WO2023072135A1 - 车辆安全行驶的评估方法、装置、车辆及存储介质 - Google Patents

车辆安全行驶的评估方法、装置、车辆及存储介质 Download PDF

Info

Publication number
WO2023072135A1
WO2023072135A1 PCT/CN2022/127638 CN2022127638W WO2023072135A1 WO 2023072135 A1 WO2023072135 A1 WO 2023072135A1 CN 2022127638 W CN2022127638 W CN 2022127638W WO 2023072135 A1 WO2023072135 A1 WO 2023072135A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
driving
target
host vehicle
target vehicle
Prior art date
Application number
PCT/CN2022/127638
Other languages
English (en)
French (fr)
Inventor
祝铭含
吕颖
祁旭
曲白雪
杨航
白天晟
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023072135A1 publication Critical patent/WO2023072135A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion

Definitions

  • the embodiments of the present application relate to computer technology, for example, to a method, device, vehicle, and storage medium for evaluating safe driving of a vehicle.
  • the method of related technologies often uses the lateral speed threshold method, which is combined with the position of the target vehicle to judge the danger of the target The degree depends heavily on the speed detection accuracy.
  • Embodiments of the present application provide a method, a device, a vehicle, and a storage medium for evaluating safe driving of a vehicle.
  • the embodiment of the present application provides a method for evaluating safe driving of a vehicle, the method comprising:
  • the average braking distance of the self-vehicle and the trajectory intrusion rate, the driving safety threat degree of the target vehicle to the self-vehicle is determined.
  • the embodiment of the present application also provides an evaluation device for safe driving of a vehicle, which includes:
  • the calculation module is configured to calculate the driving distance between the target vehicle and the vehicle according to the driving reference track of the vehicle and the driving posture information of the target vehicle driving ahead of the vehicle;
  • the first determination module is configured to determine the track intrusion rate of the target vehicle facing the vehicle vehicle according to the travel distance
  • the second determination module is configured to determine the driving safety threat degree of the target vehicle facing the own vehicle according to the estimated collision time between the target vehicle and the own vehicle, the average braking distance of the own vehicle and the trajectory intrusion rate.
  • the embodiment of the present application also provides a vehicle, including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • a vehicle including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the program, any one of the embodiments of the present application can be realized.
  • the embodiment of the present application provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the method for evaluating safe driving of a vehicle according to any one of the embodiments of the present application is implemented.
  • FIG. 1 is a schematic flow chart of a method for evaluating safe driving of a vehicle according to an embodiment of the present application
  • Fig. 2 is another schematic flowchart of the evaluation method for safe driving of a vehicle according to an embodiment of the present application
  • Fig. 3 is a schematic diagram of calculating the estimated collision time according to the embodiment of the present application.
  • Fig. 4 is a schematic diagram of the calculation principle of driving safety threat degree in the embodiment of the present application.
  • Fig. 5 is a structural schematic diagram of an evaluation device for safe driving of a vehicle according to an embodiment of the present application
  • Fig. 6 is a schematic structural diagram of a vehicle according to an embodiment of the present application.
  • Fig. 1 is a schematic flowchart of a method for assessing safe driving of a vehicle according to an embodiment of the present application.
  • the method can be executed by a device for evaluating safe driving of a vehicle provided in an embodiment of the present application, and the device can be implemented in the form of software and/or hardware.
  • the evaluation device for safe driving of the vehicle is integrated in the host vehicle as an example for illustration.
  • Fig. 1 is a schematic flow chart of the evaluation method for vehicle safety driving in the embodiment of the present application, including the following steps:
  • the host vehicle refers to a vehicle that is used as a reference when evaluating the driving safety during the current driving process; the driving reference track is the driving route of the host vehicle during the road driving process.
  • the target vehicle is a vehicle that is used as a reference to drive around the vehicle and may pose a threat to the safety of the vehicle;
  • the driving pose information is the specific driving position information of the target vehicle relative to the vehicle.
  • the driving reference trajectory of the own vehicle will also change continuously, for example, when the vehicle is driving straight in the lane
  • the lane line can be directly used as the driving reference trajectory of the vehicle to ensure the convenient acquisition of the driving reference trajectory.
  • the lane lines cannot represent the current reference trajectory of the vehicle, and it is necessary to analyze the actual trajectory of the vehicle traveling sideways. Therefore, in order to ensure the accuracy of the driving reference trajectory of the own vehicle, in this embodiment, different driving reference trajectories need to be selected according to different actual driving conditions of the own vehicle.
  • the driving reference trajectory of the host vehicle is the lane line of the target vehicle adjacent to the own lane;
  • the trajectory of the adjacent side of the vehicle adjacent to the target vehicle is used as the reference trajectory of the vehicle.
  • the lane line refers to the reference object during the running of the vehicle on the road.
  • the lane line information parameter is detected by the camera sensor, and the state of the lane line is described by the parameter.
  • the lane line information parameter can be, for example, the width of the lane line, Or it may be the length and deflection angle of the lane line, which are not limited in this embodiment.
  • the own vehicle if the own vehicle is driving forward in the own lane, it means that the actual driving of the own vehicle is parallel to the lane line of the own lane. collision, then the lane line adjacent to the target vehicle in the own lane where the vehicle is currently driving can be directly used as the driving reference trajectory of the vehicle, so that by judging whether the target vehicle invades the lane line, it can be accurately judged whether the target vehicle is Invade the driving reference track of the own vehicle, and collide with the own vehicle.
  • the adjacent-side driving trajectory refers to the estimated actual driving trajectory of the vehicle when the vehicle is traveling laterally inside the own lane, as shown in formula (1), which is the trajectory radius of the vehicle when the vehicle is traveling sideways .
  • R represents the trajectory radius of the vehicle when it is traveling sideways
  • V_host is the current speed of the vehicle
  • host_yawrate is the current lateral angular velocity of the vehicle.
  • the driving trajectory equation of the vehicle can be obtained, as shown in formula (2)
  • the left track of the host vehicle, shown in formula (3) is the right track of the host vehicle.
  • x and y are the specific abscissa and ordinate of the center coordinates of the vehicle when the vehicle is doing circular motion, respectively.
  • the host vehicle is driving laterally in the lane, it can be assumed that the host vehicle moves in a circle along the above-mentioned trajectory radius, so the trajectory radius of the host vehicle can be used to estimate the left and right sides of the host vehicle respectively driving track. Then, the estimated left and right side trajectories adjacent to the target vehicle are used as the driving reference trajectories of the own vehicle, so as to accurately judge whether the target vehicle may invade the adjacent side trajectories during driving.
  • the advantage of this setting is to determine whether the lane line acquired by the visual sensor can be used as a reference trajectory of the own vehicle to accurately determine the driving trajectory of the own vehicle.
  • the reference trajectory of the vehicle when the reference trajectory of the vehicle is obtained, it will combine the reference trajectory of the vehicle with the specific location information of the target vehicle around the vehicle to obtain the distance between the target vehicle and the vehicle. Travel distance.
  • a safe traveling distance can be set in advance, and then by comparing the difference between the traveling distance between the target vehicle and the own vehicle and the safe traveling distance, that is The trajectory intrusion rate of the target vehicle facing the vehicle can be determined.
  • the trajectory intrusion rate may be the ratio of the traveling distance between the target vehicle and the host vehicle to the safe traveling distance.
  • the trajectory intrusion rate refers to the degree of trajectory intrusion caused by the target vehicle to the vehicle when the target vehicle invades the driving reference trajectory of the vehicle lane during driving.
  • the average braking distance of the own vehicle, and the trajectory intrusion rate determine the driving safety threat degree of the target vehicle to the own vehicle.
  • the estimated collision time is the reaction time when the target vehicle intrudes into the driving reference trajectory of the own vehicle, and the collision with the own vehicle; the average braking distance is determined according to the collision distance between the own vehicle and the target vehicle. Whether the vehicle can brake safely.
  • the estimated collision time and the average braking distance of the host vehicle are related to the current driving state of the host vehicle.
  • determine the driving safety threat degree of the target vehicle facing the vehicle obtain the estimated collision time through the relationship between the displacement distance and the estimated collision time, and obtain the estimated collision time according to the longitudinal distance of the target vehicle at the current moment and the braking speed of the vehicle at the average deceleration
  • the actual driving difference between the own vehicle and the target vehicle can be analyzed.
  • the track intrusion rate of the target vehicle preliminarily calculated in S120 can be adjusted correspondingly, so as to determine the distance between the own vehicle and the target vehicle.
  • the driving safety threat degree of the vehicle can further ensure the accurate evaluation of the safe driving of the vehicle.
  • the driving safety threat degree of the own vehicle is judged through the connection relationship among multiple parameters, the threat degree of the vehicle during driving is reduced, and the driving safety degree of the vehicle is improved.
  • the embodiment of the present application provides an evaluation method for safe driving of a vehicle, which calculates the driving distance between the target vehicle and the own vehicle according to the driving reference trajectory of the own vehicle and the driving posture information of the target vehicle driving ahead of the own vehicle; Determine the trajectory intrusion rate of the target vehicle facing the vehicle according to the driving distance; determine the driving safety of the target vehicle facing the vehicle according to the estimated collision time between the target vehicle and the vehicle, the average braking distance of the vehicle and the trajectory intrusion rate Threat. That is, in the embodiment of the present application, the preliminarily determined collision possibility (i.e., trajectory intrusion rate) is optimized through the estimated collision time between the target vehicle and the host vehicle and the average braking distance of the host vehicle, so as to achieve the goal of safe driving of the vehicle. Accurate evaluation ensures the timely evaluation of the collision situation of the vehicle during driving, so as to avoid the target vehicle that may collide in time, thereby improving the safety of the vehicle.
  • the preliminarily determined collision possibility i.e., trajectory intrusion rate
  • this embodiment in order to accurately represent the pose information of the target vehicle during driving, this embodiment sets a plurality of corresponding target points on the target vehicle, and then analyzes the relative The position coordinates of the vehicle are used to represent the driving pose information of the target vehicle as a whole. Therefore, the driving pose information of the target vehicle in this embodiment may include the position coordinates of each target point on the target vehicle facing the host vehicle.
  • Fig. 2 is another schematic flowchart of the evaluation method for safe driving of a vehicle provided in the embodiment of the present application. As shown in Fig. 2, the method includes:
  • the target points can be the four corners on the target vehicle.
  • the position coordinates of each target point are calculated as follows Formulas (4)-(11) show:
  • A_X Y-0.5*(Box_y)*cos(Box_angle) (4)
  • A, B, C and D represent the coordinate positions of the four corners of the target vehicle relative to the own vehicle
  • X and Y represent the lateral position of the target vehicle and the longitudinal position of the target vehicle respectively
  • A_X, A_Y, B_X, B_Y, C_X, C_Y, D_X, D_Y respectively represent the abscissa and ordinate values corresponding to points A, B, C and D
  • Box_x represents the length of the vehicle
  • Box_y represents the width of the vehicle
  • Box_angle represents the vehicle The heading angle of the vehicle, the above parameters can be obtained by the visual sensor installed on the vehicle.
  • the vehicle For the heading angle obtained by the visual sensor, there is a range of false alarms. Only when it exceeds a certain range, the vehicle is considered to have an angle.
  • the sensors with different angles are different, and different sensors can be measured to obtain it. Exemplarily, assuming that the heading angle recognition error of the sensor for the straight-going vehicle is ⁇ 0.02 radians, then only the heading angle whose absolute value exceeds 0.02 adopts the heading angle value, and the heading angle whose absolute value is lower than 0.02 takes a value of 0.
  • the advantage of such setting is to accurately record the relative position information of the own vehicle and the target vehicle.
  • the distance between each target point on the target vehicle and the driving reference trajectory of the own vehicle will be calculated.
  • the target distance of the target vehicle can be known as the distance between different azimuth points of the target vehicle and the own vehicle, and it can be used as the driving distance between each target point on the target vehicle and the own vehicle, so that each target point on the target vehicle can be used subsequently
  • the driving distance between the target vehicle and the own vehicle is used to accurately judge the track intrusion of the target vehicle into the own vehicle during the driving process.
  • the driving distance in this embodiment may also be the target distance between the position coordinates of each target point on the target vehicle and the driving reference track of the own vehicle.
  • the trajectory intrusion rate refers to the degree of trajectory intrusion caused by the target vehicle to the vehicle when the target vehicle invades the driving reference trajectory of the vehicle lane during driving.
  • the calculation process of the proportion of the pose area is in the form of estimation, and the trajectory intrusion rate is obtained by calculating the vehicle width distance from the two target points farthest from the target vehicle to the own lane to the vehicle.
  • a quadrilateral is formed by the coordinate positions of the four target points, and the area of the quadrilateral is calculated and the target vehicle cuts into the driving position of the vehicle.
  • the area in the reference trajectory is determined by the percentage of the area in the driving reference trajectory cut into the vehicle’s lane to the overall area of the target vehicle itself, which is used as the proportion of the pose area of the target vehicle intruding into the driving reference trajectory of the vehicle.
  • the intrusion rate at this time is (distance from C to the lane line/distance between C and D+A distance to lane line/distance of A and B)/2.
  • the advantage of this setting is to determine the trajectory intrusion rate of the target vehicle facing the vehicle, and reduce the danger in the process of vehicle lane change.
  • the estimated collision time is related to the vehicle speed, displacement distance, acceleration, current time, and the longitudinal distance of the target vehicle, etc.
  • the relevant parameters of the target vehicle are captured by the visual sensor, and the relevant parameters of the vehicle can be obtained through the instrument panel. read.
  • V_host is the speed of the main vehicle.
  • the estimated collision time between the target vehicle and the host vehicle is calculated according to the current driving states of the host vehicle and the target vehicle, including:
  • the state of the trajectory of the vehicle is the state of the lane line.
  • the target vehicle Calculate the distance between the position coordinates of the target vehicle and the vehicle to determine whether there is a driving collision between the vehicle and the target vehicle. If the distance is greater than the longitudinal distance of the target, no collision will occur; if the distance is less than the longitudinal distance of the target, a collision will occur.
  • the longitudinal speed of the vehicle and the target longitudinal distance of the target vehicle can be directly obtained through the visual sensor, the sum of the longitudinal speed of the vehicle and the target longitudinal distance of the target vehicle is equal to the displacement distance of the vehicle at this time, through The relationship between the displacement distance and the estimated collision time is obtained to obtain the estimated collision time.
  • the advantage of this setting is that, by estimating the time of collision, the degree of danger between the target vehicle and the host vehicle can be judged.
  • Fig. 3 is a schematic diagram of calculating the estimated collision time according to the embodiment of the present application.
  • the calculation process of estimated collision time is shown in Fig. 3.
  • V_host is the speed of the host vehicle
  • Obj_x is the longitudinal distance of the target vehicle
  • Host_x is the displacement distance of the host vehicle
  • L_obj is the longitudinal distance of the target vehicle at the current moment
  • Host_acc is the acceleration of the host vehicle
  • L_max is the brake of the host vehicle distance
  • t is the current time
  • T_col is the collision time between the own vehicle and the target vehicle.
  • the collision time is judged according to the braking distance of the own vehicle and the longitudinal distance of the target vehicle at the current moment.
  • S240 Determine a corresponding driving safety adjustment factor according to the estimated collision time between the target vehicle and the host vehicle and the average braking distance of the host vehicle.
  • the driving safety adjustment coefficient is based on the estimated collision time and average braking distance, and adjusts the trajectory intrusion rate to reduce safety hazards during driving.
  • the driving safety adjustment coefficient is adjusted according to the longitudinal distance of the target vehicle at the current moment and the braking distance of the own vehicle braking at an average deceleration to determine the final adjustment coefficient value.
  • the driving safety threat degree is a degree of danger for judging whether the target vehicle collides with the host vehicle.
  • FIG. 4 is a schematic diagram of the calculation principle of the driving safety threat degree in the embodiment of the present application.
  • the trajectory intrusion rate is adjusted, and then the vehicle’s driving safety threat degree is determined by the product of the trajectory intrusion rate and the safety adjustment coefficient.
  • the advantage of this setting is that the driving safety threat degree of the own vehicle can be judged through the connection relationship between multiple parameters, the threat degree of the vehicle during driving can be reduced, and the driving safety degree of the vehicle can be improved.
  • the embodiment of the present application provides a method for evaluating safe driving of a vehicle, which calculates the target distance between the position coordinates of each target point on the target vehicle and the driving reference trajectory of the vehicle as the target distance between each target point on the target vehicle and the vehicle.
  • Traveling distance between vehicles according to the traveling distance between each target point on the target vehicle and the own vehicle, calculate the proportion of the pose area where the target vehicle invades the driving reference track of the own vehicle, and use it as the distance between the target vehicle and the own vehicle.
  • Trajectory intrusion rate According to the estimated collision time between the target vehicle and the own vehicle, the average braking distance of the own vehicle and the trajectory intrusion rate, determine the driving safety threat degree of the target vehicle to the own vehicle.
  • the preliminarily determined collision possibility i.e. trajectory intrusion rate
  • the preliminarily determined collision possibility is optimized through the estimated collision time between the target vehicle and the host vehicle and the average braking distance of the host vehicle, so as to realize the goal of safe driving of the vehicle.
  • Accurate evaluation ensures the timely evaluation of the collision situation of the vehicle during driving, so as to avoid the target vehicle that may collide in time, thereby improving the safety of the vehicle.
  • FIG. 5 is a schematic structural diagram of an evaluation device for safe driving of a vehicle according to an embodiment of the present application. As shown in FIG. in,
  • the calculation module 510 is configured to calculate the travel distance between the target vehicle and the vehicle according to the driving reference trajectory of the vehicle and the driving posture information of the target vehicle driving ahead of the vehicle;
  • the first determination module 520 is configured to determine the track intrusion rate of the target vehicle facing the vehicle according to the travel distance;
  • the second determining module 530 is configured to determine the driving safety threat degree of the target vehicle facing the own vehicle according to the estimated collision time between the target vehicle and the own vehicle, the average braking distance of the own vehicle, and the trajectory intrusion rate.
  • the driving pose information of the target vehicle includes: position coordinates of each target point on the target vehicle facing the host vehicle.
  • the computing module 510 is set to:
  • the first determining module 520 is further configured to:
  • the travel distance between each target point on the target vehicle and the own vehicle calculate the proportion of the pose area where the target vehicle invades the driving reference trajectory of the own vehicle, and use it as the trajectory intrusion rate of the target vehicle facing the own vehicle.
  • the second determination module 530 includes:
  • the estimation unit is configured to calculate the estimated collision time between the target vehicle and the vehicle according to the current driving state of the vehicle and the target vehicle, and calculate the average braking distance of the vehicle when braking at a preset deceleration;
  • the determination unit is configured to determine the corresponding driving safety adjustment coefficient according to the estimated collision time between the target vehicle and the vehicle and the average braking distance of the vehicle;
  • the acquisition unit is set to use the driving safety adjustment coefficient to adjust the trajectory intrusion rate, and obtain the driving safety threat degree of the target vehicle facing the vehicle.
  • the estimation unit in the second determination module 530 is also set to:
  • the estimated collision time between the host vehicle and the target vehicle is calculated by using the longitudinal traveling speed of the host vehicle and the target longitudinal distance of the target vehicle until the collision occurs.
  • the evaluation device for safe driving of a vehicle further includes:
  • the adjacent side traveling trajectory of the own vehicle adjacent to the target vehicle is estimated as the driving reference trajectory of the own vehicle.
  • An evaluation device for safe driving of a vehicle provided in an embodiment of the present application can execute the method for evaluating safe driving of a vehicle provided in any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • FIG. 6 is a schematic structural diagram of a vehicle according to an embodiment of the present application.
  • the vehicle includes a processor 610, a memory 620, an input device 630, and an output device 640; the number of processors 610 in the vehicle may be one or more.
  • One processor 610 is taken as an example; the processor 610, the memory 620, the input device 630 and the output device 640 in the vehicle may be connected through a bus or in other ways. In FIG. 6, connection through a bus is taken as an example.
  • the memory 620 can be used to store software programs, computer-executable programs and modules, such as the program instructions/modules corresponding to the vehicle safety driving evaluation method in the embodiment of the present application (for example, the vehicle safety driving evaluation method
  • the memory 620 may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
  • the memory 620 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • memory 620 may further include memory located remotely from processor 610 , and such remote memory may be connected to the vehicle via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 630 can be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the vehicle.
  • the output device 640 may include a display device such as a display screen.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions, the computer-executable instructions are used to execute a method for evaluating safe driving of a vehicle when executed by a computer processor, the method comprising:
  • the average braking distance of the self-vehicle and the trajectory intrusion rate, the driving safety threat degree of the target vehicle to the self-vehicle is determined.
  • a storage medium containing computer-executable instructions provided in an embodiment of the present application the computer-executable instructions are not limited to the method operations described above, and may also execute the method for evaluating safe driving of a vehicle provided in any embodiment of the present application. related operations.
  • the storage medium may be a non-transitory storage medium.
  • the present application can be realized by means of software and necessary general-purpose hardware, and of course it can also be realized by hardware, but in many cases the former is a better implementation .
  • the essence of the embodiment of the present application or the part that contributes to the related technology can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as computer floppy disks, Read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disc, etc., including several instructions to make a computer device (which can be a personal computer, A server, or a network device, etc.) executes the methods described in various embodiments of the present application.
  • a computer device which can be a personal computer, A server, or a network device, etc.
  • the included units and modules are only divided according to functional logic, but are not limited to the above division, as long as the corresponding functions can be realized; in addition, the specific names of each functional unit are also It is only for the convenience of distinguishing each other, and is not used to limit the protection scope of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆安全行驶的评估方法、装置、车辆及存储介质。评估方法包括:根据本车车辆的行驶参考轨迹和本车车辆前方行驶的目标车辆的行驶位姿信息,计算目标车辆与本车车辆间的行驶距离;根据行驶距离确定目标车辆面向本车车辆的轨迹入侵率(S120);按照目标车辆与本车车辆的预估碰撞时间和轨迹入侵率,确定目标车辆面向本车车辆的行驶安全威胁度。

Description

车辆安全行驶的评估方法、装置、车辆及存储介质
本申请要求在2021年10月26日提交中国专利局、申请号为202111245132.7的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及计算机技术,例如涉及一种车辆安全行驶的评估方法、装置、车辆及存储介质。
背景技术
随着智能驾驶技术的发展,低速拥堵路段的自动跟车功能是很多车企为了缓解驾驶员疲劳的实用功能,同时也是车企想要重点解决的问题。
对主车前方行驶的各个目标车辆是否有切入本车道的风险判断是低速拥堵跟车功能的一个难点,相关技术的方法经常采用的是横向速度阈值法,结合目标车辆的位置来判断目标的危险程度,严重依赖速度检测准确度。
主流传感器测速的准确度是偏低的,由速度给出的目标危险度判断,在及时性上很难达到预期目标,会带来很多虚警和误报,影响用户实际体验效果。
发明内容
本申请实施例提供一种车辆安全行驶的评估方法、装置、车辆及存储介质。
第一方面,本申请实施例提供了一种车辆安全行驶的评估方法,该方法包括:
根据本车车辆的行驶参考轨迹和本车车辆前方行驶的目标车辆的行驶位姿信息,计算目标车辆与本车车辆间的行驶距离;
根据行驶距离确定目标车辆面向本车车辆的轨迹入侵率;
按照目标车辆与本车车辆的预估碰撞时间、本车车辆的平均刹车距离和轨迹入侵率,确定目标车辆面向本车车辆的行驶安全威胁度。
第二方面,本申请实施例还提供一种车辆安全行驶的评估装置,该装置包括:
计算模块,设置为根据本车车辆的行驶参考轨迹和本车车辆前方行驶的目标车辆的行驶位姿信息,计算目标车辆与本车车辆间的行驶距离;
第一确定模块,设置为根据行驶距离确定目标车辆面向本车车辆的轨迹入侵率;
第二确定模块,设置为按照目标车辆与本车车辆的预估碰撞时间、本车车辆的平均刹车距离和轨迹入侵率,确定目标车辆面向本车车辆的行驶安全威胁度。
第三方面,本申请实施例还提供了一种车辆,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现如本申请实施例任一项的车辆安全行驶的评估方法。
第四方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请实施例任一项的车辆安全行驶的评估方法。
附图说明
图1是本申请实施例的车辆安全行驶的评估方法的一个流程示意图;
图2是本申请实施例的车辆安全行驶的评估方法的另一流程示意图;
图3是本申请实施例的预估碰撞时间计算原理图。
图4是本申请实施例的行驶安全威胁度计算原理图。
图5是本申请实施例的车辆安全行驶的评估装置的一个结构示意图;
图6是本申请实施例的车辆的一个结构示意图。
具体实施方式
在本申请实施例中,“可选的”或者“示例性的”等词用于表示作例子、例证或说明。
图1是本申请实施例的车辆安全行驶的评估方法的一个流程示意图,该方法可以由本申请实施例提供的车辆安全行驶的评估装置来执行,该装置可以采用软件和/或硬件的方式实现。在本实施例中,车辆安全行驶的评估装置集成在本车车辆中为例进行说明。
图1为本申请实施例的车辆安全行驶的评估方法的一个流程示意图,包括如下步骤:
S110、根据本车车辆的行驶参考轨迹和本车车辆前方行驶的目标车辆的行驶位姿信息,计算目标车辆与本车车辆间的行驶距离。
其中,本车车辆是指作为当前需要在行驶过程中评估行驶安全性时参考的车辆;行驶参考轨迹是本车车辆在道路行驶过程中,车辆的行驶路线。
其中,目标车辆是以本车车辆作为参考,行驶在本车车辆周围且可能会对 本车车辆造成行驶安全威胁的车辆;行驶位姿信息是目标车辆相对本车车辆的具体行驶位置信息。
在一示例中,由于本车车辆在行驶过程中会出现直线行驶、转弯、换道等多种行驶行为,使得本车车辆的行驶参考轨迹也会不断发生变化,例如在车辆在车道内直线行驶时,可以直接将车道线作为本车车辆的行驶参考轨迹,保证行驶参考轨迹的便捷获取。而本车车辆在转弯或者换道等出现侧向行驶时,车道线便无法表示本车车辆当前行驶的参考轨迹,而需要分析本车车辆侧向行驶的实际行驶轨迹。因此,为了确保本车车辆的行驶参考轨迹的准确性,本实施例需要针对本车车辆不同的实际行驶情况来对应选择不同的行驶参考轨迹。
在一示例中,如果本车车辆在本车道内正向行驶,则确定本车车辆的行驶参考轨迹为本车道邻近目标车辆的车道线;如果本车车辆在本车道内侧向行驶,则预估本车车辆邻近目标车辆的邻侧行驶轨迹,作为本车车辆的行驶参考轨迹。
其中,车道线是指车辆在道路上运行过程中的参照物,例如,通过摄像头传感器检测车道线信息参数,用参数描述车道线的状态,其中车道线信息参数例如可以是,车道线的宽度,或者可以是,车道线的长度和偏向角等,本实施例对此不进行限定。
在本实施例中,如果本车车辆在本车道内正向行驶,说明本车车辆的实际行驶与本车道的车道线平行,此时为了分析目标车辆在行驶过程中对于本车车辆是否可能存在碰撞,那么可以直接将本车车辆当前行驶的本车道内邻近目标车辆的那条车道线作为本车车辆的行驶参考轨迹,以便通过判断目标车辆是否侵入该车道线,即可准确判断目标车辆是否侵入本车车辆的行驶参考轨迹,而对本车车辆进行碰撞。
在一示例中,邻侧行驶轨迹是指当本车车辆在本车道内侧向行驶,预估本车车辆的实际行驶轨迹,如公式(1)所示是本车车辆侧向行驶时的轨迹半径。
R=V_host/host_yawrate         (1)
其中,R表示本车车辆侧向行驶时的轨迹半径,V_host为本车车辆的当前车速,host_yawrate为本车车辆当前的横向角速度,以上信息可以由本车车辆上配置的各类传感器直接获取。
此时,本车车辆利用轨迹半径,在一定范围内,假想本车车辆侧向行驶是沿着轨迹半径做圆周运动,即可得到本车车辆的行驶轨迹方程,如公式(2)所示是本车车辆的左侧轨迹,公式(3)所示是本车车辆的右侧行驶轨迹。
x^2+y^2=(R-1.6)^2                   (2)
x^2+y^2=(R+1.6)^2                   (3)
其中x和y分别是本车车辆在做圆周运动时的圆心坐标具体的横坐标和纵坐标。
此时,如果本车车辆在本车道内侧向行驶,可以假设本车车辆沿着上述轨迹半径做圆周运动,因此可以利用本车车辆的轨迹半径来分别预估本车车辆的左侧和右侧行驶轨迹。然后,将预估出的左侧和右侧行驶轨迹中邻近目标车辆的邻侧行驶轨迹作为本车车辆的行驶参考轨迹,以便准确判断目标车辆在行驶过程中是否可能侵入该邻侧行驶轨迹。这样设置的好处在于,判断视觉传感器获取的车道线是否可以作为从本车车辆的行驶参考轨迹,精准确定本车车辆的行驶轨迹。
在一示例中,本车车辆在行驶过程中,根据本车车辆行驶的车道线可用的行驶参考轨迹或本车车辆在车道线不可用情况下的本车车辆沿着轨迹半径做圆周运动的行驶参考轨迹,在获取到本车车辆的行驶参考轨迹时,会结合本车车辆的行驶参考轨迹与本车车辆行驶过程周围存在的目标车辆的行驶具***置信息,得到目标车辆与本车车辆间的行驶距离。
S120、根据行驶距离确定目标车辆面向本车车辆的轨迹入侵率。
例如,在计算出目标车辆与本车车辆间的行驶距离后,可以预先设定一个安全行驶距离,然后通过比对目标车辆与本车车辆间的行驶距离与该安全行驶距离间的差异,即可确定出目标车辆面向本车车辆的轨迹入侵率。例如该轨迹入侵率可以为目标车辆与本车车辆间的行驶距离和该安全行驶距离的比值。
示例性的,轨迹入侵率是指目标车辆在行驶过程中入侵本车车道的行驶参考轨迹时,目标车辆对本车车辆造成的轨迹入侵程度。
S130、按照目标车辆与本车车辆的预估碰撞时间、本车车辆的平均刹车距离和轨迹入侵率,确定目标车辆面向本车车辆的行驶安全威胁度。
其中,预估碰撞时间是当有目标车辆侵入到本车车辆的行驶参考轨迹内时,与本车车辆发生碰撞的反应时间;平均刹车距离是根据本车车辆和目标车辆的碰撞距离,确定本车车辆能否安全刹车。预估碰撞时间和本车车辆的平均刹车距离与本车车辆的当前行驶状态相关。
例如,确定目标车辆面向本车车辆的行驶安全威胁度,通过位移距离与预估碰撞时间的关系得到预估碰撞时间,根据当前时刻的目标车辆纵向距离与本 车车辆以平均减速度刹车的刹车距离,能够分析出本车车辆和目标车辆之间的实际行驶差异,此时按照该实际行驶差异能够对S120中初步计算出的目标车辆对于本车车辆的轨迹入侵率进行相应调整,从而确定本车车辆的行驶安全威胁度,进一步确保车辆安全行驶的准确评估。本实施例通过多个参数之间的连接关系,判断本车车辆的行驶安全威胁度,降低车辆在行驶过程中的威胁度,提高车辆行驶的安全度。
本申请实施例提供了一种车辆安全行驶的评估方法,根据本车车辆的行驶参考轨迹和本车车辆前方行驶的目标车辆的行驶位姿信息,计算目标车辆与本车车辆间的行驶距离;根据行驶距离确定目标车辆面向本车车辆的轨迹入侵率;按照目标车辆与本车车辆的预估碰撞时间、本车车辆的平均刹车距离和轨迹入侵率,确定目标车辆面向本车车辆的行驶安全威胁度。即在本申请实施例中,通过目标车辆与本车车辆的预估碰撞时间和本车车辆的平均刹车距离对初步确定的碰撞可能性(即轨迹入侵率)进行优化,从而实现车辆安全行驶的准确评估,确保本车车辆行驶中对于存在碰撞情况的及时评估,以便及时避让可能碰撞的目标车辆,从而提升车辆行驶的安全性。
在一实施例中,为了准确表示目标车辆在行驶过程中的位姿信息,本实施例会在目标车辆上设定多个相应的目标点,然后通过分析每个目标点在行驶过程中相对于本车车辆的位置坐标,来整体表示目标车辆的行驶位姿信息。因此,本实施例中目标车辆的行驶位姿信息可以包括目标车辆上各目标点面向本车车辆的位置坐标。
图2是本申请实施例提供的车辆安全行驶的评估方法的另一流程示意图,如图2所示,该方法包括:
S210、计算目标车辆上每一目标点的位置坐标到本车车辆的行驶参考轨迹间的目标距离,作为目标车辆上每一目标点与本车车辆间的行驶距离。
以本实施例中目标车辆上设定有A、B、C、D四个目标点为例,该目标点可以为目标车辆上的四个顶角,此时各个目标点的位置坐标的计算如下公式(4)-(11)所示:
A_X=Y-0.5*(Box_y)*cos(Box_angle)             (4)
A_Y=X-0.5*(Box_y)*sin(Box_angle)             (5)
B_X=Y+0.5*(Box_y)*cos(Box_angle)             (6)
B_Y=X+0.5*(Box_y)*sin(Box_angle)              (7)
C_X=Y-Box_x*sin(Box_angle)-0.5*(Box_y)*cos(Box_angle)    (8)
C_Y=X+Box_x*cos(Box_angle)-0.5*(Box_y)*sin(Box_angle)    (9)
D_X=Y-Box_x*sin(Box_angle)+0.5*(Box_y)*cos(Box_angle)   (10)
D_Y=X+Box_x*cos(Box_angle)+0.5*(Box_y)*sin(Box_angle)   (11)
其中,A、B、C和D分别表示目标车辆的四个顶角相对于本车车辆的坐标位置,X和Y分别表示目标车辆的横向位置和目标车辆的纵向位置,A_X、A_Y、B_X、B_Y、C_X、C_Y、D_X、D_Y、分别表示A、B、C和D点对应的横坐标和纵坐标值;Box_x表示本车车辆的车长,Box_y表示本车车辆的车宽,Box_angle表示本车车辆的航向角,以上参数可以通过安装在本车车辆的视觉传感器获取。
对于视觉传感器获取的航向角,有一个误报的范围,只有超过一定的范围才认为本车车辆是有角度的,这个角度不同的传感器是不相同的,可以测量不同的传感器来获取。示例性的,假设传感器对直行车辆的航向角识别误差为±0.02弧度,那么只有绝对值超过0.02的航向角采用航向角的值,对绝对值低于0.02的航向角取值为0。这样设置的好处是准确记录本车车辆与目标车辆的相对位置信息。
也就是说,在获取到本车车辆的行驶参考轨迹时,为了全方位表示目标车辆与本车车辆间的行驶距离,会计算目标车辆上的每一目标点到本车车辆的行驶参考轨迹间的目标距离,即可得知目标车辆不同方位点与本车车辆的距离,并将其作为目标车辆上每一目标点与本车车辆间的行驶距离,以便后续采用目标车辆上每一目标点与本车车辆间的行驶距离,来准确判断目标车辆在行驶过程中对于本车车辆的轨迹侵入情况。
S220、根据目标车辆上每一目标点与本车车辆间的行驶距离,计算目标车辆侵入本车车辆的行驶参考轨迹内的位姿区域占比,作为目标车辆面向本车车辆的轨迹入侵率。
示例性的,在目标车辆上设定多个目标点后,本实施例中的行驶距离也可以是目标车辆上每一目标点的位置坐标到本车车辆的行驶参考轨迹间的目标距离。轨迹入侵率是指目标车辆在行驶过程中入侵本车车道的行驶参考轨迹时,目标车辆对本车车辆造成的轨迹入侵程度。
其中,位姿区域占比的计算过程是通过估算的形式,通过计算目标车辆距离本车道的最远两个目标点到本车的车宽距离,得到轨迹入侵率。
例如,以目标车辆上设定有A、B、C、D四个目标点为例,通过四个目标点的坐标位置形成一个四边形,计算四边形的面积以及目标车辆在切入到本车车辆的行驶参考轨迹内的面积,通过切入本车车道的行驶参考轨迹内的面积占目标车辆自身的整体面积的百分比,作为目标车辆侵入本车车辆的行驶参考轨迹内的位姿区域占比。
示例性的,若目标车辆目前距离本车道的本车车辆最远的两个点是坐标A和坐标C,那么此时的入侵率为(C到车道线的距离/C和D的距离+A到车道线的距离/A和B的距离)/2。这样设置的好处是确定目标车辆面向本车车辆的轨迹入侵率,减少在车辆变道过程中的危险。
S230、根据本车车辆和目标车辆的当前行驶状态,计算目标车辆与本车车辆的预估碰撞时间,并计算本车车辆以预设减速度刹车时的平均刹车距离。
其中,预估碰撞时间与本车车速、位移距离、加速度、当前时间以及目标车辆的纵向距离等相关,目标车辆的相关参数通过视觉传感器进行捕捉获取,本车车辆的相关参数通过仪表盘就可以读取。
其中,本车车辆以预设减速度刹车时的平均刹车距离计算如公式(12)所示,本车车辆的反应时间取0.4s,本车车辆的平均减速度取3.5m/s^2,本实施例对此不进行限定。
L_V_host^2/(2*mean_acc)+V_host*T_react        (12)
V_host是主车车速。
在一示例中,根据本车车辆和目标车辆的当前行驶状态,计算目标车辆与本车车辆的预估碰撞时间,包括:
(1)根据本车车辆和目标车辆的当前行驶状态,判断本车车辆与目标车辆是否存在行驶碰撞。
例如,若当前本车车辆和目标车辆都在行驶状态,若本车车辆在车道线内行驶,则本车车辆的行驶轨迹状态是车道线的状态,根据本车车辆的当前行驶状态与目标车辆的位置坐标,计算目标车辆的位置坐标与本车车辆的距离判断本车车辆与目标车辆是否存在行驶碰撞。若距离大于目标纵向距离,则不发生碰撞;若距离小于目标纵向距离,则发生碰撞。
(2)若是,则采用本车车辆的纵向行驶速度和目标车辆的目标纵向距离,计算在本车车辆与目标车辆行驶至发生碰撞时的预估碰撞时间。
例如,本车车辆的纵向行驶速度和目标车辆的目标纵向距离可以通过视觉传感器直接获取,本车车辆的纵向行驶速度和目标车辆的目标纵向距离之和等于本车车辆此时的位移距离,通过位移距离与预估碰撞时间的关系得到预估碰撞时间。这样设置的好处在于,通过预估碰撞时间,判断目标车辆距离本车车辆的危险度。
示例性的,图3是本申请实施例的预估碰撞时间计算原理图。预计碰撞时间计算过程如图3所示。其中,V_host是主车车速,Obj_x是目标车辆的纵向距离,Host_x是主车车辆的位移距离,L_obj是当前时刻的目标车辆纵向距离,Host_acc是主车车辆的加速度,L_max是主车车辆的刹车距离,t是当前时刻时间,T_col是本车车辆与目标车辆的碰撞时间。最终根据本车车辆的刹车距离和当前时刻目标车辆的纵向距离判断碰撞时间。
S240、根据目标车辆与本车车辆的预估碰撞时间和本车车辆的平均刹车距离,确定对应的行驶安全调整系数。
其中,行驶安全调整系数是针对预估碰撞时间和平均刹车距离,对轨迹入侵率进行调整,减小在行驶过程中的安全隐患。
例如,行驶安全调整系数是根据当前时刻的目标车辆纵向距离与本车车辆以平均减速度刹车的刹车距离,进行行驶安全系数调整,确定最终的调整系数值。
S250、采用行驶安全调整系数调整轨迹入侵率,得到目标车辆面向本车车辆的行驶安全威胁度。
其中,行驶安全威胁度是判断目标车辆与本车车辆是否碰撞的危险程度。
例如,图4是本申请实施例的行驶安全威胁度计算原理图。如图4所示,根据行驶安全调整系数,调整轨迹入侵率,然后通过轨迹入侵率与安全调整系数的乘积,确定本车车辆的行驶安全威胁度。这样设置的好处在于,通过多个参数之间的连接关系,判断本车车辆的行驶安全威胁度,降低车辆在行驶过程中的威胁度,提高车辆行驶的安全度。
本申请实施例提供了一种车辆安全行驶的评估方法,计算目标车辆上每一目标点的位置坐标到本车车辆的行驶参考轨迹间的目标距离,作为目标车辆上每一目标点与本车车辆间的行驶距离;根据目标车辆上每一目标点与本车车辆间的行驶距离,计算目标车辆侵入本车车辆的行驶参考轨迹内的位姿区域占比,作为目标车辆面向本车车辆的轨迹入侵率;按照目标车辆与本车车辆的预估碰撞时间、本车车辆的平均刹车距离和轨迹入侵率,确定目标车辆面向本车车辆 的行驶安全威胁度。即在本申请实施例中,通过目标车辆与本车车辆的预估碰撞时间和本车车辆的平均刹车距离对初步确定的碰撞可能性(即轨迹入侵率)进行优化,从而实现车辆安全行驶的准确评估,确保本车车辆行驶中对于存在碰撞情况的及时评估,以便及时避让可能碰撞的目标车辆,从而提升车辆行驶的安全性。
图5是本申请实施例的车辆安全行驶的评估装置的一个结构示意图,如图5所示,该车辆安全行驶的评估装置包括:计算模块510、第一确定模块520和第二确定模块530。其中,
计算模块510、设置为根据本车车辆的行驶参考轨迹和本车车辆前方行驶的目标车辆的行驶位姿信息,计算目标车辆与本车车辆间的行驶距离;
第一确定模块520、设置为根据行驶距离确定目标车辆面向本车车辆的轨迹入侵率;
第二确定模块530、设置为按照目标车辆与本车车辆的预估碰撞时间、本车车辆的平均刹车距离和轨迹入侵率,确定目标车辆面向本车车辆的行驶安全威胁度。
在一实施例中,目标车辆的行驶位姿信息包括:目标车辆上各目标点面向本车车辆的位置坐标。
在一实施例中,计算模块510,设置为:
计算目标车辆上每一目标点的位置坐标到本车车辆的行驶参考轨迹间的目标距离,作为目标车辆上每一目标点与本车车辆间的行驶距离。
在一实施例中,第一确定模块520,还设置为:
根据目标车辆上每一目标点与本车车辆间的行驶距离,计算目标车辆侵入本车车辆的行驶参考轨迹内的位姿区域占比,作为目标车辆面向本车车辆的轨迹入侵率。
在一实施例中,第二确定模块530,包括:
预估单元、设置为根据本车车辆和目标车辆的当前行驶状态,计算目标车辆与本车车辆的预估碰撞时间,并计算本车车辆以预设减速度刹车时的平均刹车距离;
确定单元、设置为根据目标车辆与本车车辆的预估碰撞时间和本车车辆的平均刹车距离,确定对应的行驶安全调整系数;
获取单元、设置为采用行驶安全调整系数调整轨迹入侵率,得到目标车辆 面向本车车辆的行驶安全威胁度。
在一实施例中,第二确定模块530中的预估单元,还设置为:
根据本车车辆和目标车辆的当前行驶状态,判断本车车辆与目标车辆是否存在行驶碰撞;
若是,则采用本车车辆的纵向行驶速度和目标车辆的目标纵向距离,计算在本车车辆与目标车辆行驶至发生碰撞时的预估碰撞时间。
在一实施例中,车辆安全行驶的评估装置,还包括:
如果本车车辆在本车道内正向行驶,则确定本车车辆的行驶参考轨迹为本车道邻近目标车辆的车道线;
如果本车车辆在本车道内侧向行驶,则预估本车车辆邻近目标车辆的邻侧行驶轨迹,作为本车车辆的行驶参考轨迹。
本申请实施例所提供的一种车辆安全行驶的评估装置,可执行本申请任意实施例所提供的车辆安全行驶的评估方法,具备执行方法相应的功能模块和有益效果。
图6为本申请实施例的车辆的一个结构示意图,该车辆包括处理器610、存储器620、输入装置630和输出装置640;车辆中处理器610的数量可以是一个或多个,图6中以一个处理器610为例;车辆中的处理器610、存储器620、输入装置630和输出装置640可以通过总线或其他方式连接,图6中以通过总线连接为例。
存储器620作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的车辆安全行驶的评估方法对应的程序指令/模块(例如车辆安全行驶的评估装置中的计算模块510、第一确定模块520和第二确定模块530),处理器610通过运行存储在存储器620中的软件程序、指令以及模块,从而执行车辆的各种功能应用以及数据处理,即实现上述的车辆安全行驶的评估方法。
存储器620可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器620可进一步包括相对于处理器610远程设置的存储器,这些远程存储器可以通过网络连接至车辆。上述网络的实 例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置630可用于接收输入的数字或字符信息,以及产生与车辆的用户设置以及功能控制有关的键信号输入。输出装置640可包括显示屏等显示设备。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种车辆安全行驶的评估方法,该方法包括:
根据本车车辆的行驶参考轨迹和本车车辆前方行驶的目标车辆的行驶位姿信息,计算目标车辆与本车车辆间的行驶距离;
根据行驶距离确定目标车辆面向本车车辆的轨迹入侵率;
按照目标车辆与本车车辆的预估碰撞时间、本车车辆的平均刹车距离和轨迹入侵率,确定目标车辆面向本车车辆的行驶安全威胁度。
本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的车辆安全行驶的评估方法中的相关操作。
存储介质可以是非暂态(non-transitory)存储介质。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的实施例本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上述搜索装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了说明,但是本申请不仅仅限于 以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种车辆安全行驶的评估方法,包括:
    根据本车车辆的行驶参考轨迹和所述本车车辆前方行驶的目标车辆的行驶位姿信息,计算所述目标车辆与所述本车车辆间的行驶距离;
    根据所述行驶距离确定所述目标车辆面向所述本车车辆的轨迹入侵率;
    按照所述目标车辆与所述本车车辆的预估碰撞时间、所述本车车辆的平均刹车距离和所述轨迹入侵率,确定所述目标车辆面向所述本车车辆的行驶安全威胁度。
  2. 根据权利要求1所述的方法,其中,所述目标车辆的行驶位姿信息包括所述目标车辆上至少一个目标点面向所述本车车辆的位置坐标。
  3. 根据权利要求2所述的方法,其中,所述根据本车车辆的行驶参考轨迹和所述本车车辆前方行驶的目标车辆的行驶位姿信息,计算所述目标车辆与所述本车车辆间的行驶距离,包括:
    计算所述目标车辆上每一目标点的位置坐标到所述本车车辆的行驶参考轨迹间的目标距离,作为所述目标车辆上每一目标点与所述本车车辆间的行驶距离。
  4. 根据权利要求1所述的方法,其中,所述根据所述行驶距离确定所述目标车辆面向所述本车车辆的轨迹入侵率,包括:
    根据所述目标车辆上每一目标点与所述本车车辆间的行驶距离,计算所述目标车辆侵入所述本车车辆的行驶参考轨迹内的位姿区域占比,作为所述目标车辆面向所述本车车辆的轨迹入侵率。
  5. 根据权利要求1所述的方法,其中,所述按照所述目标车辆与所述本车车辆的预估碰撞时间、所述本车车辆的平均刹车距离和所述轨迹入侵率,确定所述目标车辆面向所述本车车辆的行驶安全威胁度,包括:
    根据所述本车车辆和所述目标车辆的当前行驶状态,计算所述目标车辆与所述本车车辆的预估碰撞时间,并计算所述本车车辆以预设减速度刹车时的平均刹车距离;
    根据所述目标车辆与所述本车车辆的预估碰撞时间和所述本车车辆的平均刹车距离,确定对应的行驶安全调整系数;
    采用所述行驶安全调整系数调整所述轨迹入侵率,得到所述目标车辆面向所述本车车辆的行驶安全威胁度。
  6. 根据权利要求5所述的方法,其中,所述根据所述本车车辆和所述目标车辆的当前行驶状态,计算所述目标车辆与所述本车车辆的预估碰撞时间,包 括:
    根据所述本车车辆和所述目标车辆的当前行驶状态,判断所述本车车辆与所述目标车辆是否存在行驶碰撞;
    响应于所述本车车辆与所述目标车辆存在行驶碰撞,采用所述本车车辆的纵向行驶速度和所述目标车辆的目标纵向距离,计算在所述本车车辆与所述目标车辆行驶至发生碰撞时的预估碰撞时间。
  7. 根据权利要求1所述的方法,还包括:
    响应于所述本车车辆在本车道内正向行驶,确定所述本车车辆的行驶参考轨迹为所述本车道邻近所述目标车辆的车道线;
    响应于所述本车车辆在本车道内侧向行驶,预估所述本车车辆邻近所述目标车辆的邻侧行驶轨迹,作为所述本车车辆的行驶参考轨迹。
  8. 一种车辆安全行驶的评估装置,包括:
    计算模块,设置为根据本车车辆的行驶参考轨迹和所述本车车辆前方行驶的目标车辆的行驶位姿信息,计算所述目标车辆与所述本车车辆间的行驶距离;
    第一确定模块,设置为根据所述行驶距离确定所述目标车辆面向所述本车车辆的轨迹入侵率;
    第二确定模块,设置为按照所述目标车辆与所述本车车辆的预估碰撞时间、所述本车车辆的平均刹车距离和所述轨迹入侵率,确定所述目标车辆面向所述本车车辆的行驶安全威胁度。
  9. 一种车辆,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至7中任一项所述的一种车辆安全行驶的评估方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的一种车辆安全行驶的评估方法。
PCT/CN2022/127638 2021-10-26 2022-10-26 车辆安全行驶的评估方法、装置、车辆及存储介质 WO2023072135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111245132.7A CN113815620B (zh) 2021-10-26 2021-10-26 一种车辆安全行驶的评估方法、装置、设备及存储介质
CN202111245132.7 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023072135A1 true WO2023072135A1 (zh) 2023-05-04

Family

ID=78917389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127638 WO2023072135A1 (zh) 2021-10-26 2022-10-26 车辆安全行驶的评估方法、装置、车辆及存储介质

Country Status (2)

Country Link
CN (1) CN113815620B (zh)
WO (1) WO2023072135A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113815620B (zh) * 2021-10-26 2023-03-14 中国第一汽车股份有限公司 一种车辆安全行驶的评估方法、装置、设备及存储介质
CN114228707B (zh) * 2021-12-22 2023-04-25 广西科技大学 一种无人驾驶车辆的防撞方法及***
TWI830415B (zh) * 2022-09-30 2024-01-21 荷蘭商荷蘭移動驅動器公司 碰撞預估方法、裝置及電腦可讀存儲介質

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189141A (ja) * 2002-12-12 2004-07-08 Nissan Motor Co Ltd 車両用運転操作補助装置およびその装置を備えた車両
CN107128303A (zh) * 2017-06-05 2017-09-05 北京汽车集团有限公司 车辆防碰撞方法、装置、存储介质、设备、***及车辆
CN110077399A (zh) * 2019-04-09 2019-08-02 魔视智能科技(上海)有限公司 一种基于道路标线、车轮检测融合的车辆防碰撞方法
CN110466518A (zh) * 2019-08-15 2019-11-19 同济大学 一种面向车辆轨迹交叉场景的安全预估方法
CN110884490A (zh) * 2019-10-28 2020-03-17 广州小鹏汽车科技有限公司 一种车辆侵入判断及辅助行驶的方法、***、车辆及存储介质
CN113815620A (zh) * 2021-10-26 2021-12-21 中国第一汽车股份有限公司 一种车辆安全行驶的评估方法、装置、设备及存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907207B2 (ja) * 2006-03-29 2012-03-28 本田技研工業株式会社 車両の走行安全装置
DE102015011928A1 (de) * 2015-09-12 2017-03-16 Audi Ag Verfahren zum Betrieb eines Sicherheitssystems eines Kraftfahrzeugs und Kraftfahrzeug
KR101716047B1 (ko) * 2015-09-21 2017-03-14 울산대학교 산학협력단 차량 충돌 회피 장치 및 방법
KR101819003B1 (ko) * 2016-04-07 2018-01-16 엘지전자 주식회사 차량 운전 보조 장치 및 차량
EP3354525B1 (en) * 2017-01-26 2021-01-13 Volvo Car Corporation Arrangement and method for mitigating a forward collision between road vehicles
KR102592826B1 (ko) * 2018-10-10 2023-10-23 현대자동차주식회사 근거리 끼어들기 차량 판단 장치 및 그의 판단 방법과 그를 이용하는 차량
CN109835348B (zh) * 2019-01-25 2021-04-23 中国汽车技术研究中心有限公司 一种道路交通危险场景的筛选方法和装置
CN109941275B (zh) * 2019-03-12 2020-09-15 杭州飞步科技有限公司 车道变换方法、装置、电子设备及存储介质
CN110979327B (zh) * 2019-03-18 2021-06-22 毫末智行科技有限公司 自动驾驶车辆的纵向控制方法***
DE102019107414A1 (de) * 2019-03-22 2020-09-24 Zf Automotive Germany Gmbh Verfahren sowie Steuergerät für ein System zum Steuern eines Kraftfahrzeugs
CN110834584A (zh) * 2019-10-29 2020-02-25 中国第一汽车股份有限公司 一种自动驾驶示警***、方法、车辆和存储介质
CN110834644B (zh) * 2019-10-30 2021-01-19 中国第一汽车股份有限公司 一种车辆控制方法、装置、待控制车辆及存储介质
CN111665852B (zh) * 2020-06-30 2022-09-06 中国第一汽车股份有限公司 一种障碍物避让方法、装置、车辆及存储介质
CN111775942A (zh) * 2020-07-14 2020-10-16 中国第一汽车股份有限公司 一种驾驶模式切换方法、装置、***及汽车
CN113335276A (zh) * 2021-07-20 2021-09-03 中国第一汽车股份有限公司 障碍物的轨迹预测方法、装置、电子设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189141A (ja) * 2002-12-12 2004-07-08 Nissan Motor Co Ltd 車両用運転操作補助装置およびその装置を備えた車両
CN107128303A (zh) * 2017-06-05 2017-09-05 北京汽车集团有限公司 车辆防碰撞方法、装置、存储介质、设备、***及车辆
CN110077399A (zh) * 2019-04-09 2019-08-02 魔视智能科技(上海)有限公司 一种基于道路标线、车轮检测融合的车辆防碰撞方法
CN110466518A (zh) * 2019-08-15 2019-11-19 同济大学 一种面向车辆轨迹交叉场景的安全预估方法
CN110884490A (zh) * 2019-10-28 2020-03-17 广州小鹏汽车科技有限公司 一种车辆侵入判断及辅助行驶的方法、***、车辆及存储介质
CN113815620A (zh) * 2021-10-26 2021-12-21 中国第一汽车股份有限公司 一种车辆安全行驶的评估方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113815620B (zh) 2023-03-14
CN113815620A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
US11738744B2 (en) Driving support apparatus
WO2023072135A1 (zh) 车辆安全行驶的评估方法、装置、车辆及存储介质
US10217364B2 (en) Lane assistance system responsive to extremely fast approaching vehicles
JP6017044B2 (ja) ドライバーアシストシステム及びドライバーアシストシステムの作動方法
US8543309B2 (en) ACC and AM braking range variable based on lateral and longitudinal position of forward vehicle and curvature of road
CN104943689B (zh) 一种汽车主动防撞***的控制方法
EP3715204A1 (en) Vehicle control device
US20150239472A1 (en) Vehicle-installed obstacle detection apparatus having function for judging motion condition of detected object
CN110588648A (zh) 车辆行驶中碰撞危险识别方法、装置、车辆及存储介质
CN105702088A (zh) 警报装置
US11926299B2 (en) System and method for predicting road collisions with a host vehicle
KR20210073204A (ko) 자율주행 차량의 충돌 방지 방법, 장치 및 컴퓨터프로그램
KR20200070854A (ko) 근거리 컷-인 차량 판단 장치 및 그의 판단 방법과 그를 이용하는 차량
KR102545582B1 (ko) 교차로 충돌 회피 시스템 및 그 제어 방법
CN115223131A (zh) 一种自适应巡航的跟随目标车辆检测方法、装置及汽车
CN114291116A (zh) 周围车辆轨迹预测方法、装置、车辆及存储介质
CN110834626B (zh) 行车障碍预警方法、装置、车辆和存储介质
CN110940981A (zh) 一种用于判断车辆前方目标的位置是否处于本车道内的方法
KR20210004317A (ko) 차량의 충돌 방지 제어 장치 및 그 방법
CN110979320B (zh) 具有不规则行径的行人紧急避让控制方法
JP6330868B2 (ja) 車両制御装置
WO2019186716A1 (ja) 車載装置、情報処理方法及び情報処理プログラム
US20240025398A1 (en) Vehicle control method, vehicle controller, and non-transitory computer-readable storage medium storing vehicle control program
KR20240000952A (ko) 객체 식별 방법 및 장치
KR20210144123A (ko) 차량용 acc 시스템 시험평가 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE