WO2023068283A1 - コロイド結晶及びその製造方法 - Google Patents

コロイド結晶及びその製造方法 Download PDF

Info

Publication number
WO2023068283A1
WO2023068283A1 PCT/JP2022/038829 JP2022038829W WO2023068283A1 WO 2023068283 A1 WO2023068283 A1 WO 2023068283A1 JP 2022038829 W JP2022038829 W JP 2022038829W WO 2023068283 A1 WO2023068283 A1 WO 2023068283A1
Authority
WO
WIPO (PCT)
Prior art keywords
colloidal
particles
colloidal particles
colloidal crystal
substrate
Prior art date
Application number
PCT/JP2022/038829
Other languages
English (en)
French (fr)
Inventor
淳平 山中
彰子 豊玉
透 奥薗
柚里奈 青山
彩美 松尾
達也 石川
功一郎 兵頭
正弥 西田
Original Assignee
公立大学法人名古屋市立大学
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人名古屋市立大学, 株式会社村田製作所 filed Critical 公立大学法人名古屋市立大学
Priority to JP2023554714A priority Critical patent/JPWO2023068283A1/ja
Publication of WO2023068283A1 publication Critical patent/WO2023068283A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/18Quartz

Definitions

  • the present invention relates to a colloidal crystal having a four-fold symmetrical structure and a method for producing the same.
  • a colloid is a state in which a dispersed phase is dispersed in a dispersion medium, and when the dispersion medium is liquid, it is called a colloidal dispersion.
  • "Charged colloidal particles” having charges on their surfaces spontaneously and regularly arrange themselves in a colloidal dispersion liquid with a distance between them due to the electrostatic repulsive force acting between the particles. This structure is called a charged colloidal crystal.
  • a charged colloidal crystal is known to have either a body-centered cubic (BCC) structure or a face-centered cubic (FCC) structure depending on conditions (Non-Patent Document 1).
  • colloidal crystals from colloidal dispersions are self-organizing as colloidal particles try to adopt a thermodynamically stable structure. Therefore, unlike the lithographic method, etc., there is an advantage that a precise processing technique is not required. Also, by selecting the diameter of the colloidal particles, it can be used as a photonic material corresponding to various wavelengths. For this reason, many studies have been made on the production of colloidal crystals.
  • Non-Patent Document 2 a six-fold symmetrical structure is formed by adjusting the ratio of the particle diameter to the length of the gap in a confined space (that is, a geometrically restricted space) with a gap of about 1 to 100 ⁇ m. , a four-fold symmetrical structure is formed (see FIG. 20).
  • the present invention has been made in view of the above-described conventional circumstances, and provides a colloidal crystal having a four-fold symmetrical structure that can stably exist even in a space that is not geometrically constrained, and a method for producing the same.
  • the problem to be solved is to provide
  • the colloidal crystal of the present invention exists in a geometrically unconstrained space and has a four-fold symmetrical structure.
  • a four-fold symmetrical structure is generated in a geometrically constrained closed space (for example, a constrained space between two planes facing each other) in a dispersion of colloidal particles.
  • the colloidal crystal of the present invention can stably assume a four-fold symmetrical structure not in such a geometrically constrained closed space but in an unconstrained space. Therefore, when the colloidal crystal is used for an optical element or the like, there is no need for the colloidal crystal to exist in a geometrically constrained closed space, which is advantageous in that it is easy to use.
  • the colloidal crystal of the present invention can be a two-dimensional colloidal crystal consisting of a single layer or a three-dimensional colloidal crystal consisting of multiple layers. Furthermore, in the three-dimensional colloidal crystal, the first layer made of the first colloidal particles and the second layer made of the second colloidal particles are alternately repeated to form multiple layers, and the refractive index of the first colloidal particles It can also be a colloidal crystal in which the refractive index of the second colloidal particles and the refractive index of the dispersion medium are the same. In this case, light passing through the colloidal crystal is not refracted by the second colloidal particles forming the second layer, and the second layer becomes transparent to light.
  • the colloidal crystal of the invention can be produced as follows. That is, a crystallization step of filling a dispersion of first colloidal particles between a substrate and a counter plate facing the substrate to precipitate charged colloidal crystals having a four-fold symmetrical structure composed of the first colloidal particles. and a fixing step of electrostatically adsorbing and fixing the charged colloidal crystal having a four-fold symmetrical structure composed of a single layer of the first colloidal particles to the substrate.
  • a dispersion of second colloidal particles having a charge opposite to that of the first colloidal particles is added to the first colloidal particles.
  • a charged colloidal crystal with a four-fold symmetrical structure in which two layers are stacked can also be obtained by contacting the single layer of particles and electrostatically adsorbing the second colloidal particles onto the single layer of the first colloidal particles. can.
  • a dispersion liquid of third colloidal particles having a charge opposite to that of the second colloidal particles is brought into contact with the single layer of the second colloidal particles as a third layer forming step. It is also possible to electrostatically adsorb the third colloidal particles onto the single layer of the second colloidal particles to form a charged colloidal crystal with a four-fold symmetrical structure in which three layers are stacked.
  • a charged colloidal crystal having a four-fold symmetrical structure in which four or more layers are laminated can be obtained.
  • the surfaces of the colloidal particles in the dispersion of the colloidal particles on the substrate or the colloidal particles are chemically modified with a modifying group capable of imparting an electric charge, and the immobilizing step is performed on the surface of the colloidal particles in the dispersion of the colloidal particles present between the substrate and the counter plate. It can also be done by excluding ions. Ion exclusion facilitates electrostatic attraction of colloidal particles to the substrate.
  • an ion exchange resin is placed around the substrate and the counter plate to adsorb the ions, or the substrate and the counter plate are immersed in pure water for diffusion and convection.
  • the magnitude and sign of the surface charges of the colloidal particles and the substrate can be changed by changing the pH value of the dispersion liquid of the colloidal particles existing between the substrate and the counter plate. can be changed to electrostatically attract the colloidal particles and the surface charges of the substrate with opposite signs.
  • the silane coupling agent aminopropyltriethoxysilane APTES
  • APTES silane coupling agent aminopropyltriethoxysilane
  • Glass substrates surface-modified with APTES are negatively charged at pH above about 7 and positively charged below pH 7 (Aoyama, Y.; Toyota, A.; Okuzono, T.; Yamanaka, J., Langmuir, et al. 2019, l35 (28), 9194-9201.).
  • the negatively charged colloidal particles can be electrostatically attracted to the substrate.
  • a method for reducing the pH in the dispersion of colloidal particles for example, a method of immersing the substrate and the opposing plate in an aqueous solution of hydrochloric acid to guide the hydrochloric acid to the colloidal dispersion by diffusion or convection can be adopted.
  • FIG. 1 is a schematic diagram of a colloidal crystal of Embodiment 1.
  • FIG. 2 is a process chart showing the production process of the colloidal crystal of Embodiment 1.
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a colloidal crystal with four-fold symmetry (a) and a colloidal crystal with six-fold symmetry (b). It is a phase diagram obtained from theoretical calculation.
  • 2 is a schematic diagram of a colloidal crystal of Embodiment 2.
  • FIG. FIG. 4 is a process drawing showing a production process of the colloidal crystal of Embodiment 2.
  • FIG. 2 is a cross-sectional view showing a colloidal crystal preparation cell 20 and its surroundings.
  • FIG. 3D images of colloidal crystals obtained by LSM. It is a phase diagram obtained from a three-dimensional image. Microscopic image of Example 1 and radial distribution function calculated from the image (upper: microscopic image and radial distribution function of colloidal crystal with four-fold symmetry, lower: microscopic image of colloidal crystal with six-fold symmetry and radial distribution function).
  • FIG. 4 is a microscope image of colloidal crystals of Example 2 (left side: four-fold symmetric colloidal crystal, right side: six-fold symmetrical colloidal crystal).
  • 3 is a microscope image of colloidal crystals of Example 3 (left side: 4-fold symmetric colloidal crystal, right side: 6-fold symmetrical colloidal crystal).
  • 4 is a microscope image of colloidal crystals of Example 4 (left side: 4-fold symmetric colloidal crystal, right side: 6-fold symmetrical colloidal crystal).
  • 4 is a microscope image of colloidal crystals for Example 5.
  • FIG. 4 is a microscope image of colloidal crystals for Example 6.
  • Adsorption curves with decreasing base concentration in the confined space (bars show standard deviation in experimental values, curves show calculated values based on the diffusion equation for different initial ion concentrations C*).
  • 4 is an optical microscope image of each layer in the colloidal crystal of Example 7.
  • FIG. Cross-sectional images of the colloidal crystal of Example 7 obtained by a confocal optical microscope when the medium is ethylene glycol and when the water-ethylene glycol mixed solution is adjusted to have the same refractive index as the polystyrene of the second layer. be.
  • FIG. 4 is a schematic diagram showing that different colloidal crystals are formed by adjusting the ratio of particle size and gap length.
  • FIG. 1 A schematic diagram of a colloidal crystal having a four-fold symmetrical structure of Embodiment 1 is shown in FIG.
  • This colloidal crystal is a two-dimensional colloidal crystal with a four-fold symmetrical pattern, and is composed of a single layer of (100) plane of FCC (face-centered cubic structure) (see Fig. 1(b)). It is Note that the colloidal particles forming the colloidal crystal are not in contact with each other and are kept at a constant distance.
  • This colloidal crystal can be produced by a series of steps (crystallization step S1 and immobilization step S2) shown in FIG.
  • Step S1 A substrate 1 and a counter plate 2 facing each other in parallel are prepared, and a dispersion liquid of colloidal particles in which colloidal particles 3 are dispersed in a dispersion medium 4 is dropped onto the substrate 1, and then the counter plate 2 is placed thereon ( See FIG. 2(a)).
  • the type of colloidal particles 3 is not particularly limited, and inorganic particles (e.g.
  • Dispersions of colloidal particles can be prepared by dispersing commercially available colloidal particles in an appropriate dispersion medium such as water, by using inorganic particles synthesized by the sol-gel method, or by polymerizing monomers such as styrene by emulsion polymerization. Particles of relatively uniform size can be used as colloidal particles.
  • Colloidal particles may also be particles obtained by coating the surfaces of non-metallic particles with a metal (for example, ceramic or polymer particles with a noble metal such as Au).
  • a metal for example, ceramic or polymer particles with a noble metal such as Au.
  • the dispersion medium include water, but liquids other than water can also be used. For example, formamides (eg dimethylformamide) and alcohols (eg ethylene glycols) can be used. These may be mixed with water.
  • the colloidal particles 3 in the colloidal particle dispersion between the substrate 1 and the counter plate 2 form charged colloidal crystals over time (Fig. 2(b)).
  • This is described in Non-Patent Document 2 and can be derived from theoretical calculations. That is, the colloidal particles are assumed to be rigid bodies, and the (111) or (100) plane of the FCC structure is assumed to maximize the density of the colloidal particles in the confined space.
  • the interaction between colloidal particles is calculated by considering only the rigid-sphere potential, and approximating the pressure p to the high-pressure limit, which depends only on the size of the gap h, as shown in Equation (1).
  • g is the gravitational acceleration
  • is the density difference between the colloidal particles and the dispersion medium
  • is the volume fraction of the colloidal particles.
  • the 4-fold and 6-fold symmetrical structures are geometrically calculated to determine the volume fractions.
  • r be the distance between particles
  • a be the radius of a colloidal particle
  • d r/2a.
  • indicates a four-fold symmetrical structure.
  • the volume fraction ⁇ n ⁇ of the colloidal particles in the case of forming a four-fold symmetrical structure can be obtained from the following equation (3).
  • the volume fraction ⁇ n ⁇ of the colloidal particles in the case of forming a six-fold symmetrical structure can be obtained from the following formula (5).
  • the volume fractions that can be obtained by changing the size ratio d are determined, and the plotted graph is shown in FIG.
  • the finely spaced dotted line is the four-fold symmetrical structure
  • the loosely spaced dotted line is the volume fraction change with respect to d of the six-fold symmetrical structure.
