WO2023071409A1 - 一种单晶三元正极材料及其制备方法和应用 - Google Patents

一种单晶三元正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023071409A1
WO2023071409A1 PCT/CN2022/112237 CN2022112237W WO2023071409A1 WO 2023071409 A1 WO2023071409 A1 WO 2023071409A1 CN 2022112237 W CN2022112237 W CN 2022112237W WO 2023071409 A1 WO2023071409 A1 WO 2023071409A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
positive electrode
preparation
electrode material
lithium
Prior art date
Application number
PCT/CN2022/112237
Other languages
English (en)
French (fr)
Inventor
朱青林
李长东
阮丁山
蔡勇
刘伟健
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023071409A1 publication Critical patent/WO2023071409A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and in particular relates to a single crystal ternary positive electrode material and a preparation method and application thereof.
  • the research and development direction of ternary materials is mainly divided into the following two types: the first direction is to increase the nickel content and prepare high-nickel materials, but Li and Ni have similar radii, and the exchange between Ni and Li leads to Lithium-nickel mixed arrangement, the greater the concentration of nickel ions in the lithium layer, the more difficult it is to deintercalate lithium in the layered structure, the worse the stability of the material, the worse the safety, and the higher the cost; the second direction is Increase the charging and discharging voltage of the material, so that the lithium in the ternary material lattice can be extracted and inserted to a greater extent, but the structure of the material will be unstable, and the surface side reaction between the positive electrode material and the electrolyte will be intensified under high voltage, and the consumption of Lattice lithium and hinder the transport of lithium,
  • the main focus is to improve the stability of the material substrate, reduce the surface area of the material, and isolate the direct contact between the material and the electrolyte.
  • the treatment method is mainly to improve the safety and stability of the material itself through doping, mainly to support the structure of the columnar layered material when more lithium is extracted.
  • the doping is mainly zirconium, titanium, aluminum, tungsten, magnesium, Doping of scandium, vanadium, calcium, strontium, barium, gallium, indium and other elements.
  • Coating a stable coating layer and increasing the size of single crystal particles reduces the contact reaction between the material and the electrolyte and the metal dissolution effect, thereby reducing the problems of gas production and circulation of the battery cell.
  • metal oxides Al 2 O 3 , TiO 2 , ZnO, ZrO 2 , etc.
  • the content of doping elements is a bit high. If there is too much doping, the material structure is stable, but the capacity of the material will be a bit low.
  • the coating of materials and large particles will increase the DCR of materials, especially in the case of low discharge potential, it is difficult for lithium ions in the electrolyte to enter the lattice of positive electrode materials, resulting in low material capacity and poor cycle.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. Therefore, the present invention proposes a single crystal ternary positive electrode material and its preparation method and application.
  • the single crystal ternary positive electrode material has a stable structure, high capacity, and excellent cycle performance and dynamic performance.
  • the present invention adopts the following technical solutions:
  • a single crystal ternary positive electrode material whose chemical formula is LiNi x Co y Mn z M (1-xyz) O c @Li a N d O b , where 0 ⁇ x ⁇ 0.65, 0 ⁇ y ⁇ 0.15, 0 ⁇ z ⁇ 0.35, 0 ⁇ a ⁇ 6, 0 ⁇ b ⁇ 4, 1 ⁇ c ⁇ 2, 1 ⁇ d ⁇ 2; said M is Zr, Ni, Al, Cu, Co, Sr, Mn, Y, Ti, Mg , Mo, B, Sn, Fe, Zn, Si or W at least one; N is Zr, Ni, Al, Cu, Co, Sr, Mn, Y, Ti, Mg, Mo, B, Sn, Fe, At least one of Zn, Si or W.
  • the chemical formula of the single crystal ternary cathode material is LiNi 0.596 Co 0.05 Mn 0.35 M 0.004 O c @Li 2 N d O 4 ;
  • the M is at least one of Zr, Zn, Si or W;
  • M is Zr and W.
  • N is Zr, Al and W.
  • the particle diameter of the single crystal ternary positive electrode material is 1.0-5.0 ⁇ m, and the particle specific surface area is 0.4-0.8 m 2 /g.
  • a method for preparing a single crystal ternary positive electrode material comprising the following steps:
  • the above-mentioned single crystal ternary cathode material is a ternary cathode material with stable structure, high energy density, excellent cycle performance and kinetic performance under high voltage conditions. Improve the stability of the internal structure by doping the single crystal lattice, and then gradiently dope the surface of the single crystal material at high temperature to construct a single crystal material with a stable structure from the inside to the surface and no micropowder, and finally coated and tempered at low temperature Finally, a surface with less residual lithium content is formed, which can supplement the coating layer and fast ion conductive layer lost by the lithium source during the battery cycle.
  • the fast ionic conductive network is formed on the lattice doping, surface gradient doping of the material, less micropowder, lithium supplement and crystal surface, and these strategies work together to improve the electrochemical performance of the positive electrode material under high pressure.
  • the nickel salt is at least one of nickel sulfate, nickel chloride, and nickel nitrate.
  • the manganese salt is at least one of manganese sulfate, manganese chloride and manganese nitrate.
  • the cobalt salt is at least one of cobalt sulfate, cobalt chloride, and cobalt nitrate.
  • the precipitation agent is sodium hydroxide.
  • the complexing agent is ammonia water.
  • the reaction temperature is 60-90°C, and the reaction time is 70-75h.
  • the pH is maintained at 9.5-12.0 during the reaction.
  • drying the solid phase is also included; the drying temperature is 100-125°C and the time is 24-30h.
  • the particle size distribution D50 of the precursor is 3.8-4.5 ⁇ m.
  • the stirring speed during the reaction is 500-600r/min.
  • the lithium source is at least one of LiOH, Li 2 CO 3 , LiNO 3 or CH 3 COOLi.
  • the total molar ratio of lithium in the lithium source to nickel, cobalt and manganese in the precursor is 1:(1.06-1.25).
