圧運転機器である酸性ガス除去部22の再生塔222や蒸気圧調整部31のスタビライザー312から排出される湿潤な余剰流体(第2の余剰流体)を、バーナーが設けられたフレアスタック部132へと流通させるLP-WETフレア配管130が設けられていた。 
 これに対して、実施形態に係るLNGプラントは、第2の余剰流体の排出先を変更することにより、LP-WETフレア配管130、ノックアウトドラム131及びフレアスタック部132の設置を省略している。
In this way, in the LNG plant of the conventional configuration, wet surplus fluid (second surplus fluid) discharged from the regeneration tower 222 of the acid gas removal unit 22 and the stabilizer 312 of the vapor pressure adjustment unit 31, which are low-pressure operation equipment was provided with an LP-WET flare pipe 130 for circulating to a flare stack portion 132 provided with a burner.
In contrast, the LNG plant according to the embodiment omits the installation of the LP-WET flare pipe 130, the knockout drum 131, and the flare stack section 132 by changing the discharge destination of the second surplus fluid.
 即ち、図4に示すように、調節弁223が設けられた抜出配管221aの一端は、再生塔222の頭頂部に接続され、他端は、外部排出配管160に接続されている。また、調節弁313が設けられた抜出配管311aの一端は、スタビライザー312の頭頂部に接続され、他端は、外部排出配管160に接続されている。 That is, as shown in FIG. 4, one end of the discharge pipe 221a provided with the control valve 223 is connected to the top of the regeneration tower 222, and the other end is connected to the external discharge pipe 160. One end of an extraction pipe 311 a provided with a control valve 313 is connected to the top of the stabilizer 312 , and the other end is connected to the external discharge pipe 160 .
 従来、LNGプラントには、運転機器から排出された非可燃性のガスなどを排出する目的で、フレアスタック部112、121、141を介さずに当該ガスを外部へ排出する外部排出配管160が設けられている。外部排出配管160は、内部を流通する流体をそのまま大気へ放出するように構成されてもよい。また、外部排出配管160は、吸着剤が充填された充填塔に対して末端部が接続され、所定の成分を吸着剤により吸着除去してから残りのガスを大気放出するように構成されてもよい。 Conventionally, an LNG plant is provided with an external discharge pipe 160 for discharging the gas to the outside without going through the flare stack portions 112, 121, and 141 for the purpose of discharging non-flammable gas discharged from operating equipment. It is The external discharge pipe 160 may be configured to directly discharge the fluid flowing therein to the atmosphere. Also, the external discharge pipe 160 may be configured such that the end portion is connected to a packed tower filled with an adsorbent, and the remaining gas is discharged to the atmosphere after a predetermined component is removed by adsorption with the adsorbent. good.
 第2の余剰流体が、外部排出配管160の末端部から大気放出される場合において、当該第2の余剰流体が人体や環境に影響を与える成分を含む場合がある。この場合には、LNGプラント内で作業を行う人への影響を避けるため、外部排出配管160の末端部は、LNGプラントが設置されている設置面よりも高所にて、外部である大気へ向けて第2の余剰流体を排出するように構成されることが好ましい。 When the second surplus fluid is discharged to the atmosphere from the end of the external discharge pipe 160, the second surplus fluid may contain components that affect the human body and the environment. In this case, in order to avoid affecting the workers who work in the LNG plant, the end of the external discharge pipe 160 is placed at a higher place than the installation surface where the LNG plant is installed, and is exposed to the outside atmosphere. It is preferably configured to discharge the second excess fluid towards.
 ここでLNGプラントの設置面としては、LNGプラントを構成する機器の据え付け高さ(installation level)を用いる場合を例示できる。機器の据え付け高さとは、所定の基準高さ(例えば海抜ゼロメートル高さ)から、各機器が設けられている位置までの高さ寸法である。例えば複数階層の架構の最上階に載置台が設けられ、この載置台上に機器が据え付けられている場合には、基準高さから、載置台に据え付けられた機器の下端までの高さ寸法が据え付け高さに相当する。LNGプラント内には多数の機器が設けられているので、これらの機器のうち、据え付け高さが最大となる機器よりも高い位置に外部排出配管160の末端部を配置する場合を例示できる。 Here, as the installation surface of the LNG plant, a case where the installation level of the equipment constituting the LNG plant is used can be exemplified. The installation height of equipment is the height dimension from a predetermined reference height (for example, the height of zero meters above sea level) to the position where each equipment is installed. For example, when a mounting table is provided on the top floor of a multi-story frame and equipment is installed on this mounting table, the height dimension from the reference height to the bottom end of the equipment installed on the mounting table is Corresponds to the installation height. Since a large number of devices are installed in an LNG plant, a case can be exemplified in which the end portion of the external discharge pipe 160 is arranged at a position higher than the device having the maximum installation height among these devices.
 さらに第2の余剰流体は、外部排出配管160からの排出位置から予め設定された距離だけ離れた位置にてサンプルされる大気中の許容濃度が設定されている管理対象成分を含む場合がある。この場合には、外部排出配管160の末端部は、前記サンプル中の管理対象成分の濃度が、前記許容濃度未満となる高さ位置に設けられる。この高さ位置は、流体解析ソフトを用いた大気拡散シミュレーションなどにより、事前に把握することができる。 Furthermore, the second surplus fluid may contain a component subject to management whose allowable concentration in the air is sampled at a position a preset distance away from the discharge position from the external discharge pipe 160 . In this case, the end of the external discharge pipe 160 is provided at a height position where the concentration of the controlled component in the sample is less than the allowable concentration. This height position can be grasped in advance by atmospheric diffusion simulation using fluid analysis software.
 管理対象成分の許容濃度について、法的基準が設けられている場合は、これを遵守するように設定される。また、法的基準だけでなく、ILO(国際労働者組織)が公表する管理対象成分の人体に対する影響を考慮した基準数値や、世界銀行などが公表する出資基準から導き出される基準数値、その他、各LNGプラントの建設地特有の基準数値や、LNGプラントを所有、運転する企業が独自に定める基準数値などを考慮して、管理対象成分の許容濃度は設定される。 If there are legal standards for the permissible concentrations of controlled ingredients, they will be set to comply with them. In addition to legal standards, we also use standard values published by the ILO (International Labor Organization) that consider the effects of controlled substances on the human body, standard values derived from investment standards published by the World Bank, etc. The permissible concentration of controlled components is set in consideration of the standard values specific to the construction site of the LNG plant and the standard values independently determined by the company that owns and operates the LNG plant.
 以上に説明したように、外部排出配管160の末端部から第2の余剰流体を直接、大気放出する構成を採用する場合には、外部排出配管160の末端部は高所に設けられる場合が多い。この場合に、図6を用いて説明する後述のFLNG4の例のように、他のフレアスタック部112、121、141と共通のやぐらに外部排出配管160の末端部を配置する場合がある。 As described above, when adopting a configuration in which the second surplus fluid is directly discharged to the atmosphere from the end of the external discharge pipe 160, the end of the external discharge pipe 160 is often provided at a high place. . In this case, the end of the external discharge pipe 160 may be arranged in a common tower with the other flare stack portions 112, 121, 141, as in the example of the FLNG 4 described later with reference to FIG.
 このように、外部排出配管160とフレアスタック部112、121、141とが隣接して配置される場合には、バーナーの炎が外部排出配管160に当たることを避ける必要がある。そこで、外部排出配管160の末端部の高さ位置は、フレアスタック部112、121、141の炎の基端部と同じ高さ位置か、それよりも下方側に配置される。 
 一方、外部排出配管160の末端部と、フレアスタック部112、121、141とを、LNGプラントの敷地内の異なる位置に設置する場合には、外部排出配管160の末端部が配置される高さ位置には、バーナーの炎を考慮した制約は生じない。
Thus, when the external discharge pipe 160 and the flare stack portions 112, 121, 141 are arranged adjacent to each other, it is necessary to prevent the burner flame from striking the external discharge pipe 160. FIG. Therefore, the height position of the distal end of the external discharge pipe 160 is arranged at the same height position as the proximal end of the flames of the flare stacks 112, 121, 141 or lower than it.
On the other hand, when the end portion of the external discharge pipe 160 and the flare stack portions 112, 121, 141 are installed at different positions within the premises of the LNG plant, the height at which the end portion of the external discharge pipe 160 is arranged Positions are not constrained by burner flame considerations.
 外部排出配管160は、直径が例えば1.2m(48inch)程度の配管であり、従来構成のLNGプラントに設けられていたLP-WETフレア配管130と比較して耐圧性能が低い(LP-WETフレア配管130と比べて配管の肉厚も薄い)。この場合に、LP-WETフレア配管130及びこの付帯設備であるノックアウトドラム131、フレアスタック部132の設置を省略することにより、建設コストやメンテナンスコストを大幅に抑制することができる。 The external discharge pipe 160 is a pipe with a diameter of about 1.2 m (48 inches), for example, and has lower pressure resistance performance (LP-WET flare The thickness of the pipe is also thinner than that of the pipe 130). In this case, by omitting the installation of the LP-WET flare pipe 130 and the knockout drum 131 and flare stack section 132 which are incidental equipment, construction costs and maintenance costs can be greatly reduced.
 一方で既述のように、抜出配管221a、311aを流通する第2の余剰流体は、通常運転において排ガスとして排出される。焼却炉151が設置されている場合、第2の余剰流体は焼却炉151で焼却処理されるため、第2の余剰流体がそのまま大気放出される機会は少ない。また仮に、酸性ガス除去部22の抜出配管221aを外部排出配管160に接続したことに伴って、焼却炉151の設置を省略する場合であっても、原油中の含有量と比較して、NGに含まれる硫化水素は微量である。また、吸着剤を充填した充填塔にて硫化水素などの成分を除去してから大気放出を行ってもよいことは既述の通りである。 On the other hand, as described above, the second surplus fluid flowing through the extraction pipes 221a and 311a is discharged as exhaust gas during normal operation. When the incinerator 151 is installed, the second surplus fluid is incinerated in the incinerator 151, so there is little opportunity for the second surplus fluid to be released to the atmosphere as it is. Further, even if the installation of the incinerator 151 is omitted as a result of connecting the extraction pipe 221a of the acid gas removal unit 22 to the external discharge pipe 160, the content in the crude oil is The amount of hydrogen sulfide contained in NG is very small. Also, as described above, the atmosphere may be released after removing components such as hydrogen sulfide in a packed tower filled with an adsorbent.
 以上に説明したように、調節弁223、313を用いて排出量を調節する抜出配管221a、311aは、外部排出配管160に接続され、当該外部排出配管160へ向けて第2の余剰流体を排出することが可能な構成となっている。 
 一方で通常、低圧運転機器である再生塔222やスタビライザー312の設計圧力は、外部排出配管160の設計圧力よりも高く設定されている。即ち、外部排出配管160は設計圧力が低いため、安全弁224、314が設けられた脱圧用配管221b、311bの接続先とすることはできない。
As described above, the extraction pipes 221a, 311a for adjusting the discharge amount using the control valves 223, 313 are connected to the external discharge pipe 160, and direct the second surplus fluid to the external discharge pipe 160. It is configured to be ejectable.
On the other hand, normally, the design pressure of the regeneration tower 222 and the stabilizer 312 which are low-pressure operation equipment is set higher than the design pressure of the external discharge pipe 160 . That is, since the design pressure of the external discharge pipe 160 is low, it cannot be connected to the depressurization pipes 221b and 311b provided with the safety valves 224 and 314 .
 そこで図4に示すように、実施形態に係るLNGプラントにおいて、安全弁224が設けられた脱圧用配管221bの一端は、再生塔222の頭頂部に接続され、他端は、HP-WETフレア配管110に接続されている。また、安全弁314が設けられた脱圧用配管311bの一端は、スタビライザー312の頭頂部に接続され、他端は、HP-WETフレア配管110に接続されている。即ちHP-WETフレア配管110には、気液分離部21や水分除去部23などの高圧運転機器から排出された湿潤な余剰流体である、第1の余剰流体が流通すると共に、上述の低圧運転機器(酸性ガス除去部22、蒸気圧調整部31)の脱圧用配管221b、311bから排出された第2の余剰流体が流通する。 Therefore, as shown in FIG. 4, in the LNG plant according to the embodiment, one end of the depressurization pipe 221b provided with the safety valve 224 is connected to the top of the regeneration tower 222, and the other end is connected to the HP-WET flare pipe 110. It is connected to the. One end of a depressurization pipe 311 b provided with a safety valve 314 is connected to the top of the stabilizer 312 , and the other end is connected to the HP-WET flare pipe 110 . That is, in the HP-WET flare pipe 110, the first surplus fluid, which is the wet surplus fluid discharged from the high-pressure operation equipment such as the gas-liquid separation unit 21 and the water removal unit 23, flows. The second surplus fluid discharged from the depressurization pipes 221b and 311b of the equipment (acid gas removing unit 22, vapor pressure adjusting unit 31) flows.
 ここで、従来構成に記載のLP-WETフレア配管130と比較して、HP-WETフレア配管110は設計圧力が高い。このため、脱圧用配管221b、311bに設けられている安全弁224、314の作動圧力は、LP-WETフレア配管130に接続される場合(作動圧力として、例えば0.5MPa(3.5Barg)程度)よりも、HP-WETフレア配管110に接続される場合の方が高くなる(例えば0.8~1.1MPa(7~10Barg))。 Here, compared to the LP-WET flare pipe 130 described in the conventional configuration, the HP-WET flare pipe 110 has a higher design pressure. Therefore, the operating pressure of the safety valves 224 and 314 provided in the depressurization pipes 221b and 311b is about 0.5 MPa (3.5 Barg) when connected to the LP-WET flare pipe 130 (for example, about 0.5 MPa (3.5 Barg)). than when connected to the HP-WET flare pipe 110 (for example, 0.8 to 1.1 MPa (7 to 10 Barg)).
 そこで、低圧運転機器である再生塔222やスタビライザー312の設計圧力は、HP-WETフレア配管110に接続可能な安全弁224、314に対応した耐圧性能を備える必要がある。このため、再生塔222やスタビライザー312の設計圧力をHP-WETフレア配管110と同じ設計圧力にするため、構成する部材の肉厚は、安全弁224、314がLP-WETフレア配管130に接続されている従来構成と比較して、より厚くする必要がある。しかしながら、LP-WETフレア配管130、ノックアウトドラム131及びフレアスタック部132の設置を省略することが可能となるため、建設コストやメンテナンスコストの低減効果と比較すると、上記設計圧力の変更の影響は、相対的に小さい。 Therefore, the design pressure of the regeneration tower 222 and the stabilizer 312, which are low-pressure operating devices, must have pressure resistance performance corresponding to the safety valves 224 and 314 that can be connected to the HP-WET flare pipe 110. For this reason, in order to make the design pressure of the regeneration tower 222 and the stabilizer 312 the same as that of the HP-WET flare pipe 110, the thickness of the constituent members is set so that the safety valves 224 and 314 are connected to the LP-WET flare pipe 130. It is necessary to make it thicker than the conventional structure with However, since it is possible to omit the installation of the LP-WET flare pipe 130, the knockout drum 131 and the flare stack portion 132, compared with the effect of reducing the construction cost and maintenance cost, the impact of the above design pressure change is relatively small.
 実施形態に係るLNGプラントによれば、以下の効果がある。低圧運転機器(再生塔222、スタビライザー312)から排出される余剰流体(第2の余剰流体)の排出先について、調節弁223、313が設けられた抜出配管221a、311aと、安全弁224、314が設けられた脱圧用配管221b、311bとが異なる排出先に接続されている。この結果、従来、これら抜出配管221a、311a及び脱圧用配管221b、311bの共通の排出先として設けられていた低圧運転機器用のLP-WETフレア配管130の設置を省略し、フレア配管の系統構成を簡素化することができる。 The LNG plant according to the embodiment has the following effects. With respect to the destination of the surplus fluid (second surplus fluid) discharged from the low-pressure operation equipment (regeneration tower 222, stabilizer 312), extraction pipes 221a, 311a provided with control valves 223, 313 and safety valves 224, 314 are connected to different discharge destinations from the depressurization pipes 221b and 311b. As a result, conventionally, the installation of the LP-WET flare pipe 130 for low-pressure operation equipment, which was provided as a common discharge destination for these extraction pipes 221a, 311a and the depressurization pipes 221b, 311b, is omitted, and the flare pipe system Configuration can be simplified.
 以上に説明した従来構成、及び実施形態に係るLNGプラントの具体例として、水上に設置された水上設備上に、LNGプラントを構成する複数の機器を設けたFLNG4a、4について、図5、図6を参照しながら説明する。 As a specific example of the conventional configuration described above and the LNG plant according to the embodiment, FLNG 4 a and 4 in which a plurality of equipment constituting the LNG plant are provided on the floating facility installed on the water are shown in FIGS. will be described with reference to.
 初めに、従来構成及び実施形態に共通の構成について説明する。FLNG4a、4は、水上に配置される水上設備であり、内部にLNGタンク28やLPGタンク34などが形成されたハル(Hull)40の上面に、既述のLNGプラントが設けられた構成となっている。ハル40の船首側には、係留設備であるタレット45が設けられている。タレット45は、係留索に接続されてハル40の係留を行うと共に、採掘されたNGの水中輸送を行うライザーが接続されている(係留索やライザーは不図示)。以下、タレット45が設けられている向きをハル40の前方として説明を行う。 First, the configuration common to the conventional configuration and the embodiment will be described. The FLNGs 4a and 4 are floating facilities placed on the water, and the above-mentioned LNG plant is provided on the upper surface of the hull 40 in which the LNG tank 28, the LPG tank 34, etc. are formed. ing. A turret 45 as mooring equipment is provided on the bow side of the hull 40 . The turret 45 is connected to a mooring line to moor the hull 40, and is connected to a riser for underwater transportation of mined NG (mooring line and riser are not shown). In the following description, the direction in which the turret 45 is provided is assumed to be the front of the hull 40 .
 ハル40の躯体上の例えば船首側左舷寄りの位置には、LNGプラントやLNGタンクなどで発生した余剰なガスを燃焼するためのフレアスタック44が設けられている。また図5(b)、図6(b)に示すように、ハル40は、船幅方向よりも船長方向に長い平面形状を有している。そしてハル40の船幅方向の中央領域には、ハル40の船長方向に沿って延在するようにパイプラック41が設けられている。パイプラック41は、FLNG4a、4内で取り扱われる各種の流体が流れる複数のプラント配管を保持する架構である。 A flare stack 44 is provided on the frame of the hull 40, for example, at a position closer to the port side on the bow side for burning surplus gas generated in LNG plants and LNG tanks. Further, as shown in FIGS. 5(b) and 6(b), the hull 40 has a planar shape that is longer in the longitudinal direction than in the transverse direction. A pipe rack 41 is provided in the center region of the hull 40 in the width direction so as to extend along the length of the hull 40 . The pipe rack 41 is a frame that holds a plurality of plant pipes through which various fluids handled in the FLNG 4a, 4 flow.
 パイプラック41の左右両脇に隣接する領域は、LNGプラントを構成する機器が配置されるプラント配置領域42となっている。これらのプラント配置領域42には、各々、LNGプラントを構成する複数のLNGプラント機器421が前後方向に並べて設けられている。これらのLNGプラント機器421には、既述の低圧運転機器や高圧運転機器が含まれる。 The areas adjacent to the left and right sides of the pipe rack 41 are plant placement areas 42 in which the equipment that constitutes the LNG plant is placed. A plurality of LNG plant equipment 421 constituting an LNG plant are arranged side by side in the front-rear direction in each of these plant layout areas 42 . These LNG plant equipment 421 include the low-pressure operation equipment and the high-pressure operation equipment described above.
 また図5、図6には、ハル40の甲板上にプラント配置領域42を個別に配置したいわゆるスティックビルト(stick-built)方式で建造されたLNGプラントの例を示している。
 この例に替え、LNGプラントの多数のLNGプラント機器421を、複数の架構に分けて組み込んでモジュールを構成し、これらのモジュールをハル40の躯体の完成後に設置することによりLNGプラントを構成してもよい。この場合、ハル40とモジュールとは、別々の場所で建造される。
5 and 6 show an example of an LNG plant constructed by a so-called stick-built system in which a plant arrangement area 42 is individually arranged on the deck of a hull 40. As shown in FIG.
Instead of this example, a large number of LNG plant equipment 421 of the LNG plant are divided into a plurality of frames to form modules, and these modules are installed after the frame of the hull 40 is completed to form the LNG plant. good too. In this case the hull 40 and the modules are built at separate locations.
 図5(a)、(b)に示すように、従来構成のLNGプラントが設けられたFLNG4aにおいて、パイプラック41にはHP-WETフレア配管110、HP-DRYフレア配管120、LP-WETフレア配管130及びLP-DRYフレア配管140が保持されている。また従来構成のLNGプラントにおいても、パイプラック41には外部排出配管160を含む多数の配管が保持されているが、図示の便宜上、これらの配管の記載は省略してある。 
 これらのフレア配管110、120、130、140の末端部は、共通のやぐらに設けられたフレアスタック44(フレアスタック部112、121、132、141)に接続されている。
As shown in FIGS. 5(a) and 5(b), in the FLNG 4a provided with the conventionally configured LNG plant, the pipe rack 41 includes HP-WET flare piping 110, HP-DRY flare piping 120, and LP-WET flare piping. 130 and LP-DRY flare piping 140 are retained. Also in the conventional LNG plant, the pipe rack 41 holds a large number of pipes including the external discharge pipe 160, but the illustration of these pipes is omitted for convenience of illustration.
The end portions of these flare pipes 110, 120, 130, 140 are connected to flare stacks 44 (flare stack portions 112, 121, 132, 141) provided on a common tower.
 一方、図6(a)、(b)に示すように、実施形態のLNGプラントが設けられたFLNG4において、フレア配管に関し、パイプラック41には、HP-WETフレア配管110、HP-DRYフレア配管120及びLP-DRYフレア配管140のみが保持されている。これらのフレア配管110、120、140の末端部は、共通のやぐらに設けられたフレアスタック44(フレアスタック部112、121、141)に接続されている。  On the other hand, as shown in FIGS. 6(a) and 6(b), in the FLNG 4 provided with the LNG plant of the embodiment, regarding the flare piping, the pipe rack 41 includes the HP-WET flare piping 110 and the HP-DRY flare piping. Only 120 and LP-DRY flare lines 140 are retained. Terminal ends of these flare pipes 110, 120, 140 are connected to a flare stack 44 (flare stack portions 112, 121, 141) provided on a common tower. 
 これに対して、LP-WETフレア配管130、ノックアウトドラム131及びフレアスタック部132は、実施形態に係るFLNG4には設けられていない。ここでFLNG4のように、水上設備にLNGプラントを設ける場合には、LNGプラントを構成する多数の機器を配置できる設置面の面積に制約がある。この場合に、LP-WETフレア配管130などの設置を省略することにより、他の機器の設置に割くことが可能な面積が大きくなるスペースメリットが得られる。また、LP-WETフレア配管130などの設置の省略による重量低減のメリットも得られる。 On the other hand, the LP-WET flare pipe 130, the knockout drum 131 and the flare stack portion 132 are not provided in the FLNG 4 according to the embodiment. Here, like FLNG 4, when an LNG plant is installed in a floating facility, there is a restriction on the area of the installation surface where a large number of equipment constituting the LNG plant can be arranged. In this case, by omitting the installation of the LP-WET flare pipe 130 and the like, a space merit can be obtained in which the area that can be allocated to the installation of other equipment is increased. In addition, the merit of weight reduction by omitting the installation of the LP-WET flare pipe 130 can also be obtained.
 また図6(b)には、低圧運転機器(再生塔222やスタビライザー312)から排出された第2の余剰流体が流通する外部排出配管160がパイプラック41に保持されている様子も模式的に記載してある。図6(a)に示す例では、外部排出配管160は、フレアスタック44を保持するやぐらの途中の高さ位置まで延在するように設けられ、その末端部は、フレアスタック44のバーナーの下方位置にて第2の余剰流体などを大気放出するように構成されている。この構成により、既述のように、バーナーの炎が外部排出配管160に当たることを避けることができる。また、外部排出配管160からの大気放出の方向は、フレアスタック44から見て、居住部43が設けられている向きとは反対方向に設置することが好ましい。 FIG. 6(b) also schematically shows how the pipe rack 41 holds the external discharge pipe 160 through which the second surplus fluid discharged from the low-pressure operating equipment (the regeneration tower 222 and the stabilizer 312) flows. It is described. In the example shown in FIG. 6( a ), the external discharge pipe 160 is provided so as to extend to a mid-height position of the scaffold holding the flare stack 44 , and its terminal end is below the burner of the flare stack 44 . It is configured to release the second excess fluid or the like to the atmosphere at the location. This arrangement avoids impingement of the burner flames on the external discharge line 160, as previously described. In addition, it is preferable that the direction of release to the atmosphere from the external discharge pipe 160 is the direction opposite to the direction in which the living portion 43 is provided when viewed from the flare stack 44 .
 以上、水上設備の一種であるハル40上にLNGプラントを設けた例について説明したが、実施形態に係るLNGプラントを設ける水上設備はこの例に限定されない。例えば洋上着底型構造物(GBS:Gravity-based structure)や、水底に固定されているプラットフォーム上に実施形態に係るLNGプラントを設けてもよい。ここで「水上」とは、海上に限定されるものではなく、湖水などの水上であってもよい。 
 一方、LNGプラントは、地上に設けられるものであってもよい。
Although the example in which the LNG plant is installed on the hull 40, which is a type of floating facility, has been described above, the floating facility in which the LNG plant according to the embodiment is installed is not limited to this example. For example, the LNG plant according to the embodiments may be provided on a bottom-bottomed structure (GBS) or on a platform fixed to the bottom of the water. Here, "on the water" is not limited to the sea, and may be on the water such as a lake.
On the other hand, the LNG plant may be provided above ground.
 また、本発明の適用対象となる天然ガス処理設備は、LNGプラントである場合に限定されない。例えばNG中の重質分の分離・回収を行い、軽質炭化水素はガスの状態で出荷する天然ガス処理設備であるNGL(Natural Gas Liquids)プラントに対しても、本発明は適用することができる。 Also, the natural gas processing equipment to which the present invention is applied is not limited to LNG plants. For example, the present invention can be applied to an NGL (Natural Gas Liquids) plant, which is a natural gas processing facility that separates and recovers heavy components in NG and ships light hydrocarbons in the form of gas. .
110   HP-WETフレア配管
112   フレアスタック部
160   外部排出配管
221a、311a
      抜出配管
221b、311b
      脱圧用配管
222   再生塔
223、313
      調節弁
224、314
      安全弁
312   スタビライザー

 
110 HP-WET flare pipe 112 flare stack section 160 external discharge pipe 221a, 311a
Extraction piping 221b, 311b
Depressurization pipe 222 Regeneration towers 223 and 313
Control valves 224, 314
Safety valve 312 Stabilizer

Claims (6)

  1.  天然ガスの液化または天然ガス中の成分の分離・回収を行う天然ガス処理設備であって、
     常圧よりも高い圧力で運転される高圧運転機器と、
     当該高圧運転機器よりも低い圧力で運転される低圧運転機器と、
     可燃性のガスを燃焼した上で大気放出するためのバーナーが設けられたフレアスタック部と、
     前記フレアスタック部に接続され、前記高圧運転機器から排出される前記可燃性のガスを含む湿潤な第1の余剰流体が流通するフレア配管と、 
     前記低圧運転機器から排出される前記可燃性のガスを含む湿潤な第2の余剰流体が流通し、前記フレアスタック部を介さずに前記第2の余剰流体を外部へ排出する外部排出配管と、
     一端が前記低圧運転機器に接続され、前記第2の余剰流体の排出量を調節するための調節弁が設けられた抜出配管と、
     一端が前記低圧運転機器に接続され、前記低圧運転機器内の圧力が予め設定された作動圧力以上となった場合に開く安全弁が設けられた脱圧用配管と、
    を備え、
     前記抜出配管の他端は、前記外部排出配管に接続され、
     前記脱圧用配管の他端は、前記フレア配管に接続されていることを特徴とする天然ガス処理設備。
    A natural gas processing facility that liquefies natural gas or separates and recovers components in natural gas,
    a high-pressure operating device operated at a pressure higher than normal pressure;
    a low-pressure operating device operated at a pressure lower than that of the high-pressure operating device;
    a flare stack section provided with a burner for burning combustible gas and releasing it to the atmosphere;
    a flare pipe connected to the flare stack portion and through which a wet first surplus fluid containing the combustible gas discharged from the high-pressure operating device flows;
    an external discharge pipe through which the wet second surplus fluid containing the combustible gas discharged from the low-pressure operating device flows and discharges the second surplus fluid to the outside without passing through the flare stack;
    a discharge pipe having one end connected to the low-pressure operating equipment and provided with a control valve for adjusting the discharge amount of the second excess fluid;
    a depressurization pipe having one end connected to the low-pressure operating device and provided with a safety valve that opens when the pressure in the low-pressure operating device exceeds a preset operating pressure;
    with
    The other end of the extraction pipe is connected to the external discharge pipe,
    A natural gas processing facility, wherein the other end of the depressurization pipe is connected to the flare pipe.
  2.  前記低圧運転機器の設計圧力は、前記外部排出配管の設計圧力よりも高く設定されていることを特徴とする請求項1に記載の天然ガス処理設備。 The natural gas processing facility according to claim 1, wherein the design pressure of said low-pressure operation equipment is set higher than the design pressure of said external discharge piping.
  3.  前記低圧運転機器の設計圧力は、前記フレア配管に対応する圧力に設定されていることを特徴とする請求項1に記載の天然ガス処理設備。 The natural gas processing facility according to claim 1, wherein the design pressure of said low-pressure operation equipment is set to a pressure corresponding to said flare piping.
  4.  前記低圧運転機器は、前記可燃性のガスとして酸性ガスを排出する機器を含み、前記酸性ガスを排出する機器には、前記可燃性のガスを燃焼させる焼却炉に向けて前記第2の余剰流体を排出するための焼却用配管が接続されていることを特徴とする請求項1に記載の天然ガス処理設備。 The low-pressure operation device includes a device that discharges an acid gas as the combustible gas, and the device that discharges the acid gas includes the second surplus fluid directed to an incinerator that burns the combustible gas. 2. The natural gas processing facility according to claim 1, further comprising an incineration pipe for discharging the gas.
  5.  前記外部排出配管は、前記天然ガス処理設備が設置されている設置面よりも高所にて、外部である大気へ向けて、許容濃度が設けられている管理対象成分を含む前記第2の余剰流体を排出するように構成されることと、
     前記第2の余剰流体の排出位置は、当該排出位置から予め設定された距離だけ離れた位置における前記管理対象成分の濃度が、前記許容濃度未満となる高さ位置に設けられていることと、を特徴とする請求項1に記載の天然ガス処理設備。
    The external discharge pipe directs the second surplus containing the component subject to management, which has a permissible concentration, to the atmosphere, which is the outside, at a higher place than the installation surface where the natural gas processing equipment is installed. configured to expel a fluid;
    The second surplus fluid discharge position is provided at a height position at which the concentration of the component to be managed at a position separated by a preset distance from the discharge position is less than the allowable concentration; The natural gas processing facility according to claim 1, characterized by:
  6.  前記天然ガス処理設備を構成する複数の機器は、水上に設置された水上設備上に設けられていることを特徴とする請求項1に記載の天然ガス処理設備。

     
    2. The natural gas processing facility according to claim 1, wherein the plurality of devices constituting the natural gas processing facility are installed on a floating facility installed on the water.

PCT/JP2021/039515 2021-10-26 2021-10-26 Natural gas processing facility WO2023073811A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023555933A JPWO2023073811A1 (en) 2021-10-26 2021-10-26
PCT/JP2021/039515 WO2023073811A1 (en) 2021-10-26 2021-10-26 Natural gas processing facility
CN202180101243.2A CN117751267A (en) 2021-10-26 2021-10-26 Natural gas treatment equipment
KR1020247004390A KR20240088673A (en) 2021-10-26 2021-10-26 natural gas processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039515 WO2023073811A1 (en) 2021-10-26 2021-10-26 Natural gas processing facility

Publications (1)

Publication Number Publication Date
WO2023073811A1 true WO2023073811A1 (en) 2023-05-04

Family

ID=86159255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039515 WO2023073811A1 (en) 2021-10-26 2021-10-26 Natural gas processing facility

Country Status (4)

Country Link
JP (1) JPWO2023073811A1 (en)
KR (1) KR20240088673A (en)
CN (1) CN117751267A (en)
WO (1) WO2023073811A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045659A (en) * 1993-05-03 2000-04-04 Den Norske Stats Oijeselkap A.S. Device for recovery of excess gas in an oil/gas treatment plant
JP2012233534A (en) * 2011-05-02 2012-11-29 Ihi Marine United Inc Boil-off gas processing device and liquefied gas tank
WO2016088159A1 (en) * 2014-12-01 2016-06-09 千代田化工建設株式会社 Equipment safety management device, equipment safety management method, and natural gas liquefaction device
US20170292784A1 (en) * 2016-04-11 2017-10-12 Geoff ROWE System and method for liquefying production gas from a gas source
US20200317305A1 (en) * 2016-06-01 2020-10-08 Samsung Heavy Ind. Co., Ltd Offshore facility, floating crude oil production facility and method for generating liquefied natural gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045659A (en) * 1993-05-03 2000-04-04 Den Norske Stats Oijeselkap A.S. Device for recovery of excess gas in an oil/gas treatment plant
JP2012233534A (en) * 2011-05-02 2012-11-29 Ihi Marine United Inc Boil-off gas processing device and liquefied gas tank
WO2016088159A1 (en) * 2014-12-01 2016-06-09 千代田化工建設株式会社 Equipment safety management device, equipment safety management method, and natural gas liquefaction device
US20170292784A1 (en) * 2016-04-11 2017-10-12 Geoff ROWE System and method for liquefying production gas from a gas source
US20200317305A1 (en) * 2016-06-01 2020-10-08 Samsung Heavy Ind. Co., Ltd Offshore facility, floating crude oil production facility and method for generating liquefied natural gas

Also Published As

Publication number Publication date
KR20240088673A (en) 2024-06-20
JPWO2023073811A1 (en) 2023-05-04
CN117751267A (en) 2024-03-22

Similar Documents

Publication Publication Date Title
WO2023073811A1 (en) Natural gas processing facility
KR101373806B1 (en) Apparatus for ship's vapor recovery unit
AU2022231698A1 (en) Marine vessel comprising LG handling system
EP1576313B1 (en) A device for condensing volatile organic compounds from a storage or transport tank into oil
WO2011089108A1 (en) Vessel with a modified pipe arrangement
KR101267546B1 (en) Apparatus for storage and reuse of recovered oil-vapor in a ship
US20080011219A1 (en) Enhanced cargo venting system
JP4947594B2 (en) Pier equipment and hydrocarbon recovery system
OA12743A (en) Floating hydrocarbon treating plant.
NO316739B1 (en) Process for reducing the separation of volatile organic compounds from oil during filling of tanks
WO2022170252A1 (en) System and method for oil production equipment that minimizes total emissions
NO332911B1 (en) Method and apparatus for handling HC gas
KR102172666B1 (en) Floating body equipment
WO2023058097A1 (en) Floating facility
US7004211B2 (en) Method and device for reducing the separation of volatile organic compounds from oil during filling of tanks
RU2229662C2 (en) Processing plant
RU2285630C2 (en) Shielding hydrocarbon gas
KR101486892B1 (en) VOCs processing system and processing method thereof
US20230184431A1 (en) Integrated flare system for gas plant
WO2020021634A1 (en) Floating body facility
JPS6117916Y2 (en)
KR20240021009A (en) System and Method for Supplying VOC as Fuel for Engine and Vessel using VOC as Fuel
De Vos et al. The problem of inert-gas venting on FPSOs and a straightforward solution
KR20210118804A (en) processing plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962360

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023555933

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180101243.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE