WO2023072151A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2023072151A1
WO2023072151A1 PCT/CN2022/127721 CN2022127721W WO2023072151A1 WO 2023072151 A1 WO2023072151 A1 WO 2023072151A1 CN 2022127721 W CN2022127721 W CN 2022127721W WO 2023072151 A1 WO2023072151 A1 WO 2023072151A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
liquid crystal
polarizing
polarized light
Prior art date
Application number
PCT/CN2022/127721
Other languages
English (en)
French (fr)
Inventor
王家星
柳峰
武晓娟
王建
毕谣
段金帅
陈翠玉
赵宇
冯大伟
于志强
侯丹星
王宁
刘明晶
张宜驰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280003811.XA priority Critical patent/CN117280274A/zh
Publication of WO2023072151A1 publication Critical patent/WO2023072151A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133545Dielectric stack polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1351Light-absorbing or blocking layers

Definitions

  • the present application relates to the field of display technology, in particular to a display panel and a display device.
  • Reflective liquid crystal display is widely used in small display devices such as smart wearables and electronic price tags, and has a bright future.
  • the ambient brightness is usually in a high-brightness state.
  • Traditional displays require display devices to have high brightness, which leads to high power consumption of display products. If reflective products are used, the power consumption of the product can be greatly reduced when the ambient light brightness is high.
  • the present application provides a display panel and a display device, and the technical solution is as follows:
  • a display panel is provided, and the display panel includes:
  • a liquid crystal cell comprising a first substrate and a second substrate oppositely arranged, and a liquid crystal layer located between the first substrate and the second substrate;
  • a first polarizing assembly located on the side of the first substrate away from the liquid crystal layer, the first polarizing assembly at least includes a first polarizing layer, the first polarizing layer has a first transmission axis, and the first The polarizing component is used to generate polarized light whose polarization direction is parallel to the first light transmission axis;
  • the second polarizing component located on the side of the second substrate away from the liquid crystal layer, the second polarizing component at least includes a transflective layer and a light absorbing layer, and the transflective layer is opposite to the light absorbing layer Close to the liquid crystal cell, the transflective layer has a second transmission axis for transmitting polarized light whose polarization direction is parallel to the second transmission axis, and for reflecting the polarized light whose polarization direction is parallel to the second transmission axis Vertically polarized light, the light absorbing layer is used to absorb the polarized light transmitted by the transflective layer.
  • the first polarizing assembly further includes:
  • a first adhesive layer located on a side of the first polarizing layer close to the liquid crystal cell
  • a first protective layer located between the first adhesive layer and the first polarizing layer
  • the first adhesive layer is used to bond the first protective layer to the first substrate, and the first protective layer and the second protective layer are respectively used to protect the first polarizing layer. of the two surfaces.
  • the light absorbing layer is a second polarizing layer
  • the second polarizing layer has an absorption axis and a third transmission axis
  • the absorption axis is parallel to the second transmission axis
  • the third transmission axis The optical axis is perpendicular to the second light transmission axis.
  • the second polarizing assembly further includes:
  • the second adhesive layer is located on the side of the transflective layer close to the liquid crystal cell;
  • a third adhesive layer located between the transflective layer and the second polarizing layer
  • a third protective layer located between the third adhesive layer and the second polarizing layer
  • the second adhesive layer is used to bond the transflective layer to the second substrate
  • the third adhesive layer is used to bond the transflective layer to the third protective layer.
  • the third protective layer and the fourth protective layer are respectively used to protect two surfaces of the second polarizing layer.
  • the display panel further includes a first light source assembly located on a side of the second polarizer assembly away from the liquid crystal cell;
  • One of the second polarizing layer and the transflective layer has a plurality of openings, and the openings are used for the light of the first light source component to pass through.
  • the second polarizing layer has the plurality of openings; the plurality of openings in the second polarizing layer are used to transmit the light emitted by the first light source component, and the transflective layer for generating polarized light parallel to the second light transmission axis based on light rays passing through the plurality of openings.
  • the transflective layer has the plurality of openings; the second polarizing layer is configured to generate polarized light whose polarization direction is parallel to the third light transmission axis based on the light emitted by the first light source component, The openings in the transflective layer are used to transmit polarized light whose polarization direction is parallel to the third light transmission axis.
  • the display panel further includes an array substrate having a plurality of pixel circuits, the array substrate has a plurality of pixel areas, each of the pixel areas includes a display area and a non-display area, and the pixel circuits are located in the In the non-display area, the orthographic projection of each opening on the array substrate is located in the display area of one pixel area.
  • the material of the light-absorbing layer includes a light-absorbing material, and the light-absorbing material includes black ink.
  • the second polarizing assembly further includes:
  • the second adhesive layer is located on the side of the transflective layer close to the liquid crystal cell;
  • the second adhesive layer is used for bonding the transflective layer and the second substrate.
  • the side of the first polarizer component away from the liquid crystal cell is the light-emitting surface of the display panel, and at least one adhesive layer between the transflective layer and the light-emitting surface has undergone haze treatment.
  • the adhesive layer between the transflective layer and the light-emitting surface of the display panel includes a first adhesive layer and a second adhesive layer;
  • the material of the first adhesive layer includes at least diffusion powder, or, the material of the second adhesive layer includes at least the diffusion powder, or, the material of the first adhesive layer and the second adhesive layer
  • the materials all include at least the diffusing powder.
  • the transflective layer includes a first dielectric layer and a second dielectric layer alternately stacked in sequence;
  • the first medium layer has a first refractive index for polarized light whose polarization direction is parallel to the second light transmission axis, and the first medium layer has a second refraction index for polarized light whose polarization direction is perpendicular to the second light transmission axis index, the first refractive index is equal to the second refractive index;
  • the second medium layer has a third refractive index for polarized light whose polarization direction is parallel to the second light transmission axis, and the second medium layer has a third refractive index for polarized light whose polarization direction is perpendicular to the second light transmission axis.
  • Four refractive indices, the third refractive index and the fourth refractive index are not equal, and the third refractive index is equal to the first refractive index.
  • the liquid crystal cell is a twisted nematic liquid crystal cell, or, the liquid crystal cell is a plane switching liquid crystal cell, or, the liquid crystal cell is a multi-quadrant vertical alignment liquid crystal cell.
  • the first polarizing component is closer to the light incident side than the second polarizing component
  • the light on the light incident side includes ambient light from outside, and/or the light emitted by the second light source component included in the display panel; the second light source component of the display panel is located at the first polarizing component away from the liquid crystal side of the box.
  • a display device in another aspect, includes: a power supply component and the display panel as described in the above aspects;
  • the power supply component is used to supply power to the display panel.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another display panel provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a first polarizing assembly provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a second polarizing assembly provided by an embodiment of the present application.
  • FIG. 5 is an optical path diagram of a normally white mode display panel of a TN liquid crystal cell provided in an embodiment of the present application when no power is applied;
  • Fig. 6 is an optical path diagram of a normally white mode display panel of a TN liquid crystal cell provided in an embodiment of the present application when power is applied;
  • FIG. 7 is an optical path diagram of a normally black mode display panel of a TN liquid crystal cell provided in an embodiment of the present application when no power is applied;
  • FIG. 8 is an optical path diagram of a normally black mode display panel of a TN liquid crystal cell provided in an embodiment of the present application when power is applied;
  • FIG. 9 is an optical path diagram of a normally white mode display panel of an IPS liquid crystal cell provided in an embodiment of the present application when no power is applied;
  • FIG. 10 is an optical path diagram of a normally white mode display panel of an IPS liquid crystal cell provided in an embodiment of the present application when power is applied;
  • Fig. 11 is an optical path diagram of a normally black mode display panel of an IPS liquid crystal cell provided in an embodiment of the present application when no power is applied;
  • FIG. 12 is an optical path diagram of a normally black mode display panel of an IPS liquid crystal cell provided in an embodiment of the present application when power is applied;
  • Fig. 13 is the optical path diagram of the normally white mode display panel of a kind of VA liquid crystal cell provided by the embodiment of the application when not powered on;
  • Fig. 14 is an optical path diagram of a normally white mode display panel of a VA liquid crystal cell provided by an embodiment of the present application when power is applied;
  • Fig. 15 is an optical path diagram of a normally black mode display panel of a VA liquid crystal cell provided in an embodiment of the present application when no power is applied;
  • Fig. 16 is an optical path diagram of a normally black mode display panel of a VA liquid crystal cell provided by an embodiment of the present application when power is applied;
  • Fig. 17 is a schematic structural diagram of a display panel with openings designed in the second polarizing layer according to an embodiment of the present application
  • Fig. 18 is an optical path diagram of a normally white mode display panel with an opening in the second polarizing layer and a TN liquid crystal cell provided by an embodiment of the present application when no power is applied;
  • Fig. 19 is an optical path diagram of a normally white mode display panel with an opening in the second polarizing layer and a TN liquid crystal cell provided by an embodiment of the present application when power is applied;
  • Fig. 20 is an optical path diagram of a normally black mode display panel with an opening in the second polarizing layer and an IPS liquid crystal cell provided by an embodiment of the present application when no power is applied;
  • Fig. 21 is an optical path diagram of a normally black mode display panel with openings designed in the second polarizing layer and an IPS liquid crystal cell provided by an embodiment of the present application when power is applied;
  • Fig. 22 is an optical path diagram of a display panel in normally black mode with an opening in the second polarizing layer and a VA liquid crystal cell provided by the embodiment of the present application when no power is applied;
  • Fig. 23 is an optical path diagram of a normally black mode display panel with an opening in the second polarizing layer and a VA liquid crystal cell provided by an embodiment of the present application when power is applied;
  • Fig. 24 is a schematic structural view of a display panel with openings designed in the transflective layer provided by the embodiment of the present application;
  • Fig. 25 is an optical path diagram of a normally white mode display panel with an opening in the transflective layer and a TN liquid crystal cell provided by the embodiment of the present application when no power is applied;
  • Fig. 26 is an optical path diagram of a normally white mode display panel with an opening in the transflective layer and a TN liquid crystal cell provided by an embodiment of the present application when power is applied;
  • Fig. 27 is an optical path diagram of a normally black mode display panel with an opening in the transflective layer and an IPS liquid crystal cell provided by the embodiment of the present application when no power is applied;
  • Fig. 28 is an optical path diagram of a normally black mode display panel with an opening in the transflective layer and an IPS liquid crystal cell provided by an embodiment of the present application when power is applied;
  • Fig. 29 is an optical path diagram of a normally black mode display panel with an opening in the transflective layer and a VA liquid crystal cell provided by the embodiment of the present application when no power is applied;
  • Fig. 30 is an optical path diagram of a normally black mode display panel with an opening in the transflective layer and a VA liquid crystal cell provided by an embodiment of the present application when power is applied;
  • Fig. 31 is a schematic structural diagram of another display panel provided by an embodiment of the present application.
  • Fig. 32 is a schematic diagram of the positional relationship between an array substrate and an opening provided by an embodiment of the present application.
  • Fig. 33 is a schematic structural diagram of another display panel provided by the embodiment of the present application.
  • Fig. 34 is a schematic structural diagram of a transflective layer provided in an embodiment of the present application.
  • Fig. 35 is a schematic diagram of the refractive index of the first dielectric layer and the second dielectric layer in a transflective layer provided by an embodiment of the present application;
  • FIG. 36 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • the reflective display panel is provided with a reflective metal layer at the position of the backlight to reflect the external ambient light for display, and then uses a polarizer composed of PVA, 1/2 ⁇ wave plate, and 1/4 ⁇ wave plate.
  • a polarizer composed of PVA, 1/2 ⁇ wave plate, and 1/4 ⁇ wave plate.
  • the 1/2 ⁇ wave plate and 1/4 ⁇ wave plate cannot rotate all visible light by 90°, and some light is still emitted in the dark state, resulting in low contrast of the reflective display panel (generally dozens).
  • the angle design of the 1/2 ⁇ wave plate and the 1/4 ⁇ wave plate is complicated, and the structure is changeable. It is difficult for polarizer manufacturers to respond, and the cost of the polarizer is high.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • the display panel 10 may include: a liquid crystal cell 101 , a first polarizing assembly 102 and a second polarizing assembly 103 .
  • the liquid crystal cell 101 may include a first substrate 1011 and a second substrate 1012 oppositely disposed, and a liquid crystal layer 1013 located between the first substrate 1011 and the second substrate 1012 .
  • the first polarizer assembly 102 is located on a side of the first substrate 1011 away from the liquid crystal layer 1013 .
  • the first polarizing assembly 102 includes at least a first polarizing layer 1021, and the first polarizing layer 1021 may have a first transmission axis, and the first polarization assembly 102 is used to generate polarized light whose polarization direction is parallel to the first transmission axis (the The polarized light may be linearly polarized light).
  • the first polarizing assembly 102 can The light is converted into polarized light whose polarization direction is parallel to the first light transmission axis.
  • the display side of the display panel 10 is the side of the liquid crystal cell 101 close to the first polarizer assembly 102 .
  • the second polarizer assembly 103 may be located on a side of the second substrate 1012 away from the liquid crystal layer 1013 .
  • the second polarizing component 103 at least includes a transflective layer 1031 and a light absorbing layer 1032 , and the transflective layer 1031 is closer to the liquid crystal cell 101 than the light absorbing layer 1032 .
  • the transflective layer 1031 has a second transmission axis for transmitting polarized light whose polarization direction is parallel to the second transmission axis, and for reflecting polarized light whose polarization direction is perpendicular to the second transmission axis.
  • the light absorbing layer 1032 is used for absorbing polarized light transmitted by the transflective layer 1031 .
  • the polarized light can be irradiated to the second polarizing component 103 through the liquid crystal cell 101 .
  • its polarization direction may or may not change (the polarized light after passing through the liquid crystal cell 101 may be linearly polarized light, elliptically polarized light or circularly polarized light).
  • the polarization direction of the polarized light irradiated to the transflective layer 1031 of the second polarizer assembly 103 is parallel to the second transmission axis of the transflective layer 1031, it can be transmitted through the transflective layer 1031, and then irradiated to the light
  • the absorption layer 1032 is absorbed by the light absorption layer 1032 and is in a dark state; if the polarization direction of the polarized light irradiated to the transflective layer 1031 of the second polarizer assembly 103 is not parallel to the second light transmission axis of the transflective layer 1031 (for example, vertical ), it will be reflected by the transflective layer 1031, and the light can exit from the display side of the display panel, showing a bright state.
  • the transflective layer 1031 can realize the functions of transmitting light and reflecting light.
  • the transflective layer 1031 can transmit the light whose polarization direction is parallel to the second light transmission axis, and can reflect the light whose polarization direction is perpendicular to the second light transmission axis.
  • the transflective layer 1031 may be a transflective layer, that is, half of the light irradiated to the transflective layer 1031 may be transmitted and half of the light may be reflected.
  • the embodiment of the present application provides a display panel, which includes a liquid crystal cell, a first polarizing assembly and a second polarizing assembly.
  • the first polarizing assembly at least includes a first polarizing layer with a first light transmission axis for generating polarized light whose polarization direction is parallel to the first light transmission axis.
  • the second polarizing component at least includes a transflective layer and a light absorbing layer.
  • the transflective layer has a second light transmission axis for transmitting polarized light whose polarization direction is parallel to the second light transmission axis, and for reflecting polarized light whose polarization direction is perpendicular to the second light transmission axis.
  • the light absorbing layer is used to absorb the polarized light transmitted by the transflective layer.
  • a reflective display panel is realized by combining the first polarizing layer in the first polarizing component, and the transflective layer and the light absorbing layer in the second polarizing component, which can improve the contrast of the display panel, and can be mass-produced at a low cost. lower.
  • the first polarizing assembly 102 is closer to the light incident side than the second polarizing assembly 103 .
  • the light on the light incident side includes external ambient light, and/or light emitted by the second light source assembly included in the display panel 10 .
  • the second light source assembly is located at the display side of the display panel 10 , that is, at the side of the first polarizer assembly 102 away from the liquid crystal cell 101 .
  • the light on the light incident side may only include the external ambient light, and the second light source assembly may not need to emit light.
  • the second light source assembly can emit light to realize the effect of supplementary light.
  • the light on the light incident side may include the light emitted by the second light source assembly.
  • the material of the first polarizing layer 1021 may be polyvinyl alcohol (polyvinyl alcohol, PVA) plus iodide ions, and the first polarizing layer 1021 may be called a first PVA layer.
  • the advanced polarizer film (APF) mainly plays a role of enhancing brightness in conventional liquid crystal display products, and the present application can utilize its reflective function to use it as the transflective layer 1031 in the embodiment of the present application.
  • the transflective layer 1031 may be called an APF layer.
  • the first substrate 1011 and the second substrate 1012 may be glass substrates or quartz substrates, which are not limited in this embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another display panel provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a first polarizing assembly provided by an embodiment of the present application.
  • the first polarizer assembly 102 may further include: a first adhesive layer 1022 , a first protection layer 1023 and a second protection layer 1024 .
  • the first adhesive layer 1022 may be located on the side of the first polarizing layer 1021 close to the liquid crystal cell 101
  • the first protective layer 1023 may be located in front of the first adhesive layer 1022 and the first polarizing layer 1021
  • the second protective layer 1024 may be located
  • the first polarizing layer 1021 is away from the side of the liquid crystal cell 101 .
  • the first adhesive layer 1022 , the first polarizing layer 1021 , the first protective layer 1023 and the second protective layer 1024 in the first polarizing assembly 102 are stacked in sequence along the direction away from the liquid crystal cell 101 .
  • the first adhesive layer 1022 can be used to bond the first protective layer 1023 and the first substrate 1011
  • the first protective layer 1023 and the second protective layer 1024 are respectively used to protect the two surfaces of the first polarizing layer 1021 .
  • the light absorbing layer 1032 may be a second polarizing layer.
  • the second polarizing layer 1032 has an absorption axis and a third transmission axis.
  • the absorption axis is parallel to the second light transmission axis
  • the third light transmission axis is perpendicular to the second light transmission axis.
  • the second polarizing layer 1032 may be called a second PVA layer.
  • FIG. 4 is a schematic structural diagram of a second polarizing assembly provided by an embodiment of the present application.
  • the second polarizer assembly 103 may further include: a second adhesive layer 1033 , a third adhesive layer 1034 , a third protective layer 1035 and a fourth protective layer 1036 .
  • the second adhesive layer 1033 is located on a side of the transflective layer 1031 close to the liquid crystal cell 101 .
  • the third adhesive layer 1034 is located between the transflective layer 1031 and the second polarizing layer 1032 .
  • the third protective layer 1035 is located between the third adhesive layer 1034 and the second polarizing layer 1032 .
  • the fourth protective layer 1036 is located on a side of the second polarizing layer 1032 away from the liquid crystal cell 101 . That is, if the light absorbing layer 1032 is the second polarizing layer 1032, the second adhesive layer 1033 in the second polarizing assembly 103, the transflective layer 1031, the third adhesive layer 1034, the third protective layer 1035, the second The second polarizing layer 1032 and the fourth protective layer 1036 are stacked in sequence along the direction away from the liquid crystal cell 101 .
  • the second adhesive layer 1033 is used for bonding the transflective layer 1031 and the second substrate 1012
  • the third adhesive layer 1034 is used for bonding the transflective layer 1031 and the third protective layer 1035
  • the third protective layer 1035 and the fourth protective layer 1036 are respectively used to protect the two surfaces of the second polarizing layer 1032 .
  • each adhesive layer may include pressure sensitive adhesive (PSA), which mainly The function is to bond the film layers on both sides.
  • PSA pressure sensitive adhesive
  • the material of each protective layer can include triacetyl cellulose (TAC), its main function is to protect the polarizing layer s surface.
  • each protective layer may be processed in different processing manners.
  • the processing manner includes normal (normal) processing (that is, no special processing) and special processing.
  • Special processing includes hardcoat (HC) processing and 0 bit difference delay processing.
  • Hardcoat (HC) treatment is usually applied to the protective layer of the surface.
  • the second protective layer 1024 may be treated with HC, and the second protective layer 1024 may be called an HC-TAC layer.
  • the protective layer treated with zero phase difference delay can have better viewing angle, contrast and color shift. Therefore, the protection layer that the optical path passes can be processed with a phase difference delay of 0, for example, the first protection layer 1023 and the third protection layer 1035 can be processed with a phase difference delay of 0, and the second protection layer 1024 and the third protection layer 1035 can be referred to as 0 -TAC layer. Alternatively, the first protection layer 1023 and the third protection layer 1035 can also be treated with normal, and the second protection layer 1024 and the third protection layer 1035 can be called TAC layers.
  • the protective layer that does not pass through the optical path and only needs to play a protective role can be treated with normal treatment.
  • the fourth protective layer 1036 can be treated with normal treatment, and the fourth protective layer 1036 can be called a TAC layer.
  • the fourth protection layer 1036 can also be processed with a 0-bit phase difference delay, that is, the fourth protection layer 1036 can also be called a 0-TAC layer.
  • the first polarizing assembly 102 shown in Fig. 3 also includes a first protective film (protect film) and a first release film (release film), and the effect of the first protective film and the first release film is to protect the space between the two. film layer.
  • the second polarizer assembly 103 shown in FIG. 4 also includes a second protective film and a second release film, the function of the second protective film and the second release film is to protect the film layer between them.
  • FIG. 3 and FIG. 4 respectively show the first polarizing assembly 102 and the second polarizing assembly 103 before being attached to the liquid crystal cell 101 .
  • the first release film is removed first, so that the first adhesive layer 1022 is bonded to the first substrate 1011 of the liquid crystal cell 101 .
  • the second release film is removed first, so that the second adhesive layer 1033 is bonded to the second substrate 1012 of the liquid crystal cell 101 .
  • the first protective film and the second protective film are removed. That is, the final product does not include the first protective film, the first release film, the second protective film and the second release film, which is why the first protective film is not shown in the display panel 10 shown in FIG. film, the main reason for the first release film, the second protective film and the second release film.
  • the APF layer of the second polarizing component included in the reflective liquid crystal display panel is farther away from the liquid crystal cell than the second PVA layer.
  • the light of the liquid crystal display panel usually comes from the backlight light source assembly on the side of the APF layer away from the liquid crystal cell.
  • the light emitted by the backlight light source component needs to pass through the APF layer first, and the light passing through the APF layer enters the second PVA layer. After passing through the second PVA layer, the light passes through the liquid crystal cell, and the light passing through the liquid crystal cell passes through the first polarized light
  • the first PVA layer of the component That is, in the related art, the light that can be emitted must be the light that can be transmitted by the second PVA layer and the APF layer.
  • the light mainly comes from the ambient light on the display side of the display panel, or the light emitted by the second light source assembly located on the display side of the display panel.
  • the APF layer of the second polarizing component is closer to the liquid crystal cell than the second PVA layer.
  • the light first passes through the first PVA layer of the first polarizer assembly 102 and the liquid crystal cell 101 , and then reaches the APF layer of the second polarizer assembly 103 .
  • the APF layer reflects the polarized light whose polarization direction is perpendicular to the second light transmission axis, and the reflected polarized light passes through the liquid crystal cell 101 and the first PVA layer of the first polarizer assembly 102 again.
  • the outgoing light must be the light reflected by the APF.
  • the lamination relationship between the APF layer and the second PVA layer of the second polarizing component 103 in the embodiment of the present application, as well as the design of the optical path are different from those in the related art.
  • the related description in the related art refers to the related description in the embodiment of the present application, for example, the first polarizing component, the first PVA layer, the first Two polarizer components, APF layer, and second PVA layer are described. In fact, these components or film layers may not be included in the related art.
  • the liquid crystal cell 101 can be a twisted nematic (twisted nematic, TN) liquid crystal cell, an in-plane switching (IN-plane switching, IPS) liquid crystal cell, or a multi-quadrant vertical alignment (vertical alignment, VA) ) LCD box.
  • twisted nematic twisted nematic, TN
  • IPS in-plane switching
  • VA vertical alignment
  • the orientation of the liquid crystal molecules in the liquid crystal layer 1013 close to the first substrate 1011 is perpendicular to the orientation of the liquid crystal molecules in the liquid crystal layer 1013 close to the second substrate 1012 .
  • the polarization direction of the polarized light will be deflected by 90° (degrees) after passing through the liquid crystal cell 101 .
  • the orientation of the liquid crystal molecules in the liquid crystal layer 1013 close to the first substrate 1011 is parallel to the orientation of the liquid crystal molecules in the liquid crystal layer 1013 close to the second substrate 1012 .
  • the polarization direction of the polarized light does not change after passing through the liquid crystal cell 101 .
  • the orientation of the liquid crystal molecules in the liquid crystal layer 1013 close to the first substrate 1011 is parallel to the orientation of the liquid crystal molecules in the liquid crystal layer 1013 close to the second substrate 1012 .
  • the polarization direction of the polarized light does not change after passing through the liquid crystal cell 101 .
  • the orientation of the liquid crystal molecules and the design of the light transmission axis are as follows: first The first transmission axis of the polarizing layer 1021 is parallel to the alignment direction of the liquid crystal molecules of the TN liquid crystal cell 101 close to the first substrate 1011, and the second transmission axis of the transflective layer 1031 is parallel to the liquid crystal molecules of the TN liquid crystal cell 101 close to the second substrate 1012.
  • the total reflection normal white mode refers to: in the case of no power supply, the light can be emitted, and it is in a bright state; in the case of power, the light cannot be emitted, and it is in a dark state.
  • the light (the ambient light from the outside or the light emitted by the second light source component located on the display side of the display panel) is incident on the first polarizing layer 1021 of the first polarizing component 102 Afterwards, the first polarized light (linearly polarized light) whose polarization direction is parallel to the first light transmission axis is generated. After the first polarized light passes through the TN liquid crystal cell 101, the polarization direction is rotated by 90° to obtain the second polarized light (linearly polarized light).
  • the polarization direction of the second polarized light is perpendicular to the second transmission axis of the transflective layer 1031 , and the second polarized light is reflected back to the TN liquid crystal cell 101 by the transflective layer 1031 .
  • the polarization direction of the second polarized light is rotated by 90° after passing through the TN liquid crystal cell 101 to obtain the third polarized light (linearly polarized light).
  • the polarization direction of the third polarized light is parallel to the polarization direction of the first polarized light, that is, the polarization direction of the third polarized light is parallel to the first transmission axis of the first polarizing layer 1021.
  • the third polarized light can be emitted through the first polarizing component 102 to realize a normally white mode, that is, a bright state.
  • the light (the ambient light from the outside or the light emitted by the second light source assembly positioned on the display side of the display panel) is incident on the first polarizing layer of the first polarizing assembly 102 After 1021, generate first polarized light (linearly polarized light) whose polarization direction is parallel to the first light transmission axis.
  • the polarization direction of the first polarized light remains unchanged after passing through the TN liquid crystal cell 101 , that is, it is still the first polarized light.
  • the first polarized light can pass through the transflective layer 1031 and irradiate to the second polarizing layer 1032 .
  • the absorption axis of the second polarizing layer 1032 is parallel to the second transmission axis of the transflective layer 1031, so the first polarized light transmitted from the transflective layer 1031 can be absorbed by the second polarizing layer 1032, and no light is emitted, and the light cannot return When it enters the human eye and realizes a black state, it is a dark state.
  • the first transmission axis of the first polarizing layer 1021 is parallel to the second transmission axis of the transflective layer 1031 to realize the normally white mode of the above-mentioned TN liquid crystal cell 101 .
  • the initial alignment of the substrate and liquid crystal molecules in the TN liquid crystal cell 101 can be at any angle.
  • the orientation of the liquid crystal molecules and the design of the light transmission axis are as follows: first The first transmission axis of the polarizing layer 1021 is parallel to the alignment direction of the liquid crystal molecules of the TN liquid crystal cell 101 close to the first substrate 1011, and the second transmission axis of the transflective layer 1031 is parallel to the liquid crystal molecules of the TN liquid crystal cell 101 close to the second substrate 1012.
  • the orientation direction of the second polarizing layer 1032 is parallel to the second transmission axis of the transflective layer 1031 (the third transmission axis of the second polarizing layer 1032 is perpendicular to the second transmission axis of the transflective layer 1031) .
  • the total reflection normally black mode refers to: in the case of no power supply, the light cannot be emitted, and it is in a dark state; in the case of power, the light can be emitted, and it is in a bright state.
  • the light (the ambient light from the outside or the light emitted by the second light source component located on the display side of the display panel) is incident on the first polarizing layer 1021 of the first polarizing component 102 Afterwards, the first polarized light (linearly polarized light) whose polarization direction is parallel to the first light transmission axis is generated. After the first polarized light passes through the TN liquid crystal cell 101, the polarization direction is rotated by 90° to obtain the second polarized light (linearly polarized light).
  • the polarization direction of the second polarized light is parallel to the second transmission axis of the transflective layer 1031 , so the second polarized light can pass through the transflective layer 1031 and irradiate to the second polarizing layer 1032 .
  • the absorption axis of the second polarizing layer 1032 is parallel to the second transmission axis of the transflective layer 1031, so the second polarized light transmitted through the transflective layer 1031 can be absorbed by the second polarizing layer 1032, and no light is emitted, and the light cannot return When it enters the human eye and realizes a black state, it is a dark state.
  • the light (the ambient light from the outside or the light emitted by the second light source component located on the display side of the display panel) is incident on the first polarizing layer 1021 of the first polarizing component 102 , generating first polarized light (linearly polarized light) whose polarization direction is parallel to the first light transmission axis.
  • the polarization direction of the first polarized light remains unchanged after passing through the TN liquid crystal cell 101 , that is, it is still the first polarized light.
  • the first polarized light Since the polarization direction of the first polarized light is perpendicular to the second transmission axis of the transflective layer 1031 , the first polarized light is reflected back to the TN liquid crystal cell 101 by the transflective layer 1031 .
  • the direction of the first polarized light remains unchanged after passing through the TN liquid crystal cell 101 , that is, it is parallel to the first light transmission axis of the first polarizing layer 1021 .
  • the first polarized light can be emitted through the first polarizing component 102 to achieve a white state, that is, a bright state.
  • the first transmission axis of the first polarizing layer 1021 is perpendicular to the second transmission axis of the transflective layer 1031 to realize the normally black mode of the above-mentioned TN liquid crystal cell 101 .
  • the initial alignment of the substrate and liquid crystal molecules in the TN liquid crystal cell 101 can be at any angle.
  • the transflective layer 1031 and the second polarizing layer 1032 in the normally white mode in the first case are simultaneously rotated by 90° to obtain the normally black mode in the second case.
  • the orientation of the liquid crystal molecules and the design of the light transmission axis are as follows:
  • the first transmission axis of the first polarizing layer 1021 is parallel to the alignment direction of the liquid crystal molecules of the IPS liquid crystal cell 101 close to the first substrate 1011, and the second transmission axis of the transflective layer 1031 is parallel to the orientation direction of the IPS liquid crystal cell 101 close to the second substrate 1012.
  • the alignment direction of the liquid crystal molecules is vertical, and the absorption axis of the second polarizing layer 1032 is parallel to the second transmission axis of the transflective layer 1031 (the third transmission axis of the second polarizing layer 1032 is parallel to the second transmission axis of the transflective layer 1031 vertical).
  • the light (the ambient light from the outside or the light emitted by the second light source assembly located on the display side of the display panel) is incident on the first polarizing layer 1021 of the first polarizing assembly 102 Afterwards, the first polarized light (linearly polarized light) whose polarization direction is parallel to the first light transmission axis is generated.
  • the first polarized light changes to the second polarized light after passing through the IPS liquid crystal cell 101 (the second polarized light has the same polarization direction as the first polarized light because the liquid crystal cell does not work without power on).
  • the polarization direction of the second polarized light is perpendicular to the second transmission axis of the transflective layer 1031 , so the second polarized light is reflected back to the IPS liquid crystal cell 101 by the transflective layer 1031 .
  • the polarization direction of the second polarized light remains unchanged after passing through the IPS liquid crystal cell 101 , that is, it is parallel to the first light transmission axis of the first polarizing layer 1021 .
  • the second polarized light can be emitted through the first polarizing component 102 to realize a normally white mode, that is, a bright state.
  • the light (the ambient light from the outside or the light emitted by the second light source assembly located on the display side of the display panel) is incident after the first polarizing layer 1021 of the first polarizing assembly 102 , generating first polarized light (linearly polarized light) whose polarization direction is parallel to the first light transmission axis.
  • the first polarized light changes into the second polarized light (elliptically polarized light) after passing through the IPS liquid crystal cell 101.
  • the linearly polarized light of the component is defined as effective polarized light, and the polarization direction of the linearly polarized light of the larger component is the polarization direction of the effectively polarized light)
  • the polarization direction is parallel to the second light transmission axis of the transflective layer 1031, so the second polarization
  • the effective polarized light of the light can pass through the transflective layer 1031 and irradiate to the second polarizing layer 1032 .
  • the absorption axis of the second polarizing layer 1032 is parallel to the second light transmission axis of the transflective layer 1031, so the effective polarized light of the second polarized light transmitted from the transflective layer 1031 can be absorbed by the second polarizing layer 1032, and no light is emitted. , the light cannot return to enter the human eye, and achieve a black state, that is, a dark state.
  • the first transmission axis of the first polarizing layer 1021 is perpendicular to the second transmission axis of the transflective layer 1031 to realize the normally white mode of the above-mentioned IPS liquid crystal cell 101 .
  • the initial alignment of the substrate and liquid crystal molecules in the IPS liquid crystal cell 101 can be at any angle.
  • the orientation of the liquid crystal molecules and the design of the light transmission axis are as follows:
  • the first transmission axis of a polarizing layer 1021 is parallel to the alignment direction of the liquid crystal molecules of the IPS liquid crystal cell 101 close to the first substrate 1011, and the second transmission axis of the transflective layer 1031 is parallel to the liquid crystal of the IPS liquid crystal cell 101 close to the second substrate 1012.
  • the molecular orientations are parallel, the absorption axis of the second polarizing layer 1032 is parallel to the second transmission axis of the transflective layer 1031 (the third transmission axis of the second polarizing layer 1032 is perpendicular to the second transmission axis of the transflective layer 1031) .
  • the light (the ambient light from the outside or the light emitted by the second light source component located on the display side of the display panel) is incident on the first polarizing layer 1021 of the first polarizing component 102 Afterwards, the first polarized light (linearly polarized light) whose polarization direction is parallel to the first light transmission axis is generated.
  • the first polarized light changes to the second polarized light after passing through the IPS liquid crystal cell 101 (the second polarized light has the same polarization direction as the first polarized light because the liquid crystal cell does not work without power on).
  • the polarization direction of the second polarized light is parallel to the second transmission axis of the transflective layer 1031 , so the second polarized light can pass through the transflective layer 1031 and irradiate to the second polarizing layer 1032 .
  • the absorption axis of the second polarizing layer 1032 is parallel to the second transmission axis of the transflective layer 1031, so the second polarized light transmitted through the transflective layer 1031 can be absorbed by the second polarizing layer 1032, and no light is emitted, and the light cannot return Enter the human eye and realize the normally black mode, that is, the dark state.
  • first polarized light (linearly polarized light) whose polarization direction is parallel to the first light transmission axis.
  • the first polarized light is changed to the second polarized light (elliptically polarized light) through the IPS liquid crystal cell 101 .
  • the effective polarized light of the second polarized light (elliptical polarized light can be decomposed into the polarization components of two linearly polarized lights perpendicular to each other, the linearly polarized light of the larger component is defined as effective polarized light, and the polarization direction of the linearly polarized light of the larger component is the polarization direction of the effective polarized light) and the polarization direction is perpendicular to the second transmission axis of the transflective layer 1031 , so the effective polarized light of the second polarized light is reflected back to the IPS liquid crystal cell 101 by the transflective layer 1031 .
  • the polarization direction of the effective polarized light of the second polarized light remains unchanged after passing through the IPS liquid crystal cell 101 , that is, it is parallel to the first light transmission axis of the first polarizing layer 1021 .
  • the effective polarized light of the second polarized light can be emitted through the first polarizing component 102 to achieve a white state, that is, a bright state.
  • the first light transmission axis of the first polarizing layer 1021 is parallel to the second light transmission axis of the transflective layer 1031 to realize the above-mentioned normally black mode of the IPS liquid crystal cell 101 .
  • the initial alignment of the substrate and liquid crystal molecules in the IPS liquid crystal cell 101 can be at any angle.
  • the normally black mode for the fourth case can be obtained by simultaneously rotating the transflective layer 1031 and the second polarizing layer 1032 by 90° in the normally white mode of the third case.
  • the orientation of the liquid crystal molecules and the design of the light transmission axis are as follows:
  • the first light transmission axis of a polarizing layer 1021 is perpendicular to the second light transmission axis of the transflective layer 1031, and the absorption axis of the second polarizing layer 1032 is parallel to the second light transmission axis of the transflective layer 1031 (the second light transmission axis of the second polarizing layer 1032
  • the third light transmission axis is perpendicular to the second light transmission axis of the transflective layer 1031).
  • the VA liquid crystal cell 101 may be in any orientation mode of VA.
  • the light (the ambient light from the outside or the light emitted by the second light source component located on the display side of the display panel) is incident on the first polarizing layer 1021 of the first polarizing component 102 Afterwards, the first polarized light (linearly polarized light) whose polarization direction is parallel to the first light transmission axis is generated.
  • the first polarized light changes to the second polarized light after passing through the VA liquid crystal cell 101 (since the liquid crystal cell does not work without power on, the second polarized light has the same polarization direction as the first polarized light).
  • the polarization direction of the second polarized light is perpendicular to the second transmission axis of the transflective layer 1031 , so the second polarized light is reflected back to the VA liquid crystal cell 101 by the transflective layer 1031 .
  • the polarization direction of the second polarized light remains unchanged after passing through the VA liquid crystal cell 101 , that is, it is parallel to the first light transmission axis of the first polarizing layer 1021 .
  • the second polarized light can be emitted through the first polarizing component 102 to realize a normally white mode, that is, a bright state.
  • first polarized light (linearly polarized light) whose polarization direction is parallel to the first light transmission axis.
  • the first polarized light changes into the second polarized light (elliptically polarized light) after passing through the VA liquid crystal cell 101 .
  • the effective polarized light of the second polarized light (elliptical polarized light can be decomposed into the polarization components of two linearly polarized lights perpendicular to each other, the linearly polarized light of the larger component is defined as effective polarized light, and the polarization direction of the linearly polarized light of the larger component
  • the polarization direction of the effective polarized light is parallel to the second transmission axis of the transflective layer 1031 , so the effective polarized light of the second polarized light can pass through the transflective layer 1031 and irradiate to the second polarizing layer 1032 .
  • the absorption axis of the second polarizing layer 1032 is parallel to the second light transmission axis of the transflective layer 1031, so the effective polarized light of the second polarized light transmitted from the transflective layer 1031 can be absorbed by the second polarizing layer 1032, and no light is emitted. The light cannot return to enter the human eye to achieve a black state, that is, a dark state.
  • the orientation of the liquid crystal molecules and the design of the light transmission axis are as follows:
  • the first light transmission axis of a polarizing layer 1021 is parallel to the second light transmission axis of the transflective layer 1031
  • the absorption axis of the second polarizing layer 1032 is parallel to the second light transmission axis of the transflective layer 1031 (the second light transmission axis of the second polarizing layer 1032
  • the third light transmission axis is perpendicular to the second light transmission axis of the transflective layer 1031).
  • the VA liquid crystal cell 101 may be in any orientation mode of VA.
  • the light (the ambient light from the outside or the light emitted by the second light source component located on the display side of the display panel) is incident on the first polarizing layer 1021 of the first polarizing component 102 Afterwards, the first polarized light (linearly polarized light) whose polarization direction is parallel to the first light transmission axis is generated.
  • the first polarized light changes into the second polarized light after passing through the VA liquid crystal cell 101 (the second polarized light has the same polarization direction as the first polarized light because the liquid crystal cell does not work without power on).
  • the polarization direction of the second polarized light is parallel to the second transmission axis of the transflective layer 1031 , so the second polarized light can pass through the transflective layer 1031 and irradiate to the second polarizing layer 1032 .
  • the absorption axis of the second polarizing layer 1032 is parallel to the second transmission axis of the transflective layer 1031, so the second polarized light transmitted through the transflective layer 1031 can be absorbed by the second polarizing layer 1032, and no light is emitted, and the light cannot return Enter the human eye and realize the normally black mode, that is, the dark state.
  • first polarized light when the liquid crystal layer 1013 is powered on, light (outside ambient light or light emitted by the second light source assembly located on the display side of the display panel) is incident after the first polarizing layer 1021 of the first polarizing assembly 102 , generating first polarized light (linearly polarized light) whose polarization direction is parallel to the first light transmission axis.
  • the first polarized light changes into the second polarized light (elliptically polarized light) after passing through the VA liquid crystal cell 101 .
  • the effective polarized light of the second polarized light (elliptical polarized light can be decomposed into the polarization components of two linearly polarized lights perpendicular to each other, the linearly polarized light of the larger component is defined as effective polarized light, and the polarization direction of the linearly polarized light of the larger component is the polarization direction of the effective polarized light) and the polarization direction is perpendicular to the second transmission axis of the transflective layer 1031 , so the effective polarized light of the second polarized light is reflected back to the VA liquid crystal cell 101 by the transflective layer 1031 .
  • the polarization direction of the effective polarized light of the second polarized light remains unchanged after passing through the IPS liquid crystal cell 101 , that is, it is parallel to the first light transmission axis of the first polarizing layer 1021 .
  • the effective polarized light of the second polarized light can be emitted through the first polarizing component 102 to achieve a white state, that is, a bright state.
  • the linearly polarized light after passing through the first polarizing layer 1021 if it passes through the liquid crystal layer of the IPS liquid crystal cell with power or the liquid crystal layer of the VA liquid crystal cell with power, then Linearly polarized light can be converted to elliptically polarized light.
  • the elliptically polarized light can be decomposed into two polarization components of linearly polarized light that are perpendicular to each other, the larger component of linearly polarized light is defined as effective polarized light, and the polarization direction of the larger component of linearly polarized light is the polarization direction of effective polarized light.
  • the polarization direction of the linearly polarized light remains unchanged.
  • the display panel 10 may implement a normally white mode, or may implement a normally black mode. Therefore, different modes can be selected based on specific application scenarios of the display panel 10 .
  • products such as mobile phones, watches, and televisions can be used in the normally black mode.
  • Products such as body cameras, sports codes, price tags, and word cards can be used in normal white mode.
  • the display panel may include a first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101, the first light source assembly can emit light, and the light emitted by the first light source assembly can be used to Realize the supplementary light effect.
  • the display panel may also include the first light source component and the second light source component at the same time.
  • the third light transmission axis of the second polarizing layer 1032 is perpendicular to the second light transmission axis of the transflective layer 1031, the light emitted by the first light source component (located on the side of the second polarizing component 103 away from the liquid crystal cell 101) first passes through the The second polarizing layer 1032 will first transform into polarized light whose polarization direction is parallel to the third light transmission axis, and this polarized light cannot be transmitted through the transflective layer 1031 with the second light transmission axis. In this case, the light emitted by the first light source component cannot be utilized.
  • one of the second polarizing layer 1032 and the transflective layer 1031 needs to have a plurality of openings.
  • the opening can be used for the light of the first light source component to pass through.
  • the second polarizing layer 1032 has a plurality of openings a (only one opening is shown in the figure).
  • the multiple openings a in the second polarizing layer 1032 are used to transmit the light emitted by the first light source assembly, and the transflective layer 1031 is used to generate polarized light parallel to the second light transmission axis based on the light passing through the multiple openings .
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 passes through the second polarizing assembly 103.
  • the polarizing layer 1032 polarized light whose polarization direction is parallel to the third light transmission axis is generated.
  • the first polarized light is irradiated to the transflective layer 1031 . Since the second transmission axis of the transflective layer 1031 is perpendicular to the third transmission axis, the polarized light cannot pass through the transflective layer 1031 .
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 passes through the second polarizing
  • the opening of the layer 1032 illuminates the transflective layer 1031 .
  • the transflective layer 1031 generates polarized light parallel to the second transmission axis based on the light transmitted through the opening of the second polarizing layer 1032 (assuming it is called the first polarized light, and the first polarized light is linearly polarized light).
  • the polarization direction is rotated by 90° to obtain the second polarized light (linearly polarized light).
  • the polarization direction of the second polarized light is perpendicular to the first light transmission axis of the first polarizing layer 1021 , no light exits, the light cannot enter human eyes, and it is in a dark state.
  • the light emitted by the first light source component located on the side of the second polarizing component 103 away from the liquid crystal cell 101 passes through the second polarizing layer
  • the opening of 1032 irradiates to the transflective layer 1031 .
  • the transflective layer 1031 generates polarized light parallel to the second transmission axis based on the light transmitted through the opening of the second polarizing layer 1032 (assuming it is called the first polarized light, and the first polarized light is linearly polarized light).
  • the polarization direction of the first polarized light remains unchanged after passing through the TN liquid crystal cell 101 , and is still the first polarized light.
  • the polarization direction of the first polarized light is parallel to the first light transmission axis of the first polarizing layer 1021 , and the light can be emitted in a bright state.
  • the TN normally white reflection mode may mean that the light emitted by external ambient light can exit through a non-opening position.
  • the display panel is in TN normally white reflective mode.
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 cannot exit through the opening a provided in the second polarizing layer 1032 (it is transmitted in a normally black mode).
  • the TN normally white reflective mode and the transmissive normally black mode cannot be used at the same time.
  • the display panel is in the TN normally black reflective mode.
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 can exit through the opening a provided in the second polarizing layer 1032 (transmitting in a normally white mode).
  • the TN normally black reflective mode and the transmissive normally white mode cannot be used at the same time.
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 passes through the second polarizing assembly 103.
  • the polarizing layer 1032 polarized light whose polarization direction is parallel to the third light transmission axis is generated.
  • the polarized light is irradiated to the transflective layer 1031 . Since the second transmission axis of the transflective layer 1031 is perpendicular to the third transmission axis, the polarized light cannot pass through the transflective layer 1031 .
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 passes through the second polarizing
  • the openings of layer 1032 illuminate to the semi-transparent and semi-reflective film layer.
  • the transflective layer 1031 generates polarized light parallel to the second transmission axis based on the light transmitted through the opening of the second polarizing layer 1032 (assuming it is called the first polarized light, and the first polarized light is linearly polarized light).
  • the first polarized light After the first polarized light passes through the IPS liquid crystal cell 101, it changes into the second polarized light (because the liquid crystal cell does not work without power on, so the second polarized light has the same polarization direction as the first polarized light), the second polarized light
  • the polarization direction of the polarized light is parallel to the first light transmission axis of the first polarizing layer 1021 , and the light can be emitted in a bright state.
  • the opening position of the second polarizing layer 1032 when the liquid crystal layer 1013 is powered on, the light emitted by the first light source component located on the side of the second polarizing component 103 away from the liquid crystal cell 101 passes through the second polarizing layer
  • the opening of 1032 irradiates to the transflective layer 1031 .
  • the transflective layer 1031 generates polarized light parallel to the second transmission axis based on the light transmitted through the opening of the second polarizing layer 1032 (assuming it is called the first polarized light, and the first polarized light is linearly polarized light).
  • the first polarized light is changed into the second polarized light (elliptically polarized light) after passing through the IPS liquid crystal cell 101 .
  • the effective polarized light of the second polarized light (elliptical polarized light can be decomposed into the polarization components of two linearly polarized lights perpendicular to each other, the linearly polarized light of the larger component is defined as effective polarized light, and the polarization direction of the linearly polarized light of the larger component is the polarization direction of the effective polarized light), the polarization direction is perpendicular to the first light transmission axis of the first polarizing layer 1021, no light is emitted, the light cannot enter the human eye, and it is in a dark state.
  • the IPS normally black reflection mode may mean that the light emitted by the external ambient light cannot exit through the non-opening position.
  • the display panel is in IPS normally black reflective mode.
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 can exit through the opening a provided in the second polarizing layer 1032 (transmitting in normally white mode).
  • IPS normally black reflective mode and transmissive white mode cannot be used at the same time.
  • the display panel is in the IPS normally white reflective mode.
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 cannot exit through the opening a provided in the second polarizing layer 1032 (it is transmitted in a normally black mode).
  • the TN normally white reflective mode and the transmissive normally black mode cannot be used at the same time.
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 passes through the second polarizing assembly 103.
  • polarized light whose polarization direction is parallel to the third light transmission axis is generated.
  • the polarized light is irradiated to the transflective layer 1031 . Since the second transmission axis of the transflective layer 1031 is perpendicular to the third transmission axis, the polarized light cannot pass through the transflective layer 1031 .
  • the light emitted by the first light source component located on the side of the second polarizing component 103 away from the liquid crystal cell 101 passes through the second polarizing component.
  • the opening of the layer 1032 illuminates the transflective layer 1031 .
  • the transflective layer 1031 generates polarized light parallel to the second transmission axis based on the light transmitted through the opening of the second polarizing layer 1032 (assuming it is called the first polarized light, and the first polarized light is linearly polarized light).
  • the first polarized light changes to the second polarized light after passing through the VA liquid crystal cell 101 (the second polarized light has the same polarization direction as the first polarized light because the liquid crystal cell does not work without power on).
  • the polarization direction of the second polarized light is perpendicular to the first light transmission axis of the first polarizing layer 1021 , no light exits, the light cannot enter human eyes, and it is in a dark state.
  • the opening position of the second polarizing layer 1032 when the liquid crystal layer 1013 is powered on, the light emitted by the first light source component located on the side of the second polarizing component 103 away from the liquid crystal cell 101 passes through the second polarizing layer
  • the opening of 1032 irradiates to the transflective layer 1031 .
  • the transflective layer 1031 generates polarized light parallel to the second transmission axis based on the light transmitted through the opening of the second polarizing layer 1032 (assuming it is called the first polarized light, and the first polarized light is linearly polarized light).
  • the first polarized light changes into the second polarized light (elliptically polarized light) after passing through the VA liquid crystal cell 101 .
  • the effective polarized light of the second polarized light (elliptical polarized light can be decomposed into the polarization components of two linearly polarized lights perpendicular to each other, the linearly polarized light of the larger component is defined as effective polarized light, and the polarization direction of the linearly polarized light of the larger component is the polarization direction of the effective polarized light), the polarization direction of which is parallel to the first light transmission axis of the first polarizing layer 1021, and the light can be emitted, showing a bright state.
  • the VA normally white reflection mode may mean that the light emitted by the external ambient light can exit through a non-opening position.
  • the display panel is in VA normally white reflective mode.
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 cannot exit through the opening a provided in the second polarizing layer 1032 (it is transmitted in a normally black mode).
  • the VA normally white reflective mode and the transmissive normally black mode cannot be used at the same time.
  • the external ambient light is sufficient (such as daytime), it can be in the normally white reflective mode, and in the external ambient light (such as night), it can be in the normally black transmissive mode.
  • the VA normally black reflection mode may mean that light emitted by external ambient light can exit through a non-opening position.
  • the display panel is in the VA normally black reflective mode.
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 cannot exit through the opening a provided in the second polarizing layer 1032 (it is transmitted in a normally black mode).
  • VA normally black reflective mode and transmissive white mode cannot be used at the same time.
  • the transflective layer 1031 has a plurality of openings a.
  • the second polarizing layer 1032 is used for generating polarized light whose polarization direction is parallel to the third light transmission axis based on the light emitted by the first light source component.
  • the opening a in the transflective layer 1031 is used to transmit the polarized light.
  • the light emitted by the first light source assembly located on the side of the second polarizer assembly 103 away from the liquid crystal cell 101 passes through the second polarizer
  • polarized light whose polarization direction is parallel to the third transmission axis is generated.
  • the first polarized light is irradiated to the transflective layer 1031 . Since the second transmission axis of the transflective layer 1031 is perpendicular to the third transmission axis, the polarized light cannot pass through the transflective layer 1031 .
  • the second polarizing layer 1032 can generate polarized light whose polarization direction is parallel to the third light transmission axis (assuming it is called first polarized light, and the first polarized light is linearly polarized light).
  • the first polarized light enters the TN liquid crystal cell 101 through the opening of the transflective layer 1031 , and the polarization direction of the first polarized light is rotated by 90° after passing through the TN liquid crystal cell 101 to obtain the second polarized light (linearly polarized light).
  • the polarization direction of the second polarized light is parallel to the first light transmission axis of the first polarizing layer 1021 , and the light can be emitted in a bright state.
  • the second polarizing layer 1032 can generate polarized light whose polarization direction is parallel to the third light transmission axis (assuming it is called first polarized light, and the first polarized light is linearly polarized light).
  • the polarization direction of the first polarized light remains unchanged after passing through the TN liquid crystal cell 101 , and is still the first polarized light.
  • the polarization direction of the first polarized light is perpendicular to the first light transmission axis of the first polarizing layer 1021 , no light is emitted, the light cannot enter human eyes, and the light is in a dark state.
  • the TN normally white reflection mode may mean that the light emitted by external ambient light can exit through a non-opening position.
  • the display panel is in TN normally white reflective mode.
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 can exit through the opening a provided in the transflective layer 1031 (the transmission is normally white mode).
  • the TN normally white reflective mode and the transmissive normally white mode can be used simultaneously.
  • the display panel is in the TN normally black reflective mode.
  • the light emitted by the first light source assembly located on the side of the second polarizer assembly 103 away from the liquid crystal cell 101 cannot exit through the opening a provided in the transflective layer 1031 (the transmission is normally black mode).
  • the TN normally black reflective mode and the transmissive normally black mode can be used simultaneously.
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 passes through the second polarized light
  • polarized light whose polarization direction is parallel to the third transmission axis is generated.
  • the polarized light is irradiated to the transflective layer 1031 . Since the second transmission axis of the transflective layer 1031 is perpendicular to the third transmission axis, the polarized light cannot pass through the transflective layer 1031 .
  • the second polarizing layer 1032 can generate polarized light whose polarization direction is parallel to the third light transmission axis (assuming it is called first polarized light, and the first polarized light is linearly polarized light).
  • the first polarized light enters the IPS liquid crystal cell 101 through the opening of the transflective layer 1031, and the first polarized light changes to the second polarized light after passing through the IPS liquid crystal cell 101 (the liquid crystal cell does not work due to the absence of power) , so the polarization direction of the second polarized light is the same as that of the first polarized light).
  • the polarization direction of the second polarized light is perpendicular to the first light transmission axis of the first polarizing layer 1021 , no light exits, the light cannot enter human eyes, and it is in a dark state.
  • the second polarizing layer 1032 can generate polarized light whose polarization direction is parallel to the third light transmission axis (assuming it is called first polarized light, and the first polarized light is linearly polarized light).
  • the first polarized light changes into the second polarized light (elliptically polarized light) after passing through the IPS liquid crystal cell 101 .
  • the effective polarized light of the second polarized light (elliptical polarized light can be decomposed into the polarization components of two linearly polarized lights perpendicular to each other, the linearly polarized light of the larger component is defined as effective polarized light, and the polarization direction of the linearly polarized light of the larger component is the polarization direction of the effective polarized light), the polarization direction of which is parallel to the first light transmission axis of the first polarizing layer 1021, and the light can be emitted, showing a bright state.
  • the IPS normally black reflection mode may mean that the light emitted by the external ambient light cannot exit through the non-opening position.
  • the display panel is in TN normally black reflective mode.
  • the light emitted by the first light source assembly located on the side of the second polarizer assembly 103 away from the liquid crystal cell 101 cannot exit through the opening a provided in the transflective layer 1031 (the transmission is normally black mode).
  • the IPS normally black reflective mode and the transmissive normally black mode can be used simultaneously.
  • the display panel is in the TN normally white reflective mode.
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 can exit through the opening a provided in the transflective layer 1031 (the transmission is normally white mode).
  • the IPS normally white reflective mode and the transmissive normally white mode can be used at the same time.
  • the light emitted by the first light source assembly located on the side of the second polarizer assembly 103 away from the liquid crystal cell 101 passes through the second polarizer
  • polarized light whose polarization direction is parallel to the third transmission axis is generated.
  • the polarized light is irradiated to the transflective layer 1031 . Since the second transmission axis of the transflective layer 1031 is perpendicular to the third transmission axis, the polarized light cannot pass through the transflective layer 1031 .
  • the second polarizing layer 1032 can generate polarized light whose polarization direction is parallel to the third light transmission axis (assuming it is called first polarized light, and the first polarized light is linearly polarized light).
  • the first polarized light is incident to the VA liquid crystal cell 101 through the opening of the transflective layer 1031, and the first polarized light changes to the second polarized light after passing through the VA liquid crystal cell 101 (the liquid crystal cell does not work due to the absence of power) , so the polarization direction of the second polarized light is the same as that of the first polarized light).
  • the polarization direction of the second polarized light is parallel to the first light transmission axis of the first polarizing layer 1021 , and the light can be emitted in a bright state.
  • the second polarizing layer 1032 can generate polarized light with a polarization direction and a third light transmission axis (assuming it is called first polarized light, and the first polarized light is linearly polarized light).
  • the first polarized light changes into the second polarized light (elliptically polarized light) after passing through the VA liquid crystal cell 101 .
  • the effective polarized light of the second polarized light (elliptical polarized light can be decomposed into the polarization components of two linearly polarized lights perpendicular to each other, the linearly polarized light of the larger component is defined as effective polarized light, and the polarization direction of the linearly polarized light of the larger component is the polarization direction of the effective polarized light), the polarization direction is perpendicular to the first light transmission axis of the first polarizing layer 1021, no light is emitted, the light cannot enter the human eye, and it is in a dark state.
  • the VA normally white reflection mode may mean that the light emitted by the external ambient light can exit through a non-opening position.
  • the display panel is in TN normally white reflective mode.
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 can exit through the opening a provided in the transflective layer 1031 (the transmission is normally white mode).
  • the VA normally white reflective mode and the transmissive normally white mode can be used simultaneously.
  • the VA liquid crystal cell is in the VA normally black reflective mode (the light emitted by the external ambient light cannot exit through the non-opening position)
  • the display panel is in the VA normally black reflective mode and cannot exit through the opening a provided by the transflective layer 1031 (transmissive for normally black mode).
  • the VA normally black reflective mode and the transmissive normally black mode can be used simultaneously.
  • the scheme of designing openings in the transflective layer 1031 will sacrifice a part of the reflection area of the transflective layer 1031, reducing the reflection effect of light on the display side of the reflective display panel, which may cause It has a little effect on the display effect.
  • the double-headed arrows in Fig. 5 to Fig. 16 are all used to indicate the direction of the light, and the single arrows with dotted lines are used to indicate the optical path of the light.
  • the intersection of two double-headed arrows indicates that the direction of light is in various directions, and one double-headed arrow indicates the polarization direction of polarized light.
  • the double-headed arrows in Fig. 18 to Fig. 23, and Fig. 25 to Fig. 30 are used to represent the light transmission direction of the light transmission axis, and the dotted single arrows are used to represent light rays.
  • FIG. 31 is a schematic structural diagram of another display panel provided in the embodiment of the present application.
  • the display panel 10 further includes an array substrate 104 having a plurality of pixel circuits.
  • the array substrate 104 may have a plurality of pixel regions b, each pixel region b includes a display region b1 and a non-display region b2, and the pixel circuit is located in the non-display region b2.
  • the orthographic projection of each opening a in the second polarizing layer 1032 or the transflective layer 1031 on the array substrate 104 is located in the display area b1 of a pixel area b.
  • the attachment of the optical film does not have an alignment mark, and the accuracy is generally not high. It is only necessary to make the opening a not deviate from the display area of the pixel area b Just b1.
  • the pixel size is 150 ⁇ m (micrometer)*150um
  • the opening size is 50*50um
  • the opening a Since the opening a is disposed on the second polarizing layer 1032 or the transflective layer 1031 , it has nothing to do with the pixel design of the array substrate 104 and will not be affected by the related manufacturing processes of the array substrate 104 , and the cost is relatively low. And because the design of the opening a has nothing to do with the structure of the array substrate 104, the above embodiment only schematically illustrates the display panel design corresponding to the TN liquid crystal cell 101, the IPS liquid crystal cell 101 and the VA liquid crystal cell 101, but it can also be applied to Other types of LCD cells.
  • the array substrate 104 may include a base substrate and a driving circuit layer, the base substrate includes a glass substrate or a quartz substrate, and the driving circuit layer includes the above-mentioned multiple pixel circuits and multiple pixel electrodes.
  • Each pixel circuit includes multiple data lines, multiple scan lines and multiple thin film transistors.
  • the driving circuit layer can provide different polarized voltages for the liquid crystal molecules of the liquid crystal cell 101 according to different display data.
  • the liquid crystal molecules in the liquid crystal cell 101 can be deflected to different degrees under different deflection voltages, so that different transmittances can be realized.
  • the display panel 10 further includes: a color filter substrate 105 , and the color filter substrate 105 includes a plurality of color resist blocks corresponding to sub-pixels of different colors.
  • the color filter substrate 105 includes a plurality of color resist blocks corresponding to sub-pixels of different colors.
  • the color filter substrate 105 includes a plurality of color resist blocks corresponding to sub-pixels of different colors.
  • it includes a red color-resist block corresponding to a red (red, R) sub-pixel, a green color-resist block corresponding to a green (green, G) sub-pixel, and a blue color-resist block corresponding to a blue (blue, B) sub-pixel. Since the light transmittances emitted by sub-pixels of different colors are different, the proportions of red light, green light, and blue light passing through corresponding color resist blocks are different, thereby realizing color display.
  • the material of the light absorbing layer 1032 includes a light absorbing material.
  • the light absorbing material may include black ink.
  • the black ink is a material with higher absorbance.
  • the black ink includes: resin.
  • This black ink is made by mixing resin with black pigments and mixed materials such as solvents.
  • the black ink can also be arranged on the back plate in addition to being arranged on the side of the transflective layer 1031 away from the liquid crystal cell 101 .
  • by setting black ink not only can absorb the light transmitted from the transflective layer 1031, but also its manufacturing process is simple and the cost is low.
  • the second polarizer assembly 103 further includes a second adhesive layer 1033 , and the second adhesive layer 1033 is located on the side of the transflective layer 1031 close to the liquid crystal cell 101 .
  • the second adhesive layer 1033 can be used for bonding the transflective layer 1031 and the second substrate 1012 . That is, when the material of the light-absorbing layer 1032 includes a light-absorbing material, there is no need to design two protective layers (such as the third protective layer 1035 and the fourth protective layer 1036 in the first implementation manner).
  • the material of the light absorbing layer 1032 includes a light absorbing material
  • light from the display side of the display panel 10 passes through the first polarizer assembly 102 , the liquid crystal cell 101 and the transflective layer 1031 and then becomes polarized light, and the polarized light irradiates to the light absorbing layer 1032 and is absorbed by the light absorbing layer 1032 .
  • the light emitted by the first light source assembly located on the side of the second polarizing assembly 103 away from the liquid crystal cell 101 irradiates the light absorbing layer 1032 and is absorbed by the light absorbing layer 1032 .
  • the material of the light absorbing layer 1032 includes a light absorbing material
  • the absorption layer 1032 is designed with openings, but the transflective layer 1031 cannot be designed with openings.
  • the optical path design please refer to the relevant description of designing the opening in the second polarizing layer 1032 above, which will not be repeated here in the embodiment of the present application.
  • At least one adhesive layer between the transflective layer 1031 and the light-emitting surface is subjected to haze treatment, and the adhesive layer after haze treatment can realize diffuse reflection of light.
  • At least one layer of adhesive layer between the transflective layer 1031 and the light-emitting surface is treated with haze, so that the light reflected by the transflective layer 1031 can be emitted from the light-emitting surface after passing through the at least one layer of adhesive layer, ensuring the effect of diffuse reflection. Effect.
  • the light output surface refers to the surface of the first polarizing assembly 102 away from the liquid crystal cell 101 .
  • the adhesive layer between the transflective layer 1031 and the light-emitting surface of the display panel 10 includes a first adhesive layer 1022 and a second adhesive layer 1033 . Therefore, the following three solutions can be implemented: 1. The first adhesive layer 1022 is treated with haze, and the second adhesive layer 1033 does not need haze treatment; 2. The first adhesive layer 1022 does not need haze treatment, and the second adhesive layer 1033 does not need haze treatment; The bonding layer 1033 has undergone haze treatment; 3. Both the first adhesive layer 1022 and the second adhesive layer 1033 have undergone haze treatment.
  • the haze treatment ranges from 10% to 90%, wherein the greater the haze treatment value, the better the effect of diffuse reflection.
  • a larger haze treatment value may affect the contrast of the display panel. Therefore, the embodiment of the present application can comprehensively consider the effect of diffuse reflection and contrast to select an appropriate haze processing value, for example, the haze processing value can be 80%.
  • the first adhesive layer 1022 undergoes haze treatment, and the second adhesive layer 1033 does not need haze treatment
  • the first substrate 1011 is bonded.
  • the second solution the first adhesive layer 1022 does not need haze treatment, and the second adhesive layer 1033 undergoes haze treatment
  • the second substrate 1012 is bonded.
  • the first adhesive layer 1022 and the second adhesive layer 1033 are both haze-treated
  • the first adhesive layer 1022 in the first polarizer assembly 102 and the first adhesive layer 1022 of the liquid crystal cell 101 that have been haze-treated The substrate 1011 is bonded, and the haze-treated second adhesive layer 1033 in the second polarizer assembly 103 is bonded to the second substrate 1012 of the liquid crystal cell 101 .
  • the contrast ratio of the display panel of the above-mentioned second solution is better.
  • the transflective layer 1031 may include first dielectric layers and second dielectric layers alternately stacked in sequence.
  • the first medium layer has a first refractive index for polarized light whose polarization direction is parallel to the second light transmission axis, and has a second refractive index for polarized light whose polarization direction is perpendicular to the second light transmission axis.
  • the first refractive index is equal to the second refractive index. That is, referring to FIG. 34 and FIG. 35 , the first dielectric layer is a uniform dielectric layer.
  • the first direction X is parallel to the second light transmission axis
  • the second direction Y is perpendicular to the second light transmission axis.
  • the second medium layer has a third refractive index for polarized light whose polarization direction is parallel to the second light transmission axis, and has a fourth refractive index for polarized light whose polarization direction is perpendicular to the second light transmission axis.
  • the third refractive index is not equal to the fourth refractive index, and the third refractive index is equal to the first refractive index. That is, referring to Fig. 34 and Fig.
  • the second dielectric layer is a birefringent dielectric layer
  • the refractive index n3 for polarized light whose polarization direction is parallel to the first direction X is the same as that for polarized light whose polarization direction is parallel to the second direction X
  • the first dielectric layer may be called a non-alignment layer
  • the second dielectric layer may be called an alignment layer
  • the transflective layer can transmit light in a certain polarization direction and completely reflect light in another polarization direction. As shown in FIG. 35 , the transflective layer 1031 can transmit the polarized light whose polarization direction is parallel to the first direction X, and reflect the polarized light whose polarization direction is parallel to the second direction Y.
  • polarized light can be completely reflected back through the transflective layer, and there is no dispersion problem of 1/2 ⁇ wave plate and 1/4 ⁇ wave plate, not only the display brightness can be improved, but also the display contrast can be improved. Moreover, by reflecting the polarized light through the transflective layer, it is possible to avoid making a reflective metal layer, which simplifies the manufacturing process of the display panel.
  • the display panel provided by the embodiment of the present application can avoid the light leakage problem caused by the dispersion of the 1/2 ⁇ wave plate and the 1/4 ⁇ wave plate by using the PVA layer and the APF layer, and improve the display contrast.
  • the display panel provided by the embodiment of the present application avoids the use of 1/2 ⁇ wave plate and 1/4 ⁇ wave plate with high cost, thereby reducing the production cost.
  • the embodiment of the present application provides a display panel, which includes a liquid crystal cell, a first polarizing assembly and a second polarizing assembly.
  • the first polarizing assembly at least includes a first polarizing layer with a first light transmission axis for generating polarized light whose polarization direction is parallel to the first light transmission axis.
  • the second polarizing component at least includes a transflective layer and a light absorbing layer.
  • the transflective layer has a second light transmission axis for transmitting polarized light whose polarization direction is parallel to the second light transmission axis, and for reflecting polarized light whose polarization direction is perpendicular to the second light transmission axis.
  • the light absorbing layer is used to absorb the polarized light transmitted by the transflective layer.
  • a reflective display panel is realized by combining the first polarizing layer in the first polarizing component, and the transflective layer and the light absorbing layer in the second polarizing component, which can improve the contrast of the display panel, and can be mass-produced at a low cost. lower.
  • FIG. 36 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • the display device may include a power supply component 20 and the display panel 10 as provided in the above-mentioned embodiments.
  • the power supply component 20 can be used to supply power to the display panel 10 .
  • the display device also includes but not limited to: a radio frequency unit, a network module, an audio output unit, an input unit, a sensor, a display unit, a user input unit, an interface unit, a memory, a processor, and a power supply.
  • a radio frequency unit for example, a radio frequency unit
  • a network module for example, a radio frequency unit
  • an audio output unit for example, a speaker
  • an input unit for example, a speaker
  • a display unit includes but is not limited to a display device, a tablet computer, a television, a wearable electronic device, a navigation display device, and the like.
  • the display device can be any product or component with a display function such as LCD TV, liquid crystal display, digital photo frame, mobile phone, tablet computer, etc., wherein the display device also includes a flexible circuit board, a printed circuit board and a backplane.
  • a display function such as LCD TV, liquid crystal display, digital photo frame, mobile phone, tablet computer, etc.
  • the display device also includes a flexible circuit board, a printed circuit board and a backplane.
  • each embodiment in this specification is described in a progressive manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments.
  • the description is relatively simple, and for related parts, please refer to the description of the product embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示面板(10)和显示装置。显示面板(10)包括液晶盒(100),第一偏光组件(102)以及第二偏光组件(103)。第一偏光组件(102)至少包括具有第一透光轴的第一偏光层(1021),用于生成偏振方向与第一透光轴平行的偏振光。第二偏光组件(103)至少包括透反层(1031)和光吸收层(1032)。透反层(1031)具有第二透光轴,用于透射偏振方向与第二透光轴平行的偏振光,且用于反射偏振方向与第二透光轴垂直的偏振光。光吸收层(1032)用于吸收透反层透射的偏振光。

Description

显示面板和显示装置
本公开要求于2021年10月29日提交的申请号为202111276051.3、发明名称为“显示面板和显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本申请涉及显示技术领域,特别涉及一种显示面板和显示装置。
背景技术
反射式液晶显示器(liquid crystal display,LCD)在智能穿戴和电子价签等小型显示设备中应用广泛,前景远大。
户外显示场景下,环境亮度通常为高亮状态,传统的显示要求显示装置要具有很高的亮度,这导致显示产品的功耗很高。若采用反射式产品,在环境光亮度很高时,可大大降低产品功耗。
发明内容
本申请提供了一种显示面板和显示装置,所述技术方案如下:
一方面,提供了一种显示面板,所述显示面板包括:
液晶盒,所述液晶盒包括相对设置的第一基板和第二基板,以及位于所述第一基板和所述第二基板之间的液晶层;
位于所述第一基板远离所述液晶层的一侧的第一偏光组件,所述第一偏光组件至少包括第一偏光层,所述第一偏光层具有第一透光轴,所述第一偏光组件用于生成偏振方向与所述第一透光轴平行的偏振光;
以及,位于所述第二基板远离所述液晶层的一侧的第二偏光组件,所述第二偏光组件至少包括透反层和光吸收层,且所述透反层相对于所述光吸收层靠近所述液晶盒,所述透反层具有第二透光轴,用于透射偏振方向与所述第二透光轴平行的偏振光,且用于反射偏振方向与所述第二透光轴垂直的偏振光,所述光吸收层用于吸收被所述透反层透射的偏振光。
可选的,所述第一偏光组件还包括:
第一粘接层,位于所述第一偏光层靠近所述液晶盒的一侧;
第一保护层,位于所述第一粘接层和所述第一偏光层之间;
以及第二保护层,位于所述第一偏光层远离所述液晶盒的一侧;
其中,所述第一粘接层用于将所述第一保护层与所述第一基板粘接,所述第一保护层和所述第二保护层分别用于保护所述第一偏光层的两个表面。
可选的,所述光吸收层为第二偏光层,所述第二偏光层具有吸收轴和第三透光轴,所述吸收轴和所述第二透光轴平行,所述第三透光轴和所述第二透光轴垂直。
可选的,所述第二偏光组件还包括:
第二粘接层,位于所述透反层靠近所述液晶盒的一侧;
第三粘接层,位于所述透反层和所述第二偏光层之间;
第三保护层,位于所述第三粘接层和所述第二偏光层之间;
以及第四保护层,位于所述第二偏光层远离所述液晶盒的一侧;
其中,所述第二粘接层用于将所述透反层和所述第二基板粘接,所述第三粘接层用于将所述透反层和所述第三保护层粘接,所述第三保护层和所述第四保护层分别用于保护所述第二偏光层的两个表面。
可选的,所述显示面板还包括位于所述第二偏光组件远离所述液晶盒的一侧的第一光源组件;
所述第二偏光层和所述透反层中的其中一层具有多个开口,所述开口用于供所述第一光源组件的光线透过。
可选的,所述第二偏光层具有所述多个开口;所述第二偏光层中的所述多个开口用于供所述第一光源组件发出的光线透过,所述透反层用于基于通过所述多个开口透过的光线生成与所述第二透光轴平行的偏振光。
可选的,所述透反层具有所述多个开口;所述第二偏光层用于基于所述第一光源组件发出的光线生成偏振方向与所述第三透光轴平行的偏振光,所述透反层中的所述开口用于透过偏振方向与所述第三透光轴平行的偏振光。
可选的,所述显示面板还包括具有多个像素电路的阵列基板,所述阵列基 板具有多个像素区域,每个所述像素区域包括显示区以及非显示区,所述像素电路位于所述非显示区,每个所述开口在所述阵列基板上的正投影位于一个所述像素区域的显示区。
可选的,所述光吸收层的材料包括吸光材料,所述吸光材料包括黑色油墨。
可选的,所述第二偏光组件还包括:
第二粘接层,位于所述透反层靠近所述液晶盒的一侧;
其中,所述第二粘接层用于将所述透反层和所述第二基板粘接。
可选的,所述第一偏光组件远离所述液晶盒的一面为所述显示面板的出光面,所述透反层与所述出光面之间的至少一层粘接层经过雾度处理。
可选的,所述透反层与所述显示面板的出光面之间的粘接层包括第一粘接层和第二粘接层;
所述第一粘接层的材料至少包括扩散粉,或,所述第二粘接层的材料至少包括所述扩散粉,或,所述第一粘接层和所述第二粘接层的材料均至少包括所述扩散粉。
可选的,所述透反层包括依次交替层叠设置的第一介质层和第二介质层;
第一介质层对偏振方向与所述第二透光轴平行的偏振光具有第一折射率,所述第一介质层对偏振方向与所述第二透光轴垂直的偏振光具有第二折射率,所述第一折射率与所述第二折射率相等;
所述第二介质层对偏振方向与所述第二透光轴平行的偏振光具有第三折射率,所述第二介质层对偏振方向与所述第二透光轴垂直的偏振光具有第四折射率,所述第三折射率和所述第四折射率不相等,且所述第三折射率与所述第一折射率相等。
可选的,所述液晶盒为扭曲向列型液晶盒,或者,所述液晶盒为平面转换型液晶盒,又或者,所述液晶盒为多象限垂直配向型液晶盒。
可选的,所述第一偏光组件相对于所述第二偏光组件更靠近入光侧;
所述入光侧的光线包括外界的环境光线,和/或,所述显示面板包括的第二光源组件发出的光线;所述显示面板第二光源组件位于所述第一偏光组件远离所述液晶盒的一侧。
另一方面,提供了一种显示装置,所述显示装置包括:供电组件以及如上述方面所述的显示面板;
所述供电组件用于为所述显示面板供电。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种显示面板的结构示意图;
图2是本申请实施例提供的另一种显示面板的结构示意图;
图3是本申请实施例提供的一种第一偏光组件的结构示意图;
图4是本申请实施例提供的一种第二偏光组件的结构示意图;
图5是本申请实施例提供的一种TN液晶盒的常白模式显示面板在未加电时的光路图;
图6是本申请实施例提供的一种TN液晶盒的常白模式显示面板在加电时的光路图;
图7是本申请实施例提供的一种TN液晶盒的常黑模式显示面板在未加电时的光路图;
图8是本申请实施例提供的一种TN液晶盒的常黑模式显示面板在加电时的光路图;
图9是本申请实施例提供的一种IPS液晶盒的常白模式显示面板在未加电时的光路图;
图10是本申请实施例提供的一种IPS液晶盒的常白模式显示面板在加电时的光路图;
图11是本申请实施例提供的一种IPS液晶盒的常黑模式显示面板在未加电时的光路图;
图12是本申请实施例提供的一种IPS液晶盒的常黑模式显示面板在加电时的光路图;
图13是本申请实施例提供的一种VA液晶盒的常白模式显示面板在未加电 时的光路图;
图14是本申请实施例提供的一种VA液晶盒的常白模式显示面板在加电时的光路图;
图15是本申请实施例提供的一种VA液晶盒的常黑模式显示面板在未加电时的光路图;
图16是本申请实施例提供的一种VA液晶盒的常黑模式显示面板在加电时的光路图;
图17是本申请实施例提供的一种在第二偏光层中设计开口的显示面板的结构示意图;
图18是本申请实施例提供的一种在第二偏光层中设计开口且TN液晶盒的常白模式显示面板在未加电时的光路图;
图19是本申请实施例提供的一种在第二偏光层中设计开口且TN液晶盒的常白模式显示面板在加电时的光路图;
图20是本申请实施例提供的一种在第二偏光层中设计开口且IPS液晶盒的常黑模式显示面板在未加电时的光路图;
图21是本申请实施例提供的一种在第二偏光层中设计开口且IPS液晶盒的常黑模式显示面板在加电时的光路图;
图22是本申请实施例提供的一种在第二偏光层中设计开口且VA液晶盒的常黑模式显示面板在未加电时的光路图;
图23是本申请实施例提供的一种在第二偏光层中设计开口且VA液晶盒的常黑模式显示面板在加电时的光路图;
图24是本申请实施例提供的一种在透反层中设计开口的显示面板的结构示意图;
图25是本申请实施例提供的一种在透反层中设计开口且TN液晶盒的常白模式显示面板在未加电时的光路图;
图26是本申请实施例提供的一种在透反层中设计开口且TN液晶盒的常白模式显示面板在加电时的光路图;
图27是本申请实施例提供的一种在透反层中设计开口且IPS液晶盒的常黑模式显示面板在未加电时的光路图;
图28是本申请实施例提供的一种在透反层中设计开口且IPS液晶盒的常黑 模式显示面板在加电时的光路图;
图29是本申请实施例提供的一种在透反层中设计开口且VA液晶盒的常黑模式显示面板在未加电时的光路图;
图30是本申请实施例提供的一种在透反层中设计开口且VA液晶盒的常黑模式显示面板在加电时的光路图;
图31是本申请实施例提供的又一种显示面板的结构示意图;
图32是本申请实施例提供的一种阵列基板和开口的位置关系示意图;
图33是本申请实施例提供的再一种显示面板的结构示意图;
图34是本申请实施例提供的一种透反层的结构示意图;
图35是本申请实施例提供的一种透反层中第一介质层和第二介质层的折射率示意图;
图36是本申请实施例提供的一种显示装置的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
目前,反射式显示面板在背光源的位置设置反光金属层,反射外界的环境光进行显示,然后搭配使用由PVA、1/2λ波片、1/4λ波片结合构成的偏光片。但由于光具有色散性,1/2λ波片和1/4λ波片不能将所有可见光旋转90°,暗态时仍有部分光出射,导致反射式显示面板的对比度低(一般为几十),且1/2λ波片和1/4λ波片的角度设计复杂,结构多变,偏光片厂商对应困难,偏光片成本较高。
图1是本申请实施例提供的一种显示面板的结构示意图。参考图1可以看出,该显示面板10可以包括:液晶盒101,第一偏光组件102以及第二偏光组件103。液晶盒101可以包括相对设置的第一基板1011和第二基板1012,以及位于第一基板1011和第二基板1012之间的液晶层1013。
第一偏光组件102位于第一基板1011远离液晶层1013的一侧。该第一偏光组件102至少包括第一偏光层1021,该第一偏光层1021可以具有第一透光轴,第一偏光组件102用于生成偏振方向与第一透光轴平行的偏振光(该偏振光可以为线偏振光)。例如,外界的环境光线(外界的环境光线也可称为自然光) 或者位于显示面板10的显示侧的第二光源组件发出的光线照射至该第一偏光组件102之后,该第一偏光组件102可以将光线转换为偏振方向与第一透光轴平行的偏振光。其中,显示面板10的显示侧为液晶盒101靠近第一偏光组件102的一侧。
第二偏光组件103可以位于第二基板1012远离液晶层1013的一侧。该第二偏光组件103至少包括透反层1031和光吸收层1032,该透反层1031相对于光吸收层1032靠近液晶盒101。该透反层1031具有第二透光轴,用于透射偏振方向与第二透光轴平行的偏振光,且用于反射偏振方向与第二透光轴垂直的偏振光。光吸收层1032用于吸收被透反层1031透射的偏振光。
第一偏光组件102将光线转换为偏振方向与第一透光轴平行的偏振光之后,该偏振光可以经由液晶盒101照射至第二偏光组件103。其中,偏振光经过液晶盒101之后,其偏振方向可能发生变化也可能未发生变化(其中,经过液晶盒101之后的偏振光可以为线偏振光,椭圆偏光或圆偏光)。无论是否发生变化,若照射至第二偏光组件103的透反层1031的偏振光的偏振方向与透反层1031的第二透光轴平行,就可以通过透反层1031透射,进而照射至光吸收层1032而被光吸收层1032吸收,呈暗态;若照射至第二偏光组件103的透反层1031的偏振光的偏振方向与透反层1031的第二透光轴不平行(例如垂直),就会被该透反层1031反射,光线能够从显示面板的显示侧出射,呈亮态。
在本申请实施例中,透反层1031可以实现透射光线以及反射光线的作用。比如该透反层1031可以透射偏振方向与第二透光轴平行的光线,且可以反射偏振方向与第二透光轴垂直的光线。可选的,该透反层1031可以为半透半反层,即可以实现照射至透反层1031的光线中的一半光线被透射,一半光线被反射。
综上所述,本申请实施例提供了一种显示面板,该显示面板包括液晶盒,第一偏光组件以及第二偏光组件。该第一偏光组件至少包括具有第一透光轴的第一偏光层,用于生成偏振方向与第一透光轴平行的偏振光。第二偏光组件至少包括透反层和光吸收层。透反层具有第二透光轴,用于透射偏振方向与第二透光轴平行的偏振光,且用于反射偏振方向与第二透光轴垂直的偏振光。光吸收层用于吸收透反层透射的偏振光。本申请实施例通过结合第一偏光组件中的第一偏光层,以及第二偏光组件中的透反层和光吸收层来实现反射式显示面板,能够提高显示面板的对比度,且可以批量制备,成本较低。
在本申请实施例中,第一偏光组件102相对于第二偏光组件103更靠近入光侧。入光侧的光线包括外界的环境光线,和/或,显示面板10包括的第二光源组件发出的光线。该第二光源组件位于显示面板10的显示侧,即位于第一偏光组件102远离液晶盒101的一侧。
其中,在外界的环境光线充足的情况下,入光侧的光线可以仅包括外界的环境光线,第二光源组件可以无需发光。在外界的环境光线不足的情况下,第二光源组件可以发光以实现补光作用。此种情况下,入光侧的光线可以包括第二光源组件发出的光线。
可选的,第一偏光层1021的材料可以为聚乙烯醇(polyvinyl alcohol,PVA)加碘离子,该第一偏光层1021可以称为第一PVA层。高级偏振片(advanced polarizer film,APF)在常规的液晶显示产品中主要起到增亮作用,本申请可以利用其反射功能将其用作本申请实施例中的透反层1031。该透反层1031可以称为APF层。
可选的,第一基板1011和第二基板1012可以为玻璃基板或石英基板,本申请实施例对此不做限定。
图2是本申请实施例提供的另一种显示面板的结构示意图。图3是本申请实施例提供的一种第一偏光组件的结构示意图。结合图2和图3可以看出,该第一偏光组件102还可以包括:第一粘接层1022,第一保护层1023以及第二保护层1024。该第一粘接层1022可以位于第一偏光层1021靠近液晶盒101的一侧,第一保护层1023可以位于第一粘接层1022和第一偏光层1021之前,第二保护层1024可以位于第一偏光层1021远离液晶盒101的一侧。也即是,第一偏光组件102中第一粘接层1022,第一偏光层1021,第一保护层1023以及第二保护层1024沿远离液晶盒101的方向依次层叠。其中,第一粘接层1022可以用于将第一保护层1023与第一基板1011粘接,第一保护层1023和第二保护层1024分别用于保护第一偏光层1021的两个表面。
在本申请实施例中,作为第一种可选的实现方式,光吸收层1032可以为第二偏光层。该第二偏光层1032具有吸收轴和第三透光轴。吸收轴和第二透光轴平行,第三透光轴和第二透光轴垂直。其中,该第二偏光层1032可以称为第二PVA层。
图4是本申请实施例提供的一种第二偏光组件的结构示意图。结合图2和 图4,该第二偏光组件103还可以包括:第二粘接层1033,第三粘接层1034,第三保护层1035以及第四保护层1036。第二粘接层1033位于透反层1031靠近液晶盒101的一侧。第三粘接层1034位于透反层1031和第二偏光层1032之间。第三保护层1035位于第三粘接层1034和第二偏光层1032之间。第四保护层1036位于第二偏光层1032远离液晶盒101的一侧。也即是,如果光吸收层1032为第二偏光层1032,则第二偏光组件103中的第二粘接层1033,透反层1031,第三粘接层1034,第三保护层1035,第二偏光层1032,第四保护层1036沿远离液晶盒101的方向依次层叠。其中,第二粘接层1033用于将透反层1031和第二基板1012粘接,第三粘接层1034用于将透反层1031和第三保护层1035粘接,第三保护层1035和第四保护层1036分别用于保护第二偏光层1032的两个表面。
在本申请实施例中,各个粘接层(第一粘接层1022,第二粘接层1033和第三粘接层1034)的材料可以包括压敏胶(pressure sensitive adhesive,PSA),其主要功能是将两侧的膜层粘接。各个保护层(第一保护层1023,第二保护层1024,第三保护层1035以及第四保护层1036)的材料可以包括三醋酸纤维素(triacetyl cellulose,TAC),其主要功能是保护偏光层的表面。
其中,各个保护层可以采用不同的处理方式进行处理。其中,处理方式包括普通(normal)处理(即无特殊处理)以及特殊处理。特殊处理包括硬化(hardcoat,HC)处理以及0位相差延迟处理。
硬化(hardcoat,HC)处理通常适用于表层的保护层。例如,第二保护层1024可以采用HC处理,该第二保护层1024可以称为HC-TAC层。
0位相差延迟处理的保护层可以具有较好的视角、对比度及色偏。因此光路经过的保护层可以采用0位相差延迟处理,例如第一保护层1023和第三保护层1035可以采用0位相差延迟处理,该第二保护层1024和第三保护层1035可以称为0-TAC层。或者,第一保护层1023和第三保护层1035也可以采用normal处理,该第二保护层1024和第三保护层1035可以称为TAC层。
对于光路不经过只需起到保护作用的保护层可以采用normal处理,如第四保护层1036可以采用normal处理,该第四保护层1036可以称为TAC层。或者,该第四保护层1036也可以采用0位相差延迟处理,即第四保护层1036也可以称为0-TAC层。
图3示出的第一偏光组件102还包括第一保护膜(protect film)和第一离型膜(release film),该第一保护膜和第一离型膜的作用是保护两者之间的膜层。图4出的第二偏光组件103还包括第二保护膜和第二离型膜,第二保护膜和第二离型膜的作用是保护两者之间的膜层。图3和图4分别示出的是与液晶盒101贴合之前的第一偏光组件102和第二偏光组件103。
另外,将第一偏光组件102与液晶盒101贴合时,先将第一离型膜去除,以使得第一粘接层1022与液晶盒101的第一基板1011粘接。将第二偏光组件103与液晶盒101贴合时,先将第二离型膜去除,以使得第二粘接层1033与液晶盒101的第二基板1012粘接。之后将显示面板组装成显示模组时,再将第一保护膜和第二保护膜去除。也即是,最终生产的产品中不包括第一保护膜,第一离型膜,第二保护膜和第二离型膜,这也是图2示出的显示面板10中未示出第一保护膜,第一离型膜,第二保护膜和第二离型膜的主要原因。
需要说明的是,相关技术中,反射式的液晶显示面板包括的第二偏光组件的APF层相对于第二PVA层远离液晶盒。液晶显示面板的光线通常来自于APF层远离液晶盒的一侧的背光光源组件。背光光源组件发出的光线需要先透过APF层,且透过APF层的光线进入到第二PVA层,光线透过第二PVA层之后经过液晶盒,经过液晶盒的光线光线再通过第一偏光组件的第一PVA层。也即是,相关技术中,能够出射的光线一定是能够被第二PVA层和APF层透过的光线。
而在本申请实施例中,光线主要来自于显示面板的显示侧的环境光线,或者位于显示面板的显示侧的第二光源组件发出的光线。其中,第二偏光组件的APF层相对于第二PVA层靠近液晶盒。光线先经过第一偏光组件102的第一PVA层和液晶盒101,再到达第二偏光组件103的APF层。APF层会反射偏振方向与第二透光轴垂直的偏振光,被反射的偏振光再次经过液晶盒101与第一偏光组件102的第一PVA层。也即是,出射的光线一定是被APF反射的光线。本申请实施例中第二偏光组件103的APF层和第二PVA层的层叠关系,以及光路设计均与相关技术不同。
其中,为了方便理解本申请实施例与相关技术的区别,相关技术中的相关描述参照了本申请实施例中的相关描述,例如相关技术中也采用了第一偏光组件,第一PVA层,第二偏光组件,APF层,以及第二PVA层等描述。实际上, 相关技术中可能不包括这些组件或膜层。
在本申请实施例中,液晶盒101可以为扭曲向列型(twisted nematic,TN)液晶盒,平面转换型(IN-plane switching,IPS)液晶盒,或者多象限垂直配向型(vertical alignment,VA)液晶盒。另外,高级超维场转换技术(advanced super dimension switch,ADS)也可以采用平面转换型液晶盒,ADS和IPS的区别在于电极设计的不同。下述针对IPS液晶盒的描述同样适用于ADS。
其中,对于TN液晶盒101,其液晶层1013靠近第一基板1011的液晶分子的取向,与液晶层1013靠近第二基板1012的液晶分子的取向垂直。在不加电的情况下,偏振光通过液晶盒101之后其偏振方向会偏转90°(度)。对于IPS液晶盒101,其液晶层1013靠近第一基板1011的液晶分子的取向,与液晶层1013靠近第二基板1012的液晶分子的取向平行。在不加电的情况下,偏振光通过液晶盒101之后其偏振方向不变。对于VA液晶盒101,其液晶层1013靠近第一基板1011的液晶分子的取向,与液晶层1013靠近第二基板1012的液晶分子的取向平行。在不加电的情况下,偏振光通过液晶盒101之后其偏振方向不变。
第一种情况,以图2所示的显示面板为例,若液晶盒101为TN液晶盒,且显示面板为全反射常白模式,则液晶分子的取向以及透光轴的设计如下:第一偏光层1021的第一透光轴与TN液晶盒101靠近第一基板1011的液晶分子的取向方向平行,透反层1031的第二透光轴与TN液晶盒101靠近第二基板1012的液晶分子的取向垂直,第二偏光层1032的吸收轴与透反层1031的第二透光轴平行(第二偏光层1032的第三透光轴与透反层1031的第二透光轴垂直)。其中,全反射常白模式是指:不加电的情况下,光线能够出射,呈亮态;加电的情况下,光线不能出射,呈暗态。
参考图5,在液晶层1013未加电的情况下,光线(外界的环境光线或者位于显示面板的显示侧的第二光源组件发出的光线)入射至第一偏光组件102的第一偏光层1021后,生成偏振方向与第一透光轴平行的第一偏振光(线偏振光)。第一偏振光经过TN液晶盒101之后偏振方向旋转90°,得到第二偏振光(线偏振光)。该第二偏振光的偏振方向与透反层1031的第二透光轴垂直,该第二偏振光被透反层1031反射回TN液晶盒101。该第二偏振光经过TN液晶盒101后偏振方向旋转90°,得到第三偏振光(线偏振光)。该第三偏振光的偏振方 向与第一偏振光的偏振方向平行,即该第三偏振光的偏振方向与第一偏光层1021的第一透光轴平行。该第三偏振光能够通过第一偏光组件102出射,实现常白模式,即呈亮态。
参考图6,在液晶层1013加电的情况下,光线(外界的环境光线或者位于置在显示面板的显示侧的第二光源组件发出的光线)入射至第一偏光组件102的第一偏光层1021后,生成偏振方向与第一透光轴平行的第一偏振光(线偏振光)。第一偏振光经过TN液晶盒101之后偏振方向保持不变,即仍为第一偏振光。由于第一偏振光的偏振方向与透反层1031的第二透光轴平行,因此该第一偏振光可以透过透反层1031照射至第二偏光层1032。第二偏光层1032的吸收轴与透反层1031的第二透光轴平行,因此从透反层1031透过的第一偏振光可以被第二偏光层1032吸收,无光线出射,光线无法返回进入人眼,实现黑态,即呈暗态。
在该第一种情况下,实际上仅需保证第一偏光层1021的第一透光轴与透反层1031的第二透光轴平行即可实现上述TN液晶盒101的常白模式。TN液晶盒101中基板和液晶分子的初始取向可以为任意角度。
第二种情况,以图2所示的显示面板为例,若液晶盒101为TN液晶盒,且显示面板为全反射常黑模式,则液晶分子的取向以及透光轴的设计如下:第一偏光层1021的第一透光轴与TN液晶盒101靠近第一基板1011的液晶分子的取向方向平行,透反层1031的第二透光轴与TN液晶盒101靠近第二基板1012的液晶分子的取向方向平行,第二偏光层1032的吸收轴与透反层1031的第二透光轴平行(第二偏光层1032的第三透光轴与透反层1031的第二透光轴垂直)。其中,全反射常黑模式是指:不加电的情况下,光线不能出射,呈暗态;加电的情况下,光线能够出射,呈亮态。
参考图7,在液晶层1013未加电的情况下,光线(外界的环境光线或者位于显示面板的显示侧的第二光源组件发出的光线)入射至第一偏光组件102的第一偏光层1021后,生成偏振方向与第一透光轴平行的第一偏振光(线偏振光)。第一偏振光经过TN液晶盒101之后偏振方向旋转90°,得到第二偏振光(线偏振光)。该第二偏振光的偏振方向与透反层1031的第二透光轴平行,因此该第二偏振光可以透过透反层1031照射至第二偏光层1032。第二偏光层1032的吸收轴与透反层1031的第二透光轴平行,因此从透反层1031透过的第二偏振 光可以被第二偏光层1032吸收,无光线出射,光线无法返回进入人眼,实现黑态,即呈暗态。
参考图8,在液晶层1013加电的情况下,光线(外界的环境光线或者位于显示面板的显示侧的第二光源组件发出的光线)入射至第一偏光组件102的第一偏光层1021后,生成偏振方向与第一透光轴平行的第一偏振光(线偏振光)。第一偏振光经过TN液晶盒101之后偏振方向保持不变,即仍为第一偏振光。由于第一偏振光的偏振方向与透反层1031的第二透光轴垂直,因此该第一偏振光被透反层1031反射回TN液晶盒101。该第一偏振光经过TN液晶盒101后方向依然保持不变,即与第一偏光层1021的第一透光轴平行。该第一偏振光能够通过第一偏光组件102出射,实现白态,即呈亮态。
在该第二种情况下,实际上仅需保证第一偏光层1021的第一透光轴与透反层1031的第二透光轴垂直即可实现上述TN液晶盒101的常黑模式。TN液晶盒101中基板和液晶分子的初始取向可以为任意角度。
其中,对于TN液晶盒101,将第一种情况的常白模式中透反层1031和第二偏光层1032同时旋转90°即可得到对于第二种情况的常黑模式。
第三种情况,以图2所示的显示面板为例,若液晶盒101为IPS型液晶盒101,且显示面板为全反射常白模式,则液晶分子的取向以及透光轴的设计如下:第一偏光层1021的第一透光轴与IPS液晶盒101靠近第一基板1011的液晶分子的取向方向平行,透反层1031的第二透光轴与IPS液晶盒101靠近第二基板1012的液晶分子的取向方向垂直,第二偏光层1032的吸收轴与透反层1031的第二透光轴平行(第二偏光层1032的第三透光轴与透反层1031的第二透光轴垂直)。
参考图9,在液晶层1013未加电的情况下,光线(外界的环境光线或者位于显示面板的显示侧的第二光源组件发出的光线)入射至第一偏光组件102的第一偏光层1021后,生成偏振方向与第一透光轴平行的第一偏振光(线偏振光)。该第一偏振光经过IPS液晶盒101之后变化为第二偏振光(由于不加电的情况下,液晶盒不起作用,因此第二偏振光与第一偏振光的偏振方向相同)。该第二偏振光的偏振方向与透反层1031的第二透光轴垂直,因此该第二偏振光的被透反层1031反射回IPS液晶盒101。该第二偏振光经过IPS液晶盒101后偏振方向依然保持不变,即与第一偏光层1021的第一透光轴平行。该第二偏振光能够通过第一偏光组件102出射,实现常白模式,即呈亮态。
参考图10,在液晶层1013加电的情况下,光线(外界的环境光线或者位于显示面板的显示侧的第二光源组件发出的光线)入射至第一偏光组件102的第一偏光层1021之后,生成偏振方向与第一透光轴平行的第一偏振光(线偏振光)。第一偏振光经过IPS液晶盒101之后变化为第二偏振光(椭圆偏光),该第二偏振光的有效偏振光(椭圆偏光可以分解为互相垂直的两个线偏振光的偏振分量,较大分量的线偏振光定义为有效偏振光,较大分量的线偏振光的偏振方向为有效偏振光的偏振方向)的偏振方向与透反层1031的第二透光轴平行,因此该第二偏振光的有效偏振光可以透过透反层1031照射至第二偏光层1032。第二偏光层1032的吸收轴与透反层1031的第二透光轴平行,因此从透反层1031透过的第二偏振光的有效偏振光可以被第二偏光层1032吸收,无光线出射,光线无法返回进入人眼,实现黑态,即呈暗态。
在该第三种情况下,实际上仅需保证第一偏光层1021的第一透光轴与透反层1031的第二透光轴垂直即可实现上述IPS液晶盒101的常白模式。IPS液晶盒101中基板和液晶分子的初始取向可以为任意角度。
第四种情况,以图2所示的显示面板为例,若液晶盒101为IPS液晶盒101,且显示面板为全反射常黑模式,则液晶分子的取向以及透光轴的设计如下:第一偏光层1021的第一透光轴与IPS液晶盒101靠近第一基板1011的液晶分子的取向方向平行,透反层1031的第二透光轴与IPS液晶盒101靠近第二基板1012的液晶分子的取向平行,第二偏光层1032的吸收轴与透反层1031的第二透光轴平行(第二偏光层1032的第三透光轴与透反层1031的第二透光轴垂直)。
参考图11,在液晶层1013未加电的情况下,光线(外界的环境光线或者位于显示面板的显示侧的第二光源组件发出的光线)入射至第一偏光组件102的第一偏光层1021后,生成偏振方向与第一透光轴平行的第一偏振光(线偏振光)。该第一偏振光经过IPS液晶盒101之后变化为第二偏振光(由于不加电的情况下,液晶盒不起作用,因此第二偏振光与第一偏振光的偏振方向相同)。该第二偏振光的偏振方向与透反层1031的第二透光轴平行,因此该第二偏振光可以透过透反层1031照射至第二偏光层1032。第二偏光层1032的吸收轴与透反层1031的第二透光轴平行,因此从透反层1031透过的第二偏振光可以被第二偏光层1032吸收,无光线出射,光线无法返回进入人眼,实现常黑模式,即呈暗态。
参考图12,在液晶层1013加电的情况下,光线(外界的环境光线或者位于 显示面板的显示侧的第二光源组件发出的光线)入射至第一偏光组件102的第一偏光层1021之后,生成偏振方向与第一透光轴平行的第一偏振光(线偏振光)。第一偏振光经过IPS液晶盒101变化为第二偏振光(椭圆偏光)。该第二偏振光的有效偏振光(椭圆偏光可以分解为互相垂直的两个线偏振光的偏振分量,较大分量的线偏振光定义为有效偏振光,较大分量的线偏振光的偏振方向为有效偏振光的偏振方向)的偏振方向与透反层1031的第二透光轴垂直,因此该第二偏振光的有效偏振光被透反层1031反射回IPS液晶盒101。该第二偏振光的有效偏振光经过IPS液晶盒101后偏振方向依然保持不变,即与第一偏光层1021的第一透光轴平行。该第二偏振光的有效偏振光能够通过第一偏光组件102出射,实现白态,即呈亮态。
在该第四种情况下,实际上仅需保证第一偏光层1021的第一透光轴与透反层1031的第二透光轴平行即可实现上述IPS液晶盒101的常黑模式。IPS液晶盒101中基板和液晶分子的初始取向可以为任意角度。
其中,对于IPS液晶盒101,将第三种情况的常白模式中透反层1031和第二偏光层1032同时旋转90°即可得到对于第四种情况的常黑模式。
第五种情况,以图2所示的显示面板为例,若液晶盒101为VA液晶盒101,且显示面板为全反射常白模式,则液晶分子的取向以及透光轴的设计如下:第一偏光层1021的第一透光轴与透反层1031的第二透光轴垂直,第二偏光层1032的吸收轴与透反层1031的第二透光轴平行(第二偏光层1032的第三透光轴与透反层1031的第二透光轴垂直)。VA液晶盒101按照VA的任意取向模式均可。
参考图13,在液晶层1013未加电的情况下,光线(外界的环境光线或者位于显示面板的显示侧的第二光源组件发出的光线)入射至第一偏光组件102的第一偏光层1021后,生成偏振方向与第一透光轴平行的第一偏振光(线偏振光)。该第一偏振感光经过VA液晶盒101之后变化为第二偏振光(由于不加电的情况下,液晶盒不起作用,因此第二偏振光与第一偏振光的偏振方向相同)。该第二偏振光的偏振方向与透反层1031的第二透光轴垂直,因此该第二偏振光被透反层1031反射回VA液晶盒101。该第二偏振光经过VA液晶盒101后偏振方向依然保持不变,即与第一偏光层1021的第一透光轴平行。该第二偏振光能够通过第一偏光组件102出射,实现常白模式,即呈亮态。
参考图14,在液晶层1013加电的情况下,光线(外界的环境光线或者位于 显示面板的显示侧的第二光源组件发出的光线)入射至第一偏光组件102的第一偏光层1021之后,生成偏振方向与第一透光轴平行的第一偏振光(线偏振光)。第一偏振光经过VA液晶盒101之后变化为第二偏振光(椭圆偏光)。该第二偏振光的有效偏振光(椭圆偏光可以分解为互相垂直的两个线偏振光的偏振分量,较大分量的线偏振光定义为有效偏振光,较大分量的线偏振光的偏振方向为有效偏振光的偏振方向)的偏振方向与透反层1031的第二透光轴平行,因此该第二偏振光的有效偏振光可以透过透反层1031照射至第二偏光层1032。第二偏光层1032的吸收轴与透反层1031第二透光轴平行,因此从透反层1031透过的第二偏振光的有效偏振光可以被第二偏光层1032吸收,无光线出射,光线无法返回进入人眼,实现黑态,即呈暗态。
第六种情况,以图2所示的显示面板为例,若液晶盒101为VA液晶盒101,且显示面板为全反射常黑模式,则液晶分子的取向以及透光轴的设计如下:第一偏光层1021的第一透光轴与透反层1031的第二透光轴平行,第二偏光层1032的吸收轴与透反层1031的第二透光轴平行(第二偏光层1032的第三透光轴与透反层1031的第二透光轴垂直)。VA液晶盒101按照VA的任意取向模式均可。
参考图15,在液晶层1013未加电的情况下,光线(外界的环境光线或者位于显示面板的显示侧的第二光源组件发出的光线)入射至第一偏光组件102的第一偏光层1021后,生成偏振方向与第一透光轴平行的第一偏振光(线偏振光)。该第一偏振光经过VA液晶盒101之后变化为第二偏振光(由于不加电的情况下,液晶盒不起作用,因此第二偏振光与第一偏振光的偏振方向相同)。该第二偏振光的偏振方向与透反层1031的第二透光轴平行,因此该第二偏振光可以透过透反层1031照射至第二偏光层1032。第二偏光层1032的吸收轴与透反层1031的第二透光轴平行,因此从透反层1031透过的第二偏振光可以被第二偏光层1032吸收,无光线出射,光线无法返回进入人眼,实现常黑模式,即呈暗态。
参考图16,在液晶层1013加电的情况下,光线(外界的环境光线或者位于显示面板的显示侧的第二光源组件发出的光线)入射至第一偏光组件102的第一偏光层1021之后,生成偏振方向与第一透光轴平行的第一偏振光(线偏振光)。第一偏振光经过VA液晶盒101之后变化为第二偏振光(椭圆偏光)。该第二偏振光的有效偏振光(椭圆偏光可以分解为互相垂直的两个线偏振光的偏振分量,较大分量的线偏振光定义为有效偏振光,较大分量的线偏振光的偏振方向为有 效偏振光的偏振方向)的偏振方向与透反层1031的第二透光轴垂直,因此该第二偏振光的有效偏振光被透反层1031反射回VA液晶盒101。该第二偏振光的有效偏振光经过IPS液晶盒101后偏振方向依然保持不变,即与第一偏光层1021的第一透光轴平行。该第二偏振光的有效偏振光能够通过第一偏光组件102出射,实现白态,即呈亮态。
需要说明的是,结合上述几种情况可以看出,经过第一偏光层1021之后的线偏振光,若经过加电的IPS液晶盒的液晶层或经过加电的VA液晶盒的液晶层,则线偏振光可以转变为椭圆偏光。该椭圆偏光可以分解为互相垂直的两个线偏振光的偏振分量,较大分量的线偏振光定义为有效偏振光,较大分量的线偏振光的偏振方向即为有效偏振光的偏振方向。另外,如果经过未加电的IPS液晶盒的液晶层或经过未加电的VA液晶盒的液晶层,则线偏振光的偏振方向保持不变。
在本申请实施例中,显示面板10可以实现常白模式,也可以实现常黑模式。由此可以基于显示面板10的具体应用场景选取不同的模式。可选的,手机,手表以及电视机等产品可以用于常黑模式。执法仪,运动码表,价签以及单词卡等产品可以用于常白模式。
在本申请实施例中,若显示面板10的显示侧没有设置第二光源组件,那么单纯通过环境光来满足反射式显示面板的显示可靠性比较低。例如,在环境光不足(较暗)时,难以通过环境光来实现反射显示。由此,显示面板可以包括位于第二偏光组件103远离液晶盒101的一侧的第一光源组件,该第一光源组件可以发出光线,该第一光源组件发出的光线可以用于在环境光不足时实现补光作用。当然,显示面板也可以同时包括第一光源组件和第二光源组件。
由于第二偏光层1032的第三透光轴与透反层1031的第二透光轴垂直,因此第一光源组件(位于第二偏光组件103远离液晶盒101的一侧)发出的光线先通过第二偏光层1032之后会先转变为偏振方向与第三透光轴平行的偏振光,该偏振光是无法通过与第二透光轴的透反层1031透射的。这种情况下,第一光源组件发出的光线无法被利用。由此,为了使得第一光源组件发出的光线能够照射至液晶盒101被利用,需使得第二偏光层1032和透反层1031中的其中一层具有多个开口。该开口可以用于供第一光源组件的光线透过。
第一种方式,参考图17,第二偏光层1032具有多个开口a(图中仅示意了 一个开口)。第二偏光层1032中的多个开口a用于供第一光源组件发出的光线透过,透反层1031用于基于通过多个开口透过的光线生成与第二透光轴平行的偏振光。
以TN液晶盒101的常白反射模式为例,光路说明如下:
参考图18和图19,对于第二偏光层1032的非开口位置,无论液晶层1013是否加电,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线经过第二偏光层1032后,生成偏振方向与第三透光轴平行的偏振光。该第一偏振光照射至透反层1031,由于透反层1031的第二透光轴与第三透光轴垂直,因此该偏振光无法透过透反层1031。
参考图18,对于第二偏光层1032的开口位置,在液晶层1013不加电的情况下,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线通过第二偏光层1032的开口照射至透反层1031。该透反层1031基于通过第二偏光层1032的开口透过的光线生成与第二透光轴平行的偏振光(假设称为第一偏振光,该第一偏振光为线偏振光),该第一偏振光经过TN液晶盒101之后偏振方向旋转90°,得到第二偏振光(线偏振光)。该第二偏振光的偏振方向与第一偏光层1021的第一透光轴垂直,无光线出射,光线无法进入人眼,呈暗态。
参考图19,对于第二偏光层1032的开口位置,在液晶层1013加电的情况下,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线通过第二偏光层1032的开口照射至透反层1031。该透反层1031基于通过第二偏光层1032的开口透过的光线生成与第二透光轴平行的偏振光(假设称为第一偏振光,该第一偏振光为线偏振光),该第一偏振光经过TN液晶盒101之后偏振方向保持不变,仍为第一偏振光。该第一偏振光的偏振方向与第一偏光层1021的第一透光轴平行,光线可以出射,呈亮态。
需要说明的是,TN常白反射模式可以是指外界的环境光线发出的光线可以通过非开口位置出射。此种情况下,显示面板处于TN常白反射模式。并且,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线无法通过第二偏光层1032设置的开口a出射(透射为常黑模式)。其中,TN常白反射模式以及透射常黑模式不能同时使用。
另外,若TN液晶盒为TN常黑反射模式(外界的环境光线发出的光线无法 通过非开口位置出射),则显示面板处于TN常黑反射模式。并且,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线可以通过第二偏光层1032设置的开口a出射(透射为常白模式)。其中,TN常黑反射模式以及透射常白模式不能同时使用。
以IPS液晶盒101的常黑反射模式为例,光路说明如下:
参考图20和图21,对于第二偏光层1032的非开口位置,无论液晶层1013是否加电,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线经过第二偏光层1032后,生成偏振方向与第三透光轴平行的偏振光。该偏振光照射至透反层1031,由于透反层1031的第二透光轴与第三透光轴垂直,因此该偏振光无法透过透反层1031。
参考图20,对于第二偏光层1032的开口位置,在液晶层1013不加电的情况下,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线通过第二偏光层1032的开口照射至半透半返膜层。该透反层1031基于通过第二偏光层1032的开口透过的光线生成与第二透光轴平行的偏振光(假设称为第一偏振光,该第一偏振光为线偏振光),该第一偏振光经过IPS液晶盒101之后变化为第二偏振光(由于不加电的情况下,液晶盒不起作用,因此第二偏振光与第一偏振光的偏振方向相同),该第二偏振光的偏振方向与第一偏光层1021的第一透光轴平行,光线可以出射,呈亮态。
参考图21,对于第二偏光层1032的开口位置,在液晶层1013加电的情况下,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线通过第二偏光层1032的开口照射至透反层1031。该透反层1031基于通过第二偏光层1032的开口透过的光线生成与第二透光轴平行的偏振光(假设称为第一偏振光,该第一偏振光为线偏振光),该第一偏振光经过IPS液晶盒101之后变化为第二偏振光(椭圆偏光)。该第二偏振光的有效偏振光(椭圆偏光可以分解为互相垂直的两个线偏振光的偏振分量,较大分量的线偏振光定义为有效偏振光,较大分量的线偏振光的偏振方向为有效偏振光的偏振方向)的偏振方向与第一偏光层1021的第一透光轴垂直,无光线出射,光线无法进入人眼,呈暗态。
需要说明的是,IPS常黑反射模式可以是指外界的环境光线发出的光线无法通过非开口位置出射。此种情况下,显示面板处于IPS常黑反射模式。并且, 位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线可以通过第二偏光层1032设置的开口a出射(透射为常白模式)。其中,IPS常黑反射模式以及透射白模式不能同时使用。
另外,若IPS液晶盒为IPS常白反射模式(外界的环境光线发出的光线无可以通过非开口位置出射)则显示面板处于IPS常白反射模式。并且,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线无法通过第二偏光层1032设置的开口a出射(透射为常黑模式)。其中,TN常白反射模式以及透射常黑模式不能同时使用。
以VA液晶盒101的常白反射模式为例,光路说明如下:
参考图22和图23,对于第二偏光层1032的非开口位置,无论液晶层1013是否加电,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线经过第二偏光层1032后,生成偏振方向与第三透光轴平行的偏振光。该偏振光照射至透反层1031,由于透反层1031的第二透光轴与第三透光轴垂直,因此该偏振光无法透过透反层1031。
参考图22,对于第二偏光层1032的开口位置,在液晶层1013不加电的情况下,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线通过第二偏光层1032的开口照射至透反层1031。该透反层1031基于通过第二偏光层1032的开口透过的光线生成与第二透光轴平行的偏振光(假设称为第一偏振光,该第一偏振光为线偏振光),该第一偏振光经过VA液晶盒101之后变化为第二偏振光(由于不加电的情况下,液晶盒不起作用,因此第二偏振光与第一偏振光的偏振方向相同)。该第二偏振光的偏振方向与第一偏光层1021的第一透光轴垂直,无光线出射,光线无法进入人眼,呈暗态。
参考图23,对于第二偏光层1032的开口位置,在液晶层1013加电的情况下,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线通过第二偏光层1032的开口照射至透反层1031。该透反层1031基于通过第二偏光层1032的开口透过的光线生成与第二透光轴平行的偏振光(假设称为第一偏振光,该第一偏振光为线偏振光),该第一偏振光经过VA液晶盒101之后变化为第二偏振光(椭圆偏光)。该第二偏振光的有效偏振光(椭圆偏光可以分解为互相垂直的两个线偏振光的偏振分量,较大分量的线偏振光定义为有效偏振光,较大分量的线偏振光的偏振方向为有效偏振光的偏振方向)的偏振方向 与第一偏光层1021的第一透光轴平行,光线可以出射,呈亮态。
需要说明的是,VA常白反射模式可以是指外界的环境光线发出的光线可以通过非开口位置出射。此种情况下,显示面板处于VA常白反射模式。并且,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线无法通过第二偏光层1032设置的开口a出射(透射为常黑模式)。其中,VA常白反射模式以及透射常黑模式不能同时使用。在外界的环境光线较充足的情况下(如白天)可以为常白反射模式,在外界的环境光线较暗的情况下(如夜晚)可以为常黑透射模式。
另外,VA常黑反射模式可以是指外界的环境光线发出的光线可以通过非开口位置出射。此种情况下,显示面板处于VA常黑反射模式。并且,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线无法通过第二偏光层1032设置的开口a出射(透射为常黑模式)。其中,VA常黑反射模式以及透射白模式不能同时使用。
第二种方式,参考图24,透反层1031具有多个开口a。第二偏光层1032用于基于第一光源组件发出的光线生成偏振方向与第三透光轴平行的偏振光。透反层1031中的开口a用于透过该偏振光。
以TN液晶盒101的常白反射模式为例,光路说明如下:
参考图25和图26,对于透反层1031的非开口位置,无论液晶层1013是否加电,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线经过第二偏光层1032后,生成偏振方向与第三透光轴平行的偏振光。该第一偏振光照射至透反层1031,由于透反层1031的第二透光轴与第三透光轴垂直,因此该偏振光无法透过透反层1031。
参考图25,对于透反层1031的开口位置,在液晶层1013不加电的情况下,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线照射至第二偏光层1032时,该第二偏光层1032可以生成偏振方向与第三透光轴平行的偏振光(假设称为第一偏振光,该第一偏振光为线偏振光)。该第一偏振光通过透反层1031的开口入射至TN液晶盒101,该第一偏振光经过TN液晶盒101之后偏振方向旋转90°,得到第二偏振光(线偏振光)。该第二偏振光的偏振方向与第一偏光层1021的第一透光轴平行,光线可以出射,呈亮态。
参考图26,对于透反层1031的开口位置,在液晶层1013加电的情况下, 位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线照射至第二偏光层1032时,该第二偏光层1032可以生成偏振方向与第三透光轴平行的偏振光(假设称为第一偏振光,该第一偏振光为线偏振光)。该第一偏振光经过TN液晶盒101之后偏振方向保持不变,仍为第一偏振光。该第一偏振光的偏振方向与第一偏光层1021的第一透光轴垂直,无光线出射,光线无法进入人眼,呈暗态。
需要说明的是,TN常白反射模式可以是指外界的环境光线发出的光线可以通过非开口位置出射。此种情况下,显示面板处于TN常白反射模式。并且,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线可以通过透反层1031设置的开口a出射(透射为常白模式)。其中,TN常白反射模式以及透射常白模式可以同时使用。
另外,若TN液晶盒为TN常黑反射模式(外界的环境光线发出的光线无法通过非开口位置出射),则显示面板处于TN常黑反射模式。并且,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线无法通过透反层1031设置的开口a出射(透射为常黑模式)。其中,TN常黑反射模式以及透射常黑模式可以同时使用。
以IPS液晶盒101的常黑反射模式为例,光路说明如下:
参考图27和图28,对于透反层1031的非开口位置,无论液晶层1013是否加电,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线经过第二偏光层1032后,生成偏振方向与第三透光轴平行的偏振光。该偏振光照射至透反层1031,由于透反层1031的第二透光轴与第三透光轴垂直,因此该偏振光无法透过透反层1031。
参考图27,对于透反层1031的开口位置,在液晶层1013不加电的情况下,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线照射至第二偏光层1032时,该第二偏光层1032可以生成偏振方向与第三透光轴平行的偏振光(假设称为第一偏振光,该第一偏振光为线偏振光)。该第一偏振光通过透反层1031的开口入射至IPS液晶盒101,该第一偏振光经过IPS液晶盒101之后变化为第二偏振光(由于不加电的情况下,液晶盒不起作用,因此第二偏振光与第一偏振光的偏振方向相同)。该第二偏振光的偏振方向与第一偏光层1021的第一透光轴垂直,无光线出射,光线无法进入人眼,呈暗态。
参考图28,对于透反层1031的开口位置,在液晶层1013加电的情况下,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线照射至第二偏光层1032时,该第二偏光层1032可以生成偏振方向与第三透光轴平行的偏振光(假设称为第一偏振光,该第一偏振光为线偏振光)。该第一偏振光经过IPS液晶盒101之后变化为第二偏振光(椭圆偏光)。该第二偏振光的有效偏振光(椭圆偏光可以分解为互相垂直的两个线偏振光的偏振分量,较大分量的线偏振光定义为有效偏振光,较大分量的线偏振光的偏振方向为有效偏振光的偏振方向)的偏振方向与第一偏光层1021的第一透光轴平行,光线可以出射,呈亮态。
需要说明的是,IPS常黑反射模式可以是指外界的环境光线发出的光线无法通过非开口位置出射。此种情况下,显示面板处于TN常黑反射模式。并且,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线无法通过透反层1031设置的开口a出射(透射为常黑模式)。其中,IPS常黑反射模式以及透射常黑模式可以同时使用。
另外,若TN液晶盒为TN常白反射模式(外界的环境光线发出的光线可以通过非开口位置出射),则显示面板处于TN常白反射模式。并且,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线可以通过透反层1031设置的开口a出射(透射为常白模式)。其中,IPS常白反射模式以及透射常白模式可以同时使用。
以VA液晶盒101的常白反射模式为例,光路说明如下:
参考图29和图30,对于透反层1031的非开口位置,无论液晶层1013是否加电,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线经过第二偏光层1032后,生成偏振方向与第三透光轴平行的偏振光。该偏振光照射至透反层1031,由于透反层1031的第二透光轴与第三透光轴垂直,因此该偏振光无法透过透反层1031。
参考图29,对于透反层1031的开口位置,在液晶层1013不加电的情况下,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线照射至第二偏光层1032时,该第二偏光层1032可以生成偏振方向与第三透光轴平行的偏振光(假设称为第一偏振光,该第一偏振光为线偏振光)。该第一偏振光通过透反层1031的开口入射至VA液晶盒101,该第一偏振光经过VA液晶盒 101之后变化为第二偏振光(由于不加电的情况下,液晶盒不起作用,因此第二偏振光与第一偏振光的偏振方向相同)。该第二偏振光的偏振方向与第一偏光层1021的第一透光轴平行,光线可以出射,呈亮态。
参考图30,对于透反层1031的开口位置,在液晶层1013加电的情况下,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线照射至第二偏光层1032时,该第二偏光层1032可以生成偏振方向与第三透光轴的偏振光(假设称为第一偏振光,该第一偏振光为线偏振光)。该第一偏振光经过VA液晶盒101之后变化为第二偏振光(椭圆偏光)。该第二偏振光的有效偏振光(椭圆偏光可以分解为互相垂直的两个线偏振光的偏振分量,较大分量的线偏振光定义为有效偏振光,较大分量的线偏振光的偏振方向为有效偏振光的偏振方向)的偏振方向与第一偏光层1021的第一透光轴垂直,无光线出射,光线无法进入人眼,呈暗态。
需要说明的是,VA常白反射模式可以是指外界的环境光线发出的光线可以通过非开口位置出射。此种情况下,显示面板处于TN常白反射模式。并且,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线可以通过透反层1031设置的开口a出射(透射为常白模式)。其中,VA常白反射模式以及透射常白模式可以同时使用。
另外,若VA液晶盒为VA常黑反射模式(外界的环境光线发出的光线无法通过非开口位置出射),则显示面板处于VA常黑反射模式无法通过透反层1031设置的开口a出射(透射为常黑模式)。其中,VA常黑反射模式以及透射常黑模式可以同时使用。
相对于在第二偏光层1032设计开口的方案而言,在透反层1031设计开口的方案会牺牲一部分透反层1031的反射面积,降低反射显示面板的显示侧的光线的反射效果,可能会对显示效果有一点影响。
需要说明的是,附图5至附图16中的双向箭头均用于表示光线的方向,虚线单箭头用于表示光线的光路。其中两个双向箭头相交表示光线的方向为多种方向,一个双向箭头表示偏振光的偏振方向。附图18至附图23,以及附图25至附图30中的双向箭头用于表示透光轴的透光方向,虚线单箭头用于表示光线。
在本申请实施例中,图31是本申请实施例提供的另一种显示面板的结构示意图。参考图31,显示面板10还包括具有多个像素电路的阵列基板104。参考 图32,该阵列基板104可以具有多个像素区域b,每个像素区域b包括显示区b1以及非显示区b2,像素电路位于非显示区b2。第二偏光层1032或透反层1031中的每个开口a在阵列基板104上的正投影位于一个像素区域b的显示区b1。
可选的,通常情况下,光学膜(例如第二偏光组件103就是一种光学膜)的贴附没有对位标记,精度普遍不高,只需使得开口a不偏出像素区域b的显示区b1即可。例如,像素尺寸为150μm(微米)*150um,开口尺寸为50*50um,满足对位精度=(150+50)/2=100um即可。再例如,像素尺寸为200*200um,开口尺寸为40*40um,满足的对位精度=(200+40)/2=120um即可。
由于开口a是设置在第二偏光层1032或透反层1031,因此与阵列基板104的像素设计无关,不会受到阵列基板104相关制程的影响,成本较低。并且由于开口a的设计与阵列基板104的结构无关,因此上述实施例仅示意性的说明了TN液晶盒101,IPS液晶盒101以及VA液晶盒101对应的显示面板设计,但实际还可以应用于其他类型的液晶盒。
可选的,阵列基板104可以包括衬底基板和驱动电路层,所述衬底基板包括玻璃基板或石英基板,所述驱动电路层包括上述所述的多个像素电路以及多个像素电极,多个像素电路包括多条数据线,多条扫描线以及多个薄膜晶体管。驱动电路层能够根据不同的显示数据为液晶盒101的液晶分子提供不同的偏振电压。液晶盒101中的液晶分子在不同的偏转电压下能实现不同程度的偏转,从而可以实现不同的透过率。
除此之外,该显示面板10还包括:彩膜基板105,彩膜基板105包括多个不同颜色的子像素对应的色阻块。例如包括红色(red,R)子像素对应的红色色阻块,绿色(green,G)子像素对应的绿色色组块,以及蓝色(blue,B)子像素对应的蓝色色阻块。由于不同颜色的子像素出射的光线的透过率不同,因此,透过对应色阻块的红光,绿光,以及蓝光的比例不同,从而实现彩色显示。
在本申请实施例中,作为第二种可选的实现方式,光吸收层1032的材料包括吸光材料。该吸光材料可以包括黑色油墨。
其中,黑色油墨为吸光度较高的材料。可选的,黑色油墨包括:树脂。该黑色油墨是将树脂与黑色颜料以及溶剂等混合材料混合制成的。需要说明的是,该黑色油墨除了可以设置在透反层1031远离液晶盒101的一侧,还可以设置在背板上。本申请实施例通过设置黑色油墨,不仅能够吸收从透反层1031透射的 光线,而且其制作工艺简单,成本较低。
可选的,参考图33,该第二偏光组件103还包括第二粘接层1033,该第二粘接层1033位于透反层1031靠近液晶盒101的一侧。其中,该第二粘接层1033可以用于将透反层1031和第二基板1012粘接。也即是,在光吸收层1032的材料包括吸光材料的情况下,可以无需设计两层保护层(例如第一种实现方式中的第三保护层1035和第四保护层1036)。
在光吸收层1032的材料包括吸光材料的情况下,无论照射至该光吸收层1032上的光线是何种光线,且无论从什么方向照射的光线都可以被该光吸收层1032吸收。例如,显示面板10的显示侧的光线通过第一偏光组件102,液晶盒101以及透反层1031之后为偏振光,该偏振光照射至光吸收层1032并被光吸收层1032吸收。再例如,位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线照射至该光吸收层1032并被光吸收层1032吸收。
由此,在光吸收层1032的材料包括吸光材料的情况下,若需使得位于第二偏光组件103远离液晶盒101的一侧的第一光源组件发出的光线能够被利用,必然需要在该光吸收层1032设计开口,而不能在透反层1031设计开口。其光路设计说明可以参见上述在第二偏光层1032设计开口的相关描述,本申请实施例在此不再赘述。
在本申请实施例中,上述方案均能够实现反射效果,但是对于反射式显示面板而言,需要保证漫反射的效果才能提高显示面板10的显示效果。相关技术中通常是在反射金属层制作凹凸结构,或在第一偏光组件102中增加散射膜层。但是这两种方案成本都比较高,工艺较复杂。
由此,在本申请实施例中,透反层1031与出光面之间的至少一层粘接层经过雾度(Haze)处理,经过雾度处理之后的粘接层可以实现光线的漫反射。将透反层1031与出光面之间的至少一层粘接层经过雾度处理,可以使得透反层1031反射的光线经过该至少一层粘接层之后再从出光面射出,保证漫反射的效果。其中出光面是指第一偏光组件102远离液晶盒101的一面。
在上述第一种实现方式和第二种实现方式中,透反层1031与显示面板10的出光面之间的粘接层包括第一粘接层1022和第二粘接层1033。由此可以具有下述三种方案:1.第一粘接层1022经过雾度处理,第二粘接层1033无需雾度处理;2.第一粘接层1022无需雾度处理,第二粘接层1033经过雾度处理;3.第一 粘接层1022和第二粘接层1033均经过雾度处理。
可选的,雾度处理的范围可以为10%至90%,其中雾度处理值越大,漫反射的效果越好。但是雾度处理值越大可能会影响显示面板的对比度。由此本申请实施例可综合考虑漫反射效果以及对比度来选取合适的雾度处理值,例如雾度处理值可以为80%。
上述第一种方案(第一粘接层1022经过雾度处理,第二粘接层1033无需雾度处理),第一偏光组件102中经过雾度处理的第一粘接层1022与液晶盒101的第一基板1011粘接。上述第二种方案(第一粘接层1022无需雾度处理,第二粘接层1033经过雾度处理),第二偏光组件103中经过雾度处理的第二粘接层1033与液晶盒101的第二基板1012粘接。上述第三种方案(第一粘接层1022和第二粘接层1033均经过雾度处理),第一偏光组件102中经过雾度处理的第一粘接层1022与液晶盒101的第一基板1011粘接,第二偏光组件103中经过雾度处理的第二粘接层1033与液晶盒101的第二基板1012粘接。另外,经过相关检测发现,上述第二种方案的显示面板的对比度更优。
在本申请实施例中,参考图34,透反层1031可以包括依次交替层叠设置的第一介质层和第二介质层。
其中,第一介质层对偏振方向与第二透光轴平行的偏振光具有第一折射率,对偏振方向与第二透光轴垂直的偏振光具有第二折射率。第一折射率与第二折射率相等。也即是,参考图34和图35,第一介质层为均匀介质层。该第一介质层对偏振方向平行于第一方向X的偏振光的折射率n1与对平行于第二方向Y的偏振光的折射率n2相同。例如,n1=n2=1.57。第一方向X与第二透光轴平行,第二方向Y与第二透光轴垂直。
第二介质层对偏振方向与第二透光轴平行的偏振光具有第三折射率,对偏振方向与第二透光轴垂直的偏振光具有第四折射率。第三折射率和第四折射率不相等,且第三折射率与第一折射率相等。也即是,参考图34和图35,第二介质层为双折射介质层,对偏振方向平行于第一方向X的偏转光的折射率n3与对偏振方向平行于第二方向X的偏振光的折射率n4不同。例如,n3=1.57,n4=1.8。
其中,第一介质层可以称为非定向层,第二介质层可以称为定向层。
基于上述原理,透反层能够实现某一个偏振方向的光可以透光,另一个偏振方向的光完全反射。如图35所示,透反层1031能够将偏振方向与第一方向X 平行的偏振光进行透射,将偏振方向与第二方向Y平行的偏振光进行反射。
由于偏振光能够通过透反层被全部反射回去,且没有1/2λ波片和1/4λ波片的色散问题,不仅能提高显示亮度,还能提高显示对比度。并且,通过透反层反射偏振光,可以避免制作反射金属层,简化了显示面板的制作工艺。
并且,本申请实施例提供的显示面板通过使用PVA层和APF层,能够避免由于1/2λ波片和1/4λ波片的色散而造成的漏光问题,提高显示对比度。另外,本申请实施例提供的显示面板避免使用成本较高的1/2λ波片和1/4λ波片,从而降低了生产成本。
综上所述,本申请实施例提供了一种显示面板,该显示面板包括液晶盒,第一偏光组件以及第二偏光组件。该第一偏光组件至少包括具有第一透光轴的第一偏光层,用于生成偏振方向与第一透光轴平行的偏振光。第二偏光组件至少包括透反层和光吸收层。透反层具有第二透光轴,用于透射偏振方向与第二透光轴平行的偏振光,且用于反射偏振方向与第二透光轴垂直的偏振光。光吸收层用于吸收透反层透射的偏振光。本申请实施例通过结合第一偏光组件中的第一偏光层,以及第二偏光组件中的透反层和光吸收层来实现反射式显示面板,能够提高显示面板的对比度,且可以批量制备,成本较低。
图36是本申请实施例提供的一种显示装置的结构示意图。参考图36,该显示装置可以包括供电组件20以及如上述实施例所提供的显示面板10。该供电组件20可以用于为显示面板10供电。
另外,该显示装置还包括但不限于:射频单元、网络模块、音频输出单元、输入单元、传感器、显示单元、用户输入单元、接口单元、存储器、处理器、以及电源等部件。本领域技术人员可以理解,上述显示装置的结构并不构成对显示装置的限定,显示装置可以包括上述更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,显示装置包括但不限于显示器、手机、平板电脑、电视机、可穿戴电子设备、导航显示设备等。
可选的,显示装置可以为:液晶电视、液晶显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件,其中,该显示装置还包括柔性电路板、印刷电路板和背板。
需要说明,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于实施例而言,由于其基本相似于产品实施例,所以描述得比较简单,相关之处参见产品实施例的部分说明即可。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种显示面板,其特征在于,所述显示面板(10)包括:
    液晶盒(101),所述液晶盒(101)包括相对设置的第一基板(1011)和第二基板(1012),以及位于所述第一基板(1011)和所述第二基板(1012)之间的液晶层(1013);
    位于所述第一基板(1011)远离所述液晶层(1013)的一侧的第一偏光组件(102),所述第一偏光组件(102)至少包括第一偏光层(1021),所述第一偏光层(1021)具有第一透光轴,所述第一偏光组件(102)用于生成偏振方向与所述第一透光轴平行的偏振光;
    以及,位于所述第二基板(1012)远离所述液晶层(1013)的一侧的第二偏光组件(103),所述第二偏光组件(103)至少包括透反层(1031)和光吸收层(1032),且所述透反层(1031)相对于所述光吸收层(1032)靠近所述液晶盒(101),所述透反层(1031)具有第二透光轴,用于透射偏振方向与所述第二透光轴平行的偏振光,且用于反射偏振方向与所述第二透光轴垂直的偏振光,所述光吸收层(1032)用于吸收被所述透反层(1031)透射的偏振光。
  2. 根据权利要求1所述的显示面板,其特征在于,所述第一偏光组件(102)还包括:
    第一粘接层(1022),位于所述第一偏光层(1021)靠近所述液晶盒(101)的一侧;
    第一保护层(1023),位于所述第一粘接层(1022)和所述第一偏光层(1021)之间;
    以及第二保护层(1024),位于所述第一偏光层(1021)远离所述液晶盒(101)的一侧;
    其中,所述第一粘接层(1022)用于将所述第一保护层(1023)与所述第一基板(1011)粘接,所述第一保护层(1023)和所述第二保护层(1024)分别用于保护所述第一偏光层(1021)的两个表面。
  3. 根据权利要求1或2所述的显示面板,其特征在于,所述光吸收层(1032)为第二偏光层(1032),所述第二偏光层(1032)具有吸收轴和第三透光轴,所述吸收轴和所述第二透光轴平行,所述第三透光轴和所述第二透光轴垂直。
  4. 根据权利要求3所述的显示面板,其特征在于,所述第二偏光组件(103)还包括:
    第二粘接层(1033),位于所述透反层(1031)靠近所述液晶盒(101)的一侧;
    第三粘接层(1034),位于所述透反层(1031)和所述第二偏光层(1032)之间;
    第三保护层(1035),位于所述第三粘接层(1034)和所述第二偏光层(1032)之间;
    以及第四保护层(1036),位于所述第二偏光层(1032)远离所述液晶盒(101)的一侧;
    其中,所述第二粘接层(1033)用于将所述透反层(1031)和所述第二基板(1012)粘接,所述第三粘接层(1034)用于将所述透反层(1031)和所述第三保护层(1035)粘接,所述第三保护层(1035)和所述第四保护层(1036)分别用于保护所述第二偏光层(1032)的两个表面。
  5. 根据权利要求3或4所述的显示面板,其特征在于,所述显示面板(10)还包括位于所述第二偏光组件(103)远离所述液晶盒(101)的一侧的第一光源组件;
    所述第二偏光层(1032)和所述透反层(1031)中的其中一层具有多个开口,所述开口用于供所述第一光源组件的光线透过。
  6. 根据权利要求5所述的显示面板,其特征在于,所述第二偏光层(1032)具有所述多个开口;所述第二偏光层(1032)中的所述多个开口用于供所述第一光源组件发出的光线透过,所述透反层(1031)用于基于通过所述多个开口 透过的光线生成与所述第二透光轴平行的偏振光。
  7. 根据权利要求5所述的显示面板,其特征在于,所述透反层(1031)具有所述多个开口;所述第二偏光层(1032)用于基于所述第一光源组件发出的光线生成偏振方向与所述第三透光轴平行的偏振光,所述透反层(1031)中的所述开口用于透过偏振方向与所述第三透光轴平行的偏振光。
  8. 根据权利要求5至7任一所述的显示面板,其特征在于,所述显示面板(10)还包括具有多个像素电路的阵列基板(104),所述阵列基板(104)具有多个像素区域,每个所述像素区域包括显示区以及非显示区,所述像素电路位于所述非显示区,每个所述开口在所述阵列基板上的正投影位于一个所述像素区域的显示区。
  9. 根据权利要求1或2所述的显示面板,其特征在于,所述光吸收层(1032)的材料包括吸光材料,所述吸光材料包括黑色油墨。
  10. 根据权利要求9所述的显示面板,其特征在于,所述第二偏光组件(103)还包括:
    第二粘接层(1033),位于所述透反层(1031)靠近所述液晶盒(101)的一侧;
    其中,所述第二粘接层(1033)用于将所述透反层(1031)和所述第二基板(1012)粘接。
  11. 根据权利要求2至10任一所述的显示面板,其特征在于,所述第一偏光组件(102)远离所述液晶盒(101)的一面为所述显示面板(10)的出光面,所述透反层(1031)与所述出光面之间的至少一层粘接层经过雾度处理。
  12. 根据权利要求11所述的显示面板,其特征在于,所述透反层(1031)与 所述显示面板(10)的出光面之间的粘接层包括第一粘接层(1022)和第二粘接层(1033);
    所述第一粘接层(1022)的材料至少包括扩散粉,或,所述第二粘接层(1033)的材料至少包括所述扩散粉,或,所述第一粘接层(1022)和所述第二粘接层(1033)的材料均至少包括所述扩散粉。
  13. 据据权利要求1至12任一所述的显示面板,其特征在于,所述透反层(1031)包括依次交替层叠设置的第一介质层和第二介质层;
    第一介质层对偏振方向与所述第二透光轴平行的偏振光具有第一折射率,所述第一介质层对偏振方向与所述第二透光轴垂直的偏振光具有第二折射率,所述第一折射率与所述第二折射率相等;
    所述第二介质层对偏振方向与所述第二透光轴平行的偏振光具有第三折射率,所述第二介质层对偏振方向与所述第二透光轴垂直的偏振光具有第四折射率,所述第三折射率和所述第四折射率不相等,且所述第三折射率与所述第一折射率相等。
  14. 根据权利要求1至13任一所述的显示面板,其特征在于,所述液晶盒(101)为扭曲向列型液晶盒(101),或者,所述液晶盒(101)为平面转换型液晶盒(101),又或者,所述液晶盒(101)为多象限垂直配向型液晶盒(101)。
  15. 根据权利要求1至14任一所述的显示面板,其特征在于,所述第一偏光组件(102)相对于所述第二偏光组件(103)更靠近入光侧;
    所述入光侧的光线包括外界的环境光线,和/或,所述显示面板(10)包括的第二光源组件发出的光线;所述第二光源组件位于所述第一偏光组件(102)远离所述液晶盒(101)的一侧。
  16. 一种显示装置,其特征在于,所述显示装置包括:供电组件(20)以及如权利要求1至15任一所述的显示面板(10);
    所述供电组件(20)用于为所述显示面板(10)供电。
PCT/CN2022/127721 2021-10-29 2022-10-26 显示面板和显示装置 WO2023072151A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280003811.XA CN117280274A (zh) 2021-10-29 2022-10-26 显示面板和显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111276051.3A CN113985643A (zh) 2021-10-29 2021-10-29 显示面板和显示装置
CN202111276051.3 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023072151A1 true WO2023072151A1 (zh) 2023-05-04

Family

ID=79744758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127721 WO2023072151A1 (zh) 2021-10-29 2022-10-26 显示面板和显示装置

Country Status (2)

Country Link
CN (2) CN113985643A (zh)
WO (1) WO2023072151A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113985643A (zh) * 2021-10-29 2022-01-28 京东方科技集团股份有限公司 显示面板和显示装置
CN114647113B (zh) * 2022-03-21 2024-01-09 北京京东方光电科技有限公司 显示模组和显示装置
WO2024113252A1 (zh) * 2022-11-30 2024-06-06 京东方科技集团股份有限公司 一种显示面板、显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181399B1 (en) * 1998-09-01 2001-01-30 Mitsubishi Denki Kabushiki Kaisha Reflective type liquid crystal display having scattering polarizer
US6211933B1 (en) * 1998-09-01 2001-04-03 Mitsubishi Denki Kabushiki Kaisha Reflective type liquid crystal display with scattering polarizer
CN101189545A (zh) * 2005-06-03 2008-05-28 3M创新有限公司 反射偏振片和具有该反射偏振片的显示装置
CN104504661A (zh) * 2014-11-27 2015-04-08 厦门美图之家科技有限公司 一种将图像处理为黑白效果的方法
CN104570466A (zh) * 2015-02-02 2015-04-29 京东方科技集团股份有限公司 一种显示面板及显示装置
CN212623464U (zh) * 2020-09-30 2021-02-26 京东方科技集团股份有限公司 显示面板及显示装置
CN113805375A (zh) * 2020-06-11 2021-12-17 京东方科技集团股份有限公司 显示装置及其驱动方法、制备方法
CN113985643A (zh) * 2021-10-29 2022-01-28 京东方科技集团股份有限公司 显示面板和显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181399B1 (en) * 1998-09-01 2001-01-30 Mitsubishi Denki Kabushiki Kaisha Reflective type liquid crystal display having scattering polarizer
US6211933B1 (en) * 1998-09-01 2001-04-03 Mitsubishi Denki Kabushiki Kaisha Reflective type liquid crystal display with scattering polarizer
CN101189545A (zh) * 2005-06-03 2008-05-28 3M创新有限公司 反射偏振片和具有该反射偏振片的显示装置
CN104504661A (zh) * 2014-11-27 2015-04-08 厦门美图之家科技有限公司 一种将图像处理为黑白效果的方法
CN104570466A (zh) * 2015-02-02 2015-04-29 京东方科技集团股份有限公司 一种显示面板及显示装置
CN113805375A (zh) * 2020-06-11 2021-12-17 京东方科技集团股份有限公司 显示装置及其驱动方法、制备方法
CN212623464U (zh) * 2020-09-30 2021-02-26 京东方科技集团股份有限公司 显示面板及显示装置
CN113985643A (zh) * 2021-10-29 2022-01-28 京东方科技集团股份有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
CN117280274A (zh) 2023-12-22
CN113985643A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2023072151A1 (zh) 显示面板和显示装置
US10191322B2 (en) Display and electronic unit
JP4122808B2 (ja) 液晶表示装置および電子機器
JP3337028B2 (ja) 液晶装置及び電子機器
US8625063B2 (en) Display and electronic unit having particular optical laminate
JP3345772B2 (ja) 液晶装置及び電子機器
TW200410016A (en) Liquid crystal display device
JP2011002596A (ja) 液晶表示装置
JP4546730B2 (ja) 半透過型液晶表示装置
KR20120064467A (ko) 액정 표시 장치 및 그 제조 방법
US20130258254A1 (en) Liquid crystal display
US20240201535A1 (en) Display panel and display apparatus
JP2012118296A (ja) 液晶装置および電子機器
JP3337029B2 (ja) 液晶装置及び電子機器
JPH11142646A (ja) 反射偏光子、液晶装置及び電子機器
JP3603897B2 (ja) 半透過反射型液晶装置、及び電子機器
CN117471753A (zh) 一种显示装置及电子设备
JP4082426B2 (ja) 液晶装置及び電子機器
CN114966932A (zh) 退偏结构、显示面板及显示装置
KR20060059430A (ko) 액정 표시 장치
JP2001264761A (ja) 液晶装置及び電子機器
JP2001235743A (ja) 液晶装置及び電子機器
JP2007148256A (ja) 半透過型液晶表示装置
JP2001255532A (ja) 液晶装置及び電子機器
KR20050063586A (ko) 고명암비를 갖는 편광판을 구비한 액정표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280003811.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18554978

Country of ref document: US