  • the first dopant is an oxide of at least one of the following doping elements: Zr, Ni, Al, Cu, Co, Sr, Mn, Y, Ti, Mg, Mo, B, Sn, Fe, Zn, Si or W; the total content of the doping elements is 300-5000ppm.
  • the first dopant is ZrO 2 , NiO, Al 2 O 3 , CuO, CoO, Co 3 O 4 , SrO, MnO 2 , Y 2 O 3 , TiO 2 , MgO, MoO 2 , B At least one of 2 O 3 , SnO 2 , Fe 2 O 3 , ZnO, SiO 2 or WO 3 .
  • the mixing speed is 300-500r/min, and the mixing time is 0.5-1.5h.
  • the first sintering process is as follows: feed air/oxygen at a pressure of 0.15-0.5Mpa, and raise the temperature to 450-800°C at a heating rate of 0.5-5.0°C/min Carry out pre-sintering for 3-8 hours, continue to heat up to 850°C-950°C at the same heating rate for sintering, keep warm for 8-15h, and cool naturally to room temperature.
  • the polycrystalline particle material with doping elements in the lattice and more residual lithium between the lattices is obtained.
  • the crushing process is: sequentially performing rotary wheel milling and jet milling. Further, the rotary wheel mill is used to crush the material to be crushed to a particle size of 1-2mm.
  • the second dopant is an oxide of at least one of the following doping elements: Zr, Ni, Al, Cu, Co, Sr, Mn, Y, Ti, Mg, Mo, B, Sn, Fe, Zn, Si or W; the total content of the doping elements is 1000-10000ppm.
  • the second dopant is ZrO 2 , NiO, Al 2 O 3 , CuO, CoO, Co 3 O 4 , SrO, MnO 2 , Y 2 O 3 , TiO 2 , MgO, MoO 2 , B At least one of 2 O 3 , SnO 2 , Fe 2 O 3 , ZnO, SiO 2 or WO 3 .
  • the second sintering process is as follows: feed air/oxygen at a pressure of 0.15-0.5Mpa, and raise the temperature to 650-950°C at a heating rate of 0.5-5.0°C/min Carry out pre-sintering for 3-8 hours, and cool down to room temperature naturally.
  • the coating agent is an oxide of at least one of the following coating elements: Zr, Ni, Al, Cu, Co, Sr, Mn, Y, Ti, Mg, Mo, B, Sn, Fe, Zn, Si or W; the total content of the coating elements is 1000-5000ppm.
  • the coating agent is ZrO 2 , NiO, Al 2 O 3 , CuO, CoO, Co 3 O 4 , SrO, MnO 2 , Y 2 O 3 , TiO 2 , MgO, MoO 2 , B 2 O 3. At least one of SnO 2 , Fe 2 O 3 , ZnO, SiO 2 or WO 3 .
  • the process of the third sintering is: feed air/oxygen with a pressure of 0.15-0.5Mpa, and raise the temperature to 450-650°C at a heating rate of 0.5-5.0°C/min Carry out pre-sintering for 1-6h, and cool down to room temperature naturally.
  • a battery comprising the single crystal ternary cathode material.
  • the single crystal ternary positive electrode material LiNi x Co y Mnz M (1-xyz) O c @Li a N d O b of the present invention is a single crystal material with a core-shell structure, with low residual lithium on the surface and good internal and external The structure is stable, the energy density is high, and the cycle performance and kinetic performance are excellent.
  • the fast ion conductor is formed by doping first, and then the surface is gradiently doped and coated to form a surface with less residual lithium content, which can replenish the battery during the cycle.
  • the coating layer and fast ion conducting layer lost by the lithium source can improve the electrochemical performance of the positive electrode material under high pressure.
  • the present invention reacts the lithium source with the first dopant to form a fast ion conductor through the first sintering, improves the electron and ion transport channels of the material, reduces the local overpotential and affects the stability of the material structure while improving the ion and electron transport of the material dynamic performance.
  • the second sintering forms a surface gradient doping (a structurally stable cladding layer) on the surface of the single crystal. The crystal structure of this cladding layer is close to the internal structure. Even if the thickness of the prepared shell is small, it will not During the charge and discharge process, the volume expansion or shrinkage will cause the surface layer of the material to fall off, so as to achieve a stable single crystal surface.
  • the high temperature will also react with the micropowder generated in the process of breaking into a single crystal sample and the residual lithium source on the surface to form a positive electrode material, reducing the The BET and residual lithium of the material can reduce the side reaction of the material surface in the battery, improve the cycle performance and gas production performance of the battery, and increase the impedance.
  • the residual lithium source on the surface of the single crystal material reacts with some elements (elements of the coating agent) to form a lithium replenishing agent that supplements the loss of lattice lithium during the charging and discharging process, Especially in the case of deep delithiation caused by high voltage, turning the excess residual lithium on the surface of the material into a favorable lithium supplement or fast ion channel will significantly improve the cycle performance and rate performance of the single crystal material in the battery.
  • the present invention reduces the mixing of lithium and nickel elements in the material by increasing the molar ratio of lithium and precursor metal elements, and obtains a single crystal ternary material with complete internal structure; in addition Doping other elements in the crystal lattice stabilizes the crystal structure inside the material.
  • a high molar ratio of lithium to precursor metal elements will have unreacted lithium sources, which become favorable fast ion conductors and lithium supplements, improving the material
  • the stable core-shell structure forms a stable structure on the inside and surface of the material on the basis of ensuring the capacity, improves the BET (specific surface area) and residual lithium of the material, and reduces the amount of material and electrolyte in the battery. The occurrence of interfacial side reactions improves the cycle and gas production performance.
  • Fig. 1 is the phase XRD pattern of the single crystal cathode material prepared by embodiment 1 and comparative example 1;
  • Fig. 2 is the phase SEM picture of the monocrystalline cathode material prepared in embodiment 1;
  • Fig. 3 is the SEM picture of the cathode material prepared in Comparative Example 2;
  • Fig. 4 is the SEM picture of the cathode material prepared in comparative example 3.
  • FIG. 5 is a cycle performance graph of the single crystal ternary cathode materials prepared in Example 1, Comparative Example 1, Comparative Example 2 and Comparative Example 3.
  • FIG. 5 is a cycle performance graph of the single crystal ternary cathode materials prepared in Example 1, Comparative Example 1, Comparative Example 2 and Comparative Example 3.
  • the single crystal ternary cathode material of this embodiment has a chemical formula of LiNi 0.596 Co 0.05 Mn 0.35 M 0.004 O 2 @Li 2 NO 4 ; wherein M is Zr and W; N is Zr, Al and W; The diameter is 1.5-3 ⁇ m, and the specific surface area is 0.4-0.8 cm 2 /g.
  • NiSO 4 , CoSO 4 , and MnSO 4 were made into a mixed solution with a total metal ion concentration of 1.6mol/L according to the Ni:Co:Mn molar ratio of 0.60:0.05:0.35, and then a 10mol/L NaOH solution was prepared;
  • phase XRD analysis of the single crystal ternary cathode material of this embodiment is shown in Figure 1, and the morphology is shown in Figure 2; it can be seen from Figure 2 that after the third sintering, a uniform layer is formed on the surface of the single crystal cladding.
  • the single crystal ternary cathode material of this embodiment has a chemical formula of LiNi 0.799 Co 0.1 Mn 0.1 M 0.001 O 2 @Li 2 NO 4 ; wherein M is Zr and W; N is Zr, Al and W; the average grain size of single crystal particles The diameter is 1.5-3 ⁇ m, and the specific surface area is 0.4-0.8 cm 2 /g.
  • NiSO 4 , CoSO 4 , and MnSO 4 were made into a mixed solution with a total metal ion concentration of 1.6mol/L according to the Ni:Co:Mn molar ratio of 0.80:0.10:0.10, and then a 10mol/L NaOH solution was prepared;
  • the specific steps of the preparation method of the single crystal ternary positive electrode material of this comparative example are as follows: the steps of the comparative example 1 are almost the same as those of the example 1, except that the lithium ratio in the step (3) of the example is changed to 1.05.
  • the XRD of the cathode material obtained by the method of Comparative Example 1 is shown in FIG. 1 .
  • the preparation method of the single crystal ternary positive electrode material of this comparative example the specific steps are as follows: the material preparation of comparative example 2 is almost the same as that of example 1, except that the step (4) of the embodiment is removed.
  • the morphology of the cathode material obtained by the method of Comparative Example 2 is shown in FIG. 3 .
  • a preparation method of a single crystal ternary positive electrode material in this comparative example the specific steps are as follows: the material preparation of comparative example 3 is almost the same as that of example 1, except that the step (5) of the embodiment is removed.
  • the morphology of the cathode material obtained by the method of Comparative Example 3 is shown in FIG. 4 .
  • a preparation method of a single crystal ternary positive electrode material in this comparative example the specific steps are as follows: ZrO 2 , Al 2 O 3 , WO 3 in steps 4 and 5 remain unchanged, only the two processes are mixed in one step in step 4 Miscellaneous process is realized.
  • a preparation method of a single crystal ternary positive electrode material in this comparative example the specific steps are as follows: ZrO 2 , Al 2 O 3 , WO 3 in steps 4 and 5 remain unchanged, and only the two processes are combined in one step of step 5. Overlay process is realized.
  • Embodiment 1 and comparative example 1-3 analysis :
  • Fig. 1 is the XRD data of embodiment 1 and comparative example 1, (006)/(102) and (108)/(110) crystal plane peak separation is obvious, illustrates that two materials all have higher crystallinity, in addition, XRD
  • the (003)/(104) crystal plane peak intensity ratios are greater than 1.2, indicating that the two materials have a better layered crystal structure and less lithium-nickel mixed arrangement;
  • the peak intensity of Example 1 in XRD and (003 )/(104) peak ratio relative to Comparative Example 1 shows that the crystallinity of the material of Example 1 will be better, and the degree of mixing with lithium nickel is lower, while the peak position of Example 1 is to the left of the peak position of Comparative Example 1, It shows that the layer spacing of the material is relatively large.
  • Figure 3 is the SEM image of the single crystal ternary cathode material prepared in Comparative Example 2, and the surface of the material has a lot of fine powder produced by crushing;
  • Figure 4 is the SEM image of the single crystal ternary positive electrode material prepared in Comparative Example 3.
  • Table 1 is a comparison of the electrochemical properties of the positive electrode materials of Example 1 and Comparative Examples 1-3.
  • the highest voltage is 4.45V
  • the first discharge specific capacity at 0.1C is 194.7mAh/g
  • the discharge efficiency is 89.2%. This is significantly higher than the specific capacity and efficiency of the positive electrode material in the comparative example.
  • the lithium-nickel mixed arrangement and lattice spacing of the material are significantly improved, and the crystal structure of the ternary material is stabilized by doping. A more stable shell protects the structural stability of the internal material.
  • the coating converts the unfavorable residual lithium on the surface of the single crystal material into a favorable fast ion conductive network or lithium replenishment agent, thereby reducing the lithium ion extraction and insertion energy barrier, so that The first cycle specific capacity and efficiency of the material are improved.

Abstract

本发明属于锂离子电池技术领域,公开了一种单晶三元正极材料及其制备方法和应用,该单晶三元正极材料化学式为LiNi xCo yMn zM (1-x-y-z)O c@Li aN dO b,0<x≤0.65,0<y≤0.15,0<z≤0.35,0<a≤6,0<b≤4,1<c≤2,1≤d<2;M和N为Zr、Ni、Al、Cu、Co、Sr、Mn、Y、Ti、Mg、Mo、B、Sn、Fe、Zn、Si或W中的至少一种。本发明的单晶三元正极材料是一种核壳结构的单晶材料,表面残锂低、内外部结构稳定,能量密度高,循环性能和动力学性能优异。

Description

一种单晶三元正极材料及其制备方法和应用 技术领域
本发明属于锂离子电池技术领域,具体涉及一种单晶三元正极材料及其制备方法和应用。
背景技术
三元正极材料因其比容量高、比能量密度高、循环好、安全和成本低等原因,一直受到新能源行业的关注。一般为了得到更高的容量,三元材料的研发方向主要分为以下两种:第一个方向是提高镍含量,制备高镍材料,但是Li和Ni具有相似的半径,Ni与Li发生交换导致锂镍混排,锂层中镍离子浓度越大,锂在层状结构中的脱嵌越难,材料的稳定性越差,安全性也就越差,同时成本越高;第二个方向是提高材料的充放电电压,让三元材料晶格里面的锂更大程度的脱出和***,但会导致材料的结构不稳定,以及在高电压下正极材料与电解液的表面副反应加剧,消耗晶格锂和阻碍锂的传输,导致材料循环恶化以及产气严重。
目前,针对高电压下材料的循环以及产气问题,主要集中于改善材料基材的稳定性、降低材料的表面积和隔绝材料与电解液的直接接触等方向。处理方式主要是通过掺杂提高材料本身的安全稳定性,主要是在脱出更多的锂的情况下,能够支撑柱层状材料的结构,掺杂主要是锆、钛、铝、钨、镁、钪、钒、钙、锶、钡、镓、铟等元素的掺杂。包覆稳定的包覆层和增大单晶粒子的大小减少了材料与电解液的接触反应和金属溶解效应,从而减少电芯的产气、循环等问题,一般包覆用金属氧化物(Al 2O 3,TiO 2,ZnO,ZrO 2等)修饰三元材料表面。但是在高电压下,为了维持材料稳定的结构,掺杂元素的含量有点偏高,过多的掺杂,材料结构稳定,但是材料的容量会有点偏低。材料的包覆以及大颗粒会引起材料的DCR增加,特别在放电电位较低的情况下,电解液中的锂离子难以进入到正极材料的晶格中,导致材料容量偏低以循环变差。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种单晶三元正极材料及其制备方法和应用,该单晶三元正极材料的结构稳定、容量高,循环性能和动力学性能优异。
为实现上述目的,本发明采用以下技术方案:
一种单晶三元正极材料,其化学式为LiNi xCo yMn zM (1-x-y-z)O c@Li aN dO b,其中0<x≤0.65,0<y≤0.15,0<z≤0.35,0<a≤6,0<b≤4,1<c≤2,1≤d<2;所述M为Zr、Ni、Al、Cu、Co、Sr、Mn、Y、Ti、Mg、Mo、B、Sn、Fe、Zn、Si或W中的至少一种;N为Zr、Ni、Al、Cu、Co、Sr、Mn、Y、Ti、Mg、Mo、B、Sn、Fe、Zn、Si或W中的至少一种。
优选地,所述单晶三元正极材料的化学式LiNi 0.596Co 0.05Mn 0.35M 0.004O c@Li 2N dO 4;所述M为Zr、Zn、Si或W中的至少一种;所述N为Zr、Al、Mo、Zn、Si或W中的至少一种,其中x=0.596,y=0.05,z=0.35,a=2,b=4,1<c≤2,1≤d<2。
进一步优选地,M为Zr和W。
进一步优选地,N为Zr、Al和W。
优选地,所述单晶三元正极材料的颗粒粒径为1.0-5.0μm,颗粒比表面积为0.4-0.8m 2/g。
一种单晶三元正极材料的制备方法,包括以下步骤:
(1)将镍盐、锰盐、钴盐混合,再加入沉淀剂和络合剂,反应,固液分离,取固相得到前驱体;
(2)将所述前驱体与锂源、第一掺杂剂混合,进行第一次烧结,粉碎,得到单晶材料;
(3)将所述单晶材料和第二掺杂剂混合,进行第二次烧结,再加入包覆剂混合,进行第三次烧结,得到单晶正极材料。
上述单晶三元正极材料是一种在高电压条件下,结构稳定、能量密度高,循环性能和动力学性能优的三元正极材料。通过对单晶晶格掺杂改善内部结构稳定性,再通过高温将单晶材料表面梯度掺杂,构建一个从内部到表面结构稳定的并且没有微粉的单晶材料,最后包覆、低温回火后,形成一种表面残锂含量少,能够补充电池循环过程中锂源丢失的包覆层和快离子导电层。在晶格掺杂、材料的表面梯度掺杂、较少的微粉、补锂剂和晶体表面形成快离子导电网络,在这几个策略共同作用下提高正极材料在高压下电化学性能。
优选地,步骤(1)中,所述镍盐为硫酸镍、氯化镍、硝酸镍中的至少一种。
优选地,步骤(1)中,所述锰盐为硫酸锰、氯化锰、硝酸锰中的至少一种。
优选地,步骤(1)中,所述钴盐为硫酸钴、氯化钴、硝酸钴中的至少一种。
优选地,步骤(1)中,所述沉淀剂为氢氧化钠。
优选地,步骤(1)中,所述络合剂为氨水。
优选地,步骤(1)中,所述反应的温度为60-90℃,反应的时间为70-75h。
优选地,步骤(1)中,所述反应的过程中保持pH为9.5-12.0。
优选地,步骤(1)中,所述固液分离后,还包括将固相进行干燥;所述干燥的温度为100-125℃,时间为24-30h。
优选地,步骤(1)中,所述前驱体的粒径分布D50为3.8-4.5μm。
优选地,步骤(1)中,所述反应的过程中搅拌的速度为500-600r/min。
优选地,步骤(2)中,所述锂源为LiOH、Li 2CO 3、LiNO 3或CH 3COOLi中的至少一种。
优选地,步骤(2)中,所述锂源中锂与前驱体中镍、钴、锰的总摩尔数比为1:(1.06-1.25)。
优选地,步骤(2)中,所述第一掺杂剂为以下至少一种掺杂元素的氧化物:Zr、Ni、Al、Cu、Co、Sr、Mn、Y、Ti、Mg、Mo、B、Sn、Fe、Zn、Si或W;所述掺杂元素的总含量为300-5000ppm。
进一步优选地,所述第一掺杂剂为ZrO 2、NiO、Al 2O 3、CuO、CoO、Co 3O 4、SrO、MnO 2、Y 2O 3、TiO 2、MgO、MoO 2、B 2O 3、SnO 2、Fe 2O 3、ZnO、SiO 2或WO 3中的至少一种。
优选地,步骤(2)中,所述混合的转速为300-500r/min,混合的时间为0.5-1.5h。
优选地,步骤(2)中,所述第一次烧结的过程为:通入压强为0.15-0.5Mpa的空气/氧气,以升温速率为0.5-5.0℃/min将温度升到450-800℃进行预烧结3-8h,继续以相同的升温速率升温至850℃-950℃烧结,保温8-15h,自然冷却至室温。
第一次烧结后得到晶格中有掺杂元素和晶格之间有较多残锂的多晶颗粒材料。
优选地,步骤(2)中,所述粉碎的过程为:依次进行旋轮磨、气流磨粉碎。进一步地,所述旋轮磨用于将待破碎物料破碎至粒径为1-2mm。
优选地,步骤(3)中,所述第二掺杂剂为以下至少一种掺杂元素的氧化物:Zr、Ni、Al、Cu、Co、Sr、Mn、Y、Ti、Mg、Mo、B、Sn、Fe、Zn、Si或W;所述掺杂元素的总含量为1000-10000ppm。
进一步优选地,所述第二掺杂剂为ZrO 2、NiO、Al 2O 3、CuO、CoO、Co 3O 4、SrO、MnO 2、Y 2O 3、TiO 2、MgO、MoO 2、B 2O 3、SnO 2、Fe 2O 3、ZnO、SiO 2或WO 3中的至少一种。
第二次烧结之后,在单晶的表面形成表面梯度掺杂。
优选地,步骤(3)中,所述第二次烧结的过程为:通入压强为0.15-0.5Mpa的空气/氧气,以升温速率为0.5-5.0℃/min将温度升到650-950℃进行预烧结3-8h,降温为自然冷却至室温,即得。
优选地,步骤(3)中,所述包覆剂为以下至少一种包覆元素的氧化物:Zr、Ni、Al、Cu、Co、Sr、Mn、Y、Ti、Mg、Mo、B、Sn、Fe、Zn、Si或W;所述包覆元素的总含量为1000-5000ppm。
进一步优选地,所述包覆剂为ZrO 2、NiO、Al 2O 3、CuO、CoO、Co 3O 4、SrO、MnO 2、Y 2O 3、TiO 2、MgO、MoO 2、B 2O 3、SnO 2、Fe 2O 3、ZnO、SiO 2或WO 3中的至少一种。
优选地,步骤(3)中,所述第三次烧结的过程为:通入压强为0.15-0.5Mpa的空气/氧气,以升温速率为0.5-5.0℃/min将温度升到450-650℃进行预烧结1-6h,降温为自然冷却至室温。
一种电池,包括所述的单晶三元正极材料。
相对于现有技术,本发明的有益效果如下:
1、本发明的单晶三元正极材料LiNi xCo yMn zM (1-x-y-z)O c@Li aN dO b是一种核壳结构的单晶 材料,表面残锂低、内外部结构稳定,能量密度高,循环性能和动力学性能优异,通过先进行掺杂形成快离子导体,再进行表面梯度掺杂和包覆,形成一种表面残锂含量少,能够补充电池循环过程中锂源丢失的包覆层和快离子导电层,从而提高正极材料在高压下电化学性能。
2、本发明通过第一次烧结使锂源与第一掺杂剂反应形成快离子导体,改善材料的电子和离子传输通道,降低局部过电位而影响材料结构稳定同时提高材料的离子和电子传输动力学性能。第二次烧结,在单晶的表面形成表面梯度掺杂(一种结构稳定的包覆层),这个包覆层的晶体结构与内部的结构接近,即使制备的壳厚度很小,也不会在充放电过程中体积膨胀或收缩导致材料的表层脱落,这样达到稳定单晶的表面,另外高温也会将破碎成单晶样品过程中产生的微粉与表面残留的锂源反应形成正极材料,降低材料的BET和残锂,在电池中降低材料表面副反应,改善电池的循环性能和产气性能和阻抗增长。
3、本发明的第三次烧结,单晶材料表面的残余锂源与一些元素(包覆剂的元素)反应,形成一种补充在充放电过程中的晶格锂的损失的补锂剂,特别是在高电压导致的脱锂较深的情况下,将材料表面多余的残锂变成有利的补锂剂或者快离子通道,会明显改善单晶材料在电池中循环性能和倍率性能。
4、本发明在制备单晶材料过程中,通过提高锂与前驱体金属元素的摩尔配比降低了材料中的锂和镍元素的混排,得到内部结构的完整性单晶三元材料;另外在晶格中掺杂其他元素,稳定材料内部的晶体结构,高的锂与前驱体金属元素的摩尔配比会有未反应的锂源,变成有利的快离子导体和补锂剂,提高材料的倍率以及循环性能,另外稳定的壳核结构在保证容量的基础上,对材料的内部以及表面都形成稳定的结构,改善材料的BET(比表面积)和残锂,降低电池中材料与电解液的界面副反应的发生,进而改善循环以及产气性能。
附图说明
图1为实施例1和对比例1制备的单晶正极材料的物相XRD图;
图2为实施例1制备的单晶正极材料的物相SEM图;
图3为对比例2制备的正极材料的SEM图;
图4为对比例3制备的正极材料的SEM图;
图5为实施例1、对比例1、对比例2和对比例3制备的单晶三元正极材料的循环性能图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例的单晶三元正极材料,其化学式为LiNi 0.596Co 0.05Mn 0.35M 0.004O 2@Li 2NO 4;其中M为Zr和W;N为Zr、Al和W;单晶颗粒平均粒径为1.5-3μm、比表面积为0.4-0.8cm 2/g。
本实施例的单晶三元正极材料的制备方法,具体步骤如下:
(1)将NiSO 4、CoSO 4、MnSO 4按照Ni:Co:Mn摩尔比为0.60:0.05:0.35配成金属离子总浓度为1.6mol/L的混合溶液,再配制10mol/L的NaOH溶液;
(2)将混合溶液通入反应釜中,再将NaOH溶液和氨水溶液通入到反应釜中搅拌反应70h,调节反应温度为70℃,搅拌速度为500r/min,并保持反应釜内pH为9.5-12.0,过滤、用水洗涤后,在120℃下真空干燥24h,得到粒径分布D50=3.8-4.5μm片状多孔的前驱体;
(3)将3kg前驱体与碳酸锂、ZrO 2和WO 3混合(碳酸锂中锂与前驱体的金属摩尔比(即配锂比)为1.15,Zr和W的总含量为4000ppm),在0.2MPa的空气条件下,进行第一次烧结,以升温速率是3℃/min,升温至750℃,保温5h,继续升温至950℃烧结,保温12h,降温程序是随炉冷却至室温,再经过破碎和过300目筛,得到锂镍混排程度低和结构稳定的单晶三元正极材料;
(4)将粉碎后的单晶三元正极材料与ZrO 2混合(Zr的含量为2000ppm),在0.2MPa的空气条件下,进行第二次烧结,以升温速率是3℃/min,从室温升至750℃,保温4h,冷却至室温,得到表面梯度掺杂金属的单晶材料;
(5)将第二次烧结后的单晶材料与Al 2O 3、WO 3混合(Al和W的总含量为4000ppm),在0.2MPa的空气条件下,进行第三次烧结,以升温速率是3℃/min,升温至450℃,保温5h,冷却至室温,得到单晶三元正极材料。
本实施例的单晶三元正极材料的物相XRD分析如图1所示,形貌如图2所示;从图2可得,第三次烧结之后,在单晶的表面形成一层均匀包覆层。
通过上述步骤得到一种在高电压条件下,结构稳定、容量较高,循环性能和动力学性能优的三元单晶正极材料。
将正极材料、导电剂SP和粘结剂PVDF以8:1:1的比例(总质量20g)混合后加入20g的NMP有机溶剂溶液中,得到混合液,将混合液搅拌,得到的料浆以200μm的厚度均匀地涂布在8μm的铝箔上,在120℃的真空干燥箱中干燥4h,将干燥的极片在30T的辊压机上压实,最后剪切成直径14mm的圆形正极片,圆片中的活性物质质量大约为15.00g,将切好的正极片、电解液和隔膜组装成纽扣电池,静止后测试电池的电化学性能,测试参考电流密度1C=190mA/g。
实施例2
本实施例的单晶三元正极材料,其化学式为LiNi 0.799Co 0.1Mn 0.1M 0.001O 2@Li 2NO 4;其中M为Zr和W;N为Zr、Al和W;单晶颗粒平均粒径为1.5-3μm、比表面积为0.4-0.8cm 2/g。
本实施例的单晶三元正极材料的制备方法,具体步骤如下:
(1)将NiSO 4、CoSO 4、MnSO 4按照Ni:Co:Mn摩尔比为0.80:0.10:0.10配成金属离子总浓度为1.6mol/L的混合溶液,再配制10mol/L的NaOH溶液;
(2)将混合溶液通入反应釜中,再将NaOH溶液和氨水溶液通入到反应釜中搅拌反应70h,调节反应温度为70℃,搅拌速度为500r/min,并保持反应釜内pH为10,过滤、用水洗涤后,在120℃下真空干燥24h,得到粒径分布D50=3.8-4.5μm片状多孔的前驱体;
(3)将3kg前驱体与碳酸锂、ZrO 2和WO 3混合(碳酸锂中锂与前驱体的金属摩尔比为1.15,Zr和W的总含量为4000ppm),在0.2MPa的空气条件下,进行第一次烧结,以升温速率是3℃/min,升温至750℃,保温5h,继续升温至950℃烧结,保温12h,降温程序是随炉冷却至室温,再经过破碎和过300目筛,得到锂镍混排程度低和结构稳定的单晶三元正极材料;
(4)将粉碎后的单晶三元正极材料与ZrO 2混合(Zr的含量为2000ppm),在0.2MPa的空气条件下,进行第二次烧结,以升温速率是3℃/min,从室温升至750℃,保温4h,冷却至室温,得到表面梯度掺杂金属的单晶材料;
(5)将第二次烧结后的单晶材料与Al 2O 3、WO 3混合(Al和W的总含量为4000ppm),在0.2MPa的空气条件下,进行第三次烧结,以升温速率是3℃/min,升温至450℃,保温5h,冷却至室温,得到单晶三元正极材料。
通过上述步骤得到一种在高电压条件下,结构稳定、容量较高,循环性能和动力学性能优的三元单晶正极材料。
将正极材料、导电剂SP和粘结剂PVDF以8:1:1的比例(总质量20g)混合后加入20g的NMP有机溶剂溶液中,得到混合液,将混合液搅拌,得到的料浆以200μm的厚度均匀地涂布在8μm的铝箔上,在120℃的真空干燥箱中干燥4h,将干燥的极片在30T的辊压机上压实,最后剪切成直径14mm的圆形正极片,圆片中的活性物质质量大约为15.00g,将切好的正极片、电解液和隔膜组装成纽扣电池,静止后测试电池的电化学性能,测试参考电流密度1C=190mA/g。
对比例1
本对比例的单晶三元正极材料的制备方法,具体步骤如下:对比例1步骤与实施例1几乎相同,只是将实施例步骤(3)中的配锂比改为1.05。
对比例1方法得到的正极材料的XRD如图1所示。
对比例2
本对比例的单晶三元正极材料的制备方法,具体步骤如下:对比例2的材料制备与实例 1几乎相同,只是将实施例步骤(4)去掉。
对比例2方法得到的正极材料形貌如图3所示。
对比例3
本对比例的一种单晶三元正极材料的制备方法,具体步骤如下:对比例3的材料制备与实例1几乎相同,只是将实施例步骤(5)去掉。
对比例3方法得到的正极材料形貌如图4所示。
对比例4
本对比例的一种单晶三元正极材料的制备方法,具体步骤如下:步骤4和5的ZrO 2、Al 2O 3、WO 3不变,仅仅是将两次工艺经由步骤4的一步掺杂工艺实现。
对比例5
本对比例的一种单晶三元正极材料的制备方法,具体步骤如下:步骤4和5的ZrO 2、Al 2O 3、WO 3不变,仅仅是将两次工艺经由步骤5的一步包覆工艺实现。
实施例1与对比例1-3分析:
图1是实施例1和对比例1的XRD数据,(006)/(102)和(108)/(110)晶面峰分离明显,说明二个材料都具有较高的结晶度,另外,XRD中(003)/(104)晶面峰强度比均大于1.2,说明二个材料均为较好的层状晶体结构以及较小的锂镍混排;XRD中实施例1的峰强和(003)/(104)峰比相对于对比例1强说明实施例1的材料的结晶性会更优,和锂镍混排程度更低,同时实施例1峰位比对比例1峰位偏左,说明材料的层间距较大,上述结果说明相对较高的配锂比对材料的结构完整以及材料的层间距有改善,说明其对锂离子的脱出和进入比较有利,锂离子利用率提高和扩散系数大的原因,对材料的动力学影响大;图2是实施例1制备的单晶三元正极材料,在材料的表面有一层保护层,这个保护层在形成的过程中会消耗表面残锂和因粉碎过程产生的微粉,对改善电池的产气有利,第二这个保护层可以补充在高电压下由于晶格里面的锂副反应导致损失,第三这个保护层可以隔绝电解液与电池正极材料之间的副反应,因此上述保护层能够明显改善材料的循环性能以及容量;图3为对比例2制备的单晶三元正极材料的SEM图,材料的表面有很多因粉碎产生的微粉;图4为对比例3制备的单晶三元正极材料的SEM图,材料在高温表面掺杂,形成的材料的表面也比较光滑,微粉较少,明显看到材料表面残锂;图5为实施例1和对比例1-3制备材料的循环性能结果,从材料的表面可以明显看到,实施例1制备的材料的循环较好,容量最高;实施例1和对比例1-3正极材料扣式半电池首圈测试结果,如表1所示。
表1实施例1与对比例1-3数据
Figure PCTCN2022112237-appb-000001
Figure PCTCN2022112237-appb-000002
表1为实施例1和对比例1-3的正极材料的电化学性能的比较,实施例1在最高电压为4.45V,0.1C首次放电比容量为194.7mAh/g,放电效率为89.2%;这明显高于对比例的正极材料比容量以及效率,通过多配锂,明显改善材料的锂镍混排和晶格间距,同时掺杂稳定三元材料晶体结构,另外通过表层的掺杂构建一层更稳定的壳,保护内部材料的结构稳定,同时包覆将单晶材料表面不利的残锂转化为有利的快离子导电网络或补锂剂,从而让锂离子脱出和嵌入能垒降低,使其材料的首圈比容量以及效率提高。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种单晶三元正极材料,其特征在于,所述单晶三元正极材料的化学式为LiNi xCo yMn zM (1-x-y-z)O c@Li aN dO b,其中0<x≤0.65,0<y≤0.15,0<z≤0.35,0<a≤6,0<b≤4,1<c≤2,1≤d<2;所述M为Zr、Ni、Al、Cu、Co、Sr、Mn、Y、Ti、Mg、Mo、B、Sn、Fe、Zn、Si或W中的至少一种;N为Zr、Ni、Al、Cu、Co、Sr、Mn、Y、Ti、Mg、Mo、B、Sn、Fe、Zn、Si或W中的至少一种。
  2. 根据权利要求1所述的单晶三元正极材料,其特征在于,所述单晶三元正极材料的化学式LiNi 0.596Co 0.05Mn 0.35M 0.004O c@Li 2N dO 4;所述M为Zr、Zn、Si或W中的至少一种;所述N为Zr、Al、Mo、Zn、Si或W中的至少一种,其中x=0.596,y=0.05,z=0.35,a=2,b=4,1<c≤2,1≤d<2。
  3. 权利要求1或2所述的单晶三元正极材料的制备方法,其特征在于,包括以下步骤:
    (1)将镍盐、锰盐、钴盐混合,再加入沉淀剂和络合剂,反应,固液分离,取固相得到前驱体;
    (2)将所述前驱体与锂源、第一掺杂剂混合,进行第一次烧结,粉碎,得到单晶材料;
    (3)将所述单晶材料和第二掺杂剂混合,进行第二次烧结,再加入包覆剂混合,进行第三次烧结,得到单晶正极材料。
  4. 根据权利要求3所述的制备方法,其特征在于,步骤(1)中,所述镍盐为硫酸镍、氯化镍、硝酸镍中的至少一种;所述锰盐为硫酸锰、氯化锰、硝酸锰中的至少一种;所述钴盐为硫酸钴、氯化钴、硝酸钴中的至少一种。
  5. 根据权利要求3所述的制备方法,其特征在于,步骤(2)中,所述锂源为LiOH、Li 2CO 3、LiNO 3或CH 3COOLi中的至少一种。
  6. 根据权利要求3所述的制备方法,其特征在于,步骤(2)中,所述锂源中锂的摩尔数与前驱体中镍、钴、锰的总摩尔数比为1:(1.06-1.25)。
  7. 根据权利要求3所述的制备方法,其特征在于,步骤(2)中,所述第一掺杂剂为以下至少一种掺杂元素的氧化物:Zr、Ni、Al、Cu、Co、Sr、Mn、Y、Ti、Mg、Mo、B、Sn、Fe、Zn、Si或W;所述掺杂元素的总含量为300-5000ppm。
  8. 根据权利要求3所述的制备方法,其特征在于,步骤(3)中,所述第二掺杂剂为以下至少一种掺杂元素的氧化物:Zr、Ni、Al、Cu、Co、Sr、Mn、Y、Ti、Mg、Mo、B、Sn、Fe、Zn、Si或W;所述掺杂元素的总含量为1000-10000ppm;步骤(3)中,所述包覆剂为以下至少一种包覆元素的氧化物:Zr、Ni、Al、Cu、Co、Sr、Mn、Y、Ti、Mg、Mo、B、Sn、Fe、Zn、Si或W;所述包覆元素的总含量为1000-5000ppm。
  9. 根据权利要求3所述的制备方法,其特征在于,步骤(3)中,所述第二次烧结的过程为:通入压强为0.15-0.5Mpa的空气/氧气,以升温速率为0.5-5.0℃/min将温度升到650-950℃进行预烧结3-8h,自然冷却至室温。
  10. 一种电池,其特征在于,包括权利要求1或2所述的单晶三元正极材料。
PCT/CN2022/112237 2021-10-29 2022-08-12 一种单晶三元正极材料及其制备方法和应用 WO2023071409A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111276497.6A CN114243014A (zh) 2021-10-29 2021-10-29 一种单晶三元正极材料及其制备方法和应用
CN202111276497.6 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023071409A1 true WO2023071409A1 (zh) 2023-05-04

Family

ID=80743477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112237 WO2023071409A1 (zh) 2021-10-29 2022-08-12 一种单晶三元正极材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114243014A (zh)
WO (1) WO2023071409A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080416A (zh) * 2023-10-16 2023-11-17 宁波容百新能源科技股份有限公司 一种正极材料及其制备方法、锂离子电池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114243014A (zh) * 2021-10-29 2022-03-25 广东邦普循环科技有限公司 一种单晶三元正极材料及其制备方法和应用
CN114843502B (zh) * 2022-05-16 2023-08-01 北京卫蓝新能源科技有限公司 一种高倍率单晶高镍正极材料及其制备方法和应用
CN114927671A (zh) * 2022-06-17 2022-08-19 远景动力技术(江苏)有限公司 正极活性材料、其制备方法、电化学装置和电子设备
CN115072806B (zh) * 2022-07-22 2024-05-07 宁波容百新能源科技股份有限公司 一种正极活性材料、正极浆料、正极片及二次电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118991A (zh) * 2015-08-27 2015-12-02 北大先行科技产业有限公司 一种锂离子二次电池正极材料及其制备方法
CN105938917A (zh) * 2016-07-01 2016-09-14 深圳市振华新材料股份有限公司 锂离子二次电池钴酸锂正极材料及其制法和应用
CN108123109A (zh) * 2016-11-28 2018-06-05 华为技术有限公司 钴酸锂正极材料及其制备方法以及锂离子二次电池
CN108878799A (zh) * 2018-04-24 2018-11-23 广东邦普循环科技有限公司 一种介孔硅酸铝锂包覆的掺杂型单晶三元正极材料及其制备方法
CN114243014A (zh) * 2021-10-29 2022-03-25 广东邦普循环科技有限公司 一种单晶三元正极材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118991A (zh) * 2015-08-27 2015-12-02 北大先行科技产业有限公司 一种锂离子二次电池正极材料及其制备方法
CN105938917A (zh) * 2016-07-01 2016-09-14 深圳市振华新材料股份有限公司 锂离子二次电池钴酸锂正极材料及其制法和应用
CN108123109A (zh) * 2016-11-28 2018-06-05 华为技术有限公司 钴酸锂正极材料及其制备方法以及锂离子二次电池
CN108878799A (zh) * 2018-04-24 2018-11-23 广东邦普循环科技有限公司 一种介孔硅酸铝锂包覆的掺杂型单晶三元正极材料及其制备方法
CN114243014A (zh) * 2021-10-29 2022-03-25 广东邦普循环科技有限公司 一种单晶三元正极材料及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080416A (zh) * 2023-10-16 2023-11-17 宁波容百新能源科技股份有限公司 一种正极材料及其制备方法、锂离子电池
CN117080416B (zh) * 2023-10-16 2024-02-20 宁波容百新能源科技股份有限公司 一种正极材料及其制备方法、锂离子电池

Also Published As

Publication number Publication date
CN114243014A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2022083120A1 (zh) 一种锂离子电池正极材料及其制备方法
CN110718688B (zh) 一种单晶三元正极材料及其制备方法
WO2023071409A1 (zh) 一种单晶三元正极材料及其制备方法和应用
CN110931768B (zh) 一种高镍类单晶锂离子电池正极材料及制备方法
EP3557668A1 (en) Ternary material and preparation method therefor, battery slurry, positive electrode, and lithium battery
CN113603154B (zh) 一种高电压镍钴锰三元前驱体及其制备方法
CN112018372A (zh) 一种单晶三元正极材料及其制备方法以及锂离子电池
CN110233250A (zh) 一种单晶颗粒三元正极材料的制备方法
CN111564606B (zh) 一种锂离子电池用包覆型多元正极材料、其制备方法及用途
CN110391417B (zh) 一种类单晶富锂锰基正极材料的制备方法
KR20100057235A (ko) 리튬이차 전지용 금속 복합 산화물 제조 방법 및 이를 포함하는 양극활물질
CN113903907B (zh) 一种钨包覆及掺杂的单晶富镍三元正极材料的制备方法
CN113113590B (zh) 一种核壳结构的单晶正极材料及其制备方法
WO2023221625A1 (zh) 大粒径单晶三元正极材料及其制备方法和应用
CN114804235B (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
CN112701276A (zh) 一种四元多晶正极材料及其制备方法和应用
CN115863604A (zh) 一种正极材料及包括该正极材料的正极片和电池
CN115395007A (zh) 一种层状-尖晶石复合相单晶富锂锰基正极材料及其应用
CN116986649A (zh) 低残碱钠电正极材料及制备方法、钠离子电池
CN112614988B (zh) 一种正极材料及其制备方法与用途
CN115676911A (zh) 单晶三元正极材料及其制备方法和锂离子电池
CN112993236A (zh) 一种单颗粒锰酸锂正极材料及其制备方法
CN113745472A (zh) 一种单晶三元正极材料的制备方法及三元锂离子电池
CN116053446A (zh) 一种复合掺杂改性的镍基正极材料及其制备方法
CN115188941A (zh) 多元正极材料及其制备方法和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885309

Country of ref document: EP

Kind code of ref document: A1