  • the particle size of the colloidal particles is preferably 600 nm or less, more preferably 300 nm or less. This is because, in the case of colloidal particles having a large particle diameter exceeding 600 nm, they tend to settle under the influence of gravity, resulting in poor stability of the colloidal particle dispersion.
  • the coefficient of variation of the particle size of the colloidal particles is preferably 20% or less, more preferably 10% or less, and most preferably 5% or less. This is because, if the variation coefficient of the particle size becomes large, colloidal crystals become difficult to precipitate, lattice defects and non-uniformity of the colloidal crystals increase, and it becomes difficult to obtain high-quality colloidal crystals.
  • the materials of the substrate 1 and the counter plate 2 are not particularly limited, but smooth glass plates, ceramic plates, plastic plates, metal plates, etc. can be used, for example.
  • the precipitated charged colloidal crystals having a four-fold symmetrical structure are electrostatically adsorbed and immobilized (see FIG. 2(c)).
  • the surface of the substrate 1 or the colloidal particles 3 is modified with a silane coupling agent having an amino group or the like, and an alkali such as NaOH, sodium hydrogen carbonate or sodium carbonate is added to the dispersion medium.
  • an alkali such as NaOH, sodium hydrogen carbonate or sodium carbonate
  • the substrate 1 and the opposing plate 2 may be immersed in water, and cations existing between the substrate 1 and the opposing plate 2 may be removed by diffusion or convection. In this case, the cations can be removed more quickly by putting an ion exchange resin in the water to be immersed.
  • Embodiment 2 The colloidal crystal of Embodiment 2, as shown in FIG. It consists of two layers, a single layer B consisting of colloidal particles 13b stacked in contact with four colloidal particles 13a of a single layer A located above.
  • This colloidal crystal can be produced according to the process chart shown in FIG. First, the crystallization step S1 and the immobilization step S2 shown in Embodiment 1 are performed to form a colloidal crystal having a four-fold symmetrical structure consisting of a single layer on the substrate 1 . Then, the opposing plate 2 is removed, and the substrate 1 is immersed in pure water to wash off the adhering dispersion medium.
  • the second layer composed of colloidal particles 13b is electrostatically adsorbed onto the first layer composed of colloidal particles 13a (second layer forming step S3).
  • the colloidal particles 13b are arranged directly above the center of the square crystal lattice of the colloidal particles 13a while being in contact with the colloidal particles 13a due to electrostatic attraction.
  • a colloid having a four-fold symmetrical structure formed of two layers a single layer B consisting of colloidal particles 13b stacked in contact with four colloidal particles 13a of a single layer A. crystals can be obtained.
  • the colloidal particles 13b having a charge opposite to that of the colloidal particles 13a for example, when the colloidal particles 13a have a negative surface charge such as silica, the surface is modified with a silane coupling agent having an amino group.
  • Silica can be used.
  • the colloidal particles 13a have a positive surface charge such as silica modified with a silane coupling agent having an amino group the colloidal particles 13b have a negative surface charge that is not surface-modified.
  • Unmodified silica, silica modified with a polymer or the like having a negative surface charge, or polystyrene having a negative surface charge can be used.
  • the colloidal crystal of Embodiment 3 is a colloidal crystal obtained by laminating a third layer of colloidal particles on the colloidal crystal of Embodiment 2 consisting of two layers.
  • a colloidal crystal having a four-fold symmetrical structure consisting of two layers is formed.
  • the opposing plate 2 is removed, and the substrate 1 is immersed in pure water to wash off the adhering dispersion medium.
  • colloidal particles 13c are electrostatically attracted onto the second layer to form the third layer (third layer forming step S4).
  • a colloidal crystal having a four-fold symmetrical structure in which three layers are stacked can be obtained (see FIG. 7(a)).
  • the substrate 1 on which the colloidal crystals of Embodiment 3 are formed is immersed in a dispersion medium having the same refractive index as the colloidal particles 13b of the second layer (shift from FIG. 7(a) to FIG. 7(b)).
  • the colloidal particles 13b become optically transparent. Therefore, optically, the colloidal crystal consists of only the first layer and the third layer (see FIG. 7(b)).
  • the Milli-Q water is ultrapure water obtained by Merck's Milli-Q (registered trademark) water maker.
  • APTES 3-aminopropyltriethoxysilane
  • colloidal Crystal Preparing Cell 20 As a cell for precipitating colloidal crystals, a colloidal crystal preparing cell 20 shown in FIG. 8 was produced.
  • This cell consists of a cover glass 21 chemically modified with APTES and a silicon sheet 22 having a thickness of 5 mm and having a square hole of 2 cm ⁇ 2 cm.
  • Colloidal crystallization step S1 500 ⁇ L of the colloidal dispersion was dropped into the recess formed by the square hole in the silicon sheet 22 and the cover glass 21 . Then, a cover glass 23 is placed inside the square hole, a quartz glass 24 is placed thereon, a weight 25 of 100 g is further placed thereon, and after standing still for 30 minutes, a confocal laser beam is placed under the cover glass 21. Observation was made by bringing the objective lens 26 of the microscope close. That is, after the colloidal dispersion was set in the colloidal crystal preparation cell 20 and allowed to stand still for 30 minutes or more, a three-dimensional image was obtained with a laser scanning microscope (LSM) (see FIG. 9).
  • LSM laser scanning microscope
  • the overlap of the 4-fold and 6-fold symmetry structures at small values of d is considered to be due to the accuracy limit of LSM.
  • the LSM image was scanned at 0.15 ⁇ m/step, and it is thought that the smaller the gap, the larger the error. Also, it is considered that the reason why d is large and ⁇ is small is that the larger the total number, the more blurred the image becomes, resulting in an error in counting the number of particles.
  • Immobilization step S2 1.5 g of an ion exchange resin (mixed bed of cation and anion exchange resins, manufactured by Bio-Rad Laboratories, Inc., AG501 X-8(D)) was put into the colloidal crystal preparation cell 20 from above. In order to prevent evaporation of water, the colloidal crystal preparation cell 20 was covered with a plastic container (not shown) and allowed to stand for several days. After confirming that the silica particles were adsorbed to the cover glass 21 as a substrate by microscopic observation, the weight 25, the quartz glass 24, and the cover glass 23 were removed.
  • an ion exchange resin mixed bed of cation and anion exchange resins, manufactured by Bio-Rad Laboratories, Inc., AG501 X-8(D)
  • the cover glass 21 was thoroughly washed with Milli-Q water, and a microscopic image of the adsorbed silica particles was taken with a sufficient amount of water added.
  • the microscopic image thus obtained was analyzed using image analysis software Image J to obtain the average distance r between the particle centers, and the volume fraction ⁇ v was calculated from Equation (7) (where a is the silica particle ).
  • the radial distribution function g(r) of the particles was obtained from the binarized image obtained by binarizing the image to black and white using image processing software Image J.
  • FIG. 11 shows a microscopic image of Example 1 using a colloidal dispersion having a silica particle volume fraction of 0.3 and a NaOH concentration of 50 mM and a radial distribution function calculated from the image.
  • two microscopic images are shown because the distance of the gap differs depending on the deflection of the cover glasses 21 and 23.
  • 11 upper left of FIG. 11
  • colloidal crystals with a six-fold symmetrical structure lower left of FIG. 11
  • Example 2 A microscopic image of Example 2 using a colloidal dispersion having a silica particle volume fraction of 0.1 and a Na 2 CO 3 concentration of 0.1 mM is shown in FIG. 12 (image size is 30 ⁇ m ⁇ 30 ⁇ m).
  • image size is 30 ⁇ m ⁇ 30 ⁇ m.
  • Example 3 A microscopic image of Example 3 using a colloidal dispersion having a silica particle volume fraction of 0.2 and a Na 2 CO 3 concentration of 1 mM is shown in FIG. 13 (image size is 30 ⁇ m ⁇ 30 ⁇ m).
  • image size is 30 ⁇ m ⁇ 30 ⁇ m.
  • Example 4 A microscopic image of Example 4 using a colloidal dispersion having a silica particle volume fraction of 0.3 and no addition of alkali is shown in FIG. 14 (image size is 50 ⁇ m ⁇ 50 ⁇ m).
  • image size is 50 ⁇ m ⁇ 50 ⁇ m.
  • Example 5 Preparation of colloidal dispersion
  • a colloidal dispersion with a particle concentration of 40 vol% and a NaOH concentration of 4 mM was prepared.
  • Cell for Colloidal Crystal Preparation The cell for colloidal crystal preparation is the same as the cell used in Examples 1 to 4, and the description thereof is omitted.
  • Colloidal crystallization step S1 Next, the colloidal crystallization step S1 was performed in the same manner as in Examples 1-4.
  • Example 6 Preparation of Colloidal Dispersion Example 6 was the same as Example 5 except that the NaOH concentration of the colloidal dispersion was 5 mM, and the description is omitted. 2) Cell for Colloidal Crystal Preparation The cell for colloidal crystal preparation is the same as the cell used in Example 5, and the description thereof is omitted. 3) Colloidal crystallization step S1 Next, a colloidal crystallization step S1 similar to that of Example 5 was performed. However, the amount of the colloidal dispersion dropped into the concave portion was 206 ⁇ L. 4) Immobilization step S2 Further, the same immobilization step S2 as in Example 5 was performed. Then, when the glass substrate was observed with a microscope, as shown in FIG. 16, colloidal crystals having a four-fold symmetrical structure and consisting of a single layer of polystyrene particles were confirmed. The glass substrate on which this colloidal crystal was formed was stored in pure water.
  • Colloidal crystallization step S1 500 ⁇ L of the colloidal dispersion was dropped into the recess formed by the square hole in the silicon sheet 22 and the cover glass 21 . Then, a cover glass 23 is placed inside the square hole, a quartz glass 24 is placed thereon, a weight 25 of 100 g is further placed thereon, and after standing still for 30 minutes, a confocal laser beam is placed under the cover glass 21. Observation was made by bringing the objective lens 26 of the microscope close.
  • Immobilization step S2 1.5 g of an ion exchange resin (mixed bed of cation and anion exchange resins, manufactured by Bio-Rad Laboratories, Inc., AG501 X-8(D)) was put into the colloidal crystal preparation cell 20 from above. Then, in order to prevent evaporation of water, the colloidal crystal preparation cell 20 was covered with a plastic container (not shown), and a single layer of a colloidal crystal having a four-fold symmetrical structure on a cover glass 21 whose substrate was silica particles was observed with a confocal laser microscope. was observed at predetermined time intervals, and the length from the peripheral edge of the cover glass 21 to the growth edge of the monolayer of the four-fold colloidal crystal growing was determined.
  • an ion exchange resin mixed bed of cation and anion exchange resins, manufactured by Bio-Rad Laboratories, Inc., AG501 X-8(D)
  • the ion concentration at any position and time is given by equation (9).
  • Ci is the initial salt concentration
  • erf is the error function.
  • the glass substrate was washed with water to remove excess dispersion, and then stored in pure water.
  • a colloidal crystal was obtained in which a single layer of red fluorescent silica particles was laminated on a single layer of polystyrene particles having a four-fold symmetrical structure.
  • Example 7 (Observation with a microscope) The colloidal crystal of Example 7 thus obtained was photographed with an optical microscope. As a result, as shown in FIG. 18, a four-fold symmetrical structure in which polystyrene particles were arranged at regular intervals was clearly recognized from the microscope image of the first layer. Also, the red fluorescent silica particles in the second layer were located right above the center of the square unit cell composed of the polystyrene particles in the first layer. Further, the polystyrene particles of the third layer were located directly above the polystyrene particles of the first layer (see FIG. 19).
  • ⁇ Replacement of dispersion medium in colloidal crystal of Example 7 3 mL of ethylene glycol was added to the substrate 1 on which colloidal crystals were formed, which was produced in Example 7, and the mixture was allowed to stand for 2 hours. Further, instead of ethylene glycol, 3 mL of a water-ethylene glycol mixed solution adjusted to have the same refractive index as the silica particles of the second layer was added and left for 30 minutes. Then, each was imaged with a confocal laser scanning microscope (Nikon, C2 type). As a result, when the medium was ethylene glycol, the first, second and third layers were clearly observed. - When the mixed solution of ethylene glycol was used as the medium, the second layer became transparent and could not be observed.
  • the colloidal crystal of the present invention can be used as a photonic material corresponding to various wavelengths by selecting the diameter of the colloidal particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】幾何学的に拘束されていない空間においても安定に存在することが可能な、四回対称構造を有するコロイド結晶及びその製造方法を提供する。 【解決手段】本発明のコロイド結晶は、幾何学的に拘束されていない空間で存在し、四回対称構造を有することを特徴としている。本発明のコロイド結晶は、基板1と該基板1に対面する対向板2との間にコロイド粒子の分散液を充填して四回対称構造の荷電コロイド結晶を析出させ(結晶化工程S1)、四回対称構造の荷電コロイド結晶を基板1に静電吸着させて固定化する(固定化工程S2)ことにより製造することができる。

Description

コロイド結晶及びその製造方法
 本発明は、四回対称構造を有するコロイド結晶及びその製造方法に関する。
 コロイドとは分散相が分散媒中に分散している状態であり、分散媒が液体の場合をコロイド分散液と言う。表面に電荷を持つ「荷電コロイド粒子」は、粒子間に働く静電反発力のため、適切な条件を選ぶと、コロイド分散液中で自発的に粒子間に距離を隔てて規則正しく配列する。この構造は荷電コロイド結晶と呼ばれる。荷電コロイド結晶は、条件により、体心立方格子(BCC)型または面心立方格子(FCC)のいずれかの構造を取ることが知られている(非特許文献1)。
 コロイド分散液からの荷電コロイド結晶の形成は、コロイド粒子が熱力学的に安定な構造をとろうとして、自己組織的に形成される。このため、リソグラフ法などとは異なり、精密な加工技術が不要であるという利点を有する。また、コロイド粒子の径を選ぶことにより、様々な波長に対応したフォトニック材料として利用することができる。このため、従来からコロイド結晶の製造について多くの研究がなされてきた。
 通常、容器の壁や基板には六回対称性を持つ面心立方格子(FCC)の(111)面が配向する。基板に配向する面が四回対称性を持つための手法として、拘束空間を利用する方法が開発されている(非特許文献2)。この方法では、1~100μm程度の隙間を有する拘束空間(すなわち幾何学的に制限された空間)において、粒子径と隙間の長さの比を調節することにより、六回対称構造が形成されたり、四回対称構造が形成されたりするという現象を利用するものである(図20参照)。
 しかし、こうした拘束空間を利用する四回対称構造のコロイド結晶の製造方法では、1~100μm程度の隙間を有する拘束空間という特殊な環境を維持しなければ、四回対称構造のコロイド結晶を維持し得ないという問題があり、コロイド結晶をフォトニック材料等に利用する場合において障害となっていた。
「コロイド結晶と形成とその応用」監修 中村浩・山中淳平、シーエムシー出版、2020年 Pieranski, P.; Strzelecki, L.; Pansu, B. Thin Colloidal Crystals. Phys. Rev. Lett. 1983, 50 (12), 900-903.
 本発明は上記従来の実情に鑑みてなされたものであり、幾何学的に拘束されていない空間においても安定に存在することが可能な、四回対称構造を有するコロイド結晶、及びその製造方法を提供することを解決すべき課題としている。
 本発明のコロイド結晶は、幾何学的に拘束されていない空間で存在し、四回対称構造を有する。上述したように、コロイド粒子の分散液を幾何学的に拘束された閉鎖空間(例えば対面する2つの平面の間という拘束された空間)において四回対称構造が生成することが知られているが、本発明のコロイド結晶は、そのような幾何学的に拘束された閉鎖空間ではなく、拘束のない空間でも安定して四回対称構造をとることができる。このため、光学素子などに利用する場合において、コロイド結晶を幾何学的に拘束された閉鎖空間に存在させる必要はなく、利用し易いという利点を有する。
 また、本発明のコロイド結晶は、単一層からなる2次元コロイド結晶としたり、多層からなる3次元のコロイド結晶としたりすることができる。さらに、3次元のコロイド結晶では、第1のコロイド粒子からなる第1層と、第2のコロイド粒子からなる第2層とが交互に繰り返して多層をなしており、第1のコロイド粒子の屈折率又は第2のコロイド粒子の屈折率と分散媒の屈折率とが同じであるコロイド結晶とすることもできる。こうであれば、コロイド結晶中を通過する光が第2層を構成する第2のコロイド粒子によって屈折することがなく、第2層が光に対して透明となるという効果を奏することができる。すなわち(100)面を第1層としてBCC結晶を基板上に積層させ、第2層を光学的に透明になるようにすれば、透明でない第1層目および3層目の粒子は、単純立方格子(S C)となる。このため、自己組織化だけでは形成することのできない単純立方格子(SC)からなるコロイド粒子の構造と、光学的に同じ構造を形成することができるという特別な効果を奏する。
 本発明のコロイド結晶は、次のように製造することができる。
 すなわち、基板と該基板に対面する対向板との間に第1のコロイド粒子の分散液を充填して、前記第1のコロイド粒子からなる四回対称構造の荷電コロイド結晶を析出させる結晶化工程と、前記第1のコロイド粒子の単一層からなる四回対称構造の荷電コロイド結晶を前記基板に静電吸着させて固定化する固定化工程とを備えるコロイド結晶の製造方法である。
 本発明のコロイド結晶の製造方法においては、固定化工程を行った後に、第2層形成工程として、第1のコロイド粒子と反対の荷電を有する第2のコロイド粒子の分散液を第1のコロイド粒子の単一層に接触させて、第2のコロイド粒子を第1のコロイド粒子の単一層上に静電吸着させることにより、2層が積層された四回対称構造の荷電コロイド結晶とすることもできる。
 また、さらに第2層形成工程を行った後、第3層形成工程として、第2のコロイド粒子と反対の荷電を有する第3のコロイド粒子の分散液を第2のコロイド粒子の単一層に接触させて、第3のコロイド粒子を第2のコロイド粒子の単一層上に静電吸着させて、3層が積層された四回対称構造の荷電コロイド結晶とすることもできる。
 さらには、第2層形成工程と、第3層形成工程とを交互に繰り返すことにより、4層以上の複数層が積層された、四回対称構造の荷電コロイド結晶とすることもできる。
 また、基板又はコロイド粒子の分散液中のコロイド粒子の表面が電荷を付与可能な修飾基で化学修飾されており、固定化工程は基板と対向板と間に存在するコロイド粒子の分散液中のイオンを排除することによって行うこともできる。イオン排除により、コロイド粒子が基板に静電吸着し易くなる。
 コロイド粒子の分散液中のイオンを排除する方法としては、例えば基板と対向板の周囲にイオン交換樹脂を置いてイオンを吸着させたり、基板と対向板を純水中に浸漬して拡散や対流によって基板と対向板との間に存在するイオンを拡散させたりすることにより、行うことができる。
 また、固定化工程を行うための、その他の方法として、基板と対向板と間に存在するコロイド粒子の分散液中のpH値を変化させることにより、コロイド粒子や基板の表面電荷の大きさや符号を変化させ、コロイド粒子と基板の表面電荷を反対符号として静電吸着させる方法を採用することもできる。例えば、シランカップリング剤であるアミノプロピルトリエトキシシラン(APTES)は弱塩基であるアミノ基を持ち、pH<7.8で正に荷電する。シリカは弱酸基であるシラノール基を有しているため、負に荷電している。APTESで表面修飾したガラス基板は、pHが約7以上では負に荷電し、7未満では正に荷電する(Aoyama,Y.;Toyotama,A.; Okuzono,T.; Yamanaka, J., Langmuir,2019,l35 (28), 9194-9201.参照)。こうして、はじめ負に荷電していた基板を正に荷電させることで、負に荷電しているコロイド粒子を基板に静電吸着させることができる。コロイド粒子の分散液中のpHを減少させる方法としては、例えば基板と対向板を塩酸水溶液に浸漬して拡散や対流により、塩酸をコロイド分散液に導くという方法を採用することができる。
実施形態1のコロイド結晶の模式図である。 実施形態1のコロイド結晶の製造工程を示す工程図である。 四回対称構造のコロイド結晶(a)及び六回対称構造のコロイド結晶(b)の模式図である 理論計算から求めた相図である。 実施形態2のコロイド結晶の模式図である。 実施形態2のコロイド結晶の製造工程を示す工程図である。 実施形態3のコロイド結晶(a)、及び実施形態3のコロイド結晶を形成させた基板1を第2層のコロイド粒子13bと同じ屈折率を有する分散媒中に浸漬した場合のコロイド結晶(b)の模式図である。 コロイド結晶調製用セル20及びその周辺を示す断面図である。 LSMによって得られたコロイド結晶の三次元画像である。 三次元画像から求めた相図である。 実施例1についての顕微鏡画像及びその画像から計算した動径分布関数である(上側:四回対称構造コロイド結晶の顕微鏡画像及び動径分布関数、下側:六回対称構造コロイド結晶の顕微鏡画像及び動径分布関数)。 実施例2についてのコロイド結晶の顕微鏡画像である(左側:四回対称構造コロイド結晶、右側:六回対称構造コロイド結晶)。 実施例3についてのコロイド結晶の顕微鏡画像である(左側:四回対称構造コロイド結晶、右側:六回対称構造コロイド結晶)。 実施例4についてのコロイド結晶の顕微鏡画像である(左側:四回対称構造コロイド結晶、右側:六回対称構造コロイド結晶)。 実施例5についてのコロイド結晶の顕微鏡画像である。 実施例6についてのコロイド結晶の顕微鏡画像である。 拘束空間内の塩基濃度の減少による吸着曲線である(バーは実験値における標準偏差を示し、曲線は様々な初期イオン濃度C*に対する拡散方程式に基づく計算値を示す)。 実施例7のコロイド結晶における各層の光学顕微鏡画像である。 実施例7のコロイド結晶において、媒質がエチレングリコールの場合と、第2層のポリスチレンと屈折率を同じとなるように調整した水-エチレングリコール混合溶液の場合の、共焦点光学顕微鏡による断面画像である。 粒子径とgapの長さの比を調節することにより、異なるコロイド結晶が形成されることを示す模式図である。
 以下、本発明を具体化した実施形態について、図面を参照しつつ説明する。
<実施形態1>
 実施形態1の四回対称構造を有するコロイド結晶の模式図を図1(a)に示す。このコロイド結晶は、四回対称構造(Four-fold Symmetric Pattern)を有する2次元コロイド結晶であり、FCC(面心立方構造)の(100)面の単一層(図1(b)参照)から構成されている。なお、コロイド結晶を構成するコロイド粒子どうしは接触しておらず、一定の距離が保たれている。このコロイド結晶は図2に示す一連の工程(結晶化工程S1及び固定化工程S2)によって製造することができる。
(結晶化工程S1)
 互いに平行に対面する基板1及び対向板2を用意し、コロイド粒子3が分散媒4に分散されたコロイド粒子の分散液を基板1の上に滴下した後、その上から対向板2を重ねる(図2(a)参照)。コロイド粒子3の種類としては特に限定はなく、無機粒子(例えばSiO2粒子、TiO2粒子、アルミナ粒子等)や有機粒子(例えば、ポリスチレン粒子、アクリル系ポリマー粒子等)や金属粒子(例えばAu粒子、Pt粒子、Pd粒子、ロジウム粒子、イリジウム粒子、ルテニウム粒子、オスミウム粒子 、レニウム粒子等の貴金属粒子)を用いることができる。コロイド粒子の分散液は、市販のコロイド用粒子を水などの適当な分散媒に分散させたり、ゾル-ゲル法などにより合成した無機粒子を用いたり、スチレン等のモノマーを乳化重合等により重合させて大きさの比較的そろった粒子をコロイド粒子として用いることができる。また、非金属粒子の表面を金属(例えばセラミックやポリマーの粒子をAu等の貴金属)でコーティングした粒子をコロイド粒子としてもよい。
 分散媒としては、例えば水が挙げられるが、水以外の液体も使用可能である。例えば、ホルムアミド類(例えば、ジメチルホルムアミド)やアルコール類(例えば、エチレングリコール類)を使用することができる。これらは水との混合液としてもよい。
 基板1と対向板2との間のコロイド粒子の分散液中のコロイド粒子3は時間の経過とともに荷電コロイド結晶が形成される(図2(b))。この場合において、形成される荷電コロイド結晶の種類は、基板1と対向板2との距離(gap)hとコロイド粒子3の粒子径(=2a)の比によって変化する。このことは、非特許文献2に記載されており、理論計算から導きだすことができる。すなわち、コロイド粒子を剛体と仮定し、拘束空間内のコロイド粒子の密度が最大になるようにFCC構造の(111)あるいは(100)面をとると仮定する。また、コロイド粒子間の相互作用は剛体球ポテンシャルのみを考慮し、さらに式(1)に示すように、圧力pがgapの大きさhのみに依存するhigh-pressure limitと近似して計算する。
Figure JPOXMLDOC01-appb-M000001
 ここで、gは重力加速度、Δμはコロイド粒子と分散媒体の密度差、ρはコロイド粒子の体積分率である。このモデルでは、四回対称構造および六回対称構造を幾何学的に計算し、体積分率を求める。粒子間距離をr、コロイド粒子の半径をaとし、d=r/2aとする。四回対称構造の模式図を図3に示す。同じ層において、粒子間距離>粒子径のとき、異なる層の粒子と接触しているが同じ層の粒子同士は接触していない(図3(a))。一方で、同じ層において、粒子間距離=粒径のとき(図3(a))、次の式(2)で求められる。コロイド粒子の最大充填率は0.74となる。
Figure JPOXMLDOC01-appb-M000002
 ここで、□は四回対称構造を示す。その結果、次に示す式(3)で四回対称構造を形成している場合のコロイド粒子の体積分率ρn□を求めることができる。
Figure JPOXMLDOC01-appb-M000003
 同様に、六回対称構造では、同じ層において、粒子間距離>コロイド粒子径のとき、異なる層のコロイド粒子と接触しているが同じ層の粒子同士は接触していない(図3(b))。同じ層において、粒子間距離=コロイド粒子径のとき(図3(b))、d_(n△)は次式(4)で示される。ここで△は六回対称構造を示す。
Figure JPOXMLDOC01-appb-M000004
 その結果、次に示す式(5)で六回対称構造を形成している場合のコロイド粒子の体積分率ρn△を求めることができる。
Figure JPOXMLDOC01-appb-M000005
 式(3)(5)から、サイズ比dを変化させてそれぞれ取りうる体積分率を求め、プロットしたグラフを図4に示す。間隔の細かい点線が四回対称構造、間隔の荒い点線が六回対称構造のdに対する体積分率変化である。結晶構造は粒子密度が高いほど安定的に存在する。このため、コロイド粒子の密度の高い結晶構造が四回対称構造と六回対称構造との間で変化するところで色分けすることにより、相図(図4参照)が得られる。
 以上の結果から、h/2aの値が大きくなるにつれて、2層からなる六回対称構造(2△)→3層からなる四回対称構造(3□)→3層からなる六回対称構造(3△)→4層からなる四回対称構造(4□)→4層からなる六回対称構造(4△)の順で相転移することが分かる。このため、基板1と対向板2を平行かつh/2aを四回対称構造となるような比に保つことにより、四回対称構造のコロイド結晶が形成される。なお、基板1と対向板2が平行ではなく傾斜していたり、基板1や対向板2が撓んでいたりしてh/2aの値が場所によって変化していたとしても、部分的に四回対称構造を形成させることは可能である。
 コロイド結晶は微量の塩(イオン性不純物)の存在によって表面電荷の状態が変化するため、コロイド結晶の形成が阻害されることもある。このため、コロイド粒子の分散液の調製にあたっては分散媒を充分に脱塩することが好ましい。例えば、水を用いる場合には、まず精製水に対して、用いた水の電気伝導度が使用前の値と同程度になるまで透析を行い、次に充分に洗浄したイオン交換樹脂(陽イオン及び陰イオン交換樹脂の混床)を試料に共存して少なくとも1週間保つことにより、脱塩精製を行う。ただし、こうして脱塩精製を行った後に、あえて塩類を添加しておき、後述する結晶化工程S2において脱塩をし、コロイド結晶を析出させることも可能である。
 また、コロイド粒子の粒径及びその分布についても考慮する必要がある。コロイド粒子の粒子径は600nm以下であることが好ましく、さらに好ましくは300nm以下である。粒子径が600nmを超えるような大きな粒子径のコロイド粒子の場合には、重力の影響で沈降し易く、コロイド粒子の分散液の安定性が悪くなるからである。また、コロイド粒子の粒子径の変動係数(すなわち粒子径の標準偏差を平均粒子径で除した値)は20%以内が好ましく、更に好ましくは10%以下、最も好ましくは5%以下である。粒子径の変動係数が大きくなるとコロイド結晶が析出し難くなったり、コロイド結晶の格子欠陥や不均一性が増し、高品質のコロイド結晶が得られ難くなるからである。
 基板1及び対向板2の材質としては特に限定はないが、例えば平滑なガラス板、セラミックス板、プラスチック板、金属板等を用いることができる。
(固定化工程S2)
 析出した四回対称構造の荷電コロイド結晶を静電吸着させて固定化する(図2(c)参照)。固定化の方法としては、基板1又はコロイド粒子3の表面をアミノ基を有するシランカップリング剤等で修飾し、分散媒にNaOHや炭酸水素ナトリウムや炭酸ナトリウム等のアルカリを添加しておく方法を採用することができる。この場合には、基板1と対向板2を水に浸漬しておき、拡散や対流によって基板1と対向板2との間に存在するカチオンを除去する方法をとることができる。この場合において、浸漬する水の中にイオン交換樹脂を入れておくと、さらに素早くカチオンを除去することができる。カチオン除去によってコロイド粒子の分散液のpHが下がり、アミノ基がイオン化するため、負の表面電荷を有しているアミノ基を化学修飾していないコロイド粒子3又は基板1との間の静電引力により、基板1の表面に一層からなる四回対称構造の荷電コロイド結晶を固定化することができる。こうして得られる荷電コロイド結晶は静電引力によって基板1に吸着されており、純水中に浸漬しても移動しないで安定的に固定化されている。
<実施形態2>
 実施形態2のコロイド結晶は、図5に示すように、互いに一定の距離を隔てたコロイド粒子13aからなる四回対称構造を有する単一層Aと、単一層Aにおける正方形の単位格子の中央の真上に位置し、単一層Aの4つのコロイド粒子13aと接触して積層されたコロイド粒子13bからなる単一層Bとの2つの層で構成されている。このコロイド結晶は、図6に示す工程図に従って製造することができる。まず、実施形態1に示した結晶化工程S1及び固定化工程S2を行い、基板1上に単一層からなる四回対称構造を有するコロイド結晶を形成させる。そして、対向板2を取り除き、基板1を純水中に浸漬して付着する分散媒を洗い流してから、コロイド粒子13aと反対の荷電を有するコロイド粒子13bの分散液をコロイド粒子13aの単一層に接触させて、コロイド粒子13bからなる第2層をコロイド粒子13aからなる第1層の上に層静電吸着させる(第2層形成工程S3)。このとき、コロイド粒子13bは静電引力によりコロイド粒子13aと接触しつつ、コロイド粒子13aからなる正方形の結晶格子の中心の真上に配置される。こうして、図5に示すように、単一層Aの4つのコロイド粒子13aと接触して積層されたコロイド粒子13bからなる単一層Bとの2つの層で形成された、四回対称構造を有するコロイド結晶を得ることができる。
 コロイド粒子13aと反対の荷電を有するコロイド粒子13bとしては、例えば、コロイド粒子13aがシリカ等のように負の表面電荷を有する場合には、表面をアミノ基を有するシランカップリング剤等で修飾したシリカを用いることができる。また、コロイド粒子13aがアミノ基を有するシランカップリング剤等で修飾されたシリカ等のように正の表面電荷を有する場合には、コロイド粒子13bは、表面修飾されていない負の表面電荷を有する未修飾のシリカや、負の表面電荷を有する高分子などで修飾したシリカや、負の表面電荷を有するポリスチレンを用いることができる。
<実施形態3>
 実施形態3のコロイド結晶は、実施形態2の2層からなるコロイド結晶の上に、さらに第3層のコロイド粒子を積層したコロイド結晶である。まず、実施形態2の方法により、2層からなる四回対称構造を有するコロイド結晶を形成させる。そして、対向板2を取り除き、基板1を純水中に浸漬して付着する分散媒を洗い流してから、コロイド粒子13bと反対の荷電を有するコロイド粒子13cの分散液をコロイド粒子13bの層に接触させて、第2層の上にコロイド粒子13c静電吸着させて第3層を形成する(第3層形成工程S4)。こうして、3層が積層された四回対称構造を有するコロイド結晶を得ることができる(図7(a)参照)。
 さらに、実施形態3のコロイド結晶を形成させた基板1を第2層のコロイド粒子13bと同じ屈折率を有する分散媒中に浸漬する(図7(a)から図7(b)へ移行)ことにより、コロイド粒子13bは光学的に透明となる。このため、光学的には第1層と第3層のみからなるコロイド結晶となる(図7(b)参照)。
1)コロイド分散液の調製
 シリカ粒子(株式会社日本触媒社製KEP-50 平均粒子径=0.53μm、電荷数Z=-6420、粒子径の変動係数=5%およびKEP-100 平均粒子径=1.1μm、Z=-19488、粒子径の変動係数=5%)の水分散液をコロイド分散液として用意した。さらにNa2CO3又はNaOHを所定量添加したコロイド分散液を用意した。こうして実施例1~4で用いるコロイド分散液を用意した。
 実施例1:(KEP-50)シリカ粒子の体積分率=0.3,NaOH濃度  50mM 
 実施例2:(KEP-50)シリカ粒子の体積分率=0.1,Na2CO3濃度 0.1mM 
 実施例3:(KEP-50)シリカ粒子の体積分率=0.2,Na2CO3濃度  1mM 
 実施例4:(KEP-100)シリカ粒子の体積分率=0.3,アルカリを添加せず  
2)コロイド結晶調製用セルの作製
・カバーガラスの洗浄
 光学顕微鏡カバーガラス(松波硝子工業株式会社製、35mm×55mm×0.15mm)を用意し、株式会社あすみ技研製ASM401N型UVオゾン処理装置を用いてカバーガラスの表面および裏面を10分間ずつUV照射およびオゾン処理を行った(以下UV/O3処理と略す)。その後、濃HCl+MeOH 混合液(体積比1:1)に30分間浸漬し、Milli-Q水で洗浄し、濃硫酸に2時間浸漬した後、Milli-Q水でよく洗浄した。なお、Milli-Q水とは、メルク株式会社のMilli-Q(登録商標)水製造装置により得られる超純水である。
・APTESによるカバーガラスの表面修飾
 こうして洗浄したカバーガラスを、3-アミノプロピルトリエトキシシラン(APTES)を90% EtOHに1vol.%溶液となるように溶解した溶液(以下APTES溶液と略す)に浸漬し、室温で1時間放置した。その後、カバーガラスを引き上げ、70℃オーブンで一晩乾燥し、ガラス表面のシラノール基をAPTESで化学修飾した。さらにMilli-Q水中で一晩振とうして洗浄後、乾燥させた。
・コロイド結晶調製用セル20の作製
 コロイド結晶を析出させるためのセルとして、図8に示すコロイド結晶調製用セル20を作製した。このセルはAPTESで化学修飾したカバーガラス21に、2cm×2cmの正方形の孔が設けられた厚さ5mmのシリコンシート22が接着されている。
3)コロイド結晶化工程S1
 シリコンシート22における正方形の孔とカバーガラス21とによって形成された凹部にコロイド分散液を500μL滴下した。そして、正方形の孔の内側にカバーガラス23を重ね、その上に石英ガラス24を載せ、さらにその上に100gの錘25を載せ、30分間静置した後、カバーガラス21の下方に共焦点レーザー顕微鏡の対物レンズ26を近接させて観察した。すなわち、コロイド結晶調製用セル20にコロイド分散液をセットして30 min以上静置してからレーザ走査型顕微鏡(LSM)によって三次元画像を取得した(図9参照)。LSM画像解析から、gapの大きさh、各層の粒子数Nnを求め、体積分率φを求めた。ただし、荷電コロイド系を用いているため、式(6)によって体積分率から粒子の有効半径(aeff)を求めて、補正を行った。こうして得られたaeffを用いて、見かけの体積分率を計算し、図10に示す相図を作成した(d = h/2aeff)。
Figure JPOXMLDOC01-appb-M000006
 ここで、aは粒子半径、u(r)は二粒子間相互作用ポテンシャル(u(σ)=0)、kBはBolzmann定数、Tは絶対温度である。図10に示すように、理論相図に補正した実験結果を重ね合わせ、比較した。四角のシンボルが四回対称構造を、三角のシンボルが六回対称構造を示す。また、黒塗りのシンボルは塩類無添加の場合、白抜きのシンボルはNaClを添加した場合(NaClの濃度Cs = 0.25 mM)を示す。その結果、実験結果が理論相図と傾向が一致することを確認できた。また、塩類無添加及び塩類添加にかかわらず、同様の補正によって傾向は一致することから、有効半径の補正が有用であることが示された。dが小さい値では四回対称構造と六回対称構造が重なっているのは、LSMの精度限界が原因と考えられる。LSM画像は0.15μm/stepでスキャンしており、gapが小さいほど誤差が大きくなってしまったと考えられる。また、dが大きい値でρが小さい値になった理由として、総数が多いほど像がぼやけるため、粒子数のカウントに誤差を生じたためであると考えられる。
 以上のように、LSMの三次元画像解析より、拘束空間における結晶構造の相挙動を確認することができた。すなわち、Gapの大きさhが大きくなるにつれて、2△ → 3□ → 3△ → 4□→ 4△ → …と相転移することを確認できた。また、光学顕微鏡を用いて、四回対称構造から重りを除去し、六回対称構造に転移する様子が観察された。なお、Cs = 0.050 mMおよび0.10 mMとした実験においても、同様の傾向が得られることが示された。
4)固定化工程S2
 コロイド結晶調製用セル20の上から、イオン交換樹脂(陽イオンおよび陰イオン交換樹脂の混床、Bio-Rad Laboratories、Inc製, AG501 X-8(D))1.5gを投入した。そして、水の蒸発を防ぐため、コロイド結晶調製用セル20を図示しないプラスチック容器でカバーし、数日間静置した。そして顕微鏡観察でシリカ粒子が基板であるカバーガラス21に吸着していることを確認した後、錘25、石英ガラス24、カバーガラス23を除去した。その後、Milli-Q水でカバーガラス21を十分洗浄し、さらに水を十分量加えた状態で、吸着したシリカ粒子の顕微鏡画像を撮った。こうして得られた顕微鏡画像を、画像解析ソフトImage Jを用いて解析し、粒子中心間の平均距離rを求め、さらに式(7)から体積分率φvを計算した(式中aはシリカ粒子の半径を示す。)。また、画像処理ソフトImage Jを用いて画像を白黒に二値化して得られた二値化画像から粒子の動径分布関数g(r)を求めた。
Figure JPOXMLDOC01-appb-M000007
<結 果>
1)実施例1について
 シリカ粒子の体積分率=0.3,NaOH濃度50mMのコロイド分散液を用いた実施例1についての顕微鏡画像及びその画像から計算した動径分布関数を図11に示す。ここで、顕微鏡画像が2枚(ともに画像サイズは50μm×50μm)示されているのは、カバーガラス21,23の撓みによってgapの距離が異なることから、場所によって四回対称構造のコロイド結晶となったり(図11左上)、六回対称構造のコロイド結晶となったり(図11左下)するからである(実施例2~4についても同様である)。四回対称構造のコロイド結晶においては、その顕微鏡画像から、粒子間距離r=623±7 nm(体積分率φv,4= 0.46)と求められた。また、六回対称構造のコロイド結晶においては、r=600±24 nm(φv,6= 0.51)と求められた。
2)実施例2について
 シリカ粒子の体積分率=0.1,Na2CO3濃度 0.1mMのコロイド分散液を用いた実施例2についての顕微鏡画像を図12に示す(画像サイズは30μm×30μm)。四回対称構造のコロイド結晶においては、その顕微鏡画像から、粒子間距離r=695±13nm(φv4=0.33)と求められた。また、六回対称構造のコロイド結晶においては、r=690±25nm(φv6=0.34)と求められた。
2)実施例3について
 シリカ粒子の体積分率=0.2,Na2CO3濃度 1mMのコロイド分散液を用いた実施例3についての顕微鏡画像を図13に示す(画像サイズは30μm×30μm)。四回対称構造のコロイド結晶においては、その顕微鏡画像から、粒子間距離r=644±15nm (φv4=0.41)と求められた。また、六回対称構造のコロイド結晶においては、r=638±8nm (φv6=0.42)と求められた。
2)実施例4について
 シリカ粒子の体積分率=0.3,アルカリの添加をしなかったコロイド分散液を用いた実施例4についての顕微鏡画像を図14に示す(画像サイズは50μm×50μm)。四回対称構造のコロイド結晶においては、その顕微鏡画像から、粒子間距離r=1.244±0.019μm(φv4=0.49)と求められた。また、六回対称構造のコロイド結晶においては、r=1.269±0.010μm(φv6=0.46)と求められた。
 実施例1~4の顕微鏡画像及びそれから求められた動径分布関数から、コロイド粒子の粒子径や粒子濃度によって、形成される四回対称構造や六回対称構造のコロイド結晶の各種パラメータを制御可能であることが分かった。
 実施例1~4において、場所によってコロイド結晶の構造が異なるのは、カバーガラス21,23の撓みや錘による加重の不均一性によってgapの距離が異なるためと考えられる。gapの距離を均一とするように薄いカバーガラスをガラスブロックに替えたり、荷重を均一にかける構造とすることにより、すべて四回対称構造のコロイド結晶としたり、六回対称構造のコロイド結晶としたり制御することが可能である。
(実施例5)
1)コロイド分散液の調製
 実施例5では、ポリスチレン粒子(Thermo社製 平均粒子径=600nm、負荷電、ゼータ電位=-48mV)の水分散液を減圧下で濃縮した後、NaOH水溶液を添加して粒子濃度=40vol%、NaOH濃度=4mMのコロイド分散液とした。 
2)コロイド結晶調製用セル
 コロイド結晶調製用セルは、実施例1~4で用いたセルと同じであり、説明を省略する。
3)コロイド結晶化工程S1
 次に、実施例1~4と同様のコロイド結晶化工程S1を行った。ただし、コロイド分散液の凹部への滴下量は176μLとした。
4)固定化工程S2
 さらに、実施例1~4と同様の固定化工程S2を行った。ただし、イオン交換樹脂による脱塩時間は24時間とした。ガラス基板を顕微鏡で観察したところ、図15に示すように、四回対称構造を有し、ポリスチレン粒子の単一層からなるコロイド結晶が確認された。この四回対称コロイド結晶が形成されたガラス基板を純水中で保存した。
(実施例6)
1)コロイド分散液の調製
 実施例6では、コロイド分散液のNaOH濃度を5mMとしたこと以外は、実施例5と同様であり、説明を省略する。 
2)コロイド結晶調製用セル
 コロイド結晶調製用セルは、実施例5で用いたセルと同じであり、説明を省略する。
3)コロイド結晶化工程S1
 次に、実施例5と同様のコロイド結晶化工程S1を行った。ただし、コロイド分散液の凹部への滴下量は206μLとした。
4)固定化工程S2
 さらに、実施例5と同様の固定化工程S2を行った。そして、ガラス基板を顕微鏡で観察したところ、図16に示す様に、四回対称構造を有し、ポリスチレン粒子の単一層からなるコロイド結晶が確認された。このコロイド結晶が形成されたガラス基板を純水中で保存した。
<四回対称構造を有するコロイド結晶の吸着曲線>
 以下の手順によって四回対称構造を有するコロイド結晶の吸着曲線の実験値を求め、理論から導かれた計算値と比較した。
1)シリカ粒子コロイド分散液の調製
 シリカ粒子(株式会社日本触媒社製KEP-50 平均粒子径=0.53μm、電荷数Z=-6420、粒子径の変動係数=5%およびKEP-100 平均粒子径=1.1μm、Z=-19488、粒子径の変動係数=5%)の水分散液をコロイド分散液として用意した。さらにNa2CO3を所定量添加することにより、シリカ粒子コロイド分散液(シリカ粒子の体積分率=0.3,Na2CO3濃度=10mM)を調製した。
2)コロイド結晶調製用セルの作製
・カバーガラスの洗浄
 光学顕微鏡カバーガラス(松波硝子工業株式会社製、35mm×55mm×0.15mm)を用意し、株式会社あすみ技研製ASM401N型UVオゾン処理装置を用いてカバーガラスの表面および裏面を10分間ずつUV照射およびオゾン処理を行った(以下UV/O3処理と略す)。その後、濃HCl+MeOH 混合液(体積比1:1)に30分間浸漬し、Milli-Q水で洗浄し、濃硫酸に2時間浸漬した後、Milli-Q水でよく洗浄した。
・APTESによるカバーガラスの表面修飾
 こうして洗浄したカバーガラスを、3-アミノプロピルトリエトキシシラン(APTES)を90% EtOHに1vol.%溶液となるように溶解した溶液(以下APTES溶液と略す)に浸漬し、室温で1時間放置した。その後、カバーガラスを引き上げ、70℃オーブンで一晩乾燥し、ガラス表面のシラノール基をAPTESで化学修飾した。さらにMilli-Q水中で一晩振とうして洗浄後、乾燥させた。
・コロイド結晶調製用セルの作製
 コロイド結晶を調製するために、実施例1~3において用いたコロイド結晶調製用セル20と同じセルを用いた(図8参照)。このセルはAPTESで化学修飾したカバーガラス21に、2cm×2cmの正方形の孔が設けられた厚さ5mmのシリコンシート22が接着されている。
3)コロイド結晶化工程S1
 シリコンシート22における正方形の孔とカバーガラス21とによって形成された凹部にコロイド分散液を500μL滴下した。そして、正方形の孔の内側にカバーガラス23を重ね、その上に石英ガラス24を載せ、さらにその上に100gの錘25を載せ、30分間静置した後、カバーガラス21の下方に共焦点レーザー顕微鏡の対物レンズ26を近接させて観察した。すなわち、コロイド結晶調製用セル20にコロイド分散液をセットして30 min以上静置してからレーザー走査型顕微鏡(LSM)によって三次元画像を取得し、四回対称構造を有するコロイド結晶が形成されていることを確認した。
4)固定化工程S2
 コロイド結晶調製用セル20の上から、イオン交換樹脂(陽イオンおよび陰イオン交換樹脂の混床、Bio-Rad Laboratories、Inc製, AG501 X-8(D))1.5gを投入した。そして、水の蒸発を防ぐため、コロイド結晶調製用セル20を図示しないプラスチック容器でカバーし、共焦点レーザー顕微鏡によりシリカ粒子が基板であるカバーガラス21に四回対称構造を有するコロイド結晶の単層が吸着している様子を所定時間ごとに観察し、カバーガラス21の周縁から成長していく四回対称コロイド結晶の単層の成長端までの長さを求めた。結果を図17に示す。データは3回の実験結果の平均値で、バーは標準偏差である。その結果、イオン交換樹脂ビーズを添加してからカバーガラス21の周縁から外方向に向かってイオンが拡散し、これによりカバーガラス21の周縁から内方向に向かって静電吸着が進行して単層のコロイド結晶が成長し、30時間後には、結晶サイズが1mmに達することが分かった。
5)理論的計算から求めた吸着曲線
 吸着過程は、塩基の一次元的な一方向の拡散によるものと考えられる。イオン濃度C(x, t) (xとtは位置と時間)は、拡散方程式(8)で与えられる。ここで、Dはイオンの見かけの拡散係数( = 1.16×10-5 cm2/s)である。
Figure JPOXMLDOC01-appb-M000008
 また、任意の位置及び時間におけるイオン濃度は式(9)で与えられる。ここでCiは塩濃度の初期値であり、erfは誤差関数である。ただし、イオン交換樹脂はx=0においてC=0を満たすような十分に高い交換容量を持つものとする。
Figure JPOXMLDOC01-appb-M000009
 Ci =10mMとして、式(9)により様々なC = C*の値について(x、t)を計算した。結果を図17に示す。実験値はC*=4mMとした場合の拡散方程式から求めた計算値とよく一致した。この結果から、静電吸着はC* =約4 mMで起こることが示唆された。
<多層からなるコロイド結晶の作製>
(実施例7)
 実施例7では3層から構成された、四回対称構造を有するコロイド結晶を調製した。以下にその詳細を示す。
1)   一層目の形成
 直径440nmのポリスチレン粒子(Thermo 社、粒子径の変動係数=4%、負荷電、ゼータ電位=-48 mV)の水分散液を濃縮して用いた。この水分散液にNaOH水溶液を添加し、粒子濃度=33vol%、NaOH濃度=1mMとした。APTES修飾ガラスの表面に正方形のプラスチック枠(内寸20mm×20mm)を設けて、液体を充填できるようにしたAPTES修飾ガラス基板上に300μLを滴下した。そして、プラスチック板(15 mm×15mm)を載せ、プラスチック板の周縁にイオン交換樹脂(陽イオンおよび陰イオン交換樹脂の混床、Bio-Rad社, AG501 X-8(D)1.5gを入れて、2時間脱塩した。脱塩処理終了後、このガラス基板を水洗して過剰な粒子を除き、ガラス基板を顕微鏡で観察したところ、四回対称構造を有し、ポリスチレン粒子の単一層からなるコロイド結晶が確認された。この単一層からなるコロイド結晶が形成されたガラス基板を純水中で保存した。
2)   二層目の形成
 日本触媒社製のシリカ粒子KE-P30(粒子径300nm)の表面に赤色の蛍光色素(ローダミンイソチオシアナート)を吸着させ、さらにゾル-ゲル法によってシリカコート層を形成させた。こうして最表面がシリカコート層に覆われたシリカ粒子を、ポリエチレンイミン系シランカップリング(Gelest社製)のエタノール溶液に加えて処理し、シリカコート層にアミノ基を導入し、粒子径430nm(粒子径の変動係数=4%)の正に荷電した赤色蛍光シリカ粒子を調製した。この粒子のゼータ電位を測定したところ、+58 mVであった。
 この正に荷電した赤色蛍光シリカ粒子の水分散液(粒子濃度=0.1%)を調製し、さらに、その水分散液200μLを100μM NaCl水溶液3mLに添加して分散させた食塩水分散液を、上述した一層目のコロイド結晶が形成されたガラス基板の上に滴下した。そして、イオン交換樹脂を充填した半透膜製のバッグを接触させて2時間の脱塩処理を行った後、ガラス基板をLSMによって観察した。その結果、単一層からなるポリスチレン粒子のコロイド結晶の上に、赤色蛍光シリカ粒子が単一層で吸着していることを確認した。さらに、ガラス基板を水洗して過剰な分散液を除いた後、純水中に保存した。こうして、四回対称構造を有するポリスチレン粒子の単一層の上に、赤色蛍光シリカ粒子の単一層が積層されたコロイド結晶を得た。
3)   三層目の形成
 一層目の形成において調製した直径440nmの負荷電ポリスチレン粒子の水分散液(粒子濃度=10vol%)2μLを100μM NaCl水溶液(3mL)に添加して分散させた食塩水分散液を二層目上に滴下した。そして、イオン交換樹脂を充填した半透膜製のバッグに接触させて、2時間の脱塩処理を行った後、表面を光学顕微観察により観察したところ、ポリスチレン粒子が赤色蛍光シリカ粒子上に吸着されていることが確認された。最後に、ガラス基板を水洗して過剰な混合液を除いた後、純水中に保存した。こうして、四回対称構造を有し、ポリスチレン粒子の単一層の上に赤色蛍光シリカ粒子の単一層が積層され、さらに、その上にポリスチレン粒子の単一層が積層された3層からなるコロイド結晶を得た。
(顕微鏡による観察)
 こうして得られた実施例7のコロイド結晶について、光学顕微鏡画像撮影を行った。その結果、図18に示すように、1層目の顕微鏡画像からポリスチレン粒子が等間隔並んだ四回対称構造が明瞭に認められた。また、2層目の赤色蛍光シリカ粒子は1層目のポリスチレン粒子からなる正方形の単位格子の中心の真上に位置していた。そして、さらに3層目のポリスチレン粒子が1層目のポリスチレン粒子の真上に位置していた(図19参照)。
<実施例7のコロイド結晶における分散媒の置換>
 実施例7で作製した、コロイド結晶を形成させた基板1に、エチレングリコール3m Lを添加して2時間静置した。また、エチレングリコールに替えて、第2層のシリカ粒子の屈折率と同じ屈折率に調整した水-エチレングリコール混合溶液3m Lを添加して30分間載置した。そして、それぞれを共焦点レーザースキャン顕微鏡(Nikon、C2型)で画像を撮影した。その結果、媒質がエチレングリコールの場合には、第1層、第2層及び第3層が明瞭に観察されたのに対し、第2層のシリカ粒子の屈折率と同じ屈折率に調整した水-エチレングリコール混合溶液を媒質とした場合には、第2層が透明となり、観察できなかった。
 この発明は上記発明の実施の態様及び実施例の説明に何ら限定されるものではない。特許請求の範囲を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
 本発明のコロイド結晶は、コロイド粒子の径を選択することにより、様々な波長に対応したフォトニック材料として利用することができる。
1…基板,2…対向板,3,13a,13b,13c…コロイド粒子,
4…分散媒,
S1…結晶化工程,S2…固定化工程,S3…第2層形成工程,
S4…第3層形成工程,
20…コロイド結晶調製用セル,21…カバーガラス,22…シリコンシート,23…カバーガラス,24…石英ガラス,25…錘,26…対物レンズ

Claims (9)

  1.  幾何学的に拘束されていない空間で存在し、四回対称構造を有するコロイド結晶。
  2.  単一層からなる請求項1に記載のコロイド結晶。
  3.  多層からなる請求項1に記載のコロイド結晶。
  4.  第1のコロイド粒子からなる第1層と、第2のコロイド粒子からなる第2層とが交互に繰り返して多層をなしており、第1のコロイド粒子の屈折率又は第2のコロイド粒子の屈折率と分散媒の屈折率とが同じである請求項3に記載のコロイド結晶。
  5.  基板と該基板に対面する対向板との間に第1のコロイド粒子の分散液を充填して、前記第1のコロイド粒子からなる四回対称構造の荷電コロイド結晶を析出させる結晶化工程と、
     前記第1のコロイド粒子の単一層からなる四回対称構造の荷電コロイド結晶を前記基板に静電吸着させて固定化する固定化工程と、を備えるコロイド結晶の製造方法。
  6.  前記固定化工程を行った後に、前記第1のコロイド粒子と反対の荷電を有する第2のコロイド粒子の分散液を前記第1のコロイド粒子の単一層に接触させて前記第2のコロイド粒子を前記第1のコロイド粒子の単一層上に静電吸着させる第2層形成工程、を備える請求項5に記載のコロイド結晶の製造方法。
  7.  前記第2層形成工程を行った後、前記第2のコロイド粒子と反対の荷電を有する第3のコロイド粒子の分散液を前記第2のコロイド粒子の単一層に接触させて前記第3のコロイド粒子を前記第2のコロイド粒子の単一層上に静電吸着させる第3層形成工程、を備える請求項6に記載のコロイド結晶の製造方法。
  8.  前記第2層形成工程と、前記第3層形成工程とを交互に繰り返すことを特徴とする請求項7に記載のコロイド結晶の製造方法。
  9.  前記基板又は前記コロイド粒子の分散液中のコロイド粒子の表面が電荷を付与可能な修飾基で化学修飾されており、
     前記固定化工程は基板と対向板と間に存在するコロイド粒子の分散液中のイオンを排除することによって行うことを特徴とする請求項5乃至8のいずれか1項に記載のコロイド結晶の製造方法。
PCT/JP2022/038829 2021-10-20 2022-10-18 コロイド結晶及びその製造方法 WO2023068283A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023554714A JPWO2023068283A1 (ja) 2021-10-20 2022-10-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021171446 2021-10-20
JP2021-171446 2021-10-20

Publications (1)

Publication Number Publication Date
WO2023068283A1 true WO2023068283A1 (ja) 2023-04-27

Family

ID=86059194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038829 WO2023068283A1 (ja) 2021-10-20 2022-10-18 コロイド結晶及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2023068283A1 (ja)
WO (1) WO2023068283A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1363418A (zh) * 2001-12-07 2002-08-14 华南理工大学 一种具有三维有序结构的胶体晶体的制备方法
WO2003027727A1 (fr) * 2001-09-21 2003-04-03 Bando Chemical Industries, Ltd. Structure cyclique et procede de production de cette structure
JP2007044598A (ja) * 2005-08-09 2007-02-22 Ricoh Co Ltd コロイド結晶、膜状微粒子構造体、膜状周期構造体、およびそれらの製造方法
US20130044365A1 (en) * 2011-08-18 2013-02-21 Samsung Electronics Co., Ltd. Method of preparing monodisperse particle, monodisperse particle prepared by using the method, and tunable photonic crystal device using the monodisperse particle
WO2021075323A1 (ja) * 2019-10-15 2021-04-22 公立大学法人名古屋市立大学 ダイヤモンド格子構造を有するコロイド結晶及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027727A1 (fr) * 2001-09-21 2003-04-03 Bando Chemical Industries, Ltd. Structure cyclique et procede de production de cette structure
CN1363418A (zh) * 2001-12-07 2002-08-14 华南理工大学 一种具有三维有序结构的胶体晶体的制备方法
JP2007044598A (ja) * 2005-08-09 2007-02-22 Ricoh Co Ltd コロイド結晶、膜状微粒子構造体、膜状周期構造体、およびそれらの製造方法
US20130044365A1 (en) * 2011-08-18 2013-02-21 Samsung Electronics Co., Ltd. Method of preparing monodisperse particle, monodisperse particle prepared by using the method, and tunable photonic crystal device using the monodisperse particle
WO2021075323A1 (ja) * 2019-10-15 2021-04-22 公立大学法人名古屋市立大学 ダイヤモンド格子構造を有するコロイド結晶及びその製造方法

Also Published As

Publication number Publication date
JPWO2023068283A1 (ja) 2023-04-27

Similar Documents

Publication Publication Date Title
Meijer et al. Self-assembly of colloidal cubes via vertical deposition
Kuo et al. Moth-eye-inspired biophotonic surfaces with antireflective and hydrophobic characteristics
Liu et al. Influence of the roughness, topography, and physicochemical properties of chemically modified surfaces on the heterogeneous nucleation of protein crystals
Kulak et al. Polyamines as strong molecular linkers for monolayer assembly of zeolite crystals on flat and curved glass
TWI388435B (zh) 以物理壓力將細小顆粒定位於基材上之方法
Zhou et al. Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates
Iwayama et al. Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region
Van Bruggen Preparation and properties of colloidal core− shell rods with adjustable aspect ratios
Im et al. Effect of evaporation temperature on the quality of colloidal crystals at the water− air interface
Wang et al. Ultrathin films and hollow shells with pillared architectures fabricated via layer-by-layer self-assembly of titania nanosheets and aluminum keggin ions
JP5716080B2 (ja) 粘土薄膜の製造方法
Carlsson et al. Lysozyme adsorption to charged surfaces. A Monte Carlo study
Sumida et al. Construction of stacked opaline films and electrochemical deposition of ordered macroporous nickel
Cai et al. In situ “doping” inverse silica opals with size-controllable gold nanoparticles for refractive index sensing
US10549314B2 (en) Coating method using particle alignment and particle coated substrate manufactured thereby
JP2009501081A (ja) ホログラフィック光学ピンセットを利用して多次元コロイド構造を形成する方法および装置
Wang et al. Self-assembly of two-and three-dimensional particle arrays by manipulating the hydrophobicity of silica nanospheres
Eagleton et al. Electrochemical synthesis of 3D ordered ferromagnetic nickel replicas using self-assembled colloidal crystal templates
Xie et al. Design and fabrication of wafer-level microlens array with moth-eye antireflective nanostructures
US20220213613A1 (en) Colloidal crystal having diamond lattice structure and method for producing same
Tardani et al. Shear rheology control of wrinkles and patterns in graphene oxide films
WO2023068283A1 (ja) コロイド結晶及びその製造方法
Dutta et al. In-situ nucleation and growth of γ-FeOOH nanocrystallites in polymeric supramolecular assemblies
Gruzd et al. All-nanoparticle monolayer broadband antireflective and self-cleaning transparent glass coatings
Shih et al. Broadband omnidirectional antireflection coatings inspired by embroidered ball-like structures on leafhoppers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883587

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554714

Country of ref document: JP